WO2020261437A1 - Dew condensation prevention device and display device - Google Patents
Dew condensation prevention device and display device Download PDFInfo
- Publication number
- WO2020261437A1 WO2020261437A1 PCT/JP2019/025411 JP2019025411W WO2020261437A1 WO 2020261437 A1 WO2020261437 A1 WO 2020261437A1 JP 2019025411 W JP2019025411 W JP 2019025411W WO 2020261437 A1 WO2020261437 A1 WO 2020261437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- display device
- temperature
- dew condensation
- heat generating
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present invention relates to a dew condensation prevention device and a display device.
- Patent Document 1 discloses a dew condensation prevention device including a dew condensation sensor arranged on a window glass where dew condensation is expected to occur in a house or a vehicle. In this device, when the output signal of the dew condensation sensor exceeds a predetermined threshold value, the operation of the ventilation fan is started to reduce the humidity in the room.
- a display device such as a liquid crystal display device, an organic EL display device, or a micro LED display device may be arranged in a room such as a vehicle or a building.
- a window glass such as a passenger compartment or a living room
- dew condensation may occur on the display surface of the display device as well as the surface of the window glass.
- Such dew condensation reduces the visibility of the image displayed on the display device, and may also shorten the life of the display device.
- the display device is provided with a dew condensation preventing means in order to prevent the occurrence of dew condensation.
- the performance of the dew condensation preventing means is earlier than the useful life of the display device. It was found that it could deteriorate.
- the present disclosure provides a dew condensation prevention device capable of preventing a decrease in visibility of a display image due to dew condensation and easily maintaining its performance, and a display device provided with such a dew condensation prevention device. With the goal.
- the dew point prevention device includes a film-like heat generating portion having one surface to be attached to the surface of a display device installed indoors, and a predetermined portion to be heated by the heat generated by the heat generating portion.
- a first measuring unit that measures the temperature
- a second measuring unit that measures the temperature of the space in which the display device is installed
- a third measurement unit that is arranged apart from the display device and measures the humidity of the space.
- the display device includes a unit and a control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device.
- the control unit includes the temperature of the space measured by the second measurement unit and the temperature of the space.
- a determination unit that determines a threshold temperature based on the dew point temperature of the space based on the humidity of the space measured by the third measurement unit, a threshold temperature determined by the determination unit, and the first measurement. It includes a drive unit that generates heat in the heat generating unit based on the temperature measured by the unit.
- the display device of another embodiment of the present disclosure includes a display panel including a plurality of pixels provided in a matrix on a substrate, and a dew condensation prevention device of the above-described embodiment for preventing dew condensation on the display panel.
- the heat generating portion is attached to the display surface of the display panel or the opposite surface of the display surface.
- thermocouple which constitutes the 1st measurement part in embodiment of this disclosure.
- a front view which shows an example of the heat generating part in embodiment of this disclosure.
- a bottom view which shows the heat generating part of FIG. 3A.
- a front view which shows the other example of the heating element of the heat generating part in embodiment of this disclosure.
- the present inventor has repeatedly studied the means for preventing the deterioration of visibility due to dew condensation on the display device. Then, they have found that in a conventional dew condensation prevention device using a dew condensation sensor or a humidity sensor, the dew condensation prevention device may not function normally even though the display device is in the useful life. Furthermore, the present inventor has found that the deterioration of the function of the dew condensation prevention device is due to aged deterioration of the dew condensation sensor or humidity sensor, and this deterioration can be accelerated by exposing the dew condensation sensor or the like to moisture due to dew condensation. I found that.
- the dew condensation prevention device is integrally formed with the display device and the dew condensation sensor or humidity sensor deteriorates relatively quickly, the dew condensation sensor and the like deteriorate even though the display device is still usable. Therefore, it is necessary to replace the dew condensation prevention device and the display device together with the dew condensation sensor and the like. Even if the display device and the dew condensation prevention device are formed separately, if a small or thin sensor is provided so that the dew condensation prevention device combined with the display device is inconspicuous during use, only the sensor unit is replaced. This becomes difficult, and when the dew condensation sensor or the like deteriorates, it may be necessary to replace the entire dew condensation prevention device.
- the resistance change type detection method often used in the dew condensation sensor and the humidity sensor requires a detection region made of a semiconductor or the like which has a certain size and changes the electric resistance by contact with moisture.
- these sensors can have a size of, for example, a few millimeters square. Therefore, it is an invention that when the display device is provided with a dew condensation sensor or the like, these sensors are easily noticed by the user in the display device even though they are the objects to be watched, and the design of the display device is easily impaired. It was newly recognized through the examination of the person. That is, the present inventor has newly found a problem peculiar to the display device regarding the prevention of dew condensation, which is to prevent a decrease in visibility without significantly reducing the appearance value of the display device.
- dew condensation prevention device and the display device according to the embodiment of the present invention will be described with reference to the drawings.
- the materials, shapes, and relative positional relationships of the components in the embodiments described below are merely examples.
- the dew condensation prevention device and the display device of each embodiment are not limitedly interpreted by these.
- FIG. 1 shows the overall configuration of the dew condensation prevention device 1 according to the embodiment of the present disclosure.
- the dew condensation prevention device 1 of the present embodiment includes a heat generating unit 2, a first measuring unit 3, a second measuring unit 4, a third measuring unit 5, and a control unit 6. There is. The value measured by each measuring unit is input to the control unit 6.
- the heat generating portion 2 has a film-like shape, and has one surface 20 (a surface to be directed to the display device 7) to be attached to the surface of the display device 7 installed in the room R.
- the type of the display device 7 to which the heat generating portion 2 of the dew condensation prevention device 1 is attached is not particularly limited.
- the display device 7 may be a flat type display device including a display panel or a display device having a curved surface, such as an organic EL display device, a liquid crystal display device, and a micro LED display device.
- a display panel is drawn as the display device 7 in the drawings referred to in the following description including FIG.
- the heat generating portion 2 is attached to the display panel.
- the first measuring unit 3 measures the temperature of a predetermined portion to be heated by the heat generated by the heat generating unit 2.
- the "portion to raise the temperature due to the heat generated by the heat generating portion 2" is an arbitrary portion where the temperature rises by receiving the heat generated by the heat generating portion 2 not only through convection or radiation but also through conduction.
- this "site” may be a specific portion of the heat generating portion 2 itself, or may be a specific portion in the display device 7. Further, this "site” may be a specific site in the inclusion (not shown) when an inclusion (not shown) is present between the heat generating portion 2 and the display device 7.
- An example of inclusions is a means for adhering the display device 7 and the heat generating portion 2 such as the adhesive layer 27 (see FIG. 6B) described later.
- the "indoor R" is the inside of any structure including buildings and vehicles.
- the first measuring unit 3 may be composed of any sensor, detector, or measuring instrument capable of temperature detection.
- the first measuring unit 3 is composed of a sensor or a measuring instrument capable of inputting the detection result to the control unit 6 as an electric signal. Since the first measuring unit 3 is arranged in the vicinity of the heat generating unit 2, that is, in the vicinity of the display device 7, it is preferable that the first measuring unit 3 is small and invisible to the user of the display device 7. From that point of view, the first measuring unit 3 is composed of, for example, a thermocouple.
- the second measuring unit 4 measures the temperature of the space (indoor R) where the display device 7 is installed.
- the second measuring unit 4 may be composed of any sensor, detector, or measuring instrument capable of detecting temperature.
- the third measuring unit 5 measures the humidity of the space in which the display device 7 is installed.
- the third measuring unit 5 may measure either relative humidity or absolute humidity, as will be described later.
- the mere notation of "humidity" in the following description means relative humidity.
- the third measuring unit 5 may be composed of any sensor, detector, or measuring instrument capable of detecting humidity.
- the third measuring unit 5 is composed of a humidity sensor such as a resistance change type, a capacitance change type, or a telescopic type.
- the second measuring unit 4 and the third measuring unit 5 are configured by a sensor or a measuring instrument capable of inputting the detection result to the control unit 6 by an electric signal.
- the third measuring unit 5 is arranged at a location away from the display device 7 where dew condensation is unlikely to occur. Therefore, even if dew condensation occurs on the display device 7 during the non-operation of the dew condensation prevention device 1 used to prevent dew condensation on the display device 7, the third measuring unit 5 which may be composed of the humidity sensor is exposed to the moisture due to the dew condensation. hard. Therefore, the third measuring unit 5 is unlikely to deteriorate. Further, since the third measuring unit 5 is arranged apart from the display device 7, the humidity sensor and the like constituting the third measuring unit 5 are not visible to the user, and the design of the display device 7 is not impaired.
- the third measuring unit 5 arranged apart from the display device 7 may be closer to the second measuring unit 4 than the display device 7, for example. In that case, it may be possible to more appropriately determine the threshold temperature described later while avoiding dew condensation in the third measuring unit 5. This is because the temperature and humidity at locations close to each other can be obtained by the second measuring unit 4 and the third measuring unit 5 which are close to each other, and the dew point temperature which is a premise for determining the threshold temperature can be appropriately specified. is there.
- the linear distance between the third measuring unit 5 and the second measuring unit 4 is 1/5 or less, preferably 1/10 or less of the linear distance between the third measuring unit 5 and the display device 7.
- the temperature measured when the thermometer is arranged at the position of the third measuring unit 5 is closer to the temperature measured by the second measuring unit 4 than the temperature measured by the first measuring unit 3. May be good.
- the third measuring unit 5 tells the second measuring unit 4 that the temperature measured when the thermometer is arranged at the position of the third measuring unit 5 is substantially the same as the temperature measured by the second measuring unit 4. It may be in close proximity.
- the control unit 6 controls the temperature around the display device 7 or the display device 7 in order to prevent dew condensation on the display device 7.
- “Around the display device 7” means a range in which heat can be transferred to or from the display device 7 through conduction as well as convection or radiation.
- the control unit 6 includes a determination unit 61 and a drive unit 62.
- the control unit 6 further includes a storage unit 63.
- the determination unit 61 determines the threshold temperature based on the temperature measured by the second measurement unit 4 and the humidity measured by the third measurement unit 5. This threshold temperature is a temperature based on the dew point temperature of the space in which the display device 7 is grasped based on the temperature and humidity measured by the second measuring unit 4 and the third measuring unit 5, respectively.
- the drive unit 62 generates heat in the heat generating unit 2 based on the threshold temperature determined by the determination unit 61 and the temperature measured by the first measurement unit 3.
- the control unit 6 has, for example, a calculation function for data consisting of measured values input as an electric signal, a comparison function, a calculation result or a signal generation function based on the comparison result, a storage function for input data and comparison (reference) data, and the like. Have.
- the control unit 6 determines the threshold temperature using, for example, these functions.
- the determination unit 61, the drive unit 62, and the storage unit 63 may be physically configured separately or integrally formed.
- the control unit 6 is configured by using, for example, a microcomputer, a gate array, or a semiconductor integrated circuit device such as a PLD (programmable logic device).
- the control unit 6 operates based on an operation program stored in its own storage function, such as the storage unit 63.
- a predetermined surface (one surface 20) of the film-like heat generating portion 2 is attached to the display surface of the display device 7 arranged in the room R or the back surface thereof.
- the first measuring unit 3 measures, for example, the temperature of the surface of the heat generating unit 2 or the temperature of the display surface of the display device 7 directed to the user of the display device 7.
- the temperature and humidity of the room R which is the space where the display device 7 is arranged, are measured by the second measuring unit 4 and the third measuring unit 5, respectively.
- the control unit 6 Since the control unit 6 inputs the measurement results of the temperature and humidity of the room R, the dew point temperature of the room R at the measured temperature and humidity can be obtained.
- the determination unit 61 of the control unit 6 can determine the dew point temperature by calculation based on the operation program of the control unit 6 or by referring to the storage contents of the storage unit 63.
- Zur's formula or Wagner-Pruss' formula which indicates the relationship between temperature and saturated vapor pressure, can be used to calculate the dew point temperature by calculation, but any formula can be used to calculate the dew point temperature. Can be used.
- the storage unit 63 may store the calculation results of various combinations of temperature and humidity.
- the determination unit 61 determines a threshold temperature that is a temperature based on this dew point temperature and is a reference value for determining whether the heat generation unit 2 starts or stops the heat generation operation.
- the determination unit 61 can determine the threshold temperature, for example, by further performing a predetermined calculation on the dew point temperature determined by itself. For example, the determination unit 61 may set the temperature obtained by adding a predetermined temperature difference to the dew point temperature or the temperature obtained by subtracting a predetermined temperature difference from the dew point temperature as the threshold temperature.
- the determination unit 61 may directly determine the threshold temperature based on the dew point temperature by calculation or reference to the stored contents of the storage unit 63 without going through the determination of the specific dew point temperature. For example, if the storage unit 63 stores an appropriate operation program or appropriate reference data capable of directly determining the threshold temperature from the temperature and humidity obtained by the second and third measurement units 4 and 5, the dew point temperature The threshold temperature can be determined without intervention.
- the humidity measured by the third measuring unit 5 may be either relative humidity or absolute humidity.
- the storage unit 63 stores an appropriate operation program or reference data according to the relative humidity or the absolute humidity, the threshold temperature can be appropriately determined according to the type of humidity to be measured.
- the drive unit 62 of the control unit 6 generates heat in the heat generating unit 2 based on the temperature measured by the first measurement unit 3 and the determined threshold temperature.
- the drive unit 62 generates heat in the heat generating unit 2 when, for example, the temperature measured by the first measuring unit 3 is the same as or lower than the threshold temperature. Further, the drive unit 62 does not generate heat in the heat generating unit 2 when, for example, the temperature measured by the first measuring unit 3 is the same as or higher than the threshold temperature.
- the heat generating unit 2 generates heat by energization
- the drive unit 62 generates heat in the heat generating unit 2 by supplying electric power, and the drive unit 62 does not generate heat in the heat generating unit 2. Does not supply power.
- the drive unit 62 supplies the electric power of the power source 8 to the heat generating unit 2, for example, as shown in FIG.
- the drive unit 62 may switch between supplying and stopping power to the heat generating unit 2 by controlling on / off of a switching element 81 such as a transistor connected between the power supply 8 and the heat generating unit 2. ..
- the dew condensation prevention device 1 may include a power supply 8 and a switching element 81, and the power supply 8 and the switching element 81 may be provided outside the dew condensation prevention device 1.
- the control unit 6 controls the heat generated by the heat generating unit 2 in order to prevent dew condensation on the display device 7, thereby controlling the temperature of the display device 7 or its surroundings to which the heat generating unit 2 is attached.
- Control That is, the threshold temperature for starting or ending the heat generation of the heat generating unit 2 is determined based on the dew point temperature that can be grasped from the measurement results of the second and third measuring units 4 and 5.
- the control unit 6 compares this threshold temperature with the temperature measured by the first measurement unit 3, and generates heat in the heat generating unit 2 based on the result.
- the control unit 6 is configured to determine the threshold temperature to a temperature higher than the dew point temperature, and when the temperature measured by the first measurement unit 3 is equal to or lower than the threshold temperature, the heat generating unit 2 determines the threshold temperature.
- the control unit 6 determines the threshold temperature to a temperature higher than the dew point temperature, and when the temperature measured by the first measurement unit 3 is equal to or lower than the threshold temperature, the heat generating unit 2 determines the threshold temperature.
- the third measuring unit 5 for measuring humidity is arranged apart from the display device 7, and is affected by, for example, the temperature of the outside atmosphere (outside air) of the room R more than the display device 7. It is placed in a difficult position. Therefore, even if the temperature of the outside air is low enough to cause dew condensation on the display surface of the display device 7, dew condensation is unlikely to occur in the third measuring unit 5 and its peripheral portion. Therefore, for example, the humidity sensor that can form the third measuring unit 5 is less likely to be exposed to the dew condensation that may occur in the room R while the dew condensation prevention device 1 is not operating. Therefore, the deterioration of the humidity sensor and the like is unlikely to be accelerated, and the function of the dew condensation prevention device can be maintained for a long period of time.
- a first measuring unit 3 for measuring temperature is arranged around the display device 7, and the first measuring unit 3 is, for example, a detecting means having an extremely small detecting unit such as the thermocouple described above. Can be used. Therefore, the dew condensation preventing means can be provided so that the components are not conspicuous to the person who sees the display device 7.
- the heat generating portion 2 can be formed by using a material having translucency, as will be described later.
- the present embodiment it is possible to prevent the visibility of the displayed image from being deteriorated due to dew condensation without significantly deteriorating the design of the display device, and the performance of the means (condensation prevention device 1) is maintained for a long time. can do.
- FIG. 2A and 2B show an example of a mode in which the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display device 7, and another example, respectively.
- the heat generating portion 2 has a surface as one surface 20 to be attached to the display surface 7a of the display device 7, and the one surface 20 is attached to the display surface 7a of the display device 7.
- the display device 7 is attached to a surface (attached surface) facing the room in the partition wall B that separates the inside and the outside, such as a glass window or a wall material, with the surface opposite to the display surface 7a.
- a surface attached surface facing the room in the partition wall B that separates the inside and the outside, such as a glass window or a wall material
- the heat generating portion 2 since the heat generating portion 2 is attached to the display surface 7a, the heat generating portion 2 is formed by using a material having translucency, which will be described later.
- heat is preferably generated by using an optical transparent adhesive (OCA: Optical Clear Adhesive) or an optical transparent resin (OCR: Optical Clear Resin).
- OCA optical Clear Adhesive
- OCR optical transparent resin
- the first measuring unit 3 (see FIG. 1) is configured by the thermocouple 3a, and the temperature measuring contact 3a1 of the thermocouple 3a is the opposite surface (second surface) of the surface 20 of the heat generating unit 2. It is arranged at 20a.
- the exposed surface that is interposed between the image displayed on the display device 7 and the person who sees the display device 7 and is exposed to the indoor atmosphere is the second surface 20a of the heat generating portion 2. .. If the temperature of the display device 7 is equal to or lower than the dew point, dew condensation may occur on the second surface 20a of the heat generating portion 2. Then, the visibility of the displayed image may decrease.
- the first measuring unit 3 (thermocouple 3a in the example of FIG. 2A) is arranged on the second surface 20a of the heat generating unit 2. in this way.
- the first measuring unit 3 measures the temperature of a predetermined portion of the heat generating unit 2.
- the temperature measuring contact 3a1 of the thermocouple 3a is arranged at the edge of the second surface 20a of the heat generating portion 2. That is, the temperature measuring contact 3a1 is arranged so as to be visually recognized at the edge of the display surface 7a when the display surface 7a of the display device 7 is viewed from the front. Therefore, the thermocouple 3a is less noticeable, and the visibility of the image displayed on the display surface 7a is less likely to be impaired.
- thermocouple 3a constituting the first measuring unit 3 measures the average temperature of the surface on which dew condensation should be prevented (in the example of FIG. 2A, the second surface 20a of the heat generating unit 2). Therefore, in the example of FIG. 2A, it is arranged substantially in the center of the second surface 20a in the long side direction of the second surface 20a having a rectangular shape. Therefore, the average temperature of the second surface 20a can be easily measured.
- the first measuring unit 3 composed of a thermocouple 3a or the like may be arranged at the center of the entire second surface 20 when it is important to measure the average temperature of the second surface 20a. ..
- thermocouple 3a is connected to the control unit 6 and applies a potential difference according to the temperature measurement result to the control unit 6.
- the temperature of the measurement target of the thermocouple 3a is less than 100 ° C. at the highest, so a base metal thermocouple such as an E thermocouple, a J thermocouple, or a T thermocouple is used. Can be done. Therefore, even when the control unit 6 and the thermocouple 3a are arranged apart from each other in the present embodiment, the lead wires such as copper or nickel constituting the thermocouple 3a can be laid up to the control unit 6 at a relatively low cost. ..
- thermocouple 3a and the control unit 6 may be connected with a simple structure. Since the base metal-based thermocouple 3a lead wire may corrode, it is preferable to cover the thermocouple 3a lead wire with an insulating coating material 3a2 made of an arbitrary resin or the like, as shown in FIG. 2A.
- FIG. 2B shows another example of the mode in which the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display device 7.
- the heat generating portion 2 has a surface as one surface 20 to be attached to the opposite surface of the display surface 7a of the display device 7, and the one surface 20 is attached to the opposite surface of the display surface 7a of the display device 7. Therefore, the heat generating portion 2 is interposed between the surface (attached surface) of the partition wall B such as a glass window or a wall material and the display device 7.
- the heat generating portion 2 can be adhered to each of the display device 7 and the partition wall B by using an arbitrary adhesive.
- the above-mentioned OCA or OCR may be used.
- the heat generating portion 2 may have translucency.
- the display surface 7a of the display device 7 is exposed to the indoor atmosphere. Therefore, the temperature measuring contact 3a1 of the thermocouple 3a is arranged on the display surface 7a. That is, the first measuring unit 3 measures the temperature of a predetermined portion on the display surface 7a of the display device 7.
- the temperature measuring contact 3a1 of the thermocouple 3a is arranged on the frame portion (bezel) surrounding the display portion 7b of the display surface 7a. Therefore, the thermocouple 3a is inconspicuous and does not impair the visibility of the displayed image.
- the first measuring unit 3 composed of the thermocouple 3a or the like is the entire display surface 7a. It may be located in the center.
- the thermocouple 3a is connected to the control unit 6 and applies a potential difference according to the temperature measurement result to the control unit 6.
- the lead wire of the thermocouple 3a is covered with an insulating coating material 3a2 made of an arbitrary resin or the like.
- FIG. 2C shows another example of the arrangement of the two leads of the thermocouple 3a on the display surface 7a of the display device 7.
- the thermocouple 3a has a first lead wire 31 and a second lead wire 32, and a joining contact 3a1 is formed by joining one ends of each of the first lead wire 31 and the second lead wire 32.
- the joining contact 3a1 is arranged in the frame portion 7c surrounding the display unit 7b, and is arranged substantially at the center in the long side direction of the display device 7.
- Both the first lead wire 31 and the second lead wire 32 are arranged along the outer edge of the display device 7, and are arranged in the frame portion 7c.
- the first lead wire 31 and the second lead wire 32 are arranged in the frame portion 7c separately from each other without being parallel to each other in the frame portion 7c. That is, the first lead wire 31 and the second lead wire 32 are laid from the temperature measuring contact 3a1 in opposite directions to each other, and the first lead wire 31 is laid along the outer edge of the display device 7 at the peripheral edge of the display device 7. And any one of the second lead wire 32 is arranged.
- the display unit 7b is surrounded by the first lead wire 31 and the second lead wire 32 over substantially the entire circumference of the display unit 7b.
- thermocouple 3a may be embedded in the frame portion of the display device 7 when the frame portion of the display device 7 is formed of a frame body made of an arbitrary suitable material such as synthetic resin. Further, the thermocouple 3a may be adhered to the display surface 7a at the peripheral edge of the display device 7, or may be embedded in the peripheral edge of the display device 7. Even when the thermocouple 3a is arranged on the peripheral edge of the heat generating portion 2 as in the example shown in FIG. 2A, the two leads of the thermocouple 3a are directed in opposite directions from the temperature measuring contact 3a1. It may be laid and any one of the two conductors may be arranged along the outer edge of the heat generating portion 2.
- the heat generating unit 2 generates heat under the control of the control unit 6 in order to raise and maintain the temperature of the exposed surface of the display device 7 to a temperature higher than the dew point temperature.
- the heat generating unit 2 is not limited in terms of material, structure, and components as long as it has a film-like shape and the start and stop of heat generation can be controlled by the control unit 6.
- the heat generating portion 2 is configured to generate Joule heat by energization. In that case, heat generation can be easily controlled.
- the "exposed surface" of the display device 7 means the second surface 20a of the heat generating unit 2 when the heat generating portion 2 is attached to the display surface 7a of the display device 7 (example of FIG. 2A). To do.
- the “exposed surface” of the display device 7 means the display surface 7a of the display device 7.
- FIGS. 3A and 3B show a front view and a bottom view of an electric heater 2a, which is an example of the film-shaped heat generating portion 2 and generates heat by energization, respectively.
- the heater 2a includes a film-like base material 21 and a film-like heating element 22 formed on the base material 21 using a material capable of passing an electric current. Includes.
- the driving unit 62 controls energization of the heating element 22 in order to control the heating operation of the heating unit 2.
- either the base material 21 or the heating element 22 may be attached to the display device 7.
- the base material 21 is preferably directed to the display device 7 in the example of FIG. 2A referred to above, and in the example of FIG. 2B.
- the heating element 22 is directed at the display device 7.
- the base material 21 is a film body formed by using a material having an insulating property.
- the material of the base material 21 include polymer resins such as polyethylene terephthalate (PET) and polyimide (PI).
- PET polyethylene terephthalate
- PI polyimide
- the base material 21 may have flexibility. When the base material 21 has flexibility, when it is attached to the flexible display device 7, it can follow the bending or bending of the display device 7, and stress applied to the display device 7. Is also considered to be small.
- the base material 21 may have translucency. As described above, when the heat generating portion 2 is attached to the display surface 7a of the display device 7, the base material 21 having translucency is particularly preferable.
- a transparent polyimide is exemplified as a material constituting the base material 21 having translucency, but the material of the base material 21 is not limited to this.
- the base material 21 may be formed of the same material as the protective film.
- the base material 21 may have a thickness of, for example, 30 ⁇ m or more and 200 ⁇ m or less. If the thickness is less than 30 ⁇ m, the rigidity may be insufficient. On the other hand, if the thickness exceeds 200 ⁇ m, sufficient transparency may not be obtained even if a translucent material is used.
- the heating element 22 is a thin film body through which an electric current can flow, and is formed on the base material 21 by, for example, sputtering or printing.
- the heating element 22 may generate enough Joule heat to heat the exposed surface of the display device 7 by energization.
- Two electrodes 23 are formed on the base material 21 so as to be in contact with the heating element 22 respectively. The heating element 22 is energized via these electrodes 23.
- the heating element 22 has an appropriate electric resistance Rg through which a current capable of heating the exposed surface of the display device 7 can flow.
- the electric resistance Rg required when it is desired to raise the temperature of the display surface 7a of the display device 7 by 10 ° C. within 1 minute is exemplified below.
- the thermal resistance of the display device 7 is ignored because the display device 7 is thin.
- the specific heat capacity Cp of the display device 7 having a front size of 0.3 m ⁇ 0.15 m is 1.5 J / g ⁇ ° C. (specific heat of the polyimide resin used as a substrate for an organic EL display panel 1. (Assumed to be slightly larger based on 13 J / g ⁇ ° C.) and its mass is 25 g to 30 g, the calorific value Q of the heating element 22 is required to be about 400 J to 500 J.
- the required heat generation amount is a resistance value smaller than the above Rg. You can get Q.
- the amount of heat required to raise the temperature of the water droplet having a specific heat capacity of 4.2 J / g ⁇ ° C. is also required.
- the temperature drops on the screen of the display device 7 of the above size attached to the windshield of width 1.5 m x height 1 m in a passenger compartment having a volume of 3 m 3.
- the amount of water adhering with the decrease in the amount of saturated water vapor is estimated to be about 0.5 g to 1 g.
- the calorific value Q also includes a calorific value for raising the temperature of this amount of water droplets by 10 ° C.
- the heating element 22 is formed by using a material capable of forming an appropriate electric resistance Rg as described above. Further, the heating element 22 may have translucency and flexibility as in the above-mentioned base material 21, and it may be preferable that the heating element 22 has such characteristics. Therefore, the material of the heating element 22 is selected in consideration of translucency, flexibility and flexibility, and ease of formation when the heating element 22 is formed. Therefore, as the material of the heating element 22, a material having relatively low conductivity suitable for heat generation, good light transmission, and flexibility is preferable.
- the heating element 22 is formed, for example, by using a conductive polymer polymer having these characteristics.
- the heating element 22 may have an electrical conductivity (conductivity) of about 1 ⁇ 10 3 S / m or more and 1 ⁇ 10 5 S / m or less.
- the heating element 22 may be formed using ITO, zinc oxide, or the like if flexibility and flexibility are not so important. Furthermore, when a thinner heating element 22 is formed than when the heating element 22 is formed from these inorganic compounds, a metal with higher conductivity, such as titanium, chromium, rhodium, nickel or aluminum, is the heating element. It may be used as a material of 22. Therefore, the heating element 22 can have, for example, a conductivity of 0.1 ⁇ 10 6 S / m or more and 7 ⁇ 10 7 S / m or less. Further, when the heating element 22 is formed by using ITO, zinc oxide or the like, the heating element 22 may have a conductivity of 0.2 ⁇ 10 6 S / m or more and 1 ⁇ 10 6 S / m or less.
- the thickness T that the heating element 22 having a predetermined conductivity should have, the length L in the direction parallel to the current flow, and the length (width) W in the direction orthogonal to the current flow are appropriate. Correlate with each other to provide a good electrical resistance Rg.
- the heating element 22 formed by sputtering or printing can be formed within a thickness range of, for example, 1 nm or more and 10000 nm or less.
- the heating element 22 having such a thickness T has appropriate electrical resistance and mechanical strength, and may be provided with higher transparency and flexibility.
- the heating element 22 when the heating element 22 is formed by using a material having a conductivity of 0.2 ⁇ 10 6 S / m or more and 1 ⁇ 10 6 S / m or less, such as ITO or zinc oxide, the heating element 22 is formed so as to have a thickness of, for example, 100 nm or more and 500 nm or less. As an example, when the heating element 22 is formed using a material having a conductivity of 0.5 ⁇ 10 6 S / m, the heating element 22 has a sheet resistance Rs of 4 ⁇ / sq or more and 20 ⁇ / sq or less. Can be done.
- the heating element 22 is formed to have a thickness of, for example, 2 nm or more and 14 nm or less in order to have transparency.
- the heating element 22 has a rectangular front shape that is substantially similar to the front shape of the substantially rectangular base material 21 and is slightly smaller than the base material 21.
- a thermocouple 3a (see FIG. 2A) constituting the first measurement unit 3 may be arranged at the edge portion of the base material 21 on which the heating element 22 is not formed.
- each of the two opposing short sides of the heating element 22 having a rectangular front shape overlaps with the electrode 23.
- the electrode 23 is preferably made of a material having higher conductivity than the material forming the heating element 22.
- the electrode 23 is made of a conductor film containing aluminum, nickel, or the like.
- the electrode 23 is connected to a power supply path (not shown) at any part thereof.
- one of the two electrodes 23 is connected to the feeding path in the vicinity of one diagonal of the heating element 22 having a rectangular front shape, and the other electrode 23 is connected to the feeding path in the vicinity of the other diagonal. May be connected.
- the variation in the amount of heat generated in the heating element 22 may be further reduced.
- the electrode 23 does not necessarily have to be along the short side of the heating element 22 as shown in FIG. 3A, and may be formed so as to overlap the long side along the long side of the heating element 22. Further, the electrode 23 does not have to be in contact with one side of the heating element 22 over the entire length of one side, and may be in contact with the heating element 22 at one or more arbitrary positions on each side of the heating element 22.
- FIGS. 4A and 4B Other examples of the heating element 22 will be described with reference to FIGS. 4A and 4B. Note that in FIGS. 4A and 4B, the electrodes 23 shown in FIGS. 3A and 3B are omitted.
- the heating element 22a of another example shown in FIG. 4A includes two regions 22a1 and 22a2 that are electrically separated from each other. Power is supplied to each of the regions 22a1 and 22a2.
- the distribution of the amount of heat generated in the entire heating element 22a is compared with the examples of FIGS. 3A and 3B. May increase uniformity.
- a voltage having a magnitude of 1/2 that of the voltage to be applied to the heating element 22 in order to obtain the calorific value Q in the examples of FIGS. 3A and 3B is applied to the regions 22a1 and 22a2, respectively.
- the heating element Q can be obtained.
- the heating element 22a is not limited to the example of FIG. 4A, and may include a plurality of regions more than 2. By dividing the heating element 22a into n regions having substantially the same electrical resistance and connecting the regions in parallel, the required voltage can be reduced to 1 / n.
- the heating element 22b of another example shown in FIG. 4B has a front shape that meanders in a zigzag manner. That is, the heating element 22b defines the current path from the current inflow point Ps to the current outflow point Pd by its own shape, and the current path meanders in a zigzag manner.
- the heating element 22b As shown in FIG. 4B, the ratio (L / W) of the length L and the width W in the heating element 22b can be increased. Therefore, even when the sheet resistance Rs of the heating element 22b is small, the heating element 22b having an appropriate electric resistance can be formed within a predetermined area.
- the heating element 22 is not limited to the examples of FIGS. 3A to 4B, and may have an arbitrary front shape.
- the heat generating unit 2 in the present embodiment may have any other function as well as the heat generating function.
- FIGS. 5A and 5B another example of the heat generating unit 2 having a function other than such heat generation is shown together with the display device 7.
- FIG. 5A is another example of the heat generating portion 2 in the case where the heat generating portion 2 is attached to the display surface 7a of the display device 7 as in the example of FIG. 2A.
- FIG. 5B is another example of the heat generating portion 2 in the case where the heat generating portion 2 is attached to the opposite surface of the display surface 7a in the display device 7 as in the example of FIG. 2B. Therefore, in FIG. 5A, the display device 7 is attached to the partition wall B, and in FIG. 5B, the heat generating portion 2 is interposed between the display device 7 and the partition wall B.
- the heat generating portion 2 includes an optical functional film 25 having a predetermined function regarding light propagation on a surface (second surface 20a) opposite to the one surface 20 attached to the display device 7. ing.
- the optical functional film 25 is, for example, an antireflection film configured to suppress the reflection of light.
- the optical functional film 25 may be a polarizing plate.
- the optical functional film 25 may have a structure in which an antireflection film and a polarizing plate are laminated. Since the heat generating portion 2 has the antireflection film, the diplomatic reflection in the display device 7 is suppressed, and the visibility of the image displayed on the display device 7 is improved. Further, since the heat generating portion 2 is provided with a polarizing plate, it is not necessary to provide the display device 7 with a polarizing plate, and the structure of the display device 7 may be simplified.
- an antireflection film for example, a dielectric material having a refractive index lower than that of the material constituting the heating element 22 is used. Then, an antireflection film can be formed by forming a film having an appropriate thickness so that the reflected light on each of the front and back surfaces weakens each other due to interference, and the reflection of external light on the display device 7 can be reduced. it can.
- a commercially available polarizing plate may be adhered to the heating element 22.
- a circular polarizing plate in which a 1/4 retarding plate formed of polycarbonate or the like is laminated on such a straight polarizing plate may be adhered to the heating element 22.
- the heat generating portion 2 in the example of FIG. 5A includes a heat insulating layer 26.
- the heat insulating layer 26 is provided on one side 20 of the heat generating portion 2 facing the display device 7.
- the heat insulating layer 26 contains at least a material having a lower thermal conductivity than the material forming one side 20 of the heat generating portion 2.
- one side 20 is formed by the base material 21.
- the heat insulating layer 26 can have, for example, a thermal conductivity of 0.1 W / (m ⁇ K) or less.
- the heat insulating layer 26 may be composed of a sheet or film containing any heat insulating material such as a fiber type or a foam type.
- a sheet formed by impregnating fibers with silica airgel having pores is laminated on one side 20 composed of a base material 21 as a heat insulating layer 26.
- an adhesive layer 27 containing an adhesive or an adhesive is provided on one side 20 of the heat generating portion 2 facing the display device 7. .
- the surface to be heated by the heat generating unit 2 is the display surface 7a of the display device 7, and therefore, it is preferable to efficiently transfer the heat generated by the heat generating unit 2 to the display device 7. Therefore, the adhesive layer 27 has a thickness of about 50 ⁇ m or more and 150 ⁇ m or less. Further, the adhesive layer 27 contains a filler 27a made of a material having excellent thermal conductivity in order to enhance the thermal conductivity in the adhesive layer 27, as shown enlarged in the circle C surrounded by the alternate long and short dash line. I'm out.
- the filler 27a is, for example, a granular material made of a material having a thermal conductivity of 20 W / (m ⁇ K) or more and 3000 W / (m ⁇ K) or less.
- the material of the filler 27a include aluminum oxide, aluminum nitride, magnesium oxide and the like.
- the filler 27a may be a nanotube (BNNT) containing boron nitride.
- the adhesive layer 27 may be formed using OCA or OCR as a main raw material and may contain BNNT at a content of 10% by weight. In that case, the adhesive layer 27 may have a thermal conductivity of 1.0 W / (m ⁇ K) or more and 1.5 W / (m ⁇ K) or less while maintaining the translucency.
- the heat generating portion 2 is not prepared separately from the display device 7 and attached to the display device 7, but may be formed on any surface of the display device 7 with one side 20 facing the display device 7. Good.
- the heating element 22 and the electrode 23 shown in FIG. 3A may be formed on the display surface 7a of the display panel 7 or the opposite surface by sputtering or printing. Then, electric power may be supplied to the heat generating unit 2 formed on the surface of the display device 7, and the start and stop of the heat generation may be controlled by the control unit 6.
- FIG. 6 shows an example of the embodiment of the control unit 6 in the dew condensation prevention device 1 of the present embodiment together with the second and third measurement units 4 and 5.
- the control unit 6 is composed of electronic components such as a semiconductor integrated circuit device mounted on the wiring board 64.
- the second and third measuring units 4 and 5 are also mounted on the wiring board 64.
- the wiring board 64 is arranged inside a case 65 made of engineering plastic or a metal such as aluminum. Therefore, the control unit 6 and the second and third measurement units 4 and 5 are housed in the case 65 together with the wiring board 64, and the case 65 covers them in all directions.
- the case 65 has an opening 65a for introducing air outside the case 65 into the case 65.
- the opening 65a is provided in the case 65 at a portion closest to each of the second and third measuring units 4 and 5. Therefore, the second and third measuring units 4 and 5 can appropriately measure the temperature and humidity of the space to be measured, respectively.
- the case 65 is installed on the surface of the partition wall B facing the room R, which surrounds the space (indoor R) in which the display device 7 (see FIG. 1) is installed and separates the room R from the outside.
- a heat insulating portion 66 is provided between the case 65 and the partition wall B. Therefore, the heat transfer between the partition wall B and the second measuring unit 4 is suppressed by the heat insulating unit 66. Therefore, the second measuring unit 4 can appropriately measure the temperature of the space to be measured without being significantly affected by the outside air temperature.
- the heat insulating portion 66 can be formed by using any heat insulating material. For example, fibrous or foam-based insulating materials such as glass wool, urethane foam or polystyrene foam are used.
- the wiring board 64 is in contact with the case 65 only on a part of the surface of the wiring board 64 facing the bottom surface.
- the case 65 is in contact with the partition wall B (specifically, the heat insulating portion 66) only on a part of the surface facing the partition wall B.
- the contact portion between the wiring board 64 and the case 65 and the contact portion between the case 65 and the partition wall B are provided on the bottom surface of the case 65 at predetermined intervals.
- the determination unit 61 of the control unit 6 shown in FIG. 1 refers to the threshold temperature (3) based on the dew point temperature of the space (room R) in which the display device 7 is installed by referring to the storage contents of the storage unit 63.
- Tt may be determined. That is, as shown in FIG. 7, the storage unit 63 has various temperatures Ta1 to Tan in the space measured by the second measuring unit 4 and humidity Ha1 to Ham in the space measured by the third measuring unit 5.
- a map (first map M1) in which threshold temperatures Tt11 to Tt1z are recorded for each combination of the above may be stored.
- the determination unit 61 may determine the threshold temperature Tt at which the heat generation unit 2 starts or stops heat generation based on the storage content of the storage unit 63. That is, the determination unit 61 may select the threshold temperature Tt for starting or stopping the heat generation in the heat generating unit 2 from the threshold temperatures Tt11 to Tt1z recorded in the first map M1.
- the storage unit 63 is referred to by the first map M1 referenced by the determination unit 61 while the heat generation by the heat generation unit 2 is stopped, and by the determination unit 61 during the heat generation of the heat generation unit 2.
- the second map M2 may be stored.
- the threshold temperature for example, temperature Ta2 and humidity Ha2
- the third measuring unit 5 for example, temperature Ta2 and humidity Ha2
- Tt1x may be lower than the threshold temperature (Tt2x) recorded on the second map M2 for this particular combination.
- the temperature at which the heat generation unit 2 should start the heat generation is recorded as the threshold temperature (Tt11 to Tt1z), and the temperature at which the heat generation unit 2 should stop the heat generation is the threshold temperature.
- the second map M2 recorded as (Tt21 to Tt2z) may be stored. Even in this case, the threshold temperature (for example, Tt1x) recorded in the first map M1 for a specific combination of the temperature measured by the second measuring unit 4 and the humidity measured by the third measuring unit 5 is determined. This particular combination may be lower than the threshold temperature (eg, Tt2x) recorded on the second map M2.
- the control unit 6 When the control unit 6 is configured in this way, the temperature of the exposed surface of the display device 7, which is an object to prevent or eliminate the occurrence of dew condensation, can be maintained between two temperatures exceeding the dew point temperature. it can. Moreover, it is possible to prevent the heat generation unit 2 from repeating the start and stop of heat generation without any darkness. This point will be described with reference to the timing chart shown in FIG.
- FIG. 8 shows the dew point temperature Tdx when the measurement results of the second and third measuring units 4 and 5 are the temperature Ta2 and the humidity Ha2, and the dew point temperature determined with reference to the first map M1.
- a high threshold temperature Tt2x is shown.
- the temperature T3 (hereinafter, also simply referred to as “temperature T3”) measured by the first measuring unit 3 is shown.
- temperature T3 hereinafter, also simply referred to as “temperature T3”
- the high level of the level change represented by the reference numeral P1 indicates that the dew condensation prevention device 1 is in operation, and the low level indicates that the dew condensation prevention device 1 is not in operation. Further, the high level of the level change indicated by the reference numeral P2 indicates that the heat generating portion 2 is generating heat, and the low level indicates that the heat generating portion 2 is not generating heat.
- the control unit 6 causes the heat generating unit 2 to start heat generation. After that, even if the temperature T3 rises due to the heat generated by the heat generating unit 2 and reaches a temperature equal to or higher than the threshold temperature Tt1x (time point S2), the control unit 6 causes the heat generating unit 2 to continue heat generation. Then, when the temperature T3 reaches the threshold temperature Tt2x (time point S3), the control unit 6 causes the heat generating unit 2 to stop heat generation.
- the control unit 6 causes the heat generating unit 2 to stop the heat generation. In this way, the control unit 6 can maintain the temperature of the exposed surface in the display device 7, which is an object to prevent or eliminate the occurrence of dew condensation, between two temperatures exceeding the dew point temperature Tdx.
- FIG. 9A shows an example of arrangement in the interior CR of an automobile.
- the display device 7 is attached to a surface of the windshield of an automobile facing the passenger compartment, and a heat generating portion 2 of a dew condensation prevention device is attached to the display surface.
- the first measuring unit 3 is arranged at the lower edge of the heat generating unit 2 so as not to be noticeable to the driver or the like.
- the control unit 6 is arranged inside the dashboard DB.
- the second and third measuring units 4 and 5 are attached to the rear view mirror RM so as to be separated from the inner wall surrounding the interior CR of the automobile.
- the second and third measurement units 4 and 5 may be arranged inside the dashboard DB as indicated by reference numerals 4a and 5a in FIG. 9A, respectively. In that case, the second and third measurement units 4a and 5a may be arranged directly below the opening DB1 provided on the surface of the dashboard DB.
- FIG. 9B shows another example of the arrangement of the dew condensation prevention device of the present embodiment in the interior CR of an automobile. Similar to the example of FIG. 9A, the display device 7 is attached to the windshield, and the heat generating portion 2 is attached to the display surface thereof.
- the control unit 6 is arranged on the floor of the vehicle interior. The floor portion has less shaking due to the running of the automobile than the inside of the dashboard, and the operation of the control unit 6 may be stable.
- the second and third measuring units 4 and 5 are arranged on the ceiling of the vehicle interior. The second and third measuring units 4 and 5 are attached to the ceiling of the vehicle interior via the sheet-shaped heat insulating material 45.
- any heat insulating material such as fiber-based or foam-based materials such as glass wool, urethane foam or polystyrene foam can be used.
- FIG. 9C shows an example of the arrangement of the dew condensation prevention device of the present embodiment in the living room of the house.
- the display device 7 is attached to the surface of the glass window of the house facing the room R, and the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface.
- the first measuring unit 3 is arranged on the surface of the heat generating unit 2 facing the room R.
- the control unit 6 conceptually shown in FIG. 9C is arranged at an arbitrary position in the house.
- the second and third measurement units 4 and 5 are arranged on the wall surface facing the room R.
- the second and third measuring units 4 and 5 may be suspended from the ceiling.
- FIGS. 9A to 9C are merely examples, and the mode of arranging the dew condensation prevention device 1 in the room is not limited to the arrangement shown in these drawings. Further, the dew condensation prevention device 1 can be used inside any structure.
- FIG. 10A shows an example of the display device 70 of another embodiment
- FIG. 10B shows an enlarged cross section of a part of the display panel 71 included in the display device 70.
- the display device 70 of the present embodiment includes a display panel 71 including a plurality of pixels 72 provided in a matrix on the substrate 71a, and dew condensation prevention of the above-described embodiment.
- the device 1 is provided.
- the dew condensation prevention device 1 is at least a heat generating unit 2, a first measurement unit 3, and a second measurement unit, similarly to the dew condensation prevention device 1 of one embodiment described with reference to FIG. 4. It is provided with a third measuring unit 5, a third measuring unit 5, and a control unit 6, and has the same structure as the dew condensation prevention device 1 of one embodiment, and may have the same function.
- the display device 70 of the present embodiment is, for example, an organic EL display device, a liquid crystal display device, or a micro LED display device.
- the display panel 71 is an organic EL display panel, a liquid crystal display panel, or a micro LED display panel.
- the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71.
- the dew condensation prevention device 1 prevents dew condensation on the display panel 71.
- Various modifications and / or additional components exemplified in the description of the dew condensation prevention device 1 of one embodiment may be applied to or added to the dew condensation prevention device 1 in the display device 70 of the present embodiment.
- the display panel 71 includes one or more gate bus drive circuits 73 that supply scanning signals to one or more pixels 72 arranged in the same row among the plurality of pixels 72.
- the gate bus drive circuit 73 is formed at the edge of the display panel 71, and is connected to each of a plurality of pixels 72 arranged in the same row (each row parallel to the X direction in FIG. 10A). ..
- the gate bus drive circuit 73 may be formed separately from the display panel 71 by using a so-called gate driver IC or the like.
- the display device 70 further includes a data bus drive circuit 74 provided outside the display panel 71 and supplying a data signal corresponding to the brightness of each pixel for each row of the plurality of pixels 72, and an image control circuit 75. ing.
- the image control circuit 75 is also called a timing controller, and outputs a control signal, a gradation signal, and the like to the gate bus drive circuit 73 and the data bus drive circuit 74 according to the input video signal and synchronization signal.
- a plurality of driving elements 71b mainly composed of, for example, a thin film transistor (TFT) are formed on the first surface 71a1 of the substrate 71a.
- Pixels (sub-pixels) 72 driven by the individual drive elements 71b are formed on the corresponding drive elements 71b.
- each of the plurality of pixels 72 is provided with two electrodes (anode and cathode) facing each other.
- the display panel 71 is an organic EL display panel
- a light emitting layer containing, for example, a hole injection layer, a hole transport layer, a host material such as Alq 3, and a dopant corresponding to the emission color is provided between the two electrodes.
- An electron transport layer, and an organic layer including an electron injection layer and the like are laminated.
- an opposing substrate (not shown) is arranged so as to face the substrate 71a. Then, one of the two electrodes is provided on the facing substrate, each substrate is further provided with an alignment film, a polarizing plate, and the like, and a liquid crystal material is filled between the two substrates.
- the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71.
- the heat generating portion 2 can be attached to the display surface 7a by using an optical transparent adhesive such as OCA described above, or another suitable adhesive.
- the heat generating portion 2 is the opposite surface of the display surface 7a on the display panel 71, that is, the opposite surface (second surface) 71a2 of the first surface 71a1 on the substrate 71a, as in the heat generating portion 2x shown by the alternate long and short dash line in FIG. It may be attached to.
- the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71 or the opposite surface thereof, and the exposed surface of the display panel 71 facing the user is heated, so that the display image due to dew condensation The decrease in visibility is suppressed.
- the heat generating portion 2 may be formed directly on the surface of the display panel 71 instead of being attached to the display panel 71.
- the heating element 22 and the electrode 23 are not on the base material 21 shown in FIG. 3A referred to above, but on the display surface 7a of the display panel 71 or on the opposite surface (second surface 71a2 of the substrate 71a). (See FIG. 3A) may be formed.
- the heating element 22 and the electrode 23 may be formed on the display surface 7a of the display panel 71 or on the second surface 71a2 of the substrate 71a by, for example, sputtering or printing.
- the display device 70 having the heat generating unit 2 formed on the surface of the display panel 71 includes the first measuring unit 3, the second measuring unit 4, the third measuring unit 5, and the control provided in the dew condensation prevention device 1 of the embodiment. It may include at least part 6. Then, the start and stop of heat generation of the heat generating unit 2 formed on the surface of the display panel 71 are controlled by the control unit 6 based on the measurement results of the first to third measuring units 3, 4 and 5. You may.
- the dew point prevention device includes a film-like heat generating portion having one surface to be attached to the surface of a display device installed indoors, and a predetermined temperature to be raised by the heat generated by the heat generating portion.
- the first measuring unit that measures the temperature of the part of the body, the second measuring unit that measures the temperature of the space where the display device is installed, and the second measuring unit that measures the temperature of the space are arranged apart from the display device and measure the humidity of the space.
- a third measuring unit and a control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device are provided, and the control unit is the space of the space measured by the second measuring unit.
- a determination unit that determines a threshold temperature based on the dew point temperature of the space based on the temperature and the humidity of the space measured by the third measurement unit, a threshold temperature determined by the determination unit, and the above. It includes a drive unit that generates heat in the heat generating unit based on the temperature measured by the first measuring unit.
- the heat generating portion may be made of a translucent material. In that case, the displayed image can be visually recognized through the heat generating portion.
- the heating element is formed on the base material by using a film-like base material having an insulating property and a material capable of passing an electric current.
- the driving unit may control the energization of the film-shaped heating element in order to control the operation of the heating element, including the film-shaped heating element. In that case, it is possible to easily control the stop and start of heat generation in the heat generating portion.
- the film-shaped heating element may be formed by using a conductive high molecular polymer.
- the heating element can have appropriate electrical resistance, flexibility, and transparency.
- the heat generating portion has a surface to be adhered to the display surface of the display device as the one surface, and the predetermined portion is a surface. It may be a predetermined portion of the heat generating portion attached to the display surface. In that case, the exposed surface of the display device can be efficiently heated.
- the heat generating portion is provided with either or both of an antireflection film and a polarizing plate configured to suppress light reflection on a surface opposite to the one surface. May be. In that case, the reflection of external light in the display device may be suppressed, or the structure of the display device may be simplified.
- the heat generating portion has a heat insulating layer containing a material having a lower thermal conductivity than the material forming the one surface on the one surface. You may have it. In that case, the temperature of the exposed surface in the display device can be efficiently raised.
- the heat generating portion has a surface to be adhered to the opposite surface of the display surface of the display device as the one surface, and the predetermined one.
- the portion may be a predetermined portion on the display surface. In that case, since the display surface of the display device is not covered by the heat generating portion, the visibility of the displayed image is not substantially reduced.
- the heat generating portion may be provided with an adhesive layer containing a filler having a thermal conductivity of 20 W / (m ⁇ K) or more on the one surface. In that case, the heat of the heat generating portion can be satisfactorily transferred to the display device.
- the filler may be an nanotube containing boron nitride. In that case, high thermal conductivity can be imparted to the adhesive layer.
- the dew condensation prevention device according to any one of (1) to (10) is further provided with a heat insulating portion that suppresses heat transfer between the second measuring portion and the partition wall surrounding the space. Good. In that case, the influence of the outside air on the temperature measurement by the second measuring unit can be reduced.
- the control unit uses the temperature of the space measured by the second measurement unit and the temperature measured by the third measurement unit. It further has a storage unit that stores a map in which the threshold temperature is recorded for each of the various combinations with the humidity of the space, and the determination unit determines the threshold temperature based on the storage content of the storage unit. You may. In that case, the threshold temperature can be easily determined without requiring calculation or the like.
- the storage unit is subjected to the first map referred to by the determination unit while the heat generation by the heat generation unit is stopped, and by the determination unit during the heat generation of the heat generation unit.
- the second map to be referred to is stored, and the threshold temperature recorded in the first map for a specific combination of the temperature of the space and the humidity of the space is the second for the specific combination. It may be lower than the threshold temperature recorded on the map. In that case, it is possible to prevent the start and stop of heat generation in the heat generating portion from being frequently repeated.
- the storage unit stops the first map in which the temperature at which the heat generation unit should start heat generation is recorded as the threshold temperature, and the heat generation by the heat generation unit.
- the threshold temperature recorded in the first map for a specific combination of the temperature of the space and the humidity of the space is stored in the second map in which the temperature to be power is recorded as the threshold temperature. It may be lower than the threshold temperature recorded in the second map for the particular combination. In that case, it is possible to prevent the start and stop of heat generation in the heat generating portion from being frequently repeated.
- the third measuring unit may be closer to the second measuring unit than the display device. In that case, it may be possible to appropriately prevent dew condensation on the display device while more reliably avoiding dew condensation on the third measuring unit.
- the display device of another embodiment of the present disclosure includes a display panel including a plurality of pixels provided in a matrix on a substrate, and the above-mentioned (1) to (15) for preventing dew condensation on the display panel.
- the dew condensation prevention device is provided, and the heat generating portion is attached to the display surface of the display panel or the opposite surface of the display surface. According to this configuration, it is possible to prevent deterioration of the visibility of the displayed image due to dew condensation by means that can easily maintain the prevention performance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
This dew condensation prevention device is provided with: a film-shaped heat generation unit that has one surface to be attached to a front surface of a display device installed in a room; a first measurement unit that measures the temperature of a predetermined region the temperature of which is to be increased by heat generation by the heat generation unit; a second measurement unit and a third measurement unit that respectively measure the temperature and humidity of a space in which the display device is installed; and a control unit that controls the temperature of the display device or the surroundings thereof in order to prevent dew condensation in the display device. The third measurement unit is disposed away from the display device, and the control unit determines, on the basis of the results of measurement by the second measurement unit and the third measurement unit, a threshold temperature based on the dew-point temperature of the space in which the display device is installed, and causes the heat generation unit to generate heat on the basis of the determined threshold temperature and the temperature measured by the first measurement unit.
Description
本発明は結露防止装置及び表示装置に関する。
The present invention relates to a dew condensation prevention device and a display device.
住居などの建物の室内又は自動車などの乗り物の室内では、外気との温度差、及び湿度の上昇などによって、外気との間を隔てるガラス窓などの表面に結露が生じることがある。結露は、ガラス窓の透過性を低下させたり、水分との接触を嫌う材料などを含む物品の寿命又は機能などに影響を与えたりするため、必要に応じてその防止手段が講じられる。例えば特許文献1には、住居又は車両において結露の発生が見込まれる窓ガラスに配置された結露センサを含む結露防止装置が開示されている。この装置では、結露センサの出力信号が所定の閾値を超えると換気扇の運転が開始され、室内の湿度の低下が図られる。
In the interior of a building such as a house or the interior of a vehicle such as an automobile, dew condensation may occur on the surface of a glass window or the like that separates it from the outside air due to a temperature difference from the outside air and an increase in humidity. Condensation reduces the permeability of glass windows and affects the life or function of articles containing materials that dislike contact with moisture, so measures to prevent this are taken as necessary. For example, Patent Document 1 discloses a dew condensation prevention device including a dew condensation sensor arranged on a window glass where dew condensation is expected to occur in a house or a vehicle. In this device, when the output signal of the dew condensation sensor exceeds a predetermined threshold value, the operation of the ventilation fan is started to reduce the humidity in the room.
車両又は建物などの室内には、液晶表示装置又は有機EL表示装置或いはマイクロLED表示装置などの表示装置が配置されることがある。表示装置が、例えば車室又は居室などの窓ガラスの表面に配置されると、窓ガラスの表面と共に表示装置の表示面にも結露が生じることがある。このような結露は表示装置に表示される画像の視認性を低下させ、また、表示装置の寿命を低下させてしまうこともある。結露の発生を防止すべく表示装置に結露防止手段を備えることが考えられるが、本発明者は、従来の結露防止手段では、結露防止手段の性能が、表示装置の耐用年数に対して早期に劣化し得ることを見出した。
A display device such as a liquid crystal display device, an organic EL display device, or a micro LED display device may be arranged in a room such as a vehicle or a building. When the display device is arranged on the surface of a window glass such as a passenger compartment or a living room, dew condensation may occur on the display surface of the display device as well as the surface of the window glass. Such dew condensation reduces the visibility of the image displayed on the display device, and may also shorten the life of the display device. It is conceivable that the display device is provided with a dew condensation preventing means in order to prevent the occurrence of dew condensation. However, in the conventional dew condensation preventing means, the performance of the dew condensation preventing means is earlier than the useful life of the display device. It was found that it could deteriorate.
そこで、本開示は、結露による表示画像の視認性の低下を防止することができ、しかもその性能が維持され易い結露防止装置、及び、そのような結露防止装置を備えた表示装置を提供することを目的とする。
Therefore, the present disclosure provides a dew condensation prevention device capable of preventing a decrease in visibility of a display image due to dew condensation and easily maintaining its performance, and a display device provided with such a dew condensation prevention device. With the goal.
本開示の一実施形態の結露防止装置は、室内に設置される表示装置の表面に付着されるべき一面を有する膜状の発熱部と、前記発熱部の発熱によって昇温すべき所定の部位の温度を測定する第1測定部と、前記表示装置が設置されている空間の温度を測定する第2測定部と、前記表示装置と離間して配置され、前記空間の湿度を測定する第3測定部と、前記表示装置における結露を防止すべく前記表示装置又はその周囲の温度を制御する制御部と、を備え、前記制御部は、前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度とに基づいて、前記空間の露点温度に基づく閾値温度を決定する決定部と、前記決定部によって決定された閾値温度、及び、前記第1測定部によって測定された温度に基づいて前記発熱部に熱を生じさせる駆動部と、を備えている。
The dew point prevention device according to the embodiment of the present disclosure includes a film-like heat generating portion having one surface to be attached to the surface of a display device installed indoors, and a predetermined portion to be heated by the heat generated by the heat generating portion. A first measuring unit that measures the temperature, a second measuring unit that measures the temperature of the space in which the display device is installed, and a third measurement unit that is arranged apart from the display device and measures the humidity of the space. The display device includes a unit and a control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device. The control unit includes the temperature of the space measured by the second measurement unit and the temperature of the space. A determination unit that determines a threshold temperature based on the dew point temperature of the space based on the humidity of the space measured by the third measurement unit, a threshold temperature determined by the determination unit, and the first measurement. It includes a drive unit that generates heat in the heat generating unit based on the temperature measured by the unit.
本開示の他の実施形態の表示装置は、基板上にマトリクス状に設けられている複数の画素を含む表示パネルと、前記表示パネルにおける結露を防止する上記一実施形態の結露防止装置と、を備え、前記発熱部が、前記表示パネルの表示面又は前記表示面の反対面に付着されている。
The display device of another embodiment of the present disclosure includes a display panel including a plurality of pixels provided in a matrix on a substrate, and a dew condensation prevention device of the above-described embodiment for preventing dew condensation on the display panel. The heat generating portion is attached to the display surface of the display panel or the opposite surface of the display surface.
本開示の各実施形態によれば、結露による表示画像の視認性の低下の防止を、防止性能が維持され易い手段によって行うことができる。
According to each embodiment of the present disclosure, it is possible to prevent deterioration of the visibility of the displayed image due to dew condensation by means that can easily maintain the prevention performance.
本発明者は、表示装置における結露による視認性の低下を防止すべく、その手段について検討を重ねた。そして、結露センサ又は湿度センサなどを用いた従来の結露防止装置では、表示装置の耐用期間中であるにも関わらず、結露防止装置が正常に機能しなくなり得ることを見出した。さらに、本発明者は、この結露防止装置の機能の低下が、結露センサ又は湿度センサなどの経年劣化によるものであり、この劣化は、結露による水分に結露センサなどが晒されることによって加速され得ることを見出した。結露防止装置が表示装置と一体に形成されている場合に結露センサ又は湿度センサの劣化が比較的早く進行すると、表示装置がまだ使用可能な状態にあるにも関わらず、結露センサなどの劣化のために結露防止装置及び表示装置を結露センサなどと共に交換する必要がある。表示装置と結露防止装置とが別体で形成される場合であっても、使用時に表示装置と結合される結露防止装置が目立たないように小型又は薄型のセンサが備えられるとセンサ部だけの交換が困難になり、結露センサなどの劣化時に結露防止装置全体の交換が必要となることがある。
The present inventor has repeatedly studied the means for preventing the deterioration of visibility due to dew condensation on the display device. Then, they have found that in a conventional dew condensation prevention device using a dew condensation sensor or a humidity sensor, the dew condensation prevention device may not function normally even though the display device is in the useful life. Furthermore, the present inventor has found that the deterioration of the function of the dew condensation prevention device is due to aged deterioration of the dew condensation sensor or humidity sensor, and this deterioration can be accelerated by exposing the dew condensation sensor or the like to moisture due to dew condensation. I found that. If the dew condensation prevention device is integrally formed with the display device and the dew condensation sensor or humidity sensor deteriorates relatively quickly, the dew condensation sensor and the like deteriorate even though the display device is still usable. Therefore, it is necessary to replace the dew condensation prevention device and the display device together with the dew condensation sensor and the like. Even if the display device and the dew condensation prevention device are formed separately, if a small or thin sensor is provided so that the dew condensation prevention device combined with the display device is inconspicuous during use, only the sensor unit is replaced. This becomes difficult, and when the dew condensation sensor or the like deteriorates, it may be necessary to replace the entire dew condensation prevention device.
また、結露センサ及び湿度センサにおいて多用されている抵抗変化型の検知方式は、ある程度の大きさを有していて水分との接触によって電気抵抗を変化させる半導体などからなる感知領域を必要とする。故にこれらのセンサは、例えば数ミリメートル平方の大きさを有し得る。そのため、表示装置に結露センサなどが設けられると、注視の対象物であるにも拘らず表示装置においてこれらのセンサがユーザーの目に付き易く、表示装置のデザイン性が損なわれ易いことが、発明者の検討を通じて新たに認知された。すなわち本発明者は、表示装置の外観的価値を顕著に低下させずに視認性の低下を防ぐという、結露防止に関する表示装置固有の課題を新たに見出した。
Further, the resistance change type detection method often used in the dew condensation sensor and the humidity sensor requires a detection region made of a semiconductor or the like which has a certain size and changes the electric resistance by contact with moisture. Thus, these sensors can have a size of, for example, a few millimeters square. Therefore, it is an invention that when the display device is provided with a dew condensation sensor or the like, these sensors are easily noticed by the user in the display device even though they are the objects to be watched, and the design of the display device is easily impaired. It was newly recognized through the examination of the person. That is, the present inventor has newly found a problem peculiar to the display device regarding the prevention of dew condensation, which is to prevent a decrease in visibility without significantly reducing the appearance value of the display device.
以下、図面を参照し、本発明の実施形態の結露防止装置及び表示装置を説明する。なお、以下に説明される実施形態における各構成要素の材質、形状、及び、それらの相対的な位置関係などはあくまで例示に過ぎない。各実施形態の結露防止装置及び表示装置は、これらによって限定的に解釈されるものではない。
Hereinafter, the dew condensation prevention device and the display device according to the embodiment of the present invention will be described with reference to the drawings. The materials, shapes, and relative positional relationships of the components in the embodiments described below are merely examples. The dew condensation prevention device and the display device of each embodiment are not limitedly interpreted by these.
[結露防止装置の全体構成]
図1には、本開示の一実施形態の結露防止装置1の全体的な構成が示されている。図1に示されるように本実施形態の結露防止装置1は、発熱部2と、第1測定部3と、第2測定部4と、第3測定部5と、制御部6とを備えている。各測定部によって測定された値は制御部6に入力される。発熱部2は、膜状の形態を有し、室内Rに設置される表示装置7の表面に付着されるべき一面20(表示装置7に向けられるべき面)を有している。結露防止装置1の発熱部2が付着される表示装置7の種類は特に限定されない。例えば、表示装置7は、有機EL表示装置、液晶表示装置、及びマイクロLED表示装置などの、表示パネルを含む平面型、或いは曲面を有する表示装置であってもよい。図1を含めて、以下の説明で参照される図面には、表示装置7として表示パネルが描かれている。表示装置7が表示パネルを含む場合、発熱部2はその表示パネルに付着される。 [Overall configuration of dew condensation prevention device]
FIG. 1 shows the overall configuration of the dewcondensation prevention device 1 according to the embodiment of the present disclosure. As shown in FIG. 1, the dew condensation prevention device 1 of the present embodiment includes a heat generating unit 2, a first measuring unit 3, a second measuring unit 4, a third measuring unit 5, and a control unit 6. There is. The value measured by each measuring unit is input to the control unit 6. The heat generating portion 2 has a film-like shape, and has one surface 20 (a surface to be directed to the display device 7) to be attached to the surface of the display device 7 installed in the room R. The type of the display device 7 to which the heat generating portion 2 of the dew condensation prevention device 1 is attached is not particularly limited. For example, the display device 7 may be a flat type display device including a display panel or a display device having a curved surface, such as an organic EL display device, a liquid crystal display device, and a micro LED display device. A display panel is drawn as the display device 7 in the drawings referred to in the following description including FIG. When the display device 7 includes a display panel, the heat generating portion 2 is attached to the display panel.
図1には、本開示の一実施形態の結露防止装置1の全体的な構成が示されている。図1に示されるように本実施形態の結露防止装置1は、発熱部2と、第1測定部3と、第2測定部4と、第3測定部5と、制御部6とを備えている。各測定部によって測定された値は制御部6に入力される。発熱部2は、膜状の形態を有し、室内Rに設置される表示装置7の表面に付着されるべき一面20(表示装置7に向けられるべき面)を有している。結露防止装置1の発熱部2が付着される表示装置7の種類は特に限定されない。例えば、表示装置7は、有機EL表示装置、液晶表示装置、及びマイクロLED表示装置などの、表示パネルを含む平面型、或いは曲面を有する表示装置であってもよい。図1を含めて、以下の説明で参照される図面には、表示装置7として表示パネルが描かれている。表示装置7が表示パネルを含む場合、発熱部2はその表示パネルに付着される。 [Overall configuration of dew condensation prevention device]
FIG. 1 shows the overall configuration of the dew
第1測定部3は、発熱部2の発熱によって昇温すべき所定の部位の温度を測定する。「発熱部2の発熱によって昇温すべき部位」は、発熱部2が発する熱を対流又は放射だけではなく伝導を通じて受け取ることによってその温度が上昇する任意の部位である。例えばこの「部位」は、発熱部2自身の特定の部位であってもよく、表示装置7における特定の部位であってもよい。さらにこの「部位」は、発熱部2と表示装置7との間に介在物(図示せず)が存在する場合、この介在物における特定の部位であってもよい。介在物の一例は、後述する粘着層27(図6B参照)のような、表示装置7と発熱部2との付着手段である。なお「室内R」は、建物及び乗り物を含む任意の構造物の内部である。
The first measuring unit 3 measures the temperature of a predetermined portion to be heated by the heat generated by the heat generating unit 2. The "portion to raise the temperature due to the heat generated by the heat generating portion 2" is an arbitrary portion where the temperature rises by receiving the heat generated by the heat generating portion 2 not only through convection or radiation but also through conduction. For example, this "site" may be a specific portion of the heat generating portion 2 itself, or may be a specific portion in the display device 7. Further, this "site" may be a specific site in the inclusion (not shown) when an inclusion (not shown) is present between the heat generating portion 2 and the display device 7. An example of inclusions is a means for adhering the display device 7 and the heat generating portion 2 such as the adhesive layer 27 (see FIG. 6B) described later. The "indoor R" is the inside of any structure including buildings and vehicles.
第1測定部3は、温度検知の可能な任意のセンサ、検知器、又は計測器によって構成され得る。好ましくは、検知結果を電気信号で制御部6に入力し得るセンサ又は測定器によって第1測定部3が構成される。第1測定部3は、発熱部2の近傍、すなわち表示装置7の近傍に配置されるため、小型で、表示装置7の使用者の目に付き難いものが好ましい。その観点から、第1測定部3は、例えば熱電対によって構成される。
The first measuring unit 3 may be composed of any sensor, detector, or measuring instrument capable of temperature detection. Preferably, the first measuring unit 3 is composed of a sensor or a measuring instrument capable of inputting the detection result to the control unit 6 as an electric signal. Since the first measuring unit 3 is arranged in the vicinity of the heat generating unit 2, that is, in the vicinity of the display device 7, it is preferable that the first measuring unit 3 is small and invisible to the user of the display device 7. From that point of view, the first measuring unit 3 is composed of, for example, a thermocouple.
第2測定部4は、表示装置7が設置されている空間(室内R)の温度を測定する。第2測定部4は、温度検知の可能な任意のセンサ、検知器、又は計測器によって構成され得る。第3測定部5は、表示装置7が設置されている空間の湿度を測定する。第3測定部5は、後述するように、相対湿度及び絶対湿度のいずれを測定してもよい。以下の説明における単なる「湿度」の表記は相対湿度を意味する。第3測定部5は、湿度の検知が可能な任意のセンサ、検知器、又は計測器によって構成され得る。例えば、第3測定部5は、抵抗変化型、静電容量変化型、又は伸縮型などの湿度センサによって構成される。好ましくは、検知結果を電気信号で制御部6に入力し得るセンサ又は測定器によって第2測定部4及び第3測定部5が構成される。
The second measuring unit 4 measures the temperature of the space (indoor R) where the display device 7 is installed. The second measuring unit 4 may be composed of any sensor, detector, or measuring instrument capable of detecting temperature. The third measuring unit 5 measures the humidity of the space in which the display device 7 is installed. The third measuring unit 5 may measure either relative humidity or absolute humidity, as will be described later. The mere notation of "humidity" in the following description means relative humidity. The third measuring unit 5 may be composed of any sensor, detector, or measuring instrument capable of detecting humidity. For example, the third measuring unit 5 is composed of a humidity sensor such as a resistance change type, a capacitance change type, or a telescopic type. Preferably, the second measuring unit 4 and the third measuring unit 5 are configured by a sensor or a measuring instrument capable of inputting the detection result to the control unit 6 by an electric signal.
本実施形態では、第3測定部5は、表示装置7と離間して結露が生じ難い箇所に配置される。従って、表示装置7における結露を防ぐべく用いられる結露防止装置1の非動作中に表示装置7に結露が生じる場合でも、湿度センサで構成され得る第3測定部5は、結露による水分に晒され難い。従って、第3測定部5が劣化し難い。また、第3測定部5は表示装置7と離間して配置されるため、第3測定部5を構成する湿度センサなどがユーザーの目に付かず、表示装置7のデザイン性が損なわれない。
In the present embodiment, the third measuring unit 5 is arranged at a location away from the display device 7 where dew condensation is unlikely to occur. Therefore, even if dew condensation occurs on the display device 7 during the non-operation of the dew condensation prevention device 1 used to prevent dew condensation on the display device 7, the third measuring unit 5 which may be composed of the humidity sensor is exposed to the moisture due to the dew condensation. hard. Therefore, the third measuring unit 5 is unlikely to deteriorate. Further, since the third measuring unit 5 is arranged apart from the display device 7, the humidity sensor and the like constituting the third measuring unit 5 are not visible to the user, and the design of the display device 7 is not impaired.
表示装置7と離間して配置される第3測定部5は、例えば、表示装置7よりも第2測定部4に近接していてもよい。その場合、第3測定部5の結露を回避しながら、後述する閾値温度の決定を、より適切に行い得ることがある。近接している第2測定部4及び第3測定部5によって、互いに近接した箇所における温度及び湿度を得ることができ、閾値温度の決定の前提となる露点温度の特定を適切に行い得るからである。例えば、第3測定部5と第2測定部4との直線距離は、第3測定部5と表示装置7との直線距離の1/5以下、好ましくは1/10以下である。また、第3測定部5の位置に温度計を配置した場合に測定される温度は、第1測定部3で測定されている温度よりも第2測定部4で測定されている温度に近くてもよい。第3測定部5は、第3測定部5の位置に温度計を配置した場合に測定される温度が、第2測定部4で測定されている温度と略同じになるほど第2測定部4に近接していてもよい。
The third measuring unit 5 arranged apart from the display device 7 may be closer to the second measuring unit 4 than the display device 7, for example. In that case, it may be possible to more appropriately determine the threshold temperature described later while avoiding dew condensation in the third measuring unit 5. This is because the temperature and humidity at locations close to each other can be obtained by the second measuring unit 4 and the third measuring unit 5 which are close to each other, and the dew point temperature which is a premise for determining the threshold temperature can be appropriately specified. is there. For example, the linear distance between the third measuring unit 5 and the second measuring unit 4 is 1/5 or less, preferably 1/10 or less of the linear distance between the third measuring unit 5 and the display device 7. Further, the temperature measured when the thermometer is arranged at the position of the third measuring unit 5 is closer to the temperature measured by the second measuring unit 4 than the temperature measured by the first measuring unit 3. May be good. The third measuring unit 5 tells the second measuring unit 4 that the temperature measured when the thermometer is arranged at the position of the third measuring unit 5 is substantially the same as the temperature measured by the second measuring unit 4. It may be in close proximity.
制御部6は、表示装置7における結露を防止すべく表示装置7又は表示装置7の周囲の温度を制御する。「表示装置7の周囲」は、表示装置7に、又は表示装置7から、対流又は放射だけではなく伝導を通じて熱が伝わり得る範囲を意味している。制御部6は、決定部61及び駆動部62を含んでいる。図1の例では制御部6はさらに記憶部63を含んでいる。決定部61は、第2測定部4によって測定された温度と、第3測定部5によって測定された湿度とに基づいて閾値温度を決定する。この閾値温度は、第2測定部4及び第3測定部5それぞれによって測定された温度及び湿度に基づいて把握される表示装置7が設置されている空間の露点温度に基づく温度である。駆動部62は、決定部61によって決定された閾値温度、及び、第1測定部3によって測定された温度に基づいて発熱部2に熱を生じさせる。
The control unit 6 controls the temperature around the display device 7 or the display device 7 in order to prevent dew condensation on the display device 7. “Around the display device 7” means a range in which heat can be transferred to or from the display device 7 through conduction as well as convection or radiation. The control unit 6 includes a determination unit 61 and a drive unit 62. In the example of FIG. 1, the control unit 6 further includes a storage unit 63. The determination unit 61 determines the threshold temperature based on the temperature measured by the second measurement unit 4 and the humidity measured by the third measurement unit 5. This threshold temperature is a temperature based on the dew point temperature of the space in which the display device 7 is grasped based on the temperature and humidity measured by the second measuring unit 4 and the third measuring unit 5, respectively. The drive unit 62 generates heat in the heat generating unit 2 based on the threshold temperature determined by the determination unit 61 and the temperature measured by the first measurement unit 3.
制御部6は、例えば電気信号として入力される測定値などからなるデータに対する演算機能、比較機能、演算結果又は比較結果に基づく信号の生成機能、入力データ及び比較(参照)データなどの記憶機能などを有する。制御部6は、例えばこれらの機能を用いて閾値温度を決定する。決定部61と駆動部62と記憶部63とは、物理的に別個に構成されてもよく、一体的に形成されてもよい。制御部6は、例えば、マイコン、ゲートアレイ、又はPLD(プログラマブルロジックデバイス)などの半導体集積回路装置を用いて構成される。制御部6は、例えば、記憶部63のような自らの記憶機能に記憶されている動作プログラムに基づいて動作する。
The control unit 6 has, for example, a calculation function for data consisting of measured values input as an electric signal, a comparison function, a calculation result or a signal generation function based on the comparison result, a storage function for input data and comparison (reference) data, and the like. Have. The control unit 6 determines the threshold temperature using, for example, these functions. The determination unit 61, the drive unit 62, and the storage unit 63 may be physically configured separately or integrally formed. The control unit 6 is configured by using, for example, a microcomputer, a gate array, or a semiconductor integrated circuit device such as a PLD (programmable logic device). The control unit 6 operates based on an operation program stored in its own storage function, such as the storage unit 63.
結露防止装置1の使用時には、膜状の発熱部2の所定の面(一面20)が、室内Rに配置される表示装置7の表示面又はその背面に付着される。第1測定部3によって、例えば、表示装置7の使用者に向けられる、発熱部2の表面の温度又は表示装置7の表示面の温度が測定される。一方、表示装置7が配置される空間である室内Rの温度及び湿度が、第2測定部4と第3測定部5とによって、それぞれ測定される。
When the dew condensation prevention device 1 is used, a predetermined surface (one surface 20) of the film-like heat generating portion 2 is attached to the display surface of the display device 7 arranged in the room R or the back surface thereof. The first measuring unit 3 measures, for example, the temperature of the surface of the heat generating unit 2 or the temperature of the display surface of the display device 7 directed to the user of the display device 7. On the other hand, the temperature and humidity of the room R, which is the space where the display device 7 is arranged, are measured by the second measuring unit 4 and the third measuring unit 5, respectively.
制御部6は、室内Rの温度及び湿度の測定結果が入力されるので、測定された温度及び湿度における室内Rの露点温度を得ることができる。例えば、制御部6の決定部61は、制御部6の動作プログラムに基づく演算、又は記憶部63の記憶内容の参照によって露点温度を決定することができる。演算による露点温度の算出には、温度と飽和水蒸気圧との関係を示す、Sonntagの式、又は、Wagner-Prussの式などを用いることができるが、露点温度の算出には、任意の計算式が用いられ得る。記憶部63に、種々の温度と湿度との組み合わせによる演算結果が記憶されてもよい。
Since the control unit 6 inputs the measurement results of the temperature and humidity of the room R, the dew point temperature of the room R at the measured temperature and humidity can be obtained. For example, the determination unit 61 of the control unit 6 can determine the dew point temperature by calculation based on the operation program of the control unit 6 or by referring to the storage contents of the storage unit 63. Sonntag's formula or Wagner-Pruss' formula, which indicates the relationship between temperature and saturated vapor pressure, can be used to calculate the dew point temperature by calculation, but any formula can be used to calculate the dew point temperature. Can be used. The storage unit 63 may store the calculation results of various combinations of temperature and humidity.
決定部61は、この露点温度に基づく温度であって発熱部2に発熱動作の開始又は停止をさせる判断の基準値となる閾値温度を決定する。決定部61は、例えば、自ら決定した露点温度にさらに所定の演算を施すことによって閾値温度を決定することができる。例えば、決定部61は、露点温度に所定の温度差を加算した温度、又は、露点温度から所定の温度差を減算した温度を閾値温度としてもよい。
The determination unit 61 determines a threshold temperature that is a temperature based on this dew point temperature and is a reference value for determining whether the heat generation unit 2 starts or stops the heat generation operation. The determination unit 61 can determine the threshold temperature, for example, by further performing a predetermined calculation on the dew point temperature determined by itself. For example, the determination unit 61 may set the temperature obtained by adding a predetermined temperature difference to the dew point temperature or the temperature obtained by subtracting a predetermined temperature difference from the dew point temperature as the threshold temperature.
また、決定部61は、具体的な露点温度の決定を経ずに、演算、又は記憶部63の記憶内容の参照などによって、直接、露点温度に基づく閾値温度を決定してもよい。例えば記憶部63に、第2及び第3の測定部4、5によって得られる温度及び湿度から直接閾値温度を決定し得る適切な動作プログラム又は適切な参照データが記憶されていれば、露点温度の決定を介さずに閾値温度を決定することができる。
Further, the determination unit 61 may directly determine the threshold temperature based on the dew point temperature by calculation or reference to the stored contents of the storage unit 63 without going through the determination of the specific dew point temperature. For example, if the storage unit 63 stores an appropriate operation program or appropriate reference data capable of directly determining the threshold temperature from the temperature and humidity obtained by the second and third measurement units 4 and 5, the dew point temperature The threshold temperature can be determined without intervention.
なお、前述したように、第3測定部5によって測定される湿度は、相対湿度及び絶対湿度のいずれでもよい。例えば記憶部63に、相対湿度又は絶対湿度に応じた適切な動作プログラム又は参照データが記憶されていれば、測定される湿度の種類に応じて適切に閾値温度が決定され得る。
As described above, the humidity measured by the third measuring unit 5 may be either relative humidity or absolute humidity. For example, if the storage unit 63 stores an appropriate operation program or reference data according to the relative humidity or the absolute humidity, the threshold temperature can be appropriately determined according to the type of humidity to be measured.
制御部6の駆動部62は、第1測定部3で測定された温度、及び、決定した閾値温度に基づいて、発熱部2に熱を生じさせる。駆動部62は、例えば、第1測定部3で測定された温度が閾値温度と同じ又は閾値温度よりも低いときに発熱部2に熱を生じさせる。また、駆動部62は、例えば、第1測定部3で測定された温度が閾値温度と同じ又は高いときには発熱部2に熱を生じさせない。後述するように、発熱部2が通電により熱を発生させる場合、駆動部62は電力を供給することによって発熱部2に熱を発生させ、駆動部62は、発熱部2に熱を発生させないときは電力を供給しない。
The drive unit 62 of the control unit 6 generates heat in the heat generating unit 2 based on the temperature measured by the first measurement unit 3 and the determined threshold temperature. The drive unit 62 generates heat in the heat generating unit 2 when, for example, the temperature measured by the first measuring unit 3 is the same as or lower than the threshold temperature. Further, the drive unit 62 does not generate heat in the heat generating unit 2 when, for example, the temperature measured by the first measuring unit 3 is the same as or higher than the threshold temperature. As will be described later, when the heat generating unit 2 generates heat by energization, the drive unit 62 generates heat in the heat generating unit 2 by supplying electric power, and the drive unit 62 does not generate heat in the heat generating unit 2. Does not supply power.
駆動部62は、例えば、図1に示されるように、電源8の電力を発熱部2に供給する。駆動部62は、電源8と発熱部2との間に接続されたトランジスタなどのスイッチング素子81のオン/オフを制御することによって、発熱部2への電力の供給と停止とを切り替えてもよい。結露防止装置1が、電源8及びスイッチング素子81を備えていてもよく、電源8及びスイッチング素子81が結露防止装置1の外部に備えられていてもよい。
The drive unit 62 supplies the electric power of the power source 8 to the heat generating unit 2, for example, as shown in FIG. The drive unit 62 may switch between supplying and stopping power to the heat generating unit 2 by controlling on / off of a switching element 81 such as a transistor connected between the power supply 8 and the heat generating unit 2. .. The dew condensation prevention device 1 may include a power supply 8 and a switching element 81, and the power supply 8 and the switching element 81 may be provided outside the dew condensation prevention device 1.
このように本実施形態では、制御部6は、表示装置7の結露を防止すべく、発熱部2による発熱を制御することによって、発熱部2が付着される表示装置7又はその周囲の温度を制御する。すなわち、発熱部2の発熱を開始又は終了させるための閾値温度は、第2及び第3の測定部4、5の測定結果から把握され得る露点温度に基づいて決定される。制御部6は、この閾値温度と、第1測定部3によって測定される温度とを比較し、その結果に基づいて発熱部2に熱を発生させる。従って、露点温度よりも高い温度に閾値温度を決定するように制御部6を構成し、第1測定部3によって測定された温度が閾値温度と同じかそれ以下である場合に、発熱部2によって表示装置7を温めることによって、表示装置7における結露を防止又は消滅させることができる。換言すると、第1測定部3によって測定される温度が閾値温度よりも高くなるように、発熱部2によって表示装置7が加温される。そうすることによって、表示装置7における結露を防止又は消滅させることができる。しかも本実施形態では、表示装置7又はその周囲の温度を露点温度よりも高くするだけなので、例えば窓ガラス全体の結露を解消すべく設置される加熱装置と比べて、表示装置7が過剰な温度に晒され難い。従って表示装置7の温度劣化を抑制することができる。
As described above, in the present embodiment, the control unit 6 controls the heat generated by the heat generating unit 2 in order to prevent dew condensation on the display device 7, thereby controlling the temperature of the display device 7 or its surroundings to which the heat generating unit 2 is attached. Control. That is, the threshold temperature for starting or ending the heat generation of the heat generating unit 2 is determined based on the dew point temperature that can be grasped from the measurement results of the second and third measuring units 4 and 5. The control unit 6 compares this threshold temperature with the temperature measured by the first measurement unit 3, and generates heat in the heat generating unit 2 based on the result. Therefore, the control unit 6 is configured to determine the threshold temperature to a temperature higher than the dew point temperature, and when the temperature measured by the first measurement unit 3 is equal to or lower than the threshold temperature, the heat generating unit 2 determines the threshold temperature. By warming the display device 7, dew condensation on the display device 7 can be prevented or eliminated. In other words, the display device 7 is heated by the heat generating unit 2 so that the temperature measured by the first measuring unit 3 becomes higher than the threshold temperature. By doing so, dew condensation on the display device 7 can be prevented or eliminated. Moreover, in the present embodiment, since the temperature of the display device 7 or its surroundings is only made higher than the dew point temperature, the temperature of the display device 7 is excessive as compared with the heating device installed to eliminate dew condensation on the entire window glass, for example. Hard to be exposed to. Therefore, the temperature deterioration of the display device 7 can be suppressed.
そして、本実施形態では、湿度を測定する第3測定部5は、表示装置7と離間して配置され、例えば、室内Rの外部の雰囲気(外気)の温度の影響を表示装置7よりも受け難い位置に配置されている。従って、外気の温度が、表示装置7の表示面に結露を生じさせ得るほど低温であっても、第3測定部5及びその周辺部では結露は生じ難い。そのため、例えば、第3測定部5を構成し得る湿度センサなどが、結露防止装置1の非動作中に室内Rにおいて生じ得る結露に晒され難い。従って、湿度センサなどの劣化が加速され難く、結露防止装置の機能を長期にわたって維持させることができる。
Then, in the present embodiment, the third measuring unit 5 for measuring humidity is arranged apart from the display device 7, and is affected by, for example, the temperature of the outside atmosphere (outside air) of the room R more than the display device 7. It is placed in a difficult position. Therefore, even if the temperature of the outside air is low enough to cause dew condensation on the display surface of the display device 7, dew condensation is unlikely to occur in the third measuring unit 5 and its peripheral portion. Therefore, for example, the humidity sensor that can form the third measuring unit 5 is less likely to be exposed to the dew condensation that may occur in the room R while the dew condensation prevention device 1 is not operating. Therefore, the deterioration of the humidity sensor and the like is unlikely to be accelerated, and the function of the dew condensation prevention device can be maintained for a long period of time.
さらに本実施形態では、湿度センサ又は結露センサなどを、表示装置7の近傍に配置する必要がない。表示装置7の周囲には、温度を測定する第1測定部3が配置されるが、第1測定部3には、例えば、前述した熱電対のように、極めて小さい検知部を有する検知手段などが用いられ得る。従って、表示装置7を見る人にとって構成要素が目立たないように結露防止手段を設けることができる。なお、発熱部2は、後述するように、透光性を有する材料を用いて形成され得る。このように本実施形態では、表示装置のデザイン性を顕著に低下させずに結露による表示画像の視認性の低下を防ぐことができ、しかも、その手段(結露防止装置1)の性能を長く維持することができる。
Further, in the present embodiment, it is not necessary to arrange a humidity sensor, a dew condensation sensor, or the like in the vicinity of the display device 7. A first measuring unit 3 for measuring temperature is arranged around the display device 7, and the first measuring unit 3 is, for example, a detecting means having an extremely small detecting unit such as the thermocouple described above. Can be used. Therefore, the dew condensation preventing means can be provided so that the components are not conspicuous to the person who sees the display device 7. The heat generating portion 2 can be formed by using a material having translucency, as will be described later. As described above, in the present embodiment, it is possible to prevent the visibility of the displayed image from being deteriorated due to dew condensation without significantly deteriorating the design of the display device, and the performance of the means (condensation prevention device 1) is maintained for a long time. can do.
[発熱部と表示装置との結着]
図2A及び図2Bには、結露防止装置1の発熱部2を表示装置7に付着させる態様の一例、及び他の例がそれぞれ示されている。図2Aの例では、発熱部2は、表示装置7の表示面7aに付着されるべき表面を一面20として有し、一面20が、表示装置7の表示面7aに付着される。表示装置7は、表示面7aと反対の面を、ガラス窓又は壁材のような、室内と外部とを隔てる隔壁Bにおける室内を向く表面(被取付面)に取り付けられる。図2Aの例では、表示面7aに発熱部2が付着されるため、発熱部2は、後述する透光性を有する材料を用いて形成される。また、発熱部2が接着剤を用いて表示装置7に付着される場合、好ましくは、光学透明接着剤(OCA:Optical Clear Adhesive)又は光学透明樹脂(OCR:Optical Clear Resin)などを用いて発熱部2と表示装置7とが接着される。さらに、表示装置7が透光性を有する材料を用いて形成された表示装置である場合、隔壁Bへの表示装置7の取り付けにも、OCA又はOCRが用いられ得る。隔壁Bがガラス窓である場合、室内から、発熱部2、表示装置7、及びガラス窓を通して室外の光景を見ることができる。 [Connecting the heat generating part and the display device]
2A and 2B show an example of a mode in which theheat generating portion 2 of the dew condensation prevention device 1 is attached to the display device 7, and another example, respectively. In the example of FIG. 2A, the heat generating portion 2 has a surface as one surface 20 to be attached to the display surface 7a of the display device 7, and the one surface 20 is attached to the display surface 7a of the display device 7. The display device 7 is attached to a surface (attached surface) facing the room in the partition wall B that separates the inside and the outside, such as a glass window or a wall material, with the surface opposite to the display surface 7a. In the example of FIG. 2A, since the heat generating portion 2 is attached to the display surface 7a, the heat generating portion 2 is formed by using a material having translucency, which will be described later. When the heat generating portion 2 is attached to the display device 7 using an adhesive, heat is preferably generated by using an optical transparent adhesive (OCA: Optical Clear Adhesive) or an optical transparent resin (OCR: Optical Clear Resin). The unit 2 and the display device 7 are adhered to each other. Further, when the display device 7 is a display device formed of a material having translucency, OCA or OCR may also be used for attaching the display device 7 to the partition wall B. When the partition wall B is a glass window, the outdoor scene can be seen from the room through the heat generating portion 2, the display device 7, and the glass window.
図2A及び図2Bには、結露防止装置1の発熱部2を表示装置7に付着させる態様の一例、及び他の例がそれぞれ示されている。図2Aの例では、発熱部2は、表示装置7の表示面7aに付着されるべき表面を一面20として有し、一面20が、表示装置7の表示面7aに付着される。表示装置7は、表示面7aと反対の面を、ガラス窓又は壁材のような、室内と外部とを隔てる隔壁Bにおける室内を向く表面(被取付面)に取り付けられる。図2Aの例では、表示面7aに発熱部2が付着されるため、発熱部2は、後述する透光性を有する材料を用いて形成される。また、発熱部2が接着剤を用いて表示装置7に付着される場合、好ましくは、光学透明接着剤(OCA:Optical Clear Adhesive)又は光学透明樹脂(OCR:Optical Clear Resin)などを用いて発熱部2と表示装置7とが接着される。さらに、表示装置7が透光性を有する材料を用いて形成された表示装置である場合、隔壁Bへの表示装置7の取り付けにも、OCA又はOCRが用いられ得る。隔壁Bがガラス窓である場合、室内から、発熱部2、表示装置7、及びガラス窓を通して室外の光景を見ることができる。 [Connecting the heat generating part and the display device]
2A and 2B show an example of a mode in which the
図2Aの例では、熱電対3aによって第1測定部3(図1参照)が構成されており、熱電対3aの測温接点3a1は、発熱部2における一面20の反対面(第2面)20aに配置されている。図2Aの例では、表示装置7に表示される画像と表示装置7を見る人との間に介在し、且つ、室内の雰囲気に晒される露出面は、発熱部2の第2面20aである。表示装置7の温度が露点以下であると発熱部2の第2面20aに結露が生じ得る。そして表示画像の視認性が低下し得る。そのため、第1測定部3(図2Aの例において熱電対3a)は、発熱部2の第2面20aに配置されている。このように。図2Aの例では、第1測定部3は、発熱部2における所定の部位の温度を測定する。
In the example of FIG. 2A, the first measuring unit 3 (see FIG. 1) is configured by the thermocouple 3a, and the temperature measuring contact 3a1 of the thermocouple 3a is the opposite surface (second surface) of the surface 20 of the heat generating unit 2. It is arranged at 20a. In the example of FIG. 2A, the exposed surface that is interposed between the image displayed on the display device 7 and the person who sees the display device 7 and is exposed to the indoor atmosphere is the second surface 20a of the heat generating portion 2. .. If the temperature of the display device 7 is equal to or lower than the dew point, dew condensation may occur on the second surface 20a of the heat generating portion 2. Then, the visibility of the displayed image may decrease. Therefore, the first measuring unit 3 (thermocouple 3a in the example of FIG. 2A) is arranged on the second surface 20a of the heat generating unit 2. in this way. In the example of FIG. 2A, the first measuring unit 3 measures the temperature of a predetermined portion of the heat generating unit 2.
具体的には、熱電対3aの測温接点3a1は、発熱部2の第2面20aの縁部に配置されている。すなわち、測温接点3a1は、表示装置7の表示面7aを正面から見た場合に表示面7aの縁部において視認されるように配置されている。従って、熱電対3aが目立ち難く、且つ、表示面7aに表示される画像の視認性を阻害し難い。
Specifically, the temperature measuring contact 3a1 of the thermocouple 3a is arranged at the edge of the second surface 20a of the heat generating portion 2. That is, the temperature measuring contact 3a1 is arranged so as to be visually recognized at the edge of the display surface 7a when the display surface 7a of the display device 7 is viewed from the front. Therefore, the thermocouple 3a is less noticeable, and the visibility of the image displayed on the display surface 7a is less likely to be impaired.
第1測定部3を構成する熱電対3aは、結露を防止すべき面(図2Aの例では、発熱部2の第2面20a)の平均的な温度を測定することが好ましい。そのため、図2Aの例では、矩形の形状を有する第2面20aの長辺方向において第2面20aの略中央に配置されている。従って、第2面20aの平均的な温度が測定され易い。なお、熱電対3aなどで構成される第1測定部3は、第2面20aの平均的な温度を測定することが重視される場合、第2面20全体の中央部に配置されてもよい。
It is preferable that the thermocouple 3a constituting the first measuring unit 3 measures the average temperature of the surface on which dew condensation should be prevented (in the example of FIG. 2A, the second surface 20a of the heat generating unit 2). Therefore, in the example of FIG. 2A, it is arranged substantially in the center of the second surface 20a in the long side direction of the second surface 20a having a rectangular shape. Therefore, the average temperature of the second surface 20a can be easily measured. The first measuring unit 3 composed of a thermocouple 3a or the like may be arranged at the center of the entire second surface 20 when it is important to measure the average temperature of the second surface 20a. ..
図2Aに示されるように、熱電対3aは、制御部6に接続されており、測温結果に応じた電位差を制御部6に印加する。本実施形態では、熱電対3aの測定対象の温度は高くても100℃に満たないと考えられるため、E熱電対、J熱電対、又はT熱電対などの卑金属系の熱電対を使用することができる。従って、本実施形態において制御部6と熱電対3aとが離れて配置される場合でも、比較的安価に、熱電対3aを構成する銅又はニッケルなどの導線を制御部6まで敷設することができる。従って、補償導線を用いた導線の延長を回避することができ、シンプルな構造で熱電対3aと制御部6とを接続し得ることがある。なお、卑金属系の熱電対3aの導線は腐食する場合があるため、図2Aに示されるように、任意の樹脂などからなる絶縁性の被覆材3a2で熱電対3aの導線を覆うことが好ましい。
As shown in FIG. 2A, the thermocouple 3a is connected to the control unit 6 and applies a potential difference according to the temperature measurement result to the control unit 6. In the present embodiment, it is considered that the temperature of the measurement target of the thermocouple 3a is less than 100 ° C. at the highest, so a base metal thermocouple such as an E thermocouple, a J thermocouple, or a T thermocouple is used. Can be done. Therefore, even when the control unit 6 and the thermocouple 3a are arranged apart from each other in the present embodiment, the lead wires such as copper or nickel constituting the thermocouple 3a can be laid up to the control unit 6 at a relatively low cost. .. Therefore, it is possible to avoid the extension of the lead wire using the compensating lead wire, and the thermocouple 3a and the control unit 6 may be connected with a simple structure. Since the base metal-based thermocouple 3a lead wire may corrode, it is preferable to cover the thermocouple 3a lead wire with an insulating coating material 3a2 made of an arbitrary resin or the like, as shown in FIG. 2A.
図2Bには、結露防止装置1の発熱部2を表示装置7に付着させる態様の他の例が示されている。発熱部2は、表示装置7における表示面7aの反対面に付着されるべき表面を一面20として有し、一面20が、表示装置7の表示面7aの反対面に付着される。従って、発熱部2は、ガラス窓又は壁材などのような隔壁Bの表面(被取付面)と表示装置7との間に介在する。図2Bの例において、発熱部2は、表示装置7及び隔壁Bそれぞれと、任意の接着剤を用いて接着され得る。前述したOCA又はOCRが用いられてもよい。また、図2Bの例においても、発熱部2が透光性を有していてもよい。
FIG. 2B shows another example of the mode in which the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display device 7. The heat generating portion 2 has a surface as one surface 20 to be attached to the opposite surface of the display surface 7a of the display device 7, and the one surface 20 is attached to the opposite surface of the display surface 7a of the display device 7. Therefore, the heat generating portion 2 is interposed between the surface (attached surface) of the partition wall B such as a glass window or a wall material and the display device 7. In the example of FIG. 2B, the heat generating portion 2 can be adhered to each of the display device 7 and the partition wall B by using an arbitrary adhesive. The above-mentioned OCA or OCR may be used. Further, also in the example of FIG. 2B, the heat generating portion 2 may have translucency.
図2Bの例では、表示装置7の表示面7aが、室内の雰囲気に晒される。そのため、熱電対3aの測温接点3a1は表示面7aに配置されている。すなわち、第1測定部3は、表示装置7の表示面7aにおける所定の部位の温度を測定する。
In the example of FIG. 2B, the display surface 7a of the display device 7 is exposed to the indoor atmosphere. Therefore, the temperature measuring contact 3a1 of the thermocouple 3a is arranged on the display surface 7a. That is, the first measuring unit 3 measures the temperature of a predetermined portion on the display surface 7a of the display device 7.
図2Bの例において、熱電対3aの測温接点3a1は、表示面7aのうちの表示部7bを囲む額縁部(ベゼル)に配置されている。従って、熱電対3aは目立ち難く、且つ、表示画像の視認性を阻害しない。なお、図2Bの例においても、表示装置7の表示面7aの平均的な温度を測定することが重視される場合、熱電対3aなどで構成される第1測定部3は表示面7a全体の中央部に配置されてもよい。図2Bの例においても、熱電対3aは、制御部6に接続され、測温結果に応じた電位差を制御部6に印加する。熱電対3aの導線は、任意の樹脂などからなる絶縁性の被覆材3a2で覆われている。
In the example of FIG. 2B, the temperature measuring contact 3a1 of the thermocouple 3a is arranged on the frame portion (bezel) surrounding the display portion 7b of the display surface 7a. Therefore, the thermocouple 3a is inconspicuous and does not impair the visibility of the displayed image. Also in the example of FIG. 2B, when it is important to measure the average temperature of the display surface 7a of the display device 7, the first measuring unit 3 composed of the thermocouple 3a or the like is the entire display surface 7a. It may be located in the center. Also in the example of FIG. 2B, the thermocouple 3a is connected to the control unit 6 and applies a potential difference according to the temperature measurement result to the control unit 6. The lead wire of the thermocouple 3a is covered with an insulating coating material 3a2 made of an arbitrary resin or the like.
図2Cには、表示装置7の表示面7aにおける熱電対3aの二つの導線の配置の他の例が示されている。図2Cの例において、熱電対3aは、第1導線31及び第2導線32を有しており、第1導線31及び第2導線32それぞれの一端同士を接合することによって接合接点3a1が形成されている。接合接点3a1は、図2Bの例と同様に、表示部7bを囲む額縁部7cに配置されており、表示装置7の長辺方向における略中央に配置されている。第1導線31及び第2導線32は、いずれも、表示装置7の外縁に沿って配置されており、額縁部7c内に配置されている。そして、図2Cの例では、第1導線31及び第2導線32は、額縁部7cにおいて並列することなく、互いと分離して額縁部7cに配置されている。すなわち、第1導線31と第2導線32とは、測温接点3a1から互いに反対方向に向かって敷設されており、表示装置7の周縁部において表示装置7の外縁に沿って、第1導線31及び第2導線32のいずれか一つが配置されている。図2Cの例では、第1導線31及び第2導線32によって、表示部7bの略全周に渡って表示部7bが取り巻かれている。図2Cの例のように第1及び第2の導線31、32を配置することによって、第1測定部3が熱電対3aによって構成される場合に、第1測定部3を一層ユーザーの目に付き難くすることができる。
FIG. 2C shows another example of the arrangement of the two leads of the thermocouple 3a on the display surface 7a of the display device 7. In the example of FIG. 2C, the thermocouple 3a has a first lead wire 31 and a second lead wire 32, and a joining contact 3a1 is formed by joining one ends of each of the first lead wire 31 and the second lead wire 32. ing. Similar to the example of FIG. 2B, the joining contact 3a1 is arranged in the frame portion 7c surrounding the display unit 7b, and is arranged substantially at the center in the long side direction of the display device 7. Both the first lead wire 31 and the second lead wire 32 are arranged along the outer edge of the display device 7, and are arranged in the frame portion 7c. Then, in the example of FIG. 2C, the first lead wire 31 and the second lead wire 32 are arranged in the frame portion 7c separately from each other without being parallel to each other in the frame portion 7c. That is, the first lead wire 31 and the second lead wire 32 are laid from the temperature measuring contact 3a1 in opposite directions to each other, and the first lead wire 31 is laid along the outer edge of the display device 7 at the peripheral edge of the display device 7. And any one of the second lead wire 32 is arranged. In the example of FIG. 2C, the display unit 7b is surrounded by the first lead wire 31 and the second lead wire 32 over substantially the entire circumference of the display unit 7b. By arranging the first and second conducting wires 31 and 32 as in the example of FIG. 2C, when the first measuring unit 3 is composed of the thermocouple 3a, the first measuring unit 3 is further seen by the user. It can be difficult to attach.
熱電対3aは、例えば合成樹脂などの任意の適切な材料で形成された枠体によって表示装置7の額縁部が構成される場合、その枠体内に埋め込まれてもよい。また、熱電対3aは、表示装置7の周縁部において表示面7aに接着されてもよく、表示装置7の周縁部に埋め込まれてもよい。なお、図2Aに示される例のように、熱電対3aが、発熱部2の周縁部に配置される場合も、熱電対3aの二つの導線が、測温接点3a1から互いに反対方向に向かって敷設され、発熱部2の外縁に沿って二つの導線のいずれか一つが配置されてもよい。
The thermocouple 3a may be embedded in the frame portion of the display device 7 when the frame portion of the display device 7 is formed of a frame body made of an arbitrary suitable material such as synthetic resin. Further, the thermocouple 3a may be adhered to the display surface 7a at the peripheral edge of the display device 7, or may be embedded in the peripheral edge of the display device 7. Even when the thermocouple 3a is arranged on the peripheral edge of the heat generating portion 2 as in the example shown in FIG. 2A, the two leads of the thermocouple 3a are directed in opposite directions from the temperature measuring contact 3a1. It may be laid and any one of the two conductors may be arranged along the outer edge of the heat generating portion 2.
[発熱部]
発熱部2は、表示装置7の露出面の温度を露点温度よりも高い温度に上昇させ、且つ維持すべく、制御部6の制御に従って熱を発生させる。発熱部2は、膜状の形態を有していて、制御部6によって発熱の開始と停止とが制御され得るものであれば、その材料、構造、及び構成要素について限定されない。例えば、発熱部2は、通電によってジュール熱を発生させるように構成される。その場合、発熱を容易に制御することができる。なお、以下の説明において、表示装置7の「露出面」は、発熱部2が表示装置7の表示面7aに付着される場合(図2Aの例)は発熱部2の第2面20aを意味する。そして、発熱部2が表示装置7の表示面7aの反対面に付着される場合(図2Bの例)は、表示装置7の「露出面」は表示装置7の表示面7aを意味する。 [Heat generating part]
Theheat generating unit 2 generates heat under the control of the control unit 6 in order to raise and maintain the temperature of the exposed surface of the display device 7 to a temperature higher than the dew point temperature. The heat generating unit 2 is not limited in terms of material, structure, and components as long as it has a film-like shape and the start and stop of heat generation can be controlled by the control unit 6. For example, the heat generating portion 2 is configured to generate Joule heat by energization. In that case, heat generation can be easily controlled. In the following description, the "exposed surface" of the display device 7 means the second surface 20a of the heat generating unit 2 when the heat generating portion 2 is attached to the display surface 7a of the display device 7 (example of FIG. 2A). To do. When the heat generating portion 2 is attached to the opposite surface of the display surface 7a of the display device 7 (example of FIG. 2B), the “exposed surface” of the display device 7 means the display surface 7a of the display device 7.
発熱部2は、表示装置7の露出面の温度を露点温度よりも高い温度に上昇させ、且つ維持すべく、制御部6の制御に従って熱を発生させる。発熱部2は、膜状の形態を有していて、制御部6によって発熱の開始と停止とが制御され得るものであれば、その材料、構造、及び構成要素について限定されない。例えば、発熱部2は、通電によってジュール熱を発生させるように構成される。その場合、発熱を容易に制御することができる。なお、以下の説明において、表示装置7の「露出面」は、発熱部2が表示装置7の表示面7aに付着される場合(図2Aの例)は発熱部2の第2面20aを意味する。そして、発熱部2が表示装置7の表示面7aの反対面に付着される場合(図2Bの例)は、表示装置7の「露出面」は表示装置7の表示面7aを意味する。 [Heat generating part]
The
図3A及び図3Bには、膜状の発熱部2の一例であって通電によって発熱する電気式のヒータ2aの正面図及び下面図がそれぞれ示されている。図3A及び図3Bに示されるように、ヒータ2aは、膜状の基材21と、電流を通流させ得る材料を用いて基材21の上に形成されている膜状の発熱体22とを含んでいる。ヒータ2aによって発熱部2が構成される場合、駆動部62(図1参照)は、発熱部2の発熱動作を制御すべく発熱体22に対する通電を制御する。
3A and 3B show a front view and a bottom view of an electric heater 2a, which is an example of the film-shaped heat generating portion 2 and generates heat by energization, respectively. As shown in FIGS. 3A and 3B, the heater 2a includes a film-like base material 21 and a film-like heating element 22 formed on the base material 21 using a material capable of passing an electric current. Includes. When the heating unit 2 is configured by the heater 2a, the driving unit 62 (see FIG. 1) controls energization of the heating element 22 in order to control the heating operation of the heating unit 2.
ヒータ2aは、基材21及び発熱体22のいずれを表示装置7に付着されてもよい。しかし、発熱体22から表示装置7における露出面までの熱伝達の効率の観点から、好ましくは、先に参照した図2Aの例では基材21が表示装置7に向けられ、図2Bの例では発熱体22が表示装置7に向けられる。
As the heater 2a, either the base material 21 or the heating element 22 may be attached to the display device 7. However, from the viewpoint of efficiency of heat transfer from the heating element 22 to the exposed surface in the display device 7, the base material 21 is preferably directed to the display device 7 in the example of FIG. 2A referred to above, and in the example of FIG. 2B. The heating element 22 is directed at the display device 7.
基材21は、絶縁性を有する材料を用いて形成された膜体である。基材21の材料としては、ポリエチレンテレフタレート(PET)又はポリイミド(PI)などの高分子樹脂が例示される。基材21は可撓性を有していてもよい。基材21が可撓性を有していると、可撓性を有する表示装置7に付着される場合に、表示装置7の曲がり又は撓みなどに追従することができ、表示装置7に与えるストレスも小さいと考えられる。
The base material 21 is a film body formed by using a material having an insulating property. Examples of the material of the base material 21 include polymer resins such as polyethylene terephthalate (PET) and polyimide (PI). The base material 21 may have flexibility. When the base material 21 has flexibility, when it is attached to the flexible display device 7, it can follow the bending or bending of the display device 7, and stress applied to the display device 7. Is also considered to be small.
基材21は透光性を有していてもよい。前述したように、発熱部2が表示装置7の表示面7aに付着される場合、透光性を有する基材21は特に好ましい。透光性を有する基材21を構成する材料としては透明ポリイミドが例示されるが、基材21の材料は、これに限定されない。表示装置7の表示面7aに耐候性向上のための保護膜が設けられている場合、その保護膜と同じ材料で基材21が形成されてもよい。
The base material 21 may have translucency. As described above, when the heat generating portion 2 is attached to the display surface 7a of the display device 7, the base material 21 having translucency is particularly preferable. A transparent polyimide is exemplified as a material constituting the base material 21 having translucency, but the material of the base material 21 is not limited to this. When the display surface 7a of the display device 7 is provided with a protective film for improving weather resistance, the base material 21 may be formed of the same material as the protective film.
基材21は、例えば、30μm以上、200μm以下の厚さを有し得る。厚さが30μm未満の場合は、剛性が不足する場合がある。一方、厚さが200μmを超えると、透光性を有する材料が用いられていても十分な透明度が得られないことがある。
The base material 21 may have a thickness of, for example, 30 μm or more and 200 μm or less. If the thickness is less than 30 μm, the rigidity may be insufficient. On the other hand, if the thickness exceeds 200 μm, sufficient transparency may not be obtained even if a translucent material is used.
発熱体22は、電流が流れ得る薄膜体であって、例えばスパッタリング又は印刷などによって基材21の上に成膜される。発熱体22は、通電によって、表示装置7の露出面を加温し得る程度のジュール熱を生じ得る。基材21の上には二つの電極23が、それぞれ発熱体22に接触するように形成されている。これらの電極23を介して発熱体22への通電が行われる。
The heating element 22 is a thin film body through which an electric current can flow, and is formed on the base material 21 by, for example, sputtering or printing. The heating element 22 may generate enough Joule heat to heat the exposed surface of the display device 7 by energization. Two electrodes 23 are formed on the base material 21 so as to be in contact with the heating element 22 respectively. The heating element 22 is energized via these electrodes 23.
発熱体22は、表示装置7における露出面を加温し得る程度の電流が流れ得る適度な電気抵抗Rgを有している。一例として、先に参照した図2Bの例において、表示装置7の表示面7aの温度を1分以内に10℃上昇させることが所望される場合に必要な電気抵抗Rgが以下に例示される。ここでは、表示装置7の熱抵抗は、表示装置7が薄いため無視される。
The heating element 22 has an appropriate electric resistance Rg through which a current capable of heating the exposed surface of the display device 7 can flow. As an example, in the example of FIG. 2B referred to above, the electric resistance Rg required when it is desired to raise the temperature of the display surface 7a of the display device 7 by 10 ° C. within 1 minute is exemplified below. Here, the thermal resistance of the display device 7 is ignored because the display device 7 is thin.
例えば、0.3m×0.15mの正面サイズを有する表示装置7について、その比熱容量Cpが1.5J/g・℃である場合(有機EL表示パネルに基板として用いられるポリイミド樹脂の比熱1.13J/g・℃に基づいて少し大きめに想定)、且つ、その質量が25g~30gである場合、発熱体22の発熱量Qとしては、400J~500J程度が必要とされる。従って、発熱体22に供給し得る電圧Vpが例えば12V~24Vである場合の適度な電気抵抗Rgとしては、Rg=Vp2×60sec/Qであるため、10Ω~100Ω程度の値が例示される。なお、先に参照した図2Aの例の場合は、発熱部2自身の第2面20aの温度が表示装置7における露出面の温度なので、上記のRgよりも小さい抵抗値で、必要な発熱量Qを得ることができる。
For example, when the specific heat capacity Cp of the display device 7 having a front size of 0.3 m × 0.15 m is 1.5 J / g · ° C. (specific heat of the polyimide resin used as a substrate for an organic EL display panel 1. (Assumed to be slightly larger based on 13 J / g · ° C.) and its mass is 25 g to 30 g, the calorific value Q of the heating element 22 is required to be about 400 J to 500 J. Therefore, when the voltage Vp that can be supplied to the heating element 22 is, for example, 12V to 24V, the appropriate electric resistance Rg is Rg = Vp 2 × 60sec / Q, and therefore, a value of about 10Ω to 100Ω is exemplified. .. In the case of the example of FIG. 2A referred to earlier, since the temperature of the second surface 20a of the heat generating portion 2 itself is the temperature of the exposed surface in the display device 7, the required heat generation amount is a resistance value smaller than the above Rg. You can get Q.
なお、結露の解消には、比熱容量が4.2J/g・℃である水滴を昇温させるための熱量も必要である。例えば、周囲温度が30℃から0℃まで低下した時に、容積3m3の車室において幅1.5m×高さ1mのフロントガラスに取り付けられた上記サイズの表示装置7の画面に、その温度低下による飽和水蒸気量の減少に伴って付着する水分の量は0.5g~1g程度と推定される。上記発熱量Qには、この量の水滴を10℃昇温させる熱量も含まれている。
In order to eliminate the dew condensation, the amount of heat required to raise the temperature of the water droplet having a specific heat capacity of 4.2 J / g · ° C. is also required. For example, when the ambient temperature drops from 30 ° C to 0 ° C, the temperature drops on the screen of the display device 7 of the above size attached to the windshield of width 1.5 m x height 1 m in a passenger compartment having a volume of 3 m 3. The amount of water adhering with the decrease in the amount of saturated water vapor is estimated to be about 0.5 g to 1 g. The calorific value Q also includes a calorific value for raising the temperature of this amount of water droplets by 10 ° C.
発熱体22は、上記のような適度な電気抵抗Rgを形成し得る材料を用いて形成される。また、発熱体22は、前述した基材21と同様に、透光性及び可撓性を有していてもよく、このような特性を有していることが好ましいこともある。そのため、発熱体22の材料は、透光性、可撓性及び柔軟性、並びに、発熱体22を形成する際の形成の容易性なども勘案して選択される。そのため、発熱体22の材料には、発熱に関して好適である比較的低い導電性と、光の良好な透過性と、さらに柔軟性とを併せ持つ材料が好ましい。発熱体22は、例えば、それらの特性を併せ持つ、導電性を有する高分子ポリマーを用いて形成される。導電性高分子ポリマーとしては、ポリエチレンジオキシチオフェン(PEDOT)、ポリチオフェン(PT)、及びポリアニリン(PANI)などが例示される。これらの導電性高分子ポリマーが用いられる場合、発熱体22は、1×103S/m以上、1×105S/m以下程度の電気伝導率(導電率)を有し得る。
The heating element 22 is formed by using a material capable of forming an appropriate electric resistance Rg as described above. Further, the heating element 22 may have translucency and flexibility as in the above-mentioned base material 21, and it may be preferable that the heating element 22 has such characteristics. Therefore, the material of the heating element 22 is selected in consideration of translucency, flexibility and flexibility, and ease of formation when the heating element 22 is formed. Therefore, as the material of the heating element 22, a material having relatively low conductivity suitable for heat generation, good light transmission, and flexibility is preferable. The heating element 22 is formed, for example, by using a conductive polymer polymer having these characteristics. Examples of the conductive polymer polymer include polyethylene dioxythiophene (PEDOT), polythiophene (PT), and polyaniline (PANI). When these conductive polymer polymers are used, the heating element 22 may have an electrical conductivity (conductivity) of about 1 × 10 3 S / m or more and 1 × 10 5 S / m or less.
発熱体22は、柔軟性及び可撓性がさほど重視されない場合、ITO又は酸化亜鉛などを用いて形成されてもよい。さらに、これらの無機化合物で発熱体22が形成される場合よりも薄い発熱体22が形成される場合、チタン、クロム、ロジウム、ニッケル又はアルミニウムなどの、より高い導電性を有する金属が、発熱体22の材料として用いられてもよい。従って、発熱体22は、例えば、0.1×106S/m以上、7×107S/m以下の導電率を有し得る。また、発熱体22は、ITO又は酸化亜鉛などを用いて形成される場合、0.2×106S/m以上、1×106S/m以下の導電率を有し得る。
The heating element 22 may be formed using ITO, zinc oxide, or the like if flexibility and flexibility are not so important. Furthermore, when a thinner heating element 22 is formed than when the heating element 22 is formed from these inorganic compounds, a metal with higher conductivity, such as titanium, chromium, rhodium, nickel or aluminum, is the heating element. It may be used as a material of 22. Therefore, the heating element 22 can have, for example, a conductivity of 0.1 × 10 6 S / m or more and 7 × 10 7 S / m or less. Further, when the heating element 22 is formed by using ITO, zinc oxide or the like, the heating element 22 may have a conductivity of 0.2 × 10 6 S / m or more and 1 × 10 6 S / m or less.
一方、所定の導電率を有する発熱体22が有するべき厚さT、並びに、電流の流れに平行な方向の長さL及び電流の流れに直交する方向の長さ(幅)Wそれぞれは、適度な電気抵抗Rgを備えるべく互いに相関する。ここで、前述したようにスパッタリング又は印刷などで成膜される発熱体22は、例えば、1nm以上、10000nm以下の厚さの範囲内で形成され得る。このような厚さTを有する発熱体22は、適度な電気抵抗と機械的強度とを備え、さらに高い透明性及び柔軟性を備え得ることがある。
On the other hand, the thickness T that the heating element 22 having a predetermined conductivity should have, the length L in the direction parallel to the current flow, and the length (width) W in the direction orthogonal to the current flow are appropriate. Correlate with each other to provide a good electrical resistance Rg. Here, as described above, the heating element 22 formed by sputtering or printing can be formed within a thickness range of, for example, 1 nm or more and 10000 nm or less. The heating element 22 having such a thickness T has appropriate electrical resistance and mechanical strength, and may be provided with higher transparency and flexibility.
例えば、PEDOTのように、1×104S/m程度の導電率を有する材料を用いて発熱体22が形成される場合、発熱体22は、例えば、5000nm以上、10000nm以下の厚さを有するように形成される。その場合、発熱体22は、10Ω/sq以上、20Ω/sq以下のシート抵抗Rs(Rs=1/(発熱体22の導電率×発熱体22の厚さT))を有し得る。例えば、Rs=10Ω/sqの場合、発熱体22の長さLと幅Wとの比率(L/W)を、1以上、10以下とすることによって、前述した適度な電気抵抗Rg:10Ω~100Ωを得ることができ、Rs=20Ω/sqの場合、L/Wを0.5以上、5以下とすることによって、電気抵抗Rg:10Ω~100Ωを得ることができる。
For example, when the heating element 22 is formed using a material having a conductivity of about 1 × 10 4 S / m, such as PEDOT, the heating element 22 has a thickness of, for example, 5000 nm or more and 10000 nm or less. Is formed as follows. In that case, the heating element 22 may have a sheet resistance Rs (Rs = 1 / (conductivity of the heating element 22 × thickness T of the heating element 22)) of 10 Ω / sq or more and 20 Ω / sq or less. For example, when Rs = 10Ω / sq, the ratio (L / W) of the length L and the width W of the heating element 22 is set to 1 or more and 10 or less, so that the above-mentioned appropriate electric resistance Rg: 10Ω to 100Ω can be obtained, and when Rs = 20Ω / sq, the electric resistance Rg: 10Ω to 100Ω can be obtained by setting L / W to 0.5 or more and 5 or less.
また、ITO又は酸化亜鉛などのように、0.2×106S/m以上、1×106S/m以下の導電率を有する材料を用いて発熱体22が形成される場合、発熱体22は、例えば、100nm以上、500nm以下の厚さを有するように形成される。一例として、0.5×106S/mの導電率を有する材料を用いて発熱体22が形成される場合、発熱体22は、4Ω/sq以上、20Ω/sq以下のシート抵抗Rsを有し得る。例えば、Rs=4Ω/sqの場合、発熱体22の長さLと幅Wとの比率(L/W)を、2.5以上、25以下とすることによって、前述した適度な電気抵抗Rg:10Ω~100Ωを得ることができ、Rs=20Ω/sqの場合、L/Wを0.5以上、5以下とすることによって、電気抵抗Rg:10Ω~100Ωを得ることができる。
Further, when the heating element 22 is formed by using a material having a conductivity of 0.2 × 10 6 S / m or more and 1 × 10 6 S / m or less, such as ITO or zinc oxide, the heating element 22 is formed so as to have a thickness of, for example, 100 nm or more and 500 nm or less. As an example, when the heating element 22 is formed using a material having a conductivity of 0.5 × 10 6 S / m, the heating element 22 has a sheet resistance Rs of 4 Ω / sq or more and 20 Ω / sq or less. Can be done. For example, when Rs = 4Ω / sq, the ratio (L / W) of the length L and the width W of the heating element 22 is set to 2.5 or more and 25 or less, so that the above-mentioned appropriate electrical resistance Rg: 10Ω to 100Ω can be obtained, and when Rs = 20Ω / sq, the electric resistance Rg: 10Ω to 100Ω can be obtained by setting L / W to 0.5 or more and 5 or less.
金属のように、本質的に光の透過度の低い材料が用いられる場合、発熱体22は、透明性を有すべく、例えば、2nm以上、14nm以下の厚さを有するように形成される。発熱体22のL/W比を、適切に設定することによって、電気抵抗Rg=10Ω~100Ωを得ることができる。
When a material having essentially low light transmittance is used, such as metal, the heating element 22 is formed to have a thickness of, for example, 2 nm or more and 14 nm or less in order to have transparency. By appropriately setting the L / W ratio of the heating element 22, the electric resistance Rg = 10Ω to 100Ω can be obtained.
図3Aの例において発熱体22は、略矩形の基材21の正面形状と略相似し、且つ基材21よりも少し小さい矩形の正面形状を有している。基材21において発熱体22が形成されていない縁部には、第1測定部3を構成する熱電対3a(図2A参照)が配置されてもよい。
In the example of FIG. 3A, the heating element 22 has a rectangular front shape that is substantially similar to the front shape of the substantially rectangular base material 21 and is slightly smaller than the base material 21. A thermocouple 3a (see FIG. 2A) constituting the first measurement unit 3 may be arranged at the edge portion of the base material 21 on which the heating element 22 is not formed.
図3Aの例では、矩形の正面形状を有する発熱体22における対向する二つの短辺それぞれは電極23と重なっている。電極23は、好ましくは、発熱体22を形成する材料よりも高い導電性を有する材料で形成されている。例えば発熱体22がITO又はPEDOTを用いて形成される場合、電極23は、アルミニウム又はニッケルなどを含む導電体膜で構成される。図3Aのように電極23を形成することによって、発熱体22の長辺方向に流れる電流の短辺方向における電流密度の均一性を高めることができる。すなわち、発熱体22における発熱量のばらつきを小さくすることができる。
In the example of FIG. 3A, each of the two opposing short sides of the heating element 22 having a rectangular front shape overlaps with the electrode 23. The electrode 23 is preferably made of a material having higher conductivity than the material forming the heating element 22. For example, when the heating element 22 is formed using ITO or PEDOT, the electrode 23 is made of a conductor film containing aluminum, nickel, or the like. By forming the electrode 23 as shown in FIG. 3A, the uniformity of the current density in the short side direction of the current flowing in the long side direction of the heating element 22 can be improved. That is, the variation in the amount of heat generated in the heating element 22 can be reduced.
電極23は、その任意の部分において、電力の給電路(図示せず)と接続される。例えば、二つの電極23の一方が、矩形の正面形状を有する発熱体22の対角の一方の近傍で給電路に接続され、他方の電極23が、この対角の他方の近傍で給電路に接続されてもよい。発熱体22における発熱量のばらつきを一層小さくできることがある。電極23は、必ずしも図3Aのように発熱体22の短辺に沿っていなくてもよく、発熱体22の長辺に沿って長辺に重なるように形成されていてもよい。また、電極23は、発熱体22の一辺の全長に渡ってその一辺と接していなくてもよく、発熱体22の各辺の1以上の任意の箇所で発熱体22と接していてもよい。
The electrode 23 is connected to a power supply path (not shown) at any part thereof. For example, one of the two electrodes 23 is connected to the feeding path in the vicinity of one diagonal of the heating element 22 having a rectangular front shape, and the other electrode 23 is connected to the feeding path in the vicinity of the other diagonal. May be connected. The variation in the amount of heat generated in the heating element 22 may be further reduced. The electrode 23 does not necessarily have to be along the short side of the heating element 22 as shown in FIG. 3A, and may be formed so as to overlap the long side along the long side of the heating element 22. Further, the electrode 23 does not have to be in contact with one side of the heating element 22 over the entire length of one side, and may be in contact with the heating element 22 at one or more arbitrary positions on each side of the heating element 22.
図4A及び図4Bを参照して発熱体22の他の例が説明される。なお図4A及び図4Bでは、図3A及び図3Bに示されている電極23は省略されている。
Other examples of the heating element 22 will be described with reference to FIGS. 4A and 4B. Note that in FIGS. 4A and 4B, the electrodes 23 shown in FIGS. 3A and 3B are omitted.
図4Aに示される他の例の発熱体22aは、互いに電気的に分離された二つの領域22a1、22a2を含んでいる。領域22a1、22a2それぞれに電力が供給される。図4Aのように、発熱体22aを、発熱体22aよりも小さい面積を有する複数の領域に分離することによって、図3A及び図3Bの例に比べて、発熱体22a全体における発熱量の分布の均一性を高め得ることがある。また、図4Aの例では、図3A及び図3Bの例において発熱量Qを得るために発熱体22に印加すべき電圧と比べて1/2の大きさの電圧を領域22a1及び領域22a2それぞれに印加することによって、発熱量Qを得ることができる。発熱体22aは、図4Aの例に限定されず、2よりも多い複数の領域を含んでいてもよい。発熱体22aを、略同じ電気抵抗を有するn個の領域に分割して各領域を並列接続することによって、必要な電圧を1/nに減少させることができる。
The heating element 22a of another example shown in FIG. 4A includes two regions 22a1 and 22a2 that are electrically separated from each other. Power is supplied to each of the regions 22a1 and 22a2. By separating the heating element 22a into a plurality of regions having an area smaller than that of the heating element 22a as shown in FIG. 4A, the distribution of the amount of heat generated in the entire heating element 22a is compared with the examples of FIGS. 3A and 3B. May increase uniformity. Further, in the example of FIG. 4A, a voltage having a magnitude of 1/2 that of the voltage to be applied to the heating element 22 in order to obtain the calorific value Q in the examples of FIGS. 3A and 3B is applied to the regions 22a1 and 22a2, respectively. By applying, the heating element Q can be obtained. The heating element 22a is not limited to the example of FIG. 4A, and may include a plurality of regions more than 2. By dividing the heating element 22a into n regions having substantially the same electrical resistance and connecting the regions in parallel, the required voltage can be reduced to 1 / n.
図4Bに示される他の例の発熱体22bは、ジグザグに蛇行する正面形状を有している。すなわち、発熱体22bは、電流の流入箇所Psから流出箇所Pdまでの電流経路を自らの形状によって画定しており、その電流経路がジグザグに蛇行している。図4Bのように発熱体22bを形成することによって、発熱体22bにおける長さLと幅Wとの比率(L/W)を大きくすることができる。従って、発熱体22bのシート抵抗Rsが小さい場合でも、所定の面積内に適切な電気抵抗を有する発熱体22bを形成することができる。発熱体22は、図3A~図4Bの例に限定されず、任意の正面形状を有し得る。
The heating element 22b of another example shown in FIG. 4B has a front shape that meanders in a zigzag manner. That is, the heating element 22b defines the current path from the current inflow point Ps to the current outflow point Pd by its own shape, and the current path meanders in a zigzag manner. By forming the heating element 22b as shown in FIG. 4B, the ratio (L / W) of the length L and the width W in the heating element 22b can be increased. Therefore, even when the sheet resistance Rs of the heating element 22b is small, the heating element 22b having an appropriate electric resistance can be formed within a predetermined area. The heating element 22 is not limited to the examples of FIGS. 3A to 4B, and may have an arbitrary front shape.
本実施形態における発熱部2は、発熱機能だけでなく他の任意の機能を有していてもよい。図5A及び図5Bには、そのような発熱以外の機能を併せ持つ発熱部2の他の例が、表示装置7と共に示されている。図5Aは、図2Aの例のように、表示装置7の表示面7aに発熱部2が付着される場合における、発熱部2の他の例である。図5Bは、図2Bの例のように、表示装置7における表示面7aの反対面に発熱部2が付着される場合における、発熱部2の他の例である。従って、図5Aでは、表示装置7が隔壁Bに取付けられており、図5Bでは、発熱部2は、表示装置7と隔壁Bとの間に介在している。
The heat generating unit 2 in the present embodiment may have any other function as well as the heat generating function. In FIGS. 5A and 5B, another example of the heat generating unit 2 having a function other than such heat generation is shown together with the display device 7. FIG. 5A is another example of the heat generating portion 2 in the case where the heat generating portion 2 is attached to the display surface 7a of the display device 7 as in the example of FIG. 2A. FIG. 5B is another example of the heat generating portion 2 in the case where the heat generating portion 2 is attached to the opposite surface of the display surface 7a in the display device 7 as in the example of FIG. 2B. Therefore, in FIG. 5A, the display device 7 is attached to the partition wall B, and in FIG. 5B, the heat generating portion 2 is interposed between the display device 7 and the partition wall B.
図5Aに示される例では、発熱部2は、表示装置7に付着される一面20と反対の面(第2面20a)に、光の伝搬に関して所定の機能を有する光学的機能膜25を備えている。光学的機能膜25は、例えば、光の反射を抑制すべく構成された反射防止膜である。光学的機能膜25は偏光板であってもよい。光学的機能膜25は、反射防止膜と偏光板とが積層された構造を有していてもよい。発熱部2が反射防止膜を有することによって、表示装置7における外交の反射が抑制され、表示装置7に表示される画像の視認性が向上する。また、発熱部2が偏光板を備えることによって、表示装置7への偏光板の具備が不要になり、表示装置7の構造を簡素化できることがある。
In the example shown in FIG. 5A, the heat generating portion 2 includes an optical functional film 25 having a predetermined function regarding light propagation on a surface (second surface 20a) opposite to the one surface 20 attached to the display device 7. ing. The optical functional film 25 is, for example, an antireflection film configured to suppress the reflection of light. The optical functional film 25 may be a polarizing plate. The optical functional film 25 may have a structure in which an antireflection film and a polarizing plate are laminated. Since the heat generating portion 2 has the antireflection film, the diplomatic reflection in the display device 7 is suppressed, and the visibility of the image displayed on the display device 7 is improved. Further, since the heat generating portion 2 is provided with a polarizing plate, it is not necessary to provide the display device 7 with a polarizing plate, and the structure of the display device 7 may be simplified.
発熱部2の第2面20aに設けられる反射防止膜には、例えば、発熱体22を構成する材料の屈折率よりも低い屈折率を有する誘電体材料などが用いられる。そして、表裏各面における反射光が干渉により互いに弱め合うように適度な厚さの膜を形成することによって反射防止膜を形成することができ、表示装置7における外光の反射を少なくすることができる。
For the antireflection film provided on the second surface 20a of the heating element 2, for example, a dielectric material having a refractive index lower than that of the material constituting the heating element 22 is used. Then, an antireflection film can be formed by forming a film having an appropriate thickness so that the reflected light on each of the front and back surfaces weakens each other due to interference, and the reflection of external light on the display device 7 can be reduced. it can.
発熱部2の第2面20aに偏光板が設けられる場合は、市販の偏光板が発熱体22に接着されてもよい。例えば、ヨウ素化合物が吸着配向されたポリビニルアルコールを主体とする層が二つのトリアセチルセルロース膜で挟まれた構造を有する直線偏光板が発熱体22に接着される。また、そのような直性偏光板に、ポリカーボネートなどによって形成された1/4位相差板が積層された円偏光板が、発熱体22に接着されてもよい。
When a polarizing plate is provided on the second surface 20a of the heating unit 2, a commercially available polarizing plate may be adhered to the heating element 22. For example, a linear polarizing plate having a structure in which a layer mainly composed of polyvinyl alcohol in which an iodine compound is adsorbed and oriented is sandwiched between two triacetyl cellulose films is adhered to a heating element 22. Further, a circular polarizing plate in which a 1/4 retarding plate formed of polycarbonate or the like is laminated on such a straight polarizing plate may be adhered to the heating element 22.
図5Aの例では、表示画像の視認性の結露を防止すべく加温すべき面は発熱部2の露出面である。従って発熱部2から表示装置7へと伝わる熱が少ない方が、効率よく加温すべき面の温度を上昇させることができる。そのため、図5Aの例の発熱部2は断熱層26を備えている。断熱層26は、発熱部2における表示装置7に向けられる一面20の上に備えられている。断熱層26は、少なくとも、発熱部2の一面20を形成している材料よりも低い熱伝導率を有する材料を含んでいる。図5Aの例では一面20は基材21によって形成されている。例えば、前述したように、PET又はPIを用いて基材21が形成されている場合、断熱層26は、例えば、0.1W/(m・K)以下の熱伝導率を有し得る。断熱層26は、繊維系又は発泡系などの任意の断熱性材料を含むシート又はフィルムなどによって構成され得る。例えば、繊維に、細孔を有するシリカエアロゲルを含浸させることによって形成されたシートが、断熱層26として基材21によって構成されている一面20の上に積層される。
In the example of FIG. 5A, the surface to be heated in order to prevent dew condensation on the visibility of the displayed image is the exposed surface of the heat generating portion 2. Therefore, the less heat transferred from the heat generating portion 2 to the display device 7, the more efficiently the temperature of the surface to be heated can be raised. Therefore, the heat generating portion 2 in the example of FIG. 5A includes a heat insulating layer 26. The heat insulating layer 26 is provided on one side 20 of the heat generating portion 2 facing the display device 7. The heat insulating layer 26 contains at least a material having a lower thermal conductivity than the material forming one side 20 of the heat generating portion 2. In the example of FIG. 5A, one side 20 is formed by the base material 21. For example, as described above, when the base material 21 is formed using PET or PI, the heat insulating layer 26 can have, for example, a thermal conductivity of 0.1 W / (m · K) or less. The heat insulating layer 26 may be composed of a sheet or film containing any heat insulating material such as a fiber type or a foam type. For example, a sheet formed by impregnating fibers with silica airgel having pores is laminated on one side 20 composed of a base material 21 as a heat insulating layer 26.
一方、図5Bの例では、発熱部2を表示措置7に付着させるために、接着剤又は粘着剤などを含む粘着層27が、発熱部2における表示装置7を向く一面20に備えられている。図5Bの例では、発熱部2によって加温されるべき面は表示装置7の表示面7aであり、従って、発熱部2によって発生した熱を効率よく表示装置7に伝えることが好ましい。そのため、粘着層27は、50μm以上、150μm以下程度の厚さを有する。また、粘着層27は、一点鎖線で囲まれた円C内に拡大して示されるように、粘着層27における熱の伝導性を高めるべく、熱伝導性に優れた材料からなるフィラー27aを含んでいる。
On the other hand, in the example of FIG. 5B, in order to attach the heat generating portion 2 to the display measure 7, an adhesive layer 27 containing an adhesive or an adhesive is provided on one side 20 of the heat generating portion 2 facing the display device 7. .. In the example of FIG. 5B, the surface to be heated by the heat generating unit 2 is the display surface 7a of the display device 7, and therefore, it is preferable to efficiently transfer the heat generated by the heat generating unit 2 to the display device 7. Therefore, the adhesive layer 27 has a thickness of about 50 μm or more and 150 μm or less. Further, the adhesive layer 27 contains a filler 27a made of a material having excellent thermal conductivity in order to enhance the thermal conductivity in the adhesive layer 27, as shown enlarged in the circle C surrounded by the alternate long and short dash line. I'm out.
フィラー27aは、例えば20W/(m・K)以上、3000W/(m・K)以下の熱伝導率を有する材料からなる粒状物である。フィラー27aの材料としては、酸化アルミニウム、窒化アルミニウム、酸化マグネシウムなどが例示される。また、フィラー27aは、窒化ホウ素を含むナノチューブ(BNNT)であってもよい。例えば、粘着層27は、OCA又はOCRを主原料として用いて形成され、10重量%の含有率でBNNTを含んでいてもよい。その場合、粘着層27は、1.0W/(m・K)以上、1.5W/(m・K)以下の熱伝導率を、透光性を維持したまま有し得ることがある。
The filler 27a is, for example, a granular material made of a material having a thermal conductivity of 20 W / (m · K) or more and 3000 W / (m · K) or less. Examples of the material of the filler 27a include aluminum oxide, aluminum nitride, magnesium oxide and the like. Further, the filler 27a may be a nanotube (BNNT) containing boron nitride. For example, the adhesive layer 27 may be formed using OCA or OCR as a main raw material and may contain BNNT at a content of 10% by weight. In that case, the adhesive layer 27 may have a thermal conductivity of 1.0 W / (m · K) or more and 1.5 W / (m · K) or less while maintaining the translucency.
なお、発熱部2は、表示装置7と別個に用意されて表示装置7に付着されるのではなく、一面20を表示装置7に向けて表示装置7のいずれかの表面上に形成されてもよい。例えば、図3Aに示される発熱体22及び電極23が、表示パネル7の表示面7a又はその反対面にスパッタリング又は印刷などによって形成されていてもよい。そして、表示装置7の表面上に形成された発熱部2に電力が供給され、その発熱の開始と停止とが制御部6によって制御されてもよい。
The heat generating portion 2 is not prepared separately from the display device 7 and attached to the display device 7, but may be formed on any surface of the display device 7 with one side 20 facing the display device 7. Good. For example, the heating element 22 and the electrode 23 shown in FIG. 3A may be formed on the display surface 7a of the display panel 7 or the opposite surface by sputtering or printing. Then, electric power may be supplied to the heat generating unit 2 formed on the surface of the display device 7, and the start and stop of the heat generation may be controlled by the control unit 6.
[制御部]
図6には、本実施形態の結露防止装置1における制御部6の形態の一例が、第2及び第3の測定部4、5と共に示されている。図6の例では、制御部6は、配線基板64の上に実装された半導体集積回路装置などの電子部品によって構成されている。配線基板64には、第2及び第3の測定部4、5も実装されている。 [Control unit]
FIG. 6 shows an example of the embodiment of thecontrol unit 6 in the dew condensation prevention device 1 of the present embodiment together with the second and third measurement units 4 and 5. In the example of FIG. 6, the control unit 6 is composed of electronic components such as a semiconductor integrated circuit device mounted on the wiring board 64. The second and third measuring units 4 and 5 are also mounted on the wiring board 64.
図6には、本実施形態の結露防止装置1における制御部6の形態の一例が、第2及び第3の測定部4、5と共に示されている。図6の例では、制御部6は、配線基板64の上に実装された半導体集積回路装置などの電子部品によって構成されている。配線基板64には、第2及び第3の測定部4、5も実装されている。 [Control unit]
FIG. 6 shows an example of the embodiment of the
配線基板64は、エンジニアリングプラスチック又はアルミニウムなどの金属からなるケース65の内部に配置されている。従って、制御部6並びに第2及び第3の測定部4、5は、配線基板64と共に、ケース65に収容されており、ケース65は、これらを全方位において覆っている。しかし、ケース65は、ケース65の外部の空気をその内部に導入すべく開口65aを有している。開口65aはケース65において、第2及び第3の測定部4、5それぞれに最も近接する部位に設けられている。従って、第2及び第3の測定部4、5が、測定対象の空間の温度と湿度とをそれぞれ適切に測定することができる。
The wiring board 64 is arranged inside a case 65 made of engineering plastic or a metal such as aluminum. Therefore, the control unit 6 and the second and third measurement units 4 and 5 are housed in the case 65 together with the wiring board 64, and the case 65 covers them in all directions. However, the case 65 has an opening 65a for introducing air outside the case 65 into the case 65. The opening 65a is provided in the case 65 at a portion closest to each of the second and third measuring units 4 and 5. Therefore, the second and third measuring units 4 and 5 can appropriately measure the temperature and humidity of the space to be measured, respectively.
ケース65は、表示装置7(図1参照)が設置されている空間(室内R)を囲んでいて室内Rと外部とを隔てる隔壁Bの室内Rを向く面に設置されている。ケース65と、隔壁Bとの間には、断熱部66が備えられている。従って、隔壁Bと第2測定部4との間の熱の伝達が断熱部66によって抑制される。そのため、第2測定部4は、外部の気温の影響を顕著に受けることなく測定対象の空間の温度を適切に測定することができる。なお、断熱部66は、任意の断熱性材料を用いて形成され得る。例えば、グラスウール、ウレタンフォーム又はポリスチレンフォームのような繊維系又は発泡系などの断熱性材料が用いられる。
The case 65 is installed on the surface of the partition wall B facing the room R, which surrounds the space (indoor R) in which the display device 7 (see FIG. 1) is installed and separates the room R from the outside. A heat insulating portion 66 is provided between the case 65 and the partition wall B. Therefore, the heat transfer between the partition wall B and the second measuring unit 4 is suppressed by the heat insulating unit 66. Therefore, the second measuring unit 4 can appropriately measure the temperature of the space to be measured without being significantly affected by the outside air temperature. The heat insulating portion 66 can be formed by using any heat insulating material. For example, fibrous or foam-based insulating materials such as glass wool, urethane foam or polystyrene foam are used.
図6の例では、配線基板64は、配線基板64におけるケース65の底面を向く面の一部だけでケース65と接している。同様に、ケース65は、隔壁Bを向く面の一部だけで隔壁B(具体的には断熱部66)と接している。さらに、配線基板64とケース65との接触部と、ケース65と隔壁Bとの接触部とは、ケース65の底面において所定の間隔を空けて設けられている。このような構造を用いることによって、隔壁Bと第2測定部4との間においてさらに熱を伝わり難くすることができる。
In the example of FIG. 6, the wiring board 64 is in contact with the case 65 only on a part of the surface of the wiring board 64 facing the bottom surface. Similarly, the case 65 is in contact with the partition wall B (specifically, the heat insulating portion 66) only on a part of the surface facing the partition wall B. Further, the contact portion between the wiring board 64 and the case 65 and the contact portion between the case 65 and the partition wall B are provided on the bottom surface of the case 65 at predetermined intervals. By using such a structure, it is possible to make it more difficult for heat to be transferred between the partition wall B and the second measuring unit 4.
前述したように、図1に示される制御部6の決定部61は、記憶部63の記憶内容の参照によって、表示装置7が設置されている空間(室内R)の露点温度に基づく閾値温度(Tt)を決定してもよい。すなわち、記憶部63は、図7に示されるように、第2測定部4によって測定された空間の温度Ta1~Tanと、第3測定部5によって測定された空間の湿度Ha1~Hamとの種々の組み合わせそれぞれに対する閾値温度Tt11~Tt1zが記録されたマップ(第1マップM1)を記憶していてもよい。そして、決定部61は、記憶部63の記憶内容に基づいて、発熱部2に発熱を開始又は停止させる閾値温度Ttを決定してもよい。すなわち、決定部61は、発熱部2に発熱を開始又は停止させる閾値温度Ttを、第1マップM1に記録されている閾値温度Tt11~Tt1zの中から選択してもよい。
As described above, the determination unit 61 of the control unit 6 shown in FIG. 1 refers to the threshold temperature (3) based on the dew point temperature of the space (room R) in which the display device 7 is installed by referring to the storage contents of the storage unit 63. Tt) may be determined. That is, as shown in FIG. 7, the storage unit 63 has various temperatures Ta1 to Tan in the space measured by the second measuring unit 4 and humidity Ha1 to Ham in the space measured by the third measuring unit 5. A map (first map M1) in which threshold temperatures Tt11 to Tt1z are recorded for each combination of the above may be stored. Then, the determination unit 61 may determine the threshold temperature Tt at which the heat generation unit 2 starts or stops heat generation based on the storage content of the storage unit 63. That is, the determination unit 61 may select the threshold temperature Tt for starting or stopping the heat generation in the heat generating unit 2 from the threshold temperatures Tt11 to Tt1z recorded in the first map M1.
その場合、発熱部2に発熱を開始させるか否かの閾値温度(Ttn)と、発熱部2に発熱を停止させるか否かの閾値温度(Ttf)とは同じであってよい。すなわち、決定部61は、発熱部2に発熱を開始させるか否かを判断するとき、及び発熱部2に発熱を停止させるか否かを判断するときのいずれにおいても、同一のマップ(例えば第1マップM1)を参照してもよい。例えば、制御部6は、第1測定部3によって測定された温度が閾値温度Ttn(=Ttf)以下であると、発熱部2に発熱を開始させ、第1測定部3によって測定された温度が閾値温度Ttf(=Ttn)以上であると、発熱部2に発熱を停止させる。しかし、その場合、第1測定部3によって測定された温度が閾値温度(Ttn=Ttf)を跨いで昇降を繰り返すと、頻繁に発熱部2の発熱の停止と開始とが繰り返され、例えば消費電力低減の面から好ましくない。
In that case, the threshold temperature (Ttn) for whether or not the heat generating unit 2 starts heat generation and the threshold temperature (Ttf) for whether or not the heat generating unit 2 stops heat generation may be the same. That is, the determination unit 61 has the same map (for example, the first) when determining whether or not the heat generating unit 2 starts heat generation and when determining whether or not the heat generating unit 2 stops heat generation. 1 Map M1) may be referred to. For example, when the temperature measured by the first measuring unit 3 is equal to or lower than the threshold temperature Ttn (= Ttf), the control unit 6 causes the heat generating unit 2 to start heat generation, and the temperature measured by the first measuring unit 3 becomes high. When the temperature is equal to or higher than the threshold temperature Ttf (= Ttn), the heat generating unit 2 stops heat generation. However, in that case, when the temperature measured by the first measuring unit 3 repeatedly rises and falls across the threshold temperature (Ttn = Ttf), the heat generation of the heat generating unit 2 is frequently stopped and started, for example, power consumption. It is not preferable from the viewpoint of reduction.
そこで、記憶部63は、図7に示されるように、発熱部2による発熱の停止中に決定部61によって参照される第1マップM1と、発熱部2の発熱中に決定部61によって参照される第2マップM2とを記憶していてもよい。この場合、第2測定部4によって測定される温度と第3測定部5によって測定される湿度との特定の組み合わせ(例えば温度Ta2と湿度Ha2)について第1マップM1に記録されている閾値温度(例えばTt1x)は、この特定の組み合わせについて第2マップM2に記録されている閾値温度(Tt2x)よりも低くてもよい。
Therefore, as shown in FIG. 7, the storage unit 63 is referred to by the first map M1 referenced by the determination unit 61 while the heat generation by the heat generation unit 2 is stopped, and by the determination unit 61 during the heat generation of the heat generation unit 2. The second map M2 may be stored. In this case, the threshold temperature (for example, temperature Ta2 and humidity Ha2) recorded in the first map M1 for a specific combination of the temperature measured by the second measuring unit 4 and the humidity measured by the third measuring unit 5 (for example, temperature Ta2 and humidity Ha2). For example, Tt1x) may be lower than the threshold temperature (Tt2x) recorded on the second map M2 for this particular combination.
換言すると、記憶部63は、発熱部2による発熱を開始させるべき温度が閾値温度(Tt11~Tt1z)として記録されている第1マップM1と、発熱部2による発熱を停止させるべき温度が閾値温度(Tt21~Tt2z)として記録されている第2マップM2とを記憶していてもよい。この場合においても、第2測定部4によって測定された温度と、第3測定部5によって測定された湿度との特定の組み合わせについて第1マップM1に記録されている閾値温度(例えばTt1x)は、この特定の組み合わせについて第2マップM2に記録されている閾値温度(例えばTt2x)よりも低くてもよい。
In other words, in the storage unit 63, the temperature at which the heat generation unit 2 should start the heat generation is recorded as the threshold temperature (Tt11 to Tt1z), and the temperature at which the heat generation unit 2 should stop the heat generation is the threshold temperature. The second map M2 recorded as (Tt21 to Tt2z) may be stored. Even in this case, the threshold temperature (for example, Tt1x) recorded in the first map M1 for a specific combination of the temperature measured by the second measuring unit 4 and the humidity measured by the third measuring unit 5 is determined. This particular combination may be lower than the threshold temperature (eg, Tt2x) recorded on the second map M2.
このように、制御部6が構成されると、結露の発生を防止又は解消すべき対象である、表示装置7における露出面の温度を、露点温度を上回る二つの温度の間で維持することができる。しかも、無暗に発熱部2において発熱の開始と停止とが頻繁に繰り返されることを防ぐことができる。この点について、図8に示されるタイミングチャートを参照して説明する。
When the control unit 6 is configured in this way, the temperature of the exposed surface of the display device 7, which is an object to prevent or eliminate the occurrence of dew condensation, can be maintained between two temperatures exceeding the dew point temperature. it can. Moreover, it is possible to prevent the heat generation unit 2 from repeating the start and stop of heat generation without any darkness. This point will be described with reference to the timing chart shown in FIG.
図8には、第2及び第3の測定部4、5それぞれの測定結果が温度Ta2及び湿度Ha2である場合の露点温度Tdx、並びに、第1マップM1を参照して決定された、露点温度Tdxよりも所定温度(例えば2℃~5℃)だけ高い閾値温度Tt1x及び、第2マップM2を参照して決定された、閾値温度Tt1xよりも、さらに所定温度(例えば2℃~5℃)だけ高い閾値温度Tt2xが示されている。また、第1測定部3によって測定された温度T3(以下、単に「温度T3」とも称される)が示されている。図8において、符号P1で示されるレベル変化のうちのハイレベルは結露防止装置1が稼働中であることを示し、ロウレベルは結露防止装置1が非稼働状態であることを示している。また、符号P2で示されるレベル変化のうちのハイレベルは発熱部2が発熱していることを示し、ロウレベルは発熱部2が発熱していないことを示している。
FIG. 8 shows the dew point temperature Tdx when the measurement results of the second and third measuring units 4 and 5 are the temperature Ta2 and the humidity Ha2, and the dew point temperature determined with reference to the first map M1. A threshold temperature Tt1x higher than Tdx by a predetermined temperature (for example, 2 ° C. to 5 ° C.) and a predetermined temperature (for example, 2 ° C. to 5 ° C.) higher than the threshold temperature Tt1x determined with reference to the second map M2. A high threshold temperature Tt2x is shown. Further, the temperature T3 (hereinafter, also simply referred to as “temperature T3”) measured by the first measuring unit 3 is shown. In FIG. 8, the high level of the level change represented by the reference numeral P1 indicates that the dew condensation prevention device 1 is in operation, and the low level indicates that the dew condensation prevention device 1 is not in operation. Further, the high level of the level change indicated by the reference numeral P2 indicates that the heat generating portion 2 is generating heat, and the low level indicates that the heat generating portion 2 is not generating heat.
図8に示されるように、時点S1において結露防止装置1が稼働状態にされると、温度T3が閾値温度Tt1xよりも低いため、制御部6は、発熱部2に発熱を開始させる。その後、発熱部2の発熱によって温度T3が上昇し、閾値温度Tt1x以上の温度に達しても(時点S2)、制御部6は発熱部2に発熱を継続させる。そして、温度T3が閾値温度Tt2xに達すると(時点S3)、制御部6は発熱部2に発熱を停止させる。その後、温度T3が低下し、閾値温度Tt1xに達すると(時点S4)、再び、発熱部2に発熱を開始させる。そして時点S5で温度T3が閾値温度Tt2xに達すると、制御部6は、発熱部2に発熱を停止させる。このように、制御部6は、結露の発生を防止又は解消すべき対象である、表示装置7における露出面の温度を、露点温度Tdxを上回る二つの温度の間で維持することができる。
As shown in FIG. 8, when the dew condensation prevention device 1 is put into operation at the time point S1, the temperature T3 is lower than the threshold temperature Tt1x, so that the control unit 6 causes the heat generating unit 2 to start heat generation. After that, even if the temperature T3 rises due to the heat generated by the heat generating unit 2 and reaches a temperature equal to or higher than the threshold temperature Tt1x (time point S2), the control unit 6 causes the heat generating unit 2 to continue heat generation. Then, when the temperature T3 reaches the threshold temperature Tt2x (time point S3), the control unit 6 causes the heat generating unit 2 to stop heat generation. After that, when the temperature T3 decreases and reaches the threshold temperature Tt1x (time point S4), the heat generating unit 2 starts heat generation again. Then, when the temperature T3 reaches the threshold temperature Tt2x at the time point S5, the control unit 6 causes the heat generating unit 2 to stop the heat generation. In this way, the control unit 6 can maintain the temperature of the exposed surface in the display device 7, which is an object to prevent or eliminate the occurrence of dew condensation, between two temperatures exceeding the dew point temperature Tdx.
[結露防止装置の配置例]
図9A~図9Cを参照して、本実施形態の結露防止装置の室内への配置の幾つかの例を説明する。図9Aは、自動車の室内CRにおける配置の一例を示している。図9Aの例では、表示装置7は自動車のフロントガラスの車室を向く面に取付けられ、その表示面に結露防止装置の発熱部2が付着されている。第1測定部3は、運転者などの目に付き難いように、発熱部2の下縁部に配置されている。制御部6はダッシュボードDBの内部に配置されている。 [Example of arrangement of dew condensation prevention device]
With reference to FIGS. 9A to 9C, some examples of the arrangement of the dew condensation prevention device of the present embodiment in the room will be described. FIG. 9A shows an example of arrangement in the interior CR of an automobile. In the example of FIG. 9A, thedisplay device 7 is attached to a surface of the windshield of an automobile facing the passenger compartment, and a heat generating portion 2 of a dew condensation prevention device is attached to the display surface. The first measuring unit 3 is arranged at the lower edge of the heat generating unit 2 so as not to be noticeable to the driver or the like. The control unit 6 is arranged inside the dashboard DB.
図9A~図9Cを参照して、本実施形態の結露防止装置の室内への配置の幾つかの例を説明する。図9Aは、自動車の室内CRにおける配置の一例を示している。図9Aの例では、表示装置7は自動車のフロントガラスの車室を向く面に取付けられ、その表示面に結露防止装置の発熱部2が付着されている。第1測定部3は、運転者などの目に付き難いように、発熱部2の下縁部に配置されている。制御部6はダッシュボードDBの内部に配置されている。 [Example of arrangement of dew condensation prevention device]
With reference to FIGS. 9A to 9C, some examples of the arrangement of the dew condensation prevention device of the present embodiment in the room will be described. FIG. 9A shows an example of arrangement in the interior CR of an automobile. In the example of FIG. 9A, the
そして、第2及び第3の測定部4、5は、自動車の室内CRを囲む内壁から離間させるべく、リアビューミラーRMに取付けられている。このように第2及び第3の測定部4、5を配置することによって、これらの測定部、特に第2測定部4による温度測定への外気の影響を少なくすることができる。第2及び第3の測定部4、5は、図9Aにおいて、符号4a及び符号5aでそれぞれ示されるように、ダッシュボードDBの内部に配置されてもよい。その場合、第2及び第3の測定部4a、5aは、ダッシュボードDBの表面に設けられた開口DB1の直下に配置されてもよい。
Then, the second and third measuring units 4 and 5 are attached to the rear view mirror RM so as to be separated from the inner wall surrounding the interior CR of the automobile. By arranging the second and third measuring units 4 and 5 in this way, the influence of the outside air on the temperature measurement by these measuring units, particularly the second measuring unit 4, can be reduced. The second and third measurement units 4 and 5 may be arranged inside the dashboard DB as indicated by reference numerals 4a and 5a in FIG. 9A, respectively. In that case, the second and third measurement units 4a and 5a may be arranged directly below the opening DB1 provided on the surface of the dashboard DB.
図9Bには、自動車の室内CRにおける本実施形態の結露防止装置の配置の他の例が示されている。図9Aの例と同様に、表示装置7はフロントガラスに取付けられ、その表示面に発熱部2が付着されている。制御部6は、車室の床部に配置されている。床部の方がダッシュボード内よりも自動車の走行による揺れが少なく、制御部6の動作が安定することがある。そして、図9Bの例では、第2及び第3の測定部4、5は、車室の天井に配置されている。第2及び第3の測定部4、5は、シート状の断熱材45を介して車室の天井に取り付けられている。断熱材45を介在させることによって、これらの測定部、特に第2測定部4による温度測定への外気の影響を少なくすることができる。断熱材45には、グラスウール、ウレタンフォーム又はポリスチレンフォームのような繊維系又は発泡系などの任意の断熱材が用いられ得る。
FIG. 9B shows another example of the arrangement of the dew condensation prevention device of the present embodiment in the interior CR of an automobile. Similar to the example of FIG. 9A, the display device 7 is attached to the windshield, and the heat generating portion 2 is attached to the display surface thereof. The control unit 6 is arranged on the floor of the vehicle interior. The floor portion has less shaking due to the running of the automobile than the inside of the dashboard, and the operation of the control unit 6 may be stable. Then, in the example of FIG. 9B, the second and third measuring units 4 and 5 are arranged on the ceiling of the vehicle interior. The second and third measuring units 4 and 5 are attached to the ceiling of the vehicle interior via the sheet-shaped heat insulating material 45. By interposing the heat insulating material 45, the influence of the outside air on the temperature measurement by these measuring units, particularly the second measuring unit 4, can be reduced. As the heat insulating material 45, any heat insulating material such as fiber-based or foam-based materials such as glass wool, urethane foam or polystyrene foam can be used.
図9Cは、住居の居室における本実施形態の結露防止装置の配置の一例を示している。表示装置7は、住居のガラス窓における室内Rを向く面に取付けられており、その表示面に、結露防止装置1の発熱部2が付着されている。発熱部2における室内Rを向く面に第1測定部3が配置されている。図9Cにおいて概念的に示されている制御部6は、住居の任意の位置に配置される。そして、第2及び第3測定部4、5は、室内Rを向く壁面上に配置されている。第2及び第3の測定部4、5は、天井から吊り下げられていてもよい。そのように第2及び第3の測定部4、5を配置することによって、これらの測定部、特に第2測定部4による温度測定への外気の影響を少なくすることができる。なお、図9A~図9Cは単なる例示に過ぎず、室内への結露防止装置1の配置の態様は、これらの図面に示される配置に限定されない。また、結露防止装置1は、任意の構造物の内部で用いられ得る。
FIG. 9C shows an example of the arrangement of the dew condensation prevention device of the present embodiment in the living room of the house. The display device 7 is attached to the surface of the glass window of the house facing the room R, and the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface. The first measuring unit 3 is arranged on the surface of the heat generating unit 2 facing the room R. The control unit 6 conceptually shown in FIG. 9C is arranged at an arbitrary position in the house. The second and third measurement units 4 and 5 are arranged on the wall surface facing the room R. The second and third measuring units 4 and 5 may be suspended from the ceiling. By arranging the second and third measuring units 4 and 5 in this way, the influence of the outside air on the temperature measurement by these measuring units, particularly the second measuring unit 4, can be reduced. Note that FIGS. 9A to 9C are merely examples, and the mode of arranging the dew condensation prevention device 1 in the room is not limited to the arrangement shown in these drawings. Further, the dew condensation prevention device 1 can be used inside any structure.
[表示装置]
次に、本開示の他の実施形態の表示装置が図10A及び図10Bを参照して説明される。図10Aには他の実施形態の表示装置70の一例が示されており、図10Bには、表示装置70に含まれる表示パネル71の一部の断面が拡大して示されている。図10A及び図10Bに示されるように、本実施形態の表示装置70は、基板71a上にマトリクス状に設けられている複数の画素72を含む表示パネル71と、前述した一実施形態の結露防止装置1を備えている。本実施形態において結露防止装置1は、図1などを参照して説明された一実施形態の結露防止装置1と同様に、少なくとも、発熱部2と、第1測定部3と、第2測定部4と、第3測定部5と、制御部6とを備えており、一実施形態の結露防止装置1と同様の構造を有し、同様の機能を有し得る。本実施形態の表示装置70は、例えば、有機EL表示装置、液晶表示装置、又は、マイクロLED表示装置である。その場合、表示パネル71は、有機EL表示パネル、液晶表示パネル、又は、マイクロLED表示パネルである。 [Display device]
Next, display devices of other embodiments of the present disclosure will be described with reference to FIGS. 10A and 10B. FIG. 10A shows an example of thedisplay device 70 of another embodiment, and FIG. 10B shows an enlarged cross section of a part of the display panel 71 included in the display device 70. As shown in FIGS. 10A and 10B, the display device 70 of the present embodiment includes a display panel 71 including a plurality of pixels 72 provided in a matrix on the substrate 71a, and dew condensation prevention of the above-described embodiment. The device 1 is provided. In the present embodiment, the dew condensation prevention device 1 is at least a heat generating unit 2, a first measurement unit 3, and a second measurement unit, similarly to the dew condensation prevention device 1 of one embodiment described with reference to FIG. 4. It is provided with a third measuring unit 5, a third measuring unit 5, and a control unit 6, and has the same structure as the dew condensation prevention device 1 of one embodiment, and may have the same function. The display device 70 of the present embodiment is, for example, an organic EL display device, a liquid crystal display device, or a micro LED display device. In that case, the display panel 71 is an organic EL display panel, a liquid crystal display panel, or a micro LED display panel.
次に、本開示の他の実施形態の表示装置が図10A及び図10Bを参照して説明される。図10Aには他の実施形態の表示装置70の一例が示されており、図10Bには、表示装置70に含まれる表示パネル71の一部の断面が拡大して示されている。図10A及び図10Bに示されるように、本実施形態の表示装置70は、基板71a上にマトリクス状に設けられている複数の画素72を含む表示パネル71と、前述した一実施形態の結露防止装置1を備えている。本実施形態において結露防止装置1は、図1などを参照して説明された一実施形態の結露防止装置1と同様に、少なくとも、発熱部2と、第1測定部3と、第2測定部4と、第3測定部5と、制御部6とを備えており、一実施形態の結露防止装置1と同様の構造を有し、同様の機能を有し得る。本実施形態の表示装置70は、例えば、有機EL表示装置、液晶表示装置、又は、マイクロLED表示装置である。その場合、表示パネル71は、有機EL表示パネル、液晶表示パネル、又は、マイクロLED表示パネルである。 [Display device]
Next, display devices of other embodiments of the present disclosure will be described with reference to FIGS. 10A and 10B. FIG. 10A shows an example of the
結露防止装置1の発熱部2は、表示パネル71の表示面7aに付着されている。本実施形態において結露防止装置1は表示パネル71における結露を防止する。一実施形態の結露防止装置1の説明において例示された、各種の変形例、及び/又は、追加の構成要素は、本実施形態の表示装置70において結露防止装置1に適用又は付加され得る。
The heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71. In the present embodiment, the dew condensation prevention device 1 prevents dew condensation on the display panel 71. Various modifications and / or additional components exemplified in the description of the dew condensation prevention device 1 of one embodiment may be applied to or added to the dew condensation prevention device 1 in the display device 70 of the present embodiment.
表示パネル71は、複数の画素72のうちの同一行に並ぶ一つ又は複数の画素72に走査信号を供給する1以上のゲートバス駆動回路73を備えている。図10Aの例では、ゲートバス駆動回路73は、表示パネル71の縁部に形成されており、同一行(図10AにおけるX方向と平行な各行)に並ぶ複数の画素72それぞれに接続されている。なお、ゲートバス駆動回路73は、所謂ゲートドライバ用ICなどを用いて表示パネル71とは別個に形成されてもよい。
The display panel 71 includes one or more gate bus drive circuits 73 that supply scanning signals to one or more pixels 72 arranged in the same row among the plurality of pixels 72. In the example of FIG. 10A, the gate bus drive circuit 73 is formed at the edge of the display panel 71, and is connected to each of a plurality of pixels 72 arranged in the same row (each row parallel to the X direction in FIG. 10A). .. The gate bus drive circuit 73 may be formed separately from the display panel 71 by using a so-called gate driver IC or the like.
表示装置70は、さらに、表示パネル71の外部に設けられて複数の画素72の列毎に各画素の輝度に応じたデータ信号を供給するデータバス駆動回路74、及び、画像制御回路75を備えている。画像制御回路75は、タイミングコントローラとも称され、入力される映像信号及び同期信号などに応じて、ゲートバス駆動回路73及びデータバス駆動回路74に、制御信号及び階調信号などを出力する。
The display device 70 further includes a data bus drive circuit 74 provided outside the display panel 71 and supplying a data signal corresponding to the brightness of each pixel for each row of the plurality of pixels 72, and an image control circuit 75. ing. The image control circuit 75 is also called a timing controller, and outputs a control signal, a gradation signal, and the like to the gate bus drive circuit 73 and the data bus drive circuit 74 according to the input video signal and synchronization signal.
図10Bに示されるように、基板71aの第1面71a1には、例えば薄膜トランジスタ(TFT)によって主に構成される複数の駆動素子71bが形成されている。そして個々の駆動素子71bによってそれぞれ駆動される画素(サブ画素)72が、対応する個々の駆動素子71bの上に形成されている。図10Bでは、画素72の詳細な構成の図示は省略されているが、複数の画素72それぞれには、対向する二つの電極(陽極及び陰極)が設けられている。表示パネル71が有機EL表示パネルである場合は、二つの電極の間には、例えば、正孔注入層、正孔輸送層、Alq3などのホスト材料及び発光色に応じたドーパントを含む発光層、電子輸送層、並びに電子注入層などを含む有機層が積層されている。表示パネル71が液晶表示パネルである場合には、基板71aに対向させて対向基板(図示せず)が配置されている。そして、対向基板に二つの電極の一方が設けられて、各基板にはさらに配向膜及び偏光板などが設けられており、二つの基板の間には液晶材料が充填されている。
As shown in FIG. 10B, a plurality of driving elements 71b mainly composed of, for example, a thin film transistor (TFT) are formed on the first surface 71a1 of the substrate 71a. Pixels (sub-pixels) 72 driven by the individual drive elements 71b are formed on the corresponding drive elements 71b. Although the detailed configuration of the pixel 72 is not shown in FIG. 10B, each of the plurality of pixels 72 is provided with two electrodes (anode and cathode) facing each other. When the display panel 71 is an organic EL display panel, a light emitting layer containing, for example, a hole injection layer, a hole transport layer, a host material such as Alq 3, and a dopant corresponding to the emission color is provided between the two electrodes. , An electron transport layer, and an organic layer including an electron injection layer and the like are laminated. When the display panel 71 is a liquid crystal display panel, an opposing substrate (not shown) is arranged so as to face the substrate 71a. Then, one of the two electrodes is provided on the facing substrate, each substrate is further provided with an alignment film, a polarizing plate, and the like, and a liquid crystal material is filled between the two substrates.
図10Bに示されるように、表示パネル71の表示面7aに、結露防止装置1の発熱部2が付着されている。発熱部2は、前述したOCAなどの光学透明接着剤、又はその他の適切な粘着剤などを用いて表示面7aに付着され得る。発熱部2は、図10Bにおいて二点鎖線で示される発熱部2xのように、表示パネル71における表示面7aの反対面、すなわち、基板71aにおける第1面71a1の反対面(第2面)71a2に付着されていてもよい。このように、表示パネル71の表示面7a又はその反対面に結露防止装置1の発熱部2が付着され、表示パネル71において使用者に向けられる露出面が加温されるので、結露による表示画像の視認性の低下が抑制される。
As shown in FIG. 10B, the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71. The heat generating portion 2 can be attached to the display surface 7a by using an optical transparent adhesive such as OCA described above, or another suitable adhesive. The heat generating portion 2 is the opposite surface of the display surface 7a on the display panel 71, that is, the opposite surface (second surface) 71a2 of the first surface 71a1 on the substrate 71a, as in the heat generating portion 2x shown by the alternate long and short dash line in FIG. It may be attached to. In this way, the heat generating portion 2 of the dew condensation prevention device 1 is attached to the display surface 7a of the display panel 71 or the opposite surface thereof, and the exposed surface of the display panel 71 facing the user is heated, so that the display image due to dew condensation The decrease in visibility is suppressed.
本実施形態の表示装置70において、発熱部2は、表示パネル71に付着されるのではなく表示パネル71の表面上に直接形成されていてもよい。例えば、先に参照した図3Aに示される基材21の上ではなく、表示パネル71の表示面7a上、又はその反対面(基板71aの第2面71a2)上に、発熱体22及び電極23(図3A参照)が形成されていてもよい。発熱体22及び電極23は、例えば、スパッタリング又は印刷などによって、表示パネル71の表示面7a上、又は基板71aの第2面71a2上に形成され得る。表示パネル71の表面上に形成された発熱部2を有する表示装置70は、一実施形態の結露防止装置1が備える第1測定部3、第2測定部4、第3測定部5、及び制御部6を少なくとも備え得る。そして、表示パネル71の表面上に形成された発熱部2の発熱の開始と停止とが、第1~第3の測定部3、4及び5の測定結果に基づいて、制御部6によって制御されてもよい。
In the display device 70 of the present embodiment, the heat generating portion 2 may be formed directly on the surface of the display panel 71 instead of being attached to the display panel 71. For example, the heating element 22 and the electrode 23 are not on the base material 21 shown in FIG. 3A referred to above, but on the display surface 7a of the display panel 71 or on the opposite surface (second surface 71a2 of the substrate 71a). (See FIG. 3A) may be formed. The heating element 22 and the electrode 23 may be formed on the display surface 7a of the display panel 71 or on the second surface 71a2 of the substrate 71a by, for example, sputtering or printing. The display device 70 having the heat generating unit 2 formed on the surface of the display panel 71 includes the first measuring unit 3, the second measuring unit 4, the third measuring unit 5, and the control provided in the dew condensation prevention device 1 of the embodiment. It may include at least part 6. Then, the start and stop of heat generation of the heat generating unit 2 formed on the surface of the display panel 71 are controlled by the control unit 6 based on the measurement results of the first to third measuring units 3, 4 and 5. You may.
〔まとめ〕
(1)本開示の一実施形態の結露防止装置は、室内に設置される表示装置の表面に付着されるべき一面を有する膜状の発熱部と、前記発熱部の発熱によって昇温すべき所定の部位の温度を測定する第1測定部と、前記表示装置が設置されている空間の温度を測定する第2測定部と、前記表示装置と離間して配置され、前記空間の湿度を測定する第3測定部と、前記表示装置における結露を防止すべく前記表示装置又はその周囲の温度を制御する制御部と、を備え、前記制御部は、前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度とに基づいて、前記空間の露点温度に基づく閾値温度を決定する決定部と、前記決定部によって決定された閾値温度、及び、前記第1測定部によって測定された温度に基づいて前記発熱部に熱を生じさせる駆動部と、を備えている。 [Summary]
(1) The dew point prevention device according to the embodiment of the present disclosure includes a film-like heat generating portion having one surface to be attached to the surface of a display device installed indoors, and a predetermined temperature to be raised by the heat generated by the heat generating portion. The first measuring unit that measures the temperature of the part of the body, the second measuring unit that measures the temperature of the space where the display device is installed, and the second measuring unit that measures the temperature of the space are arranged apart from the display device and measure the humidity of the space. A third measuring unit and a control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device are provided, and the control unit is the space of the space measured by the second measuring unit. A determination unit that determines a threshold temperature based on the dew point temperature of the space based on the temperature and the humidity of the space measured by the third measurement unit, a threshold temperature determined by the determination unit, and the above. It includes a drive unit that generates heat in the heat generating unit based on the temperature measured by the first measuring unit.
(1)本開示の一実施形態の結露防止装置は、室内に設置される表示装置の表面に付着されるべき一面を有する膜状の発熱部と、前記発熱部の発熱によって昇温すべき所定の部位の温度を測定する第1測定部と、前記表示装置が設置されている空間の温度を測定する第2測定部と、前記表示装置と離間して配置され、前記空間の湿度を測定する第3測定部と、前記表示装置における結露を防止すべく前記表示装置又はその周囲の温度を制御する制御部と、を備え、前記制御部は、前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度とに基づいて、前記空間の露点温度に基づく閾値温度を決定する決定部と、前記決定部によって決定された閾値温度、及び、前記第1測定部によって測定された温度に基づいて前記発熱部に熱を生じさせる駆動部と、を備えている。 [Summary]
(1) The dew point prevention device according to the embodiment of the present disclosure includes a film-like heat generating portion having one surface to be attached to the surface of a display device installed indoors, and a predetermined temperature to be raised by the heat generated by the heat generating portion. The first measuring unit that measures the temperature of the part of the body, the second measuring unit that measures the temperature of the space where the display device is installed, and the second measuring unit that measures the temperature of the space are arranged apart from the display device and measure the humidity of the space. A third measuring unit and a control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device are provided, and the control unit is the space of the space measured by the second measuring unit. A determination unit that determines a threshold temperature based on the dew point temperature of the space based on the temperature and the humidity of the space measured by the third measurement unit, a threshold temperature determined by the determination unit, and the above. It includes a drive unit that generates heat in the heat generating unit based on the temperature measured by the first measuring unit.
(1)の構成によれば、結露による表示画像の視認性の低下の防止を、防止性能が維持され易い手段によって行うことができる。
According to the configuration of (1), it is possible to prevent deterioration of the visibility of the displayed image due to dew condensation by means that can easily maintain the prevention performance.
(2)上記(1)の結露防止装置において、前記発熱部が透光性を有する材料で形成されていてもよい。その場合、発熱部越しに表示画像を視認することができる。
(2) In the dew condensation prevention device of the above (1), the heat generating portion may be made of a translucent material. In that case, the displayed image can be visually recognized through the heat generating portion.
(3)上記(1)又は(2)の結露防止装置において、前記発熱部は、絶縁性を有する膜状の基材と、電流を通流させ得る材料を用いて前記基材の上に形成されている膜状の発熱体とを含み、前記駆動部は、前記発熱部の動作を制御すべく前記膜状の発熱体に対する通電を制御してもよい。その場合、発熱部の発熱の停止と開始とを容易に制御することができる。
(3) In the dew condensation prevention device of (1) or (2), the heating element is formed on the base material by using a film-like base material having an insulating property and a material capable of passing an electric current. The driving unit may control the energization of the film-shaped heating element in order to control the operation of the heating element, including the film-shaped heating element. In that case, it is possible to easily control the stop and start of heat generation in the heat generating portion.
(4)上記(3)の結露防止装置において、前記膜状の発熱体は、導電性を有する高分子ポリマーを用いて形成されていてもよい。その場合、発熱体において、適度な電気抵抗と柔軟性と透明性とを併せ持つことができる。
(4) In the dew condensation prevention device of the above (3), the film-shaped heating element may be formed by using a conductive high molecular polymer. In that case, the heating element can have appropriate electrical resistance, flexibility, and transparency.
(5)上記(1)~(4)のいずれかの結露防止装置において、前記発熱部は、前記表示装置の表示面に付着されるべき表面を前記一面として有し、前記所定の部位は、前記表示面に付着された前記発熱部における所定の部位であってもよい。その場合、効率よく表示装置における露出面を加温することができる。
(5) In the dew condensation prevention device according to any one of (1) to (4), the heat generating portion has a surface to be adhered to the display surface of the display device as the one surface, and the predetermined portion is a surface. It may be a predetermined portion of the heat generating portion attached to the display surface. In that case, the exposed surface of the display device can be efficiently heated.
(6)上記(5)の結露防止装置において、前記発熱部は、前記一面と反対の面に、光の反射を抑制すべく構成された反射防止膜、及び偏光板のいずれか又は両方を備えていてもよい。その場合、表示装置における外光の反射を抑制できたり、表示装置の構造を簡素化できたりすることがある。
(6) In the dew condensation prevention device of the above (5), the heat generating portion is provided with either or both of an antireflection film and a polarizing plate configured to suppress light reflection on a surface opposite to the one surface. May be. In that case, the reflection of external light in the display device may be suppressed, or the structure of the display device may be simplified.
(7)上記(5)又は(6)の結露防止装置において、前記発熱部は、前記一面の上に、前記一面を形成している材料よりも低い熱伝導率を有する材料を含む断熱層を備えていてもよい。その場合、表示装置における露出面の温度を効率よく上昇させることができる。
(7) In the dew condensation prevention device of the above (5) or (6), the heat generating portion has a heat insulating layer containing a material having a lower thermal conductivity than the material forming the one surface on the one surface. You may have it. In that case, the temperature of the exposed surface in the display device can be efficiently raised.
(8)上記(1)~(4)のいずれかの結露防止装置において、前記発熱部は、前記表示装置における表示面の反対面に付着されるべき表面を前記一面として有し、前記所定の部位は前記表示面における所定の部位であってもよい。その場合、表示装置の表示面が発熱部によって覆われないので、表示画像の視認性が略低下しない。
(8) In the dew condensation prevention device according to any one of (1) to (4), the heat generating portion has a surface to be adhered to the opposite surface of the display surface of the display device as the one surface, and the predetermined one. The portion may be a predetermined portion on the display surface. In that case, since the display surface of the display device is not covered by the heat generating portion, the visibility of the displayed image is not substantially reduced.
(9)上記(8)の結露防止装置において、前記発熱部は、前記一面の上に、20W/(m・K)以上の熱伝導率を有するフィラーを含む粘着層を備えていてもよい。その場合、発熱部の熱を良好に表示装置に伝えることができる。
(9) In the dew condensation prevention device of the above (8), the heat generating portion may be provided with an adhesive layer containing a filler having a thermal conductivity of 20 W / (m · K) or more on the one surface. In that case, the heat of the heat generating portion can be satisfactorily transferred to the display device.
(10)上記(9)の結露防止装置において、前記フィラーが窒化ホウ素を含むナノチューブであってもよい。その場合、粘着層に高い熱伝導性を付与することができる。
(10) In the dew condensation prevention device of the above (9), the filler may be an nanotube containing boron nitride. In that case, high thermal conductivity can be imparted to the adhesive layer.
(11)上記(1)~(10)のいずれかの結露防止装置は、前記第2測定部と、前記空間を囲む隔壁との間の熱の伝達を抑制する断熱部をさらに備えていてもよい。その場合、第2測定部による温度測定への外気の影響を少なくすることができる。
(11) Even if the dew condensation prevention device according to any one of (1) to (10) is further provided with a heat insulating portion that suppresses heat transfer between the second measuring portion and the partition wall surrounding the space. Good. In that case, the influence of the outside air on the temperature measurement by the second measuring unit can be reduced.
(12)上記(1)~(11)のいずれかの結露防止装置において、前記制御部は、前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度との種々の組み合わせそれぞれに対する前記閾値温度が記録されたマップを記憶している記憶部をさらに有し、前記決定部は、前記記憶部の記憶内容に基づいて前記閾値温度を決定してもよい。その場合、演算などを要せず簡単に閾値温度を決定することができる。
(12) In the dew condensation prevention device according to any one of (1) to (11), the control unit uses the temperature of the space measured by the second measurement unit and the temperature measured by the third measurement unit. It further has a storage unit that stores a map in which the threshold temperature is recorded for each of the various combinations with the humidity of the space, and the determination unit determines the threshold temperature based on the storage content of the storage unit. You may. In that case, the threshold temperature can be easily determined without requiring calculation or the like.
(13)上記(12)の結露防止装置において、前記記憶部は、前記発熱部による発熱の停止中に前記決定部によって参照される第1マップと、前記発熱部の発熱中に前記決定部によって参照される第2マップとを記憶しており、前記空間の温度と前記空間の湿度との特定の組み合わせについて前記第1マップに記録されている前記閾値温度は、前記特定の組み合わせについて前記第2マップに記録されている前記閾値温度よりも低くてもよい。その場合、発熱部における発熱の開始と停止とが頻繁に繰り返されることを防ぐことができる。
(13) In the dew condensation prevention device of the above (12), the storage unit is subjected to the first map referred to by the determination unit while the heat generation by the heat generation unit is stopped, and by the determination unit during the heat generation of the heat generation unit. The second map to be referred to is stored, and the threshold temperature recorded in the first map for a specific combination of the temperature of the space and the humidity of the space is the second for the specific combination. It may be lower than the threshold temperature recorded on the map. In that case, it is possible to prevent the start and stop of heat generation in the heat generating portion from being frequently repeated.
(14)上記(12)の結露防止装置において、前記記憶部は、前記発熱部による発熱を開始させるべき温度が前記閾値温度として記録されている第1マップと、前記発熱部による発熱を停止させるべき温度が前記閾値温度として記録されている第2マップとを記憶しており、前記空間の温度と前記空間の湿度との特定の組み合わせについて前記第1マップに記録されている前記閾値温度は、前記特定の組み合わせについて前記第2マップに記録されている前記閾値温度よりも低くてもよい。その場合、発熱部における発熱の開始と停止とが頻繁に繰り返されることを防ぐことができる。
(14) In the dew condensation prevention device of the above (12), the storage unit stops the first map in which the temperature at which the heat generation unit should start heat generation is recorded as the threshold temperature, and the heat generation by the heat generation unit. The threshold temperature recorded in the first map for a specific combination of the temperature of the space and the humidity of the space is stored in the second map in which the temperature to be power is recorded as the threshold temperature. It may be lower than the threshold temperature recorded in the second map for the particular combination. In that case, it is possible to prevent the start and stop of heat generation in the heat generating portion from being frequently repeated.
(15)上記(1)~(14)のいずれかの結露防止装置において、前記第3測定部は、前記表示装置よりも前記第2測定部に近接していてもよい。その場合、より確実に第3測定部の結露を回避しつつ、適切に表示装置の結露を防止できることがある。
(15) In the dew condensation prevention device according to any one of (1) to (14), the third measuring unit may be closer to the second measuring unit than the display device. In that case, it may be possible to appropriately prevent dew condensation on the display device while more reliably avoiding dew condensation on the third measuring unit.
(16)本開示の他の実施形態の表示装置は、基板上にマトリクス状に設けられている複数の画素を含む表示パネルと、前記表示パネルにおける結露を防止する上記(1)~(15)のいずれかの結露防止装置と、を備え、前記発熱部が、前記表示パネルの表示面又は前記表示面の反対面に付着されている。この構成によれば、結露による表示画像の視認性の低下の防止を、防止性能が維持され易い手段によって行うことができる。
(16) The display device of another embodiment of the present disclosure includes a display panel including a plurality of pixels provided in a matrix on a substrate, and the above-mentioned (1) to (15) for preventing dew condensation on the display panel. The dew condensation prevention device is provided, and the heat generating portion is attached to the display surface of the display panel or the opposite surface of the display surface. According to this configuration, it is possible to prevent deterioration of the visibility of the displayed image due to dew condensation by means that can easily maintain the prevention performance.
1 結露防止装置
2、2x 発熱部
2a ヒータ
20 一面
20a 一面の反対面(第2面)
21 基材
22、22a、22b 発熱体
25 光学的機能膜
26 断熱層
27 粘着層
27a フィラー
3 第1測定部
3a 熱電対
4、4a 第2測定部
5、5a 第3測定部
6 制御部
61 決定部
62 駆動部
63 記憶部
66 断熱部
7、70 表示装置
71 表示パネル
72 画素
7a 表示面
M1 マップ(第1マップ)
M2 第2マップ
R 室内 1 Condensation prevention device 2, 2x Heat generating part 2a Heater 20 One side 20a One side opposite side (second side)
21 Base material 22, 22a, 22b Heating element 25 Optical functional film 26 Insulation layer 27 Adhesive layer 27a Filler 3 First measurement unit 3a Thermocouple 4, 4a Second measurement unit 5, 5a Third measurement unit 6 Control unit 61 Determination Unit 62 Drive unit 63 Storage unit 66 Insulation unit 7, 70 Display device 71 Display panel 72 Pixel 7a Display surface M1 map (first map)
M2 2nd map R room
2、2x 発熱部
2a ヒータ
20 一面
20a 一面の反対面(第2面)
21 基材
22、22a、22b 発熱体
25 光学的機能膜
26 断熱層
27 粘着層
27a フィラー
3 第1測定部
3a 熱電対
4、4a 第2測定部
5、5a 第3測定部
6 制御部
61 決定部
62 駆動部
63 記憶部
66 断熱部
7、70 表示装置
71 表示パネル
72 画素
7a 表示面
M1 マップ(第1マップ)
M2 第2マップ
R 室内 1
21
M2 2nd map R room
Claims (16)
- 室内に設置される表示装置の表面に付着されるべき一面を有する膜状の発熱部と、
前記発熱部の発熱によって昇温すべき所定の部位の温度を測定する第1測定部と、
前記表示装置が設置されている空間の温度を測定する第2測定部と、
前記表示装置と離間して配置され、前記空間の湿度を測定する第3測定部と、
前記表示装置における結露を防止すべく前記表示装置又はその周囲の温度を制御する制御部と、を備え、
前記制御部は、
前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度とに基づいて、前記空間の露点温度に基づく閾値温度を決定する決定部と、
前記決定部によって決定された閾値温度、及び、前記第1測定部によって測定された温度に基づいて前記発熱部に熱を生じさせる駆動部と、
を備えている、結露防止装置。 A film-like heat generating part having one surface to be attached to the surface of a display device installed indoors,
A first measuring unit that measures the temperature of a predetermined portion to be heated by the heat generated by the heat generating unit, and
A second measuring unit that measures the temperature of the space in which the display device is installed,
A third measuring unit, which is arranged apart from the display device and measures the humidity of the space,
A control unit that controls the temperature of the display device or its surroundings in order to prevent dew condensation on the display device is provided.
The control unit
A determination unit that determines a threshold temperature based on the dew point temperature of the space based on the temperature of the space measured by the second measurement unit and the humidity of the space measured by the third measurement unit.
A driving unit that generates heat in the heat generating unit based on the threshold temperature determined by the determination unit and the temperature measured by the first measuring unit.
Equipped with a dew condensation prevention device. - 前記発熱部が透光性を有する材料で形成されている、請求項1に記載の結露防止装置。 The dew condensation prevention device according to claim 1, wherein the heat generating portion is made of a translucent material.
- 前記発熱部は、絶縁性を有する膜状の基材と、電流を通流させ得る材料を用いて前記基材の上に形成されている膜状の発熱体とを含み、
前記駆動部は、前記発熱部の動作を制御すべく前記膜状の発熱体に対する通電を制御する、請求項1又は2に記載の結露防止装置。 The heat generating portion includes a film-like base material having an insulating property and a film-like heating element formed on the base material using a material capable of passing an electric current.
The dew condensation prevention device according to claim 1 or 2, wherein the driving unit controls energization of the film-shaped heating element in order to control the operation of the heat generating unit. - 前記膜状の発熱体は、導電性を有する高分子ポリマーを用いて形成されている、請求項3に記載の結露防止装置。 The dew condensation prevention device according to claim 3, wherein the film-shaped heating element is formed by using a conductive high molecular polymer.
- 前記発熱部は、前記表示装置の表示面に付着されるべき表面を前記一面として有し、
前記所定の部位は、前記表示面に付着された前記発熱部における所定の部位である、請求項1~4のいずれか1項に記載の結露防止装置。 The heat generating portion has a surface to be adhered to the display surface of the display device as the one surface.
The dew condensation prevention device according to any one of claims 1 to 4, wherein the predetermined portion is a predetermined portion in the heat generating portion attached to the display surface. - 前記発熱部は、前記一面と反対の面に、光の反射を抑制すべく構成された反射防止膜、及び偏光板のいずれか又は両方を備えている、請求項5に記載の結露防止装置。 The dew condensation prevention device according to claim 5, wherein the heat generating portion is provided with either or both of an antireflection film and a polarizing plate configured to suppress light reflection on a surface opposite to the one surface.
- 前記発熱部は、前記一面の上に、前記一面を形成している材料よりも低い熱伝導率を有する材料を含む断熱層を備えている、請求項5又は6に記載の結露防止装置。 The dew condensation prevention device according to claim 5 or 6, wherein the heat generating portion includes a heat insulating layer containing a material having a thermal conductivity lower than that of the material forming the one surface on the one surface.
- 前記発熱部は、前記表示装置における表示面の反対面に付着されるべき表面を前記一面として有し、
前記所定の部位は前記表示面における所定の部位である、請求項1~4のいずれか1項に記載の結露防止装置。 The heat generating portion has a surface to be adhered to the opposite surface of the display surface in the display device as the one surface.
The dew condensation prevention device according to any one of claims 1 to 4, wherein the predetermined portion is a predetermined portion on the display surface. - 前記発熱部は、前記一面の上に、20W/(m・K)以上の熱伝導率を有するフィラーを含む粘着層を備えている、請求項8に記載の結露防止装置。 The dew condensation prevention device according to claim 8, wherein the heat generating portion includes an adhesive layer containing a filler having a thermal conductivity of 20 W / (m · K) or more on the one surface.
- 前記フィラーが窒化ホウ素を含むナノチューブである、請求項9に記載の結露防止装置。 The dew condensation prevention device according to claim 9, wherein the filler is an nanotube containing boron nitride.
- 前記第2測定部と、前記空間を囲む隔壁との間の熱の伝達を抑制する断熱部をさらに備える、請求項1~10のいずれか1項に記載の結露防止装置。 The dew condensation prevention device according to any one of claims 1 to 10, further comprising a heat insulating unit that suppresses heat transfer between the second measuring unit and the partition wall surrounding the space.
- 前記制御部は、前記第2測定部によって測定された前記空間の温度と、前記第3測定部によって測定された前記空間の湿度との種々の組み合わせそれぞれに対する前記閾値温度が記録されたマップを記憶している記憶部をさらに有し、
前記決定部は、前記記憶部の記憶内容に基づいて前記閾値温度を決定する、請求項1~11のいずれか1項に記載の結露防止装置。 The control unit stores a map in which the threshold temperature is recorded for each of various combinations of the temperature of the space measured by the second measuring unit and the humidity of the space measured by the third measuring unit. It also has a storage unit that is
The dew condensation prevention device according to any one of claims 1 to 11, wherein the determination unit determines the threshold temperature based on the storage content of the storage unit. - 前記記憶部は、前記発熱部による発熱の停止中に前記決定部によって参照される第1マップと、前記発熱部の発熱中に前記決定部によって参照される第2マップとを記憶しており、
前記空間の温度と前記空間の湿度との特定の組み合わせについて前記第1マップに記録されている前記閾値温度は、前記特定の組み合わせについて前記第2マップに記録されている前記閾値温度よりも低い、請求項12に記載の結露防止装置。 The storage unit stores a first map referred to by the determination unit while the heat generation by the heat generation unit is stopped, and a second map referred to by the determination unit during heat generation of the heat generation unit.
The threshold temperature recorded in the first map for a particular combination of the temperature of the space and the humidity of the space is lower than the threshold temperature recorded in the second map for the particular combination. The dew condensation prevention device according to claim 12. - 前記記憶部は、前記発熱部による発熱を開始させるべき温度が前記閾値温度として記録されている第1マップと、前記発熱部による発熱を停止させるべき温度が前記閾値温度として記録されている第2マップとを記憶しており、
前記空間の温度と前記空間の湿度との特定の組み合わせについて前記第1マップに記録されている前記閾値温度は、前記特定の組み合わせについて前記第2マップに記録されている前記閾値温度よりも低い、請求項12に記載の結露防止装置。 The storage unit has a first map in which the temperature at which the heat generation unit should start heat generation is recorded as the threshold temperature, and a second map in which the temperature at which the heat generation by the heat generation unit should be stopped is recorded as the threshold temperature. I remember the map and
The threshold temperature recorded in the first map for a particular combination of the temperature of the space and the humidity of the space is lower than the threshold temperature recorded in the second map for the particular combination. The dew condensation prevention device according to claim 12. - 前記第3測定部は、前記表示装置よりも前記第2測定部に近接している、請求項1~14のいずれか1項に記載の結露防止装置。 The dew condensation prevention device according to any one of claims 1 to 14, wherein the third measuring unit is closer to the second measuring unit than the display device.
- 基板上にマトリクス状に設けられている複数の画素を含む表示パネルと、
前記表示パネルにおける結露を防止する請求項1~15のいずれか1項に記載の結露防止装置と、を備え、
前記発熱部が、前記表示パネルの表示面又は前記表示面の反対面に付着されている、表示装置。 A display panel containing a plurality of pixels provided in a matrix on the substrate, and
The dew condensation prevention device according to any one of claims 1 to 15 for preventing dew condensation on the display panel is provided.
A display device in which the heat generating portion is attached to the display surface of the display panel or the opposite surface of the display surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025411 WO2020261437A1 (en) | 2019-06-26 | 2019-06-26 | Dew condensation prevention device and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025411 WO2020261437A1 (en) | 2019-06-26 | 2019-06-26 | Dew condensation prevention device and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020261437A1 true WO2020261437A1 (en) | 2020-12-30 |
Family
ID=74060881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025411 WO2020261437A1 (en) | 2019-06-26 | 2019-06-26 | Dew condensation prevention device and display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020261437A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11197468A (en) * | 1998-01-14 | 1999-07-27 | Nitto Denko Corp | Spiral membrane module |
JP2005181779A (en) * | 2003-12-22 | 2005-07-07 | Kyocera Mita Corp | Image forming apparatus |
JP2013508112A (en) * | 2009-12-24 | 2013-03-07 | エルジー・ハウシス・リミテッド | Fever glass system for preventing condensation and control method thereof |
JP2013233214A (en) * | 2012-05-07 | 2013-11-21 | Fujifilm Corp | Electronic endoscope apparatus and endoscope imaging module, and method for preventing dew condensation thereof |
JP2014220192A (en) * | 2013-05-10 | 2014-11-20 | 株式会社モノハ | Transparent conductive membrane glass plate incorporating el display |
US20150335174A1 (en) * | 2011-05-10 | 2015-11-26 | Anthony, Inc. | Display case door with transparent lcd panel |
JP2017162782A (en) * | 2016-03-11 | 2017-09-14 | 東日本旅客鉄道株式会社 | Heating unit |
JP2018094919A (en) * | 2016-12-07 | 2018-06-21 | 積水化学工業株式会社 | Laminate |
-
2019
- 2019-06-26 WO PCT/JP2019/025411 patent/WO2020261437A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11197468A (en) * | 1998-01-14 | 1999-07-27 | Nitto Denko Corp | Spiral membrane module |
JP2005181779A (en) * | 2003-12-22 | 2005-07-07 | Kyocera Mita Corp | Image forming apparatus |
JP2013508112A (en) * | 2009-12-24 | 2013-03-07 | エルジー・ハウシス・リミテッド | Fever glass system for preventing condensation and control method thereof |
US20150335174A1 (en) * | 2011-05-10 | 2015-11-26 | Anthony, Inc. | Display case door with transparent lcd panel |
JP2013233214A (en) * | 2012-05-07 | 2013-11-21 | Fujifilm Corp | Electronic endoscope apparatus and endoscope imaging module, and method for preventing dew condensation thereof |
JP2014220192A (en) * | 2013-05-10 | 2014-11-20 | 株式会社モノハ | Transparent conductive membrane glass plate incorporating el display |
JP2017162782A (en) * | 2016-03-11 | 2017-09-14 | 東日本旅客鉄道株式会社 | Heating unit |
JP2018094919A (en) * | 2016-12-07 | 2018-06-21 | 積水化学工業株式会社 | Laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102179326B1 (en) | Plate glass assembly with heatable composite pane with capacitive switching region | |
KR102179313B1 (en) | Electrically heatable composite pane with capacitive switching zone | |
JP6360828B2 (en) | Sunroof including lighting means | |
JP6594203B2 (en) | Glass roof including illumination means and light transmittance control means | |
KR102385514B1 (en) | Illuminated laminated glazing with capacitive touch sensing device and light emitting diode and manufacturing thereof | |
JP6605723B2 (en) | Laminated glass for vehicles with built-in optical sensor | |
US10525673B2 (en) | Composite pane with a capacitive switching zone | |
JP5808419B2 (en) | Panel heater with temperature monitoring function | |
JP4494788B2 (en) | Laminated panel assembly comprising electrically controllable functional elements | |
BR112020014076A2 (en) | laminated pane with an electrically controllable device and production thereof | |
CN101495916A (en) | Glass type electrochemical/ electrically controllable devicewith variable optical and/or energetic characteristic | |
JPH11242208A (en) | Display device | |
KR20160096901A (en) | Sensor module for vehicle, sensing method thereof and vehicle system | |
WO2020261437A1 (en) | Dew condensation prevention device and display device | |
US20210229531A1 (en) | Composite pane with electrically switchable functional element in thermoplastic intermediate layer | |
JP2015141342A (en) | Light emitting device, image display device, and electronic apparatus | |
JP7056081B2 (en) | Display device | |
JP6236487B2 (en) | Display device | |
CN111148667B (en) | Window glass unit | |
JP3812410B2 (en) | Information display device | |
JP4821286B2 (en) | Liquid crystal device and electronic device | |
JPH06301019A (en) | Display device | |
CN105359204A (en) | Display device | |
WO2022190637A1 (en) | Liquid crystal display device | |
WO2023153165A1 (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19934418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19934418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |