WO2020261455A1 - Cell function evaluation method and cell analysis device - Google Patents
Cell function evaluation method and cell analysis device Download PDFInfo
- Publication number
- WO2020261455A1 WO2020261455A1 PCT/JP2019/025489 JP2019025489W WO2020261455A1 WO 2020261455 A1 WO2020261455 A1 WO 2020261455A1 JP 2019025489 W JP2019025489 W JP 2019025489W WO 2020261455 A1 WO2020261455 A1 WO 2020261455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- image
- test
- cells
- feature amount
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Definitions
- the present invention relates to a method and a device for evaluating the function of cells, and more specifically, to a method and a device for non-invasively evaluating the function of stem cells.
- Patent Document 1 describes a cell evaluation device that determines the quality of a cell state by comparing various feature amounts obtained from cell images with a predetermined threshold value.
- the "good state" of cells means, for example, “well-increasing state”, “well-differentiating state”, “many undifferentiated cells”, “hard-to-differentiate state”, and “cells" depending on the purpose. It is shown that it is easy to select (easy to clone).
- Patent Document 2 discloses a method for evaluating a cell differentiation state from the abundance of a specific component contained in a culture supernatant. According to this, by comparing the abundance of the specific component in the reference cell and the test cell, it is possible to evaluate the state of the cell without following the change with time.
- the known non-invasive cell evaluation method can quantitatively evaluate the state of cells in culture, it cannot evaluate the specific function of cells. Therefore, the conventional evaluation of general cell function has been limited to the level that a person in charge who has experience and knowledge of analysis makes a sensory judgment based on the observation image of the cell and the evaluation result of the cell state. .. In such an evaluation method, the reliability and reproducibility of the evaluation result largely depend on the experience and knowledge of the person in charge. It is also difficult to verify whether such an evaluation was appropriate.
- the present invention has been made to solve these conventional problems, and its main purpose is to non-invasively and quantitatively evaluate the function and ability of a stem cell based on the image information obtained about the stem cell. It is an object of the present invention to provide a method for evaluating cell function and a cell analyzer capable of performing the same.
- One aspect of the method for evaluating cell function according to the present invention is a method for evaluating cell function of a test cell which is a stem cell.
- An image acquisition step to acquire a cell image of a test cell
- a feature amount extraction step for extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
- An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and It has.
- One aspect of the cell analysis device made to solve the above problems is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
- An image acquisition unit that acquires a cell image of a test cell
- a feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
- An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell, Is provided.
- the "cell function” here is not the state of the cell itself at that time, but the ability, performance, or property of the cell, especially when it is used for regenerative medicine or cell therapy, or for its use. Functional power, performance, properties, etc. that are useful or adversely act when culturing and proliferating. Specifically, for example, it can include at least one of cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability.
- the present inventors have analyzed the expression level of genes related to various cell functions such as maintenance of undifferentiated stem cells and migration, or the migration ability of cells.
- the gradient in the thickness direction at the contour (peripheral part) of the stem cell and the orientation (alignment) of the stem cell which can be obtained based on the measurement result of the stem cell and the observed image of the stem cell obtained by non-invasiveness, are high. It was found to have a correlation. Based on this finding, in the feature amount extraction step in the method for evaluating cell function, which is one aspect of the present invention, an index value indicating the degree of the gradient in the thickness direction in the contour portion of the test cell is obtained from the observation image of the stem cell.
- Either one or both of the index value indicating the degree of orientation of the test cell is extracted as the feature amount of the test cell.
- the evaluation step the cell function of the test cell is evaluated based on the index value which is the characteristic amount of the test cell. Specifically, for example, the numerical values of the above index values are compared with respect to two types of test cells having different origins, and it is determined which cell has higher cell function. Further, in the cell analysis device according to one aspect of the present invention, the processing in the feature amount extraction step and the evaluation step can be performed on a computer including a CPU, RAM and the like.
- the function of a stem cell can be quantitatively evaluated based on the image information obtained non-invasively and non-destructively with respect to the stem cell. it can. Since such functional evaluation can be performed using numerical values, even a person in charge who has little experience or knowledge in cell analysis work or evaluation work can perform accurate and highly reliable evaluation. In addition, it is possible to avoid variations in the results depending on the person, which tends to be evaluated based on the senses, and it is easy to verify the reason for the evaluation. In addition, the work efficiency of evaluation of cell function can be improved.
- the schematic block diagram of one Embodiment of the cell analysis apparatus for carrying out the evaluation method of the cell function which concerns on this invention The flowchart which shows the work procedure and process flow at the time of evaluating the cell function using the cell analysis apparatus of this embodiment.
- Explanatory drawing of another example of the gradient score calculation method from the differential value histogram in the cell analysis apparatus of this embodiment Explanatory drawing of another example of the gradient score calculation method from the differential value histogram in the cell analysis apparatus of this embodiment.
- the figure which shows the quantification result of the gene expression level related to various cell functions about 4 kinds of mesenchymal stem cells derived from Specimen A.
- the figure which shows the measurement result of the migration ability by the scratch assay method about 4 kinds of mesenchymal stem cells derived from Specimen A.
- the figure which shows the comparison of the orientation score and the gradient score calculated by the cell analysis apparatus of this embodiment about 4 kinds of samples derived from Specimen A.
- the figure which shows the analysis result of the expression of the cell surface antigen about 4 kinds of mesenchymal stem cells derived from another sample B.
- the figure which shows the quantification result of the gene expression level related to various cell functions about 4 kinds of mesenchymal stem cells derived from Specimen B.
- the figure which shows the measurement result of the migration ability by the scratch assay method about 4 kinds of mesenchymal stem cells derived from Specimen B.
- the figure which shows the comparison of the orientation score and the gradient score calculated by the cell analysis apparatus of this embodiment about 4 kinds of samples derived from Specimen B.
- FIG. 1 is a schematic configuration diagram of an embodiment of a cell analyzer for evaluating a cell function according to the present invention.
- the cell analysis device of the present embodiment includes a microscopic observation unit 1, a control / processing unit 2, an input unit 3 and a display unit 4 which are user interfaces.
- the microscopic observation unit 1 is an in-line holographic microscope, includes a light source unit 10 including a laser diode and the like and an image sensor 11, and includes a cell 13 between the light source unit 10 and the image sensor 11.
- the culture plate 12 is arranged.
- the control / processing unit 2 controls the operation of the microscopic observation unit 1 and processes the data acquired by the microscopic observation unit 1, and includes the imaging control unit 20, the hologram data storage unit 21, and the phase information calculation.
- the entity of the control / processing unit 2 is a personal computer or a higher-performance workstation in which predetermined software (computer program) is installed, or a high-performance computer connected to such a computer via a communication line.
- the cell analyzer of the present embodiment can observe and analyze various cells, but here, as an example, it is assumed that the observation target is a mesenchymal stem cell, which is one of the pluripotent stem cells. ..
- the evaluation of cell function as described later is not limited to mesenchymal stem cells, and can be applied to other stem cells that exhibit the same or similar behavior as mesenchymal stem cells.
- FIG. 2 is a flowchart showing a work procedure and a flow of processing in the cell function evaluation work using the cell analysis device of the present embodiment. Further, FIG. 3 is a conceptual diagram for explaining a shooting operation and an image reconstruction process.
- FIG. 3A is a schematic top view of the culture plate 12 used in the cell analyzer of the present embodiment.
- Six wells 12a having a circular shape in the top view are formed on the culture plate 12, and cells are cultured in each well 12a.
- the entire observation plate 12, that is, the entire rectangular area including the six wells 12a is the observation target area.
- the microscopic observation unit 1 includes four sets of a light source unit 10 and an image sensor 11. As shown in FIG. 3A, each of the light source unit 10 and the image sensor 11 of each set is responsible for collecting hologram data of four four-division ranges 81 in which the entire culture plate 12 is divided into four equal parts. That is, the four sets of the light source unit 10 and the image sensor 11 share the collection of hologram data over the entire culture plate 12.
- the range in which the set of the light source unit 10 and the image sensor 11 can be photographed at one time includes the well 12a in the four division range 81. It is a range corresponding to one imaging unit 83 obtained by dividing the square-shaped range 82 into 10 equal parts in the X-axis direction and 12 equal parts in the Y-axis direction.
- the four light source units 10 and the four image sensors 11 are respectively arranged in the XY plane including the light source unit 10 and the image sensor 11 near the four vertices of a rectangle having the same size as the four division range 81.
- the holograms of the four different imaging units 83 on the culture plate 12 are acquired at the same time.
- the operator When collecting hologram data, the operator first sets the culture plate 12 in which the cells 13 to be observed are cultured at a predetermined position of the microscopic observation unit 1, and determines the identification number, measurement date and time, etc. that identify the culture plate 12. After inputting the information from the input unit 3, the measurement execution is instructed. In response to this measurement instruction, the imaging control unit 20 controls each unit of the microscopic observation unit 1 to execute imaging (step S1).
- one light source unit 10 irradiates a predetermined region (one imaging unit 83) of the culture plate 12 with coherent light having a spread of a minute angle (for example, about 10 °).
- the coherent light (object light 15) transmitted through the cells 13 on the culture plate 12 interferes with the light (reference light 14) transmitted through the region (usually the medium) around the cells 13 on the culture plate 12 and is an image sensor.
- the object light 15 is light whose phase changes when it passes through the cell 13, while the reference light 14 is light that does not pass through the cell 13 and therefore does not undergo the phase change caused by the cell 13.
- coherent light is emitted from the four light source units 10 toward the culture plate 12 at substantially the same time, and the four image sensors 11 acquire hologram data of regions corresponding to different imaging units 83 on the culture plate 12. Will be done.
- the light source unit 10 and the image sensor 11 are moved in the X-axis direction and the Y-axis direction by a moving unit (not shown) by a distance corresponding to one imaging unit 83 in the XY plane. It is moved sequentially in steps.
- the measurement is performed by 180 imaging units 83 included in the 4-division range 81, and the measurement of the entire culture plate 12 is executed by the four sets of the light source unit 10 and the image sensor 11 as a whole.
- the hologram data thus obtained by the four image sensors 11 of the microscopic observation unit 1 is stored in the hologram data storage unit 21 together with the attribute information such as the measurement date and time.
- the phase information calculation unit 22 sequentially reads hologram data from the hologram data storage unit 21 and performs light wave propagation calculation processing (phase recovery processing) in a two-dimensional manner. Restore the phase information and amplitude information at each position. The spatial distribution of this information is obtained for each imaging unit 83. If the phase information and amplitude information of all the imaging units 83 are obtained, the image reconstruction unit 23 forms a phase image of the entire observation target region, that is, an IHM phase image, based on the phase information and amplitude information. (Step S2).
- the image reconstruction unit 23 reconstructs the IHM phase image of each imaging unit 83 based on the spatial distribution of the phase information calculated for each imaging unit 83. Then, by performing a tiling process (see FIG. 3D) for connecting the IHM phase images in the narrow range, an IHM phase image for the observation target region, that is, the entire culture plate 12 is formed. The data constituting the IHM phase image is stored in the reconstructed image data storage unit 24. At the time of the tiling process, it is advisable to perform an appropriate correction process so that the IHM phase images at the boundary of the imaging unit 83 are smoothly connected.
- the intensity information and the pseudo-phase information obtained by merging the phase information and the intensity information are also calculated based on the hologram data, and the image reconstruction unit 23 calculates the reproduced image (IHM) based on these.
- IHM reproduced image
- Intensity image, IHM pseudo-phase image can also be created.
- the image reconstruction unit 23 executes a process of removing the background region in which it is clear that the cells do not exist in the created IHM phase image (step S3).
- Various methods can be adopted as the background removal method, and as an example, texture analysis can be used. Texture analysis is roughly divided into structural texture analysis and statistical texture analysis, and the latter is suitable for extracting patterns and pattern features of local parts in an image.
- the pixel value of the portion removed as the background area may be a fixed value such as 0.
- the entire IHM phase image is divided into a plurality of small small areas, and a predetermined texture analysis is executed for each small area to calculate the texture feature amount. Since there is a clear difference in the texture feature amount between the case where the small area is only the background area and the case where the small area includes at least a part of the cell area, the small area corresponding to the background area is selected from the texture feature amount. You can find it and exclude it. Of course, such background removal processing is not essential and may be omitted.
- the image reconstruction unit 23 executes a process of removing noise components from the IHM phase image after the background removal process by using a Gaussian filter or the like (step S4).
- This noise removal process can also be omitted as in the background removal process.
- a gradient score is calculated as an index of the degree of gradient in the thickness direction in the contour portion of the cell. That is, the differential image creation unit 25 applies a differential filter to the signal value (pixel value) of each pixel of the IHM phase image after removing noise or the like as described above, and calculates the differential value for each pixel. Then, a differential image composed of the differential values of all the pixels is created (step S5).
- the differential filter for example, a Laplacian filter often used for edge detection of an image can be used.
- FIG. 6 is an example of a general 3 ⁇ 3 pixel Laplacian filter using pixels in the vicinity of four pixels on the top, bottom, left, and right.
- the Sobel filter which is a combination of the vertical filter and the horizontal filter shown in FIGS. 7A and 7B, may be used as the differential filter. If a differential value is obtained for each pixel, a differential image corresponding to the IHM phase image is created using it. The Sobel filter is also used when calculating the cell orientation score, which will be described later.
- FIG. 8 is an example of an IHM phase image of human umbilical cord-derived mesenchymal stem cells (Umbilical Cord derived-Mesenchymal Stem Cells) and a differential image obtained from the IHM phase image.
- the signal value of each pixel in the IHM phase image indicates the amount of phase lag of light that has passed through the cell, which reflects the optical thickness of the cell. Therefore, the steeper the gradient in the thickness direction of the contour portion of each cell, the larger the differential value of the pixel corresponding to the contour portion.
- the display luminance range is appropriately adjusted, whereby the contour portion of each cell is clearly depicted as compared with the inner side.
- the gradient score calculation unit 26 creates a differential value histogram in which the horizontal axis is the differential value and the vertical axis is the number of occurrences (number of pixels) based on the differential values of all the pixels constituting the differential image (step S6).
- the horizontal axis of the histogram should be the linear axis and the vertical axis should be the logarithmic axis.
- FIG. 9 shows an example of the differential value histogram.
- a and B in the figure show two samples having different culture conditions (specifically, the presence or absence of an activator that activates cells).
- the differential value histogram there are left-right asymmetric peaks in which the slope on the low differential value side (left in the figure) is steep and the slope on the high differential value side (right in the figure) is gentle. appear.
- the pixels included in the range on the low differential value side including the peak top of this peak are mainly pixels existing in a background region other than the cell or a region having a relatively flat thickness in the cell.
- the pixels included in the range of the gentle slope on the high differential value side are considered to be the pixels mainly present in the contour portion of the cell. Therefore, the degree of slope slope on the high derivative side in the differential value histogram reflects the degree of slope in the thickness direction at the contour of the cell.
- the gradient score calculation unit 26 first executes a smoothing process by taking a moving average in the changing direction of the differential value in order to reduce variations and errors in the differential value histogram.
- the decreasing slope can be approximated by an exponential function.
- the constants a and b having the smallest approximation error with respect to the slope may be searched.
- the constant b of the exponent part obtained at this time reflects the degree of slope gradient, and since it reflects the tendency of the degree of gradient in the thickness direction in the contour portion of each cell, the constant b of this exponent part Can be used as the gradient score. Since the gradient score at this time is not affected by the cell density, it is convenient for comparison between different samples.
- the method is not limited to the above method, and other methods such as the following may be used.
- the half width of the peak of the differential value histogram is used as the gradient score.
- the half-value width referred to here is the width of the differential value at half the number of appearances of the peak top of the peak.
- the half-value width Wa and the peak of sample 2 are set with respect to the peak of sample 1.
- the half width Wb can be obtained.
- the difference between the differential value and the differential value corresponding to the intersection of the slope on the higher differential value side may be used instead of the half width.
- the rate of decrease in the number of occurrences in the decrease slope of the peak on the differential value histogram is used as the gradient score.
- an arbitrary k (where k is an integer of 2 or more) differential values are selected, and the ratio of the number of occurrences corresponding to the k differential values is calculated as the gradient score.
- k may be 2, and for the two differential values D1 and D2, the appearance number ratio Xa [%] to the peak of sample 1 and the appearance number ratio Xb to the peak of sample 2. [%] Can be obtained as the gradient score.
- the difference in the differential value corresponding to a certain difference in the number of appearances is used as the gradient score.
- an arbitrary L number of appearances (where L is an integer of 2 or more) is selected, and the derivative corresponding to the number of L appearances is selected.
- the difference between the values (width of the differential value) is calculated as the gradient score.
- L may be 2, and for the two occurrence numbers P1 and P2, the differential value difference La is obtained from the peak of sample 1 and the differential value difference Lb is obtained from the peak of sample 2. Since the absolute value of the number of appearances depends on the cell density, in order to eliminate the influence of the difference in cell density, for example, a process for standardizing the number of appearances may be performed.
- the differential value histogram in the high differential value range in which the difference in the gradient in the thickness direction in the contour portion of the cell appears remarkably, the differential value is particularly high.
- the number of appearances is known to be proportional to the number of cells or the confluency (the ratio of the area of cells to the total image area). Therefore, if the number of occurrences in such a high differential value range is normalized by the number of cells or the confluence, a gradient score that does not depend on them is obtained.
- the confluence or the number of cells in the cell image (IHM phase image) to be observed is obtained by a measurement method different from the measurement method by this device, that is, an independent measurement method.
- a measurement method for example, cell counting by a hemocytometer or the like can be used.
- the number of appearances at an arbitrary differential value in the high differential value range is obtained from the differential value histogram, and the number of appearances is divided by the number of cells or confluency obtained as described above to obtain a gradient of the normalized number of appearances. It may be calculated as a score.
- FIG. 13 is an explanatory diagram of the calculation method of the orientation score.
- the orientation score calculation unit 27 reads the IHM phase image from which noise has been removed in step S4 (step S21), and divides this image into a plurality of rectangular small regions as shown in FIG. 13A (step S21). Step S22).
- the orientation score calculation unit 27 calculates the orientation strength and orientation of the cells contained in the small regions for each small region obtained by the division (step S23). The processing in one small area will be specifically described with reference to FIG.
- the orientation score calculation unit 27 first reads a small area image (step S31) and performs noise removal processing (step S32). This may be the same processing as in step S4, and may be omitted. After that, contour detection processing using a differential filter or the like is executed for the signal value (pixel value) of each pixel.
- contour detection processing using a differential filter or the like is executed for the signal value (pixel value) of each pixel.
- the vertical contour detection using the vertical sobel filter shown in FIG. 7 (a) and the horizontal contour detection using the horizontal sobel filter shown in FIG. 7 (b) are described above. Contour detection is performed for each pixel (steps S33 and S34), and the strength and direction of the change in luminance in that pixel are calculated (steps S35 and S36).
- the signal value after processing by the sobel filter in the vertical direction with respect to the signal value org (x, y) of a certain pixel is sobel H (x, y), and after processing by the sobel filter in the horizontal direction.
- the signal value is sobel V (x, y)
- the strength of the luminance change Strength (x, y) is given by the following equation (1)
- the direction of the luminance change Angle (x, y) is given by the following equation (2). Can be calculated with.
- Step S37 the distribution of the angle of the brightness change is first calculated in order to convert the information on the direction of the brightness change into the information on the direction of the cells.
- Angle (x, y) which is a continuous numerical value obtained by Eq. (2), is rounded off and converted into a numerical value at a fixed angle interval, for example, every 1 degree. Then, the distribution of the angle after the conversion, that is, the histogram is obtained.
- the number of pixels whose brightness change strength Strength (x, y) is equal to or greater than a predetermined threshold value may be counted for each angle, and the counted value may be used as the frequency of the angle distribution. Further, for each angle, the sum of the strengths of the brightness changes (x, y) in all the pixels whose brightness change direction is the angle may be calculated, and the value of the sum may be used as the frequency in the angle distribution. ..
- step S38 the angle of the angle distribution obtained in step S37 is rotated by 90 degrees. This is because the direction of change in brightness and the direction of cells are orthogonal to each other.
- the shape of the mesenchymal stem cells assumed here is an elongated elliptical or needle-like shape, and the longitudinal direction thereof is the direction of the cells.
- the order of steps S37 and S38 can be exchanged.
- the frequency of the angle distribution is normalized so that numerical evaluation is possible (step S39), and the accuracy of the distribution is improved by calculating the moving average of the angle distribution (step S40).
- FIG. 13 (d) shows an example of the angular distribution of the case where the cells are oriented in the same direction (see 13 (b)) and the case where the cells are not oriented (see 13 (c)).
- the orientation score calculation unit 27 obtains the most frequent angle, that is, the most frequent angle in the angle distribution after performing the moving average, and determines this as the orientation direction of the cells in the small region (step S41). Further, the frequency corresponding to the mode is defined as the strength of cell orientation in the small region (step S42).
- the orientation score calculation unit 27 calculates the average value of the orientation strength in all the small regions as the orientation score indicating the tendency of the cell orientation in the entire phase image, and also calculates the orientation strength of the orientation score. The maximum value is calculated as the orientation score.
- an evaluation image is created for the user to intuitively evaluate the orientation (step S24). Specifically, the orientation score is visualized by a two-dimensional vector in which the orientation direction is the direction of the vector and the orientation strength is the length (scalar amount) of the vector for each small region. Then, an image displayed by superimposing the two-dimensional vector on the IHM phase image is created as an evaluation image.
- FIG. 14 is a diagram showing an example of an image for evaluating orientation of two types of samples, one in which the cells are oriented in the same direction and the other in which the cells are not oriented.
- the division of small regions is shown on the IHM phase image, and straight lines indicating the strength and direction of orientation are superimposed and displayed in each small region.
- the cells of sample 2 are more aligned than those of sample 1 when viewed locally. This difference in features on the image appears in the difference in the length of the lines drawn in each subregion. Therefore, by displaying this evaluation image on the display unit 4 and presenting it to the user, the user can intuitively grasp the degree of alignment of the cells.
- FIG. 15 is a diagram showing a comparative example of orientation scores for the two types of samples shown in FIG. The difference in the above-mentioned features on the image is clearly shown in the orientation scores of both the mean value and the maximum value. That is, according to the orientation score, it is possible to numerically compare and evaluate the degree of alignment of cell orientation.
- the cell function evaluation information output unit 28 displays the gradient score and the orientation score calculated as described above, and further, the evaluation image related to the orientation on the display unit 4 in a predetermined format.
- the user evaluates cell function based on these indications.
- the cell functions that can be evaluated here can include three types: maintenance of undifferentiated state, migration ability, and tissue repair ability. It will be explained based on the experimental results conducted by the inventors that it is possible to evaluate these cell functions using the above scores.
- the evaluation target in this experimental example is human umbilical cord-derived mesenchymal stem cells (hereinafter, may be abbreviated as UC-MSC).
- UC-MSC human umbilical cord-derived mesenchymal stem cells
- FIG. 16 is an optical observation image of the tissue at the cell collection site. This is a cross section of the umbilical cord.
- Am-MSC cells collected from the amniotic membrane side of the umbilical cord
- Wj-MSC cells collected from the interstitial side of the umbilical cord
- a basal medium containing fetal bovine serum (FBS) is added and cultured. went. The cells that escaped from the tissue pieces and adhered to the culture dish were collected, and then the cells were subcultured and cultured.
- FBS fetal bovine serum
- cells with and without a cell activator are added in order to cause a clear difference in cell function.
- the cells were separately cultured.
- the cells obtained by adding WJ to Am-MSC are referred to as Am-MSC + WJ, and the cells obtained by adding WJ to Wj-MSC are referred to as Wj-MSC + WJ.
- Am-MSC and Wj-MSC are reference cells, and Am-MSC + WJ and Wj-MSC + WJ are test cells.
- ⁇ SMA smooth muscle actin
- WJ smooth muscle actin
- the migration ability of cells was evaluated by a very common scratch assay (Scratched assay) method.
- the measurement result of the migration ability by the scratch assay method is shown in FIG. This is a measurement of the ratio of the area of the open area due to the scratch wound 9 hours after the linear scratch wound was given, and the higher the cell migration ability, the smaller the area of the open area. Become. As can be seen from FIG. 19, it was confirmed that the cell migration ability of the test cells was improved as compared with the reference cells, and that the addition of WJ improved the cell migration ability.
- FIG. 20 shows the four types of MSC gradient scores and orientation scores (here, the average value of the strength of cell orientation in all small regions) derived from the sample A, calculated by the cell analyzer of the above embodiment. It is a figure which shows the comparison result.
- FIG. 20A it can be seen that the gradient scores of the test cells Am-MSC + WJ and Wj-MSC + WJ are clearly reduced with respect to the reference cells Am-MSC and Wj-MSC, respectively. Since this gradient score indicates the slope of the peak slope in the above-mentioned differential value histogram, a decrease in the gradient score indicates an increase in cells having steep contours.
- FIG. 20A shows the four types of MSC gradient scores and orientation scores (here, the average value of the strength of cell orientation in all small regions) derived from the sample A, calculated by the cell analyzer of the above embodiment. It is a figure which shows the comparison result.
- FIG. 20A it can be seen that the gradient scores of the test cells Am-MSC + WJ and Wj-
- FIGS. 17 to 20 show the actual measurement results of one sample derived from sample A, but the same actual measurement was carried out for another sample B.
- FIG. 21 shows the results of flow cytometry analysis of the expression of surface antigens derived from sample B
- FIG. 22 shows the expression levels of genes related to various cell functions of four types of mesenchymal stem cells derived from sample B. It is a figure which shows the quantitative result of.
- FIG. 23 is a diagram showing the measurement results of migration ability of four types of mesenchymal stem cells derived from sample B by the scratch assay method.
- FIG. 24 is a diagram showing a comparison of orientation scores and gradient scores calculated by the cell analyzer of the present embodiment for four types of samples derived from sample B. Comparing the result of Specimen A and the result of Specimen B, it can be seen that the tendency of increase or decrease of the numerical value at + WJ is exactly the same for both the test cell and the reference cell.
- the cell function evaluation information output unit 28 uses, for example, a gradient score and orientation score obtained for the test cell, an evaluation image related to orientation, and a gradient score obtained for the reference cell.
- the orientation score, and the evaluation image related to the orientation are displayed on the display unit 4 in a predetermined format for easy comparison (step S9).
- the differential image created in step S5 the differential value histogram created in step S6, and the like may also be displayed.
- the user relatively evaluates cell functions such as cell undifferentiation, migration ability, and tissue repair ability of the test cell with respect to the reference cell based on the displayed gradient score, orientation score, or evaluation image. (Step S10).
- the following step can be carried out. That is, cells are sorted based on the evaluation result of cell function.
- a fluorescence activated cell sorting device FACS
- FACS fluorescence activated cell sorting device
- cells having different evaluation results of cell function are recultured in different culture modes. By subculturing this culture, it is confirmed that cells unsuitable for transplantation, such as low migration and low tissue repair function, do not grow (adhere or proliferate) in the next generation.
- the evaluation of cell function is useful for confirming and verifying the proliferative ability due to the difference in cell function.
- the user does not evaluate the cell function based on the displayed image or score, but for example, by comparing the gradient score and the orientation score between the reference cell and the test cell to determine the magnitude relationship.
- the process of relatively evaluating cell functions such as cell undifferentiation, migration ability, and tissue repair ability of the test cell with respect to the reference cell is to be performed in the control / processing unit 2, that is, on a computer including a CPU or the like. It may be. In that case, only the final evaluation result may be output to the display unit 4, or the evaluation result may be output together with the score and the image.
- various machine learning methods such as deep learning can be used for such determination and evaluation.
- test cell to be evaluated and the reference cell may be different types of cells, but in actual application, they are the same type of cells with different culture conditions in many cases. Further, of course, the test cell and the reference cell do not have to be one by one, and for example, three or more test cells may be compared with each other to perform a relative evaluation of cell function.
- data such as a gradient score and orientation score for reference cells, and evaluation images related to orientation are stored in advance in the control / processing unit 2 as evaluation criteria, and the saved evaluation criteria and the saved evaluation criteria are used.
- the gradient score and the orientation score newly calculated based on the hologram data obtained by the microscopic observation unit 1 may be displayed on the test cell in a comparable format.
- a personal computer connected to the microscopic observation unit 1 is used as a terminal device, and a computer system in which this terminal device and a server, which is a high-performance computer, are connected via a communication network such as the Internet or an intranet is used. Complicated calculations and processing such as are performed by a high-performance computer, and the roles are divided so that the control of the microscopic observation unit 1 and the display processing using the processed data are executed by a relatively low-performance personal computer. May be good.
- an in-line holographic microscope is used as the microscopic observation unit 1, but other microscopes such as an off-axis type and a phase shift type can be used as long as the microscope can obtain a hologram. It goes without saying that it can be replaced with a holographic microscope of the type.
- both the score of the gradient in the thickness direction in the contour portion of the cell and the score indicating the orientation of the cell are calculated and presented to the user, but at least one of them.
- One may be calculated and presented to the user, and the user may evaluate the cell function based on the calculation.
- the observation image of the cell needs to include information in the thickness direction (that is, three-dimensional shape information) such as an IHM phase image.
- information in the thickness direction is not required, and it is sufficient to obtain an image in which the cells can be clearly observed. Therefore, in that case, the microscope observation unit 1 does not have to be a holographic microscope, and a general phase-contrast microscope or the like may be used.
- the above-mentioned cell function evaluation method can be applied to stem cells of other types other than mesenchymal stem cells for the following reasons. That is, according to the study by the present inventors, the actin fibers in the cell decrease from a flat and widened shape to a thin spindle shape, and the localization of organelles and proteins also changes to increase the thickness of the cell. (Increased gradient), as a result, it is clear that the function of sensing shear stress, which exists on the near side surface near the nucleus apex, works more sensitively, is aligned, and the cell migration ability and tissue repair ability are enhanced. became.
- sensing cell shear stress is related to cell migration and cell repair ability, and the orientation is evaluated in evaluating the function of sensing shear stress. It became clear by the present invention that this is important. From these facts, it is clear that the present invention can be applied not only to mesenchymal stem cells but also to cells having a function of sensing shear stress, and cell functions such as cell migration and tissue repair ability can be evaluated.
- the method for evaluating cell function is a method for evaluating cell function of a test cell which is a stem cell.
- An image acquisition step to acquire a cell image of a test cell,
- a feature amount extraction step of extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
- An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and It has.
- the cell analysis device is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
- An image acquisition unit that acquires a cell image of a test cell
- a feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
- An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell, Is provided.
- the cell function can include at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
- the cell function can include at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
- the function of the stem cell is based on the image information obtained non-invasively and non-destructively with respect to the stem cell. It is possible to quantitatively evaluate the maintenance of differentiation, migration ability, tissue repair ability, and the like. Since such cell function can be evaluated numerically, even a person in charge who has little experience or knowledge of cell analysis work and evaluation work can perform accurate and highly reliable evaluation. In addition, it is possible to avoid variations in results depending on the person, which tends to be evaluated based on the sense of the person in charge. In addition, the work of verifying the reason for evaluation and the like becomes easy. Furthermore, the work efficiency of evaluation of cell function can be improved.
- the cell image can be regarded as a phase image.
- the cell image can be regarded as a phase image.
- the image acquisition step is performed.
- the image acquisition unit is A measurement execution unit that irradiates a test cell with a laser beam, detects interference light between the light that has passed through the test cell and the light that has passed around the test cell, and acquires hologram data.
- a phase image creating unit that performs image reconstruction processing based on the hologram data and creates a phase image of the test cell. Can be included.
- the phase image created based on the hologram data in the phase image creation step includes not only the two-dimensional information of the test cell but also the information in the cell thickness direction. Therefore, according to the method for evaluating cell function according to item 4 and the cell analyzer according to item 13, information on the gradient of the contour portion of the test cell can be accurately extracted from the phase image. Based on the information, it is possible to accurately evaluate cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability described above.
- a reference image acquisition step for acquiring a reference image, which is a cell image of a reference cell whose cell function is known
- a reference feature amount extraction step for extracting a feature amount corresponding to the feature amount extracted in the feature amount extraction step from the reference image
- a reference feature amount extraction step for extracting a feature amount corresponding to the feature amount extracted in the feature amount extraction step from the reference image
- the cell function of the test cell can be evaluated by comparing the feature amount with respect to the test cell and the feature amount with respect to the reference cell.
- the evaluation processing unit knows the feature amount for the test cell and the previously acquired cell function. By comparing the feature amount extracted from the cell image of a reference cell with the feature amount, the cell function of the test cell can be relatively evaluated.
- the reference cell referred to here does not necessarily have to be a cell different from the test cell. That is, for example, the cell image of the reference cell may be a cell image acquired in the past for the test cell.
- the test cells According to the method for evaluating cell function according to item 5 and the cell analyzer according to item 14, the test cells have the ability to maintain undifferentiated state, migrate, and repair tissues as compared with the reference cells. It is possible to accurately evaluate whether the cell function is excellent or inferior.
- the feature amount extraction step is performed.
- a gradient information extraction step for extracting information related to the gradient in the thickness direction in the contour portion of the test cell from the cell region containing the test cell in the differential image. Can be included.
- the feature amount extraction unit obtains a spatial differential value for each pixel from the phase image, generates a differential image, and generates the differential image.
- Information related to the gradient of the contour portion of the test cell can be extracted from the cell region containing the test cell in the image.
- information on the gradient of the contour portion of the test cell can be accurately extracted, and based on that information, information can be extracted. It is possible to accurately evaluate cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability described above.
- the feature amount extraction step A pixel number acquisition step for calculating the number of pixels corresponding to the cell region in the differential image, and The number of cells or the number of cells to obtain the confluency from the phase image / the confluency acquisition step,
- the information related to the gradient of the contour portion of the test cell can be obtained by dividing the number of pixels by the number of cells or the confluence.
- the feature amount extraction unit calculates the number of pixels corresponding to the cell region in the differential image, and calculates the number of cells or confluence from the phase image. It can be obtained and the information related to the gradient of the contour portion of the test cell can be obtained by dividing the number of pixels by the number of the cells or the confidence.
- the densities of the test cells to be evaluated and the reference cells used as the reference for comparison are different. However, it is possible to accurately compare and evaluate cell functions.
- the feature amount extraction step is performed.
- the orientation information calculation step for obtaining information on the orientation of the test cells, and Can be included.
- the feature amount extraction unit divides the cell image into a plurality of small regions, and each small region is divided into a plurality of small regions.
- a differential filter is applied to each pixel included in the small region to calculate the direction in which the brightness changes and the magnitude of the change, and the orientation of the test cells is calculated from the direction and magnitude of the brightness change in each small region. Information about sex can be requested.
- the stem cell can be assumed to be a mesenchymal stem cell.
- the stem cells can be assumed to be mesenchymal stem cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
An embodiment of the present invention is a method for evaluating a cell function of test cells which are stem cells, the method comprising: an image acquisition step (S1, S2) for acquiring a cell image obtained by capturing an image of the test cells; a characteristic amount extraction step (S5 to S8) for extracting, from the cell image, information related to a gradient of a contour portion of the test cells and/or information related to the orientation of the test cells as a characteristic amount of the test cells; and an evaluation step (S9, S10) for evaluating a cell function of the test cells on the basis of the characteristic amount of the test cells. Thus, it is possible to quantitatively evaluate cell functions of stem cells, such as undifferentiated-state maintenance, migratory ability and tissue repairability.
Description
本発明は細胞の機能を評価する方法及びそのための装置に関し、さらに詳しくは、幹細胞の機能を非侵襲で評価する方法及び装置に関する。
The present invention relates to a method and a device for evaluating the function of cells, and more specifically, to a method and a device for non-invasively evaluating the function of stem cells.
近年、再生医療・細胞治療の研究や産業化は急速に進展しており、それに伴い、細胞製剤の品質や安全性、有効性が的確に確保されるための評価方法の確立が求められている。細胞製剤は、動物特にヒト由来であることから、細胞の採取組織の由来や幹細胞の種類、製造方法は多種多様である。そのため、細胞製剤の特性に基づいた、柔軟で応用範囲が広く、且つ再現性のある合理的な評価方法の確立が求められている。
In recent years, research and industrialization of regenerative medicine and cell therapy have progressed rapidly, and along with this, it is required to establish an evaluation method for accurately ensuring the quality, safety, and effectiveness of cell preparations. .. Since cell preparations are derived from animals, especially humans, there are a wide variety of origins of cell collection tissues, types of stem cells, and production methods. Therefore, it is required to establish a flexible, versatile, and reproducible rational evaluation method based on the characteristics of cell preparations.
従来、細胞の機能を評価する方法としては、細胞に発現する特定の遺伝子やタンパク質の解析、細胞の遊走能や増殖能の解析、細胞が分泌する因子や細胞老化の解析、などがよく知られている。こうした細胞の形質や機能は、細胞製剤の治療効果と相関すると考えられている。但し、評価に使用した細胞をそのまま別の目的に使用する、例えば再生医療等製品として患者に投与する、ということを考えると、細胞に対して侵襲的な又は破壊的な処理を施す必要がある評価方法を利用することはできない。
Conventionally, as a method for evaluating cell function, analysis of specific genes and proteins expressed in cells, analysis of cell migration ability and proliferative ability, analysis of factors secreted by cells and cellular senescence, etc. are well known. ing. These cell traits and functions are thought to correlate with the therapeutic effect of cell preparations. However, considering that the cells used for evaluation are used as they are for another purpose, for example, they are administered to patients as products such as regenerative medicine, it is necessary to perform invasive or destructive treatment on the cells. The evaluation method cannot be used.
細胞を非侵襲的に評価する方法としては、細胞を撮影した静止画像や動画から各種の特徴量を抽出し、その特徴量から細胞の状態を評価する方法がある。例えば特許文献1には、細胞画像から得られた様々な特徴量を所定の閾値と比較することで、細胞の状態の良否を判定する細胞評価装置が記載されている。この装置において細胞が「良い状態」とは、目的に応じて例えば、「よく増える状態」、「よく分化する状態」、「未分化細胞が多い状態」、「分化が起きにくい状態」、「細胞を選抜しやすい状態(クローニングしやすい)」などであることが示されている。
As a method for non-invasively evaluating cells, there is a method of extracting various feature amounts from still images and moving images of cells and evaluating the state of the cells from the feature amounts. For example, Patent Document 1 describes a cell evaluation device that determines the quality of a cell state by comparing various feature amounts obtained from cell images with a predetermined threshold value. In this device, the "good state" of cells means, for example, "well-increasing state", "well-differentiating state", "many undifferentiated cells", "hard-to-differentiate state", and "cells" depending on the purpose. It is shown that it is easy to select (easy to clone).
一方、細胞画像を非侵襲に評価する別の方法として、培養細胞の上清に含まれる細胞由来の分泌因子を解析することによって、細胞の分化状態などを評価する方法も知られている。例えば特許文献2には、細胞の分化状態を、培養上清に含まれる特定の成分の存在量から評価する方法が開示されている。これによれば、参照細胞と被検細胞とにおける特定成分の存在量を比較することにより、経時的な変化を追うことなく細胞の状態を評価することができる。
On the other hand, as another method for non-invasively evaluating cell images, there is also known a method for evaluating the differentiation state of cells by analyzing cell-derived secretory factors contained in the supernatant of cultured cells. For example, Patent Document 2 discloses a method for evaluating a cell differentiation state from the abundance of a specific component contained in a culture supernatant. According to this, by comparing the abundance of the specific component in the reference cell and the test cell, it is possible to evaluate the state of the cell without following the change with time.
しかしながら、既知の細胞非侵襲的な細胞評価方法では、培養中の細胞の状態を定量的に評価することはできるものの、細胞の具体的な機能を評価することはできない。そのため、従来の一般的な細胞機能の評価は、解析の経験や知識を有している担当者が細胞の観察画像や細胞状態の評価結果に基づいて感覚的に判断するというレベルに留まっていた。こうした評価方法では、その評価結果の信頼性や再現性が担当者の経験や知識等に大きく依存する。また、そうした評価が適切であったか否かの検証も難しい。
However, although the known non-invasive cell evaluation method can quantitatively evaluate the state of cells in culture, it cannot evaluate the specific function of cells. Therefore, the conventional evaluation of general cell function has been limited to the level that a person in charge who has experience and knowledge of analysis makes a sensory judgment based on the observation image of the cell and the evaluation result of the cell state. .. In such an evaluation method, the reliability and reproducibility of the evaluation result largely depend on the experience and knowledge of the person in charge. It is also difficult to verify whether such an evaluation was appropriate.
本発明はこうした従来の課題を解決するためになされたものであり、その主たる目的は、幹細胞について得られた画像情報に基づいて、該幹細胞の機能や能力を非侵襲で且つ定量的に評価することができる細胞機能の評価方法及び細胞解析装置を提供することである。
The present invention has been made to solve these conventional problems, and its main purpose is to non-invasively and quantitatively evaluate the function and ability of a stem cell based on the image information obtained about the stem cell. It is an object of the present invention to provide a method for evaluating cell function and a cell analyzer capable of performing the same.
上記課題を解決するために成された本発明に係る細胞機能の評価方法の一態様は、幹細胞である被検細胞の細胞機能を評価する方法であって、
被検細胞を撮影した細胞画像を取得する画像取得ステップと、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出ステップと、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を評価する評価ステップと、
を有するものである。 One aspect of the method for evaluating cell function according to the present invention, which has been made to solve the above problems, is a method for evaluating cell function of a test cell which is a stem cell.
An image acquisition step to acquire a cell image of a test cell,
A feature amount extraction step for extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and
It has.
被検細胞を撮影した細胞画像を取得する画像取得ステップと、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出ステップと、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を評価する評価ステップと、
を有するものである。 One aspect of the method for evaluating cell function according to the present invention, which has been made to solve the above problems, is a method for evaluating cell function of a test cell which is a stem cell.
An image acquisition step to acquire a cell image of a test cell,
A feature amount extraction step for extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and
It has.
上記課題を解決するために成された本発明に係る細胞解析装置の一態様は、幹細胞である被検細胞の細胞機能を評価する細胞解析装置であって、
被検細胞を撮影した細胞画像を取得する画像取得部と、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出部と、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を相対的に評価する評価処理部と、
を備えるものである。 One aspect of the cell analysis device according to the present invention made to solve the above problems is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
An image acquisition unit that acquires a cell image of a test cell,
A feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell,
Is provided.
被検細胞を撮影した細胞画像を取得する画像取得部と、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出部と、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を相対的に評価する評価処理部と、
を備えるものである。 One aspect of the cell analysis device according to the present invention made to solve the above problems is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
An image acquisition unit that acquires a cell image of a test cell,
A feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell,
Is provided.
ここでいう「細胞機能」とはそのときの細胞の状態そのものではなく、細胞が有する能力や性能、或いは性質などであり、特に、再生医療や細胞治療に利用される場合において又はそれに利用するために培養・増殖する場合において有用な又は逆に不利に作用する機能力、性能、性質などである。具体的には例えば、未分化性の維持、遊走能、組織修復能などの細胞機能の少なくともいずれか一つを含むものとすることができる。
The "cell function" here is not the state of the cell itself at that time, but the ability, performance, or property of the cell, especially when it is used for regenerative medicine or cell therapy, or for its use. Functional power, performance, properties, etc. that are useful or adversely act when culturing and proliferating. Specifically, for example, it can include at least one of cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability.
本発明者らは、様々な実験や解析を繰り返し行うことによって、幹細胞の未分化性の維持や遊走性などの各種の細胞機能に関連する遺伝子の発現量の解析結果、或いは、細胞の遊走能の測定結果などと、非侵襲で以て得られる幹細胞の観察画像に基づいて求まる、幹細胞の輪郭部(周縁部)における厚さ方向の勾配や幹細胞の配向性(向きの揃い方)とが高い相関性を有することを見いだした。この知見に基づき、本発明の一態様である細胞機能の評価方法において特徴量抽出ステップでは、幹細胞の観察画像から、その被検細胞の輪郭部における厚さ方向の勾配の程度を示す指標値と、被検細胞の配向性の程度を示す指標値とのいずれか一方又は両方を、被検細胞の特徴量として抽出する。そして評価ステップでは、被検細胞の特徴量である指標値に基づいて、被検細胞の細胞機能を評価する。具体的には例えば、由来が異なる2種類の被検細胞について上記指標値の数値を比較して、いずれの細胞のほうが細胞機能が高いかの判断を下す。また、本発明の一態様である細胞解析装置では、CPU、RAM等を含むコンピュータ上で上記特徴量抽出ステップ及び評価ステップにおける処理が実施されるようにすることができる。
By repeating various experiments and analyzes, the present inventors have analyzed the expression level of genes related to various cell functions such as maintenance of undifferentiated stem cells and migration, or the migration ability of cells. The gradient in the thickness direction at the contour (peripheral part) of the stem cell and the orientation (alignment) of the stem cell, which can be obtained based on the measurement result of the stem cell and the observed image of the stem cell obtained by non-invasiveness, are high. It was found to have a correlation. Based on this finding, in the feature amount extraction step in the method for evaluating cell function, which is one aspect of the present invention, an index value indicating the degree of the gradient in the thickness direction in the contour portion of the test cell is obtained from the observation image of the stem cell. , Either one or both of the index value indicating the degree of orientation of the test cell is extracted as the feature amount of the test cell. Then, in the evaluation step, the cell function of the test cell is evaluated based on the index value which is the characteristic amount of the test cell. Specifically, for example, the numerical values of the above index values are compared with respect to two types of test cells having different origins, and it is determined which cell has higher cell function. Further, in the cell analysis device according to one aspect of the present invention, the processing in the feature amount extraction step and the evaluation step can be performed on a computer including a CPU, RAM and the like.
本発明の一態様に係る細胞機能の評価方法及び細胞解析装置によれば、幹細胞について非侵襲及び非破壊的に得られた画像情報に基づいて、該幹細胞の機能を定量的に評価することができる。こうした機能評価を数値を用いて行うことができるので、細胞の解析作業や評価作業の経験や知識が乏しい担当者であっても、的確で信頼性の高い評価を行うことができる。また、感覚に頼った評価にありがちな人による結果のばらつきを回避するとともに、評価の理由等の検証作業も容易になる。また、細胞機能の評価の作業効率を向上させることもできる。
According to the cell function evaluation method and the cell analyzer according to one aspect of the present invention, the function of a stem cell can be quantitatively evaluated based on the image information obtained non-invasively and non-destructively with respect to the stem cell. it can. Since such functional evaluation can be performed using numerical values, even a person in charge who has little experience or knowledge in cell analysis work or evaluation work can perform accurate and highly reliable evaluation. In addition, it is possible to avoid variations in the results depending on the person, which tends to be evaluated based on the senses, and it is easy to verify the reason for the evaluation. In addition, the work efficiency of evaluation of cell function can be improved.
以下、本発明の一実施形態である細胞機能の評価方法について添付図面を参照して説明する。
Hereinafter, a method for evaluating cell function, which is an embodiment of the present invention, will be described with reference to the attached drawings.
[本実施形態の細胞解析装置の構成]
図1は、本発明に係る細胞機能の評価を実施するための細胞解析装置の一実施形態の概略構成図である。 [Structure of the cell analyzer of the present embodiment]
FIG. 1 is a schematic configuration diagram of an embodiment of a cell analyzer for evaluating a cell function according to the present invention.
図1は、本発明に係る細胞機能の評価を実施するための細胞解析装置の一実施形態の概略構成図である。 [Structure of the cell analyzer of the present embodiment]
FIG. 1 is a schematic configuration diagram of an embodiment of a cell analyzer for evaluating a cell function according to the present invention.
本実施形態の細胞解析装置は、顕微観察部1と、制御・処理部2と、ユーザインターフェイスである入力部3及び表示部4と、を備える。
本実施形態において、顕微観察部1はインライン型ホログラフィック顕微鏡であり、レーザダイオードなどを含む光源部10とイメージセンサ11とを備え、光源部10とイメージセンサ11との間に、細胞13を含む培養プレート12が配置される。 The cell analysis device of the present embodiment includes amicroscopic observation unit 1, a control / processing unit 2, an input unit 3 and a display unit 4 which are user interfaces.
In the present embodiment, themicroscopic observation unit 1 is an in-line holographic microscope, includes a light source unit 10 including a laser diode and the like and an image sensor 11, and includes a cell 13 between the light source unit 10 and the image sensor 11. The culture plate 12 is arranged.
本実施形態において、顕微観察部1はインライン型ホログラフィック顕微鏡であり、レーザダイオードなどを含む光源部10とイメージセンサ11とを備え、光源部10とイメージセンサ11との間に、細胞13を含む培養プレート12が配置される。 The cell analysis device of the present embodiment includes a
In the present embodiment, the
制御・処理部2は、顕微観察部1の動作を制御するとともに顕微観察部1で取得されたデータを処理するものであって、撮影制御部20と、ホログラムデータ記憶部21と、位相情報算出部22と、画像再構成部23と、再構成画像データ記憶部24と、微分画像作成部25と、勾配スコア算出部26と、配向性スコア算出部27と、細胞機能評価情報出力部28と、を機能ブロックとして備える。
The control / processing unit 2 controls the operation of the microscopic observation unit 1 and processes the data acquired by the microscopic observation unit 1, and includes the imaging control unit 20, the hologram data storage unit 21, and the phase information calculation. Unit 22, image reconstruction unit 23, reconstruction image data storage unit 24, differential image creation unit 25, gradient score calculation unit 26, orientation score calculation unit 27, and cell function evaluation information output unit 28. , Is provided as a functional block.
通常、制御・処理部2の実体は、所定のソフトウェア(コンピュータプログラム)がインストールされたパーソナルコンピュータやより性能の高いワークステーション、或いは、そうしたコンピュータと通信回線を介して接続された高性能なコンピュータを含むコンピュータシステムである。即ち、制御・処理部2に含まれる各ブロックの機能は、CPU、RAM、HDDやSDDなどの外部記憶装置等を含むコンピュータ単体又は複数のコンピュータを含むコンピュータシステムに搭載されているソフトウェアを実行することで実施される、該コンピュータ又はコンピュータシステムに記憶されている各種データを用いた処理によって具現化されるものとすることができる。
Usually, the entity of the control / processing unit 2 is a personal computer or a higher-performance workstation in which predetermined software (computer program) is installed, or a high-performance computer connected to such a computer via a communication line. Including computer system. That is, the function of each block included in the control / processing unit 2 executes software installed in a single computer including a CPU, RAM, an external storage device such as an HDD or SDD, or a computer system including a plurality of computers. It can be embodied by the processing using various data stored in the computer or the computer system, which is carried out by the above.
本実施形態の細胞解析装置では、様々な細胞についての観察及び解析を行うことができるが、ここでは一例として、観察対象が多能性幹細胞の一つである間葉系幹細胞であるものとする。但し、後述するような細胞機能の評価は、間葉系幹細胞に限るものではなく、間葉系幹細胞と同様の又は類似した挙動を示す、それ以外の幹細胞にも適用することができる。
The cell analyzer of the present embodiment can observe and analyze various cells, but here, as an example, it is assumed that the observation target is a mesenchymal stem cell, which is one of the pluripotent stem cells. .. However, the evaluation of cell function as described later is not limited to mesenchymal stem cells, and can be applied to other stem cells that exhibit the same or similar behavior as mesenchymal stem cells.
[細胞の撮影及びIHM位相像の取得]
図2は、本実施形態の細胞解析装置を用いた細胞機能の評価作業における作業手順及び処理の流れを示すフローチャートである。また図3は、撮影動作及び画像再構成処理を説明するための概念図である。 [Photographing of cells and acquisition of IHM phase image]
FIG. 2 is a flowchart showing a work procedure and a flow of processing in the cell function evaluation work using the cell analysis device of the present embodiment. Further, FIG. 3 is a conceptual diagram for explaining a shooting operation and an image reconstruction process.
図2は、本実施形態の細胞解析装置を用いた細胞機能の評価作業における作業手順及び処理の流れを示すフローチャートである。また図3は、撮影動作及び画像再構成処理を説明するための概念図である。 [Photographing of cells and acquisition of IHM phase image]
FIG. 2 is a flowchart showing a work procedure and a flow of processing in the cell function evaluation work using the cell analysis device of the present embodiment. Further, FIG. 3 is a conceptual diagram for explaining a shooting operation and an image reconstruction process.
図3(a)は本実施形態の細胞解析装置において使用される培養プレート12の略上面図である。この培養プレート12には上面視円形状である6個のウェル12aが形成されており、その各ウェル12a内で細胞が培養される。ここでは、1枚の培養プレート12全体、つまりは6個のウェル12aを含む矩形状の範囲全体が観察対象領域である。顕微観察部1は、光源部10及びイメージセンサ11の組を4組備える。各組の光源部10及びイメージセンサ11はそれぞれ、図3(a)に示すように、培養プレート12全体を4等分した四つの4分割範囲81のホログラムデータの収集を担う。つまり、4組の光源部10及びイメージセンサ11が、培養プレート12全体に亘るホログラムデータの収集を分担する。
FIG. 3A is a schematic top view of the culture plate 12 used in the cell analyzer of the present embodiment. Six wells 12a having a circular shape in the top view are formed on the culture plate 12, and cells are cultured in each well 12a. Here, the entire observation plate 12, that is, the entire rectangular area including the six wells 12a is the observation target area. The microscopic observation unit 1 includes four sets of a light source unit 10 and an image sensor 11. As shown in FIG. 3A, each of the light source unit 10 and the image sensor 11 of each set is responsible for collecting hologram data of four four-division ranges 81 in which the entire culture plate 12 is divided into four equal parts. That is, the four sets of the light source unit 10 and the image sensor 11 share the collection of hologram data over the entire culture plate 12.
一組の光源部10及びイメージセンサ11が1回に撮影可能である範囲は、図3(b)及び(c)に示すように、4分割範囲81の中の1個のウェル12aを含む略正方形状の範囲82をX軸方向に10等分、Y軸方向に12等分して得られる一つの撮像単位83に相当する範囲である。一つの4分割範囲81は15×12=180個の撮像単位83を含む。四つの光源部10と四つのイメージセンサ11はそれぞれ、光源部10及びイメージセンサ11を含むX-Y面内で、4分割範囲81と同じ大きさである矩形の四つの頂点付近にそれぞれ配置されおり、培養プレート12上の異なる四つの撮像単位83についてのホログラムの取得を同時に行う。
As shown in FIGS. 3 (b) and 3 (c), the range in which the set of the light source unit 10 and the image sensor 11 can be photographed at one time includes the well 12a in the four division range 81. It is a range corresponding to one imaging unit 83 obtained by dividing the square-shaped range 82 into 10 equal parts in the X-axis direction and 12 equal parts in the Y-axis direction. One 4-division range 81 includes 15 × 12 = 180 imaging units 83. The four light source units 10 and the four image sensors 11 are respectively arranged in the XY plane including the light source unit 10 and the image sensor 11 near the four vertices of a rectangle having the same size as the four division range 81. The holograms of the four different imaging units 83 on the culture plate 12 are acquired at the same time.
ホログラムデータの収集に際し、オペレータはまず、観察対象である細胞13が培養されている培養プレート12を顕微観察部1の所定位置にセットし、該培養プレート12を特定する識別番号や測定日時などの情報を入力部3から入力したうえで測定実行を指示する。この測定指示を受けて撮影制御部20は、顕微観察部1の各部を制御して撮影を実行する(ステップS1)。
When collecting hologram data, the operator first sets the culture plate 12 in which the cells 13 to be observed are cultured at a predetermined position of the microscopic observation unit 1, and determines the identification number, measurement date and time, etc. that identify the culture plate 12. After inputting the information from the input unit 3, the measurement execution is instructed. In response to this measurement instruction, the imaging control unit 20 controls each unit of the microscopic observation unit 1 to execute imaging (step S1).
即ち、一つの光源部10は、微小角度(例えば10°程度)の広がりを持つコヒーレント光を培養プレート12の所定の領域(一つの撮像単位83)に照射する。培養プレート12上の細胞13を透過したコヒーレント光(物体光15)は、培養プレート12上で細胞13の周囲の領域(通常は培地)を透過した光(参照光14)と干渉しつつイメージセンサ11に到達する。物体光15は細胞13を透過する際に位相が変化した光であり、他方、参照光14は細胞13を透過しないので該細胞13に起因する位相変化を受けない光である。したがって、イメージセンサ11の検出面(像面)上には、細胞13により位相が変化した物体光15と位相が変化していない参照光14との干渉像、つまりホログラムがそれぞれ形成され、このホログラムに対応する2次元的な光強度分布データ(ホログラムデータ)がイメージセンサ11から出力される。
That is, one light source unit 10 irradiates a predetermined region (one imaging unit 83) of the culture plate 12 with coherent light having a spread of a minute angle (for example, about 10 °). The coherent light (object light 15) transmitted through the cells 13 on the culture plate 12 interferes with the light (reference light 14) transmitted through the region (usually the medium) around the cells 13 on the culture plate 12 and is an image sensor. Reach 11 The object light 15 is light whose phase changes when it passes through the cell 13, while the reference light 14 is light that does not pass through the cell 13 and therefore does not undergo the phase change caused by the cell 13. Therefore, on the detection surface (image surface) of the image sensor 11, an interference image of the object light 15 whose phase has been changed by the cell 13 and the reference light 14 whose phase has not changed, that is, a hologram is formed, and this hologram is formed. The two-dimensional light intensity distribution data (hologram data) corresponding to the above is output from the image sensor 11.
上述したように、四つの光源部10からは略同時に培養プレート12に向けてコヒーレント光が出射され、四つのイメージセンサ11では培養プレート12上の異なる撮像単位83に対応する領域のホログラムデータが取得される。一つの測定位置での測定が終了する毎に、光源部10及びイメージセンサ11は図示しない移動部により、X-Y面内で一つの撮像単位83に相当する距離だけX軸方向及びY軸方向にステップ状に順次移動される。これによって、4分割範囲81に含まれる180個の撮像単位83での測定が実施され、四組の光源部10及びイメージセンサ11全体で培養プレート12全体の測定が実行されることになる。このようにして顕微観察部1の四つのイメージセンサ11で得られたホログラムデータは、測定日時等の属性情報とともに、ホログラムデータ記憶部21に格納される。
As described above, coherent light is emitted from the four light source units 10 toward the culture plate 12 at substantially the same time, and the four image sensors 11 acquire hologram data of regions corresponding to different imaging units 83 on the culture plate 12. Will be done. Each time the measurement at one measurement position is completed, the light source unit 10 and the image sensor 11 are moved in the X-axis direction and the Y-axis direction by a moving unit (not shown) by a distance corresponding to one imaging unit 83 in the XY plane. It is moved sequentially in steps. As a result, the measurement is performed by 180 imaging units 83 included in the 4-division range 81, and the measurement of the entire culture plate 12 is executed by the four sets of the light source unit 10 and the image sensor 11 as a whole. The hologram data thus obtained by the four image sensors 11 of the microscopic observation unit 1 is stored in the hologram data storage unit 21 together with the attribute information such as the measurement date and time.
上述したような一連の測定(撮影)が終了すると、位相情報算出部22はホログラムデータ記憶部21からホログラムデータを順次読み出し、光波の伝播計算処理(位相回復処理)を行うことで2次元的な各位置における位相情報及び振幅情報を復元する。これら情報の空間分布は撮像単位83毎に求まる。全ての撮像単位83の位相情報及び振幅情報が得られたならば、画像再構成部23は、その位相情報や振幅情報に基づいて、観察対象領域全体の位相像つまりはIHM位相像を形成する(ステップS2)。
When the series of measurements (photographing) as described above is completed, the phase information calculation unit 22 sequentially reads hologram data from the hologram data storage unit 21 and performs light wave propagation calculation processing (phase recovery processing) in a two-dimensional manner. Restore the phase information and amplitude information at each position. The spatial distribution of this information is obtained for each imaging unit 83. If the phase information and amplitude information of all the imaging units 83 are obtained, the image reconstruction unit 23 forms a phase image of the entire observation target region, that is, an IHM phase image, based on the phase information and amplitude information. (Step S2).
即ち、画像再構成部23は撮像単位83毎に算出された位相情報の空間分布に基づいて、各撮像単位83のIHM位相像を再構成する。そして、その狭い範囲のIHM位相像を繋ぎ合わせるタイリング処理(図3(d)参照)を行うことで、観察対象領域つまりは培養プレート12全体についてのIHM位相像を形成する。そのIHM位相像を構成するデータは再構成画像データ記憶部24に保存される。なお、タイリング処理の際には撮像単位83の境界でのIHM位相像が滑らかに繋がるように適宜の補正処理を行うとよい。
That is, the image reconstruction unit 23 reconstructs the IHM phase image of each imaging unit 83 based on the spatial distribution of the phase information calculated for each imaging unit 83. Then, by performing a tiling process (see FIG. 3D) for connecting the IHM phase images in the narrow range, an IHM phase image for the observation target region, that is, the entire culture plate 12 is formed. The data constituting the IHM phase image is stored in the reconstructed image data storage unit 24. At the time of the tiling process, it is advisable to perform an appropriate correction process so that the IHM phase images at the boundary of the imaging unit 83 are smoothly connected.
上記のような位相情報の算出や画像再構成の際には、特許文献3、4等に開示されている周知のアルゴリズムを用いればよい。一般にIHM位相像では、透明であって光学顕微鏡では見えにくい細胞の輪郭(境界)やその内部の模様が見え易くなる。
When calculating the phase information and reconstructing the image as described above, a well-known algorithm disclosed in Patent Documents 3 and 4 and the like may be used. Generally, in an IHM phase image, it becomes easy to see the outline (boundary) of a cell and the pattern inside the cell, which are transparent and difficult to see with an optical microscope.
なお、ホログラムデータに基づいて、位相情報のほかに、強度情報や、位相情報と強度情報とをマージした擬似位相情報なども併せて算出し、画像再構成部23はこれらに基づく再生像(IHM強度像、IHM擬似位相像)を作成することもできる。
In addition to the phase information, the intensity information and the pseudo-phase information obtained by merging the phase information and the intensity information are also calculated based on the hologram data, and the image reconstruction unit 23 calculates the reproduced image (IHM) based on these. Intensity image, IHM pseudo-phase image) can also be created.
次に、画像再構成部23は、作成されたIHM位相像について細胞が存在しないことが明確である背景領域を除去する処理を実行する(ステップS3)。
背景除去の手法としては様々な方法を採ることができるが、一例としては、テクスチャ解析を用いることができる。テクスチャ解析には大別して構造的テクスチャ解析と統計的テクスチャ解析とがあるが、画像内の局所的な部位の模様やパターンの特徴を抽出するには後者が適当である。統計的テクスチャ解析には、濃度ヒストグラムを用いる濃度ヒストグラム法、差分統計量を用いる濃度レベル差分法、同時生起行列を用いる空間濃度レベル依存法、濃度共起行列を用いる方法など、様々な方法があり、適宜の方法を選択すればよい。なお、背景領域として除去された部分は画素値を0等の固定値にすればよい。 Next, theimage reconstruction unit 23 executes a process of removing the background region in which it is clear that the cells do not exist in the created IHM phase image (step S3).
Various methods can be adopted as the background removal method, and as an example, texture analysis can be used. Texture analysis is roughly divided into structural texture analysis and statistical texture analysis, and the latter is suitable for extracting patterns and pattern features of local parts in an image. There are various methods for statistical texture analysis, such as a concentration histogram method using a concentration histogram, a concentration level difference method using a difference statistic, a spatial concentration level dependence method using a simultaneous occurrence matrix, and a method using a concentration co-occurrence matrix. , The appropriate method may be selected. The pixel value of the portion removed as the background area may be a fixed value such as 0.
背景除去の手法としては様々な方法を採ることができるが、一例としては、テクスチャ解析を用いることができる。テクスチャ解析には大別して構造的テクスチャ解析と統計的テクスチャ解析とがあるが、画像内の局所的な部位の模様やパターンの特徴を抽出するには後者が適当である。統計的テクスチャ解析には、濃度ヒストグラムを用いる濃度ヒストグラム法、差分統計量を用いる濃度レベル差分法、同時生起行列を用いる空間濃度レベル依存法、濃度共起行列を用いる方法など、様々な方法があり、適宜の方法を選択すればよい。なお、背景領域として除去された部分は画素値を0等の固定値にすればよい。 Next, the
Various methods can be adopted as the background removal method, and as an example, texture analysis can be used. Texture analysis is roughly divided into structural texture analysis and statistical texture analysis, and the latter is suitable for extracting patterns and pattern features of local parts in an image. There are various methods for statistical texture analysis, such as a concentration histogram method using a concentration histogram, a concentration level difference method using a difference statistic, a spatial concentration level dependence method using a simultaneous occurrence matrix, and a method using a concentration co-occurrence matrix. , The appropriate method may be selected. The pixel value of the portion removed as the background area may be a fixed value such as 0.
具体的には、IHM位相像全体を複数の細かい小領域に区分し、その小領域毎に所定のテクスチャ解析を実行してテクスチャ特徴量を算出する。その小領域が背景領域のみである場合とその小領域に少なくとも細胞領域の一部が含まれる場合とではテクスチャ特徴量に明確な差異が生じるため、テクスチャ特徴量から背景領域に相当する小領域を見つけて除外すればよい。もちろん、こうした背景除去処理は必須ではなく省略してもよい。
Specifically, the entire IHM phase image is divided into a plurality of small small areas, and a predetermined texture analysis is executed for each small area to calculate the texture feature amount. Since there is a clear difference in the texture feature amount between the case where the small area is only the background area and the case where the small area includes at least a part of the cell area, the small area corresponding to the background area is selected from the texture feature amount. You can find it and exclude it. Of course, such background removal processing is not essential and may be omitted.
さらに画像再構成部23は、背景除去処理後のIHM位相像に対しガウシアンフィルタ等を用いてノイズ成分を除去する処理を実行する(ステップS4)。このノイズ除去処理も上記背景除去処理と同様に、省略することができる。
以上の処理により、ノイズや背景が除去された、つまりは目的の細胞が良好に観測可能なIHM位相像が得られる。 Further, theimage reconstruction unit 23 executes a process of removing noise components from the IHM phase image after the background removal process by using a Gaussian filter or the like (step S4). This noise removal process can also be omitted as in the background removal process.
By the above processing, noise and background are removed, that is, an IHM phase image in which the target cell can be observed well can be obtained.
以上の処理により、ノイズや背景が除去された、つまりは目的の細胞が良好に観測可能なIHM位相像が得られる。 Further, the
By the above processing, noise and background are removed, that is, an IHM phase image in which the target cell can be observed well can be obtained.
[IHM位相像に基づく細胞の輪郭部の勾配スコア算出]
そのあと、作成されたIHM位相像に基づいて、細胞の輪郭部における厚さ方向の勾配の程度を指標化した勾配スコアが算出される。
即ち、微分画像作成部25は、上述したようなノイズ等の除去後のIHM位相像の各画素の信号値(画素値)に対し微分フィルタを適用し、画素毎に微分値を算出する。そして、全ての画素の微分値から構成される微分画像を作成する(ステップS5)。微分フィルタとしては、例えば画像のエッジ検出によく利用されるラプラシアンフィルタを用いることができる。 [Calculation of gradient score of cell contour based on IHM phase image]
Then, based on the created IHM phase image, a gradient score is calculated as an index of the degree of gradient in the thickness direction in the contour portion of the cell.
That is, the differentialimage creation unit 25 applies a differential filter to the signal value (pixel value) of each pixel of the IHM phase image after removing noise or the like as described above, and calculates the differential value for each pixel. Then, a differential image composed of the differential values of all the pixels is created (step S5). As the differential filter, for example, a Laplacian filter often used for edge detection of an image can be used.
そのあと、作成されたIHM位相像に基づいて、細胞の輪郭部における厚さ方向の勾配の程度を指標化した勾配スコアが算出される。
即ち、微分画像作成部25は、上述したようなノイズ等の除去後のIHM位相像の各画素の信号値(画素値)に対し微分フィルタを適用し、画素毎に微分値を算出する。そして、全ての画素の微分値から構成される微分画像を作成する(ステップS5)。微分フィルタとしては、例えば画像のエッジ検出によく利用されるラプラシアンフィルタを用いることができる。 [Calculation of gradient score of cell contour based on IHM phase image]
Then, based on the created IHM phase image, a gradient score is calculated as an index of the degree of gradient in the thickness direction in the contour portion of the cell.
That is, the differential
図6は、上下左右の4近傍の画素を用いた、一般的な3×3画素のラプラシアンフィルタの一例である。また、図7(a)及び(b)に示した、垂直方向のフィルタと水平方向のフィルタとを組み合わせたソーベルフィルタを微分フィルタとして用いてもよい。画素毎に微分値が得られたならば、それを用いてIHM位相像に対応する微分画像を作成する。なお、ソーベルフィルタは後述する細胞の配向性スコアの算出の際にも利用される。
FIG. 6 is an example of a general 3 × 3 pixel Laplacian filter using pixels in the vicinity of four pixels on the top, bottom, left, and right. Further, the Sobel filter, which is a combination of the vertical filter and the horizontal filter shown in FIGS. 7A and 7B, may be used as the differential filter. If a differential value is obtained for each pixel, a differential image corresponding to the IHM phase image is created using it. The Sobel filter is also used when calculating the cell orientation score, which will be described later.
図8は、ヒト臍帯由来間葉系幹細胞(Umbilical Cord derived-Mesenchymal Stem Cells)のIHM位相像とそれから得られる微分画像の一例である。IHM位相像における各画素の信号値は、細胞を通過した光の位相遅れ量を示しており、それは細胞の光学厚さを反映している。したがって、各細胞の輪郭部の厚さ方向の勾配が急峻であるほど、その輪郭部に対応する画素の微分値は大きくなる。図8(b)の微分画像では表示輝度範囲を適当に調整しており、それによって各細胞の輪郭部分が内部側に比べて明瞭に描出されている。
FIG. 8 is an example of an IHM phase image of human umbilical cord-derived mesenchymal stem cells (Umbilical Cord derived-Mesenchymal Stem Cells) and a differential image obtained from the IHM phase image. The signal value of each pixel in the IHM phase image indicates the amount of phase lag of light that has passed through the cell, which reflects the optical thickness of the cell. Therefore, the steeper the gradient in the thickness direction of the contour portion of each cell, the larger the differential value of the pixel corresponding to the contour portion. In the differential image of FIG. 8B, the display luminance range is appropriately adjusted, whereby the contour portion of each cell is clearly depicted as compared with the inner side.
勾配スコア算出部26は、微分画像を構成する全ての画素の微分値に基づいて、横軸が微分値、縦軸が出現数(画素数)である微分値ヒストグラムを作成する(ステップS6)。微分値の増加に対する出現数の変化の状況を視覚的に把握し易くするには、ヒストグラムの横軸をリニア軸、縦軸を対数軸とするとよい。
The gradient score calculation unit 26 creates a differential value histogram in which the horizontal axis is the differential value and the vertical axis is the number of occurrences (number of pixels) based on the differential values of all the pixels constituting the differential image (step S6). In order to make it easier to visually grasp the change in the number of occurrences with respect to the increase in the differential value, the horizontal axis of the histogram should be the linear axis and the vertical axis should be the logarithmic axis.
図9には微分値ヒストグラムの一例を示している。図中のA、Bは、培養条件(具体的には細胞を活性化する賦活剤の付与の有無)が相違する二つのサンプルを示している。図9に示すように、微分値ヒストグラムには、低微分値側(図では左方)のスロープが急峻で、高微分値側(図では右方)のスロープがなだらかである左右非対称のピークが現れる。このピークのピークトップを含む低微分値側の範囲に含まれる画素は、主として細胞ではない背景領域や細胞内で厚さが比較的平坦な部位に存在する画素であると考えられる。一方、高微分値側のなだらかなスロープの範囲に含まれる画素は、主として細胞の輪郭部に存在する画素であると考えられる。したがって、微分値ヒストグラムにおける高微分値側のスロープの傾斜の程度は、細胞の輪郭部における厚さ方向の勾配の程度を反映している。
FIG. 9 shows an example of the differential value histogram. A and B in the figure show two samples having different culture conditions (specifically, the presence or absence of an activator that activates cells). As shown in FIG. 9, in the differential value histogram, there are left-right asymmetric peaks in which the slope on the low differential value side (left in the figure) is steep and the slope on the high differential value side (right in the figure) is gentle. appear. It is considered that the pixels included in the range on the low differential value side including the peak top of this peak are mainly pixels existing in a background region other than the cell or a region having a relatively flat thickness in the cell. On the other hand, the pixels included in the range of the gentle slope on the high differential value side are considered to be the pixels mainly present in the contour portion of the cell. Therefore, the degree of slope slope on the high derivative side in the differential value histogram reflects the degree of slope in the thickness direction at the contour of the cell.
即ち、元のIHM位相像に現れている多数の細胞の中で、細胞の輪郭部における厚さ方向の勾配が急峻である細胞の割合が多いほど、相対的に微分値が高い画素の割合が増えるということができる。そして、微分値が相対的に高い画素の割合が多いほど、微分値ヒストグラムにおけるピークの右側のスロープの傾斜が緩やかになる。図9では、サンプル1のピークのほうがサンプル2のピークに比べてスロープが緩やかであり、細胞の輪郭部における厚さ方向の勾配が急峻である細胞の割合が多いということができる。そこで、本実施形態の細胞解析装置では、異なる微分値ヒストグラムにおいて上記スロープの傾斜の程度を互いに比較できるような指標値を、勾配スコアとして算出する。
That is, among the large number of cells appearing in the original IHM phase image, the larger the proportion of cells having a steeper thickness gradient in the outline of the cells, the greater the proportion of pixels having a relatively high differential value. It can be said that it will increase. Then, as the proportion of pixels having a relatively high differential value increases, the slope on the right side of the peak in the differential value histogram becomes gentler. In FIG. 9, it can be said that the peak of sample 1 has a gentler slope than the peak of sample 2, and the proportion of cells having a steep thickness-direction gradient in the contour portion of the cells is large. Therefore, in the cell analysis apparatus of the present embodiment, an index value that allows the degree of slope inclination to be compared with each other in different differential value histograms is calculated as a gradient score.
具体的には、勾配スコア算出部26は、まず微分値ヒストグラムに対してばらつきや誤差を軽減するために微分値の変化方向に移動平均をとることでスムージング処理を実行する。微分値ヒストグラムにおいて細胞の輪郭部における厚さ方向の勾配の差異が顕著に現れる高微分値範囲では、減少するスロープは指数関数で以て近似することができる。上述したように縦軸を対数軸とすると、上記スロープはほぼ直線的になるから、グラフ上で直線近似を行うことで指数関数の近似を行うことができる。そこで、ここでは、所定の高微分値範囲の中で任意の微分値を2個選択し、その2個の微分値の間におけるスロープを、y=a・e-bx(但し、a、bは任意の定数)の指数関数で近似する。即ち、スロープに対し最も近似誤差が小さくなる定数a、bを探索すればよい。このときに求まる指数部の定数bはスロープの勾配の程度を反映しており、それは各細胞の輪郭部における厚さ方向の勾配の程度の傾向を反映しているから、この指数部の定数bを勾配スコアとすればよい。このときの勾配スコアは細胞の密度の影響を受けないため、異なるサンプル間の比較に都合がよい。
Specifically, the gradient score calculation unit 26 first executes a smoothing process by taking a moving average in the changing direction of the differential value in order to reduce variations and errors in the differential value histogram. In the high differential value range where the difference in the gradient in the thickness direction at the contour of the cell is prominent in the differential value histogram, the decreasing slope can be approximated by an exponential function. As described above, when the vertical axis is the logarithmic axis, the slope becomes almost linear, so that the exponential function can be approximated by performing linear approximation on the graph. Therefore, here, two arbitrary differential values are selected within a predetermined high differential value range, and the slope between the two differential values is set as y = a · e -bx (where a and b are). Approximate with an exponential function of any constant). That is, the constants a and b having the smallest approximation error with respect to the slope may be searched. The constant b of the exponent part obtained at this time reflects the degree of slope gradient, and since it reflects the tendency of the degree of gradient in the thickness direction in the contour portion of each cell, the constant b of this exponent part Can be used as the gradient score. Since the gradient score at this time is not affected by the cell density, it is convenient for comparison between different samples.
[勾配スコアの算出方法の他の例]
微分値ヒストグラムから勾配スコアを算出する際には、上記方法に限らず、以下のような他の方法によってもよい。 [Other examples of how to calculate the gradient score]
When calculating the gradient score from the differential value histogram, the method is not limited to the above method, and other methods such as the following may be used.
微分値ヒストグラムから勾配スコアを算出する際には、上記方法に限らず、以下のような他の方法によってもよい。 [Other examples of how to calculate the gradient score]
When calculating the gradient score from the differential value histogram, the method is not limited to the above method, and other methods such as the following may be used.
図10~図12は、勾配スコアの算出方法の他の例の説明図である。
図10では、微分値ヒストグラムのピークの半値幅を勾配スコアとしている。ここでいう半値幅とは、ピークのピークトップの出現数の1/2の出現数における微分値の幅であり、例えば図10では、サンプル1のピークに対し半値幅Wa、サンプル2のピークに対して半値幅Wbが求まる。但し、上述したように、ここで意味があるのは高微分値側のスロープのみであるから、ピークトップにおける微分値と、(ピークトップの出現数)×(1/2)を示す水平な線と微分値が高い側のスロープとが交差する点に対応する微分値との差分を半値幅の代わりに用いてもよい。 10 to 12 are explanatory views of other examples of the method of calculating the gradient score.
In FIG. 10, the half width of the peak of the differential value histogram is used as the gradient score. The half-value width referred to here is the width of the differential value at half the number of appearances of the peak top of the peak. For example, in FIG. 10, the half-value width Wa and the peak ofsample 2 are set with respect to the peak of sample 1. On the other hand, the half width Wb can be obtained. However, as described above, since only the slope on the high differential value side is meaningful here, the differential value at the peak top and the horizontal line indicating (the number of occurrences of the peak top) × (1/2). The difference between the differential value and the differential value corresponding to the intersection of the slope on the higher differential value side may be used instead of the half width.
図10では、微分値ヒストグラムのピークの半値幅を勾配スコアとしている。ここでいう半値幅とは、ピークのピークトップの出現数の1/2の出現数における微分値の幅であり、例えば図10では、サンプル1のピークに対し半値幅Wa、サンプル2のピークに対して半値幅Wbが求まる。但し、上述したように、ここで意味があるのは高微分値側のスロープのみであるから、ピークトップにおける微分値と、(ピークトップの出現数)×(1/2)を示す水平な線と微分値が高い側のスロープとが交差する点に対応する微分値との差分を半値幅の代わりに用いてもよい。 10 to 12 are explanatory views of other examples of the method of calculating the gradient score.
In FIG. 10, the half width of the peak of the differential value histogram is used as the gradient score. The half-value width referred to here is the width of the differential value at half the number of appearances of the peak top of the peak. For example, in FIG. 10, the half-value width Wa and the peak of
図11では、微分値ヒストグラム上のピークの減少スロープにおける出現数の減少率を勾配スコアとしている。具体的には、所定の高微分値範囲において、任意のk個(但し、kは2以上の整数)の微分値を選択し、そのk個の微分値に対応する出現数の比率を勾配スコアとして算出する。一般的には図11に示すようにkは2でよく、二つの微分値D1、D2について、サンプル1のピークに対し出現数比Xa[%]、サンプル2のピークに対して出現数比Xb[%]が勾配スコアとして求まる。
In FIG. 11, the rate of decrease in the number of occurrences in the decrease slope of the peak on the differential value histogram is used as the gradient score. Specifically, in a predetermined high differential value range, an arbitrary k (where k is an integer of 2 or more) differential values are selected, and the ratio of the number of occurrences corresponding to the k differential values is calculated as the gradient score. Calculate as. Generally, as shown in FIG. 11, k may be 2, and for the two differential values D1 and D2, the appearance number ratio Xa [%] to the peak of sample 1 and the appearance number ratio Xb to the peak of sample 2. [%] Can be obtained as the gradient score.
図12では、一定の出現数差に対応する微分値の差分を勾配スコアとしている。具体的には、高微分値範囲のスロープに対応する出現数範囲において、任意のL個(但し、Lは2以上の整数)の出現数を選択し、そのL個の出現数に対応する微分値の差分(微分値の幅)を勾配スコアとして算出する。一般的には図12に示すようにLは2でよく、二つの出現数P1、P2について、サンプル1のピークに対し微分値差La、サンプル2のピークに対して微分値差Lbが求まる。なお、出現数の絶対値は細胞密度に依存するため、細胞密度の相違の影響を無くすには、例えば出現数を規格化するような処理を行うとよい。
In FIG. 12, the difference in the differential value corresponding to a certain difference in the number of appearances is used as the gradient score. Specifically, in the number of occurrences range corresponding to the slope of the high differential value range, an arbitrary L number of appearances (where L is an integer of 2 or more) is selected, and the derivative corresponding to the number of L appearances is selected. The difference between the values (width of the differential value) is calculated as the gradient score. Generally, as shown in FIG. 12, L may be 2, and for the two occurrence numbers P1 and P2, the differential value difference La is obtained from the peak of sample 1 and the differential value difference Lb is obtained from the peak of sample 2. Since the absolute value of the number of appearances depends on the cell density, in order to eliminate the influence of the difference in cell density, for example, a process for standardizing the number of appearances may be performed.
また、本発明者の実験的な検討によれば、微分値ヒストグラムにおいて、細胞の輪郭部における厚さ方向の勾配の差異が顕著に現れる高微分値範囲の中でも、その微分値が特に高い範囲では、出現数は細胞の数又はコンフルエンシ(画像面積全体に占める細胞の面積の割合)に比例することが分かっている。そのため、そうした高微分値範囲における出現数を細胞数又はコンフルエンシにより正規化すると、それらに依存しない勾配スコアとなる。
Further, according to the experimental study of the present inventor, in the differential value histogram, in the high differential value range in which the difference in the gradient in the thickness direction in the contour portion of the cell appears remarkably, the differential value is particularly high. , The number of appearances is known to be proportional to the number of cells or the confluency (the ratio of the area of cells to the total image area). Therefore, if the number of occurrences in such a high differential value range is normalized by the number of cells or the confluence, a gradient score that does not depend on them is obtained.
そこで、本装置による測定方法とは別の、つまりは独立した計測方法によって、観観察対象である細胞画像(IHM位相像)におけるコンフルエンシ又は細胞数を求める。計測方法としては例えば、血球計算盤によるセルカウント等を利用することができる。そして、微分値ヒストグラムにおいて高微分値範囲の中の任意の微分値における出現数を求め、この出現数を上記のように求めた細胞数又はコンフルエンシで除することにより、正規化した出現数を勾配スコアとして算出するようにしてもよい。
Therefore, the confluence or the number of cells in the cell image (IHM phase image) to be observed is obtained by a measurement method different from the measurement method by this device, that is, an independent measurement method. As a measurement method, for example, cell counting by a hemocytometer or the like can be used. Then, the number of appearances at an arbitrary differential value in the high differential value range is obtained from the differential value histogram, and the number of appearances is divided by the number of cells or confluency obtained as described above to obtain a gradient of the normalized number of appearances. It may be calculated as a score.
[IHM位相像に基づく細胞の配向性スコア算出]
次いで、IHM位相像において観測される多数の細胞の向きの揃い具合を指標化した配向性スコアが算出される。図3及び図4はIHM位相像から配向性スコアの算出する際の手順及び処理を示すフローチャート、図13は配向性スコアの算出方法の説明図である。 [Calculation of cell orientation score based on IHM phase image]
Next, an orientation score is calculated that indexes the orientation of a large number of cells observed in the IHM phase image. 3 and 4 are flowcharts showing the procedure and processing for calculating the orientation score from the IHM phase image, and FIG. 13 is an explanatory diagram of the calculation method of the orientation score.
次いで、IHM位相像において観測される多数の細胞の向きの揃い具合を指標化した配向性スコアが算出される。図3及び図4はIHM位相像から配向性スコアの算出する際の手順及び処理を示すフローチャート、図13は配向性スコアの算出方法の説明図である。 [Calculation of cell orientation score based on IHM phase image]
Next, an orientation score is calculated that indexes the orientation of a large number of cells observed in the IHM phase image. 3 and 4 are flowcharts showing the procedure and processing for calculating the orientation score from the IHM phase image, and FIG. 13 is an explanatory diagram of the calculation method of the orientation score.
配向性スコア算出部27はステップS4でノイズ除去等がなされたIHM位相像を読み込み(ステップS21)、この画像を図13(a)に示すように、複数の矩形状の小領域に分割する(ステップS22)。図13(a)では、分割数は5×7=35であるが、これは一例であり、小領域の大きさ及び数は、位相像における細胞の大きさ、細胞密度などに応じて適宜に設定するとよい。
The orientation score calculation unit 27 reads the IHM phase image from which noise has been removed in step S4 (step S21), and divides this image into a plurality of rectangular small regions as shown in FIG. 13A (step S21). Step S22). In FIG. 13A, the number of divisions is 5 × 7 = 35, which is an example, and the size and number of small regions are appropriately determined according to the cell size, cell density, etc. in the phase image. It is good to set.
次に、配向性スコア算出部27は、分割により得られた小領域毎に、その小領域に含まれる細胞の配向の強さと向きとを算出する(ステップS23)。一つの小領域における処理を図5により具体的に説明する。
Next, the orientation score calculation unit 27 calculates the orientation strength and orientation of the cells contained in the small regions for each small region obtained by the division (step S23). The processing in one small area will be specifically described with reference to FIG.
配向性スコア算出部27はまず小領域画像を読み込み(ステップS31)、ノイズ除去処理を行う(ステップS32)。これはステップS4と同様の処理でよく、省略することもできる。そのあと、各画素の信号値(画素値)に対し微分フィルタ等を用いた輪郭検出処理を実行する。ここでは、上述した、図7(a)に示した垂直方向のソーベルフィルタを用いた垂直方向の輪郭検出と、図7(b)に示した水平方向のソーベルフィルタを用いた水平方向の輪郭検出とを画素毎に行い(ステップS33、S34)、その画素における輝度の変化の強さと向きとを算出する(ステップS35、S36)。
The orientation score calculation unit 27 first reads a small area image (step S31) and performs noise removal processing (step S32). This may be the same processing as in step S4, and may be omitted. After that, contour detection processing using a differential filter or the like is executed for the signal value (pixel value) of each pixel. Here, the vertical contour detection using the vertical sobel filter shown in FIG. 7 (a) and the horizontal contour detection using the horizontal sobel filter shown in FIG. 7 (b) are described above. Contour detection is performed for each pixel (steps S33 and S34), and the strength and direction of the change in luminance in that pixel are calculated (steps S35 and S36).
具体的には、或る一つの画素の信号値org(x, y)に対する垂直方向のソーベルフィルタによる処理後の信号値をsobelH(x, y)、水平方向のソーベルフィルタによる処理後の信号値をsobelV(x, y)としたとき、輝度変化の強さStrength(x, y)は次の(1)式で、輝度変化の向きAngle(x, y)は次の(2)式で算出することができる。
Strength(x, y)=√(sobelH(x, y)2+sobelV(x, y)2) …(1)
Angle(x, y)=tan-1(sobelH(x, y)/sobelV(x, y)) …(2) Specifically, the signal value after processing by the sobel filter in the vertical direction with respect to the signal value org (x, y) of a certain pixel is sobel H (x, y), and after processing by the sobel filter in the horizontal direction. When the signal value is sobel V (x, y), the strength of the luminance change Strength (x, y) is given by the following equation (1), and the direction of the luminance change Angle (x, y) is given by the following equation (2). Can be calculated with.
Strength (x, y) = √ (sobelH (x, y) 2 + sobelV (x, y) 2 )… (1)
Angle (x, y) = tan -1 (sobelH (x, y) / sobelV (x, y))… (2)
Strength(x, y)=√(sobelH(x, y)2+sobelV(x, y)2) …(1)
Angle(x, y)=tan-1(sobelH(x, y)/sobelV(x, y)) …(2) Specifically, the signal value after processing by the sobel filter in the vertical direction with respect to the signal value org (x, y) of a certain pixel is sobel H (x, y), and after processing by the sobel filter in the horizontal direction. When the signal value is sobel V (x, y), the strength of the luminance change Strength (x, y) is given by the following equation (1), and the direction of the luminance change Angle (x, y) is given by the following equation (2). Can be calculated with.
Strength (x, y) = √ (sobelH (x, y) 2 + sobelV (x, y) 2 )… (1)
Angle (x, y) = tan -1 (sobelH (x, y) / sobelV (x, y))… (2)
小領域に含まれる全ての画素についてステップS33~S36の処理を実行したならば、輝度変化の向きの情報を細胞の向きの情報に変換するために、まず輝度変化の角度の分布を算出する(ステップS37)。そのためには、まず(2)式で求まる連続的な数値であるAngle(x, y)を、四捨五入等して例えば1degree毎などの一定の角度間隔の数値に変換する。そして、その変換後の角度の分布、つまりはヒストグラムを求める。その際には、角度毎に、輝度変化の強さStrength(x, y)が所定の閾値以上である画素の数を計数してその計数値を角度分布の頻度とすればよい。また、角度毎に、輝度変化の向きがその角度である全ての画素における輝度変化の強さStrength(x, y)の総和を計算し、その総和の値を角度分布における頻度として用いてもよい。
When the processes of steps S33 to S36 are executed for all the pixels included in the small region, the distribution of the angle of the brightness change is first calculated in order to convert the information on the direction of the brightness change into the information on the direction of the cells ( Step S37). To do so, first, Angle (x, y), which is a continuous numerical value obtained by Eq. (2), is rounded off and converted into a numerical value at a fixed angle interval, for example, every 1 degree. Then, the distribution of the angle after the conversion, that is, the histogram is obtained. In that case, the number of pixels whose brightness change strength Strength (x, y) is equal to or greater than a predetermined threshold value may be counted for each angle, and the counted value may be used as the frequency of the angle distribution. Further, for each angle, the sum of the strengths of the brightness changes (x, y) in all the pixels whose brightness change direction is the angle may be calculated, and the value of the sum may be used as the frequency in the angle distribution. ..
次いで、ステップS37で得られた角度分布の角度を90度回転させる(ステップS38)。これは、輝度の変化の向きと細胞の向きとは直交しているからである。なお、ここで想定している間葉系幹細胞の形状は細長い楕円状又は針状であり、その長手方向が細胞の向きである。もちろん、ステップS37とS38とはその順序を入れ替えることができる。そのあと、数値評価が可能であるように角度分布の頻度を正規化し(ステップS39)、さらに角度分布の移動平均を計算することでその分布の精度を高める(ステップS40)。
Next, the angle of the angle distribution obtained in step S37 is rotated by 90 degrees (step S38). This is because the direction of change in brightness and the direction of cells are orthogonal to each other. The shape of the mesenchymal stem cells assumed here is an elongated elliptical or needle-like shape, and the longitudinal direction thereof is the direction of the cells. Of course, the order of steps S37 and S38 can be exchanged. After that, the frequency of the angle distribution is normalized so that numerical evaluation is possible (step S39), and the accuracy of the distribution is improved by calculating the moving average of the angle distribution (step S40).
図13(d)には、細胞の向きが揃っている場合(13(b)参照)と不揃いである場合(13(c)参照)とのそれぞれの角度分布の一例を示している。この図のように、細胞の向きが全体的に揃っている場合には特定の角度における頻度が高くなるため、細胞の向きが揃っている場合と不揃いである場合とで頻度に差異が生じる。そこで、配向性スコア算出部27は、移動平均を行ったあとの角度分布において最も頻度が高い角度つまり最頻角を求め、これをその小領域における細胞の配向の向きと定める(ステップS41)。また、その最頻角に対応する頻度をその小領域における細胞の配向の強さと定める(ステップS42)。
FIG. 13 (d) shows an example of the angular distribution of the case where the cells are oriented in the same direction (see 13 (b)) and the case where the cells are not oriented (see 13 (c)). As shown in this figure, when the cells are oriented in the same direction as a whole, the frequency at a specific angle is high, so that the frequency differs between the case where the cells are oriented in the same direction and the case where the cells are not oriented. Therefore, the orientation score calculation unit 27 obtains the most frequent angle, that is, the most frequent angle in the angle distribution after performing the moving average, and determines this as the orientation direction of the cells in the small region (step S41). Further, the frequency corresponding to the mode is defined as the strength of cell orientation in the small region (step S42).
小領域毎に上記処理を実施することで、小領域毎に細胞の配向の向き及び強さを示す数値を求めることができる。配向性スコア算出部27は、位相像全体での細胞の配向性の傾向を示す配向性スコアとして、全ての小領域における配向性の強さの平均値を算出するとともに、配向性の強さの最大値を配向性スコアとして求める。また、ユーザが配向性を感覚的に評価するための評価用画像を作成する(ステップS24)。具体的には、小領域毎に、配向性の向きをベクトルの向き、配向性の強さをそのベクトルの長さ(スカラー量)とした2次元ベクトルで配向性スコアを可視化する。そして、IHM位相像の上にその2次元ベクトルを重畳して表示した画像を、評価用画像として作成する。
By performing the above treatment for each small region, it is possible to obtain a numerical value indicating the orientation and strength of cell orientation for each small region. The orientation score calculation unit 27 calculates the average value of the orientation strength in all the small regions as the orientation score indicating the tendency of the cell orientation in the entire phase image, and also calculates the orientation strength of the orientation score. The maximum value is calculated as the orientation score. In addition, an evaluation image is created for the user to intuitively evaluate the orientation (step S24). Specifically, the orientation score is visualized by a two-dimensional vector in which the orientation direction is the direction of the vector and the orientation strength is the length (scalar amount) of the vector for each small region. Then, an image displayed by superimposing the two-dimensional vector on the IHM phase image is created as an evaluation image.
図14は、細胞の向きが揃っている場合と不揃いである場合との2種類のサンプルついての配向性の評価用画像の一例を示す図である。IHM位相像上に小領域の区分を示し、さらに各小領域において配向性の強さと方向を示す直線を重ねて表示している。サンプル1よりもサンプル2のほうが局所的に見たときに細胞の向きが揃っている。この画像上の特徴の差異は各小領域に描かれている線の長さの違いに現れている。したがって、この評価用画像を表示部4に表示してユーザに提示することで、ユーザが感覚的に細胞の向きの揃い具合を把握することができる。
FIG. 14 is a diagram showing an example of an image for evaluating orientation of two types of samples, one in which the cells are oriented in the same direction and the other in which the cells are not oriented. The division of small regions is shown on the IHM phase image, and straight lines indicating the strength and direction of orientation are superimposed and displayed in each small region. The cells of sample 2 are more aligned than those of sample 1 when viewed locally. This difference in features on the image appears in the difference in the length of the lines drawn in each subregion. Therefore, by displaying this evaluation image on the display unit 4 and presenting it to the user, the user can intuitively grasp the degree of alignment of the cells.
図15は、図14に示した2種類のサンプルについての配向性スコアの比較例を示す図である。上述した画像上の特徴の差異は、平均値、最大値の両方の配向性スコアに明確に現れている。即ち、配向性スコアによれば、細胞の向きの揃い具合を数値的に比較したり評価したりすることができる。
FIG. 15 is a diagram showing a comparative example of orientation scores for the two types of samples shown in FIG. The difference in the above-mentioned features on the image is clearly shown in the orientation scores of both the mean value and the maximum value. That is, according to the orientation score, it is possible to numerically compare and evaluate the degree of alignment of cell orientation.
[細胞機能の評価]
細胞機能評価情報出力部28は、上述したように算出された勾配スコアや配向性スコア、さらには配向性に関連する評価用画像を所定の形式で表示部4に表示する。ユーザはこれらの表示に基づいて、細胞機能を評価する。ここで評価することが可能な細胞機能は、未分化性の維持、遊走能、及び組織修復能の3種類を含むものとすることができる。上記スコアを用いてこれら細胞機能の評価が可能であることを、発明者らが行った実験結果に基づいて説明する。 [Evaluation of cell function]
The cell function evaluationinformation output unit 28 displays the gradient score and the orientation score calculated as described above, and further, the evaluation image related to the orientation on the display unit 4 in a predetermined format. The user evaluates cell function based on these indications. The cell functions that can be evaluated here can include three types: maintenance of undifferentiated state, migration ability, and tissue repair ability. It will be explained based on the experimental results conducted by the inventors that it is possible to evaluate these cell functions using the above scores.
細胞機能評価情報出力部28は、上述したように算出された勾配スコアや配向性スコア、さらには配向性に関連する評価用画像を所定の形式で表示部4に表示する。ユーザはこれらの表示に基づいて、細胞機能を評価する。ここで評価することが可能な細胞機能は、未分化性の維持、遊走能、及び組織修復能の3種類を含むものとすることができる。上記スコアを用いてこれら細胞機能の評価が可能であることを、発明者らが行った実験結果に基づいて説明する。 [Evaluation of cell function]
The cell function evaluation
この実験例における評価対象は、ヒト臍帯由来間葉系幹細胞(以下、UC-MSCと略すことがある)である。対象細胞の採取方法及び細胞機能の同定方法は以下の通りである。
The evaluation target in this experimental example is human umbilical cord-derived mesenchymal stem cells (hereinafter, may be abbreviated as UC-MSC). The method for collecting the target cells and the method for identifying the cell function are as follows.
図16は、細胞の採取部位の組織の光学観察画像である。これは臍帯の断面である。以下の説明では、臍帯の羊膜(Amniotic membrane)側から採取された細胞をAm-MSC、臍帯の間質側から採取された細胞をWj-MSCと表記するものとする。
臍帯の上記各部から採取された組織をそれぞれ3~5mm角程度の大きさに切断し、細胞培養用シャーレ中に載置した。このシャーレを37℃、5%CO2雰囲気のインキュベータ内に30分静置し、組織片が培養皿の底に付着した時点で、ウシ胎児血清(FBS)を含む基本培地を添加して培養を行った。組織片から遊出して培養皿に付着する細胞を回収し、以降、細胞の継代及び培養を行った。 FIG. 16 is an optical observation image of the tissue at the cell collection site. This is a cross section of the umbilical cord. In the following description, cells collected from the amniotic membrane side of the umbilical cord will be referred to as Am-MSC, and cells collected from the interstitial side of the umbilical cord will be referred to as Wj-MSC.
Tissues collected from each of the above parts of the umbilical cord were cut to a size of about 3 to 5 mm square and placed in a cell culture dish. This petri dish is allowed to stand in an incubator at 37 ° C. and a 5% CO 2 atmosphere for 30 minutes, and when the tissue pieces adhere to the bottom of the culture dish, a basal medium containing fetal bovine serum (FBS) is added and cultured. went. The cells that escaped from the tissue pieces and adhered to the culture dish were collected, and then the cells were subcultured and cultured.
臍帯の上記各部から採取された組織をそれぞれ3~5mm角程度の大きさに切断し、細胞培養用シャーレ中に載置した。このシャーレを37℃、5%CO2雰囲気のインキュベータ内に30分静置し、組織片が培養皿の底に付着した時点で、ウシ胎児血清(FBS)を含む基本培地を添加して培養を行った。組織片から遊出して培養皿に付着する細胞を回収し、以降、細胞の継代及び培養を行った。 FIG. 16 is an optical observation image of the tissue at the cell collection site. This is a cross section of the umbilical cord. In the following description, cells collected from the amniotic membrane side of the umbilical cord will be referred to as Am-MSC, and cells collected from the interstitial side of the umbilical cord will be referred to as Wj-MSC.
Tissues collected from each of the above parts of the umbilical cord were cut to a size of about 3 to 5 mm square and placed in a cell culture dish. This petri dish is allowed to stand in an incubator at 37 ° C. and a 5% CO 2 atmosphere for 30 minutes, and when the tissue pieces adhere to the bottom of the culture dish, a basal medium containing fetal bovine serum (FBS) is added and cultured. went. The cells that escaped from the tissue pieces and adhered to the culture dish were collected, and then the cells were subcultured and cultured.
継代を5回繰り返した培養細胞に対し、細胞機能に明らかな差異を生じさせるため、細胞賦活剤(Wharton's jelly由来抽出物、以下、WJと称すことがある)を添加したものと添加しないものとに分けて培養を行った。Am-MSCにWJを添加した細胞をAm-MSC+WJ、Wj-MSCにWJを添加した細胞をWj-MSC+WJと表記する。Am-MSC及びWj-MSCが参照細胞であり、Am-MSC+WJ及びWj-MSC+WJが被検細胞である。
For cultured cells in which passage was repeated 5 times, cells with and without a cell activator (extract derived from Wharton's jelly, hereinafter sometimes referred to as WJ) are added in order to cause a clear difference in cell function. The cells were separately cultured. The cells obtained by adding WJ to Am-MSC are referred to as Am-MSC + WJ, and the cells obtained by adding WJ to Wj-MSC are referred to as Wj-MSC + WJ. Am-MSC and Wj-MSC are reference cells, and Am-MSC + WJ and Wj-MSC + WJ are test cells.
上記Am-MSC、Wj-MSC、Am-MSC+WJ、及びWj-MSC+WJという4種類の細胞を含むサンプル(一つの検体A由来)について、まず、既存の手法による細胞機能等の確認を実施した。
(1)WJ添加又は非添加下で48時間培養した際の、UC-MSCの表面抗原の発現をフローサイトメトリで解析した。図17にその解析結果を示す。図17では、WJ無しをWJ-、WJ有りをWJ+で示している。また、CD(Cluster of Differentiation)90、CD73、CD105、CD34、CD45は抗原の種類である。よく知られているように、左右二つに分かれているピークのうちの左方はアイソトープコントロール、右方が目的とする抗原であり、抗原が発現しない場合には両ピークは完全に重なる。 For a sample containing four types of cells (derived from one sample A), Am-MSC, Wj-MSC, Am-MSC + WJ, and Wj-MSC + WJ, first, the cell function and the like were confirmed by an existing method.
(1) The expression of the surface antigen of UC-MSC when cultured for 48 hours with or without addition of WJ was analyzed by flow cytometry. The analysis result is shown in FIG. In FIG. 17, WJ-is shown without WJ, and WJ + is shown with WJ. Further, CD (Cluster of Differentiation) 90, CD73, CD105, CD34, and CD45 are types of antigens. As is well known, the left side of the two peaks on the left and right is the isotope control, and the right side is the target antigen. When the antigen is not expressed, both peaks completely overlap.
(1)WJ添加又は非添加下で48時間培養した際の、UC-MSCの表面抗原の発現をフローサイトメトリで解析した。図17にその解析結果を示す。図17では、WJ無しをWJ-、WJ有りをWJ+で示している。また、CD(Cluster of Differentiation)90、CD73、CD105、CD34、CD45は抗原の種類である。よく知られているように、左右二つに分かれているピークのうちの左方はアイソトープコントロール、右方が目的とする抗原であり、抗原が発現しない場合には両ピークは完全に重なる。 For a sample containing four types of cells (derived from one sample A), Am-MSC, Wj-MSC, Am-MSC + WJ, and Wj-MSC + WJ, first, the cell function and the like were confirmed by an existing method.
(1) The expression of the surface antigen of UC-MSC when cultured for 48 hours with or without addition of WJ was analyzed by flow cytometry. The analysis result is shown in FIG. In FIG. 17, WJ-is shown without WJ, and WJ + is shown with WJ. Further, CD (Cluster of Differentiation) 90, CD73, CD105, CD34, and CD45 are types of antigens. As is well known, the left side of the two peaks on the left and right is the isotope control, and the right side is the target antigen. When the antigen is not expressed, both peaks completely overlap.
図17に示した結果では、Am-MSC、Wj-MSC、Am-MSC+WJ、及びWj-MSC+WJのいずれにおいても、CD90抗原、CD73抗原、及びCD105抗原の3種類を発現する一方、CD34抗原及びCD45抗原を発現しなかった。一般に、ヒト由来の間葉系幹細胞においては、CD90抗原、CD73抗原、及びCD105抗原が陽性、CD34抗原及びCD45抗原が陰性であると報告されている。上記解析結果はこの報告と一致しており、このことから、この実験で用いたUC-MSCはヒト由来の間葉系幹細胞の細胞表面抗原の特徴を有しており、またWJを添加してもその特徴が変化しないことが確認できた。
In the results shown in FIG. 17, all of Am-MSC, Wj-MSC, Am-MSC + WJ, and Wj-MSC + WJ express three types of antigens, CD90 antigen, CD73 antigen, and CD105 antigen, while CD34 antigen and CD45. It did not express the antigen. In general, it has been reported that human-derived mesenchymal stem cells are positive for CD90 antigen, CD73 antigen, and CD105 antigen, and negative for CD34 antigen and CD45 antigen. The above analysis results are in agreement with this report, and from this, the UC-MSC used in this experiment has the characteristics of the cell surface antigen of human-derived mesenchymal stem cells, and WJ was added. It was confirmed that the characteristics did not change.
(2)細胞の遊走能、組織修復能、未分化性の維持、という3つの機能に関する遺伝子発現について、リアルタイムPCR(Polymerase Chain Reaction)法を用いて定量を行った。その結果を図18に示す。WJを添加した被検細胞Am-MSC+WJ及びWj-MSC+WJは、それぞれ参照細胞Am-MSC及びWj-MSCに対して、細胞未分化性の維持を示す因子であるOCT4(Octamer-binding transcription factor 4)及びNANOG、遊走能の高さを示す因子であるSDF-1(Stromal derived factor-1)及びCXCR4、組織修復能の高さを示す因子であるTGFb(Transforming growth factor-β)及びMCP-1(Monocyte chemoattractant protein-1)の発現がそれぞれ上昇しており、それら細胞機能が共にWJによって向上していることが判明した。
(2) Gene expression related to the three functions of cell migration ability, tissue repair ability, and maintenance of undifferentiated state was quantified using the real-time PCR (Polymerase Chain Reaction) method. The result is shown in FIG. The test cells Am-MSC + WJ and Wj-MSC + WJ to which WJ was added are OCT4 (Octamer-binding transcription factor 4), which is a factor indicating maintenance of cell undifferentiation with respect to reference cells Am-MSC and Wj-MSC, respectively. And NANOG, SDF-1 (Stromal derived factor-1) and CXCR4, which are factors indicating high chemotaxis, and TGFb (Transforming growth factor-β) and MCP-1 (MCP-1), which are factors indicating high tissue repair ability. The expression of Monocyte chemoattractant protein-1) was increased, and it was found that both of these cell functions were improved by WJ.
また、一般に、細胞形状関連因子であるαSMA(α-smooth muscle actin)が細胞内に過剰に蓄積されることで細胞体が拡大・肥大化し、細胞の遊走能の低下をもたらすことや、生体内での細胞の標的臓器への分布が阻害されることが知られている(例えば非特許文献1参照)。図18に示した定量結果によれば、WJを添加した被検細胞Am-MSC+WJ及びWj-MSC+WJではそれぞれαSMAの発現量が低下している。また、これら細胞の形態は細長い紡錘形に変化しており、WJの添加により細胞の遊走能が向上したことを裏付けている。
In addition, in general, αSMA (α-smooth muscle actin), which is a cell shape-related factor, is excessively accumulated in cells, causing the cell body to expand and enlarge, resulting in a decrease in cell migration ability and in vivo. It is known that the distribution of cells in the target organ is inhibited (see, for example, Non-Patent Document 1). According to the quantitative results shown in FIG. 18, the expression level of αSMA was decreased in the test cells Am-MSC + WJ and Wj-MSC + WJ to which WJ was added, respectively. In addition, the morphology of these cells has changed to an elongated spindle shape, confirming that the addition of WJ improved the migration ability of the cells.
(3)ごく一般的なスクラッチアッセイ(Scratched assay)法により、細胞の遊走能の評価を行った。スクラッチアッセイ法による遊走能の測定結果を図19に示す。これは、直線的な擦過創を与えてから9時間が経過した時点での、擦過創による開放領域の面積の割合を測定したものであり、細胞の遊走能が高いほど開放領域の面積は小さくなる。図19から分かるように、参照細胞に比べて被検細胞では細胞の遊走能が向上しており、WJの添加によって細胞の遊走能が向上することが確認できた。
(3) The migration ability of cells was evaluated by a very common scratch assay (Scratched assay) method. The measurement result of the migration ability by the scratch assay method is shown in FIG. This is a measurement of the ratio of the area of the open area due to the scratch wound 9 hours after the linear scratch wound was given, and the higher the cell migration ability, the smaller the area of the open area. Become. As can be seen from FIG. 19, it was confirmed that the cell migration ability of the test cells was improved as compared with the reference cells, and that the addition of WJ improved the cell migration ability.
図20は、上記実施形態の細胞解析装置において算出された、上記検体A由来の4種類のMSC勾配スコア及び配向性スコア(ここでは全ての小領域における細胞の向きの強さの平均値)の比較結果を示す図である。図20(a)によれば、被検細胞Am-MSC+WJ、Wj-MSC+WJはそれぞれの参照細胞Am-MSC、Wj-MSCに対して、勾配スコアが明確に減少していることが分かる。この勾配スコアは上述した微分値ヒストグラムにおけるピークのスロープの傾斜を示しているから、勾配スコアが減少していることは急峻な輪郭を持つ細胞が増加していることを示している。一方、図20(b)によれば、被検細胞Am-MSC+WJ、Wj-MSC+WJはそれぞれの参照細胞Am-MSC、Wj-MSCに対して、配向性スコアが明確に増加していることが分かる。この配向性スコアが増加していることは細胞の向きが揃っていることを示している。
FIG. 20 shows the four types of MSC gradient scores and orientation scores (here, the average value of the strength of cell orientation in all small regions) derived from the sample A, calculated by the cell analyzer of the above embodiment. It is a figure which shows the comparison result. According to FIG. 20A, it can be seen that the gradient scores of the test cells Am-MSC + WJ and Wj-MSC + WJ are clearly reduced with respect to the reference cells Am-MSC and Wj-MSC, respectively. Since this gradient score indicates the slope of the peak slope in the above-mentioned differential value histogram, a decrease in the gradient score indicates an increase in cells having steep contours. On the other hand, according to FIG. 20 (b), it can be seen that the orientation scores of the test cells Am-MSC + WJ and Wj-MSC + WJ are clearly increased with respect to the reference cells Am-MSC and Wj-MSC, respectively. .. An increase in this orientation score indicates that the cells are aligned.
図17~図20は一つの検体A由来のサンプルの実測結果であるが、別の検体Bでも、同様の実測を実施した。図21は、検体B由来の表面抗原の発現をフローサイトメトリで解析した結果である、図22は、検体B由来の4種類の間葉系幹細胞についての各種の細胞機能に関連する遺伝子発現量の定量結果を示す図である。図23は、検体B由来の4種類の間葉系幹細胞についてスクラッチアッセイ法による遊走能の測定結果を示す図である。図24は、検体B由来の4種類のサンプルついて本実施形態の細胞解析装置で算出される配向性スコア及び勾配スコアの比較を示す図である。検体Aの結果と検体Bの結果とを比較すると、被検細胞、参照細胞ともに、+WJでの数値の増加又は減少の傾向は全く同じであることが分かる。
FIGS. 17 to 20 show the actual measurement results of one sample derived from sample A, but the same actual measurement was carried out for another sample B. FIG. 21 shows the results of flow cytometry analysis of the expression of surface antigens derived from sample B, and FIG. 22 shows the expression levels of genes related to various cell functions of four types of mesenchymal stem cells derived from sample B. It is a figure which shows the quantitative result of. FIG. 23 is a diagram showing the measurement results of migration ability of four types of mesenchymal stem cells derived from sample B by the scratch assay method. FIG. 24 is a diagram showing a comparison of orientation scores and gradient scores calculated by the cell analyzer of the present embodiment for four types of samples derived from sample B. Comparing the result of Specimen A and the result of Specimen B, it can be seen that the tendency of increase or decrease of the numerical value at + WJ is exactly the same for both the test cell and the reference cell.
上述したように、細胞の遊走能、組織修復能、未分化性の維持という3つの細胞機能が高い細胞ではそれら細胞機能が相対的に低い細胞に比べて、急峻な輪郭を持つ細胞が多く、また、細胞の配向性が高い。即ち、それら細胞機能と勾配スコア及び配向性スコアとは明確な相関性を有しているといえる。したがって、細胞機能が不明であっても、参照細胞と被検細胞とで勾配のスコア及び配向性スコアを比較することにより、参照細胞に対して被検細胞の細胞未分化性、遊走能、組織修復能などの細胞機能が高いか否かを評価することができる。
As described above, many cells with high cell functions of cell migration ability, tissue repair ability, and maintenance of undifferentiated cells have steeper contours than cells with relatively low cell functions. In addition, the cell orientation is high. That is, it can be said that these cell functions have a clear correlation with the gradient score and the orientation score. Therefore, even if the cell function is unknown, the cell undifferentiated, migratory ability, and tissue of the test cell with respect to the reference cell can be compared by comparing the gradient score and the orientation score between the reference cell and the test cell. It is possible to evaluate whether or not the cell function such as repair ability is high.
本実施形態の細胞解析装置において細胞機能評価情報出力部28は、例えば被検細胞について求まった勾配スコアや配向性スコア、さらには配向性に関連する評価用画像と、参照細胞について求まった勾配スコアや配向性スコア、さらには配向性に関連する評価用画像とを、比較容易な所定の形式で表示部4に表示する(ステップS9)。IHM位相像のほか、ステップS5で作成された微分画像や、ステップS6で作成された微分値ヒストグラムなども併せて表示するようにしてもよい。ユーザは表示された勾配スコア、配向性スコア、或いは、評価用画像などに基づいて、参照細胞に対する被検細胞の細胞未分化性、遊走能、組織修復能などの細胞機能を相対的に評価する(ステップS10)。
In the cell analysis apparatus of the present embodiment, the cell function evaluation information output unit 28 uses, for example, a gradient score and orientation score obtained for the test cell, an evaluation image related to orientation, and a gradient score obtained for the reference cell. , The orientation score, and the evaluation image related to the orientation are displayed on the display unit 4 in a predetermined format for easy comparison (step S9). In addition to the IHM phase image, the differential image created in step S5, the differential value histogram created in step S6, and the like may also be displayed. The user relatively evaluates cell functions such as cell undifferentiation, migration ability, and tissue repair ability of the test cell with respect to the reference cell based on the displayed gradient score, orientation score, or evaluation image. (Step S10).
上述したように細胞機能を評価する工程を終了したならば、例えば次のような工程を実施することができる。
即ち、細胞機能の評価結果に基づいて、細胞をソーティング(分取)する。細胞の分取には、例えば蛍光活性化セルソーティング装置(FACS)を用いることができる。そして、細胞機能の評価結果が異なる細胞を、それぞれ別の培養態様にて再度培養する。この培養を継代することによって、例えば遊走性が低い、組織修復機能が低いなど、移植に適さない細胞が次世代で育ってこない(接着又は増殖しない)ことを確認する。
このように、細胞機能の評価は、細胞機能の相違による増殖能力等を確認・検証するうえで有用である。 After completing the step of evaluating the cell function as described above, for example, the following step can be carried out.
That is, cells are sorted based on the evaluation result of cell function. For example, a fluorescence activated cell sorting device (FACS) can be used for cell sorting. Then, cells having different evaluation results of cell function are recultured in different culture modes. By subculturing this culture, it is confirmed that cells unsuitable for transplantation, such as low migration and low tissue repair function, do not grow (adhere or proliferate) in the next generation.
As described above, the evaluation of cell function is useful for confirming and verifying the proliferative ability due to the difference in cell function.
即ち、細胞機能の評価結果に基づいて、細胞をソーティング(分取)する。細胞の分取には、例えば蛍光活性化セルソーティング装置(FACS)を用いることができる。そして、細胞機能の評価結果が異なる細胞を、それぞれ別の培養態様にて再度培養する。この培養を継代することによって、例えば遊走性が低い、組織修復機能が低いなど、移植に適さない細胞が次世代で育ってこない(接着又は増殖しない)ことを確認する。
このように、細胞機能の評価は、細胞機能の相違による増殖能力等を確認・検証するうえで有用である。 After completing the step of evaluating the cell function as described above, for example, the following step can be carried out.
That is, cells are sorted based on the evaluation result of cell function. For example, a fluorescence activated cell sorting device (FACS) can be used for cell sorting. Then, cells having different evaluation results of cell function are recultured in different culture modes. By subculturing this culture, it is confirmed that cells unsuitable for transplantation, such as low migration and low tissue repair function, do not grow (adhere or proliferate) in the next generation.
As described above, the evaluation of cell function is useful for confirming and verifying the proliferative ability due to the difference in cell function.
また、表示された画像やスコアに基づいてユーザが細胞機能を評価するのではなく、例えば参照細胞と被検細胞とで勾配のスコア及び配向性スコアを比較してその大小関係を判定することにより、参照細胞に対する被検細胞の細胞未分化性、遊走能、組織修復能などの細胞機能を相対的に評価する処理を制御・処理部2において、つまりはCPU等を含むコンピュータ上で実施するようにしてもよい。その場合には、最終的な評価結果のみを表示部4に出力してもよいし、スコアや画像とともにその評価結果を出力してもよい。また、こうした判定や評価にはディープラーニング等の各種の機械学習の手法を用いることもできる。
In addition, the user does not evaluate the cell function based on the displayed image or score, but for example, by comparing the gradient score and the orientation score between the reference cell and the test cell to determine the magnitude relationship. , The process of relatively evaluating cell functions such as cell undifferentiation, migration ability, and tissue repair ability of the test cell with respect to the reference cell is to be performed in the control / processing unit 2, that is, on a computer including a CPU or the like. It may be. In that case, only the final evaluation result may be output to the display unit 4, or the evaluation result may be output together with the score and the image. In addition, various machine learning methods such as deep learning can be used for such determination and evaluation.
なお、評価される被検細胞と参照細胞とは異なる種類の細胞であっても構わないが、実際の応用では、多くの場合、同種で培養条件が異なる細胞である。また当然、被検細胞と参照細胞とは一つずつである必要はなく、例えば三以上の被検細胞を相互に比較して、細胞機能の相対的な評価を行うようにしてもよい。また、参照細胞についての勾配スコアや配向性スコア、さらには配向性に関連する評価用画像などのデータは、予め評価基準として制御・処理部2に保存され、その保存されている評価基準と、被検細胞に対して顕微観察部1で得られたホログラムデータに基づいて新たに算出された勾配スコアや配向性スコアとが比較可能な形式で表示されるようにしてもよい。
The test cell to be evaluated and the reference cell may be different types of cells, but in actual application, they are the same type of cells with different culture conditions in many cases. Further, of course, the test cell and the reference cell do not have to be one by one, and for example, three or more test cells may be compared with each other to perform a relative evaluation of cell function. In addition, data such as a gradient score and orientation score for reference cells, and evaluation images related to orientation are stored in advance in the control / processing unit 2 as evaluation criteria, and the saved evaluation criteria and the saved evaluation criteria are used. The gradient score and the orientation score newly calculated based on the hologram data obtained by the microscopic observation unit 1 may be displayed on the test cell in a comparable format.
また、図1に示した細胞解析装置では、制御・処理部2において全ての処理を実施しているが、一般に、ホログラムデータに基づく位相情報の計算や画像の再構成処理には膨大な量の計算が必要である。そこで、顕微観察部1に接続されたパーソナルコンピュータを端末装置とし、この端末装置と高性能なコンピュータであるサーバとがインターネットやイントラネット等の通信ネットワークを介して接続されたコンピュータシステムを利用し、上記のような煩雑な計算や処理は高性能なコンピュータで行い、顕微観察部1の制御や処理後のデータを用いた表示処理などを比較的低性能のパーソナルコンピュータで実行するように役割を分けてもよい。
Further, in the cell analysis apparatus shown in FIG. 1, all the processing is performed by the control / processing unit 2, but in general, a huge amount of processing is performed for calculation of phase information based on hologram data and image reconstruction processing. Calculation is required. Therefore, a personal computer connected to the microscopic observation unit 1 is used as a terminal device, and a computer system in which this terminal device and a server, which is a high-performance computer, are connected via a communication network such as the Internet or an intranet is used. Complicated calculations and processing such as are performed by a high-performance computer, and the roles are divided so that the control of the microscopic observation unit 1 and the display processing using the processed data are executed by a relatively low-performance personal computer. May be good.
また上記実施形態の細胞解析装置では、顕微観察部1としてインライン型ホログラフィック顕微鏡を用いていたが、ホログラムが得られる顕微鏡であれば、オフアクシス(軸外し)型、位相シフト型などの他の方式のホログラフィック顕微鏡に置換え可能であることは当然である。
Further, in the cell analysis apparatus of the above embodiment, an in-line holographic microscope is used as the microscopic observation unit 1, but other microscopes such as an off-axis type and a phase shift type can be used as long as the microscope can obtain a hologram. It goes without saying that it can be replaced with a holographic microscope of the type.
また、上記実施形態の細胞解析装置では、細胞の輪郭部における厚さ方向の勾配のスコアと、細胞の配向性を示すスコアとの両方を算出してユーザに提示していたが、少なくともいずれか一方を算出してユーザに提示し、ユーザはそれに基づいて細胞機能を評価するものであってもよい。細胞の輪郭部における厚さ方向の勾配スコアを算出するには、細胞の観察画像が例えばIHM位相像のように厚さ方向の情報(つまりは3次元形状情報)を含んでいる必要がある。一方、細胞の配向性を示すスコアを算出するには、厚さ方向の情報は必要なく、細胞が明瞭に観察可能である画像が得られればよい。したがって、その場合には、顕微観察部1はホログラフィック顕微鏡である必要はなく、一般的な位相差顕微鏡などでも構わない。
Further, in the cell analysis apparatus of the above embodiment, both the score of the gradient in the thickness direction in the contour portion of the cell and the score indicating the orientation of the cell are calculated and presented to the user, but at least one of them. One may be calculated and presented to the user, and the user may evaluate the cell function based on the calculation. In order to calculate the gradient score in the thickness direction at the contour of the cell, the observation image of the cell needs to include information in the thickness direction (that is, three-dimensional shape information) such as an IHM phase image. On the other hand, in order to calculate the score indicating the orientation of the cells, information in the thickness direction is not required, and it is sufficient to obtain an image in which the cells can be clearly observed. Therefore, in that case, the microscope observation unit 1 does not have to be a holographic microscope, and a general phase-contrast microscope or the like may be used.
また、上述した細胞機能評価方法は、次のような理由により、間葉系幹細胞以外の他の種類の幹細胞にも適用可能である。
即ち、本発明者らの検討によれば、細胞内のアクチンファイバが減少して平坦で広がった形状から細い紡錘形になるとともに細胞内小器官やタンパクの局在も変化して細胞の厚みが増し(勾配の増加)、その結果、核頂部近くの近傍側面に存在する、ずり応力を感知する機能がより鋭敏に働き、配向性が整い、細胞の遊走能や組織修復能が高まることが明らかとなった。つまり、細胞の遊走性や細胞修復能に関係しているのは、細胞のずり応力を感知する機能であることが予想され、ずり応力を感知する機能を評価する上で、配向性を評価することが重要であることが本発明により明らかになった。こうしたことから、間葉系幹細胞に限らず、ずり応力を感知する機能を有する細胞に対して本発明を適用し、細胞の遊走性や組織修復能等の細胞機能を評価できることは明らかである。 In addition, the above-mentioned cell function evaluation method can be applied to stem cells of other types other than mesenchymal stem cells for the following reasons.
That is, according to the study by the present inventors, the actin fibers in the cell decrease from a flat and widened shape to a thin spindle shape, and the localization of organelles and proteins also changes to increase the thickness of the cell. (Increased gradient), as a result, it is clear that the function of sensing shear stress, which exists on the near side surface near the nucleus apex, works more sensitively, is aligned, and the cell migration ability and tissue repair ability are enhanced. became. In other words, it is expected that the function of sensing cell shear stress is related to cell migration and cell repair ability, and the orientation is evaluated in evaluating the function of sensing shear stress. It became clear by the present invention that this is important. From these facts, it is clear that the present invention can be applied not only to mesenchymal stem cells but also to cells having a function of sensing shear stress, and cell functions such as cell migration and tissue repair ability can be evaluated.
即ち、本発明者らの検討によれば、細胞内のアクチンファイバが減少して平坦で広がった形状から細い紡錘形になるとともに細胞内小器官やタンパクの局在も変化して細胞の厚みが増し(勾配の増加)、その結果、核頂部近くの近傍側面に存在する、ずり応力を感知する機能がより鋭敏に働き、配向性が整い、細胞の遊走能や組織修復能が高まることが明らかとなった。つまり、細胞の遊走性や細胞修復能に関係しているのは、細胞のずり応力を感知する機能であることが予想され、ずり応力を感知する機能を評価する上で、配向性を評価することが重要であることが本発明により明らかになった。こうしたことから、間葉系幹細胞に限らず、ずり応力を感知する機能を有する細胞に対して本発明を適用し、細胞の遊走性や組織修復能等の細胞機能を評価できることは明らかである。 In addition, the above-mentioned cell function evaluation method can be applied to stem cells of other types other than mesenchymal stem cells for the following reasons.
That is, according to the study by the present inventors, the actin fibers in the cell decrease from a flat and widened shape to a thin spindle shape, and the localization of organelles and proteins also changes to increase the thickness of the cell. (Increased gradient), as a result, it is clear that the function of sensing shear stress, which exists on the near side surface near the nucleus apex, works more sensitively, is aligned, and the cell migration ability and tissue repair ability are enhanced. became. In other words, it is expected that the function of sensing cell shear stress is related to cell migration and cell repair ability, and the orientation is evaluated in evaluating the function of sensing shear stress. It became clear by the present invention that this is important. From these facts, it is clear that the present invention can be applied not only to mesenchymal stem cells but also to cells having a function of sensing shear stress, and cell functions such as cell migration and tissue repair ability can be evaluated.
さらにまた、上記実施形態や各種の変形例は本発明の一例であり、本発明の趣旨の範囲でさらに適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。
Furthermore, the above-described embodiment and various modifications are examples of the present invention, and it is clear that even if modifications, modifications, and additions are made as appropriate within the scope of the present invention, they are included in the claims of the present application. is there.
[種々の態様]
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。 [Various aspects]
Those skilled in the art will appreciate that the exemplary embodiments described above are specific examples of the following embodiments.
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。 [Various aspects]
Those skilled in the art will appreciate that the exemplary embodiments described above are specific examples of the following embodiments.
(第1項)本発明の一態様に係る細胞機能の評価方法は、幹細胞である被検細胞の細胞機能を評価する方法であって、
被検細胞を撮影した細胞画像を取得する画像取得ステップと、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出ステップと、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を評価する評価ステップと、
を有するものである。 (Item 1) The method for evaluating cell function according to one aspect of the present invention is a method for evaluating cell function of a test cell which is a stem cell.
An image acquisition step to acquire a cell image of a test cell,
A feature amount extraction step of extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and
It has.
被検細胞を撮影した細胞画像を取得する画像取得ステップと、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出ステップと、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を評価する評価ステップと、
を有するものである。 (Item 1) The method for evaluating cell function according to one aspect of the present invention is a method for evaluating cell function of a test cell which is a stem cell.
An image acquisition step to acquire a cell image of a test cell,
A feature amount extraction step of extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and
It has.
(第10項)本発明の一態様に係る細胞解析装置は、幹細胞である被検細胞の細胞機能を評価する細胞解析装置であって、
被検細胞を撮影した細胞画像を取得する画像取得部と、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出部と、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を相対的に評価する評価処理部と、
を備えるものである。 (Item 10) The cell analysis device according to one aspect of the present invention is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
An image acquisition unit that acquires a cell image of a test cell,
A feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell,
Is provided.
被検細胞を撮影した細胞画像を取得する画像取得部と、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出部と、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を相対的に評価する評価処理部と、
を備えるものである。 (Item 10) The cell analysis device according to one aspect of the present invention is a cell analysis device for evaluating the cell function of a test cell which is a stem cell.
An image acquisition unit that acquires a cell image of a test cell,
A feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell,
Is provided.
(第2項)第1項に記載の細胞機能の評価方法において、前記細胞機能は、未分化性の維持、遊走能、及び組織修復能のうちの少なくとも一つを含むものとすることができる。
(2) In the method for evaluating cell function according to paragraph 1, the cell function can include at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
(第11項)第10項に記載の細胞解析装置において、前記細胞機能は、未分化性の維持、遊走能、及び組織修復能のうちの少なくとも一つを含むものとすることができる。
(Item 11) In the cell analyzer according to item 10, the cell function can include at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
第1項に記載の細胞機能の評価方法及び第10項に記載の細胞解析装置によれば、幹細胞について非侵襲及び非破壊的に得られた画像情報に基づいて、該幹細胞の機能、例えば未分化性の維持、遊走能、組織修復能などを定量的に評価することができる。こうした細胞機能の評価を数値を以て行うことができるので、細胞の解析作業や評価作業の経験や知識が乏しい担当者であっても、的確で信頼性の高い評価を行うことができる。また、担当者の感覚に頼った評価にありがちな、人による結果のばらつきを回避することができる。また、評価の理由等を検証する作業も容易になる。さらにまた、細胞機能の評価の作業効率を向上させることもできる。
According to the method for evaluating cell function according to the first item and the cell analyzer according to the tenth item, the function of the stem cell, for example, not yet, is based on the image information obtained non-invasively and non-destructively with respect to the stem cell. It is possible to quantitatively evaluate the maintenance of differentiation, migration ability, tissue repair ability, and the like. Since such cell function can be evaluated numerically, even a person in charge who has little experience or knowledge of cell analysis work and evaluation work can perform accurate and highly reliable evaluation. In addition, it is possible to avoid variations in results depending on the person, which tends to be evaluated based on the sense of the person in charge. In addition, the work of verifying the reason for evaluation and the like becomes easy. Furthermore, the work efficiency of evaluation of cell function can be improved.
(第3項)第1項又は第2項に記載の細胞機能の評価方法において、前記細胞画像は位相像であるものとすることができる。
(Section 3) In the method for evaluating cell function according to paragraph 1 or 2, the cell image can be regarded as a phase image.
(第12項)第10項又は第11項に記載の細胞解析装置において、前記細胞画像は位相像であるものとすることができる。
In the cell analyzer according to (12) Item 10 or 11, the cell image can be regarded as a phase image.
位相像では、一般に透明であって光学顕微鏡では見えにくい細胞を比較的明瞭に捉えることができる。したがって、第3項に記載の細胞機能の評価方法及び第12項に記載の細胞解析装置によれば、被検細胞の特徴量を精度良く抽出し、その細胞の機能を的確に評価することができる。
In the phase image, cells that are generally transparent and difficult to see with an optical microscope can be captured relatively clearly. Therefore, according to the cell function evaluation method described in the third item and the cell analysis device described in the twelfth item, it is possible to accurately extract the feature amount of the test cell and accurately evaluate the cell function. it can.
(第4項)第3項に記載の細胞機能の評価方法において、前記画像取得ステップは、
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定ステップと、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成ステップと、
を含むものとすることができる。 (Item 4) In the method for evaluating cell function according toitem 3, the image acquisition step is performed.
A measurement step of irradiating a test cell with a laser beam to detect interference light between the light passing through the test cell and the light passing around the test cell to acquire hologram data.
A phase image creation step of performing image reconstruction processing based on the hologram data to create a phase image of the test cell, and
Can be included.
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定ステップと、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成ステップと、
を含むものとすることができる。 (Item 4) In the method for evaluating cell function according to
A measurement step of irradiating a test cell with a laser beam to detect interference light between the light passing through the test cell and the light passing around the test cell to acquire hologram data.
A phase image creation step of performing image reconstruction processing based on the hologram data to create a phase image of the test cell, and
Can be included.
(第13項)第12項に記載の細胞解析装置において、前記画像取得部は、
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定実行部と、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成部と、
を含むものとすることができる。 (Item 13) In the cell analyzer according toitem 12, the image acquisition unit is
A measurement execution unit that irradiates a test cell with a laser beam, detects interference light between the light that has passed through the test cell and the light that has passed around the test cell, and acquires hologram data.
A phase image creating unit that performs image reconstruction processing based on the hologram data and creates a phase image of the test cell.
Can be included.
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定実行部と、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成部と、
を含むものとすることができる。 (Item 13) In the cell analyzer according to
A measurement execution unit that irradiates a test cell with a laser beam, detects interference light between the light that has passed through the test cell and the light that has passed around the test cell, and acquires hologram data.
A phase image creating unit that performs image reconstruction processing based on the hologram data and creates a phase image of the test cell.
Can be included.
位相像作成ステップにおいてホログラムデータに基づいて作成される位相像は、被検細胞の2次元的な情報だけでなく細胞の厚さ方向の情報も含む。したがって、第4項に記載の細胞機能の評価方法及び第13項に記載の細胞解析装置によれば、位相像から被検細胞の輪郭部の勾配に関する情報を精度良く抽出することができ、その情報に基づいて、上述した未分化性の維持、遊走能、組織修復能などの細胞の機能を的確に評価することができる。
The phase image created based on the hologram data in the phase image creation step includes not only the two-dimensional information of the test cell but also the information in the cell thickness direction. Therefore, according to the method for evaluating cell function according to item 4 and the cell analyzer according to item 13, information on the gradient of the contour portion of the test cell can be accurately extracted from the phase image. Based on the information, it is possible to accurately evaluate cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability described above.
(第5項)第1項~第4項のいずれか1項に記載の細胞機能の評価方法において、
細胞機能が既知である参照細胞の細胞画像である参照画像を取得する参照画像取得ステップと、
前記参照画像から、前記特徴量抽出ステップで抽出された特徴量に相当する特徴量を抽出する参照特徴量抽出ステップと、
をさらに有し、前記評価ステップでは、前記被検細胞に対する特徴量と前記参照細胞に対する特徴量とを比較することにより、該被検細胞の細胞機能を評価するものとすることができる。 (Item 5) In the method for evaluating cell function according to any one ofitems 1 to 4,
A reference image acquisition step for acquiring a reference image, which is a cell image of a reference cell whose cell function is known,
A reference feature amount extraction step for extracting a feature amount corresponding to the feature amount extracted in the feature amount extraction step from the reference image, and a reference feature amount extraction step.
In the evaluation step, the cell function of the test cell can be evaluated by comparing the feature amount with respect to the test cell and the feature amount with respect to the reference cell.
細胞機能が既知である参照細胞の細胞画像である参照画像を取得する参照画像取得ステップと、
前記参照画像から、前記特徴量抽出ステップで抽出された特徴量に相当する特徴量を抽出する参照特徴量抽出ステップと、
をさらに有し、前記評価ステップでは、前記被検細胞に対する特徴量と前記参照細胞に対する特徴量とを比較することにより、該被検細胞の細胞機能を評価するものとすることができる。 (Item 5) In the method for evaluating cell function according to any one of
A reference image acquisition step for acquiring a reference image, which is a cell image of a reference cell whose cell function is known,
A reference feature amount extraction step for extracting a feature amount corresponding to the feature amount extracted in the feature amount extraction step from the reference image, and a reference feature amount extraction step.
In the evaluation step, the cell function of the test cell can be evaluated by comparing the feature amount with respect to the test cell and the feature amount with respect to the reference cell.
(第14項)第10項~第13項のいずれか1項に記載の細胞解析装置において、前記評価処理部は、前記被検細胞に対する特徴量と、予め取得された、細胞機能が既知である参照細胞の細胞画像から抽出された特徴量と、を比較することにより、該被検細胞の細胞機能を相対的に評価するものとすることができる。
(Item 14) In the cell analyzer according to any one of items 10 to 13, the evaluation processing unit knows the feature amount for the test cell and the previously acquired cell function. By comparing the feature amount extracted from the cell image of a reference cell with the feature amount, the cell function of the test cell can be relatively evaluated.
ここでいう参照細胞とは必ずしも被検細胞と異なる細胞でなくてもよい。即ち、例えば参照細胞の細胞画像は、被検細胞について過去に取得した細胞画像であってもよい。第5項に記載の細胞機能の評価方法及び第14項に記載の細胞解析装置によれば、被検細胞が参照細胞と比較して、未分化性の維持、遊走能、組織修復能などの細胞機能が優れているのか或いは劣っているのかを的確に評価することができる。
The reference cell referred to here does not necessarily have to be a cell different from the test cell. That is, for example, the cell image of the reference cell may be a cell image acquired in the past for the test cell. According to the method for evaluating cell function according to item 5 and the cell analyzer according to item 14, the test cells have the ability to maintain undifferentiated state, migrate, and repair tissues as compared with the reference cells. It is possible to accurately evaluate whether the cell function is excellent or inferior.
(第6項)第3項又は第4項に記載の細胞機能の評価方法において、前記特徴量抽出ステップは、
前記位相像から画素毎に空間的な微分値を求めて微分画像を生成する微分画像生成ステップと、
前記微分画像において被検細胞が含まれる細胞領域から該被検細胞の輪郭部における厚さ方向の勾配に関連した情報を抽出する勾配情報抽出ステップと、
を含むものとすることができる。 (Section 6) In the method for evaluating cell function according to the third or fourth paragraph, the feature amount extraction step is performed.
A differential image generation step of obtaining a spatial differential value for each pixel from the phase image and generating a differential image,
A gradient information extraction step for extracting information related to the gradient in the thickness direction in the contour portion of the test cell from the cell region containing the test cell in the differential image.
Can be included.
前記位相像から画素毎に空間的な微分値を求めて微分画像を生成する微分画像生成ステップと、
前記微分画像において被検細胞が含まれる細胞領域から該被検細胞の輪郭部における厚さ方向の勾配に関連した情報を抽出する勾配情報抽出ステップと、
を含むものとすることができる。 (Section 6) In the method for evaluating cell function according to the third or fourth paragraph, the feature amount extraction step is performed.
A differential image generation step of obtaining a spatial differential value for each pixel from the phase image and generating a differential image,
A gradient information extraction step for extracting information related to the gradient in the thickness direction in the contour portion of the test cell from the cell region containing the test cell in the differential image.
Can be included.
(第15項)第12項又は第13項に記載の細胞解析装置において、前記特徴量抽出部は、前記位相像から画素毎に空間的な微分値を求めて微分画像を生成し、該微分画像において被検細胞が含まれる細胞領域から該被検細胞の輪郭部の勾配に関連した情報を抽出するものとすることができる。
(Item 15) In the cell analyzer according to the item 12 or 13, the feature amount extraction unit obtains a spatial differential value for each pixel from the phase image, generates a differential image, and generates the differential image. Information related to the gradient of the contour portion of the test cell can be extracted from the cell region containing the test cell in the image.
第6項に記載の細胞機能の評価方法及び第15項に記載の細胞解析装置によれば、被検細胞の輪郭部の勾配に関する情報を精度良く抽出することができ、その情報に基づいて、上述した未分化性の維持、遊走能、組織修復能などの細胞の機能を的確に評価することができる。
According to the method for evaluating cell function according to item 6 and the cell analyzer according to item 15, information on the gradient of the contour portion of the test cell can be accurately extracted, and based on that information, information can be extracted. It is possible to accurately evaluate cell functions such as maintenance of undifferentiated state, migration ability, and tissue repair ability described above.
(第7項)第6項に記載の細胞機能の評価方法において、
前記特徴量抽出ステップは、
前記微分画像における前記細胞領域に対応する画素数を算出する画素数取得ステップと、
前記位相像から細胞の数又はコンフルエンシを取得する細胞数/コンフルエンシ取得ステップと、
をさらに有し、前記画素数を前記細胞の数又はコンフルエンシで除することにより前記被検細胞の輪郭部の勾配に関連した情報を求めるものとすることができる。 (Item 7) In the method for evaluating cell function according toitem 6,
The feature amount extraction step
A pixel number acquisition step for calculating the number of pixels corresponding to the cell region in the differential image, and
The number of cells or the number of cells to obtain the confluency from the phase image / the confluency acquisition step,
The information related to the gradient of the contour portion of the test cell can be obtained by dividing the number of pixels by the number of cells or the confluence.
前記特徴量抽出ステップは、
前記微分画像における前記細胞領域に対応する画素数を算出する画素数取得ステップと、
前記位相像から細胞の数又はコンフルエンシを取得する細胞数/コンフルエンシ取得ステップと、
をさらに有し、前記画素数を前記細胞の数又はコンフルエンシで除することにより前記被検細胞の輪郭部の勾配に関連した情報を求めるものとすることができる。 (Item 7) In the method for evaluating cell function according to
The feature amount extraction step
A pixel number acquisition step for calculating the number of pixels corresponding to the cell region in the differential image, and
The number of cells or the number of cells to obtain the confluency from the phase image / the confluency acquisition step,
The information related to the gradient of the contour portion of the test cell can be obtained by dividing the number of pixels by the number of cells or the confluence.
(第16項)第15項に記載の細胞解析装置において、前記特徴量抽出部は、前記微分画像における前記細胞領域に対応する画素数を算出するとともに、前記位相像から細胞の数又はコンフルエンシを取得し、前記画素数を前記細胞の数又はコンフルエンシで除することにより前記被検細胞の輪郭部の勾配に関連した情報を求めるものとすることができる。
(Item 16) In the cell analyzer according to item 15, the feature amount extraction unit calculates the number of pixels corresponding to the cell region in the differential image, and calculates the number of cells or confluence from the phase image. It can be obtained and the information related to the gradient of the contour portion of the test cell can be obtained by dividing the number of pixels by the number of the cells or the confidence.
第7項に記載の細胞機能の評価方法及び第16項に記載の細胞解析装置によれば、評価対象である被検細胞や比較の基準となる参照細胞の密度が相違している場合であっても、的確に細胞機能の比較評価を行うことができる。
According to the cell function evaluation method described in Section 7 and the cell analyzer described in Section 16, the densities of the test cells to be evaluated and the reference cells used as the reference for comparison are different. However, it is possible to accurately compare and evaluate cell functions.
(第8項)第1項~第7項のいずれか1項に記載の細胞機能の評価方法において、前記特徴量抽出ステップは、
前記細胞画像を複数の小領域に分割する画像分割ステップと、
前記小領域毎に、その小領域に含まれる各画素に対し微分フィルタを適用して輝度が変化する方向とその変化の大きさとを算出し、該小領域毎の輝度変化の方向及び大きさから前記被検細胞の配向性に関する情報を求める配向性情報算出ステップと、
を含むものとすることができる。 (Item 8) In the method for evaluating cell function according to any one ofitems 1 to 7, the feature amount extraction step is performed.
An image division step of dividing the cell image into a plurality of small regions, and
For each of the small areas, a differential filter is applied to each pixel included in the small area to calculate the direction in which the brightness changes and the magnitude of the change, and from the direction and magnitude of the brightness change in each small area. The orientation information calculation step for obtaining information on the orientation of the test cells, and
Can be included.
前記細胞画像を複数の小領域に分割する画像分割ステップと、
前記小領域毎に、その小領域に含まれる各画素に対し微分フィルタを適用して輝度が変化する方向とその変化の大きさとを算出し、該小領域毎の輝度変化の方向及び大きさから前記被検細胞の配向性に関する情報を求める配向性情報算出ステップと、
を含むものとすることができる。 (Item 8) In the method for evaluating cell function according to any one of
An image division step of dividing the cell image into a plurality of small regions, and
For each of the small areas, a differential filter is applied to each pixel included in the small area to calculate the direction in which the brightness changes and the magnitude of the change, and from the direction and magnitude of the brightness change in each small area. The orientation information calculation step for obtaining information on the orientation of the test cells, and
Can be included.
(第17項)第9項~第16項のいずれか1項に記載の細胞解析装置において、前記特徴量抽出部は、前記細胞画像を複数の小領域に分割し、該小領域毎に、その小領域に含まれる各画素に対し微分フィルタを適用して輝度が変化する方向とその変化の大きさとを算出し、該小領域毎の輝度変化の方向及び大きさから前記被検細胞の配向性に関する情報を求めるものとすることができる。
(Item 17) In the cell analyzer according to any one of items 9 to 16, the feature amount extraction unit divides the cell image into a plurality of small regions, and each small region is divided into a plurality of small regions. A differential filter is applied to each pixel included in the small region to calculate the direction in which the brightness changes and the magnitude of the change, and the orientation of the test cells is calculated from the direction and magnitude of the brightness change in each small region. Information about sex can be requested.
第8項に記載の細胞機能の評価方法及び第17項に記載の細胞解析装置によれば、細胞の配向性、つまり細胞の向きの揃い具合に関する信頼性に足る定量的な情報を求めることができ、それにより、的確な細胞機能の評価を行うことができる。
According to the method for evaluating cell function according to item 8 and the cell analyzer according to item 17, it is possible to obtain reliable quantitative information regarding cell orientation, that is, cell orientation. It is possible, so that an accurate evaluation of cell function can be performed.
(第9項)第1項~第8項のいずれか1項に記載の細胞機能の評価方法において、前記幹細胞は間葉系幹細胞であるものとすることができる。
(Section 9) In the method for evaluating cell function according to any one of paragraphs 1 to 8, the stem cell can be assumed to be a mesenchymal stem cell.
(第18項)第10項~第17項のいずれか1項に記載の細胞解析装置において、前記幹細胞は間葉系幹細胞であるものとすることができる。
(Item 18) In the cell analyzer according to any one of paragraphs 10 to 17, the stem cells can be assumed to be mesenchymal stem cells.
第9項に記載の細胞機能の評価方法及び第18項に記載の細胞解析装置によれば、特に、細胞の機能の評価を的確に行うことができる。
According to the method for evaluating cell function according to item 9 and the cell analyzer according to item 18, it is possible to accurately evaluate cell function in particular.
1…顕微観察部
10…光源部
11…イメージセンサ
12…培養プレート
12a…ウェル
13…細胞
14…参照光
15…物体光
2…制御・処理部
20…撮影制御部
21…ホログラムデータ記憶部
22…位相情報算出部
23…画像再構成部
24…再構成画像データ記憶部
25…微分画像作成部
26…勾配スコア算出部
27…配向性スコア算出部
28…細胞機能評価情報出力部
3…入力部
4…表示部 1 ...Microscopic observation unit 10 ... Light source unit 11 ... Image sensor 12 ... Culture plate 12a ... Well 13 ... Cell 14 ... Reference light 15 ... Object light 2 ... Control / processing unit 20 ... Imaging control unit 21 ... Hologram data storage unit 22 ... Phase information calculation unit 23 ... Image reconstruction unit 24 ... Reconstructed image data storage unit 25 ... Differential image creation unit 26 ... Gradient score calculation unit 27 ... Orientation score calculation unit 28 ... Cell function evaluation information output unit 3 ... Input unit 4 … Display
10…光源部
11…イメージセンサ
12…培養プレート
12a…ウェル
13…細胞
14…参照光
15…物体光
2…制御・処理部
20…撮影制御部
21…ホログラムデータ記憶部
22…位相情報算出部
23…画像再構成部
24…再構成画像データ記憶部
25…微分画像作成部
26…勾配スコア算出部
27…配向性スコア算出部
28…細胞機能評価情報出力部
3…入力部
4…表示部 1 ...
Claims (18)
- 幹細胞である被検細胞の細胞機能を評価する方法であって、
被検細胞を撮影した細胞画像を取得する画像取得ステップと、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出ステップと、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を評価する評価ステップと、
を有する細胞機能の評価方法。 A method for evaluating the cell function of test cells, which are stem cells.
An image acquisition step to acquire a cell image of a test cell,
A feature amount extraction step for extracting information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation step for evaluating the cell function of the test cell based on the characteristic amount of the test cell, and
A method for evaluating cell function having. - 前記細胞機能は、未分化性の維持、遊走能、及び組織修復能のうちの少なくとも一つを含む、請求項1に記載の細胞機能の評価方法。 The method for evaluating cell function according to claim 1, wherein the cell function includes at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
- 前記細胞画像は位相像である、請求項1又は2に記載の細胞機能の評価方法。 The method for evaluating cell function according to claim 1 or 2, wherein the cell image is a phase image.
- 前記画像取得ステップは、
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定ステップと、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成ステップと、
を含む、請求項3に記載の細胞機能の評価方法。 The image acquisition step is
A measurement step of irradiating a test cell with a laser beam to detect interference light between the light passing through the test cell and the light passing around the test cell to acquire hologram data.
A phase image creation step of performing image reconstruction processing based on the hologram data to create a phase image of the test cell, and
3. The method for evaluating cell function according to claim 3. - 細胞機能が既知である参照細胞の細胞画像である参照画像を取得する参照画像取得ステップと、
前記参照画像から、前記特徴量抽出ステップで抽出された特徴量に相当する特徴量を抽出する参照特徴量抽出ステップと、
をさらに有し、前記評価ステップでは、前記被検細胞に対する特徴量と前記参照細胞に対する特徴量とを比較することにより、該被検細胞の細胞機能を評価する、請求項1~4のいずれか1項に記載の細胞機能の評価方法。 A reference image acquisition step for acquiring a reference image, which is a cell image of a reference cell whose cell function is known,
A reference feature amount extraction step for extracting a feature amount corresponding to the feature amount extracted in the feature amount extraction step from the reference image, and a reference feature amount extraction step.
In the evaluation step, the cell function of the test cell is evaluated by comparing the feature amount with respect to the test cell and the feature amount with respect to the reference cell, according to any one of claims 1 to 4. The method for evaluating cell function according to item 1. - 前記特徴量抽出ステップは、
前記位相像から画素毎に空間的な微分値を求めて微分画像を生成する微分画像生成ステップと、
前記微分画像において被検細胞が含まれる細胞領域から該被検細胞の輪郭部の勾配に関する情報を抽出する勾配情報抽出ステップと、
を含む、請求項3又は4に記載の細胞機能の評価方法。 The feature amount extraction step
A differential image generation step of obtaining a spatial differential value for each pixel from the phase image and generating a differential image,
A gradient information extraction step for extracting information on the gradient of the contour portion of the test cell from the cell region containing the test cell in the differential image, and
The method for evaluating cell function according to claim 3 or 4, which comprises. - 前記特徴量抽出ステップは、
前記微分画像における前記細胞領域に対応する画素数を算出する画素数取得ステップと、
前記位相像から細胞の数又はコンフルエンシを取得する細胞数/コンフルエンシ取得ステップと、
をさらに有し、前記画素数を前記細胞の数又はコンフルエンシで除することにより前記被検細胞の輪郭部の勾配に関する情報を求める、請求項6に記載の細胞機能の評価方法。 The feature amount extraction step
A pixel number acquisition step for calculating the number of pixels corresponding to the cell region in the differential image, and
The number of cells or the number of cells to obtain the confluency from the phase image / the confluency acquisition step,
The method for evaluating cell function according to claim 6, further comprising the method for obtaining information on the gradient of the contour portion of the test cell by dividing the number of pixels by the number of cells or the confluence. - 前記特徴量抽出ステップは、
前記細胞画像を複数の小領域に分割する画像分割ステップと、
前記小領域毎に、その小領域に含まれる各画素に対し微分フィルタを適用して輝度が変化する方向とその変化の大きさとを算出し、該小領域毎の輝度変化の方向及び大きさから前記被検細胞の配向性に関する情報を求める配向性情報算出ステップと、
を含む、請求項1~7のいずれか1項に記載の細胞機能の評価方法。 The feature amount extraction step
An image division step of dividing the cell image into a plurality of small regions, and
For each of the small areas, a differential filter is applied to each pixel included in the small area to calculate the direction in which the brightness changes and the magnitude of the change, and from the direction and magnitude of the brightness change in each small area. The orientation information calculation step for obtaining information on the orientation of the test cells, and
The method for evaluating cell function according to any one of claims 1 to 7, which comprises. - 前記幹細胞は間葉系幹細胞である、請求項1~8のいずれか1項に記載の細胞機能の評価方法。 The method for evaluating cell function according to any one of claims 1 to 8, wherein the stem cell is a mesenchymal stem cell.
- 幹細胞である被検細胞の細胞機能を評価する細胞解析装置であって、
被検細胞を撮影した細胞画像を取得する画像取得部と、
前記細胞画像から、被検細胞の輪郭部の勾配に関する情報及び/又は被検細胞の配向性に関する情報を、該被検細胞の特徴量として抽出する特徴量抽出部と、
前記被検細胞の特徴量に基づいて、該被検細胞の細胞機能を相対的に評価する評価処理部と、
を備える細胞解析装置。 A cell analyzer that evaluates the cell function of test cells, which are stem cells.
An image acquisition unit that acquires a cell image of a test cell,
A feature amount extraction unit that extracts information on the gradient of the contour portion of the test cell and / or information on the orientation of the test cell as the feature amount of the test cell from the cell image.
An evaluation processing unit that relatively evaluates the cell function of the test cell based on the characteristic amount of the test cell,
A cell analyzer equipped with. - 前記細胞機能は、未分化性の維持、遊走能、及び組織修復能のうちの少なくとも一つを含む、請求項10に記載の細胞解析装置。 The cell analysis apparatus according to claim 10, wherein the cell function includes at least one of undifferentiated maintenance, migration ability, and tissue repair ability.
- 前記細胞画像は位相像である、請求項10又は11に記載の細胞解析装置。 The cell analyzer according to claim 10 or 11, wherein the cell image is a phase image.
- 前記画像取得部は、
被検細胞にレーザ光を照射し該被検細胞を通過した光と該被検細胞の周囲を通過した光との干渉光を検出してホログラムデータを取得する測定実行部と、
前記ホログラムデータに基づく画像再構成処理を行い、前記被検細胞についての位相像を作成する位相像作成部と、
を含む、請求項12に記載の細胞解析装置。 The image acquisition unit
A measurement execution unit that irradiates a test cell with a laser beam, detects interference light between the light that has passed through the test cell and the light that has passed around the test cell, and acquires hologram data.
A phase image creating unit that performs image reconstruction processing based on the hologram data and creates a phase image of the test cell.
12. The cell analyzer according to claim 12. - 前記評価処理部は、前記被検細胞に対する特徴量と、予め取得された、細胞機能が既知である参照細胞の細胞画像から抽出された特徴量と、を比較することにより、該被検細胞の細胞機能を相対的に評価する、請求項10~13のいずれか1項に記載の細胞解析装置。 The evaluation processing unit compares the feature amount with respect to the test cell with the feature amount extracted from the cell image of the reference cell whose cell function is known, which has been acquired in advance, and thereby the test cell. The cell analyzer according to any one of claims 10 to 13, which relatively evaluates cell function.
- 前記特徴量抽出部は、前記位相像から画素毎に空間的な微分値を求めて微分画像を生成し、該微分画像において被検細胞が含まれる細胞領域から該被検細胞の輪郭部の勾配に関する情報を抽出する、請求項12又は13に記載の細胞解析装置。 The feature amount extraction unit obtains a spatial differential value for each pixel from the phase image and generates a differential image, and the gradient of the contour portion of the test cell from the cell region containing the test cell in the differential image. The cell analyzer according to claim 12 or 13, which extracts information about the cell.
- 前記特徴量抽出部は、前記微分画像における前記細胞領域に対応する画素数を算出するとともに、前記位相像から細胞の数又はコンフルエンシを取得し、前記画素数を前記細胞の数又はコンフルエンシで除することにより前記被検細胞の輪郭部の勾配に関する情報を求める、請求項15に記載の細胞解析装置。 The feature amount extraction unit calculates the number of pixels corresponding to the cell region in the differential image, acquires the number of cells or confluency from the phase image, and divides the number of pixels by the number of cells or confluence. The cell analyzer according to claim 15, wherein the information regarding the gradient of the contour portion of the test cell is obtained thereby.
- 前記特徴量抽出部は、前記細胞画像を複数の小領域に分割し、該小領域毎に、その小領域に含まれる各画素に対し微分フィルタを適用して輝度が変化する方向とその変化の大きさとを算出し、該小領域毎の輝度変化の方向及び大きさから前記被検細胞の配向性に関する情報を求める、請求項10~16のいずれか1項に記載の細胞解析装置。 The feature amount extraction unit divides the cell image into a plurality of small regions, and applies a differential filter to each pixel included in the small region for each small region to change the direction in which the brightness changes and its change. The cell analyzer according to any one of claims 10 to 16, which calculates the size and obtains information on the orientation of the test cells from the direction and magnitude of the brightness change for each small region.
- 前記幹細胞は間葉系幹細胞である、請求項10~17のいずれか1項に記載の細胞解析装置。 The cell analyzer according to any one of claims 10 to 17, wherein the stem cell is a mesenchymal stem cell.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025489 WO2020261455A1 (en) | 2019-06-26 | 2019-06-26 | Cell function evaluation method and cell analysis device |
JP2021527740A JPWO2020262551A1 (en) | 2019-06-26 | 2020-06-25 | |
PCT/JP2020/025087 WO2020262551A1 (en) | 2019-06-26 | 2020-06-25 | Cell function evaluation method and cell analysis apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025489 WO2020261455A1 (en) | 2019-06-26 | 2019-06-26 | Cell function evaluation method and cell analysis device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020261455A1 true WO2020261455A1 (en) | 2020-12-30 |
Family
ID=74060592
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025489 WO2020261455A1 (en) | 2019-06-26 | 2019-06-26 | Cell function evaluation method and cell analysis device |
PCT/JP2020/025087 WO2020262551A1 (en) | 2019-06-26 | 2020-06-25 | Cell function evaluation method and cell analysis apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025087 WO2020262551A1 (en) | 2019-06-26 | 2020-06-25 | Cell function evaluation method and cell analysis apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020262551A1 (en) |
WO (2) | WO2020261455A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022181024A1 (en) * | 2021-02-26 | 2022-09-01 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010449A1 (en) * | 2009-07-21 | 2011-01-27 | 国立大学法人京都大学 | Image processing device, culture observation apparatus, and image processing method |
JP2011229410A (en) * | 2010-04-23 | 2011-11-17 | Nagoya Univ | Cell evaluation device, incubator, program, and culture method |
JP2014039535A (en) * | 2012-07-24 | 2014-03-06 | Univ Of Electro-Communications | Cell identification apparatus and cell identification method, and program for cell identification method, and recording medium recording the program |
JP2015061516A (en) * | 2013-08-22 | 2015-04-02 | 富士フイルム株式会社社 | Cell image evaluation apparatus, method, and program thereof |
WO2016084420A1 (en) * | 2014-11-27 | 2016-06-02 | 株式会社島津製作所 | Digital holography device and digital hologram generation method |
WO2018158901A1 (en) * | 2017-03-02 | 2018-09-07 | 株式会社島津製作所 | Cell analysis method and cell analysis system |
-
2019
- 2019-06-26 WO PCT/JP2019/025489 patent/WO2020261455A1/en active Application Filing
-
2020
- 2020-06-25 WO PCT/JP2020/025087 patent/WO2020262551A1/en active Application Filing
- 2020-06-25 JP JP2021527740A patent/JPWO2020262551A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010449A1 (en) * | 2009-07-21 | 2011-01-27 | 国立大学法人京都大学 | Image processing device, culture observation apparatus, and image processing method |
JP2011229410A (en) * | 2010-04-23 | 2011-11-17 | Nagoya Univ | Cell evaluation device, incubator, program, and culture method |
JP2014039535A (en) * | 2012-07-24 | 2014-03-06 | Univ Of Electro-Communications | Cell identification apparatus and cell identification method, and program for cell identification method, and recording medium recording the program |
JP2015061516A (en) * | 2013-08-22 | 2015-04-02 | 富士フイルム株式会社社 | Cell image evaluation apparatus, method, and program thereof |
WO2016084420A1 (en) * | 2014-11-27 | 2016-06-02 | 株式会社島津製作所 | Digital holography device and digital hologram generation method |
WO2018158901A1 (en) * | 2017-03-02 | 2018-09-07 | 株式会社島津製作所 | Cell analysis method and cell analysis system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020262551A1 (en) | 2020-12-30 |
WO2020262551A1 (en) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5181385B2 (en) | Prediction model construction method for predicting cell quality, prediction model construction program, recording medium recording the program, and prediction model construction apparatus | |
US8885912B2 (en) | Generate percentage of positive cells for biomarkers by normalizing and autothresholding the image intensity produced by immunohistochemistry technique | |
Roeder et al. | Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs | |
CN107368671A (en) | System and method are supported in benign gastritis pathological diagnosis based on big data deep learning | |
JP2015518378A (en) | Automatic segmentation and characterization of cell motility | |
US20180089495A1 (en) | Method for scoring pathology images using spatial analysis of tissues | |
JP6873390B2 (en) | Cell analysis method and cell analysis device | |
JP2022001040A (en) | Evaluation method of cell and cell analysis apparatus | |
Vicar et al. | DeepFoci: deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci | |
Takemoto et al. | Predicting quality decay in continuously passaged mesenchymal stem cells by detecting morphological anomalies | |
WO2020261455A1 (en) | Cell function evaluation method and cell analysis device | |
Diosdi et al. | A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids | |
Comin et al. | An image processing approach to analyze morphological features of microscopic images of muscle fibers | |
Shah et al. | PunctaSpecks: a tool for automated detection, tracking, and analysis of multiple types of fluorescently labeled biomolecules | |
JP2023066991A (en) | Image processing method, evaluation method of fertilized egg, computer program, and recording medium | |
Husna et al. | Multi-modal image cytometry approach–from dynamic to whole organ imaging | |
Raymond-Hayling et al. | A fibre tracking algorithm for volumetric microstructural data-application to tendons | |
Ahammer et al. | Fractal dimension of the choriocarcinoma cell invasion front | |
CN118051808B (en) | AI-based cell identification method and system | |
Ravikumar et al. | Critical comparison of image analysis workflows for quantitative cell morphological evaluation in assessing cell response to biomaterials | |
WO2019108230A1 (en) | Method for scoring pathology images using spatial analysis of tissues | |
Banerjee | Image processing of biofilms and its applications | |
Korzynska et al. | Artifical images for evaluation of segmentation results: bright field images of living cells | |
Mukhopadhyay et al. | Machine learning aided single cell image analysis improves understanding of morphometric heterogeneity of human mesenchymal stem cells | |
Mota | Quantitative Image-Based Analysis of Multidimensional Mesenchymal Stromal Cell Cultures via Computer Vision and Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19935684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19935684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |