[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020259301A1 - 交叉口车辆延误时间与停车次数的计算方法和装置 - Google Patents

交叉口车辆延误时间与停车次数的计算方法和装置 Download PDF

Info

Publication number
WO2020259301A1
WO2020259301A1 PCT/CN2020/095557 CN2020095557W WO2020259301A1 WO 2020259301 A1 WO2020259301 A1 WO 2020259301A1 CN 2020095557 W CN2020095557 W CN 2020095557W WO 2020259301 A1 WO2020259301 A1 WO 2020259301A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
vehicle
vehicles
total
delay time
Prior art date
Application number
PCT/CN2020/095557
Other languages
English (en)
French (fr)
Inventor
陈俊德
许古午
Original Assignee
南京慧尔视智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京慧尔视智能科技有限公司 filed Critical 南京慧尔视智能科技有限公司
Publication of WO2020259301A1 publication Critical patent/WO2020259301A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count

Definitions

  • the invention relates to the technical field of traffic intelligent management, in particular to a method for calculating the number of vehicle delays and parking times at an intersection.
  • Any new or modified signal control system needs to meet one or more specific goals. Sometimes these goals may be easy to express, such as reducing traffic congestion in the core area of the city, minimizing the number of stops, etc. However, sometimes it is not so easy to measure in detail.
  • the purpose of traffic signal control evaluation is to make a scientific and reasonable evaluation of the actual operation effect of traffic signal control. Among them, delay is the most commonly used evaluation index in traffic signal control, and the number of stops is often used as a secondary index.
  • the number of delays and parking times at signalized intersections is an evaluation index that reflects vehicle obstruction and travel time loss at signalized intersections, and can comprehensively reflect the advantages and disadvantages of the geometric design and signal timing of the intersection.
  • Delays usually refer to the increase in travel time caused by factors beyond the driver's control such as road and environmental conditions, traffic interference, and traffic management and control facilities.
  • the number of times a vehicle has stopped refers to the number of times the vehicle has stopped under the influence of signal control when passing through an intersection, that is, the degree of stopping of the vehicle when it is blocked.
  • video traffic parameter detection It is mainly limited to the detection of general traffic parameters at intersections such as traffic flow, average speed, lane occupancy rate, and queue length, and then uses model calculations to indirectly obtain vehicle delays, the core evaluation indicators of intersection signal control.
  • the existing video detection technology cannot directly detect the control delay of vehicles passing through the intersection.
  • Video detection and target tracking technology are used to automatically obtain the control delay and other parameters of the signal control intersection, providing a method based on Video detection method for vehicle control delays at intersections.
  • the video sensor is extremely susceptible to interference from the surrounding environment. For example, severe weather conditions such as strong light, rain, snow, and fog will affect the normal operation of the video sensor, resulting in inaccurate information detection results.
  • the microwave detector has strong environmental adaptability, can run all-weather, and has the technical advantages of high precision, high reliability, large area detection, high economic efficiency, and easy installation. It satisfies the requirements of various aspects of traffic information collection. However, the use of microwave detection technology to detect the delay time and the number of stops at intersections is very rare.
  • the purpose of the present invention is to provide a method for calculating the vehicle delay time and the number of parking at an intersection, which is used to solve the technical problem in the prior art that the accuracy of data detected by video detection and target tracking technology is greatly affected by the environment.
  • the present invention proposes the following technical solutions:
  • the calculation methods of vehicle delay time at intersections include:
  • the vehicle speed delay threshold value is 3 km/h to 5 km/h.
  • the present invention also provides a method for calculating the number of vehicle stops at an intersection, including:
  • the aforementioned method for calculating vehicle delay time at an intersection is implemented based on a computing device for vehicle delay time at an intersection, so the calculation device includes:
  • Microwave detector used to detect and collect the driving information of vehicles entering the intersection
  • a processing module is provided in the microwave detector, and the processing module executes the following processing procedures:
  • An output module is provided in the microwave detector, and the output module is used to output the processing result of the processing module.
  • the foregoing method for calculating the number of stops at an intersection is implemented based on a calculation device for the number of stops at an intersection, so the calculation device includes:
  • Microwave detector used to detect and collect the driving information of vehicles entering the intersection
  • a processing module is provided in the microwave detector, and the processing module executes the following processing procedures:
  • An output module is provided in the microwave detector, and the output module is used to output the processing result of the processing module.
  • This scheme proposes a microwave-based method for calculating the number of vehicle delays and parking times at intersections.
  • the microwave detector is used to directly detect the number of parking times and delay times in multiple lanes at any time at the intersection, and is not affected by the external environment , High accuracy, able to make an objective evaluation of the current traffic signal control effect, and also an objective basis for future system upgrades, control strategy adjustments and traffic signal timing plan optimization.
  • FIG. 1 is a schematic diagram of the microwave coverage of an intersection area of a microwave detector in a specific embodiment of the present invention
  • Figure 2 is a flow chart of calculating the delay time in a specific embodiment of the present invention.
  • Fig. 3 is a flowchart for calculating the number of parking times in a specific embodiment of the present invention.
  • the specific embodiment of the present invention is based on a microwave detector to detect and count several important traffic parameters at the intersection, mainly including traffic flow, delays and the number of stops.
  • the core device in the present invention is a microwave detector, which is a device widely used in the field of traffic detection. It is usually equipped with a microwave transmitting module, a digital-to-analog conversion module, a calculation processing module, a storage module, an input and output module, etc., It is used to track and detect the position and speed of the vehicle, calculate according to the preset program, and output the result.
  • the detection area of the microwave detector needs to be determined.
  • the microwave detector is located in the middle of the road, and the two sides of the scanned fan-shaped area are symmetrical with respect to the X axis.
  • the specific location of the microwave detector above is an example, and the implementer can adjust it according to the road conditions on site.
  • the vehicle speed delay threshold needs to be set in the microwave detector.
  • the range of the vehicle speed delay threshold is 3km/h-5km/h, and the optimal value is 5km/h.
  • This parameter needs to be used in the program preset in the microwave detector as a criterion for judging whether the vehicle is delayed. When the vehicle speed is lower than this parameter, the vehicle is deemed to be delayed, and when the vehicle speed is higher than this parameter, the vehicle is deemed not to be delayed.
  • start the microwave detector to detect and collect the driving information of vehicles entering the intersection, so as to realize the trajectory tracking detection of all vehicles in the detection area.
  • the microwave detector continuously emits frequency-modulated microwave beams to detect vehicle information on the road.
  • the microwave detector uses the reflected echo to determine the vehicle's position, speed and other information (specifically extracting the position, speed and other information from the echo signal belongs to the microwave in the prior art.
  • the conventional detection technology can be referred to the prior art for details, which will not be repeated here).
  • each vehicle is distinguished, identified and determined, and an identifier ID is set for each vehicle to achieve multi-target detection.
  • the microwave detector collects information such as the position and speed that match the vehicle in real time according to the vehicle ID, and tracks the target by locating changes in the vehicle position in real time. Finally, the microwave detector performs cyclic detection on the detection area to realize the tracking and detection of all vehicles in the detection area. If the vehicle leaves the detection area, the vehicle ID information will be initialized, that is, the information corresponding to the ID will be cleared. This ID will be free and will be given to newly entered vehicles covered by the detection.
  • Embodiment 1 Calculate the average delay time of all vehicles passing through the beam coverage in any time period.
  • each car when performing statistics for the time unit of duration t i , within the coverage of the microwave detector beam, traverse each car in order from far to near or from near to far in accordance with the distance between the vehicle and the stop line Cars, judge each car in the following order:
  • the duration of the above time unit can be selected as required.
  • the minimum value of the time unit is determined according to the scanning period of the microwave detector. For example, the scanning period is 50 ms, and the duration of each time unit is 50 ms. At this time, the detection accuracy is the highest, but it will cause a large amount of calculation. If the time length of the time unit is larger, the detection accuracy is not high. Generally, it is preferable to choose t i ⁇ 3s, and the recommended optimal value is 1 second.
  • the total delay time in the first second and the number of vehicles passing the lane stop line are counted according to the above method; then in the second and third seconds of the statistical period...
  • the total delay time and the number of vehicles passing the lane stop line; finally, the total number of vehicles passing the lane stop line is used as the cycle total flow V flow , and the sum of all delay times is added as the cycle total delay time T d , and then calculated by the formula Average cycle delay time
  • the microwave detector is used to detect and collect the driving information of vehicles entering the intersection.
  • a processing module is provided in the microwave detector, and the processing module executes the following processing procedures:
  • the statistical period is T, and divide the statistical period T into m continuously distributed time units.
  • An output module is provided in the microwave detector, and the output module is used to output the processing result of the processing module.
  • the third embodiment is to calculate the average number of stops for all vehicles passing through the beam coverage in any time period.
  • each car when performing statistics for the time unit of duration t i , within the coverage of the microwave detector beam, traverse each car in order from far to near or from near to far in accordance with the distance between the vehicle and the stop line Cars, judge each car in the following order:
  • the duration of the aforementioned time unit can be selected according to needs, and can be performed with reference to the selection method in the first embodiment.
  • the preferred time unit is an integer number of seconds, such as 1 second.
  • the statistical period is T (T ⁇ 1) (unit: s), and the total number of vehicles in the beam coverage area of the statistical period T is n (n ⁇ 1) (unit: vehicles), and the statistical period T is divided into time units After the division, statistics are made separately until all n vehicles are counted.
  • the number of stops c i and the number of vehicles passing the lane stop line n i in the first second are counted according to the above method; then in the second and third seconds of the statistical period... Respectively count the corresponding number of parking times c i and the number of vehicles passing through the lane stop line n i ; finally, the total number of vehicles passing through the lane stop line is used as the cycle total flow V flow , and all the number of parking times c i is added as the cycle total number of parking times T s , and then use the formula to calculate the cycle average number of stops
  • the fourth embodiment provides a device for calculating the number of stops at an intersection, including
  • Microwave detector used to detect and collect the driving information of vehicles entering the intersection
  • a processing module is provided in the microwave detector, and the processing module executes the following processing procedures:
  • An output module is provided in the microwave detector, and the output module is used to output the processing result of the processing module.
  • the vehicles can be managed by lanes as a unit according to the location information of the vehicles, and the number of parking times and delay times of vehicles in each lane can be analyzed and calculated.
  • each lane is numbered, and the coordinate range of each lane on the Y axis is determined.
  • the coordinate range of the first lane is Y0 ⁇ Lane1 ⁇ Y1
  • the coordinate range of the second lane is Y1 ⁇ Lane2 ⁇ Y2
  • the coordinate range of the third lane is Y2 ⁇ Lane3 ⁇ Y3, and so on.
  • Another embodiment of the present invention discloses an electronic device, including a memory and a processor, the memory and the processor are communicatively connected to each other, for example, connected by a bus or other means, and computer instructions are stored in the memory, The processor executes the method for calculating the green light empty time at an intersection by executing the computer instruction.
  • the processor is preferably but not limited to a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other Chips such as programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • the memory as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs, non-transitory computer executable programs and modules, as in the embodiment of the present invention corresponding to the method for calculating the green light empty time at an intersection
  • the processor executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory, that is, to realize a kind of intersection green light in the above method embodiment Empty time calculation method.
  • the memory may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor and the like.
  • the memory is preferably but not limited to a high-speed random access memory.
  • it may also be a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid state storage devices.
  • the memory may also optionally include a memory remotely arranged with respect to the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • storage media can be magnetic disks, optical disks, read-only memory (Read-Only Memory, ROM), random access memory (RAM), flash memory (Flash Memory), hard disk (HardDisk Drive, Abbreviation: HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the above types of memories.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种交叉口车辆延误时间与停车次数的计算方法和装置,通过微波检测器发射微波探测微波覆盖范围内进入交叉口车辆的行驶信息,进而将统计周期T划分为若干个时间单元,收集每个时间单元内的车辆驶过停止线的次数、延误次数以及停车次数,从而统计整个统计周期T内的车辆延误时间与停车次数。不受环境影响,准确度高,能够对当前的交通信号控制效果作出客观评价,也是未来系统升级改造、控制策略调整及交通信号配时方案优化等的客观依据。

Description

交叉口车辆延误时间与停车次数的计算方法和装置 技术领域
本发明涉及交通智能管理技术领域,具体涉及一种交叉口车辆延误与停车次数的计算方法。
背景技术
任何新建或改建的信号控制系统都需要满足一个或多个特定的目标。有时候这些目标可能是易于表达的,例如,降低城市核心区的交通堵塞、最小化停车次数等,但是,在具体衡量的时候有时却并不那么容易。交通信号控制评价的目的便是对交通信号控制的实际运行效果进行科学合理的评估。其中,延误是交通信号控制中应用最为普遍的评价指标,而停车次数往往作为次级指标。信号交叉口延误和停车次数是反映车辆在信号交叉口上受阻、行驶时间损失的评价指标,能够综合反映交叉口的几何设计与信号配时的优劣。延误通常是指由于道路与环境条件、交通干扰以及交通管理与控制设施等驾驶员无法控制的因素而引起的行程时间增加。车辆的停车次数是指车辆在通过交叉口时受信号控制影响而停车的次数,即车辆在受阻情况下的停车程度。
经对现有技术的文献检索发现,基于视频的交通参数检测成为了交通参数自动检测的发展趋势,许多学者进行了相关的研究,发表了大量的研究成果,但到目前为止,视频交通参数检测主要局限于对交通流量、平均速度以及车道占有率、排队长度等交叉口常规交通参数的检测,然后利用模型计算间接获得车辆延误这个交叉口信号控制的核心评价指标。在专利CN200810200001.5中,针对现有视频检测技术不能直接检测车辆通过交叉口的控制延误的不足,采用视频检测与目标跟踪技术,自动获取信号控制交叉口的控制延误等参数,提供一种基于视频的交叉口车辆控制延误的检测方法。但是,视频传感器由于自身的光学特性,极易受到周围环境的干扰,例如强光照射、雨雪雾等恶劣天气的气候条件都会影响视频传感器的正常工作,导致其检测的信息结果不够准确。
而微波检测器环境适应性强,能够做到全天候运行,具备高精度、高可靠性、大区域检测、高经济效益、安装简便等技术优势很好的满足了对交通信息采集各方面的要求。但是,利用微波检测技术对交叉口延误时间及停车次数进行检测的研究却十分少见。
发明内容
本发明目的在于提供一种交叉口车辆延误时间与停车次数的计算方法,用于解决现有技术中存在的采用视频检测与目标跟踪技术检测的数据准确性受环境影响大的技术问题。
为达成上述目的,本发明提出如下技术方案:
交叉口车辆延误时间的计算方法,包括:
启动微波检测器对进入交叉口的车辆行驶信息进行检测并收集;
设统计周期为T,初始化周期总流量V =0,初始化周期总延误时间T d=0;
将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2, 3,…m),针对时长为t i的时间单元,
1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
Figure PCTCN2020095557-appb-000001
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000002
周期总延误时间
Figure PCTCN2020095557-appb-000003
周期平均延误时间
Figure PCTCN2020095557-appb-000004
进一步的,在本发明中,当周期总流量V =0时,周期总延误时间T d=0,周期平均延误时间T′ d=0。
进一步的,在本发明中,针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,根据车辆与停止线之间的距离远近,按照由远及近或由近及远地顺序遍历每一辆车,对每一辆车进行如下顺序判断:
S1、判断车速是否不高于车速延误阈值且未驶过车道停止线,若满足,则该车辆在该时间单元内的延误时间为t i,在该时间单元内的延误时间总和T di增加t i,否则,该车辆在该时间单元内的延误时间为0,在该时间单元内的延误时间总和T di不变;
S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
进一步的,在本发明中,所述车速延误阈值取值3km/h~5km/h。
公开上述方案的同时,本发明还同时提供一种交叉口车辆停车次数的计算方法,包括:
启动微波检测器对进入交叉口的车辆行驶信息进行检测并收集;
设统计周期为T,初始化周期总流量V =0,初始化周期总停车次数T s=0;
将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3……m);
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
则对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000005
周期总停车次数
Figure PCTCN2020095557-appb-000006
周期平均停车次数
Figure PCTCN2020095557-appb-000007
同样的,在上述方法中,针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,按照车辆与停止线之间的距离远近,由远及近或由近及远地顺序遍历每一辆车,对每一辆车进行如下判断:
S1、判断车辆在未驶过车道停止线之前车速是否减为0,若满足,则该车辆在该时间单元内的停车次数为1,在该时间单元内的停车次数c i增加1,否则,该车辆在该时间单元内的停车次数为0,在该时间单元内的停车次数c i不变;
S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
进一步的,上述交叉口车辆延误时间的计算方法基于交叉口车辆延误时间的计算 装置而实现,因此该计算装置包括:
微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集;
所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
设统计周期为T,初始化周期总流量V =0,初始化周期总延误时间T d=0;
将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
Figure PCTCN2020095557-appb-000008
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000009
周期总延误时间
Figure PCTCN2020095557-appb-000010
周期平均延误时间
Figure PCTCN2020095557-appb-000011
所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
同样的,上述交叉口停车次数的计算方法基于交叉口停车次数的计算装置而实现,因此该计算装置包括:
微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集;
所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
设统计周期为T,初始化周期总流量V =0,初始化周期总停车次数T s=0;
将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3……m);
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
则对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000012
周期总停车次数
Figure PCTCN2020095557-appb-000013
周期平均停车次数
Figure PCTCN2020095557-appb-000014
所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
有益效果:
本方案提出了一种基于微波的交叉口车辆延误与停车次数的计算方法,通过微波检测器实现交叉口处任一时间内多车道停车次数、延误时间的直接检测,且不受外界环境的影响,准确度高,能够对当前的交通信号控制效果作出客观评价,也是未来系统升级改造、控制策略调整及交通信号配时方案优化等的客观依据。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明的具体实施例中微波检测器的微波覆盖交叉口区域的示意图;
图2为本发明的具体实施例中延误时间的计算流程图;
图3为本发明的具体实施例中停车次数的计算流程图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
如图1所示的交叉口,本发明的具体实施例是基于微波检测器来检测和统计该交叉口内若干个重要的交通参数,主要包括交通流量、延误以及停车次数。
本发明中的核心设备是微波检测器,该设备是交通检测领域广泛应用的一种设备,其内部通常设置有微波发射模块、数模转换模块、计算处理模块、存储模块以及输入输出模块等,用于对车辆的位置、速度等信息进行跟踪检测并按照预设程序进行计算以及向外输出结果。
为了实施本发明,需确定微波检测器的检测区域。
首先在路口的杆件上布设好微波检测器,微波检测器正对要检测的道路,然后调整微波检测器的俯仰角、偏转角及在杆件上的水平位置,直到微波检测器的波束能够完全覆盖要检测的道路。
具体的,通过以下方式转化为具体的数据形式呈现。以微波检测器的发射面板中心所在的位置为坐标原点0,以平行于车道方向为X轴(微波检测器的检测方向为正方向),垂直于车道的方向为Y轴(微波检测器检测方向的左侧为正方向)建立坐标系:在图1的示例中,微波检测器扫描的扇形区域的一侧为X轴,另一侧边与道路的停止线远离微波检测器方向最远的点相交。在其他实施例中,微波检测器位于道路的中间位置,扫描的扇形区域的两侧边相对于X轴对称。以上微波检测器的具体位置为举例说明,实施者可根据现场道路的情况自行调整。
在微波检测器内需设置车速延误阈值,车速延误阈值的范围为3km/h-5km/h,最优值5km/h。该参数在微波检测器内所预设的程序中需要使用到,作为判断车辆是否延误的标准,当车速低于该参数时认为车辆发生延误,当车速高于该参数时认为车辆未发生延误。
接着,启动微波检测器对进入交叉口的车辆行驶信息进行检测并收集,实现对检测区域内所有车辆的轨迹式跟踪检测。
具体的,微波检测器连续发射调频微波波束,探测道路上的车辆信息。在一个扫描周期内,当车辆进入波束覆盖范围时,微波检测器通过反射回来的回波判定车辆的位置、速 度等信息(具体从回波信号中提取位置、速度等信息属于现有技术中微波检测的常规技术,具体可参见现有技术,此处不再赘述),根据这些信息来区分、识别和确定每一台车辆,并给每一台车辆设置标识符ID,实现多目标检测。
在下一个扫描周期内,微波检测器根据车辆ID实时采集与该车辆相匹配的位置、速度等信息,通过实时定位车辆位置的变化来跟踪目标。最终,微波检测器对检测区域进行循环检测,实现对检测区域内所有车辆的轨迹跟踪检测。如果车辆离开了检测区域,则将此车辆ID信息初始化,也就是清空对应所述ID的信息,此ID将空闲出来,将给予新进入检测覆盖的车辆。
下面列举几个具体的实施例对本发明进行进一步的说明。
实施例一、计算任一时间段内所有经过波束覆盖范围内车辆的平均延误时间。
如图2所示:
在微波检测器内初始化周期总流量V =0,初始化周期总延误时间T d=0。
记该时间段为一个统计周期T,将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,说明该车辆发生了延误,导致行程时间增加,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
Figure PCTCN2020095557-appb-000015
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
对于统计周期T,
将所有时间单元内统计到的驶过车道停止线的车辆总数进行累加得到周期总流量
Figure PCTCN2020095557-appb-000016
将所有时间单元内计算到的延误时间总和进行累加得到周期总延误时间
Figure PCTCN2020095557-appb-000017
因此,周期平均延误时间
Figure PCTCN2020095557-appb-000018
特别的,当周期总流量V =0时,周期总延误时间T d=0,周期平均延误时间T′ d=0。
具体的:针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,按照车辆与停止线之间的距离远近,由远及近或由近及远地顺序遍历每一辆车,对每一辆车进行如下顺序判断:
S1、判断车速是否不高于车速延误阈值且未驶过车道停止线,若满足,则该车辆在该时间单元内的延误时间为t i,在该时间单元内的延误时间总和T di增加t i,否则,该车辆在该时间单元内的延误时间为0,在该时间单元内的延误时间总和T di不变;
S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
上述时间单元的时长可根据需要选择。特别的,时间单元的最小取值根据微波检测器的扫描周期确定,比如扫描周期为50ms,每个时间单元的时长就为50ms,此时检测准确度最高,但是会导致计算量较大。如果时间单元的时长取值较大的话,检测准确度不高,一般优选取t i≤3s,推荐最优值取1秒。
设统计周期T(T≥1)(单位:s)内波束覆盖范围内的车辆总数为n(n≥1)(单位:辆),将统计周期T按照时间单元划分后分别统计,直至所有n辆车的情况都被统计到。具体的:
在统计周期的第1秒内,按照上述方法统计第1秒内的延误时间总和以及驶过车道停止线的车辆数;接着在统计周期的第2秒内、第3秒内……分别统计相应的延误时间总和以及驶过车道停止线的车辆数;最后将累加所有驶过车道停止线的车辆数作为周期总流量V ,累加所有延误时间总和作为周期总延误时间T d,然后通过公式计算周期平均延误时间
Figure PCTCN2020095557-appb-000019
实施例二、提供一种交叉口车辆延误时间的计算装置
包括:
微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集。
所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
初始化周期总流量V =0,初始化周期总延误时间T d=0。
设统计周期为T,将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
Figure PCTCN2020095557-appb-000020
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000021
周期总延误时间
Figure PCTCN2020095557-appb-000022
周期平均延误时间
Figure PCTCN2020095557-appb-000023
所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
实施例三、计算任一时间段内所有经过波束覆盖范围内车辆的平均停车次数。
如图3所示,
在微波检测器内初始化周期总流量V =0,初始化周期总停车次数T s=0。
记该时间段为一个统计周期T,将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3……m);这里判断发生停车行为时,需考虑车速由有速度减为0,且当车辆始终处于静止状态时,停车次数仅记1次;
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
则对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000024
周期总停车次数
Figure PCTCN2020095557-appb-000025
周期平均停车次数
Figure PCTCN2020095557-appb-000026
具体的:针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,按照车辆与停止线之间的距离远近,由远及近或由近及远地顺序遍历每一辆车,对每一辆车 进行如下顺序判断:
S1、判断车辆在未驶过车道停止线之前车速是否减为0,若满足,则该车辆在该时间单元内的停车次数为1,在该时间单元内的停车次数c i增加1,否则,该车辆在该时间单元内的停车次数为0,在该时间单元内的停车次数c i不变;
S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
上述时间单元的时长可根据需要选择,可参照实施例一中的选择方法进行,在本发明的实施例中,优选时间单元为整数秒,如1秒。
具体的:统计周期为T(T≥1)(单位:s),设统计周期T内波束覆盖范围内的车辆总数为n(n≥1)(单位:辆),将统计周期T按照时间单元划分后分别统计,直至所有n辆车的情况都被统计到。
具体的:
在统计周期的第1秒内,按照上述方法统计第1秒内的停车次数c i以及驶过车道停止线的车辆数n i;接着在统计周期的第2秒内、第3秒内……分别统计相应的停车次数c i以及驶过车道停止线的车辆数n i;最后将累加所有驶过车道停止线的车辆数作为周期总流量V ,累加所有停车次数c i作为周期总停车次数T s,然后通过公式计算周期平均停车次数
Figure PCTCN2020095557-appb-000027
实施例四、提供一种交叉口停车次数的计算装置,包括
微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集;
所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
设统计周期为T,初始化周期总流量V =0,初始化周期总停车次数T s=0;
将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,…m),针对时长为t i的时间单元,
1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3……m);
2)、统计驶过车道停止线的车辆总数n i(i=1,2,3……m);
则对于统计周期T,周期总流量
Figure PCTCN2020095557-appb-000028
周期总停车次数
Figure PCTCN2020095557-appb-000029
周期平均停车次数
Figure PCTCN2020095557-appb-000030
所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
实施例五、
在上述各实施例的基础上,可以根据车辆的位置信息,对车辆以车道为单位进行分区管理,分析计算每条车道内车辆的停车次数和延误时间。
确定车辆车道信息的方法:
在以微波车辆检测器的中心点为坐标原点0建立的坐标系中,对每一条车道进行编号,并确定每一条车道在Y轴上的坐标范围。例如,第一车道的坐标范围为Y0≤Lane1<Y1,第二车道的坐标范围为Y1≤Lane2<Y2,第三车道的坐标范围为Y2≤Lane3<Y3,以此类推。将上述坐标范围预设到微波检测器内用于程序调用,可以在获取检测区域内目标车辆的位置 信息后,即得到车辆的X坐标值和Y坐标值,看Y坐标值落在哪个坐标范围内即确定车辆所处的车道信息。
实施例六、
在上述各实施例的基础上,还可以在采集道路的行驶信息后设置到微波检测器,分析计算直行、左转、右转等各个转向车道内车辆的停车次数和延误时间。
实施例七、
本发明的另一个实施例公开一种电子设备,包括存储器和处理器,所述存储器和所述处理器之间互相通信连接,例如通过总线或者其他方式连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行所述一种交叉口绿灯空放时间计算方法。
处理器优选但不限于是中央处理器(Central Processing Unit,CPU)。例如,处理器还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的一种交叉口绿灯空放时间计算方法对应的程序指令/模块,处理器通过运行存储在存储器的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的一种交叉口绿灯空放时间计算方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器所创建的数据等。此外,存储器优选但不限于高速随机存取存储器,例如,还可以是非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器还可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的程序,可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(HardDisk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (10)

  1. 交叉口车辆延误时间的计算方法,其特征在于:
    启动微波检测器对进入交叉口的车辆行驶信息进行检测并收集;
    设统计周期为T,初始化周期总流量V =0,初始化周期总延误时间T d=0;
    将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,...m),针对时长为t i的时间单元,
    1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
    Figure PCTCN2020095557-appb-100001
    2)、统计驶过车道停止线的车辆总数n i(i=1,2,3......m);
    对于统计周期T,周期总流量
    Figure PCTCN2020095557-appb-100002
    周期总延误时间
    Figure PCTCN2020095557-appb-100003
    周期平均延误时间
    Figure PCTCN2020095557-appb-100004
  2. 根据权利要求1所述的交叉口车辆延误时间的计算方法,其特征在于:当周期总流量V =0时,周期总延误时间T d=0,周期平均延误时间T′ d=0。
  3. 根据权利要求1所述的交叉口车辆延误时间的计算方法,其特征在于:针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,根据车辆与停止线之间的距离,按照由远及近或由近及远地顺序遍历每一辆车,对每一辆车进行如下顺序判断:
    S1、判断车速是否不高于车速延误阈值且未驶过车道停止线,若满足,则该车辆在该时间单元内的延误时间为t i,在该时间单元内的延误时间总和T di增加t i,否则,该车辆在该时间单元内的延误时间为0,在该时间单元内的延误时间总和T di不变;
    S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
  4. 根据权利要求1至3中任意一项所述的交叉口车辆延误时间的计算方法,其特征在于:所述车速延误阈值取值3km/h~5km/h。
  5. 交叉口车辆停车次数的计算方法,其特征在于:
    启动微波检测器对进入交叉口的车辆行驶信息进行检测并收集;
    设统计周期为T,初始化周期总流量V =0,初始化周期总停车次数T s=0;
    将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,...m),针对时长为t i的时间单元,
    1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3......m);
    2)、统计驶过车道停止线的车辆总数n i(i=1,2,3......m);
    则对于统计周期T,周期总流量
    Figure PCTCN2020095557-appb-100005
    周期总停车次数
    Figure PCTCN2020095557-appb-100006
    周期平均停车次数
    Figure PCTCN2020095557-appb-100007
  6. 根据权利要求1所述的交叉口车辆停车次数的计算方法,其特征在于:针对时长为t i的时间单元进行统计时,在微波检测器波束覆盖范围内,按照车辆与停止线之间的距离远近,由远及近或由近及远地顺序遍历每一辆车,对每一辆车进行如下判断:
    S1、判断车辆在未驶过车道停止线之前车速是否减为0,若满足,则该车辆在该时间单元内的停车次数为1,在该时间单元内的停车次数c i增加1,否则,该车辆在该时间单元内的停车次数为0,在该时间单元内的停车次数c i不变;
    S2、检测该车辆是否在该时间单元内驶过停止线,若驶过,则该时间单元内驶过车道停止线的车辆数增加1,否则,该时间单元内驶过车道停止线的车辆数不变。
  7. 交叉口车辆延误时间的计算装置,其特征在于:包括
    微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集;
    所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
    设统计周期为T,初始化周期总流量V =0,初始化周期总延误时间T d=0;
    将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,...m),针对时长为t i的时间单元,
    1)、统计速度不高于车速延误阈值且未驶过车道停止线的车辆总数a,则满足上述条件的车辆的延误时间为t i,该时间单元内的延误时间总和
    Figure PCTCN2020095557-appb-100008
    2)、统计驶过车道停止线的车辆总数n i(i=1,2,3......m);
    对于统计周期T,周期总流量
    Figure PCTCN2020095557-appb-100009
    周期总延误时间
    Figure PCTCN2020095557-appb-100010
    周期平均延误时间
    Figure PCTCN2020095557-appb-100011
    所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
  8. 交叉口停车次数的计算装置,其特征在于:包括
    微波检测器,用于对进入交叉口的车辆行驶信息进行检测并收集;
    所述微波检测器内设置有处理模块,所述处理模块执行以下处理过程:
    初始化周期总流量V =0,初始化周期总停车次数T s=0;
    设统计周期为T,将统计周期T划分成m个连续分布的时间单元,每个时间单元的时长为t i(i=1,2,3,...m),针对时长为t i的时间单元,
    1)、统计驶过车道停止线之前车速减为0的次数c i(i=1,2,3......m);
    2)、统计驶过车道停止线的车辆总数n i(i=1,2,3......m);
    则对于统计周期T,周期总流量
    Figure PCTCN2020095557-appb-100012
    周期总停车次数
    Figure PCTCN2020095557-appb-100013
    周期平均停车次数
    Figure PCTCN2020095557-appb-100014
    所述微波检测器内设置有输出模块,所述输出模块用于将处理模块的处理结果输出。
  9. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-4任一项所述的交叉口车辆延误时间的计算方法以及权利要求5-6任一项所述的交叉口车辆停车次数的计算方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-4任一项所述的交叉口车辆延误时间的计算方法以及权利要求5-6任一项所述的交叉口车辆停车次数的计算方法。
PCT/CN2020/095557 2019-06-26 2020-06-11 交叉口车辆延误时间与停车次数的计算方法和装置 WO2020259301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910561411.0 2019-06-26
CN201910561411.0A CN110444012A (zh) 2019-06-26 2019-06-26 交叉口车辆延误时间与停车次数的计算方法和装置

Publications (1)

Publication Number Publication Date
WO2020259301A1 true WO2020259301A1 (zh) 2020-12-30

Family

ID=68428793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095557 WO2020259301A1 (zh) 2019-06-26 2020-06-11 交叉口车辆延误时间与停车次数的计算方法和装置

Country Status (2)

Country Link
CN (1) CN110444012A (zh)
WO (1) WO2020259301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706860A (zh) * 2021-07-14 2021-11-26 石家庄铁道大学 一种基于树莓派智能配时交通信号灯控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444012A (zh) * 2019-06-26 2019-11-12 南京慧尔视智能科技有限公司 交叉口车辆延误时间与停车次数的计算方法和装置
CN111741267B (zh) * 2020-06-24 2022-03-08 浙江大华技术股份有限公司 一种车辆延误的确定方法、装置、设备及介质
CN113140113A (zh) * 2021-06-23 2021-07-20 华砺智行(武汉)科技有限公司 基于车联网的交通流延误评价方法、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008659A (zh) * 2014-06-12 2014-08-27 北京易华录信息技术股份有限公司 一种能精准监测路口信号控制器控制效果的系统及方法
US20150211871A1 (en) * 2014-01-28 2015-07-30 Research & Business Foundation Sungkyunkwan University Vehicle navigation apparatus and method of determining trajectory of vehicle
CN106997673A (zh) * 2017-06-05 2017-08-01 南通大学 确定车道的交通信号灯冗余时长的方法及系统
US10002530B1 (en) * 2017-03-08 2018-06-19 Fujitsu Limited Traffic signal control using multiple Q-learning categories
CN108615376A (zh) * 2018-05-28 2018-10-02 安徽科力信息产业有限责任公司 一种基于视频检测的交叉口信号控制方案评价方法
CN110444012A (zh) * 2019-06-26 2019-11-12 南京慧尔视智能科技有限公司 交叉口车辆延误时间与停车次数的计算方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783073B (zh) * 2010-01-07 2012-01-25 同济大学 基于双截面检测器的信号交叉口延误测定方法
CN102902206A (zh) * 2012-10-18 2013-01-30 同济大学 一种交通信号控制硬件在环仿真系统的信号转换设备
CN104123837A (zh) * 2013-04-28 2014-10-29 上海济祥智能交通科技有限公司 基于微波和视频数据融合的间断流行程时间估计方法
CN103500505B (zh) * 2013-10-11 2015-07-29 张忠义 一种获取汽车在道路交叉路口等待红绿灯时间的方法
CN104750963B (zh) * 2013-12-31 2017-12-01 中国移动通信集团公司 交叉口延误时长估计方法及装置
CN106781452A (zh) * 2016-11-25 2017-05-31 上海市政工程设计研究总院(集团)有限公司 一种交通事件自动检测方法
CN106846809B (zh) * 2017-03-12 2019-06-14 浙江大学 一种基于车辆停车次数的排队最远点计算方法
CN109191836B (zh) * 2018-09-05 2021-03-02 昆明理工大学 一种基于iqa的实时分车道车辆延误预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211871A1 (en) * 2014-01-28 2015-07-30 Research & Business Foundation Sungkyunkwan University Vehicle navigation apparatus and method of determining trajectory of vehicle
CN104008659A (zh) * 2014-06-12 2014-08-27 北京易华录信息技术股份有限公司 一种能精准监测路口信号控制器控制效果的系统及方法
US10002530B1 (en) * 2017-03-08 2018-06-19 Fujitsu Limited Traffic signal control using multiple Q-learning categories
CN106997673A (zh) * 2017-06-05 2017-08-01 南通大学 确定车道的交通信号灯冗余时长的方法及系统
CN108615376A (zh) * 2018-05-28 2018-10-02 安徽科力信息产业有限责任公司 一种基于视频检测的交叉口信号控制方案评价方法
CN110444012A (zh) * 2019-06-26 2019-11-12 南京慧尔视智能科技有限公司 交叉口车辆延误时间与停车次数的计算方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706860A (zh) * 2021-07-14 2021-11-26 石家庄铁道大学 一种基于树莓派智能配时交通信号灯控制方法

Also Published As

Publication number Publication date
CN110444012A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2020259301A1 (zh) 交叉口车辆延误时间与停车次数的计算方法和装置
WO2020244624A1 (zh) 一种交叉口绿灯空放时间计算方法和装置
CN103903465B (zh) 一种道路拥堵原因实时发布方法及系统
JP7136054B2 (ja) 車両制御システム
CN111540201A (zh) 基于路侧激光雷达的车辆排队长度实时估计方法及系统
CN108415011B (zh) 一种基于多目标跟踪雷达实现车辆排队检测方法
CN109829351A (zh) 车道信息的检测方法、装置及计算机可读存储介质
WO2023213018A1 (zh) 一种车辆跟驰控制方法和系统
WO2022036765A1 (zh) 一种微波雷达智能可变车道感知系统及方法
CN112859062B (zh) 一种基于雷达的车辆排队长度检测方法及系统
CN112085950B (zh) 交通状态判别指标的估计方法、系统、存储介质及应用
CN110111590A (zh) 一种车辆动态排队长度检测方法
CN115601983A (zh) 交通信号灯的周期时长确定方法、装置、设备和存储介质
CN110865361B (zh) 一种基于雷达数据的饱和车头时距检测方法
CN115292435B (zh) 高精地图的更新方法和装置、电子设备和存储介质
WO2023197409A1 (zh) 速度控制模型的生成方法、车辆控制方法及装置
WO2021097844A1 (zh) 基于多传感器数据融合的护栏估计方法和车载设备
CN113436448A (zh) 一种信号交叉口借道左转车道设计方法及系统
CN110497906B (zh) 车辆控制方法、装置、设备和介质
WO2023108932A1 (zh) 一种基于毫米波雷达的车辆异常行驶行为识别方法
WO2022089193A1 (zh) 控制车载雷达信号的方法、电子设备及存储介质
WO2021170140A1 (zh) 一种车道结构检测方法及装置
CN115240432A (zh) 交通拥堵检测方法、装置及电子设备、存储介质
CN114779257A (zh) 一种车位检测方法、装置、存储介质和车辆
CN115471524A (zh) 路口行人轨迹预测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832907

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20832907

Country of ref document: EP

Kind code of ref document: A1