[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020246243A1 - Adhesive, adhesive for packaging material for battery, laminate, packaging material for battery, container for battery, and battery - Google Patents

Adhesive, adhesive for packaging material for battery, laminate, packaging material for battery, container for battery, and battery Download PDF

Info

Publication number
WO2020246243A1
WO2020246243A1 PCT/JP2020/019957 JP2020019957W WO2020246243A1 WO 2020246243 A1 WO2020246243 A1 WO 2020246243A1 JP 2020019957 W JP2020019957 W JP 2020019957W WO 2020246243 A1 WO2020246243 A1 WO 2020246243A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
acid
polyester polyol
layer
battery
Prior art date
Application number
PCT/JP2020/019957
Other languages
French (fr)
Japanese (ja)
Inventor
裕季 小林
勉 菅野
英美 中村
神山 達哉
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202080036133.8A priority Critical patent/CN113825817B/en
Priority to JP2020552923A priority patent/JP6809658B1/en
Publication of WO2020246243A1 publication Critical patent/WO2020246243A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a two-component adhesive, a laminate obtained by using the two-component adhesive, a molded body, and a packaging material.
  • Packaging materials used for packaging various stored items such as foods, daily necessities, and electronic elements are resistant to strength and cracking in order to protect the contents from impacts received during distribution and deterioration due to oxygen and moisture.
  • Gas barrier properties, etc. are required.
  • retort resistance, heat resistance, etc. are required, and transparency may be required so that the contents can be confirmed.
  • the non-stretched polyolefin film used when sealing by heat sealing is excellent in heat processability, but has insufficient oxygen barrier property.
  • Nylon film on the other hand, has excellent gas barrier properties, but is inferior in heat seal properties.
  • a laminate in which one or more storage portions are formed by molding the laminate may be used as a packaging material (Patent Document 1-3).
  • a laminate in which one or more storage portions are formed is joined to a laminate in which storage portions having the same shape are formed or a laminate in which no storage portion is formed (not molded). Seal the compartment. Heat fusion (heat sealing) is used as the joining method.
  • the present invention is a packaging material suitable for such applications, that is, it has excellent moldability, and even after heat fusion between the sealant layers performed for sealing the stored material, the adhesive strength between the layers does not decrease, and the layers do not deteriorate. It is an object of the present invention to provide a packaging material having no appearance defects such as floating. Another object of the present invention is to provide a two-component adhesive having excellent moldability and heat resistance, which is suitable for producing such a packaging material, and a laminate or a molded product using the same.
  • the present inventors include a polyol composition (A) containing a crystalline polyester polyol (A1) and a polyisocyanate composition (B) containing an isocyanate compound (B), which comprises a crystalline polyester polyol (A1).
  • a two-component adhesive having a glass transition temperature of -20 ° C or higher and 10 ° C or lower, a melting point of 80 ° C or higher and 160 ° C or lower, and a number average molecular weight of 2,000 or higher and 30,000 or lower. The above problem has been solved.
  • the present invention contains a polyol composition (A) containing a crystalline polyester polyol (A1) and a polyisocyanate composition (B) containing an isocyanate compound (B), and is a glass of the crystalline polyester polyol (A1).
  • the present invention relates to a two-component adhesive having a transition temperature of ⁇ 20 ° C. or higher and 10 ° C. or lower, a melting point of 80 ° C. or higher and 160 ° C. or lower, and a number average molecular weight of 2,000 or higher and 30,000.
  • the two-component adhesive of the present invention has excellent moldability, and even after heat fusion between the sealant layers performed to seal the stored material, the adhesive strength between the layers does not decrease, and the layers do not deteriorate. It is possible to obtain a packaging material that does not have an appearance defect such as floating.
  • the adhesive of the present invention contains a polyol composition (A) and a polyisocyanate composition (B) containing an isocyanate compound (B), and the polyol composition (A) has a glass transition temperature of ⁇ 20 ° C. or higher. It is a two-component adhesive containing a crystalline polyester polyol (A1) having a temperature of 10 ° C. or lower, a melting point of 80 ° C. or higher and 160 ° C. or lower, and a number average molecular weight of 2,000 or higher and 30,000 or lower.
  • the polyol composition (A) used in the adhesive of the present invention contains a crystalline polyester polyol (A1).
  • the crystalline polyester polyol (A1) is a polyester polyol obtained by using a polybasic acid or a derivative thereof and a polyhydric alcohol as essential raw materials and having crystallinity.
  • Examples of the polybasic acid or a derivative thereof used as a raw material for the crystalline polyester polyol (A1) include malonic acid, ethylmalonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, succinic acid anhydride, and alkenyl succinic acid anhydride.
  • An aliphatic polybasic acid such as acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, fumaric acid, malonic acid, malonic acid anhydride, and itaconic acid;
  • An aliphatic polybasic acid such as dimethyl malonate, diethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl pimelic acid, diethyl sebacate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, etc.
  • Alkyl esterified product such as dimethyl malonate, diethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl pimelic acid, diethyl sebacate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, etc.
  • 1,1-Cyclopentanedicarboxylic acid 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Tetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, hymic anhydride, hetic anhydride, etc.
  • Group polybasic acid
  • Methyl esterified products of aromatic polybasic acids such as dimethyl terephthalic acid and dimethyl 2,6-naphthalenedicarboxylic acid; and the like; one type or a combination of two or more types can be used.
  • the polyhydric alcohol may be a diol or a trifunctional or higher functional polyol, and the diol may be, for example, ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-.
  • Ether glycol such as polyoxyethylene glycol and polyoxypropylene glycol
  • a lactone-based polyester polyol obtained by a polycondensation reaction between the aliphatic diol and various lactones such as lactanoid and ⁇ -caprolactone;
  • Bisphenols such as bisphenol A and bisphenol F;
  • Examples thereof include an alkylene oxide adduct of bisphenol obtained by adding ethylene oxide, proprene oxide, etc. to bisphenol such as bisphenol A and bisphenol F.
  • the trifunctional or higher functional polyol is an aliphatic polyol such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, or pentaerythritol;
  • Examples thereof include a lactone-based polyester polyol obtained by a polycondensation reaction between the aliphatic polyol and various lactones such as ⁇ -caprolactone.
  • adipic acid and succinic acid are used as polybasic acid or a derivative thereof.
  • At least one selected from acid, fumaric acid, sebacic acid, and terephthalic acid is an essential component
  • at least one selected from 1,4-butanediol or 1,6-hexanediol as a polyvalent alcohol is an essential component and is cyclic. It is preferable to use at least one selected from the group consisting of a polyvalent carboxylic acid having a structure, a polyvalent alcohol having a branched alkylene structure, and a polyvalent alcohol having a cyclic structure.
  • Examples of the polyvalent carboxylic acid having a cyclic structure include isophthalic acid, orthophthalic acid, 1,4-cyclohexanedicarboxylic acid and the like, and examples of the polyvalent alcohol having a branched alkylene structure include 1,2-propanediol and 2-methyl-1.
  • Polyhydric alcohols having a cyclic structure include 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 4- (hydroxymethyl) cyclohexanol, 4-( 2-Hydroxyethyl) cyclohexanol, 1,4-cyclohexanedimethanol, 4,4'-bicyclohexanol, 1,3-adamantandiol, 1,3,5-adamantantriol, 3- (hydroxymethyl) -1-adaman Tanol, Tricyclo [5.2.1.0 2.6 ] -decanedimethanol, 1,2-benzenedimethanol, 1,4-benzenedimethanol, 4,4-dihydroxybiphenol, 4,4'-bisphenyl Dimethanol, 2,2'-methylenediphenol, 2,4'-methylenediphenol, 4,4'-methylenediphenol, 4,4'-e
  • Adipic acid, succinic acid, fumaric acid, sebacic acid, terephthalic acid, 1,4-butanediol, and 1,6-hexanediol can impart crystallinity to the polyester polyol.
  • adipic acid and terephthalic acid as the polybasic acid or a derivative thereof
  • 1,4-butanediol and 1,6-hexanediol as the polyhydric alcohol.
  • a polyvalent carboxylic acid having a cyclic structure, a polyhydric alcohol having a branched alkylene structure, and a polyhydric alcohol having a cyclic structure reduce the crystallinity of the crystalline polyester polyol (A1) to ensure adhesive strength and crystallinity.
  • the glass transition temperature and melting point of the polyester polyol (A1) are adjusted to suitable ranges to improve crystallinity, heat resistance, and moisture heat resistance, and further impart storage stability in a solvent. 1,4-Cyclohexanedimethanol is preferably used.
  • Adipic acid is blended in the range of 15 mol% or more and 50 mol% or less of the polyvalent basic acid or its derivative component, and terephthalic acid is blended in the range of 40 mol% or more and 80 mol% or less, and 5 mol% or more and 40 mol%. It is preferable to blend a polyvalent carboxylic acid having a cyclic structure in the following range. Further, at least one selected from 1,4-butanediol or 1,6-hexanediol is blended in the range of 40 mol% or more and 80 mol% or less of the polyhydric alcohol component, and the range of 20 mol% or more and 60 mol% or less. It is preferable to blend at least one selected from the group consisting of a polyhydric alcohol having a branched alkylene structure and a polyhydric alcohol having a cyclic structure.
  • the crystalline polyester polyol (A1) may be a polyester polyurethane polyol containing a polybasic acid or a derivative thereof, a polyhydric alcohol, and a polyisocyanate as essential raw materials.
  • the polyisocyanate used in that case include a diisocyanate compound and a trifunctional or higher functional polyisocyanate compound.
  • Each of these polyisocyanates may be used alone, or two or more of them may be used in combination.
  • diisocyanate compound examples include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, and m-tetramethylxylylene diisocyanate.
  • Aliphatic diisocyanates such as isocyanate and lysine diisocyanate;
  • Cyclohexane-1,4-diisocyanate isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexanediisocyanate, isopropyridene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate, etc.
  • Alicyclic diisocyanate isophorone diisocyanate
  • dicyclohexylmethane-4,4'-diisocyanate 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexanediisocyanate, isopropyridene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate, etc.
  • Alicyclic diisocyanate isophorone diisocyanate,
  • 1,5-naphthylene diisocyanate 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylenediocyanate , 1,4-phenylenediocyanate, tolylene diisocyanate and other aromatic diisocyanates.
  • Examples of the trifunctional or higher functional polyisocyanate compound include an adduct-type polyisocyanate compound having a urethane bond site in the molecule and a nurate-type polyisocyanate compound having an isocyanurate ring structure in the molecule.
  • the adduct-type polyisocyanate compound having a urethane bond site in the molecule is obtained, for example, by reacting a diisocyanate compound with a polyhydric alcohol.
  • the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more.
  • examples of the polyol compound used in the reaction include various polyol compounds exemplified as the polyhydric alcohol, polyester polyol obtained by reacting the polyhydric alcohol with a polybasic acid, and the like, and these are used alone. You may use it, or you may use two or more kinds together.
  • a nurate-type polyisocyanate compound having an isocyanurate ring structure in the molecule is obtained, for example, by reacting a diisocyanate compound with a monoalcohol and / or a diol.
  • the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more.
  • the monoalcohols used in the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, and n-.
  • the crystalline polyester polyol (A1) used in the present invention is a reaction product of a polybasic acid or a derivative thereof and a polyvalent alcohol, and is a polybasic acid or a derivative thereof having an aromatic ring in the polybasic acid or a derivative thereof.
  • the ratio of is preferably 30 mol% or more. This makes it possible to obtain an adhesive having excellent storage stability. Further, since moldability and heat resistance are improved, the proportion of the polybasic acid having an aromatic ring or its derivative in the polybasic acid or its derivative is more preferably 50 mol% or more, more preferably 60 mol% or more. Is more preferable.
  • the upper limit of the blending amount of the polybasic acid or a derivative thereof is not particularly limited, but as an example, it is preferably 85% or less, and more preferably 75% or less.
  • the crystalline polyester polyol (A1) used in the present invention may be a reaction product of a polybasic acid or a derivative thereof, a polyhydric alcohol, and a polyisocyanate, and an aromatic ring in the polybasic acid or a derivative thereof.
  • the ratio of the polybasic acid having the above or a derivative thereof is preferably 30 mol% or more. This makes it possible to obtain an adhesive having excellent storage stability. Further, since moldability and heat resistance are improved, the proportion of the polybasic acid having an aromatic ring or its derivative in the polybasic acid or its derivative is more preferably 50 mol% or more, more preferably 60 mol% or more. Is more preferable.
  • the upper limit of the blending amount of the polybasic acid or a derivative thereof is not particularly limited, but as an example, it is preferably 85% or less, and more preferably 75% or less.
  • the hydroxyl value of the crystalline polyester polyol (A1) used in the present invention is preferably in the range of 1 to 40 mgKOH / g, more preferably 3 mgKOH / g or more, and 30 mgKOH / g because it is superior in adhesive strength. It is as follows.
  • the number average molecular weight (Mn) of the crystalline polyester polyol (A1) used in the present invention is in the range of 2000 to 30,000, more preferably 3,000 to 15,000, still more preferably 4000 to 12000. When the number average molecular weight is in this range, the crystalline polyester polyol (A1) can be appropriately stretched in the cured coating film, and an adhesive having excellent moldability can be obtained.
  • the number average molecular weight (Mn) is a value measured by gel permeation chromatography (GPC) under the following conditions.
  • HLC-8320GPC manufactured by Tosoh Corporation Column
  • TSKgel 4000HXL TSKgel 3000HXL
  • TSKgel 2000HXL TSKgel 1000HXL manufactured by Tosoh Corporation Detector
  • RI Different Refractometer
  • Multi-station GPC-8020modelII manufactured by Tosoh Corporation Measurement conditions
  • column temperature 40 ° C Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard
  • Monodisperse polystyrene sample 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 ⁇ l)
  • the solid acid value of the crystalline polyester polyol (A1) used in the present invention is not particularly limited, but is preferably 10.0 mgKOH / g or less. It is preferable that the amount is 5.0 mgKOH / g or less because of its excellent moisture and heat resistance.
  • the lower limit of the solid acid value is not particularly limited, but is 0.5 mgKOH / g or more as an example. It may be 0 mgKOH / g.
  • the glass transition temperature of the crystalline polyester polyol (A1) used in the present invention is ⁇ 20 ° C. or higher and 10 ° C. or lower, more preferably ⁇ 15 ° C. or higher and 5 ° C. or lower.
  • the melting point of the crystalline polyester polyol (A1) used in the present invention is 80 ° C. or higher and 160 ° C. or lower, more preferably 90 ° C. or higher and 145 ° C. or lower, and further preferably 100 ° C. or higher and 130 ° C. or lower.
  • the crystalline polyester polyol has a melting point and has a heat of fusion of 0.1 J / g or more.
  • the glass transition temperature, melting point, and heat of fusion in the present invention are measured as follows. Differential scanning calorimeter (SII Nano Technology Co. DSC-7000, hereinafter referred to as DSC) using a temperature of the sample 5mg to T 1 ° C. in 20 mL / min 30 ° C. in a nitrogen stream from 10 ° C. / min and 10 minute hold after was allowed, and thereafter cooled at 10 ° C. / min up to T 2 ° C. to remove the thermal history. After holding at T 2 ° C for 5 minutes, raise the temperature again to T 3 ° C at 10 ° C / min to measure the DSC curve, and set the baseline on the low temperature side in the measurement results observed in the second temperature raising step.
  • DSC Differential scanning calorimeter
  • the intersection of the straight line extending to the high temperature side and the tangent line drawn at the point where the slope of the curve of the stepped portion of the glass transition is maximized is defined as the glass transition point, and the temperature at this time is defined as the glass transition temperature.
  • the maximum peak temperature of the endothermic curve observed in the second temperature raising step is set as the melting point, and the amount of heat of fusion is calculated from the area surrounded by this maximum peak and the baseline.
  • T 2 is sufficiently lower than the glass transition temperature of the crystalline polyester polyol (A1), and T 1 and T 3 are at least 30 ° C. higher than the melting point of the crystalline polyester polyol.
  • T 1 is 200 ° C.
  • T 2 is ⁇ 80 ° C.
  • T 3 is 200 ° C., which are appropriately adjusted according to the sample to be measured.
  • the amount of heat of fusion of the crystalline polyester polyol (A1) used in the present invention is preferably 0.1 J / g or more and 50 J / g or less, preferably 0.15 J / g, because it is excellent in storage stability and coating suitability. It is more preferably 30 J / g or more, and further preferably 0.2 J / g or more and 20 J / g or less.
  • the reason why the adhesiveness, moldability, heat resistance, and moisture heat resistance are improved by using the crystalline polyester polyol (A1) is not clear, but it is presumed as follows. Since the polyester polyol (A1) has crystallinity, the molecular motion is partially suppressed below the melting point even after the glass transition temperature is exceeded. For this reason, a pseudo-mesh structure is formed by methylene chains or the like near room temperature at which the molding process is performed, and the coexistence of the pseudo-mesh portion and the rubber region portion makes it possible to achieve both high elasticity and high toughness, resulting in excellent moldability. Shown. In addition, the presence of the pseudo-mesh structure suppresses the flow of the adhesive layer during heating, so that heat resistance and moisture heat resistance can be improved.
  • the polyol composition (A) used in the adhesive of the present invention may contain a polyester polyol (A2) in addition to the crystalline polyester polyol (A1).
  • the polyester polyol (A2) is obtained by using a polybasic acid or a derivative thereof and a polyhydric alcohol as essential raw materials, and may be crystalline or amorphous.
  • the polybasic acid or its derivative and the polyhydric alcohol used for the synthesis of the polyester polyol (A2) the same ones as those of the polyester polyol (A1) can be used.
  • the polyester polyol (A2) preferably has a glass transition temperature of ⁇ 70 ° C. or higher and lower than ⁇ 20 ° C., and more preferably ⁇ 70 ° C. or higher and ⁇ 30 ° C. or lower.
  • the hydroxyl value of the polyester polyol (A2) is preferably in the range of 1 to 40 mgKOH / g, more preferably 3 mgKOH / g or more, and 30 mgKOH / g or less because it is superior in adhesive strength.
  • the solid acid value of the polyester polyol (A2) is not particularly limited, but is preferably 10.0 mgKOH / g or less. It is preferable that the amount is 5.0 mgKOH / g or less because of its excellent moisture and heat resistance.
  • the lower limit of the solid acid value is not particularly limited, but is 0.5 mgKOH / g or more as an example. It may be 0 mgKOH / g.
  • the number average molecular weight (Mn) of the polyester polyol (A2) is preferably in the range of 3,000 to 15,000, and more preferably 4000 to 12000. When the number average molecular weight is in this range, the solvent solubility is high and the adhesiveness can be improved by the entanglement of the molecular chains.
  • the blending amount of the polyester polyol (A2) is the polyester polyol (A2) with respect to the total mass of the crystalline polyester polyol (A1) and the polyester polyol (A2) from the viewpoint of maintaining heat resistance while improving the adhesive strength and moldability. ) Is preferably added in an amount of 10% by mass or less, and more preferably 8% by mass or less.
  • the reaction of a polybasic acid or a derivative thereof with the polyhydric alcohol can be carried out by a polycondensation reaction.
  • the reaction of the polybasic acid or its derivative with the polyhydric alcohol and the polyisocyanate requires a polyester polyol obtained by reacting the polybasic acid or its derivative with the polyhydric alcohol by the method and the polyisocyanate.
  • the polyester polyol of the present invention can be obtained by reacting in the presence of a known and commonly used urethanization catalyst.
  • the polybasic acid or a derivative thereof, the polyhydric alcohol, and a polymerization catalyst are charged into a reaction vessel equipped with a stirrer and a rectification facility, and the mixture is stirred.
  • the temperature is raised to about 130 ° C. at normal pressure.
  • the generated water is distilled off while raising the temperature at a reaction temperature in the range of 130 to 260 ° C. at a rate of 5 to 10 ° C. per hour.
  • a polyester polyol is produced by distilling off excess polyhydric alcohol and accelerating the reaction while gradually increasing the degree of depressurization from normal pressure to the range of 1 to 300 trr. Can be done.
  • the polymerization catalyst used in the esterification reaction is composed of at least one metal selected from the group consisting of groups 2, 4, 12, 13, 14, and 15 of the periodic table, or a compound of the metal.
  • a polymerization catalyst is preferred.
  • the polymerization catalyst composed of such a metal or a metal compound thereof include metals such as Ti, Sn, Zn, Al, Zr, Mg, Hf, and Ge, compounds of these metals, and more specifically titanium tetraisopropoxide and titanium.
  • Tetrabutoxide titanium oxyacetylacetonate, tin octanoate, 2-ethylhexanetin, acetylacetonate zinc, zirconium tetrachloride, zirconium tetrachloride tetrahydrofuran complex, hafnium tetrachloride, hafnium tetrachloride tetrahydrofuran complex, germanium oxide, tetraethoxygermanium And so on.
  • Preferred examples include catalysts and inorganic tin compounds.
  • the amount of these polymerization catalysts used is not particularly limited as long as the esterification reaction can be controlled and a polyester polyol of good quality can be obtained, but as an example, the sum of the polybasic acid or its derivative and the polyhydric alcohol. It is 10 to 1000 ppm, preferably 20 to 800 ppm with respect to the amount. In order to suppress the coloring of the polyester polyol, it is more preferably 30 to 500 ppm.
  • the polyester polyurethane polyol used in the present invention is obtained by chain-extending the polyester polyol obtained by the above method with polyisocyanate.
  • a polyester polyol, a polyisocyanate, a chain extension catalyst, and a good solvent of the polyester polyol and the polyisocyanate used as needed are charged in a reaction vessel, and the reaction temperature is 60 to 90 ° C. Stir with. The reaction is carried out until the isocyanate group derived from the polyisocyanate used is substantially eliminated to obtain the polyester polyurethane polyol used in the present invention.
  • the chain extension catalyst a known and public catalyst used as a normal urethanization catalyst can be used. Specific examples thereof include organic tin compounds, organic carboxylic acid tin salts, lead carboxylates, bismuth carboxylates, titanium compounds, zirconium compounds and the like, which can be used alone or in combination.
  • the amount of the chain extension catalyst used may be an amount that sufficiently promotes the reaction between the polyester polyol and the polyisocyanate, and specifically, 5.0 mass by mass with respect to the total amount of the polyester polyol and the polyisocyanate. % Or less is preferable. In order to suppress hydrolysis and coloring of the resin by the catalyst, 1.0% by mass or less is more preferable. Further, these chain extension catalysts may be used in consideration of the action of the polyol composition (A) and the isocyanate composition (B) described later as a curing catalyst.
  • Examples of a good solvent used for producing a polyester polyurethane polyol include ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, toluene, xylene and the like. It may be used alone or in combination of two or more.
  • the polyisocyanate composition (B) used in the present invention contains an isocyanate compound (B).
  • the isocyanate compound (B) is not particularly limited as long as it is a compound having two or more isocyanate groups in one molecule, and various compounds can be used.
  • the above-mentioned polyester polyol (A1), various diisocyanate compounds described as raw materials for the polyester polyol (A2), oligomers of diisocyanate compounds, and adduct-modified diisocyanates obtained by reacting various diisocyanate compounds with diol compounds.
  • Compounds, these biuret modified products, allophanate modified products, and various trifunctional or higher functional polyisocyanate compounds can be used.
  • Each of these isocyanate compounds (B) may be used alone, or two or more of them may be used in combination.
  • toluene diisocyanate hexamethylene diisocyanate, xylylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, and adducts, biurets, and isocyanurates of these diisocyanates are preferably mentioned.
  • the isocyanate compound (B) may be a polyester polyisocyanate obtained by reacting a crystalline polyester polyol (A1) with an excess amount of the isocyanate compound.
  • the isocyanate compound used for the reaction with the crystalline polyester polyol (A1) the above-mentioned ones can be used without particular limitation.
  • Preferable examples thereof include toluene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, and adducts, biurets, and isocyanurates of these diisocyanates.
  • the polyol composition (A) preferably contains a polycarbonate polyol compound in addition to the crystalline polyester polyol (A1).
  • the total amount of the crystalline polyester polyol (A1) and the compounding ratio of the polycarbonate polyol compound are high in adhesiveness to various base materials and excellent in moisture and heat resistance, so that the total mass of both is increased.
  • the total mass of the crystalline polyester polyol (A1) is preferably in the range of 30 to 99.5% by mass, preferably in the range of 60 to 99% by mass.
  • the number average molecular weight (Mn) of the polycarbonate polyol compound is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance.
  • the hydroxyl value is preferably in the range of 30 to 250 mgKOH / g, and more preferably in the range of 40 to 200 mgKOH / g.
  • the polycarbonate polyol compound is preferably a polycarbonate diol compound.
  • the polyol composition (A) preferably contains a polyoxyalkylene-modified polyol compound in addition to the crystalline polyester polyol (A1).
  • the total amount of the crystalline polyester polyol (A1) and the blending ratio of the polyoxyalkylene-modified polyol compound are high in adhesiveness to various substrates and excellent in moisture and heat resistance.
  • the total mass of the crystalline polyester polyol (A1) is preferably in the range of 30 to 99.5% by mass, and preferably in the range of 60 to 99% by mass with respect to the mass.
  • the number average molecular weight (Mn) of the polyoxyalkylene-modified polyol compound is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance.
  • the hydroxyl value is preferably in the range of 40 to 250 mgKOH / g, more preferably in the range of 50 to 200 mgKOH / g.
  • the polyoxyalkylene-modified polyol compound is preferably a polyoxyalkylene-modified diol compound.
  • the polyol composition (A) used in the present invention may contain other resin components in addition to the crystalline polyester polyol (A1). When other resin components are used, it is preferably used in an amount of 50% by mass or less, preferably 30% by mass or less, based on the total mass of the main agent. Specific examples of other resin components include epoxy resins.
  • the epoxy resin is, for example, a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin; a biphenyl type epoxy resin such as a biphenyl type epoxy resin or a tetramethyl biphenyl type epoxy resin; a dicyclopentadiene-phenol addition reaction. Examples include type epoxy resins. Each of these may be used alone, or two or more types may be used in combination. Among these, it is preferable to use a bisphenol type epoxy resin because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance.
  • the number average molecular weight (Mn) of the epoxy resin is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance.
  • the epoxy equivalent is preferably in the range of 150 to 1000 g / equivalent.
  • the total amount of the crystalline polyester polyol (A1) and the blending ratio of the epoxy resin are high in adhesiveness to various substrates and excellent in moisture and heat resistance.
  • the total mass of the polyester polyol (A1) is preferably in the range of 30 to 99.5 mass%, and preferably in the range of 60 to 99 mass% with respect to the mass.
  • the polyol composition (A) used in the present invention may contain a tackifier.
  • the tackifier include a rosin-based or rosin ester-based tackifier, a terpene-based or terpenephenol-based tackifier, a saturated hydrocarbon resin, a kumaron-based tackifier, a kumaron-inden-based tackifier, and a styrene resin-based tackifier.
  • examples thereof include a tackifier, a xylene resin-based tackifier, a phenol-resin-based tackifier, a petroleum resin-based tackifier, and a ketone resin-based tackifier.
  • Ketone resin-based tackifiers are preferable, and ketone resin-based tackifiers are more preferable. Each of these may be used alone, or two or more types may be used in combination.
  • the total mass of the polyester polyol (A1) is preferably 80 to 99.99 mass%, preferably 85 to 99.9 mass%, based on the total mass of the polyester polyol (A1) and the tackifier. More preferably.
  • rosin-based or rosin ester-based rosins examples include polymerized rosins, disproportionated rosins, hydrogenated rosins, maleated rosins, fumarized rosins, and their glycerin esters, pentaerythritol esters, methyl esters, ethyl esters, butyl esters, and ethylene glycols. Examples thereof include esters, diethylene glycol esters and triethylene glycol esters.
  • terpene type or terpene phenol type examples include low-polymerization terpene type, ⁇ -pinene polymer, ⁇ -pinene polymer, terpene phenol type, aromatic-modified terpene type, and hydrogenated terpene type.
  • Petroleum resin systems include petroleum resins obtained by polymerizing petroleum distillates having 5 carbon atoms obtained from penten, pentadiene, isoprene, etc., inden, methylinden, vinyltoluene, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, etc.
  • phenolic resin system a condensate of phenols and formaldehyde can be used.
  • the phenols include phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin and the like, and these phenols and formaldehyde are subjected to an addition reaction with an alkali catalyst, or a condensation reaction is carried out with an acid catalyst. Examples thereof include Novolac obtained in the above.
  • a rosin phenol resin obtained by adding phenol to rosin with an acid catalyst and thermally polymerizing it can also be exemplified.
  • ketone resin examples include known and commonly used ones, but formaldehyde resin, cyclohexanone / formaldehyde resin, ketone aldehyde condensed resin and the like can be preferably used.
  • a tackifier having various softening points can be obtained, but the softening point is 70 in terms of compatibility, color tone, thermal stability, etc. when mixed with other resins constituting the polyol composition (A).
  • a ketone resin-based tackifier at ⁇ 160 ° C., preferably 80 to 100 ° C., or a rosin-based resin having a softening point of 80 to 160 ° C., preferably 90 to 110 ° C. and a hydrogenated derivative thereof are preferable, and the softening point is 70 to 70 to A ketone resin-based tackifier at 160 ° C., preferably 80 to 100 ° C. is more preferable.
  • a ketone resin-based tackifier having an acid value of 2 to 20 mgKOH / g and a hydroxyl value of 10 mgKOH / g or less and a hydrogenated rosin-based tackifier are preferable, and the acid value is 2 to 20 mgKOH / g and the hydroxyl value is A ketone tackifier of 10 mgKOH / g or less is more preferable.
  • Phosphoric acids or derivatives thereof used here include phosphoric acids such as hypophosphoric acid, phosphoric acid, orthophosphoric acid, and hypophosphoric acid, such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, and ultraphosphoric acid.
  • phosphoric acids such as hypophosphoric acid, phosphoric acid, orthophosphoric acid, and hypophosphoric acid, such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, and ultraphosphoric acid.
  • condensed phosphoric acids such as monomethyl orthophosphate, monoethyl orthophosphate, monopropyl orthophosphate, monobutyl orthophosphate, mono-2-ethylhexyl orthophosphate, monophenyl orthophosphate, monomethyl phosphite, monoethyl phosphite, phosphite.
  • phosphoric acids or derivatives thereof may be used alone or in combination of two or more. As a method of containing, it is sufficient to simply mix.
  • an adhesion promoter can also be used in the adhesive of the present invention.
  • the adhesion accelerator include a silane coupling agent, a titanate-based coupling agent, an aluminum-based coupling agent, an epoxy resin, and the like.
  • silane coupling agent examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, and N- ⁇ (aminoethyl) - ⁇ .
  • Aminosilanes such as -aminopropyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane; ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -gly Epoxysilanes such as sidoxylpropyltriethoxysilane; vinylsilanes such as vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane; hexamethyldisilazane, ⁇ -mercapto Propyltrimethoxysilane and the like can be mentioned.
  • titanate-based coupling agent examples include tetraisopropoxytitanium, tetra-n-butoxytitanium, butyl titanate dimer, tetrastearyl titanate, titanium acetylacetonate, titanium lactate, tetraoctylene glycol titanate, titanium lactate, and tetrastearoxy. Titanium and the like can be mentioned.
  • aluminum-based coupling agent for example, acetalkoxyaluminum diisopropylate and the like can be mentioned.
  • the content (solid content) of the adhesion accelerator is preferably 0.1 part by mass or more, and preferably 0.3 part by mass or more, based on 100 parts by mass of the solid content of the polyol composition (A). It is more preferably 0.5 parts by mass or more, further preferably 0.7 parts by mass or more.
  • the content (solid content) of the adhesion accelerator is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 5 parts by mass with respect to 100 parts by mass of the solid content of the polyol composition (A). It is more preferably less than a part.
  • the compounding ratio of the polyol composition (A) and the polyisocyanate composition (B) is the total number of moles [OH] of hydroxyl groups contained in the polyol composition (A) and the polyisocyanate composition.
  • the ratio [NCO] / [OH] to the number of moles [NCO] of the isocyanate group contained in (B) is preferably in the range of 1.2 to 30.0. As a result, it becomes a two-component adhesive having excellent moldability, heat resistance, and moisture heat resistance.
  • the adhesive of the present invention may be in either a solvent type or a solventless type.
  • the "solvent type" adhesive referred to in the present invention means that the adhesive is applied to a base material and then heated in an oven or the like to volatilize the organic solvent in the coating film and then bonded to another base material.
  • Either one or both of the polyol composition (A) and the polyisocyanate composition (B) can dissolve the polyol composition (A) or the polyisocyanate composition (B) used in the present invention. Contains highly soluble organic solvent.
  • the organic solvent used as the reaction medium in the production of the constituent components of the polyol composition (A) or the polyisocyanate composition (B) may be further used as a diluent in coating.
  • highly soluble organic solvents include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatics such as toluene and xylene.
  • groups thereof include group hydrocarbons, halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like.
  • the “solvent-free” adhesive is substantially the highly soluble organic solvent as described above in the polyol composition (A) and the polyisocyanate composition (B), particularly ethyl acetate or methyl ethyl ketone.
  • a form of adhesive used in the so-called non-solvent laminating method which is a method in which an adhesive is applied to a base material and then bonded to another base material without a step of heating in an oven or the like to volatilize the solvent. Point to.
  • the constituent components of the polyol composition (A) or the polyisocyanate composition (B) and the organic solvent used as the reaction medium in the production of the raw material thereof could not be completely removed, and the polyol composition (A) or the polyisocyanate composition (A) or the polyisocyanate composition ( If a small amount of organic solvent remains in B), it is understood that the organic solvent is substantially not contained.
  • the polyol composition (A) contains a low molecular weight alcohol
  • the low molecular weight alcohol reacts with the polyisocyanate composition (B) and becomes a part of the coating film, so that it is not necessary to volatilize after coating. Therefore, such a form is also treated as a solvent-free adhesive.
  • the viscosity can be reduced by diluting the solvent, so that the polyol composition (A) or the polyisocyanate composition (B) to be used can be used even if it has a slightly high viscosity. ..
  • the viscosity is low due to the characteristic that the viscosity is lowered by heating, and as a means for lowering the viscosity, the polyisocyanate composition (B) reduces the aromatic concentration that contributes to the viscosity. Things are often used.
  • the adhesive of the present invention contains various additives such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a fluorine-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. good.
  • the use of the adhesive of the present invention is not particularly limited, but it can be suitably used as a packaging material for batteries as an example because it is excellent in adhesive strength, processability, moisture heat resistance, and heat resistance.
  • the laminate of the present invention has an adhesive layer for bonding the first base material and the second base material, and the adhesive layer is a cured product of the adhesive of the present invention.
  • the laminate of the present invention is obtained by laminating a first base material and a second base material by a dry laminating method or a non-solvent laminating method using the adhesive of the present invention.
  • paper As the base material, paper, olefin resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, carbonate resin, polyamide resin, Examples thereof include polyimide resins, polyphenylene ether resins, synthetic resin films obtained from polyphenylene sulfide resins and polyester resins, copper foils, metal foils such as aluminum foils, and the like.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • fluorine resin poly (meth) acrylic resin
  • carbonate resin polyamide resin
  • polyamide resin examples thereof include polyimide resins, polyphenylene ether resins, synthetic resin films obtained from polyphenylene sulfide resins and polyester resins, copper foils, metal foils such as aluminum foils, and the like.
  • the film thickness of the base material is not particularly limited, and is selected from, for example, 10 to 400 ⁇ m.
  • the surface of the base material to which the adhesive is applied may be surface-treated. Examples of this surface treatment include corona treatment, plasma treatment, ozone treatment, flame treatment, radiation treatment and the like.
  • the packaging material for a battery is composed of at least a laminate in which an outer layer side base material layer 1, an adhesive layer 2, a metal layer 3, and a sealant layer 4 are sequentially laminated.
  • the outer layer side base material layer 1 is the outermost layer
  • the sealant layer 4 is the innermost layer. That is, when the battery is assembled, the sealant layers 4 located on the peripheral edge of the battery element are heat-sealed to seal the battery element, thereby sealing the battery element.
  • an adhesive layer 5 is provided between the metal layer 3 and the sealant layer 4 as needed for the purpose of enhancing their adhesiveness. You may.
  • the adhesive of the present invention can be suitably used for the adhesive layer 2, but it can also be used as the adhesive layer 5 because of its excellent solvent resistance.
  • the outer layer side base material layer 1 is a layer forming the outermost layer.
  • the material forming the outer layer side base material layer 1 is not particularly limited as long as it has insulating properties, and polyester resin, polyamide resin, epoxy resin, acrylic resin, fluororesin, polyurethane resin, silicon resin, phenol resin, etc. And resin films such as mixtures and copolymers thereof.
  • polyester resin and polyamide resin are preferable, and biaxially stretched polyester resin and biaxially stretched polyamide resin are more preferable.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate.
  • polyamide resin examples include nylon 6, nylon 6, 6, a copolymer of nylon 6 and nylon 6, 6, nylon 6, 10, and polymethoxylylen adipamide (MXD6). Be done.
  • the outer base material layer 1 may be formed of one layer of resin film, but in order to improve pinhole resistance and insulating property, it is made of two or more layers of resin film, for example, polyethylene terephthalate film and polyamide film. It may be formed of a plurality of layers.
  • the resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used may be used. The same applies to the case of the adhesive layer 2 or the adhesive layer 5 described later.
  • the method of laminating two or more layers of resin films is not particularly limited, and a known method can be adopted.
  • Examples thereof include a dry lamination method and a sand lamination method, and a dry lamination method is preferable.
  • a dry lamination method it is preferable to use an adhesive as the adhesive layer.
  • the thickness of the adhesive layer is, for example, about 0.5 to 10 ⁇ m.
  • the thickness of the outer layer side base material layer 1 is not particularly limited as long as the battery packaging material satisfies the above physical properties, but is, for example, about 10 to 50 ⁇ m, preferably about 15 to 35 ⁇ m. When a polyester film is used, the thickness is preferably 9 ⁇ m to 50 ⁇ m, and when a polyamide film is used, the thickness is preferably 10 ⁇ m to 50 ⁇ m. Sufficient strength can be secured as a packaging material, stress during overhang molding and draw molding can be reduced, and moldability can be improved.
  • the metal layer 3 is a layer that functions as a barrier layer for improving the strength of the battery packaging material and preventing water vapor, oxygen, light, etc. from entering the inside of the battery.
  • the metal constituting the metal layer 3 include aluminum, stainless steel, titanium, and the like, and aluminum is preferable.
  • the metal layer 3 can be formed by metal foil, metal vapor deposition, or the like, and is preferably formed of metal foil, and more preferably of aluminum foil. Further, it is preferable that at least one surface, preferably both sides, of the metal layer 3 is subjected to chemical conversion treatment in order to stabilize adhesion, prevent dissolution and corrosion, and the like.
  • the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of a metal layer.
  • the thickness of the metal layer 3 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but can be, for example, about 10 to 50 ⁇ m, preferably about 25 to 45 ⁇ m.
  • the sealant layer 4 corresponds to the innermost layer, and is a layer in which the sealant layers are heat-sealed to each other when the battery is assembled to seal the battery element.
  • the resin component used in the sealant layer 4 is not particularly limited as long as it can be heat-fused, and examples thereof include polyolefins, cyclic polyolefins, carboxylic acid-modified polyolefins, and carboxylic acid-modified cyclic polyolefins.
  • polystyrene resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other polyethylene; homopolypropylene, polypropylene block copolymer (for example, propylene and ethylene block copolymer), and polypropylene.
  • Polypropylene such as random copolymers of propylene and ethylene (eg, random copolymers of propylene and ethylene); ethylene-butene-propylene tarpolymers; and the like.
  • polyethylene and polypropylene are preferable.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, isoprene, and the like.
  • Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • cyclic alkene is preferable, and norbornene is more preferable.
  • the carboxylic acid-modified polyolefin is a polymer modified by block-polymerizing or graft-polymerizing the polyolefin with a carboxylic acid.
  • carboxylic acid used for denaturation include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • the carboxylic acid-modified cyclic polyolefin means that a part of the monomer constituting the cyclic polyolefin is copolymerized in place of ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or ⁇ , ⁇ with respect to the cyclic polyolefin.
  • the carboxylic acid used for the modification is the same as that used for the modification of the acid-modified cycloolefin copolymer.
  • the sealant layer 4 may be formed by one kind of resin component alone, or may be formed by a blend polymer in which two or more kinds of resin components are combined. Further, the sealant layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resin components.
  • the thickness of the sealant layer 4 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but is, for example, about 10 to 100 ⁇ m, preferably about 20 to 90 ⁇ m.
  • the adhesive layer 5 is a layer provided between the metal layer 3 and the sealant layer 4 as necessary in order to firmly bond them.
  • the adhesive layer 5 is formed of an adhesive capable of adhering the metal layer 3 and the sealant layer 4.
  • the adhesive layer used for the adhesive layer 5 include an adhesive in which a polyolefin resin and a polyfunctional isocyanate are combined, an adhesive in which a polyol and a polyfunctional isocyanate are combined, a modified polyolefin resin, a heterocyclic compound and a curing agent.
  • the adhesive contained can be used.
  • an adhesive such as acid-modified polypropylene is melt-extruded onto a metal layer with a T-die extruder to form an adhesive layer 5, a sealant layer 4 is superposed on the adhesive layer 5, and the metal layer 3 and the sealant layer 4 are combined. Can also be pasted together. If both the adhesive layer 2 and the adhesive layer 5 require aging, they can be aged together. By setting the aging temperature to room temperature to 90 ° C., curing is completed in 2 days to 2 weeks, and moldability is exhibited.
  • the thickness of the adhesive layer 5 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but is, for example, about 0.5 to 50 ⁇ m, preferably about 2 to 30 ⁇ m.
  • the coating layer 6 In the packaging material for batteries of the present invention, for the purpose of improving designability, electrolytic solution resistance, scratch resistance, moldability, etc., if necessary, above the outer layer side base material layer 1 (outer layer side base material layer).
  • the coating layer 6 may be provided on the side opposite to the metal layer 3 of 1.
  • the coating layer 6 is a layer located at the outermost layer when the battery is assembled.
  • the coating layer 6 can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like, and is preferably formed of a two-component curable resin.
  • the two-component curable resin forming the coating layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin.
  • Examples of the matting agent include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the matting agent is also not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an amorphous shape, and a balloon shape.
  • Specific examples of the matting agent include talc, silica, graphite, kaolin, montmoriloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide.
  • These matting agents may be used alone or in combination of two or more.
  • silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the matting agent may be subjected to various surface treatments such as an insulating treatment and a highly dispersible treatment on the surface.
  • the method for forming the coating layer 6 is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the coating layer 6 on one surface of the outer layer side base material layer 1.
  • the matting agent may be added to the two-component curable resin, mixed, and then applied.
  • the method for producing the packaging material for a battery of the present invention is not particularly limited as long as a laminated body in which each layer having a predetermined composition is laminated can be obtained, but the following methods are exemplified.
  • laminate A a laminate in which the outer layer side base material layer 1, the adhesive layer 2, and the metal layer 3 are laminated in this order (hereinafter, may be referred to as "laminate A") is formed.
  • the laminate A is formed by applying the adhesive of the present invention onto the outer layer side base material layer 1 or the metal layer 3 whose surface has been chemically converted as needed, by an extrusion method, a gravure coating method, or a roll. It can be carried out by a dry lamination method in which the metal layer 3 or the outer layer side base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a coating method.
  • the sealant layer 4 is laminated on the metal layer 3 of the laminated body A.
  • the resin component constituting the sealant layer 4 may be applied on the metal layer 3 of the laminated body A by a method such as a gravure coating method or a roll coating method. ..
  • the adhesive layer 5 is provided between the metal layer 3 and the sealant layer 4, for example, the adhesive layer 5 and the sealant layer 4 are co-extruded onto the metal layer 3 of the laminated body A to be laminated (a method).
  • Coextrusion lamination method a method of separately forming a laminated body in which the adhesive layer 5 and the sealant layer 4 are laminated, and laminating this on the metal layer 3 of the laminated body A by the thermal lamination method, or the metal of the laminated body A.
  • An adhesive for forming an adhesive layer 5 is laminated on the layer 3 by an extrusion method, a solution-coated method, drying at a high temperature, or a baking method, and a sealant layer 4 is previously formed into a sheet on the adhesive layer 5.
  • the thermal lamination method or between the metal layer 3 of the laminated body A and the sealant layer 4 which has been formed into a sheet in advance, the melted adhesive layer 5 is poured through the adhesive layer 5. Examples thereof include a method of laminating the laminate A and the sealant layer 4 (sand lamination method).
  • the coating layer 6 is laminated on the surface of the outer layer side base material layer 1 opposite to the metal layer 3.
  • the coating layer 6 is formed by applying, for example, the above resin forming the coating layer 6 to the surface of the outer layer side base material layer 1.
  • the order of the step of laminating the metal layer 3 on the surface of the outer layer side base material layer 1 and the step of laminating the coating layer 6 on the surface of the outer layer side base material layer 1 is not particularly limited.
  • the metal layer 3 may be formed on the surface of the outer layer side base material layer 1 opposite to the coating layer 6.
  • a laminate composed of the sealant layer 4 is formed, but in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed, a hot roll contact type, a hot air type, near or far It may be subjected to heat treatment such as infrared type. Examples of the conditions for such heat treatment include 1 to 5 minutes at 150 to 250 ° C.
  • each layer constituting the laminated body improves or stabilizes film forming property, laminating process, aptitude for secondary processing (pouching, embossing) of the final product, etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment and the like may be performed.
  • the battery container of the present invention can be obtained by molding the above-mentioned battery packaging material so that the outer layer side base material layer 1 forms a convex surface and the sealant layer 4 forms a concave surface.
  • a method for molding the concave portion there are the following methods. -Heat-compressed air molding method: The packaging material for batteries is sandwiched between a lower mold with holes for supplying high-temperature and high-pressure air and an upper mold with pocket-shaped recesses, and air is supplied while being heated and softened to form recesses. how to.
  • -Preheater flat plate type compressed air molding method After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with holes for supplying high-pressure air and an upper mold with pocket-shaped recesses. A method of forming a recess.
  • -Drum type vacuum forming method A method in which a battery packaging material is partially heated and softened with a heating drum, and then the concave portion of a drum having a pocket-shaped concave portion is evacuated to form the concave portion.
  • -Pin molding method A method in which the bottom material sheet is heat-softened and then crimped with a pocket-shaped uneven mold.
  • -Preheater plug assist compressed air molding method After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with holes for supplying high-pressure air and an upper mold with pocket-shaped recesses. A method of forming a concave portion, which assists molding by raising and lowering a convex plug at the time of molding.
  • the preheater plug assist compressed air molding method which is a heating vacuum forming method, is preferable in that the wall thickness of the bottom material after molding can be uniformly obtained.
  • the battery packaging material of the present invention is used as a battery container for sealing and accommodating battery elements such as a positive electrode, a negative electrode, and an electrolyte.
  • a battery element having at least a positive electrode, a negative electrode, and an electrolyte is used in the battery packaging material of the present invention, with metal terminals connected to each of the positive electrode and the negative electrode protruding outward.
  • a battery using a battery packaging material can be produced by covering the peripheral edge of the element so that a flange portion (a region where the sealant layers contact each other) can be formed, and heat-sealing the sealant layers of the flange portion to seal each other.
  • the sealant portion of the battery packaging material of the present invention is used so as to be inside (the surface in contact with the battery element).
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery.
  • the type of secondary battery to which the packaging material for a battery of the present invention is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel / hydrogen storage battery, a nickel / cadmium storage battery, a nickel / Examples thereof include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the packaging material for batteries of the present invention.
  • the use of the laminate of the present invention and the molded body of the laminate is not limited to the packaging material for batteries.
  • the laminate of the present invention may be used as a multilayer packaging material for the purpose of protecting foods, pharmaceuticals, and daily necessities. When used as a multi-layer packaging material, its layer structure may change depending on the contents, usage environment, and usage pattern.
  • the packaging material there is a material obtained by laminating the surfaces of the sealant films of the laminated body facing each other and then heat-sealing the peripheral end portions thereof.
  • the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type.
  • the packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Free-standing packaging materials (standing pouches), etc. are also possible.
  • a heat sealing method a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
  • blister packs also called press-through packages or PTPs.
  • the blister pack seals the storage portion by joining the cover film to the laminate in which one or more storage portions are formed. Since the laminate of the present invention is excellent in moldability, it may be used as a laminate for forming a storage portion or as a cover film.
  • the present invention can also be used for applications other than packaging materials, and examples thereof include, but are not limited to, the base material of a decorative molded sheet. It can be suitably used for applications that require one or more functions of moldability, heat resistance, and moisture heat resistance.
  • polyester polyol (A1-1) 410 parts of terephthalic acid, 66 parts of isophthalic acid, 173 parts of adipic acid, 238 parts of cyclohexanedimethanol, 116 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 142 parts.
  • the obtained polyester polyol (A1-1) has crystallinity, has a number average molecular weight (Mn) of 10,000, a glass transition temperature (Tg) of 2 ° C., a melting point of 115 ° C., and a heat of fusion ( ⁇ H) of 9.
  • Mn number average molecular weight
  • Tg glass transition temperature
  • ⁇ H heat of fusion
  • polyester polyol (A1-2) 411 parts of terephthalic acid, 66 parts of isophthalic acid, 177 parts of adipic acid, 248 parts of cyclohexanedimethanol, 116 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 129 parts.
  • the obtained polyester polyol (A1-2) has crystallinity, has a number average molecular weight (Mn) of 22,000, a glass transition temperature (Tg) of 4 ° C., a melting point of 141 ° C., and a heat of fusion ( ⁇ H) of 0.
  • the hydroxyl value was .49 J / g
  • the hydroxyl value was 4 mgKOH / g
  • the acid value was 2.3 mgKOH / g.
  • polyester polyol (A1-3) 415 parts of terephthalic acid, 68 parts of isophthalic acid, 180 parts of adipic acid, 192 parts of cyclohexanedimethanol, 146 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 146 parts.
  • the obtained polyester polyol (A1-3) has crystallinity, a number average molecular weight (Mn) of 20,000, a glass transition temperature (Tg) of -2 ° C., a melting point of 133 ° C., and a heat of fusion ( ⁇ H).
  • the hydroxyl value was 0.30 J / g, the hydroxyl value was 5 mgKOH / g, and the acid value was 6.7 mgKOH / g.
  • polyester polyol (A1-4) 395 parts of terephthalic acid, 70 parts of isophthalic acid, 176 parts of adipic acid, 244 parts of cyclohexanedimethanol, 109 parts of 1,4-butanediol, 1,6-hexanediol
  • a polyester polyol was synthesized according to a conventional method using 133 parts and 17 parts of trimethylolpropane.
  • the obtained polyester polyol (A1-4) has crystallinity, has a number average molecular weight (Mn) of 4,400, a glass transition temperature (Tg) of -3 ° C, a melting point of 116 ° C, and a heat of fusion ( ⁇ H).
  • Mn number average molecular weight
  • Tg glass transition temperature
  • ⁇ H heat of fusion
  • polyester polyol (A1'-1) A polyester polyol was synthesized according to a conventional method using 274 parts of terephthalic acid, 157 parts of isophthalic acid, 310 parts of adipic acid, and 429 parts of 1,4-butanediol.
  • the obtained polyester polyol (A1'-1) has crystallinity, has a number average molecular weight (Mn) of 30,000, a glass transition temperature (Tg) of ⁇ 26 ° C., and a melting point of 85 ° C. and a heat of fusion ( ⁇ H).
  • the hydroxyl value was 13.3 J / g
  • the hydroxyl value was 8 mgKOH / g
  • the acid value was 2.1 mgKOH / g.
  • Polyester Polyol (A1'-2) Synthesis of Polyester Polyol (A1'-2) Using 170 parts of terephthalic acid, 395 parts of isophthalic acid, 10 parts of trimellitic anhydride, 369 parts of 1,6-hexanediol, and 54 parts of neopentyl glycol, a conventional method. Polyester polyol was synthesized according to the above. The obtained polyester polyol (A1'-2) is amorphous, has a number average molecular weight (Mn) of 6,200, a glass transition temperature (Tg) of 7 ° C., a hydroxyl value of 22 mgKOH / g, and an acid value of 0. It was .7 mgKOH / g.
  • Mn number average molecular weight
  • Tg glass transition temperature
  • polyester polyol was synthesized according to a conventional method using 438 parts of adipic acid and 312 parts of 1,2-propylene glycol.
  • the obtained polyester polyol (A2-1) is amorphous, has a number average molecular weight (Mn) of 3,100, a glass transition temperature (Tg) of ⁇ 50 ° C., a hydroxyl value of 25 mgKOH / g, and an acid value of 2 mgKOH. It was / g.
  • polyester polyol The physical properties of the polyester polyol were measured as follows. (Molecular weight measurement method) Measuring device; HLC-8320GPC manufactured by Tosoh Corporation Column; TSKgel 4000HXL, TSKgel 3000HXL, TSKgel 2000HXL, TSKgel 1000HXL manufactured by Tosoh Corporation Detector; RI (Differential Refractometer) Data processing; Multi-station GPC-8020modelII manufactured by Tosoh Corporation Measurement conditions; column temperature 40 ° C Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard; Monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 ⁇ l)
  • Glass transition temperature measurement method 5 mg of the sample was heated from room temperature to 200 ° C. at 10 ° C./min under a nitrogen stream of 30 mL / min using DSC, cooled to -80 ° C. at 10 ° C./min, and again 10 ° C./to 150 ° C. The temperature was raised in min and the DSC curve was measured. In the measurement results observed in the second temperature rise step, the straight line extending the baseline on the low temperature side to the high temperature side and the tangent line drawn at the point where the slope of the curve of the stepped part of the glass transition is maximized. The intersection of the above was taken as the glass transition point, and the temperature at this time was taken as the glass transition temperature.
  • the DSC curve was measured in the same manner as in the glass transition temperature measurement method, and the maximum peak temperature of the heat absorption curve observed in the second temperature raising step was taken as the melting point.
  • the DSC curve was measured in the same manner as in the glass transition temperature measurement method, and the maximum peak of the heat absorption curve observed in the second temperature raising step and the area surrounded by the baseline were calculated.
  • acetylating agent 15 ml of acetic anhydride was added to 1 g of 4-dimethylaminopyridine to make the total amount 100 ml with toluene, and bromophenol blue was used as an indicator.
  • Example 1 KBM-403 (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., non-volatile content: 100%) was added to the polyester polyol (A1-1), and the mixture was stirred well until KBM-403 was completely dissolved. To this, add Death Module L-75 (manufactured by Sumika Covestro Urethane Co., Ltd., TDI adhesive, non-volatile content 75%), add ethyl acetate so that the non-volatile content becomes 25%, and stir well.
  • the adhesive of Example 1 was prepared. Table 1 shows the blending amount (solid content) of each component in the adhesive of Example 1.
  • Example 2 The adhesives of Examples 2 to 5 were produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 1.
  • Example 6 The adhesive of Example 6 was produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 2.
  • Comparative Example 1 and Comparative Example 2 The adhesives of Comparative Example 1 and Comparative Example 2 were produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 1.
  • Comparative Example 3 The adhesive of Comparative Example 3 was produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 2.
  • Other compounds in Tables 1 and 2 are as follows.
  • BYK-051N Made by BYK-Chemie GmbH, antifoaming agent
  • Example 1 ⁇ Manufacturing of packaging materials for batteries 1 Configuration of Fig. 2> (Example 1)
  • the adhesive of Example 1 as the adhesive layer 2 was applied to the matte surface of the aluminum foil having a thickness of 40 ⁇ m as the metal layer 3 with a dry laminator in an amount of 4 g / square meter, and after the solvent was volatilized, the outer layer was applied.
  • a stretched polyamide film having a thickness of 25 ⁇ m was laminated as the side base material layer 1.
  • the adhesive for the adhesive layer 5 was applied to the glossy surface of the aluminum foil of the metal layer 3 of the obtained laminated film with a dry laminator in an amount of 4 g / square meter to volatilize the solvent.
  • An unstretched polypropylene film having a thickness of 40 ⁇ m was laminated as the sealant layer 4, and then cured (aged) at 60 ° C. for 5 days to cure the adhesive to obtain a laminate.
  • Example 2 Example 2 to (Example 5)
  • the adhesives of Examples 2 to 5 were used as the adhesive layer 2 to obtain packaging materials for batteries of Examples 2 to 5.
  • Example 6 ⁇ Manufacturing of packaging materials for batteries 2> (Example 6)
  • the adhesive prepared in Example 6 was applied to an aluminum foil having a thickness of 40 ⁇ m with a bar coater so as to have a dry coating amount of 5 g / m 2 , dried at 80 ° C. for 1 minute, and then combined with a CPP film having a thickness of 40 ⁇ m. It was bonded at 100 ° C. Then, curing (aging) was carried out at 40 ° C. for 5 days to obtain a laminate of Example 6.
  • Comparative Example 3 A laminate of Comparative Example 3 was obtained in the same manner as in Example 6 except that the adhesive of Comparative Example 3 was used.
  • the battery packaging material of the example or comparative example was cut into a size of 60 ⁇ 60 mm to obtain a blank (material to be molded, material).
  • a blank material to be molded, material.
  • the aluminum foil matte surface is on the convex side with respect to the blank, and the stroke speed is 3 mm / sec and the molding height is free.
  • Overhang molding was performed by changing the molding height from 4.5 mm to 7.0 mm with a straight mold, and the moldability was evaluated by the maximum molding height at which breakage of the aluminum foil and floating between layers did not occur.
  • the punch shape of the mold used is a square with a side of 30 mm, a corner R2 mm, a punch shoulder R1 mm
  • the die hole shape of the mold used is a square with a piece of 34 mm, a die hole corner R2 mm, and a die hole shoulder R: 1 mm.
  • the clearance between the punch and the die hole is 0.3 mm on one side. The clearance causes an inclination according to the molding height. ⁇ : 6.0 mm or more (excellent in practical use) ⁇ : 5.0 mm (practical range)
  • X At 4.5 mm, breakage of aluminum foil and floating between each layer occur.
  • the tray was taken out from the constant temperature and humidity chamber, the appearance in the vicinity of the boundary between the flange portion and the side wall portion was confirmed, and it was evaluated whether or not floating was generated between the stretched polyamide film and the aluminum foil.
  • No float (excellent in practical use)
  • Float occurs
  • the adhesive of the present invention it has excellent moldability, and after heat fusion between the sealant layers performed to seal the battery element, and for a long period of time under high temperature and high humidity. It is clear that even after the durability test, there is no decrease in the adhesive strength between the layers, and it is possible to obtain a packaging material for a battery in which appearance defects such as floating between layers are suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a two-component-type adhesive having excellent moldability, heat resistance, and resistance to moist heat; and a laminate, a molded body; and a packaging material which are obtained by using the two-component-type adhesive. A two-component-type adhesive is characterized by comprising: a polyol composition (A) containing a crystalline polyester polyol (A1); and a polyisocyanate composition (B) containing an isocyanate compound (B), wherein the crystalline polyester polyol (A1) has a glass transition temperature of -20°C to 10°C, a melting point of 80°C to 160°C, and a number average molecular weight of 2,000 to 30,000.

Description

接着剤、電池用包装材用接着剤、積層体、電池用包装材、電池用容器及び電池Adhesives, battery packaging adhesives, laminates, battery packaging, battery containers and batteries
 本発明は2液型接着剤、当該2液型接着剤を用いて得られる積層体、成型体、包装材に関する。 The present invention relates to a two-component adhesive, a laminate obtained by using the two-component adhesive, a molded body, and a packaging material.
 食品や日用品、電子素子を始めとする種々の収納物の包装に用いられる包装材料には、流通時等に受ける衝撃や、酸素や水分による劣化から内容物を保護するため、強度や割れにくさ、ガスバリア性等の機能が要求される。内容物を加熱殺菌処理する場合には耐レトルト性、耐熱性等が必要であるし、内容物を確認できるように透明性が要求されることもある。しかしながら必要な機能を一種類の材料で満足するのは難しい。例えばヒートシールにより密閉する場合に用いられる無延伸のポリオレフィンフィルムは熱加工性に優れる一方、酸素バリア性は不十分である。反対にナイロンフィルムはガスバリア性に優れるが、ヒートシール性には劣る。 Packaging materials used for packaging various stored items such as foods, daily necessities, and electronic elements are resistant to strength and cracking in order to protect the contents from impacts received during distribution and deterioration due to oxygen and moisture. , Gas barrier properties, etc. are required. When the contents are heat sterilized, retort resistance, heat resistance, etc. are required, and transparency may be required so that the contents can be confirmed. However, it is difficult to satisfy the required functions with one kind of material. For example, the non-stretched polyolefin film used when sealing by heat sealing is excellent in heat processability, but has insufficient oxygen barrier property. Nylon film, on the other hand, has excellent gas barrier properties, but is inferior in heat seal properties.
 このようなことから、異種のポリマー材料や、ポリマー材料と金属基材とを貼り合せた積層体が包装材料として広く用いられている。また、積層体を成型して一つまたは複数の収納部を形成した積層体を包装材として用いることがある(特許文献1-3)。一つまたは複数の収納部が形成された積層体は、同じ形状の収納部が形成された積層体や、収納部が形成されていない(成型加工されていない)積層体と接合されることで収納部を密封する。接合方法として熱融着(ヒートシール)が用いられる。 For this reason, different types of polymer materials and laminates of polymer materials and metal substrates are widely used as packaging materials. In addition, a laminate in which one or more storage portions are formed by molding the laminate may be used as a packaging material (Patent Document 1-3). A laminate in which one or more storage portions are formed is joined to a laminate in which storage portions having the same shape are formed or a laminate in which no storage portion is formed (not molded). Seal the compartment. Heat fusion (heat sealing) is used as the joining method.
特開2013-199283号公報Japanese Unexamined Patent Publication No. 2013-199283 特表2008-535746号公報Special Table 2008-535746 特開2015-082354号公報Japanese Unexamined Patent Publication No. 2015-082354
 本発明はこのような用途に適した包装材、即ち優れた成型性を有し、収納物を封止するために行うシーラント層同士の熱融着後も層間の接着強度の低下がなく、層間の浮きなどの外観不良の無い包装材を提供することを目的とする。また、このような包装材の製造に好適な、成型性、耐熱性に優れた2液型接着剤、これを用いた積層体、成型体を提供することを目的とする。 The present invention is a packaging material suitable for such applications, that is, it has excellent moldability, and even after heat fusion between the sealant layers performed for sealing the stored material, the adhesive strength between the layers does not decrease, and the layers do not deteriorate. It is an object of the present invention to provide a packaging material having no appearance defects such as floating. Another object of the present invention is to provide a two-component adhesive having excellent moldability and heat resistance, which is suitable for producing such a packaging material, and a laminate or a molded product using the same.
 本発明者らは、結晶性ポリエステルポリオール(A1)を含むポリオール組成物(A)と、イソシアネート化合物(B)を含むポリイソシアネート組成物(B)と、を含み、結晶性ポリエステルポリオール(A1)のガラス転移温度が-20℃以上10℃以下であり、融点が80℃以上160℃以下であり、数平均分子量が2,000以上30,000以下である2液型接着剤を使用することで、前記課題を解決した。 The present inventors include a polyol composition (A) containing a crystalline polyester polyol (A1) and a polyisocyanate composition (B) containing an isocyanate compound (B), which comprises a crystalline polyester polyol (A1). By using a two-component adhesive having a glass transition temperature of -20 ° C or higher and 10 ° C or lower, a melting point of 80 ° C or higher and 160 ° C or lower, and a number average molecular weight of 2,000 or higher and 30,000 or lower. The above problem has been solved.
 即ち本発明は、結晶性ポリエステルポリオール(A1)を含むポリオール組成物(A)と、イソシアネート化合物(B)を含むポリイソシアネート組成物(B)と、を含み、結晶性ポリエステルポリオール(A1)のガラス転移温度が-20℃以上10℃以下であり、融点が80℃以上160℃以下であり、数平均分子量が2,000以上30,000である2液型接着剤に関する。 That is, the present invention contains a polyol composition (A) containing a crystalline polyester polyol (A1) and a polyisocyanate composition (B) containing an isocyanate compound (B), and is a glass of the crystalline polyester polyol (A1). The present invention relates to a two-component adhesive having a transition temperature of −20 ° C. or higher and 10 ° C. or lower, a melting point of 80 ° C. or higher and 160 ° C. or lower, and a number average molecular weight of 2,000 or higher and 30,000.
 本発明の2液型接着剤を使用することで、優れた成型性を有し、収納物を封止するために行うシーラント層同士の熱融着後も層間の接着強度の低下がなく、層間の浮きなどの外観不良の無い包装材を得ることができる。 By using the two-component adhesive of the present invention, it has excellent moldability, and even after heat fusion between the sealant layers performed to seal the stored material, the adhesive strength between the layers does not decrease, and the layers do not deteriorate. It is possible to obtain a packaging material that does not have an appearance defect such as floating.
本発明の、外層側基材層1、接着層2、金属層3、及びシーラント層4が順次積層された積層体の具体的態様の一例である。This is an example of a specific embodiment of the laminated body in which the outer layer side base material layer 1, the adhesive layer 2, the metal layer 3, and the sealant layer 4 are sequentially laminated. 本発明の、外層側基材層1、接着層2、金属層3、接着層5、及びシーラント層4が順次積層された積層体の具体的態様の一例である。This is an example of a specific embodiment of the laminated body in which the outer layer side base material layer 1, the adhesive layer 2, the metal layer 3, the adhesive layer 5, and the sealant layer 4 are sequentially laminated.
<接着剤>
 本発明の接着剤は、ポリオール組成物(A)と、イソシアネート化合物(B)を含むポリイソシアネート組成物(B)と、を含み、ポリオール組成物(A)が、ガラス転移温度が-20℃以上10℃以下であり、融点が80℃以上160℃以下であり、数平均分子量が2,000以上30,000以下である結晶性のポリエステルポリオール(A1)を含む2液型の接着剤である。
<Adhesive>
The adhesive of the present invention contains a polyol composition (A) and a polyisocyanate composition (B) containing an isocyanate compound (B), and the polyol composition (A) has a glass transition temperature of −20 ° C. or higher. It is a two-component adhesive containing a crystalline polyester polyol (A1) having a temperature of 10 ° C. or lower, a melting point of 80 ° C. or higher and 160 ° C. or lower, and a number average molecular weight of 2,000 or higher and 30,000 or lower.
(ポリオール組成物(A))
(結晶性ポリエステルポリオール(A1))
 本発明の接着剤に用いられるポリオール組成物(A)は結晶性ポリエステルポリオール(A1)を含む。結晶性ポリエステルポリオール(A1)は多塩基酸又はその誘導体と多価アルコールとを必須原料として得られ、結晶性を有するポリエステルポリオールである。
(Polyform composition (A))
(Crystally polyester polyol (A1))
The polyol composition (A) used in the adhesive of the present invention contains a crystalline polyester polyol (A1). The crystalline polyester polyol (A1) is a polyester polyol obtained by using a polybasic acid or a derivative thereof and a polyhydric alcohol as essential raw materials and having crystallinity.
 結晶性ポリエステルポリオール(A1)の原料として使用する多塩基酸又はその誘導体としては、マロン酸、エチルマロン酸、ジメチルマロン酸、コハク酸、2,2-ジメチルコハク酸、無水コハク酸、アルケニル無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸等の脂肪族多塩基酸; Examples of the polybasic acid or a derivative thereof used as a raw material for the crystalline polyester polyol (A1) include malonic acid, ethylmalonic acid, dimethylmalonic acid, succinic acid, 2,2-dimethylsuccinic acid, succinic acid anhydride, and alkenyl succinic acid anhydride. An aliphatic polybasic acid such as acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, fumaric acid, malonic acid, malonic acid anhydride, and itaconic acid;
 マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、ピメリン酸ジエチル、セバシン酸ジエチル、フマル酸ジメチル、フマル酸ジエチル、マレイン酸ジメチル、マレイン酸ジエチル等の脂肪族多塩基酸のアルキルエステル化物; An aliphatic polybasic acid such as dimethyl malonate, diethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl pimelic acid, diethyl sebacate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, etc. Alkyl esterified product;
 1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸、4-メチルヘキサヒドロフタル酸無水物、ヘキサヒドロ無水フタル酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、無水ハイミック酸、無水ヘット酸等の脂環族多塩基酸; 1,1-Cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Tetrahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, hymic anhydride, hetic anhydride, etc. Group polybasic acid;
 オルトフタル酸、テレフタル酸、イソフタル酸、無水フタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、ナフタル酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、ベンゾフェノンテトラカルボン酸、ベンゾフェノンテトラカルボン酸二無水物、5-ナトリウムスルホイソフタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸等の芳香族多塩基酸; Orthophthalic acid, terephthalic acid, isophthalic acid, phthalic anhydride, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, naphthalic acid, Trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, benzophenonetetracarboxylic acid, benzophenonetetracarboxylic acid di Aromatic polybasic acids such as anhydride, 5-sodium sulfoisophthalic acid, tetrachlorohydride phthalic acid, tetrabromohydride phthalic acid;
 ジメチルテレフタル酸、2,6-ナフタレンジカルボン酸ジメチル等の芳香族多塩基酸のメチルエステル化物;等が挙げられ、1種または2種以上を組み合わせて用いることができる。 Methyl esterified products of aromatic polybasic acids such as dimethyl terephthalic acid and dimethyl 2,6-naphthalenedicarboxylic acid; and the like; one type or a combination of two or more types can be used.
 多価アルコールとしては、ジオールでも、3官能以上のポリオールでもよく、前記ジオールは、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2,2-トリメチル-1,3-プロパンジオール、2,2-ジメチル-3-イソプロピル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-ビス(ヒドロキシメチル)シクロヘサン、2,2,4-トリメチル-1,3-ペンタンジオール等の脂肪族ジオール; The polyhydric alcohol may be a diol or a trifunctional or higher functional polyol, and the diol may be, for example, ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-. Propanediol, 2,2-dimethyl-3-isopropyl-1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentane Diol, 3-methyl 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4-bis (hydroxymethyl) cyclohesane, 2,2,4-trimethyl-1,3-pentanediol, etc. Aliper diol;
 ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のエーテルグリコール; Ether glycol such as polyoxyethylene glycol and polyoxypropylene glycol;
 前記脂肪族ジオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルジオール; Modifications obtained by ring-opening polymerization of the aliphatic diol with various cyclic ether bond-containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Polyether diol;
 前記脂肪族ジオールと、ラクタノイド、ε-カプロラクトン等の種々のラクトン類との重縮合反応によって得られるラクトン系ポリエステルポリオール; A lactone-based polyester polyol obtained by a polycondensation reaction between the aliphatic diol and various lactones such as lactanoid and ε-caprolactone;
 ビスフェノールA、ビスフェノールF等のビスフェノール; Bisphenols such as bisphenol A and bisphenol F;
 ビスフェノールA、ビスフェノールF等のビスフェノールにエチレンオキサイド、プロプレンオキサイド等を付加して得られるビスフェノールのアルキレンオキサイド付加物などが挙げられる。 Examples thereof include an alkylene oxide adduct of bisphenol obtained by adding ethylene oxide, proprene oxide, etc. to bisphenol such as bisphenol A and bisphenol F.
 前記3官能以上のポリオールは、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等の脂肪族ポリオール; The trifunctional or higher functional polyol is an aliphatic polyol such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, or pentaerythritol;
 前記脂肪族ポリオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール; Modifications obtained by ring-opening polymerization of the aliphatic polyol with various cyclic ether bond-containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether. Polyether polyol;
 前記脂肪族ポリオールと、ε-カプロラクトン等の種々のラクトン類との重縮合反応によって得られるラクトン系ポリエステルポリオールなどが挙げられる。 Examples thereof include a lactone-based polyester polyol obtained by a polycondensation reaction between the aliphatic polyol and various lactones such as ε-caprolactone.
 本発明では、結晶性ポリエステルポリオール(A1)に結晶性を発現させつつ、後述する接着剤の硬化塗膜が成型性に優れたものとするために、多塩基酸又はその誘導体としてアジピン酸、コハク酸、フマル酸、セバシン酸、及びテレフタル酸から選ばれる少なくとも1種を、多価アルコールとして1,4-ブタンジオールまたは1,6-ヘキサンジオールから選ばれる少なくとも1種を必須成分とすると共に、環状構造を有する多価カルボン酸、分岐アルキレン構造を有する多価アルコール、環状構造を有する多価アルコールからなる群から選ばれる少なくとも一種を用いることが好ましい。 In the present invention, in order to develop crystallinity in the crystalline polyester polyol (A1) and to make the cured coating film of the adhesive described later having excellent moldability, adipic acid and succinic acid are used as polybasic acid or a derivative thereof. At least one selected from acid, fumaric acid, sebacic acid, and terephthalic acid is an essential component, and at least one selected from 1,4-butanediol or 1,6-hexanediol as a polyvalent alcohol is an essential component and is cyclic. It is preferable to use at least one selected from the group consisting of a polyvalent carboxylic acid having a structure, a polyvalent alcohol having a branched alkylene structure, and a polyvalent alcohol having a cyclic structure.
 環状構造を有する多価カルボン酸としてはイソフタル酸、オルトフタル酸、1,4-シクロヘキサンジカルボン酸等が挙げられ、分岐アルキレン構造を有する多価アルコールとしては1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソブチル-1,3-プロパンジオール、2,2-イソアミル-1,3-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、3-メチル-1,3-ブタンジオール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジメチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンンジオール、1,2-オクタンジオール、2-メチル-1,8-オクタンジオール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。環状構造を有する多価アルコールとしては1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、4-(ヒドロキシメチル)シクロヘキサノール、4-(2-ヒドロキシエチル)シクロヘキサノール、1,4-シクロヘキサンジメタノール、4,4’-ビシクロヘキサノール、1,3-アダマンタンジオール、1,3,5-アダマンタントリオール、3-(ヒドロキシメチル)-1-アダマンタノール、トリシクロ[5.2.1.02.6]-デカンジメタノール、1,2-ベンゼンジメタノール、1,4-ベンゼンジメタノール、4,4-ジヒドロキシビフェノール、4,4’-ビスフェニルジメタノール、2,2’-メチレンジフェノール、2,4’-メチレンジフェノール、4,4’-メチレンジフェノール、4,4’-エチリデンビスフェノールA、ビスフェノールA、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、1,7-ナフタレンジオール、2,3-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール等が挙げられる。 Examples of the polyvalent carboxylic acid having a cyclic structure include isophthalic acid, orthophthalic acid, 1,4-cyclohexanedicarboxylic acid and the like, and examples of the polyvalent alcohol having a branched alkylene structure include 1,2-propanediol and 2-methyl-1. , 3-Propanediol, Neopentyl glycol, 2,2-diethyl-1,3-Propanediol, 2-Methyl-2-propyl-1,3-Propanediol, 2-Butyl-2-ethyl-1,3- Propanediol, 2,2-isobutyl-1,3-propanediol, 2,2-isoamyl-1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 3-methyl-1,3 -Butandiol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 2,4-dimethyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,2-hexanediol, 2,5-hexanediol, 2,5-dimethyl-2,5-hexanenediol, 1,2-octanediol, 2-methyl-1,8-octanediol, trimethylolethane, Examples thereof include trimethylolpropane and pentaerythritol. Polyhydric alcohols having a cyclic structure include 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 4- (hydroxymethyl) cyclohexanol, 4-( 2-Hydroxyethyl) cyclohexanol, 1,4-cyclohexanedimethanol, 4,4'-bicyclohexanol, 1,3-adamantandiol, 1,3,5-adamantantriol, 3- (hydroxymethyl) -1-adaman Tanol, Tricyclo [5.2.1.0 2.6 ] -decanedimethanol, 1,2-benzenedimethanol, 1,4-benzenedimethanol, 4,4-dihydroxybiphenol, 4,4'-bisphenyl Dimethanol, 2,2'-methylenediphenol, 2,4'-methylenediphenol, 4,4'-methylenediphenol, 4,4'-ethylidene bisphenol A, bisphenol A, 1,4-naphthalenediol, 1 , 5-Naphthalenediol, 1,6-naphthalenediol, 1,7-naphthalenediol, 2,3-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol and the like.
 アジピン酸、コハク酸、フマル酸、セバシン酸、テレフタル酸、1,4-ブタンジオール、及び1,6-ヘキサンジオールはポリエステルポリオールに結晶性を付与することができる。中でも多塩基酸又はその誘導体としてアジピン酸、テレフタル酸を用い、多価アルコールとして1,4-ブタンジオール、1,6-ヘキサンジオールを用いることが好ましい。
 環状構造を有する多価カルボン酸、分岐アルキレン構造を有する多価アルコール、環状構造を有する多価アルコールは結晶性ポリエステルポリオール(A1)の結晶性を低下させることで接着強度を確保するとともに、結晶性ポリエステルポリオール(A1)のガラス転移温度、融点を好適な範囲に調整して加工性、耐熱性、耐湿熱性を向上させ、さらに溶剤中での保存安定性を付与する。1,4-シクロヘキサンジメタノールが好ましく用いられる。
Adipic acid, succinic acid, fumaric acid, sebacic acid, terephthalic acid, 1,4-butanediol, and 1,6-hexanediol can impart crystallinity to the polyester polyol. Of these, it is preferable to use adipic acid and terephthalic acid as the polybasic acid or a derivative thereof, and 1,4-butanediol and 1,6-hexanediol as the polyhydric alcohol.
A polyvalent carboxylic acid having a cyclic structure, a polyhydric alcohol having a branched alkylene structure, and a polyhydric alcohol having a cyclic structure reduce the crystallinity of the crystalline polyester polyol (A1) to ensure adhesive strength and crystallinity. The glass transition temperature and melting point of the polyester polyol (A1) are adjusted to suitable ranges to improve crystallinity, heat resistance, and moisture heat resistance, and further impart storage stability in a solvent. 1,4-Cyclohexanedimethanol is preferably used.
 多価塩基酸又はその誘導体成分の15モル%以上50モル%以下の範囲でアジピン酸を配合し、40モル%以上80モル%以下の範囲でテレフタル酸を配合し、5モル%以上40モル%以下の範囲で環状構造を有する多価カルボン酸を配合することが好ましい。また多価アルコール成分の40モル%以上80モル%以下の範囲で1,4-ブタンジオールまたは1,6-ヘキサンジオールから選ばれる少なくとも1種を配合し、20モル%以上60モル%以下の範囲で分岐アルキレン構造を有する多価アルコール、環状構造を有する多価アルコールからなる群から選ばれる少なくとも一種を配合することが好ましい。 Adipic acid is blended in the range of 15 mol% or more and 50 mol% or less of the polyvalent basic acid or its derivative component, and terephthalic acid is blended in the range of 40 mol% or more and 80 mol% or less, and 5 mol% or more and 40 mol%. It is preferable to blend a polyvalent carboxylic acid having a cyclic structure in the following range. Further, at least one selected from 1,4-butanediol or 1,6-hexanediol is blended in the range of 40 mol% or more and 80 mol% or less of the polyhydric alcohol component, and the range of 20 mol% or more and 60 mol% or less. It is preferable to blend at least one selected from the group consisting of a polyhydric alcohol having a branched alkylene structure and a polyhydric alcohol having a cyclic structure.
 本発明においては、結晶性ポリエステルポリオール(A1)は、多塩基酸又はその誘導体と、多価アルコールと、ポリイソシアネートとを必須原料とするポリエステルポリウレタンポリオールであってもよい。その場合に使用するポリイソシアネートは、ジイソシアネート化合物や、3官能以上のポリイソシアネート化合物が挙げられる。これらポリイソシアネートはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 In the present invention, the crystalline polyester polyol (A1) may be a polyester polyurethane polyol containing a polybasic acid or a derivative thereof, a polyhydric alcohol, and a polyisocyanate as essential raw materials. Examples of the polyisocyanate used in that case include a diisocyanate compound and a trifunctional or higher functional polyisocyanate compound. Each of these polyisocyanates may be used alone, or two or more of them may be used in combination.
 ジイソシアネート化合物は、例えば、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート; Examples of the diisocyanate compound include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, and m-tetramethylxylylene diisocyanate. Aliphatic diisocyanates such as isocyanate and lysine diisocyanate;
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、ノルボルナンジイソシアネート等の脂環族ジイソシアネート; Cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexanediisocyanate, isopropyridene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate, etc. Alicyclic diisocyanate;
 1,5-ナフチレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネートが挙げられる。 1,5-naphthylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylenediocyanate , 1,4-phenylenediocyanate, tolylene diisocyanate and other aromatic diisocyanates.
 3官能以上のポリイソシアネート化合物は、例えば、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物や、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物が挙げられる。 Examples of the trifunctional or higher functional polyisocyanate compound include an adduct-type polyisocyanate compound having a urethane bond site in the molecule and a nurate-type polyisocyanate compound having an isocyanurate ring structure in the molecule.
 分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物は、例えば、ジイソシアネート化合物と多価アルコールとを反応させて得られる。該反応で用いるジイソシアネート化合物は、例えば、前記ジイソシアネート化合物として例示した各種のジイソシアネート化合物が挙げられ、これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるポリオール化合物は、前記多価アルコールとして例示した各種のポリオール化合物や、多価アルコールと多塩基酸とを反応させて得られるポリエステルポリオール等が挙げられ、これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 The adduct-type polyisocyanate compound having a urethane bond site in the molecule is obtained, for example, by reacting a diisocyanate compound with a polyhydric alcohol. Examples of the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more. In addition, examples of the polyol compound used in the reaction include various polyol compounds exemplified as the polyhydric alcohol, polyester polyol obtained by reacting the polyhydric alcohol with a polybasic acid, and the like, and these are used alone. You may use it, or you may use two or more kinds together.
 分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物は、例えば、ジイソシアネート化合物とモノアルコールおよび/又はジオールとを反応させて得られる。該反応で用いるジイソシアネート化合物は、例えば、前記ジイソシアネート化合物として例示した各種のジイソシアネート化合物が挙げられ、これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるモノアルコールとしては、ヘキサノール、2-エチルヘキサノール、オクタノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘプタデカノール、n-オクタデカノール、n-ノナデカノール、エイコサノール、5-エチル-2-ノナノール、トリメチルノニルアルコール、2-ヘキシルデカノール、3,9-ジエチル-6-トリデカノール、2-イソヘプチルイソウンデカノール、2-オクチルドデカノール、2-デシルテトラデカノール等が挙げられ、ジオールとしては前記多価アルコールで例示した脂肪族ジオール等が挙げられる。これらモノアルコールやジオールはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 A nurate-type polyisocyanate compound having an isocyanurate ring structure in the molecule is obtained, for example, by reacting a diisocyanate compound with a monoalcohol and / or a diol. Examples of the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more. The monoalcohols used in the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, and n-. Heptadecanol, n-octadecanol, n-nonadecanol, eikosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoundecanol , 2-octyldodecanol, 2-decyltetradecanol and the like, and examples of the diol include the aliphatic diol exemplified by the polyhydric alcohol. These monoalcohols and diols may be used alone or in combination of two or more.
 本発明に使用する結晶性ポリエステルポリオール(A1)は多塩基酸又はその誘導体と多価アルコールとの反応生成物であって、多塩基酸又はその誘導体における芳香族環を有する多塩基酸又はその誘導体の割合が30モル%以上であることが好ましい。これにより、保存安定性に優れた接着剤とすることができる。さらに成型性、耐熱性が向上することから多塩基酸又はその誘導体における、芳香族環を有する多塩基酸又はその誘導体の割合が50モル%以上であることがより好ましく、60モル%以上であることがより好ましい。多塩基酸又はその誘導体の配合量の上限は特に制限されないが、一例として85%以下であることが好ましく、75%以下であることがより好ましい。 The crystalline polyester polyol (A1) used in the present invention is a reaction product of a polybasic acid or a derivative thereof and a polyvalent alcohol, and is a polybasic acid or a derivative thereof having an aromatic ring in the polybasic acid or a derivative thereof. The ratio of is preferably 30 mol% or more. This makes it possible to obtain an adhesive having excellent storage stability. Further, since moldability and heat resistance are improved, the proportion of the polybasic acid having an aromatic ring or its derivative in the polybasic acid or its derivative is more preferably 50 mol% or more, more preferably 60 mol% or more. Is more preferable. The upper limit of the blending amount of the polybasic acid or a derivative thereof is not particularly limited, but as an example, it is preferably 85% or less, and more preferably 75% or less.
 あるいは本発明に使用する結晶性ポリエステルポリオール(A1)は多塩基酸又はその誘導体と、多価アルコールと、ポリイソシアネートとの反応生成物であってもよく、多塩基酸又はその誘導体における芳香族環を有する多塩基酸又はその誘導体の割合が30モル%以上であることが好ましい。これにより、保存安定性に優れた接着剤とすることができる。さらに成型性、耐熱性が向上することから多塩基酸又はその誘導体における、芳香族環を有する多塩基酸又はその誘導体の割合が50モル%以上であることがより好ましく、60モル%以上であることがより好ましい。多塩基酸又はその誘導体の配合量の上限は特に制限されないが、一例として85%以下であることが好ましく、75%以下であることがより好ましい。 Alternatively, the crystalline polyester polyol (A1) used in the present invention may be a reaction product of a polybasic acid or a derivative thereof, a polyhydric alcohol, and a polyisocyanate, and an aromatic ring in the polybasic acid or a derivative thereof. The ratio of the polybasic acid having the above or a derivative thereof is preferably 30 mol% or more. This makes it possible to obtain an adhesive having excellent storage stability. Further, since moldability and heat resistance are improved, the proportion of the polybasic acid having an aromatic ring or its derivative in the polybasic acid or its derivative is more preferably 50 mol% or more, more preferably 60 mol% or more. Is more preferable. The upper limit of the blending amount of the polybasic acid or a derivative thereof is not particularly limited, but as an example, it is preferably 85% or less, and more preferably 75% or less.
 本発明で使用する結晶性ポリエステルポリオール(A1)の水酸基価は、接着強度により優れることから、1~40mgKOH/gの範囲であることが好ましく、より好ましくは3mgKOH/g以上であり、30mgKOH/g以下である。 The hydroxyl value of the crystalline polyester polyol (A1) used in the present invention is preferably in the range of 1 to 40 mgKOH / g, more preferably 3 mgKOH / g or more, and 30 mgKOH / g because it is superior in adhesive strength. It is as follows.
 本発明で使用する結晶性ポリエステルポリオール(A1)の数平均分子量(Mn)は、2000~30,000の範囲であり、3,000~15,000がより好ましく、4000~12000がなお好ましい。数平均分子量がこの範囲にあることで、硬化塗膜中において結晶性ポリエステルポリオール(A1)が適度に伸長でき、成型性に優れた接着剤とすることができる。 The number average molecular weight (Mn) of the crystalline polyester polyol (A1) used in the present invention is in the range of 2000 to 30,000, more preferably 3,000 to 15,000, still more preferably 4000 to 12000. When the number average molecular weight is in this range, the crystalline polyester polyol (A1) can be appropriately stretched in the cured coating film, and an adhesive having excellent moldability can be obtained.
 尚、本願発明において数平均分子量(Mn)は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。 In the present invention, the number average molecular weight (Mn) is a value measured by gel permeation chromatography (GPC) under the following conditions.
測定装置  ;東ソー株式会社製 HLC-8320GPC
 カラム  ;東ソー株式会社製 TSKgel 4000HXL、TSKgel 3000HXL、TSKgel 2000HXL、TSKgel 1000HXL
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device; HLC-8320GPC manufactured by Tosoh Corporation
Column; TSKgel 4000HXL, TSKgel 3000HXL, TSKgel 2000HXL, TSKgel 1000HXL manufactured by Tosoh Corporation
Detector; RI (Differential Refractometer)
Data processing; Multi-station GPC-8020modelII manufactured by Tosoh Corporation
Measurement conditions; column temperature 40 ° C
Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard; Monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)
 本発明で使用する結晶性ポリエステルポリオール(A1)の固形分酸価は、特に限定はないが、10.0mgKOH/g以下であることが好ましい。5.0mgKOH/g以下であると耐湿熱性により優れ好ましい。また、固形分酸価の下限について特に制限はないが、一例として0.5mgKOH/g以上である。0mgKOH/gであってもよい。 The solid acid value of the crystalline polyester polyol (A1) used in the present invention is not particularly limited, but is preferably 10.0 mgKOH / g or less. It is preferable that the amount is 5.0 mgKOH / g or less because of its excellent moisture and heat resistance. The lower limit of the solid acid value is not particularly limited, but is 0.5 mgKOH / g or more as an example. It may be 0 mgKOH / g.
 本発明で使用する結晶性ポリエステルポリオール(A1)のガラス転移温度は、-20℃以上10℃以下であり、より好ましくは-15℃以上5℃以下である。 The glass transition temperature of the crystalline polyester polyol (A1) used in the present invention is −20 ° C. or higher and 10 ° C. or lower, more preferably −15 ° C. or higher and 5 ° C. or lower.
 本発明で使用する結晶性ポリエステルポリオール(A1)の融点は、80℃以上160℃以下であり、より好ましくは90℃以上145℃以下、さらに好ましくは100℃以上130℃以下である。本発明においてポリエステルポリオールが結晶性であるとは融点を有し、融解熱量が0.1J/g以上であることをいう。 The melting point of the crystalline polyester polyol (A1) used in the present invention is 80 ° C. or higher and 160 ° C. or lower, more preferably 90 ° C. or higher and 145 ° C. or lower, and further preferably 100 ° C. or higher and 130 ° C. or lower. In the present invention, the crystalline polyester polyol has a melting point and has a heat of fusion of 0.1 J / g or more.
 本願発明におけるガラス転移温度、融点、融解熱量は次のようにして測定する。
 示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製DSC-7000、以下DSCとする)を用い、試料5mgを20mL/minの窒素気流下で30℃から10℃/minでT℃まで昇温した後10分保持し、その後10℃/minでT℃まで冷却して熱履歴を除去する。T℃にて5分保持した後、再び10℃/minでT℃まで昇温させてDSC曲線を測定し、2度目の昇温工程で観測される測定結果における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状部分の曲線の勾配が最大になるような点で引いた接線との交点をガラス転移点とし、このときの温度をガラス転移温度とする。また、2度目の昇温工程で観測される吸熱曲線の最大ピーク温度を融点とし、この最大ピークとベースラインに囲まれた部分の面積から融解熱量を算出する。
The glass transition temperature, melting point, and heat of fusion in the present invention are measured as follows.
Differential scanning calorimeter (SII Nano Technology Co. DSC-7000, hereinafter referred to as DSC) using a temperature of the sample 5mg to T 1 ° C. in 20 mL / min 30 ° C. in a nitrogen stream from 10 ° C. / min and 10 minute hold after was allowed, and thereafter cooled at 10 ° C. / min up to T 2 ° C. to remove the thermal history. After holding at T 2 ° C for 5 minutes, raise the temperature again to T 3 ° C at 10 ° C / min to measure the DSC curve, and set the baseline on the low temperature side in the measurement results observed in the second temperature raising step. The intersection of the straight line extending to the high temperature side and the tangent line drawn at the point where the slope of the curve of the stepped portion of the glass transition is maximized is defined as the glass transition point, and the temperature at this time is defined as the glass transition temperature. Further, the maximum peak temperature of the endothermic curve observed in the second temperature raising step is set as the melting point, and the amount of heat of fusion is calculated from the area surrounded by this maximum peak and the baseline.
 T<T≦Tであり、Tは結晶性ポリエステルポリオール(A1)のガラス転移温度よりも十分低く、T及びTは結晶性ポリエステルポリオールの融点よりも少なくとも30℃以上高い温度である。一例としてTは200℃であり、Tは-80℃であり、Tは200℃であるが、測定する試料に合わせて適宜調整される。 T 2 <T 3 ≤ T 1 , T 2 is sufficiently lower than the glass transition temperature of the crystalline polyester polyol (A1), and T 1 and T 3 are at least 30 ° C. higher than the melting point of the crystalline polyester polyol. Is. As an example, T 1 is 200 ° C., T 2 is −80 ° C., and T 3 is 200 ° C., which are appropriately adjusted according to the sample to be measured.
 保存安定性、塗工適性に優れることから、本発明で使用する結晶性ポリエステルポリオール(A1)の融解熱量は、0.1J/g以上50J/g以下であることが好ましく、0.15J/g以上30J/g以下であることがより好ましく、0.2J/g以上20J/g以下であることがさらに好ましい。 The amount of heat of fusion of the crystalline polyester polyol (A1) used in the present invention is preferably 0.1 J / g or more and 50 J / g or less, preferably 0.15 J / g, because it is excellent in storage stability and coating suitability. It is more preferably 30 J / g or more, and further preferably 0.2 J / g or more and 20 J / g or less.
 結晶性ポリエステルポリオール(A1)を用いることにより接着性、成型性、耐熱性、耐湿熱性が向上する理由については定かではないが、以下のように推測される。ポリエステルポリオール(A1)は結晶性を有することから、ガラス転移温度を超えた後も融点以下では分子運動が一部抑制されている。このため成型加工を行う室温付近ではメチレン鎖等によって擬網目構造が生じており、この擬網目部分とゴム領域部分の共存によって高弾性と高靱性を両立させることができるため、優れた成型性を示す。また、擬網目構造の存在によって加熱時の接着剤層の流動が抑えられるため、耐熱性、耐湿熱性を向上させることができる。 The reason why the adhesiveness, moldability, heat resistance, and moisture heat resistance are improved by using the crystalline polyester polyol (A1) is not clear, but it is presumed as follows. Since the polyester polyol (A1) has crystallinity, the molecular motion is partially suppressed below the melting point even after the glass transition temperature is exceeded. For this reason, a pseudo-mesh structure is formed by methylene chains or the like near room temperature at which the molding process is performed, and the coexistence of the pseudo-mesh portion and the rubber region portion makes it possible to achieve both high elasticity and high toughness, resulting in excellent moldability. Shown. In addition, the presence of the pseudo-mesh structure suppresses the flow of the adhesive layer during heating, so that heat resistance and moisture heat resistance can be improved.
(ポリエステルポリオール(A2))
 本発明の接着剤に用いられるポリオール組成物(A)は結晶性ポリエステルポリオール(A1)に加えてポリエステルポリオール(A2)を含んでいてもよい。ポリエステルポリオール(A2)は多塩基酸又はその誘導体と多価アルコールとを必須原料として得られ、結晶性であってもよいし、非晶性であってもよい。ポリエステルポリオール(A2)の合成に用いられる多塩基酸又はその誘導体、多価アルコールとしては、ポリエステルポリオール(A1)と同様のものを用いることができる。
(Polyester polyol (A2))
The polyol composition (A) used in the adhesive of the present invention may contain a polyester polyol (A2) in addition to the crystalline polyester polyol (A1). The polyester polyol (A2) is obtained by using a polybasic acid or a derivative thereof and a polyhydric alcohol as essential raw materials, and may be crystalline or amorphous. As the polybasic acid or its derivative and the polyhydric alcohol used for the synthesis of the polyester polyol (A2), the same ones as those of the polyester polyol (A1) can be used.
 ポリエステルポリオール(A2)はガラス転移温度が-70℃以上-20℃未満であることが好ましく、-70℃以上-30℃以下であることがより好ましい。結晶性ポリエステルポリオール(A1)とこのようなポリエステルポリオール(A2)とを併用することで、塗工適性が向上し、また接着強度、成型性により優れた接着剤とすることができる。 The polyester polyol (A2) preferably has a glass transition temperature of −70 ° C. or higher and lower than −20 ° C., and more preferably −70 ° C. or higher and −30 ° C. or lower. By using the crystalline polyester polyol (A1) and such a polyester polyol (A2) in combination, the coating suitability is improved, and an adhesive having more excellent adhesive strength and moldability can be obtained.
 ポリエステルポリオール(A2)の水酸基価は、接着強度により優れることから、1~40mgKOH/gの範囲であることが好ましく、より好ましくは3mgKOH/g以上であり、30mgKOH/g以下である。 The hydroxyl value of the polyester polyol (A2) is preferably in the range of 1 to 40 mgKOH / g, more preferably 3 mgKOH / g or more, and 30 mgKOH / g or less because it is superior in adhesive strength.
 ポリエステルポリオール(A2)の固形分酸価は、特に限定はないが、10.0mgKOH/g以下であることが好ましい。5.0mgKOH/g以下であると耐湿熱性により優れ好ましい。また、固形分酸価の下限について特に制限はないが、一例として0.5mgKOH/g以上である。0mgKOH/gであってもよい。 The solid acid value of the polyester polyol (A2) is not particularly limited, but is preferably 10.0 mgKOH / g or less. It is preferable that the amount is 5.0 mgKOH / g or less because of its excellent moisture and heat resistance. The lower limit of the solid acid value is not particularly limited, but is 0.5 mgKOH / g or more as an example. It may be 0 mgKOH / g.
 ポリエステルポリオール(A2)の数平均分子量(Mn)は、3,000~15,000 の範囲であることが好ましく、4000~12000 であることがより好ましい。数平均分子量がこの範囲にあることで、溶剤溶解性が高く、かつ分子鎖の絡まりによる接着性の向上が可能となる。 The number average molecular weight (Mn) of the polyester polyol (A2) is preferably in the range of 3,000 to 15,000, and more preferably 4000 to 12000. When the number average molecular weight is in this range, the solvent solubility is high and the adhesiveness can be improved by the entanglement of the molecular chains.
 ポリエステルポリオール(A2)の配合量は、接着強度、成型性を向上させつつ耐熱性を維持する観点から、結晶性ポリエステルポリオール(A1)とポリエステルポリオール(A2)の総質量に対してポリエステルポリオール(A2)の配合量が10質量%以下となるよう配合することが好ましく、より好ましくは8質量%以下である。 The blending amount of the polyester polyol (A2) is the polyester polyol (A2) with respect to the total mass of the crystalline polyester polyol (A1) and the polyester polyol (A2) from the viewpoint of maintaining heat resistance while improving the adhesive strength and moldability. ) Is preferably added in an amount of 10% by mass or less, and more preferably 8% by mass or less.
(ポリエステルポリオールの製造方法)
 結晶性ポリエステルポリオール(A1)、ポリエステルポリオール(A2)の合成にあたり、多塩基酸又はその誘導体と多価アルコールとの反応、あるいは多塩基酸又はその誘導体と多価アルコールとポリイソシアネートとの反応は、公知の方法で行えばよい。
(Manufacturing method of polyester polyol)
In the synthesis of crystalline polyester polyol (A1) and polyester polyol (A2), the reaction of a polybasic acid or its derivative with a polyhydric alcohol, or the reaction of a polybasic acid or its derivative with a polyhydric alcohol and a polyisocyanate is It may be carried out by a known method.
 例えば多塩基酸又はその誘導体と前記多価アルコールとの反応は、重縮合反応で行うことができる。また多塩基酸又はその誘導体と前記多価アルコールと前記ポリイソシアネートとの反応は、多塩基酸又はその誘導体と前記多価アルコールとを前記方法で反応させたポリエステルポリオールと前記ポリイソシアネートとを、必要に応じて公知慣用のウレタン化触媒の存在下で反応させることで、本発明のポリエステルポリオールを得ることができる。 For example, the reaction of a polybasic acid or a derivative thereof with the polyhydric alcohol can be carried out by a polycondensation reaction. Further, the reaction of the polybasic acid or its derivative with the polyhydric alcohol and the polyisocyanate requires a polyester polyol obtained by reacting the polybasic acid or its derivative with the polyhydric alcohol by the method and the polyisocyanate. The polyester polyol of the present invention can be obtained by reacting in the presence of a known and commonly used urethanization catalyst.
 多塩基酸又はその誘導体と多価アルコールとのエステル化反応は、多塩基酸又はその誘導体と、多価アルコールと、重合触媒とを撹拌機、精留設備を備える反応容器に仕込み、攪拌しながら、常圧で130℃程度まで昇温させる。その後、130~260℃の範囲の反応温度で、1時間に5~10℃の割合で昇温させながら生成する水を留去させる。4~12時間エステル化反応させた後、常圧から1~300tоrrの範囲内まで徐々に減圧度を上げながら、余剰の多価アルコールを留去、反応を促進させることでポリエステルポリオールを製造することができる。 In the esterification reaction of a polybasic acid or a derivative thereof and a polyhydric alcohol, the polybasic acid or a derivative thereof, the polyhydric alcohol, and a polymerization catalyst are charged into a reaction vessel equipped with a stirrer and a rectification facility, and the mixture is stirred. The temperature is raised to about 130 ° C. at normal pressure. Then, the generated water is distilled off while raising the temperature at a reaction temperature in the range of 130 to 260 ° C. at a rate of 5 to 10 ° C. per hour. After the esterification reaction for 4 to 12 hours, a polyester polyol is produced by distilling off excess polyhydric alcohol and accelerating the reaction while gradually increasing the degree of depressurization from normal pressure to the range of 1 to 300 trr. Can be done.
 エステル化反応に用いる重合触媒としては、周期律表の2族、4族、12族、13族、14族、15族からなる群より選ばれる少なくとも1種の金属、またはその金属の化合物からなる重合触媒が好ましい。かかる金属またはその金属化合物からなる重合触媒としては、Ti、Sn、Zn、Al、Zr、Mg、Hf、Ge等の金属、これらの金属の化合物、より具体的にはチタンテトライソプロポキシド、チタンテトラブトキシド、チタンオキシアセチルアセトナート、オクタン酸スズ、2-エチルヘキサンスズ、アセチルアセトナート亜鉛、4塩化ジルコニウム、4塩化ジルコニウムテトラヒドロフラン錯体、4塩化ハフニウム、4塩化ハフニウムテトラヒドロフラン錯体、酸化ゲルマニウム、テトラエトキシゲルマニウム等が挙げられる。 The polymerization catalyst used in the esterification reaction is composed of at least one metal selected from the group consisting of groups 2, 4, 12, 13, 14, and 15 of the periodic table, or a compound of the metal. A polymerization catalyst is preferred. Examples of the polymerization catalyst composed of such a metal or a metal compound thereof include metals such as Ti, Sn, Zn, Al, Zr, Mg, Hf, and Ge, compounds of these metals, and more specifically titanium tetraisopropoxide and titanium. Tetrabutoxide, titanium oxyacetylacetonate, tin octanoate, 2-ethylhexanetin, acetylacetonate zinc, zirconium tetrachloride, zirconium tetrachloride tetrahydrofuran complex, hafnium tetrachloride, hafnium tetrachloride tetrahydrofuran complex, germanium oxide, tetraethoxygermanium And so on.
 エステル化反応に用いることができる重合触媒の市販品としては、マツモトファインケミカル社製のオルガチックスTAシリーズ、TCシリーズ、ZAシリーズ、ZCシリーズ、ALシリーズ、日東化成社製の有機錫系触媒、無機金属触媒、無機錫化合物が好ましく挙げられる。 Commercially available polymerization catalysts that can be used in the esterification reaction include Organtics TA series, TC series, ZA series, ZC series, AL series manufactured by Matsumoto Fine Chemicals, organic tin catalysts manufactured by Nitto Kasei, and inorganic metals. Preferred examples include catalysts and inorganic tin compounds.
 これらの重合触媒の使用量は、エステル化反応を制御でき、かつ良好な品質のポリエステルポリオールが得られるのであれば特に制限はされないが、一例として多塩基酸又はその誘導体と多価アルコールとの合計量に対して10~1000ppmであり、好ましくは20~800ppmである。ポリエステルポリオールの着色を抑制するため、30~500ppmであることがさらに好ましい。 The amount of these polymerization catalysts used is not particularly limited as long as the esterification reaction can be controlled and a polyester polyol of good quality can be obtained, but as an example, the sum of the polybasic acid or its derivative and the polyhydric alcohol. It is 10 to 1000 ppm, preferably 20 to 800 ppm with respect to the amount. In order to suppress the coloring of the polyester polyol, it is more preferably 30 to 500 ppm.
 また、本発明で使用するポリエステルポリウレタンポリオールは、上述した方法で得られるポリエステルポリオールをポリイソシアネートで鎖伸長して得られる。具体的な製造方法としては、ポリエステルポリオールと、ポリイソシアネートと、鎖伸長触媒と、必要に応じて用いられるポリエステルポリオールとポリイソシアネートとの良溶媒とを反応容器に仕込み、60~90℃の反応温度で攪拌する。用いるポリイソシアネートに由来するイソシアネート基が実質的に残存しなくなるまで反応を行い本発明で使用するポリエステルポリウレタンポリオールを得る。 Further, the polyester polyurethane polyol used in the present invention is obtained by chain-extending the polyester polyol obtained by the above method with polyisocyanate. As a specific production method, a polyester polyol, a polyisocyanate, a chain extension catalyst, and a good solvent of the polyester polyol and the polyisocyanate used as needed are charged in a reaction vessel, and the reaction temperature is 60 to 90 ° C. Stir with. The reaction is carried out until the isocyanate group derived from the polyisocyanate used is substantially eliminated to obtain the polyester polyurethane polyol used in the present invention.
 前記鎖伸長触媒としては、通常のウレタン化触媒として使用される公知公用の触媒を用いることができる。具体的には、有機錫化合物、有機カルボン酸錫塩、鉛カルボン酸塩、ビスマスカルボン酸塩、チタン化合物、ジルコニウム化合物等が挙げられ、単独または併用して用いることができる。前記鎖伸長触媒の使用量としては、ポリエステルポリオールとポリイソシアネートとの反応を十分促進させる量であればよく、具体的には、ポリエステルポリオールとポリイソシアネートとの合計量に対して、5.0質量%以下が好ましい。触媒による樹脂への加水分解や着色を抑制するために、1.0質量%以下がより好ましい。更にこれら鎖伸長触媒は後述するポリオール組成物(A)とイソシアネート組成物(B)との硬化触媒としての作用を考慮して使用しても良い。 As the chain extension catalyst, a known and public catalyst used as a normal urethanization catalyst can be used. Specific examples thereof include organic tin compounds, organic carboxylic acid tin salts, lead carboxylates, bismuth carboxylates, titanium compounds, zirconium compounds and the like, which can be used alone or in combination. The amount of the chain extension catalyst used may be an amount that sufficiently promotes the reaction between the polyester polyol and the polyisocyanate, and specifically, 5.0 mass by mass with respect to the total amount of the polyester polyol and the polyisocyanate. % Or less is preferable. In order to suppress hydrolysis and coloring of the resin by the catalyst, 1.0% by mass or less is more preferable. Further, these chain extension catalysts may be used in consideration of the action of the polyol composition (A) and the isocyanate composition (B) described later as a curing catalyst.
 イソシアネート基の残量の確認方法としては、赤外吸収スペクトル測定により、イソシアネート基に由来する吸収スペクトルである2260cm-1付近に観察される吸収ピークの有無の確認や、滴定法によるイソシアネート基の定量が挙げられる。 As a method for confirming the remaining amount of the isocyanate group, confirmation of the presence or absence of an absorption peak observed near 2260 cm -1, which is an absorption spectrum derived from the isocyanate group, by infrared absorption spectrum measurement, and quantification of the isocyanate group by the titration method. Can be mentioned.
 ポリエステルポリウレタンポリオールの製造に用いられる良溶媒としては、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレン等が挙げられる。単独で用いてもよいし、二種以上を併用してもよい。 Examples of a good solvent used for producing a polyester polyurethane polyol include ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, toluene, xylene and the like. It may be used alone or in combination of two or more.
(ポリイソシアネート組成物(B))
 本発明で使用するポリイソシアネート組成物(B)は、イソシアネート化合物(B)を含む。イソシアネート化合物(B)は、一分子中に2以上のイソシアネート基を有する化合物であれば特に限定されず、各種の化合物を用いることができる。具体的には、前述のポリエステルポリオール(A1)、ポリエステルポリオール(A2)の原料で述べた各種のジイソシアネート化合物、ジイソシアネート化合物のオリゴマー、各種のジイソシアネート化合物とジオール化合物とを反応させて得られるアダクト変性ジイソシアネート化合物、これらのビウレット変性体、アロファネート変性体や、各種3官能以上のポリイソシアネート化合物を使用することができる。これらイソシアネート化合物(B)はそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
(Polyisocyanate composition (B))
The polyisocyanate composition (B) used in the present invention contains an isocyanate compound (B). The isocyanate compound (B) is not particularly limited as long as it is a compound having two or more isocyanate groups in one molecule, and various compounds can be used. Specifically, the above-mentioned polyester polyol (A1), various diisocyanate compounds described as raw materials for the polyester polyol (A2), oligomers of diisocyanate compounds, and adduct-modified diisocyanates obtained by reacting various diisocyanate compounds with diol compounds. Compounds, these biuret modified products, allophanate modified products, and various trifunctional or higher functional polyisocyanate compounds can be used. Each of these isocyanate compounds (B) may be used alone, or two or more of them may be used in combination.
 中でもトルエンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、これらジイソシアネートのアダクト体、ビウレット体、イソシアヌレート体が好ましく挙げられる。 Of these, toluene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, and adducts, biurets, and isocyanurates of these diisocyanates are preferably mentioned.
 また、イソシアネート化合物(B)は結晶性ポリエステルポリオール(A1)と過剰量のイソシアネート化合物とを反応させて得られるポリエステルポリイソシアネートであってもよい。結晶性ポリエステルポリオール(A1)との反応に用いられるイソシアネート化合物は上述のものを特に制限なく用いることができる。トルエンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、これらジイソシアネートのアダクト体、ビウレット体、イソシアヌレート体が好ましく挙げられる。 Further, the isocyanate compound (B) may be a polyester polyisocyanate obtained by reacting a crystalline polyester polyol (A1) with an excess amount of the isocyanate compound. As the isocyanate compound used for the reaction with the crystalline polyester polyol (A1), the above-mentioned ones can be used without particular limitation. Preferable examples thereof include toluene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, and adducts, biurets, and isocyanurates of these diisocyanates.
(接着剤 その他の成分)
 本発明の接着剤は、本発明の効果を損なわない範囲において、他の成分を併用することができる。例えばポリオール組成物(A)には、結晶性ポリエステルポリオール(A1)の他、ポリカーボネートポリオール化合物を含有することが好ましい。この時、結晶性ポリエステルポリオール(A1)の総量とポリカーボネートポリオール化合物との配合比率は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、両者の合計質量に対し結晶性ポリエステルポリオール(A1)の総質量が30~99.5質量%の範囲であることが好ましく、60~99質量%の範囲であることが好ましい。
(Adhesive and other ingredients)
The adhesive of the present invention can be used in combination with other components as long as the effects of the present invention are not impaired. For example, the polyol composition (A) preferably contains a polycarbonate polyol compound in addition to the crystalline polyester polyol (A1). At this time, the total amount of the crystalline polyester polyol (A1) and the compounding ratio of the polycarbonate polyol compound are high in adhesiveness to various base materials and excellent in moisture and heat resistance, so that the total mass of both is increased. The total mass of the crystalline polyester polyol (A1) is preferably in the range of 30 to 99.5% by mass, preferably in the range of 60 to 99% by mass.
 ポリカーボネートポリオール化合物の数平均分子量(Mn)は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、300~2,000の範囲であることが好ましい。その水酸基価は30~250mgKOH/gの範囲であることが好ましく、40~200mgKOH/gの範囲であることがより好ましい。また、ポリカーボネートポリオール化合物はポリカーボネートジオール化合物であることが好ましい。 The number average molecular weight (Mn) of the polycarbonate polyol compound is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance. The hydroxyl value is preferably in the range of 30 to 250 mgKOH / g, and more preferably in the range of 40 to 200 mgKOH / g. Further, the polycarbonate polyol compound is preferably a polycarbonate diol compound.
 また、ポリオール組成物(A)は、結晶性ポリエステルポリオール(A1)の他、ポリオキシアルキレン変性ポリオール化合物を含有することが好ましい。この時、結晶性ポリエステルポリオール(A1)の総量とポリオキシアルキレン変性ポリオール化合物との配合比率は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、両者の合計質量に対し結晶性ポリエステルポリオール(A1)の総質量が30~99.5質量%の範囲であることが好ましく、60~99質量%の範囲であることが好ましい。 Further, the polyol composition (A) preferably contains a polyoxyalkylene-modified polyol compound in addition to the crystalline polyester polyol (A1). At this time, the total amount of the crystalline polyester polyol (A1) and the blending ratio of the polyoxyalkylene-modified polyol compound are high in adhesiveness to various substrates and excellent in moisture and heat resistance. The total mass of the crystalline polyester polyol (A1) is preferably in the range of 30 to 99.5% by mass, and preferably in the range of 60 to 99% by mass with respect to the mass.
 ポリオキシアルキレン変性ポリオール化合物の数平均分子量(Mn)は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、300~2,000の範囲であることが好ましい。その水酸基価は40~250mgKOH/gの範囲であることが好ましく、50~200mgKOH/gの範囲であることがより好ましい。また、ポリオキシアルキレン変性ポリオール化合物はポリオキシアルキレン変性ジオール化合物であることが好ましい。 The number average molecular weight (Mn) of the polyoxyalkylene-modified polyol compound is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance. The hydroxyl value is preferably in the range of 40 to 250 mgKOH / g, more preferably in the range of 50 to 200 mgKOH / g. Further, the polyoxyalkylene-modified polyol compound is preferably a polyoxyalkylene-modified diol compound.
 本発明で用いる前記ポリオール組成物(A)は、結晶性ポリエステルポリオール(A1)の他、その他の樹脂成分を含有しても良い。その他の樹脂成分を用いる場合には、主剤の総質量に対し50質量%以下で用いることが好ましく、30質量%以下で用いることが好ましい。その他の樹脂成分の具体例としては、エポキシ樹脂が挙げられる。前記エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、ビスフェノール型エポキシ樹脂を用いることが好ましい。 The polyol composition (A) used in the present invention may contain other resin components in addition to the crystalline polyester polyol (A1). When other resin components are used, it is preferably used in an amount of 50% by mass or less, preferably 30% by mass or less, based on the total mass of the main agent. Specific examples of other resin components include epoxy resins. The epoxy resin is, for example, a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin; a biphenyl type epoxy resin such as a biphenyl type epoxy resin or a tetramethyl biphenyl type epoxy resin; a dicyclopentadiene-phenol addition reaction. Examples include type epoxy resins. Each of these may be used alone, or two or more types may be used in combination. Among these, it is preferable to use a bisphenol type epoxy resin because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance.
 前記エポキシ樹脂の数平均分子量(Mn)は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、300~2,000の範囲であることが好ましい。また、そのエポキシ当量は、150~1000g/当量の範囲であることが好ましい。 The number average molecular weight (Mn) of the epoxy resin is preferably in the range of 300 to 2,000 because it is an adhesive having high adhesiveness to various substrates and excellent moisture and heat resistance. The epoxy equivalent is preferably in the range of 150 to 1000 g / equivalent.
 前記エポキシ樹脂を用いる場合、結晶性ポリエステルポリオール(A1)の総量とエポキシ樹脂との配合比率は、各種の基材に対する接着性が高く、耐湿熱性にも優れる接着剤となることから、両者の合計質量に対してポリエステルポリオール(A1)の総質量が30~99.5質量%の範囲であることが好ましく、60~99質量%の範囲であることが好ましい。 When the epoxy resin is used, the total amount of the crystalline polyester polyol (A1) and the blending ratio of the epoxy resin are high in adhesiveness to various substrates and excellent in moisture and heat resistance. The total mass of the polyester polyol (A1) is preferably in the range of 30 to 99.5 mass%, and preferably in the range of 60 to 99 mass% with respect to the mass.
 本発明で用いる前記ポリオール組成物(A)は粘着付与剤を含有していても良い。粘着付与剤としては、例えば、ロジン系又はロジンエステル系粘着付与剤、テルペン系又はテルペンフェノール系粘着付与剤、飽和炭化水素樹脂、クマロン系粘着付与剤、クマロンインデン系粘着付与剤、スチレン樹脂系粘着付与剤、キシレン樹脂系粘着付与剤、フェノール樹脂系粘着付与剤、石油樹脂系粘着付与剤、ケトン樹脂系粘着付与剤などが挙げられる。ケトン樹脂系粘着付与剤、ロジン系またはロジンエステル系粘着付与剤が好ましく、ケトン樹脂系粘着付与剤がより好ましい。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。粘着付与剤を用いる場合、ポリエステルポリオール(A1)と粘着付与剤との合計質量に対しポリエステルポリオール(A1)の総質量が80~99.99質量%であることが好ましく、85~99.9質量%であることがより好ましい。 The polyol composition (A) used in the present invention may contain a tackifier. Examples of the tackifier include a rosin-based or rosin ester-based tackifier, a terpene-based or terpenephenol-based tackifier, a saturated hydrocarbon resin, a kumaron-based tackifier, a kumaron-inden-based tackifier, and a styrene resin-based tackifier. Examples thereof include a tackifier, a xylene resin-based tackifier, a phenol-resin-based tackifier, a petroleum resin-based tackifier, and a ketone resin-based tackifier. Ketone resin-based tackifiers, rosin-based or rosin ester-based tackifiers are preferable, and ketone resin-based tackifiers are more preferable. Each of these may be used alone, or two or more types may be used in combination. When the tackifier is used, the total mass of the polyester polyol (A1) is preferably 80 to 99.99 mass%, preferably 85 to 99.9 mass%, based on the total mass of the polyester polyol (A1) and the tackifier. More preferably.
 ロジン系又はロジンエステル系としては、重合ロジン、不均化ロジン、水素添加ロジン、マレイン化ロジン、フマル化ロジン、及びこれらのグリセリンエステル、ペンタエリスリトールエステル、メチルエステル、エチルエステル、ブチルエステル、エチレングリコールエステル、ジエチレングリコールエステル、トリエチレングリコールエステルなどがあげられる。 Examples of rosin-based or rosin ester-based rosins include polymerized rosins, disproportionated rosins, hydrogenated rosins, maleated rosins, fumarized rosins, and their glycerin esters, pentaerythritol esters, methyl esters, ethyl esters, butyl esters, and ethylene glycols. Examples thereof include esters, diethylene glycol esters and triethylene glycol esters.
 テルペン系又はテルペンフェノール系としては、低重合テルペン系、α-ピネン重合体、β-ピネン重合体、テルペンフェノール系、芳香族変性テルペン系、水素添加テルペン系などあげられる。 Examples of the terpene type or terpene phenol type include low-polymerization terpene type, α-pinene polymer, β-pinene polymer, terpene phenol type, aromatic-modified terpene type, and hydrogenated terpene type.
 石油樹脂系としては、ペンテン、ペンタジエン、イソプレンなどから得られる炭素数5個の石油留分を重合した石油樹脂、インデン、メチルインデン、ビニルトルエン、スチレン、α-メチルスチレン、β-メチルスチレンなどから得られる炭素数9個の石油留分を重合した石油樹脂、前記各種モノマーから得られるC5-C9共重合石油樹脂及びこれらを水素添加した石油樹脂、シクロペンタジエン、ジシクロペンタジエンから得られる石油樹脂;並びにそれらの石油樹脂の水素化物;それらの石油樹脂を無水マレイン酸、マレイン酸、フマル酸、(メタ)アクリル酸、フェノールなどで変性した変性石油樹脂などを例示できる。 Petroleum resin systems include petroleum resins obtained by polymerizing petroleum distillates having 5 carbon atoms obtained from penten, pentadiene, isoprene, etc., inden, methylinden, vinyltoluene, styrene, α-methylstyrene, β-methylstyrene, etc. A petroleum resin obtained by polymerizing a petroleum distillate having 9 carbon atoms, a C5-C9 copolymerized petroleum resin obtained from the various monomers, a petroleum resin obtained by hydrogenating these, and a petroleum resin obtained from cyclopentadiene and dicyclopentadiene; And hydrides of those petroleum resins; modified petroleum resins obtained by modifying those petroleum resins with maleic anhydride, maleic acid, fumaric acid, (meth) acrylic acid, phenol and the like can be exemplified.
 フェノール樹脂系としては、フェノール類とホルムアルデヒドの縮合物を使用できる。該フェノール類としては、フェノール、m-クレゾール、3,5-キシレノール、p-アルキルフェノール、レゾルシンなどが挙げられ、これらフェノール類とホルムアルデヒドをアルカリ触媒で付加反応させたレゾールや、酸触媒で縮合反応させて得られるノボラックなどが例示できる。また、ロジンにフェノールを酸触媒で付加させ熱重合することにより得られるロジンフェノール樹脂なども例示できる。 As the phenolic resin system, a condensate of phenols and formaldehyde can be used. Examples of the phenols include phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin and the like, and these phenols and formaldehyde are subjected to an addition reaction with an alkali catalyst, or a condensation reaction is carried out with an acid catalyst. Examples thereof include Novolac obtained in the above. Further, a rosin phenol resin obtained by adding phenol to rosin with an acid catalyst and thermally polymerizing it can also be exemplified.
 ケトン樹脂としては公知慣用のものを挙げることができるが、ホルムアルデヒド樹脂、シクロヘキサノン・ホルムアルデヒド樹脂また、ケトンアルデヒド縮合樹脂等を好適に用いることができる。 Examples of the ketone resin include known and commonly used ones, but formaldehyde resin, cyclohexanone / formaldehyde resin, ketone aldehyde condensed resin and the like can be preferably used.
 粘着付与剤は種々の軟化点を有するものが得られるが、前記ポリオール組成物(A)を構成する他の樹脂と混合した場合の相溶性、色調や熱安定性などの点から軟化点が70~160℃、好ましくは80~100℃のケトン樹脂系粘着付与剤、もしくは軟化点が80~160℃、好ましくは90~110℃のロジン系樹脂及びその水素添加誘導体が好ましく、軟化点が70~160℃、好ましくは80~100℃のケトン樹脂系粘着付与剤がより好ましい。また酸価が2~20mgKOH/g、水酸基価が10mgKOH/g以下のケトン樹脂系粘着付与剤、水添ロジン系粘着付与剤であることが好ましく、酸価が2~20mgKOH/g、水酸基価が10mgKOH/g以下のケトン系粘着付与剤がより好ましい。 A tackifier having various softening points can be obtained, but the softening point is 70 in terms of compatibility, color tone, thermal stability, etc. when mixed with other resins constituting the polyol composition (A). A ketone resin-based tackifier at ~ 160 ° C., preferably 80 to 100 ° C., or a rosin-based resin having a softening point of 80 to 160 ° C., preferably 90 to 110 ° C. and a hydrogenated derivative thereof are preferable, and the softening point is 70 to 70 to A ketone resin-based tackifier at 160 ° C., preferably 80 to 100 ° C. is more preferable. Further, a ketone resin-based tackifier having an acid value of 2 to 20 mgKOH / g and a hydroxyl value of 10 mgKOH / g or less and a hydrogenated rosin-based tackifier are preferable, and the acid value is 2 to 20 mgKOH / g and the hydroxyl value is A ketone tackifier of 10 mgKOH / g or less is more preferable.
 本発明の接着剤において、更に別の良好な態様として、公知のリン酸類又はその誘導体が併用できる。これによって、接着剤の初期接着性が更に向上し、トンネリング等のトラブルを解消することができる。 In the adhesive of the present invention, as yet another good embodiment, known phosphoric acids or derivatives thereof can be used in combination. As a result, the initial adhesiveness of the adhesive is further improved, and troubles such as tunneling can be eliminated.
 ここで使用されるリン酸類又はその誘導体としては、例えば次亜リン酸、亜リン酸、オルトリン酸、次リン酸等のリン酸類、例えばメタリン酸、ピロリン酸、トリポリリン酸、ポリリン酸、ウルトラリン酸等の縮合リン酸類、例えばオルトリン酸モノメチル、オルトリン酸モノエチル、オルトリン酸モノプロピル、オルトリン酸モノブチル、オルトリン酸モノ-2-エチルヘキシル、オルトリン酸モノフェニル、亜リン酸モノメチル、亜リン酸モノエチル、亜リン酸モノプロピル、亜リン酸モノブチル、亜リン酸モノ-2-エチルヘキシル、亜リン酸モノフェニル、オルトリン酸ジ-2-エチルヘキシル、オルトリン酸ジフェニル亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジプロピル、亜リン酸ジブチル、亜リン酸ジ-2-エチルヘキシル、亜リン酸ジフェニル等のモノ、ジエステル化物、縮合リン酸とアルコール類とからのモノ、ジエステル化物、例えば前記のリン酸類に、例えばエチレンオキシド、プロピレンオキシド等のエポキシ化合物を付加させたもの、例えば脂肪族又は芳香族のジグリシジルエーテルに前記のリン酸類を付加させて得られるエポキシリン酸エステル類等が挙げられる。 Phosphoric acids or derivatives thereof used here include phosphoric acids such as hypophosphoric acid, phosphoric acid, orthophosphoric acid, and hypophosphoric acid, such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, and ultraphosphoric acid. Such as condensed phosphoric acids such as monomethyl orthophosphate, monoethyl orthophosphate, monopropyl orthophosphate, monobutyl orthophosphate, mono-2-ethylhexyl orthophosphate, monophenyl orthophosphate, monomethyl phosphite, monoethyl phosphite, phosphite. Monopropyl, monobutyl phosphite, mono-2-ethylhexyl phosphite, monophenyl phosphite, di-2-ethylhexyl orthophosphate, dimethyl diphenyl phosphite, diethyl phosphite, dipropyl phosphite, sub Monos such as dibutyl phosphate, di-2-ethylhexyl phosphite, diphenyl phosphite, diesterates, monos from condensed phosphoric acid and alcohols, diesterates, such as the above phosphoric acids, such as ethylene oxide and propylene oxide. Examples thereof include those to which an epoxy compound such as the above is added, for example, epoxy phosphoric acid esters obtained by adding the above-mentioned phosphoric acids to an aliphatic or aromatic diglycidyl ether.
 上記のリン酸類又はその誘導体は一種又は二種以上用いてもよい。含有させる方法としては単に混ぜ込むだけでよい。 The above-mentioned phosphoric acids or derivatives thereof may be used alone or in combination of two or more. As a method of containing, it is sufficient to simply mix.
 また、本発明の接着剤において、接着促進剤を用いることもできる。接着促進剤にはシランカップリング剤、チタネート系カップリング剤、アルミニウム系等のカップリング剤、エポキシ樹脂等が挙げられる。 In addition, an adhesion promoter can also be used in the adhesive of the present invention. Examples of the adhesion accelerator include a silane coupling agent, a titanate-based coupling agent, an aluminum-based coupling agent, an epoxy resin, and the like.
 シランカップリング剤としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン;ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン;ヘキサメチルジシラザン、γ-メルカプトプロピルトリメトキシシラン等を挙げることが出来る。 Examples of the silane coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) -γ. Aminosilanes such as -aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane; β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-gly Epoxysilanes such as sidoxylpropyltriethoxysilane; vinylsilanes such as vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane; hexamethyldisilazane, γ-mercapto Propyltrimethoxysilane and the like can be mentioned.
 チタネート系カップリング剤としては、例えば、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、ブチルチタネートダイマー、テトラステアリルチタネート、チタンアセチルアセトネート、チタンラクテート、テトラオクチレングリコールチタネート、チタンラクテート、テトラステアロキシチタン等を挙げることが出来る。 Examples of the titanate-based coupling agent include tetraisopropoxytitanium, tetra-n-butoxytitanium, butyl titanate dimer, tetrastearyl titanate, titanium acetylacetonate, titanium lactate, tetraoctylene glycol titanate, titanium lactate, and tetrastearoxy. Titanium and the like can be mentioned.
 また、アルミニウム系カップリング剤としては、例えば、アセトアルコキシアルミニウムジイソプロピレート等が挙げることが出来る。 Further, as the aluminum-based coupling agent, for example, acetalkoxyaluminum diisopropylate and the like can be mentioned.
 接着促進剤としてはシランカップリング剤を用いることが好ましい。また接着促進剤の含有量(固形分)は、ポリオール組成物(A)の固形分100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることがより好ましく、0.7質量部以上であることがさらに好ましい。また接着促進剤の含有量(固形分)はポリオール組成物(A)の固形分100質量部に対して10質量部以下であることが好ましく、8質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。 It is preferable to use a silane coupling agent as the adhesion accelerator. The content (solid content) of the adhesion accelerator is preferably 0.1 part by mass or more, and preferably 0.3 part by mass or more, based on 100 parts by mass of the solid content of the polyol composition (A). It is more preferably 0.5 parts by mass or more, further preferably 0.7 parts by mass or more. The content (solid content) of the adhesion accelerator is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 5 parts by mass with respect to 100 parts by mass of the solid content of the polyol composition (A). It is more preferably less than a part.
 本発明の接着剤において、ポリオール組成物(A)とポリイソシアネート組成物(B)との配合比は、ポリオール組成物(A)に含まれる水酸基の合計モル数[OH]と、ポリイソシアネート組成物(B)に含まれるイソシアネート基のモル数[NCO]との比[NCO]/[OH]を1.2~30.0の範囲とすることが好ましくい。これにより、成型性、耐熱性、耐湿熱性に優れる2液型接着剤となる。 In the adhesive of the present invention, the compounding ratio of the polyol composition (A) and the polyisocyanate composition (B) is the total number of moles [OH] of hydroxyl groups contained in the polyol composition (A) and the polyisocyanate composition. The ratio [NCO] / [OH] to the number of moles [NCO] of the isocyanate group contained in (B) is preferably in the range of 1.2 to 30.0. As a result, it becomes a two-component adhesive having excellent moldability, heat resistance, and moisture heat resistance.
 本発明の接着剤は、溶剤型又は無溶剤型のいずれの形態であってもよい。なお本発明でいう「溶剤型」の接着剤とは、接着剤を基材に塗工した後に、オーブン等で加熱して塗膜中の有機溶剤を揮発させた後に他の基材と貼り合せる方法、いわゆるドライラミネート法に用いられる形態をいう。ポリオール組成物(A)及びポリイソシアネート組成物(B)のいずれか一方、もしくは両方が本発明で使用する前記ポリオール組成物(A)またはポリイソシアネート組成物(B)を溶解することの可能な、溶解性の高い有機溶剤を含む。溶剤型の場合、ポリオール組成物(A)またはポリイソシアネート組成物(B)の構成成分の製造時に反応媒体として使用された有機溶剤が、更に塗装時に希釈剤として使用される場合もある。溶解性の高い有機溶剤としては、例えば酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド等が挙げられる。 The adhesive of the present invention may be in either a solvent type or a solventless type. The "solvent type" adhesive referred to in the present invention means that the adhesive is applied to a base material and then heated in an oven or the like to volatilize the organic solvent in the coating film and then bonded to another base material. A method, a form used in the so-called dry laminating method. Either one or both of the polyol composition (A) and the polyisocyanate composition (B) can dissolve the polyol composition (A) or the polyisocyanate composition (B) used in the present invention. Contains highly soluble organic solvent. In the case of the solvent type, the organic solvent used as the reaction medium in the production of the constituent components of the polyol composition (A) or the polyisocyanate composition (B) may be further used as a diluent in coating. Examples of highly soluble organic solvents include esters such as ethyl acetate, butyl acetate and cellosolve acetate, ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone, ethers such as tetrahydrofuran and dioxane, and aromatics such as toluene and xylene. Examples thereof include group hydrocarbons, halogenated hydrocarbons such as methylene chloride and ethylene chloride, dimethyl sulfoxide, dimethyl sulfoamide and the like.
 本明細書において「無溶剤型」の接着剤とは、ポリオール組成物(A)及びポリイソシアネート組成物(B)が上述したような溶解性の高い有機溶剤、特に酢酸エチル又はメチルエチルケトンを実質的に含まず、接着剤を基材に塗工した後に、オーブン等で加熱して溶剤を揮発させる工程を経ずに他の基材と貼り合せる方法、いわゆるノンソルベントラミネート法に用いられる接着剤の形態を指す。ポリオール組成物(A)またはポリイソシアネート組成物(B)の構成成分や、その原料の製造時に反応媒体として使用された有機溶剤が除去しきれずに、ポリオール組成物(A)やポリイソシアネート組成物(B)中に微量の有機溶剤が残留してしまっている場合は、有機溶剤を実質的に含まないと解される。また、ポリオール組成物(A)が低分子量アルコールを含む場合、低分子量アルコールはポリイソシアネート組成物(B)と反応して塗膜の一部となるため、塗工後に揮発させる必要はない。従ってこのような形態も無溶剤型接着剤として扱う。 In the present specification, the “solvent-free” adhesive is substantially the highly soluble organic solvent as described above in the polyol composition (A) and the polyisocyanate composition (B), particularly ethyl acetate or methyl ethyl ketone. A form of adhesive used in the so-called non-solvent laminating method, which is a method in which an adhesive is applied to a base material and then bonded to another base material without a step of heating in an oven or the like to volatilize the solvent. Point to. The constituent components of the polyol composition (A) or the polyisocyanate composition (B) and the organic solvent used as the reaction medium in the production of the raw material thereof could not be completely removed, and the polyol composition (A) or the polyisocyanate composition (A) or the polyisocyanate composition ( If a small amount of organic solvent remains in B), it is understood that the organic solvent is substantially not contained. Further, when the polyol composition (A) contains a low molecular weight alcohol, the low molecular weight alcohol reacts with the polyisocyanate composition (B) and becomes a part of the coating film, so that it is not necessary to volatilize after coating. Therefore, such a form is also treated as a solvent-free adhesive.
 本発明の接着剤が溶剤型の場合、粘度は溶剤希釈で低減可能なため、使用する前記ポリオール組成物(A)またはポリイソシアネート組成物(B)がやや高粘度であっても使用可能である。一方無溶剤型の場合は、加温により粘度を下げるという特性上低粘度であることが重視され、粘度を下げる手段として、ポリイソシアネート組成物(B)は粘度に寄与する芳香族濃度を低減したものが多用される。 When the adhesive of the present invention is of the solvent type, the viscosity can be reduced by diluting the solvent, so that the polyol composition (A) or the polyisocyanate composition (B) to be used can be used even if it has a slightly high viscosity. .. On the other hand, in the case of the solvent-free type, it is emphasized that the viscosity is low due to the characteristic that the viscosity is lowered by heating, and as a means for lowering the viscosity, the polyisocyanate composition (B) reduces the aromatic concentration that contributes to the viscosity. Things are often used.
 本発明の接着剤は、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等の各種添加剤を含有しても良い。 Even if the adhesive of the present invention contains various additives such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a fluorine-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. good.
 本発明の接着剤の用途は特に限定されないが、接着強度、加工性、耐湿熱性、耐熱性に優れるため、一例として電池用包装材に好適に用いることができる。 The use of the adhesive of the present invention is not particularly limited, but it can be suitably used as a packaging material for batteries as an example because it is excellent in adhesive strength, processability, moisture heat resistance, and heat resistance.
<積層体>
 本発明の積層体は、第1の基材と、第2の基材とを貼り合せる接着層とを有し、接着層が本発明の接着剤の硬化物である。本発明の積層体は第1の基材と第2の基材とを本発明の接着剤を用いてドライラミネート法やノンソルベントラミネート法にて貼り合せて得られる。基材としては、紙、オレフィン系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、カーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂やポリエステル系樹脂から得られた合成樹脂フィルム、銅箔、アルミニウム箔の様な金属箔等が挙げられる。
<Laminated body>
The laminate of the present invention has an adhesive layer for bonding the first base material and the second base material, and the adhesive layer is a cured product of the adhesive of the present invention. The laminate of the present invention is obtained by laminating a first base material and a second base material by a dry laminating method or a non-solvent laminating method using the adhesive of the present invention. As the base material, paper, olefin resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, carbonate resin, polyamide resin, Examples thereof include polyimide resins, polyphenylene ether resins, synthetic resin films obtained from polyphenylene sulfide resins and polyester resins, copper foils, metal foils such as aluminum foils, and the like.
 基材の膜厚は特に制限されるものではなく、例えば、10~400μmから選択される。基材と接着剤との密着性を向上させるために、基材の接着剤を塗布する面に表面処理を行ってもよい。この表面処理としては、コロナ処理、プラズマ処理、オゾン処理、火炎処理、放射線処理等が挙げられる。 The film thickness of the base material is not particularly limited, and is selected from, for example, 10 to 400 μm. In order to improve the adhesion between the base material and the adhesive, the surface of the base material to which the adhesive is applied may be surface-treated. Examples of this surface treatment include corona treatment, plasma treatment, ozone treatment, flame treatment, radiation treatment and the like.
<電池用包装材>
 電池用包装材は、図1に示すように、少なくとも、外層側基材層1、接着層2、金属層3、及びシーラント層4が順次積層された積層体からなる。本発明の電池用包装材において、外層側基材層1が最外層になり、シーラント層4は最内層になる。即ち、電池の組み立て時に、電池素子の周縁に位置するシーラント層4同士が熱融着して電池素子を密封することにより、電池素子が封止される。また、本発明の電池用包装材は、図2に示すように、金属層3とシーラント層4との間に、これらの接着性を高める目的で、必要に応じて接着層5が設けられていてもよい。本発明の接着剤は、接着層2に好適に使用できるが、耐溶剤性に優れることから接着層5として使用することも可能である。
<Battery packaging material>
As shown in FIG. 1, the packaging material for a battery is composed of at least a laminate in which an outer layer side base material layer 1, an adhesive layer 2, a metal layer 3, and a sealant layer 4 are sequentially laminated. In the battery packaging material of the present invention, the outer layer side base material layer 1 is the outermost layer, and the sealant layer 4 is the innermost layer. That is, when the battery is assembled, the sealant layers 4 located on the peripheral edge of the battery element are heat-sealed to seal the battery element, thereby sealing the battery element. Further, in the packaging material for a battery of the present invention, as shown in FIG. 2, an adhesive layer 5 is provided between the metal layer 3 and the sealant layer 4 as needed for the purpose of enhancing their adhesiveness. You may. The adhesive of the present invention can be suitably used for the adhesive layer 2, but it can also be used as the adhesive layer 5 because of its excellent solvent resistance.
(外層側基材層1)
 本発明の電池用包装材において、外層側基材層1は最外層を形成する層である。外層側基材層1を形成する素材については、絶縁性を備えるものでれば特に制限されず、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物等の樹脂フィルムが挙げられる。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂であり、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂である。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。
(Outer layer side base material layer 1)
In the battery packaging material of the present invention, the outer layer side base material layer 1 is a layer forming the outermost layer. The material forming the outer layer side base material layer 1 is not particularly limited as long as it has insulating properties, and polyester resin, polyamide resin, epoxy resin, acrylic resin, fluororesin, polyurethane resin, silicon resin, phenol resin, etc. And resin films such as mixtures and copolymers thereof. Among these, polyester resin and polyamide resin are preferable, and biaxially stretched polyester resin and biaxially stretched polyamide resin are more preferable. Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate. Specific examples of the polyamide resin include nylon 6, nylon 6, 6, a copolymer of nylon 6 and nylon 6, 6, nylon 6, 10, and polymethoxylylen adipamide (MXD6). Be done.
 外層側基材層1は、1層の樹脂フィルムから形成されていてもよいが、耐ピンホール性や絶縁性を向上させるために、2層以上の樹脂フィルム、例えばポリエチレンテレフタレートフィルムとポリアミドフィルムからなる複層で形成されていてもよい。外層側基材層1を多層の樹脂フィルムで形成する場合、樹脂フィルム同士は、接着剤または接着性樹脂などの接着成分を介して積層させればよく、使用される接着成分の種類や量等については、後述する接着層2又は接着層5の場合と同様である。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず公知の方法が採用でき、例えばドライラミネーション法、サンドラミネーション法などが挙げられ、好ましくはドライラミネーション法が挙げられる。ドライラミネーション法により積層させる場合には、接着層として接着剤を用いることが好ましい。このとき、接着層の厚みとしては、例えば0.5~10μm程度である。    The outer base material layer 1 may be formed of one layer of resin film, but in order to improve pinhole resistance and insulating property, it is made of two or more layers of resin film, for example, polyethylene terephthalate film and polyamide film. It may be formed of a plurality of layers. When the outer layer side base material layer 1 is formed of a multilayer resin film, the resin films may be laminated via an adhesive component such as an adhesive or an adhesive resin, and the type and amount of the adhesive component used may be used. The same applies to the case of the adhesive layer 2 or the adhesive layer 5 described later. The method of laminating two or more layers of resin films is not particularly limited, and a known method can be adopted. Examples thereof include a dry lamination method and a sand lamination method, and a dry lamination method is preferable. When laminating by the dry lamination method, it is preferable to use an adhesive as the adhesive layer. At this time, the thickness of the adhesive layer is, for example, about 0.5 to 10 μm.
 外層側基材層1の厚さについては、電池用包装材が上記の物性を満たせば特に制限されないが、例えば、10~50μm程度、好ましくは15~35μm程度である。ポリエステルフィルムを用いる場合には厚さは9μm~50μmであるのが好ましく、ポリアミドフィルムを用いる場合には厚さは10μm~50μmであるのが好ましい。包装材として十分な強度を確保できるとともに張り出し成形時や絞り成形時の応力を小さくでき、成形性を向上させることができる。  The thickness of the outer layer side base material layer 1 is not particularly limited as long as the battery packaging material satisfies the above physical properties, but is, for example, about 10 to 50 μm, preferably about 15 to 35 μm. When a polyester film is used, the thickness is preferably 9 μm to 50 μm, and when a polyamide film is used, the thickness is preferably 10 μm to 50 μm. Sufficient strength can be secured as a packaging material, stress during overhang molding and draw molding can be reduced, and moldability can be improved.
(金属層3)  
 電池用包装材において、金属層3は、電池用包装材の強度向上の他、電池内部に水蒸気、酸素、光などが侵入することを防止するためのバリア層として機能する層である。金属層3を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムである。金属層3は、金属箔や金属蒸着などにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔により形成することがさらに好ましい。また、金属層3は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、金属層の表面に耐酸性皮膜を形成する処理をいう。
(Metal layer 3)
In the battery packaging material, the metal layer 3 is a layer that functions as a barrier layer for improving the strength of the battery packaging material and preventing water vapor, oxygen, light, etc. from entering the inside of the battery. Specific examples of the metal constituting the metal layer 3 include aluminum, stainless steel, titanium, and the like, and aluminum is preferable. The metal layer 3 can be formed by metal foil, metal vapor deposition, or the like, and is preferably formed of metal foil, and more preferably of aluminum foil. Further, it is preferable that at least one surface, preferably both sides, of the metal layer 3 is subjected to chemical conversion treatment in order to stabilize adhesion, prevent dissolution and corrosion, and the like. Here, the chemical conversion treatment refers to a treatment for forming an acid-resistant film on the surface of a metal layer.
 金属層3の厚みは、電池用包装材が上記の物性を満たせば特に制限されないが、例えば、10~50μm程度、好ましくは25~45μm程度とすることができる。 The thickness of the metal layer 3 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but can be, for example, about 10 to 50 μm, preferably about 25 to 45 μm.
(シーラント層4)   
 本発明の電池用包装材においてシーラント層4は、最内層に該当し、電池の組み立て時にシーラント層同士が熱融着して電池素子を密封する層である。   
(Sealant layer 4)
In the battery packaging material of the present invention, the sealant layer 4 corresponds to the innermost layer, and is a layer in which the sealant layers are heat-sealed to each other when the battery is assembled to seal the battery element.
 シーラント層4に使用される樹脂成分については、熱融着可能であれば特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンが挙げられる。    The resin component used in the sealant layer 4 is not particularly limited as long as it can be heat-fused, and examples thereof include polyolefins, cyclic polyolefins, carboxylic acid-modified polyolefins, and carboxylic acid-modified cyclic polyolefins.
 前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー;等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。    Specific examples of the polyolefin include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, and other polyethylene; homopolypropylene, polypropylene block copolymer (for example, propylene and ethylene block copolymer), and polypropylene. Polypropylene such as random copolymers of propylene and ethylene (eg, random copolymers of propylene and ethylene); ethylene-butene-propylene tarpolymers; and the like. Among these polyolefins, polyethylene and polypropylene are preferable.
 前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、更に好ましくはノルボルネンが挙げられる。    The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, isoprene, and the like. Can be mentioned. Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specific examples thereof include cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkene is preferable, and norbornene is more preferable.
 前記カルボン酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸でブロック重合又はグラフト重合することにより変性したポリマーである。変性に使用されるカルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。    The carboxylic acid-modified polyolefin is a polymer modified by block-polymerizing or graft-polymerizing the polyolefin with a carboxylic acid. Examples of the carboxylic acid used for denaturation include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
 前記カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β―不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β―不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記酸変性シクロオレフィンコポリマーの変性に使用されるものと同様である。   The carboxylic acid-modified cyclic polyolefin means that a part of the monomer constituting the cyclic polyolefin is copolymerized in place of α, β-unsaturated carboxylic acid or its anhydride, or α, β with respect to the cyclic polyolefin. -A polymer obtained by block polymerization or graft polymerization of unsaturated carboxylic acid or its anhydride. The same applies to the cyclic polyolefin modified with carboxylic acid. The carboxylic acid used for the modification is the same as that used for the modification of the acid-modified cycloolefin copolymer.
 シーラント層4は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。更に、シーラント層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂成分によって2層以上で形成されていてもよい。 The sealant layer 4 may be formed by one kind of resin component alone, or may be formed by a blend polymer in which two or more kinds of resin components are combined. Further, the sealant layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resin components.
 また、シーラント層4の厚さとしては、電池用包装材が上記の物性を満たせば特に制限されないが、例えば、10~100μm程度、好ましくは20~90μm程度である。 The thickness of the sealant layer 4 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but is, for example, about 10 to 100 μm, preferably about 20 to 90 μm.
(接着層5)
 本発明の電池用包装材において、接着層5は、金属層3とシーラント層4を強固に接着させために、これらの間に必要に応じて設けられる層である。
(Adhesive layer 5)
In the packaging material for batteries of the present invention, the adhesive layer 5 is a layer provided between the metal layer 3 and the sealant layer 4 as necessary in order to firmly bond them.
 接着層5は、金属層3とシーラント層4とを接着可能な接着剤によって形成される。接着層5に使用される接着層としては、例えば、ポリオレフィン樹脂と多官能イソシアネートの組み合わせた接着剤、ポリオールと多官能イソシアネートとを組み合わせた接着剤、変性ポリオレフィン樹脂、複素環状化合物と硬化剤とを含有する接着剤を使用することができる。あるいは、酸変性ポリプロピレンなどの接着剤をTダイ押出し機で金属層上に溶融押出しして接着層5を形成し、前記接着層5上にシーラント層4を重ね、金属層3とシーラント層4とを貼り合せることもできる。
 接着層2および接着層5の両方がエージングを必要とする場合には、まとめてエージングすることができる。尚、エージング温度は室温~90℃とすることで、2日~2週間で硬化が完了し、成型性が発現する。
The adhesive layer 5 is formed of an adhesive capable of adhering the metal layer 3 and the sealant layer 4. Examples of the adhesive layer used for the adhesive layer 5 include an adhesive in which a polyolefin resin and a polyfunctional isocyanate are combined, an adhesive in which a polyol and a polyfunctional isocyanate are combined, a modified polyolefin resin, a heterocyclic compound and a curing agent. The adhesive contained can be used. Alternatively, an adhesive such as acid-modified polypropylene is melt-extruded onto a metal layer with a T-die extruder to form an adhesive layer 5, a sealant layer 4 is superposed on the adhesive layer 5, and the metal layer 3 and the sealant layer 4 are combined. Can also be pasted together.
If both the adhesive layer 2 and the adhesive layer 5 require aging, they can be aged together. By setting the aging temperature to room temperature to 90 ° C., curing is completed in 2 days to 2 weeks, and moldability is exhibited.
 接着層5の厚さについては、電池用包装材が上記の物性を満たせば特に制限されないが、例えば、0.5~50μm程度、好ましくは2~30μm程度である。 The thickness of the adhesive layer 5 is not particularly limited as long as the packaging material for the battery satisfies the above physical properties, but is, for example, about 0.5 to 50 μm, preferably about 2 to 30 μm.
(コーティング層6)
 本発明の電池用包装材においては、意匠性、耐電解液性、耐擦過性、成型性の向上などを目的として、必要に応じて、外層側基材層1の上(外層側基材層1の金属層3とは反対側)にコーティング層6を設けてもよい。コーティング層6は、電池を組み立てた時に最外層に位置する層である。   
(Coating layer 6)
In the packaging material for batteries of the present invention, for the purpose of improving designability, electrolytic solution resistance, scratch resistance, moldability, etc., if necessary, above the outer layer side base material layer 1 (outer layer side base material layer). The coating layer 6 may be provided on the side opposite to the metal layer 3 of 1. The coating layer 6 is a layer located at the outermost layer when the battery is assembled.
 コーティング層6は、例えば、ポリ塩化ビニリデン、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などにより形成することができ、2液硬化型樹脂により形成することが好ましい。コーティング層6を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂などが挙げられる。また、コーティング層6には、マット化剤を配合してもよい。    The coating layer 6 can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like, and is preferably formed of a two-component curable resin. Examples of the two-component curable resin forming the coating layer 6 include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Moreover, you may mix the matting agent in the coating layer 6.
 マット化剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。マット化剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、マット化剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。マット化剤として、具体的には、タルク、シリカ,グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム,酸化アルミニウム,酸化ネオジウム,酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム,ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム,シュウ酸カルシウム,ステアリン酸マグネシウム、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらのマット化剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらのマット化剤の中でも、分散安定性やコスト等の観点から、シリカ、硫酸バリウム、酸化チタンが好ましい。また、マット化剤には、表面に絶縁処理、高分散性処理等の各種表面処理を施してもよい。    Examples of the matting agent include fine particles having a particle size of about 0.5 nm to 5 μm. The material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. The shape of the matting agent is also not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an amorphous shape, and a balloon shape. Specific examples of the matting agent include talc, silica, graphite, kaolin, montmoriloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide. , Neodium oxide, Antimon oxide, Titanium oxide, Serium oxide, Calcium sulfate, Barium sulfate, Calcium carbonate, Calcium silicate, Lithium carbonate, Calcium benzoate, Calcium silicate, Magnesium stearate, Carbon black, Carbon nanotubes, High melting point Examples thereof include nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper and nickel. These matting agents may be used alone or in combination of two or more. Among these matting agents, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. Further, the matting agent may be subjected to various surface treatments such as an insulating treatment and a highly dispersible treatment on the surface.
 コーティング層6を形成する方法としては、特に制限されないが、例えば、コーティング層6を形成する2液硬化型樹脂を外層側基材層1の一方の表面上に塗布する方法が挙げられる。マット化剤を配合する場合には、2液硬化型樹脂にマット化剤を添加して混合した後、塗布すればよい。  The method for forming the coating layer 6 is not particularly limited, and examples thereof include a method of applying a two-component curable resin for forming the coating layer 6 on one surface of the outer layer side base material layer 1. When the matting agent is blended, the matting agent may be added to the two-component curable resin, mixed, and then applied.
(電池用包装材の製造方法)
 本発明の電池用包装材の製造方法については、所定の組成の各層を積層させた積層体が得られる限り特に制限されないが、以下の方法が例示される。   
(Manufacturing method of packaging materials for batteries)
The method for producing the packaging material for a battery of the present invention is not particularly limited as long as a laminated body in which each layer having a predetermined composition is laminated can be obtained, but the following methods are exemplified.
 まず、外層側基材層1、接着層2、金属層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、外層側基材層1上又は必要に応じて表面が化成処理された金属層3に、本発明の接着剤を、押出し法、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該金属層3又は外層側基材層1を積層させて接着層2を硬化させるドライラミネーション法によって行うことができる。 First, a laminate in which the outer layer side base material layer 1, the adhesive layer 2, and the metal layer 3 are laminated in this order (hereinafter, may be referred to as "laminate A") is formed. Specifically, the laminate A is formed by applying the adhesive of the present invention onto the outer layer side base material layer 1 or the metal layer 3 whose surface has been chemically converted as needed, by an extrusion method, a gravure coating method, or a roll. It can be carried out by a dry lamination method in which the metal layer 3 or the outer layer side base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a coating method.
 次いで、積層体Aの金属層3上にシーラント層4を積層させる。金属層3上にシーラント層4を直接積層させる場合には、積層体Aの金属層3上に、シーラント層4を構成する樹脂成分をグラビアコート法、ロールコート法等の方法により塗布すればよい。また、金属層3とシーラント層4の間に接着層5を設ける場合には、例えば、積層体Aの金属層3上に、接着層5及びシーラント層4を共押出しすることにより積層する方法(共押出しラミネーション法)や、別途、接着層5とシーラント層4が積層した積層体を形成し、これを積層体Aの金属層3上に熱ラミネーション法により積層する方法や、積層体Aの金属層3上に、接着層5を形成させるための接着剤を押出し法や溶液コーティングした高温で乾燥さらには焼き付ける方法等により積層させ、この接着層5上に予めシート状に製膜したシーラント層4をサーマルラミネーション法により積層する方法や、積層体Aの金属層3と、予めシート状に製膜したシーラント層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aとシーラント層4を貼り合せる方法(サンドラミネーション法)等が挙げられる。 Next, the sealant layer 4 is laminated on the metal layer 3 of the laminated body A. When the sealant layer 4 is directly laminated on the metal layer 3, the resin component constituting the sealant layer 4 may be applied on the metal layer 3 of the laminated body A by a method such as a gravure coating method or a roll coating method. .. When the adhesive layer 5 is provided between the metal layer 3 and the sealant layer 4, for example, the adhesive layer 5 and the sealant layer 4 are co-extruded onto the metal layer 3 of the laminated body A to be laminated (a method). Coextrusion lamination method), a method of separately forming a laminated body in which the adhesive layer 5 and the sealant layer 4 are laminated, and laminating this on the metal layer 3 of the laminated body A by the thermal lamination method, or the metal of the laminated body A. An adhesive for forming an adhesive layer 5 is laminated on the layer 3 by an extrusion method, a solution-coated method, drying at a high temperature, or a baking method, and a sealant layer 4 is previously formed into a sheet on the adhesive layer 5. Is laminated by the thermal lamination method, or between the metal layer 3 of the laminated body A and the sealant layer 4 which has been formed into a sheet in advance, the melted adhesive layer 5 is poured through the adhesive layer 5. Examples thereof include a method of laminating the laminate A and the sealant layer 4 (sand lamination method).
 コーティング層6を設ける場合には、外層側基材層1の金属層3とは反対側の表面にコーティング層6を積層する。コーティング層6は、例えばコーティング層6を形成する上記の樹脂を外層側基材層1の表面に塗布して形成する。なお、外層側基材層1の表面に金属層3を積層する工程と、外層側基材層1の表面にコーティング層6を積層する工程の順番は、特に制限されない。例えば、外層側基材層1の表面にコーティング層6を形成した後、外層側基材層1のコーティング層6とは反対側の表面に金属層3を形成してもよい。 When the coating layer 6 is provided, the coating layer 6 is laminated on the surface of the outer layer side base material layer 1 opposite to the metal layer 3. The coating layer 6 is formed by applying, for example, the above resin forming the coating layer 6 to the surface of the outer layer side base material layer 1. The order of the step of laminating the metal layer 3 on the surface of the outer layer side base material layer 1 and the step of laminating the coating layer 6 on the surface of the outer layer side base material layer 1 is not particularly limited. For example, after forming the coating layer 6 on the surface of the outer layer side base material layer 1, the metal layer 3 may be formed on the surface of the outer layer side base material layer 1 opposite to the coating layer 6.
 上記のようにして、必要に応じて設けられるコーティング層6/外層側基材層1/接着層2/必要に応じて表面が化成処理された金属層3/必要に応じて設けられる接着層5/シーラント層4からなる積層体が形成されるが、接着層2及び必要に応じて設けられる接着層5の接着性を強固にするために、更に、熱ロール接触式、熱風式、近又は遠赤外線式等の加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃で1~5分間が挙げられる。 As described above, the coating layer 6 provided as needed / the outer layer side base material layer 1 / the adhesive layer 2 / the metal layer whose surface has been chemically converted as needed 3 / the adhesive layer 5 provided as needed. / A laminate composed of the sealant layer 4 is formed, but in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed, a hot roll contact type, a hot air type, near or far It may be subjected to heat treatment such as infrared type. Examples of the conditions for such heat treatment include 1 to 5 minutes at 150 to 250 ° C.
 本発明の電池用包装材において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成型)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。  In the packaging material for batteries of the present invention, each layer constituting the laminated body improves or stabilizes film forming property, laminating process, aptitude for secondary processing (pouching, embossing) of the final product, etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment and the like may be performed.
<電池用容器>
 本発明の電池用容器は、前述の電池用包装材を用い、外層側基材層1が凸面を構成し、シーラント層4が凹面を構成するように成型して得ることができる。
 なお凹部の成型方法としては、以下のような方法がある。 
・加熱圧空成型法:電池用包装材を高温、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、加熱軟化させながらエアーを供給して凹部を形成する方法。 
・プレヒーター平板式圧空成型法:電池用包装材を加熱軟化させた後、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、エアーを供給して凹部を形成する方法。
・ドラム式真空成型法:電池用包装材を加熱ドラムで部分的に加熱軟化後、ポケット形状の凹部を有するドラムの該凹部を真空引きして凹部を成型する方法。 
・ピン成型法:底材シートを加熱軟化後ポケット形状の凹凸金型で圧着する方法。 
・プレヒータープラグアシスト圧空成型法:電池用包装材を加熱軟化させた後、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、エアーを供給して凹部を形成する方法であって、成型の際に、凸形状のプラグを上昇及び降下をさせて成型を補助する方法。 
<Battery container>
The battery container of the present invention can be obtained by molding the above-mentioned battery packaging material so that the outer layer side base material layer 1 forms a convex surface and the sealant layer 4 forms a concave surface.
As a method for molding the concave portion, there are the following methods.
-Heat-compressed air molding method: The packaging material for batteries is sandwiched between a lower mold with holes for supplying high-temperature and high-pressure air and an upper mold with pocket-shaped recesses, and air is supplied while being heated and softened to form recesses. how to.
-Preheater flat plate type compressed air molding method: After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with holes for supplying high-pressure air and an upper mold with pocket-shaped recesses. A method of forming a recess.
-Drum type vacuum forming method: A method in which a battery packaging material is partially heated and softened with a heating drum, and then the concave portion of a drum having a pocket-shaped concave portion is evacuated to form the concave portion.
-Pin molding method: A method in which the bottom material sheet is heat-softened and then crimped with a pocket-shaped uneven mold.
-Preheater plug assist compressed air molding method: After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with holes for supplying high-pressure air and an upper mold with pocket-shaped recesses. A method of forming a concave portion, which assists molding by raising and lowering a convex plug at the time of molding.
 なかでも、加熱真空成型法であるプレヒータープラグアシスト圧空成型法が、成型後の底材の肉厚が均一に得られるという点で好ましいものである。  Among them, the preheater plug assist compressed air molding method, which is a heating vacuum forming method, is preferable in that the wall thickness of the bottom material after molding can be uniformly obtained.
(電池用包装材の用途)
 本発明の電池用包装材は、正極、負極、電解質等の電池素子を密封して収容する電池用容器として使用される。
(Use of battery packaging material)
The battery packaging material of the present invention is used as a battery container for sealing and accommodating battery elements such as a positive electrode, a negative electrode, and an electrolyte.
 具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(シーラント層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部のシーラント層同士をヒートシールして密封させることによって、電池用包装材を使用した電池が提供される。なお、本発明の電池用包装材を用いて電池素子を収容する場合、本発明の電池用包装材のシーラント部分が内側(電池素子と接する面)になるようにして用いられる。 Specifically, a battery element having at least a positive electrode, a negative electrode, and an electrolyte is used in the battery packaging material of the present invention, with metal terminals connected to each of the positive electrode and the negative electrode protruding outward. A battery using a battery packaging material can be produced by covering the peripheral edge of the element so that a flange portion (a region where the sealant layers contact each other) can be formed, and heat-sealing the sealant layers of the flange portion to seal each other. Provided. When the battery element is housed using the battery packaging material of the present invention, the sealant portion of the battery packaging material of the present invention is used so as to be inside (the surface in contact with the battery element).
 本発明の電池用包装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用することができる。本発明の電池用包装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery. The type of secondary battery to which the packaging material for a battery of the present invention is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel / hydrogen storage battery, a nickel / cadmium storage battery, a nickel / Examples thereof include iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the packaging material for batteries of the present invention.
<積層体、成型体のその他の用途>
 本発明の積層体、積層体の成型体の用途は電池用包装材に限定されない。本発明の積層体は、食品や医薬品、日用品の保護を目的とする多層包装材料として使用してもよい。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。
<Other uses of laminated bodies and molded bodies>
The use of the laminate of the present invention and the molded body of the laminate is not limited to the packaging material for batteries. The laminate of the present invention may be used as a multilayer packaging material for the purpose of protecting foods, pharmaceuticals, and daily necessities. When used as a multi-layer packaging material, its layer structure may change depending on the contents, usage environment, and usage pattern.
 包装材料の一形態としては、積層体のシーラントフィルムの面を対向して重ね合わせた後、その周辺端部をヒートシールして得られるものが挙げられる。製袋方法としては、本発明の積層体を折り曲げるか、あるいは重ねあわせてその内層の面(シーラントフィルムの面)を対向させ、その周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他のヒートシール型等の形態によりヒートシールする方法が挙げられる。本発明の包装材は内容物や使用環境、使用形態に応じて種々の形態をとり得る。自立性包装材(スタンディングパウチ)等も可能である。ヒートシールの方法としては、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 As one form of the packaging material, there is a material obtained by laminating the surfaces of the sealant films of the laminated body facing each other and then heat-sealing the peripheral end portions thereof. As a bag-making method, the laminate of the present invention is bent or overlapped so that the inner layer surface (the surface of the sealant film) faces each other, and the peripheral end thereof is, for example, a side seal type or a two-way seal type. There are three-way seal type, four-way seal type, envelope-attached seal type, gassho-attached seal type, fold-attached seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-seal methods. Be done. The packaging material of the present invention can take various forms depending on the contents, the environment of use, and the form of use. Free-standing packaging materials (standing pouches), etc. are also possible. As a heat sealing method, a known method such as a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal can be used.
 包装材料の他の形態としては、ブリスターパック(プレススルーパッケージやPTPとも称される)が挙げられる。ブリスターパックは、一つまたは複数の収納部が形成された積層体と、カバーフィルムとが接合されることで収納部を密封する。本発明の積層体は成型性に優れることから収納部を形成する積層体として用いてもよいし、カバーフィルムとして用いてもよい。 Other forms of packaging material include blister packs (also called press-through packages or PTPs). The blister pack seals the storage portion by joining the cover film to the laminate in which one or more storage portions are formed. Since the laminate of the present invention is excellent in moldability, it may be used as a laminate for forming a storage portion or as a cover film.
 本発明は包装材以外の用途に用いることもでき、一例として加飾成型シートの基材が挙げられるがこれに限定されない。成型性、耐熱性、耐湿熱性のいずれかまたは複数の機能が必要とされる用途に好適に使用することができる。 The present invention can also be used for applications other than packaging materials, and examples thereof include, but are not limited to, the base material of a decorative molded sheet. It can be suitably used for applications that require one or more functions of moldability, heat resistance, and moisture heat resistance.
 以下、本発明を具体的な合成例、実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の例において、「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」をそれぞれ表す。 Hereinafter, the present invention will be described in more detail with reference to specific synthetic examples and examples, but the present invention is not limited to these examples. In the following examples, "parts" and "%" represent "parts by mass" and "% by mass", respectively, unless otherwise specified.
<ポリエステルポリオールの調整>
(合成例1) ポリエステルポリオール(A1-1)の合成
 テレフタル酸410部、イソフタル酸66部、アジピン酸173部、シクロヘキサンジメタノール238部、1,4-ブタンジオール116部、1,6-ヘキサンジオール142部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1-1)は結晶性を有し、数平均分子量(Mn)が10,000、ガラス転移温度(Tg)が2℃、融点が115℃、融解熱量(ΔH)が9.9J/g、水酸基価が11mgKOH/g、酸価が1.7mgKOH/gであった。
<Adjustment of polyester polyol>
(Synthesis Example 1) Synthesis of polyester polyol (A1-1) 410 parts of terephthalic acid, 66 parts of isophthalic acid, 173 parts of adipic acid, 238 parts of cyclohexanedimethanol, 116 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 142 parts. The obtained polyester polyol (A1-1) has crystallinity, has a number average molecular weight (Mn) of 10,000, a glass transition temperature (Tg) of 2 ° C., a melting point of 115 ° C., and a heat of fusion (ΔH) of 9. The hydroxyl value was 1.9 J / g, the hydroxyl value was 11 mgKOH / g, and the acid value was 1.7 mgKOH / g.
(合成例2) ポリエステルポリオール(A1-2)の合成
 テレフタル酸411部、イソフタル酸66部、アジピン酸177部、シクロヘキサンジメタノール248部、1,4-ブタンジオール116部、1,6-ヘキサンジオール129部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1-2)は結晶性を有し、数平均分子量(Mn)が22,000、ガラス転移温度(Tg)が4℃、融点が141℃、融解熱量(ΔH)が0.49J/g、水酸基価が4mgKOH/g、酸価が2.3mgKOH/gであった。
(Synthesis Example 2) Synthesis of polyester polyol (A1-2) 411 parts of terephthalic acid, 66 parts of isophthalic acid, 177 parts of adipic acid, 248 parts of cyclohexanedimethanol, 116 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 129 parts. The obtained polyester polyol (A1-2) has crystallinity, has a number average molecular weight (Mn) of 22,000, a glass transition temperature (Tg) of 4 ° C., a melting point of 141 ° C., and a heat of fusion (ΔH) of 0. The hydroxyl value was .49 J / g, the hydroxyl value was 4 mgKOH / g, and the acid value was 2.3 mgKOH / g.
(合成例3) ポリエステルポリオール(A1-3)の合成
 テレフタル酸415部、イソフタル酸68部、アジピン酸180部、シクロヘキサンジメタノール192部、1,4-ブタンジオール146部、1,6-ヘキサンジオール146部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1-3)は結晶性を有し、数平均分子量(Mn)が20,000、ガラス転移温度(Tg)が-2℃、融点が133℃、融解熱量(ΔH)が0.30J/g、水酸基価が5mgKOH/g、酸価が6.7mgKOH/gであった。
(Synthesis Example 3) Synthesis of polyester polyol (A1-3) 415 parts of terephthalic acid, 68 parts of isophthalic acid, 180 parts of adipic acid, 192 parts of cyclohexanedimethanol, 146 parts of 1,4-butanediol, 1,6-hexanediol Polyester polyol was synthesized according to a conventional method using 146 parts. The obtained polyester polyol (A1-3) has crystallinity, a number average molecular weight (Mn) of 20,000, a glass transition temperature (Tg) of -2 ° C., a melting point of 133 ° C., and a heat of fusion (ΔH). The hydroxyl value was 0.30 J / g, the hydroxyl value was 5 mgKOH / g, and the acid value was 6.7 mgKOH / g.
(合成例4) ポリエステルポリオール(A1-4)の合成
 テレフタル酸395部、イソフタル酸70部、アジピン酸176部、シクロヘキサンジメタノール244部、1,4-ブタンジオール109部、1,6-ヘキサンジオール133部、トリメチロールプロパン17部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1-4)は結晶性を有し、数平均分子量(Mn)が4,400、ガラス転移温度(Tg)が-3℃、融点が116℃、融解熱量(ΔH)が5.7J/g、水酸基価が25mgKOH/g、酸価が1.6mgKOH/gであった。
(Synthesis Example 4) Synthesis of polyester polyol (A1-4) 395 parts of terephthalic acid, 70 parts of isophthalic acid, 176 parts of adipic acid, 244 parts of cyclohexanedimethanol, 109 parts of 1,4-butanediol, 1,6-hexanediol A polyester polyol was synthesized according to a conventional method using 133 parts and 17 parts of trimethylolpropane. The obtained polyester polyol (A1-4) has crystallinity, has a number average molecular weight (Mn) of 4,400, a glass transition temperature (Tg) of -3 ° C, a melting point of 116 ° C, and a heat of fusion (ΔH). The hydroxyl value was 5.7 J / g, the hydroxyl value was 25 mgKOH / g, and the acid value was 1.6 mgKOH / g.
(合成例5) ポリエステルポリオール(A1’-1)の合成
 テレフタル酸274部、イソフタル酸157部、アジピン酸310部、1,4-ブタンジオール429部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1’-1)は結晶性を有し、数平均分子量(Mn)が30,000、ガラス転移温度(Tg)が-26℃、融点が85℃融解熱量(ΔH)が13.3J/g、水酸基価が8mgKOH/g、酸価が2.1mgKOH/gであった。
(Synthesis Example 5) Synthesis of polyester polyol (A1'-1) A polyester polyol was synthesized according to a conventional method using 274 parts of terephthalic acid, 157 parts of isophthalic acid, 310 parts of adipic acid, and 429 parts of 1,4-butanediol. The obtained polyester polyol (A1'-1) has crystallinity, has a number average molecular weight (Mn) of 30,000, a glass transition temperature (Tg) of −26 ° C., and a melting point of 85 ° C. and a heat of fusion (ΔH). The hydroxyl value was 13.3 J / g, the hydroxyl value was 8 mgKOH / g, and the acid value was 2.1 mgKOH / g.
(合成例4) ポリエステルポリオール(A1’-2)の合成
 テレフタル酸170部、イソフタル酸395部、無水トリメリット酸10部、1,6-ヘキサンジオール369部、ネオペンチルグリコール54部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A1’-2)は非晶性であり、数平均分子量(Mn)が6,200、ガラス転移温度(Tg)が7℃、水酸基価が22mgKOH/g、酸価が0.7mgKOH/gであった。
(Synthesis Example 4) Synthesis of Polyester Polyol (A1'-2) Using 170 parts of terephthalic acid, 395 parts of isophthalic acid, 10 parts of trimellitic anhydride, 369 parts of 1,6-hexanediol, and 54 parts of neopentyl glycol, a conventional method. Polyester polyol was synthesized according to the above. The obtained polyester polyol (A1'-2) is amorphous, has a number average molecular weight (Mn) of 6,200, a glass transition temperature (Tg) of 7 ° C., a hydroxyl value of 22 mgKOH / g, and an acid value of 0. It was .7 mgKOH / g.
(合成例6) ポリエステルポリオール(A2-1)の合成
 アジピン酸438部、1,2-プロピレングリコール312部を用い、定法に従いポリエステルポリオールを合成した。得られたポリエステルポリオール(A2-1)は非晶性であり、数平均分子量(Mn)が3,100、ガラス転移温度(Tg)が-50℃、水酸基価が25mgKOH/g、酸価が2mgKOH/gであった。
(Synthesis Example 6) Synthesis of Polyester Polyester (A2-1) A polyester polyol was synthesized according to a conventional method using 438 parts of adipic acid and 312 parts of 1,2-propylene glycol. The obtained polyester polyol (A2-1) is amorphous, has a number average molecular weight (Mn) of 3,100, a glass transition temperature (Tg) of −50 ° C., a hydroxyl value of 25 mgKOH / g, and an acid value of 2 mgKOH. It was / g.
 ポリエステルポリオールの物性は以下のようにして測定した。
(分子量測定法)
 測定装置 ;東ソー株式会社製 HLC-8320GPC
 カラム  ;東ソー株式会社製 TSKgel 4000HXL、TSKgel 3000HXL、TSKgel 2000HXL、TSKgel 1000HXL
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
The physical properties of the polyester polyol were measured as follows.
(Molecular weight measurement method)
Measuring device; HLC-8320GPC manufactured by Tosoh Corporation
Column; TSKgel 4000HXL, TSKgel 3000HXL, TSKgel 2000HXL, TSKgel 1000HXL manufactured by Tosoh Corporation
Detector; RI (Differential Refractometer)
Data processing; Multi-station GPC-8020modelII manufactured by Tosoh Corporation
Measurement conditions; column temperature 40 ° C
Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard; Monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)
(ガラス転移温度測定法)
 試料5mgを、DSCを用いて、30mL/minの窒素気流下で室温から10℃/minで200℃まで昇温した後、10℃/minで-80℃まで冷却、再び150℃まで10℃/minで昇温してDSC曲線を測定した。二度目の昇温工程で観測される測定結果において、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状部分の曲線の勾配が最大になるような点で引いた接線との交点をガラス転移点とし、このときの温度をガラス転移温度とした。
(Glass transition temperature measurement method)
5 mg of the sample was heated from room temperature to 200 ° C. at 10 ° C./min under a nitrogen stream of 30 mL / min using DSC, cooled to -80 ° C. at 10 ° C./min, and again 10 ° C./to 150 ° C. The temperature was raised in min and the DSC curve was measured. In the measurement results observed in the second temperature rise step, the straight line extending the baseline on the low temperature side to the high temperature side and the tangent line drawn at the point where the slope of the curve of the stepped part of the glass transition is maximized. The intersection of the above was taken as the glass transition point, and the temperature at this time was taken as the glass transition temperature.
(融点測定法)
 ガラス転移温度測定法と同様にしてDSC曲線を測定し、2度目の昇温工程で観測される吸熱曲線の最大ピーク温度を融点とした。
(Melting point measurement method)
The DSC curve was measured in the same manner as in the glass transition temperature measurement method, and the maximum peak temperature of the heat absorption curve observed in the second temperature raising step was taken as the melting point.
(融解熱量)
 ガラス転移温度測定法と同様にしてDSC曲線を測定し、2度目の昇温工程で観測される吸熱曲線の最大ピークとベースラインに囲まれた部分の面積がから算出した。
(Chemical amount of melting)
The DSC curve was measured in the same manner as in the glass transition temperature measurement method, and the maximum peak of the heat absorption curve observed in the second temperature raising step and the area surrounded by the baseline were calculated.
(酸価)
 試料5.0gを精秤し、テトラヒドロフラン(TFF)30mLを加えて溶解させ、0.1mol/L水酸化カリウム溶液(メタノール性)を用いて滴定した。指示薬にはフェノールフタレインを用いた。測定結果は、試料1gを中和するために要した水酸化カリウムの量に換算し、単位はmgKOH/gとした。
(Acid value)
5.0 g of the sample was precisely weighed, 30 mL of tetrahydrofuran (TFF) was added to dissolve the sample, and titration was performed using a 0.1 mol / L potassium hydroxide solution (methanolic). Phenolphthalein was used as an indicator. The measurement result was converted into the amount of potassium hydroxide required to neutralize 1 g of the sample, and the unit was mgKOH / g.
(水酸基価)
 試料にアセチル化剤5mlを加え、密閉して60℃で15分間加熱した。0.5mol/Lのジ-n-ブチルアミンのトルエン溶液20mlを加えた後、流水で冷却した。0.5mol/Lの塩酸アルコール溶液で滴定した。並行して空試験を行い、試料を用いた滴定結果との比較から試料1g中に含まれる水酸基価と当量の水酸化カリウムのmg数を求めた。
 なおアセチル化剤としては4-ジメチルアミノピリジン1gに無水酢酸15mlを加え、トルエンで全量を100mlとしたものを用い、指示薬にはブロモフェノールブルーを用いた。
(Hydroxy group value)
5 ml of an acetylating agent was added to the sample, and the sample was sealed and heated at 60 ° C. for 15 minutes. After adding 20 ml of a toluene solution of 0.5 mol / L di-n-butylamine, the mixture was cooled with running water. It was titrated with a 0.5 mol / L alcoholic acid hydrochloric acid solution. A blank test was conducted in parallel, and the hydroxyl value contained in 1 g of the sample and the equivalent number of mg of potassium hydroxide were determined by comparison with the titration result using the sample.
As the acetylating agent, 15 ml of acetic anhydride was added to 1 g of 4-dimethylaminopyridine to make the total amount 100 ml with toluene, and bromophenol blue was used as an indicator.
<接着剤の調整>
(実施例1)
 ポリエステルポリオール(A1-1)にKBM-403(信越化学社製のシランカップリング剤、不揮発分:100%)を加え、KBM-403が完全溶解するまで良く攪拌した。ここに、デスモジュールL-75(住化コベストロウレタン株式会社製、TDIアダクト体、不揮発分75%)を加え、さらに不揮発分が25%になるように酢酸エチルを加えて良く攪拌させて、実施例1の接着剤を作製した。実施例1の接着剤における各成分の配合量(固形分)を表1に示す。
<Adhesive adjustment>
(Example 1)
KBM-403 (silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., non-volatile content: 100%) was added to the polyester polyol (A1-1), and the mixture was stirred well until KBM-403 was completely dissolved. To this, add Death Module L-75 (manufactured by Sumika Covestro Urethane Co., Ltd., TDI adhesive, non-volatile content 75%), add ethyl acetate so that the non-volatile content becomes 25%, and stir well. The adhesive of Example 1 was prepared. Table 1 shows the blending amount (solid content) of each component in the adhesive of Example 1.
(実施例2)~(実施例5)
 接着剤の調整に用いる材料、配合を表1に記載の値に調整した以外は実施例1と同様にして、実施例2~実施例5の接着剤を製造した。
(実施例6)
 接着剤の調整に用いる材料、配合を表2に記載の値に調整した以外は実施例1と同様にして実施例6の接着剤を製造した。
(比較例1)~(比較例2)
 接着剤の調整に用いる材料、配合を表1に記載の値に調整した以外は実施例1と同様にして、比較例1、比較例2の接着剤を製造した。
(比較例3)
 接着剤の調整に用いる材料、配合を表2に記載の値に調整した以外は実施例1と同様にして比較例3の接着剤を製造した。
 表1、2におけるその他の化合物は以下の通りである。
 BYK-051N:BYK-Chemie GmbH製、消泡剤
(Example 2) to (Example 5)
The adhesives of Examples 2 to 5 were produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 1.
(Example 6)
The adhesive of Example 6 was produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 2.
(Comparative Example 1) to (Comparative Example 2)
The adhesives of Comparative Example 1 and Comparative Example 2 were produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 1.
(Comparative Example 3)
The adhesive of Comparative Example 3 was produced in the same manner as in Example 1 except that the materials and formulations used for adjusting the adhesive were adjusted to the values shown in Table 2.
Other compounds in Tables 1 and 2 are as follows.
BYK-051N: Made by BYK-Chemie GmbH, antifoaming agent
<電池用包装材の製造1 図2の構成>
(実施例1)
 金属層3として厚さ40μmのアルミニウム箔のマット面に、接着層2として実施例1の接着剤を塗布量:4g/平方メートルとなる量でドライラミネーターによって塗布し、溶剤を揮散させた後、外層側基材層1として厚さ25μmの延伸ポリアミドフィルムを積層した。
 次に、得られた積層フィルムの金属層3のアルミニウム箔の光沢面に、接着層5用の接着剤を塗布量:4g/平方メートルとなる量でドライラミネーターによって塗布し、溶剤を揮散させた後、シーラント層4として厚さ40μmの未延伸ポリプロピレンフィルムを積層し、その後、60℃、5日間の硬化(エージング)を行い、接着剤を硬化させてラミネート物を得た。
<Manufacturing of packaging materials for batteries 1 Configuration of Fig. 2>
(Example 1)
The adhesive of Example 1 as the adhesive layer 2 was applied to the matte surface of the aluminum foil having a thickness of 40 μm as the metal layer 3 with a dry laminator in an amount of 4 g / square meter, and after the solvent was volatilized, the outer layer was applied. A stretched polyamide film having a thickness of 25 μm was laminated as the side base material layer 1.
Next, the adhesive for the adhesive layer 5 was applied to the glossy surface of the aluminum foil of the metal layer 3 of the obtained laminated film with a dry laminator in an amount of 4 g / square meter to volatilize the solvent. An unstretched polypropylene film having a thickness of 40 μm was laminated as the sealant layer 4, and then cured (aged) at 60 ° C. for 5 days to cure the adhesive to obtain a laminate.
(実施例2)~(実施例5)
 実施例1と同様にして、接着層2として実施例2~5の接着剤を用いて、実施例2~5の電池用包装材を得た。
(Example 2) to (Example 5)
In the same manner as in Example 1, the adhesives of Examples 2 to 5 were used as the adhesive layer 2 to obtain packaging materials for batteries of Examples 2 to 5.
(比較例1)~(比較例2)
 実施例1と同様にして、接着層2として比較例1~2の接着剤を用いて、比較例1~2の電池用包装材を得た。
(Comparative Example 1) to (Comparative Example 2)
In the same manner as in Example 1, the adhesives of Comparative Examples 1 and 2 were used as the adhesive layer 2 to obtain packaging materials for batteries of Comparative Examples 1 and 2.
<電池用包装材の製造2>
(実施例6)
 厚さ40μmのアルミニウム箔に実施例6で作成した接着剤を乾燥塗布量5g/mとなるようにバーコーターで塗布し、80℃で1分乾燥させた後、厚さ40μmのCPPフィルムと100℃で貼り合せた。その後40℃で5日間の硬化(エージング)を行い、実施例6の積層体を得た。
(比較例3)
 比較例3の接着剤を用いた以外は実施例6と同様にして比較例3の積層体を得た。
<Manufacturing of packaging materials for batteries 2>
(Example 6)
The adhesive prepared in Example 6 was applied to an aluminum foil having a thickness of 40 μm with a bar coater so as to have a dry coating amount of 5 g / m 2 , dried at 80 ° C. for 1 minute, and then combined with a CPP film having a thickness of 40 μm. It was bonded at 100 ° C. Then, curing (aging) was carried out at 40 ° C. for 5 days to obtain a laminate of Example 6.
(Comparative Example 3)
A laminate of Comparative Example 3 was obtained in the same manner as in Example 6 except that the adhesive of Comparative Example 3 was used.
 電池用包装材の評価は、以下の様に行った。結果を表1、2に示す。
<接着強度>
 株式会社島津製作所の「オートグラフAGS-J」を使用し、常温、剥離速度:50mm/min、剥離幅:15mm、剥離形態:180°剥離の条件で、実施例1~5、比較例1、2の場合は外層側基材層1と金属層3の界面の接着強度を、実施例6、比較例3の場合はアルミニウム箔とCPPフィルムの界面の接着強度を評価した。数値が高いほど接着剤として好適であることを示す。
The evaluation of the battery packaging material was performed as follows. The results are shown in Tables 1 and 2.
<Adhesive strength>
Using "Autograph AGS-J" manufactured by Shimadzu Corporation, Examples 1 to 5, Comparative Example 1, under the conditions of normal temperature, peeling speed: 50 mm / min, peeling width: 15 mm, peeling form: 180 ° peeling, In the case of 2, the adhesive strength at the interface between the outer layer side base material layer 1 and the metal layer 3 was evaluated, and in the case of Example 6 and Comparative Example 3, the adhesive strength at the interface between the aluminum foil and the CPP film was evaluated. The higher the value, the more suitable as an adhesive.
<成型性>
 実施例または比較例の電池用包装材を60×60mmの大きさに切断し、ブランク(被成型材、素材)とした。株式会社山岡製作所の「1ton卓上サーボプレス(SBN-1000)」を使用し、前記ブランクに対し、アルミニウム箔マット面が凸側になるようにして、ストローク速度:3mm/秒で成型高さフリーのストレート金型にて成型高さを4.5mmから7.0mmまで変えて張り出し成型を行い、アルミニウム箔の破断や、各層間の浮きが発生しない、最大の成型高さにより成型性を評価した。
<Moldability>
The battery packaging material of the example or comparative example was cut into a size of 60 × 60 mm to obtain a blank (material to be molded, material). Using "1ton desktop servo press (SBN-1000)" manufactured by Yamaoka Seisakusho Co., Ltd., the aluminum foil matte surface is on the convex side with respect to the blank, and the stroke speed is 3 mm / sec and the molding height is free. Overhang molding was performed by changing the molding height from 4.5 mm to 7.0 mm with a straight mold, and the moldability was evaluated by the maximum molding height at which breakage of the aluminum foil and floating between layers did not occur.
 なお、使用した金型のポンチ形状は、一辺30mmの正方形、コーナーR2mm、ポンチ肩R1mm、使用した金型のダイス孔形状は一片34mmの正方形、ダイス孔コーナーR2mm、ダイス孔肩R:1mmであり、ポンチとダイス孔とのクリアランスは片側0.3mmである。前記クリアランスにより成型高さに応じた傾斜が発生する。
  〇:6.0mm 以上(実用上優れる)
  △:5.0mm (実用域)
  ×:4.5mm でアルミニウム箔の破断や、各層間の浮きが発生
The punch shape of the mold used is a square with a side of 30 mm, a corner R2 mm, a punch shoulder R1 mm, and the die hole shape of the mold used is a square with a piece of 34 mm, a die hole corner R2 mm, and a die hole shoulder R: 1 mm. , The clearance between the punch and the die hole is 0.3 mm on one side. The clearance causes an inclination according to the molding height.
〇: 6.0 mm or more (excellent in practical use)
Δ: 5.0 mm (practical range)
X: At 4.5 mm, breakage of aluminum foil and floating between each layer occur.
<耐熱性>
 実施例または比較例の電池用包装材を60×60mmの大きさに切断し、株式会社山岡製作所の「1ton卓上サーボプレス(SBN-1000)」を使用し、アルミニウム箔マット面が外側になるようにして、成型高さフリーのストレート金型にて成型高さ5.0mmにて張り出し成型を行った。得られた30mm角型トレイのフランジ部に側壁部に接するように190℃3秒ヒートシールバーを当て、フランジ部と側壁部との境界部近傍における外観を確認し、延伸ポリアミドフィルムとアルミニウム箔との間に浮きが発生していないかを評価した。
  ○:浮きなし(実用上優れる)
  ×:浮き発生
<Heat resistance>
Cut the battery packaging material of the example or comparative example into a size of 60 x 60 mm, and use "1ton desktop servo press (SBN-1000)" manufactured by Yamaoka Seisakusho Co., Ltd. so that the aluminum foil matte surface is on the outside. Then, overhang molding was performed with a straight mold having a molding height of 5.0 mm at a molding height of 5.0 mm. A heat seal bar at 190 ° C. for 3 seconds was applied to the flange portion of the obtained 30 mm square tray so as to be in contact with the side wall portion, and the appearance near the boundary portion between the flange portion and the side wall portion was confirmed, and the stretched polyamide film and the aluminum foil were used. It was evaluated whether there was any floating between the two.
○: No float (excellent in practical use)
×: Float occurs
<耐湿熱性>
 実施例または比較例の電池用包装材を60×60mmの大きさに切断し、株式会社山岡製作所の「1ton卓上サーボプレス(SBN-1000)」を使用し、アルミニウム箔マット面が外側になるようにして、成型高さフリーのストレート金型にて成型高さ5.0mmにて張り出し成型を行った。得られた30mm角型のトレイを、85℃、85%RH雰囲気下の恒温恒湿槽に入れ、48時間静置した。恒温恒湿槽から前記トレイを取り出し、フランジ部と側壁部との境界部近傍における外観を確認し、延伸ポリアミドフィルムとアルミニウム箔との間に浮きが発生していないかを評価した。
  ○:浮きなし(実用上優れる)
  ×:浮き発生
<Moisture resistance>
Cut the battery packaging material of the example or comparative example into a size of 60 x 60 mm, and use "1ton desktop servo press (SBN-1000)" manufactured by Yamaoka Seisakusho Co., Ltd. so that the aluminum foil matte surface is on the outside. Then, overhang molding was performed with a straight mold having a molding height of 5.0 mm at a molding height of 5.0 mm. The obtained 30 mm square tray was placed in a constant temperature and humidity chamber at 85 ° C. and an 85% RH atmosphere, and allowed to stand for 48 hours. The tray was taken out from the constant temperature and humidity chamber, the appearance in the vicinity of the boundary between the flange portion and the side wall portion was confirmed, and it was evaluated whether or not floating was generated between the stretched polyamide film and the aluminum foil.
○: No float (excellent in practical use)
×: Float occurs
<耐電解質性>
 エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(質量%)混合液35gに実施例または比較例の積層体を60℃で14日間浸漬させた。浸漬後の積層体を乾燥させた後、接着強度を測定し、浸漬前後の接着強度の保持率から3段階で評価した。
  〇:80%以上
  △:60%以上80%未満
  ×:60%未満
<Electrolyte resistance>
The laminate of Example or Comparative Example was immersed in 35 g of a mixed solution of ethylene carbonate: ethyl methyl carbonate: dimethyl carbonate = 1: 1: 1 (mass%) at 60 ° C. for 14 days. After the laminate after immersion was dried, the adhesive strength was measured and evaluated from the retention rate of the adhesive strength before and after immersion in three stages.
〇: 80% or more Δ: 60% or more and less than 80% ×: less than 60%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本結果より、本発明の接着剤を使用することで、優れた成型性を有し、電池素子を封止するために行うシーラント層同士の熱融着後、さらには高温高湿下での長期耐久性試験後においても層間の接着強度の低下がなく、層間の浮きなどの外観不良が抑制された電池用包装材を得ることができることが明らかである。 From this result, by using the adhesive of the present invention, it has excellent moldability, and after heat fusion between the sealant layers performed to seal the battery element, and for a long period of time under high temperature and high humidity. It is clear that even after the durability test, there is no decrease in the adhesive strength between the layers, and it is possible to obtain a packaging material for a battery in which appearance defects such as floating between layers are suppressed.
1:外層側基材層
2:接着層
3:金属層
4:シーラント層
5:接着層
1: Outer layer side base material layer 2: Adhesive layer 3: Metal layer 4: Sealant layer 5: Adhesive layer

Claims (9)

  1.  結晶性ポリエステルポリオール(A1)を含むポリオール組成物(A)と、
     イソシアネート化合物(B)を含むポリイソシアネート組成物(B)と、を含み、
     前記結晶性ポリエステルポリオール(A1)のガラス転移温度が-20℃以上10℃以下であり、融点が80℃以上160℃以下であり、数平均分子量が2,000以上30,000以下であることを特徴とする2液型接着剤。
    A polyol composition (A) containing a crystalline polyester polyol (A1) and
    Containing a polyisocyanate composition (B) containing an isocyanate compound (B),
    The glass transition temperature of the crystalline polyester polyol (A1) is −20 ° C. or higher and 10 ° C. or lower, the melting point is 80 ° C. or higher and 160 ° C. or lower, and the number average molecular weight is 2,000 or higher and 30,000 or lower. A characteristic two-component adhesive.
  2.  前記結晶性ポリエステルポリオール(A1)の融解熱量が0.1J/g以上50J/g以下である請求項1に記載の2液型接着剤。 The two-component adhesive according to claim 1, wherein the crystalline polyester polyol (A1) has a heat of fusion of 0.1 J / g or more and 50 J / g or less.
  3.  前記ポリオール組成物(A)が、ガラス転移温度が-70℃以上-20℃未満であるポリエステルポリオール(A2)を含む請求項1または2のいずれか一項に記載の2液型接着剤。 The two-component adhesive according to any one of claims 1 or 2, wherein the polyol composition (A) contains a polyester polyol (A2) having a glass transition temperature of −70 ° C. or higher and lower than −20 ° C.
  4.  前記結晶性ポリエステルポリオール(A1)と前記ポリエステルポリオール(A2)の総質量に対して前記ポリエステルポリオール(A2)の配合量が10質量%以下である請求項3に記載の2液型接着剤。 The two-component adhesive according to claim 3, wherein the blending amount of the polyester polyol (A2) is 10% by mass or less with respect to the total mass of the crystalline polyester polyol (A1) and the polyester polyol (A2).
  5.  電池用包装材に用いられる請求項1乃至4のいずれか一項に記載の2液型接着剤。 The two-component adhesive according to any one of claims 1 to 4, which is used as a packaging material for batteries.
  6.  第1の基材と、第2の基材と、前記第1の基材と前記第2の基材とを貼り合せる接着層を有し、
     前記接着層が請求項1乃至5のいずれか一項に記載の接着剤の硬化物である積層体。
    It has an adhesive layer for bonding the first base material, the second base material, the first base material, and the second base material.
    A laminate in which the adhesive layer is a cured product of the adhesive according to any one of claims 1 to 5.
  7.  少なくとも、外層側基材層1、接着層2、金属層3、及びシーラント層4が順次積層された電池用包装材であって、前記接着層2が請求項1乃至5のいずれかに記載の2液型接着剤の硬化物であることを特徴とする電池用包装材。 The packaging material for a battery in which at least the outer layer side base material layer 1, the adhesive layer 2, the metal layer 3, and the sealant layer 4 are sequentially laminated, and the adhesive layer 2 is the one according to any one of claims 1 to 5. A packaging material for batteries, which is a cured product of a two-component adhesive.
  8.  請求項7に記載の電池用包装材を成型してなる電池用容器。 A battery container obtained by molding the battery packaging material according to claim 7.
  9.  請求項8に記載の電池用容器を使用してなる電池。 A battery using the battery container according to claim 8.
PCT/JP2020/019957 2019-06-03 2020-05-20 Adhesive, adhesive for packaging material for battery, laminate, packaging material for battery, container for battery, and battery WO2020246243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080036133.8A CN113825817B (en) 2019-06-03 2020-05-20 Adhesive, adhesive for battery packaging material, laminate, battery packaging material, battery container, and battery
JP2020552923A JP6809658B1 (en) 2019-06-03 2020-05-20 Adhesives, battery packaging adhesives, laminates, battery packaging, battery containers and batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-103716 2019-06-03
JP2019103716 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020246243A1 true WO2020246243A1 (en) 2020-12-10

Family

ID=73652822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019957 WO2020246243A1 (en) 2019-06-03 2020-05-20 Adhesive, adhesive for packaging material for battery, laminate, packaging material for battery, container for battery, and battery

Country Status (3)

Country Link
JP (1) JP6809658B1 (en)
CN (1) CN113825817B (en)
WO (1) WO2020246243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023516834A (en) * 2021-02-02 2023-04-21 Dic株式会社 Adhesives, laminates, packaging materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316880B (en) * 2021-12-29 2023-07-14 烟台德邦科技股份有限公司 Polyurethane structural adhesive with low density and high heat conduction
WO2024135514A1 (en) * 2022-12-20 2024-06-27 Dic株式会社 Two-part curable adhesive, multilayer body and package

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044891A1 (en) * 2003-11-11 2005-05-19 Ube Industries, Ltd. Crystalline polyester polyol and hot melt adhesive
JP2006037037A (en) * 2004-07-30 2006-02-09 Toyo Ink Mfg Co Ltd Adhesive composition
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
JP2015082354A (en) * 2013-10-21 2015-04-27 東洋インキScホールディングス株式会社 Packaging material for batteries, container for batteries and battery
US20160251552A1 (en) * 2015-02-27 2016-09-01 H.B. Fuller Company Oily chemical resistant articles and oily chemical resistant moisture curable hot melt adhesive compositions
JP2017532405A (en) * 2014-09-05 2017-11-02 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 2-pack hot melt polyurethane adhesive with high initial and final strength
JP2017532632A (en) * 2014-08-15 2017-11-02 エイチ.ビー.フラー カンパニー Reworkable moisture curable hot melt adhesive composition, method of using the same and article containing the same
WO2018117080A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Battery packaging material adhesive, battery packaging material, battery container, and battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447083B2 (en) * 2014-12-16 2019-01-09 Dic株式会社 Moisture curable polyurethane hot melt resin composition, adhesive and laminate
JP2017214454A (en) * 2016-05-30 2017-12-07 日本エステル株式会社 Resin composition for adhesive, adhesive and laminate
CN110036053B (en) * 2016-12-20 2022-02-15 Dic株式会社 Polyester polyol, reactive adhesive, and laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044891A1 (en) * 2003-11-11 2005-05-19 Ube Industries, Ltd. Crystalline polyester polyol and hot melt adhesive
JP2006037037A (en) * 2004-07-30 2006-02-09 Toyo Ink Mfg Co Ltd Adhesive composition
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
JP2015082354A (en) * 2013-10-21 2015-04-27 東洋インキScホールディングス株式会社 Packaging material for batteries, container for batteries and battery
JP2017532632A (en) * 2014-08-15 2017-11-02 エイチ.ビー.フラー カンパニー Reworkable moisture curable hot melt adhesive composition, method of using the same and article containing the same
JP2017532405A (en) * 2014-09-05 2017-11-02 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 2-pack hot melt polyurethane adhesive with high initial and final strength
US20160251552A1 (en) * 2015-02-27 2016-09-01 H.B. Fuller Company Oily chemical resistant articles and oily chemical resistant moisture curable hot melt adhesive compositions
WO2018117080A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Battery packaging material adhesive, battery packaging material, battery container, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023516834A (en) * 2021-02-02 2023-04-21 Dic株式会社 Adhesives, laminates, packaging materials
JP7380842B2 (en) 2021-02-02 2023-11-15 Dic株式会社 Adhesives, laminates, packaging materials

Also Published As

Publication number Publication date
CN113825817A (en) 2021-12-21
CN113825817B (en) 2023-10-27
JP6809658B1 (en) 2021-01-06
JPWO2020246243A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6528980B2 (en) Adhesives for battery packaging materials, battery packaging materials, battery containers and batteries
JP6892036B1 (en) Two-component adhesive, laminate, molded body, packaging material
JP7024911B2 (en) Adhesives, battery packaging adhesives, laminates, battery packaging materials, battery containers and batteries
JP6809658B1 (en) Adhesives, battery packaging adhesives, laminates, battery packaging, battery containers and batteries
JP6566147B2 (en) Polyester polyol, reactive adhesive, and laminate
JP2022191322A (en) Laminate and packaging material
JP6650134B1 (en) Reactive adhesive, laminated film, and package
JP2019108482A (en) Adhesive for battery packaging material, battery packaging material, battery container and battery
JP2019108481A (en) Adhesive for battery packaging material, battery packaging material, battery container and battery
JP7024910B2 (en) Adhesives, battery packaging adhesives, laminates, battery packaging materials, battery containers and batteries
JP2024081272A (en) Two-liquid type adhesive, laminate, molded body, and packaging material
CN113474169B (en) Adhesive, adhesive for battery packaging material, laminate, battery packaging material, battery container, and battery
JP2024085531A (en) Two-part curable adhesive, laminate, packaging material, battery packaging material, battery container, and battery
JP2023058877A (en) Adhesive, adhesive for battery packaging material, laminate, battery packing material, battery container, and battery
JP7209158B1 (en) LAMINATE ADHESIVES, LAMINATES FOR PACKAGING AND PACKAGES
WO2022130992A1 (en) Multilayer body for blister packs, and blister pack
JP2021091880A (en) Coating agent, laminate coated with the same, molding and packaging material
WO2024138548A1 (en) Adhesive, laminate, and packaging material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552923

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818089

Country of ref document: EP

Kind code of ref document: A1