[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020245968A1 - Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program - Google Patents

Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program Download PDF

Info

Publication number
WO2020245968A1
WO2020245968A1 PCT/JP2019/022495 JP2019022495W WO2020245968A1 WO 2020245968 A1 WO2020245968 A1 WO 2020245968A1 JP 2019022495 W JP2019022495 W JP 2019022495W WO 2020245968 A1 WO2020245968 A1 WO 2020245968A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
abnormality
normal
sign
feature
Prior art date
Application number
PCT/JP2019/022495
Other languages
French (fr)
Japanese (ja)
Inventor
佳典 ▲高▼田
昂平 桑島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021524591A priority Critical patent/JP7016450B2/en
Priority to PCT/JP2019/022495 priority patent/WO2020245968A1/en
Publication of WO2020245968A1 publication Critical patent/WO2020245968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to an abnormality sign detection device, an abnormality sign detection method, and an abnormality sign detection program.
  • the conventional monitoring system monitors the occurrence of anomalies, and as a specific example, it is a rule-based anomaly detection that is realized using conditions that can be clearly judged, such as individual sensor values exceeding a certain threshold value. there were.
  • a monitoring system When such a monitoring system is used, it is possible to determine an abnormality, but it is difficult to detect an abnormality sign.
  • the acquired data is converted into features, and the pattern, regularity, distribution, etc. of the data are analyzed based on the features to generate a normal model.
  • the features used to generate the normal model it is attempted to generate a plurality of normal models based on the features expected to be effective, and the degree of appropriateness of the normal model is determined. Are individually confirmed and the most appropriate normal model is adopted.
  • the coverage rate of data in the normal state is important.
  • Patent Document 1 cuts out an event sequence from an event signal representing the state of human operation and at least one of the units, which can be obtained from the equipment, and generates in advance a matrix of the event sequence and the frequency of alarms generated within a predetermined time. By doing so, it discloses a method for distinguishing a deviation from the normal state caused by a change in the state of at least one of the human operation and the unit. According to the method disclosed in Patent Document 1, it is possible to remove the influence of the state change of the equipment based on human operation or the like at the time of constructing the normal model and improve the detection accuracy.
  • the abnormality sign detection device of the present invention An abnormality degree calculation unit that calculates the abnormality degree of the partial time series data based on the feature amount of the partial time series data that is at least a part of the time series data.
  • the abnormality sign determination unit that determines the partial time-series data as abnormality sign data
  • a normal determination unit that calculates the reliability of the abnormal sign data based on the feature data corresponding to the feature amount of the abnormal sign data, and determines the abnormal sign data as normal data when the reliability cannot be tolerated.
  • the normal determination unit stores the abnormal feature data corresponding to the feature amount of the abnormal sign data in the feature data storage unit as the feature data.
  • the normal determination unit determines the abnormal sign data using the feature amount of the abnormal sign data. By doing so, the accuracy of determining the partial time series data can be improved.
  • FIG. 3 is a configuration diagram of an abnormality sign detection system using the abnormality sign detection device 100 according to the first embodiment.
  • the block diagram of the normal determination part 110 which concerns on Embodiment 1.
  • FIG. The data structure of the feature data storage unit 109 according to the first embodiment.
  • the hardware block diagram of the abnormality sign detection apparatus 100 which concerns on Embodiment 1.
  • FIG. The flowchart which shows the operation of the learning phase of the abnormality sign detection apparatus 100 which concerns on Embodiment 1.
  • the flowchart which shows the operation of the operation phase of the abnormality sign detection apparatus 100 which concerns on Embodiment 1.
  • FIG. The flowchart which shows the operation of the normal determination part 110 which concerns on Embodiment 1.
  • FIG. 3 is a configuration diagram of an abnormality sign detection system using the abnormality sign detection device 100 according to the third embodiment.
  • FIG. 1 shows an example of the configuration of the abnormality sign detection device 100 according to the present embodiment and an example of the configuration of the abnormality sign detection system using the abnormality sign detection device 100.
  • the arrows in the figure represent the flow of data. During the execution of the anomaly sign detection device 100, the data flows in the direction of the arrowhead, and if the arrowheads are at both ends, the data flows in either direction.
  • the abnormality sign detection device 100 Acquire time series data related to sensor data and operation data from the target equipment 101, It is a device that detects the presence or absence of abnormal signs from the sensor data at each time. Data transmission from the target equipment 101 to the abnormality sign detection device 100 may be performed by any method.
  • the abnormality sign detection device 100 and the target equipment 101 are connected by a network, and the target equipment 101 may transmit data to the abnormality sign detection device 100 via the network.
  • the abnormality sign detection device 100 may be incorporated in the target equipment 101.
  • the abnormality sign detection device 100 can detect the abnormality sign based on the feature amount of the partial time series data which is at least a part of the time series data. However, for convenience of explanation, a case where the abnormality sign detection device 100 analyzes time-series data including sensor data will be described. The following sensor data may be read as time series data or partial time series data.
  • the target equipment 101 is The equipment for which the abnormality sign detection device 100 detects the presence or absence of an abnormality sign. It can be anything that produces time series data.
  • the abnormality sign detection device 100 monitors the current operation status of the plant by utilizing the operation data representing the operation status of the equipment of various plants such as factories or power plants and the data acquired from the sensors incorporated in the equipment. Not only that, it is also possible to detect the possibility of future plant abnormalities.
  • the signs of abnormality are The target equipment 101 has not reached an abnormal state because the threshold value has not been exceeded, but it is also considered to be a sign of an abnormality in the target equipment 101. It also means that the state of the target equipment 101 is different from the normal state, which is the normal state.
  • the normal state is a normal state derived from the training data.
  • the time-series data includes data acquired by the abnormality sign detection device 100 in chronological order.
  • the sensor data is data acquired by the sensor of the target equipment 101.
  • the sensor data includes data acquired by the sensor of the target equipment 101 at a certain time and data continuously acquired by the sensor of the target equipment 101 between two different times.
  • the operation data includes an operation performed by a person on the target equipment 101 and data indicating the result of the operation.
  • the detection result management unit 102 manages the sensor data and operation data output by the target equipment 101 in association with the result of the abnormality sign detection device 100 detecting the abnormality sign based on the sensor data.
  • the feature amount conversion unit 103 From the sensor data acquired by the abnormality sign detection device 100, the sensor data corresponding to the model used for the abnormality sign detection is extracted, and the sensor data is extracted. Based on the extracted sensor data, the feature amount is calculated by arithmetic calculation etc. If necessary, the sensor data output by the sensor of the target equipment 101 is subjected to processing such as dealing with missing values and removing noise.
  • the feature amount conversion unit 103 Any method may be applied to the extraction of sensor data. For the calculation of the feature amount, a method of calculating the feature amount from the sensor data obtained by extracting each input sensor data with a fixed time width, or a method of calculating one feature amount from a plurality of sensor data at the same time, etc. , Any method may be applied.
  • the equipment state determination unit 104 executes a process of determining the equipment state, which is the state of the target equipment 101, based on the operation data.
  • the equipment state may include the operating status of a part or the whole of the target equipment 101 and the operation performed by a person or the like on the target equipment 101.
  • the abnormality sign detection device 100 may set a state different from the state managed by the target equipment 101 as the state of the target equipment 101 as the equipment state.
  • the equipment state determination unit 104 classifies the equipment state of the target equipment 101 into one or more equipment states, the target equipment 101 is equipment that can take one or more equipment states.
  • the normal model generation unit 105 generates a normal model for each equipment state of the target equipment 101 based on the feature amount calculated by the feature amount conversion unit 103 and the equipment state determined by the equipment state determination unit 104.
  • the normal model generation unit 105 generates a normal model based on the learning data stored in the normal data storage unit 111.
  • the normal model generation unit 105 uses the sensor data acquired by the abnormality sign detection device 100 as learning data,
  • the sensor data and the operation data corresponding to the sensor data are associated with each other and stored in the normal data storage unit 111.
  • a predetermined condition such as when the number of sensor data stored in the normal data storage unit 111 reaches a certain number, a normal model is generated.
  • the normal model generation unit 105 Arbitrary conditions may be adopted as the conditions for generating a normal model. Different conditions may be adopted for each equipment condition.
  • the normal model generation unit 105 When analyzing time-series data, it is not only possible to judge anomalies by focusing on the time-series movement of one sensor data. As in the correlation analysis, the relationship between the movements and values between a plurality of sensor data can be focused on and the relationship can be considered as one feature quantity.
  • the normal model is Corresponding to the range that the feature amount of the sensor data can be taken when the target equipment 101 is in the normal state, Corresponding to the range that the feature amount of normal data can be taken, Usually generated by unsupervised learning.
  • the feature quantity may be a one-dimensional value or a multidimensional value.
  • the abnormal sign detection system by unsupervised learning determines a "normal state” based on a state that has been seen so far, and determines a state that has never been seen as an "unnormal state".
  • the states that have been seen so far are the states included in the training data.
  • An "abnormal state” consists of a state showing a true sign of abnormality and a state determined by the abnormality sign detection system as a sign of abnormality but not really a sign of abnormality.
  • the cause of the abnormal sign detection system determining that it is an abnormal sign but not really an abnormal sign is the area that is not covered by the learning data due to lack of training data, and it becomes a true normal state. It is possible to make a mistake in judging the data in the corresponding area.
  • the true normal state is the state in which the target equipment 101 is actually normal.
  • the "normal state” corresponds to the normal state.
  • the abnormality degree calculation unit 106 calculates the abnormality degree of each feature amount from the normal model generated by the normal model generation unit 105 and each feature amount calculated from the sensor data.
  • the abnormality degree calculation unit 106 Any definition of anomaly may be adopted As a specific example, the degree of abnormality may be defined based on the distance between the normal model and the feature amount of the sensor data.
  • the anomaly degree calculation unit 106 may adopt an arbitrary definition of the distance between the normal model and the feature amount. As a specific example of the definition of the distance from the feature amount, the distance between the statistical representative value of the entire normal model such as the center of gravity and the feature amount may be used, which is an element of the normal model and is the normal one closest to the feature amount. It may be the distance between the elements of the model and the features.
  • the threshold value determination unit 107 performs a process of determining a threshold value for determining an abnormal sign based on a normal model or the like.
  • the threshold value determination unit 107 determines the threshold value for determining the abnormality sign in consideration of the degree of abnormality calculated from each feature amount.
  • the threshold value determination unit 107 may adopt an arbitrary method for threshold value determination, or may use a statistical method.
  • the normal model generation unit 105 uses the normal model as the average of the distribution of the features of the training data.
  • the threshold value determination unit 107 may determine the threshold value as a value based on the standard deviation of the distribution of the feature amount of the training data.
  • the threshold is 3 ⁇ .
  • is the standard deviation of the distribution of the degree of anomaly.
  • the abnormality degree calculation unit 106 may dynamically determine the threshold value according to the actual sensor data.
  • the abnormality sign determination unit 108 determines whether or not the abnormality degree of the feature amount calculated by the abnormality degree calculation unit 106 exceeds the threshold value determined by the threshold value determination unit 107, that is, whether or not the feature amount exceeds the threshold value. To do.
  • the abnormality sign determination unit 108 When the degree of abnormality of the feature amount of the sensor data exceeds the threshold value, the sensor data is determined as abnormality sign data, and the abnormality is determined. In other cases, the sensor data is determined to be normal data. Abnormal sign data is also a general term for sensor data in which abnormal signs are observed. Normal data is also a general term for sensor data with no signs of abnormality.
  • the feature data storage unit 109 stores the feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value, that is, the abnormality feature data corresponding to the feature amount of the abnormality sign data as feature data.
  • the abnormal feature data is data that has some correspondence with the feature amount of the abnormal sign data.
  • Anomalous feature data It may be data that aggregates the features of multiple abnormal sign data. The data may have a one-to-one correspondence with the feature amount of the abnormality sign data.
  • the normal determination unit 110 The reliability of the abnormality sign data is calculated based on the feature data stored in the feature data storage unit 109 and the feature amount of the abnormality sign data. Based on the reliability, it is determined whether or not the abnormality sign data is normal data. Reliability is The sensor data determined by the abnormality sign determination unit 108 as abnormality sign data indicates the degree to which the abnormality sign data is actually. It may be calculated by any method. The reliability may be a truth value.
  • the abnormality sign data to be determined by the normal determination unit 110 is referred to as abnormality sign data to be determined.
  • the sensor data that has been determined to be the abnormality sign data of the abnormality sign determination unit 108 in the past and corresponds to the abnormality feature data stored in the feature data storage unit 109 is referred to as the past abnormality sign data.
  • FIG. 2 is a configuration diagram of the normal determination unit 110 according to the present embodiment.
  • the result confirmation unit 201 Check the determination result of the abnormality sign determination unit 108, When the determination result is normal data, "normal” is output as the output of the normal determination unit 110. When the determination result is the abnormality sign data, the "abnormal sign” is output. “Normal” means that the target equipment 101 is in a normal state. The “abnormal sign” means that the target equipment 101 is not in a normal state.
  • the reliability determination unit 202 When the result confirmation unit 201 outputs an "abnormal sign", the reliability is calculated based on the feature data stored in the feature data storage unit 109 and the feature amount of the abnormality sign data to be determined. When the reliability is unacceptable, the abnormality sign data to be judged is judged as normal data.
  • the abnormality sign data learning unit 203 The feature data storage unit 109 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data to be determined as feature data.
  • "normal” is output as the output of the normal determination unit 110.
  • an "abnormal sign” is output as the output of the normal determination unit 110. That is, the normal determination unit 110 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit 109 as the feature data.
  • FIG. 3 is an example of the data structure of the feature data storage unit 109.
  • the feature data storage unit 109 of this figure stores the cumulative number of abnormality sign data 404 for each feature data layer 401.
  • Each feature data layer 401 is defined by a lower limit value 402 and an upper limit value 403. That is, the feature data layer 401 of 1 is determined by the lower limit value 402 of 1 and the upper limit value 403 of 1.
  • the abnormal sign data cumulative number 404 is a feature amount having a lower limit value 402 or more corresponding to the abnormal sign data cumulative number 404 and an upper limit value 403 or less corresponding to the abnormal sign data cumulative number 404, and the abnormal sign determination is performed in the past.
  • Part 108 is the cumulative number of feature quantities determined to exceed the threshold.
  • the cumulative number of abnormal sign data 404 is also abnormal feature data corresponding to the feature amount of the abnormal sign data.
  • This figure shows an example of the feature data layer 401 when the feature amount of the abnormality sign data is a one-dimensional value, but the feature amount may be a multidimensional value.
  • the definition of the feature data layer 401 may be arbitrary depending on the feature amount of the abnormality sign data.
  • the normal determination unit 110 is stored in the feature data storage unit 109. It is stored in association with the feature data layer 401, which is a layer corresponding to the range of the feature amount values of the abnormality sign data. For each feature data layer 401, the cumulative number of abnormality sign data 404 of the abnormality sign data corresponding to the feature data layer 401 is stored as feature data. The normal determination unit 110 calculates the reliability of the abnormal sign data based on the ratio of the cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to the total number of cumulative numbers of abnormal sign data 404.
  • FIG. 4 is another example of the data structure of the feature data storage unit 109.
  • the feature data storage unit 109 of this figure stores the abnormality sign data feature amount 405, which is the feature amount of the abnormality sign data, in addition to the abnormality sign data cumulative number 604 for each feature data layer 401.
  • the abnormality sign data feature amount 405 is also the abnormality feature data corresponding to the feature amount of the abnormality sign data.
  • the feature data storage unit 109 also stores the abnormality sign data feature amount 405, so that the abnormality sign detection device 100 sets the lower limit value 402 and the upper limit value 403 of each feature data layer 401 during the operation of the abnormality sign detection device 100. Can be changed to.
  • the abnormality sign detection device 100 recycles the cumulative number of abnormality sign data 604 stored in the feature data storage unit 109 for each feature data layer 401. Can be calculated. Therefore, it is considered that the operability of the abnormality sign detection device 100 adopting the data structure shown in FIG. 4 is higher than the operability of the abnormality sign detection device 100 adopting the data structure shown in FIG.
  • FIG. 5 is a hardware configuration diagram of the abnormality sign detection device 100.
  • the abnormality sign detection device 100 is composed of a general computer 10.
  • the feature amount conversion unit 103, the equipment state determination unit 104, the normal model generation unit 105, the abnormality degree calculation unit 106, the threshold value determination unit 107, the abnormality sign determination unit 108, and the normality determination unit 110 are the processors 11.
  • the feature data storage unit 109 and the normal data storage unit 111 are composed of a memory 12 and a storage device 13.
  • the processor 11 is connected to other hardware via the data bus 14 (signal line) and controls these other hardware.
  • the storage device 13 stores the abnormality sign detection program.
  • the processor 11 is a processing device that executes a program, an OS (Operating System), and the like.
  • the processing device is sometimes called an IC (Integrated Circuit), and specific examples of the processor 11 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the processor 11 reads and executes the program stored in the memory 12.
  • the computer 10 in this figure includes only one processor 11, but the computer 10 may include a plurality of processors that replace the processor 11. These plurality of processors share the execution of programs and the like.
  • the memory 12 is a storage device that temporarily stores data, and functions as a main memory used as a work area of the processor 11.
  • the memory 12 is a RAM (Random Access Memory) such as a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
  • the memory 12 holds the calculation result of the processor 11.
  • the storage device 13 is a storage device that stores data non-volatilely, and stores the OS, each program executed by the processor 11, data used when executing each program, and the like. Specific examples of the storage device 13 are an HDD (Hard Disk Drive) and an SSD (Solid State Drive).
  • the storage device 13 includes a memory card, an SD (Secure Digital, registered trademark) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Whatever Disk). ) Etc. may be a portable recording medium.
  • the OS is loaded from the storage device 13 by the processor 11, expanded into the memory 12, and executed on the processor 11.
  • the OS may be any one compatible with the processor 11, such as Linux (registered trademark) or Windows (registered trademark).
  • the abnormality sign detection program and the OS may be stored in the memory 12.
  • the operation of the abnormality sign detection device 100 is divided into a learning phase in which the normal model is learned based on the learning data and an operation phase in which the normal model learned in the learning phase is used to determine whether or not there is an abnormality sign.
  • the operation procedure of the abnormality sign detection device 100 corresponds to the abnormality sign detection method. Further, the program that realizes the operation of the abnormality sign detection device 100 corresponds to the abnormality sign detection program.
  • FIG. 6 is an example of a flowchart showing the operation of the learning phase of the abnormality sign detection device 100. The order of processing shown in this flowchart may be changed as appropriate.
  • Step S201 Feature conversion process
  • the feature amount conversion unit 103 converts the sensor data acquired by the abnormality sign detection device 100 into a feature amount.
  • Step S202 Operating state determination process
  • the equipment state determination unit 104 determines the equipment state of the target equipment 101 from the operation data acquired by the abnormality sign detection device 100.
  • Step S203 Normal model generation process
  • the normal model generation unit 105 The feature amount converted by the feature amount conversion unit 103 in step S201 is associated with the equipment state determined by the equipment state determination unit 104 in step S202, and is stored in the normal data storage unit 111. When a predetermined condition is satisfied, a normal model is generated for each equipment state based on the feature amount stored in the normal data storage unit 111 and the equipment state.
  • the normal model generation unit 105 A normal model may be generated each time the conditions corresponding to the equipment condition are met.
  • a normal model may be generated when all the conditions corresponding to the equipment conditions are satisfied.
  • step S204 When the normal model generation unit 105 completes the generation of the normal model, that is, when the normal model is generated for all the equipment states, step S204 is executed. Otherwise, step S201 is executed.
  • the threshold value determination unit 107 determines the threshold value.
  • the threshold value determination unit 107 The abnormality degree of the feature amount stored in the normal data storage unit 111 is calculated by the abnormality degree calculation unit 106.
  • the threshold value may be determined based on the degree of abnormality.
  • the threshold value may be determined based on the degree of abnormality and the normal model.
  • FIG. 7 is an example of a flowchart showing the operation of the operation phase of the abnormality sign detection device 100.
  • the order of processing shown in this flowchart may be changed as appropriate.
  • Step S211 Feature conversion process
  • the feature amount conversion unit 103 converts the sensor data acquired by the abnormality sign detection device 100 into a feature amount.
  • the sensor data is referred to as sensor data to be determined.
  • the feature amount is referred to as a feature amount to be determined.
  • Step S212 Abnormal sign determination process
  • the equipment state determination unit 104 determines the equipment state from the operation data acquired by the abnormality sign detection device 100.
  • the abnormality degree calculation unit 106 is a normal model corresponding to the equipment state, and calculates the abnormality degree of the feature amount converted by the feature amount conversion unit 103 in step S211 based on the normal model generated in step S203.
  • the abnormality sign determination unit 108 It is determined whether or not the degree of abnormality exceeds the threshold value determined by the threshold value determination unit 107 in step S204. When the degree of abnormality exceeds the threshold value, the sensor data to be determined is determined to be abnormality sign data. In other cases, the sensor data to be determined is determined to be normal data.
  • the processing of this step is By coordinating the equipment status determination unit 104, the abnormality degree calculation unit 106, and the abnormality sign determination unit 108, "the abnormality sign determination is performed based on the normal model corresponding to the current equipment condition". It is not necessary to process in the above order.
  • Step S213 Normal determination process
  • the normal determination unit 110 determines whether or not the sensor data to be determined, which is determined to be abnormal sign data in step S212, is normal data. Details of this step will be described in steps S301 to S307.
  • the abnormality sign detection device 100 repeatedly executes the processes from steps S211 to S213.
  • FIG. 8 is an example of a flowchart showing the operation of the normal determination unit 110 according to the present embodiment. The order of processing shown in this flowchart may be changed as appropriate.
  • Step S301 Result confirmation process
  • the result confirmation unit 201 confirms the determination result of the abnormality sign determination unit 108.
  • the normal determination unit 110 If the determination result of the abnormality sign determination unit 108 exceeds the threshold value, step S302 is executed. Otherwise, step S305 is executed.
  • Step S302 Reliability calculation process
  • the reliability determination unit 202 calculates the reliability of the feature amount of the abnormality sign data based on the data stored in the feature data storage unit 109.
  • the process of this step is not limited to calculating the value by arithmetic calculation.
  • Step S303 Reliability determination process
  • the reliability determination unit 202 determines whether or not the abnormality sign data to be determined is normal data based on whether or not the reliability calculated in step S302 can be tolerated.
  • the reliability determination unit 202 A threshold may be set and whether or not it is acceptable may be determined based on the threshold. When a certain degree of similarity is found between the feature amount of the past abnormality sign data and the feature amount of the abnormality sign data to be determined, it may be judged that the reliability is acceptable.
  • the reliability determination unit 202 When the feature data storage unit 109 stores the feature data having a similar relationship with the feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value, it is determined that the determination of the abnormality sign determination unit 108 is unreliable. , Judge the abnormal sign data to be judged as normal data, In other cases, the abnormality sign data to be determined may be determined as the abnormality sign data.
  • the reliability determination unit 202 may be used.
  • the reliability is calculated by the abnormality calculation method adopted by the abnormality calculation unit 106.
  • the threshold value is determined in the same manner as the threshold value determination unit 107, When the reliability is equal to or less than the threshold value, the abnormality sign data to be determined may be determined as normal data.
  • the reliability determination unit 202 may be used. Of the feature data stored in the feature data storage unit 109, the distance between the feature amount of the abnormality sign data to be determined and the feature data having the shortest distance from the feature amount of the abnormality sign data to be judged is set as the reliability. Calculate and When the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data. The reciprocal of the number of the feature data existing within a certain distance from the feature amount of the abnormality sign data to be judged is calculated as the reliability. When the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data.
  • the reliability determination unit 202 has an abnormality corresponding to the abnormality sign data to be determined with respect to the total number of accumulated abnormality sign data.
  • the reciprocal of the ratio of the cumulative number of symptom data is used as the reliability.
  • the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data.
  • FIG. 10 shows an example of the concept of processing in this step when the feature amount of the abnormality sign data is a three-dimensional value.
  • the feature amount is a three-dimensional value for convenience of illustration, but the feature amount may be a value of any dimension.
  • the storage feature amount 701 is a feature amount stored by the feature data storage unit 109, and is a feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value in the past.
  • the determination target feature amount 702 is a determination target feature amount.
  • the neighborhood 703 is an area where the distance from the determination target feature amount 702 is within a certain value.
  • the reliability determination unit 202 It is determined whether or not the storage feature amount 701 is included in the vicinity 703 of the determination target feature amount 702. If it is included, the abnormality sign data to be judged is judged as normal data, and If it is not included, the abnormality sign data to be determined is determined to be the abnormality sign data.
  • the reliability is a truth value determined by whether or not the storage feature amount 701 is included in the vicinity 703 of the determination target feature amount 702.
  • the reliability determination unit 202 may use the reciprocal of the number of the storage feature amount 701 included in the vicinity 703 of the determination target feature amount 702 as the reliability.
  • the reliability determination unit 202 The distance between the judgment target feature amount 702 and the storage feature amount 701 closest to the judgment target feature amount 702 is defined as the reliability, and when the reliability is equal to or less than a certain value, that is, it is equal to or less than the maximum value of the distance regarded as the vicinity. In this case, the abnormality sign data to be judged is judged as normal data, and In other cases, the abnormality sign data to be determined may be determined as the abnormality sign data.
  • the reliability determination unit 202 determines in this way, Any one may be adopted as the definition of the distance and the maximum value of the distance considered to be in the vicinity. These may be freely changed depending on the system to which the abnormality sign detection device 100 is applied.
  • Step S304 Judgment result confirmation process
  • the abnormality sign data learning unit 203 When the determination result in step S303 is normal data, the determination result of the normal determination unit 110 is determined to be "normal". In other cases, the determination result of the normal determination unit 110 is determined as an "abnormal sign".
  • Step S305 Judgment result confirmation process
  • Step S306 Abnormal sign data learning process
  • the abnormality sign data learning unit 203 stores the abnormality feature data corresponding to the feature amount of the abnormality sign data to be determined in the feature data storage unit 109 as feature data.
  • Step S307 Result output processing
  • the result confirmation unit 201 or the abnormality sign data learning unit 203 outputs the determination result of the normal determination unit 110.
  • FIG. 9 is an example of a flowchart showing the operation of the reliability determination unit 202. The order of processing shown in this flowchart may be changed as appropriate.
  • the reliability determination unit 202 may adopt an arbitrary method as the reliability calculation method, but here, when the feature data storage unit 109 adopts the data structure shown in FIG. 3 or FIG. The method in is described.
  • Step S5011 Total value calculation process
  • the reliability determination unit 202 Acquire all the abnormal sign data cumulative number 404 stored in the feature data storage unit 109, Calculate the total value.
  • Step S502 Reliability calculation process
  • the reliability determination unit 202 The cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to be determined is acquired from the feature data storage unit 109.
  • the ratio of the cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to be determined is calculated with respect to the total value calculated in step S502.
  • Step S503 Reliability determination process
  • the reliability determination unit 202 When the value calculated in step S502 does not exceed a certain value, the abnormality sign data to be determined is determined to be normal data. In other cases, the abnormality sign data to be determined is determined to be the abnormality sign data.
  • the abnormality sign detection device 100 includes an abnormality degree calculation unit 106 that calculates an abnormality degree of the partial time series data based on a feature amount of the partial time series data that is at least a part of the time series data.
  • the abnormality sign determination unit 108 that determines the partial time series data as the abnormality sign data
  • a normal judgment unit that calculates the reliability, which is the degree of abnormality of the abnormal sign data, based on the feature amount of the abnormal sign data and the corresponding feature data, and determines the abnormal sign data as normal data when the reliability is acceptable.
  • the normal determination unit 110 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit 109 as feature data.
  • the abnormality sign detection device 100 includes a threshold value determination unit 107 for determining a threshold value.
  • the abnormality sign determination unit 108 determines based on the threshold value determined by the threshold value determination unit 107.
  • the abnormality sign detection device 100 includes a normal model generation unit 105 that generates a normal model corresponding to a range in which the feature amount of normal data can be taken.
  • the abnormality degree calculation unit 106 calculates the abnormality degree based on the feature amount of the partial time series data and the normal model generated by the normal model generation unit 105.
  • the normal model generation unit 105 generates a normal model for each equipment state of the target equipment 101 (equipment) capable of taking one or more equipment states.
  • the abnormality sign detection device 100 acquires time series data from the target equipment 101 (equipment) and obtains time series data.
  • the abnormality degree calculation unit 106 calculates the abnormality degree based on the feature amount of the partial time series data and the normal model corresponding to the equipment state corresponding to the partial time series data.
  • the normal determination unit 110 reviews the determination result of the abnormality sign determination unit 108. Even when a normal model is generated as training data from a set of normal data having a low coverage rate, the sensor data finally determined by the abnormality sign detection device 100 as abnormality sign data is actually the abnormality sign data. The degree can be improved.
  • a set of normal data having a low coverage rate means a set of normal data in which the ratio of the space corresponding to the set of normal data to the space consisting of all normal data is low.
  • the abnormality sign detection device 100 is Since various methods for evaluating reliability can be adopted, Abnormal signs can be detected based on time series data having various characteristics.
  • the abnormality sign detection device 100 does not have to acquire sensor data from the target equipment 101.
  • the abnormality sign detection device 100 is Detects abnormal signs of time series data prepared in advance, It is not necessary to output the state of the target equipment 101.
  • the abnormality sign detection device 100 can also analyze time-series data composed of data other than sensor data.
  • the abnormality sign detection device 100 can analyze time-series data including operation patterns of an operator of the device or the like, and detect whether or not there is a sign of an abnormality in the state of the operator.
  • the detection result management unit 102 is mounted outside the abnormality sign detection device 100 in FIG. However, the detection result management unit 102 may be mounted inside the abnormality sign detection device 100.
  • the normal model generation unit 105 does not have to generate a normal model using the data acquired from the target equipment 101.
  • the abnormality sign detection device 100 is A normal model is not generated using the data acquired from the target equipment 101, The processes of steps S201 and S202 shown in FIG. 6 are not executed.
  • the normal data storage unit 111 of this modification stores the prepared sensor data and operation data. According to this modification, The time required to generate a normal model can be shortened, It is possible to generate a constant normal model.
  • the abnormality sign detection device 100 does not have to include the normal model generation unit 105.
  • the abnormality sign detection device 100 of this modification is Using the prepared normal model, The processes from steps S201 to S203 in FIG. 6 are not executed.
  • the normal model generation unit 105 does not have to generate a normal model for each equipment state. Even if the normal model generation unit 105 does not generate a normal model for each equipment state, it is considered that the normal model generation unit 105 has generated a normal model for each equipment state.
  • the abnormality sign detection device 100 of this modification is It is not necessary to provide the equipment status determination unit 104.
  • the processing of step S202 and step S213 is not executed.
  • the normal data storage unit 111 of this modification does not have to store the equipment state.
  • the normal model generation unit 105 may generate a normal model by a method different for each equipment state.
  • the abnormality sign detection device 100 does not have to include the threshold value determination unit 107. In this modification, The abnormality sign detection device 100 does not execute the process of step S204 of FIG.
  • the abnormality sign determination unit 108 makes a determination using a threshold value or the like prepared in advance.
  • the threshold value determination unit 107 may determine the threshold value for each equipment state.
  • the abnormality sign determination unit 108 makes a determination using a threshold value corresponding to the equipment state of the sensor data to be determined.
  • the abnormality sign data learning unit 203 may store the feature amount of the determination target and the sensor data of the determination target together in the feature data storage unit 109.
  • the reliability determination unit 202 uses a feature amount different from the feature amount converted by the feature amount conversion unit 103, that is, a feature amount different from the feature amount used for generating the normal model. Can be used to evaluate the abnormality sign data to be determined.
  • the reliability determination unit 202 may calculate the reliability by a different method for each equipment state.
  • the abnormality sign data learning unit 203 The feature data storage unit 109 may also store the equipment status. Feature data may be stored for each equipment state.
  • the abnormality degree calculation unit 106 may calculate the abnormality degree by a method different for each equipment state.
  • the abnormality sign detection device 100 classifies whether the state of the target equipment 101 is “normal” or “abnormal sign”. However, the abnormality sign detection device 100 may classify the state of the target equipment 101 into more stages. In this modification, the abnormality sign detection device 100 outputs a determination result other than "normal” and "abnormal sign". In this modification, as a specific example, the reliability determination unit 202 determines that the abnormality sign data of the determination target has low reliability of the determination result by the abnormality sign determination unit 108 because the threshold value is exceeded but there are many similar data. Judging that it is "low abnormality sign data" indicating that it is data indicating that it has been done, The abnormality sign detection device 100 may output a "low abnormality sign" as the state of the target equipment 101.
  • the abnormality sign detection device 100 includes an electronic circuit (processing circuit) instead of the processor 11.
  • the abnormality sign detection device 100 includes an electronic circuit instead of the processor 11 and the memory 12.
  • the electronic circuit is a dedicated electronic circuit that realizes each of the above functions (and the memory 12).
  • the electronic circuit is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). To.
  • Each of the above functions may be realized by one electronic circuit, or each of the above functions may be distributed and realized in a plurality of electronic circuits.
  • processing circuit Lee The above-mentioned processor 11, memory 12, and electronic circuit are collectively referred to as "processing circuit Lee". That is, each of the above functions is realized by the processing circuit.
  • FIG. 11 shows the functional configuration of the normal determination unit 110 according to the second embodiment.
  • the normal determination unit 110 according to the present embodiment includes a normal data learning unit 204.
  • FIG. 12 shows an example of a flowchart showing the operation of the normal determination unit 110 according to the present embodiment. The order of processing shown in this flowchart may be changed as appropriate.
  • Step S308 Normal data learning process
  • the feature data storage unit 109 stores the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as the normal data as the feature data.
  • the "normal" output by the result confirmation unit 201 is output as it is.
  • Normal feature data is data that has some correspondence with the features of normal data.
  • the format of the normal feature data may be the same as or different from the anomalous feature data.
  • the sensor data corresponding to the normal feature data stored in the feature data storage unit 109 is referred to as past normal data.
  • the abnormality sign determination unit 108 determines that the partial time series data is normal data when the degree of abnormality of the partial time series data does not exceed the threshold value.
  • the normal determination unit 110 stores the normal feature data corresponding to the feature amount of the normal data in the feature data storage unit 109 as the feature data.
  • the normal data learning unit 204 stores the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as normal data in the feature data storage unit 109 as feature data.
  • the reliability determination unit 202 also considers past normal data for determination. Therefore, the reliability determination unit 202 according to the present embodiment is Considering the past abnormal sign data, even if the abnormal sign data to be judged can be judged as normal data, In view of the past normal data, when the abnormal sign data to be determined cannot be determined as normal data, the abnormal sign data to be determined is not determined to be normal data.
  • the reliability determination unit 202 determines the abnormal sign data to be determined. Not judged as normal data.
  • the abnormality sign detection device 100 can improve the accuracy of abnormality sign data detection.
  • the normal data learning unit 204 does not have to store the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as normal data in the feature data storage unit 109 as feature data.
  • the normal data learning unit 204 The abnormality sign determination unit 108 counts the cumulative number of sensor data determined to be normal data, and The cumulative value may be stored in the feature data storage unit 109.
  • FIG. 13 shows an example of a configuration diagram of the abnormality sign detection device 100 according to the present embodiment and a configuration example of an abnormality sign detection system using the abnormality sign detection device 100 according to the present embodiment.
  • the abnormality sign detection device 100 according to the present embodiment includes a feature data management unit 121.
  • FIG. 14 is an example of a flowchart showing the operation of the abnormality sign detection device 100 according to the present embodiment. The order of processing shown in this flowchart may be changed as appropriate.
  • Step S214 Normal model regeneration instruction processing
  • the abnormality sign detection device 100 When the feature data management unit 121 issues a regeneration instruction to regenerate the normal model, step S215 is executed. In other cases, step S211 is executed.
  • the feature data management unit 121 may issue a regeneration instruction any number of times.
  • the feature data management unit 121 may issue a regeneration instruction under arbitrary conditions.
  • a specific example of the above condition is the number of feature data stored in the feature data storage unit 109, when the number of feature data corresponding to the abnormal sign data of the normal data exceeds a certain value.
  • the feature data management unit 121 You may issue a regeneration instruction for each normal model, Regeneration instructions may be issued for all normal models.
  • the abnormality sign data of the normal data is the abnormality sign data of the determination target determined by the reliability determination unit 202 as the normal data.
  • Step S215 Normal model regeneration process
  • the normal model generation unit 105 is based on the abnormal sign data stored by the feature data storage unit 109 as the abnormal sign data of the normal data and the learning data stored by the normal data storage unit 111.
  • the normal model corresponding to the regeneration instruction issued by the feature data management unit 121 is regenerated.
  • the normal model generation unit 105 may regenerate the normal model many times.
  • Step S306 Abnormal sign data learning process
  • the abnormality sign data learning unit 203 Abnormal feature data corresponding to the feature amount of the abnormality sign data to be determined is stored in the feature data storage unit 109 as feature data.
  • the abnormal sign data to be determined is the abnormal sign data of the normal data
  • the abnormality sign data learning unit 203 determines.
  • the abnormal sign data to be determined is stored in the feature data storage unit 109 as the abnormal sign data of normal data.
  • the equipment status corresponding to the abnormality sign data of the judgment target is stored in correspondence with the abnormality sign data of the judgment target.
  • Embodiment 3 *** Features of Embodiment 3 *** According to the abnormality sign detection device 100 according to the present embodiment.
  • the feature data storage unit 109 stores the abnormality data.
  • Abnormal sign data is stored as abnormal sign data of normal data
  • the equipment status corresponding to the abnormal sign data is stored in correspondence with the abnormal sign data.
  • the normal model generation unit 105 regenerates the normal model based on the abnormal sign data stored as the abnormal sign data of the normal data by the feature data storage unit 109 for each equipment state.
  • the normal model generation unit 105 has the feature data storage unit 109 and the normal data storage unit triggered by the regeneration instruction of the feature data management unit 121.
  • a normal model is regenerated based on the data stored by the unit 111.
  • the abnormality sign detection device 100 according to the present embodiment since the comprehensiveness of the normal model used by the abnormality sign detection device 100 according to the present embodiment gradually increases during the operation of the abnormality sign detection device 100, the abnormality sign detection device 100 according to the present embodiment gradually increases. The accuracy of abnormality sign data detection can be improved.
  • the reliability determination unit 202 may store the abnormal sign data of the normal data in the normal data storage unit 111.
  • the feature data management unit 121 monitors the normal data storage unit 111,
  • the normal model generation unit 105 regenerates the normal model based on the learning data stored in the normal data storage unit 111 and the abnormal sign data of the normal data.
  • the threshold value determination unit 107 may dynamically determine the threshold value. As a specific example, the threshold value determination unit 107 may reset the threshold value in accordance with the normal model generation unit 105 regenerating the normal model. According to this modification, the abnormality sign determination unit 108 can determine by using the threshold value corresponding to the normal model even when the normal model is regenerated.
  • the embodiment is not limited to the one shown in the first to third embodiments, and various changes can be made as needed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

This abnormality sign detection device (100) comprises: an abnormality degree calculation unit (106) that calculates an abnormality degree of partial time-series data on the basis of a feature amount of the partial time-series data that is at least a portion of time-series data; an abnormality sign determination unit (108) that determines, as abnormality sign data, the partial time-series data when the abnormality degree of the partial time-series data exceeds a threshold value; and a normality determination unit (110) that calculates the reliability of abnormality sign data on the basis of feature data corresponding to a feature amount of the abnormality sign data, and determines, as normal data, the abnormality sign data when the reliability cannot be permitted.

Description

異常兆候検知装置、異常兆候検知方法、及び、異常兆候検知プログラムAbnormal sign detection device, abnormal sign detection method, and abnormal sign detection program
 この発明は、異常兆候検知装置、異常兆候検知方法、及び、異常兆候検知プログラムに関する。 The present invention relates to an abnormality sign detection device, an abnormality sign detection method, and an abnormality sign detection program.
 近年、データ活用の一環として、様々な分野において、システムから取得できるデータを使ったシステム状態の推定と、今後の異常発生を見極める異常兆候検知の取り組みが行われている。 In recent years, as part of data utilization, efforts have been made in various fields to estimate the system status using data that can be acquired from the system and to detect abnormal signs to identify future abnormalities.
 従来の監視システムは異常発生を監視するものであり、具体例としては、個別のセンサ値が一定の閾値を超えた等の、明確に判断できる条件を使い実現されているルールベースの異常検知であった。このような監視システムを用いた場合、異常判定をすることは可能であるが、異常兆候を捉えることは困難である。 The conventional monitoring system monitors the occurrence of anomalies, and as a specific example, it is a rule-based anomaly detection that is realized using conditions that can be clearly judged, such as individual sensor values exceeding a certain threshold value. there were. When such a monitoring system is used, it is possible to determine an abnormality, but it is difficult to detect an abnormality sign.
 発電プラントのような、定期的にメンテナンスがなされ、過去にほとんど故障が発生していないシステムの異常兆候検知においては、異常兆候を含むデータをほとんど集めることができない。そのため、正常状態のデータと、異常状態のデータとの違いに着目した教師あり学習により異常兆候を捉えることは、困難である。 In the detection of abnormal signs of a system such as a power plant, which is regularly maintained and has few failures in the past, it is almost impossible to collect data including abnormal signs. Therefore, it is difficult to catch abnormal signs by supervised learning focusing on the difference between the data in the normal state and the data in the abnormal state.
 このため、発電プラントの異常兆候検知システムでは、正常状態である発電プラントのデータから正常状態に対応する正常モデルを生成し、正常モデルと、検証対象データとの乖離度を異常度として定義し、異常度がある閾値を超えていた場合には、異常の兆候を表すデータであるとして検知する教師なし学習による異常兆候検知が使われる。 Therefore, in the power plant abnormality sign detection system, a normal model corresponding to the normal state is generated from the data of the power plant in the normal state, and the degree of deviation between the normal model and the verification target data is defined as the degree of abnormality. When the degree of abnormality exceeds a certain threshold value, abnormality sign detection by unsupervised learning is used, which detects it as data representing a sign of abnormality.
 教師なし学習を使う場合には、取得したデータを特徴量に変換し、その特徴量に基づきデータのパターン、規則性、及び、分布等を分析することにより、正常モデルを生成する。この際、正常モデルを生成するために使用する特徴量を決定するためには、有効であると予想される特徴量に基づいて複数の正常モデルの生成を試行し、正常モデルの適切さの度合いを個別に確認し、最も適切な正常モデルを採用する。 When using unsupervised learning, the acquired data is converted into features, and the pattern, regularity, distribution, etc. of the data are analyzed based on the features to generate a normal model. At this time, in order to determine the features used to generate the normal model, it is attempted to generate a plurality of normal models based on the features expected to be effective, and the degree of appropriateness of the normal model is determined. Are individually confirmed and the most appropriate normal model is adopted.
 これら特徴量を自動的に列挙し、それぞれのモデルの有効性を判断するためには、正常状態のデータの網羅率が重要となる。しかし、実際の運用において正常状態のデータを網羅的に学習させることは、異常がほとんど発生しないシステムにおいて異常状態のデータを集めることと同様に、その状況を作り出すことが難しいという観点から困難である。また、どのような特徴量を使ってモデル生成を試みるかの決定方針、及び、異常兆候と判断するための閾値をどのように決めることが妥当なのかについて、検討すべき課題がある。 In order to automatically enumerate these features and judge the effectiveness of each model, the coverage rate of data in the normal state is important. However, it is difficult to comprehensively learn the data of the normal state in the actual operation from the viewpoint that it is difficult to create the situation as well as collecting the data of the abnormal state in the system in which the abnormality hardly occurs. .. In addition, there are issues to be examined regarding the decision policy of what kind of features should be used to attempt model generation, and how it is appropriate to determine the threshold value for determining an abnormal sign.
 また、実際の運用において正常状態のデータを網羅的に学習させることは、扱うデータ量の増大という観点からも困難であると言える。 In addition, it can be said that it is difficult to comprehensively learn the data in the normal state in actual operation from the viewpoint of increasing the amount of data to be handled.
 特許文献1は、設備から取得できる、人の操作及びユニットの少なくとも一方等の状態を表すイベント信号から、イベント列を切り出し、イベント列と所定時間内に発生したアラームの頻度マトリクスを事前に生成しておくことにより、人の操作及びユニットの少なくとも一方等の状態が変わったことを原因とする通常の状態からの乖離を見分けるための方法について開示している。
 特許文献1に開示されている方法により、正常モデル構築時に人の操作等に基づく設備の状態変化の影響を取り除き、検知精度を高めることが可能になる。
Patent Document 1 cuts out an event sequence from an event signal representing the state of human operation and at least one of the units, which can be obtained from the equipment, and generates in advance a matrix of the event sequence and the frequency of alarms generated within a predetermined time. By doing so, it discloses a method for distinguishing a deviation from the normal state caused by a change in the state of at least one of the human operation and the unit.
According to the method disclosed in Patent Document 1, it is possible to remove the influence of the state change of the equipment based on human operation or the like at the time of constructing the normal model and improve the detection accuracy.
特開2011-081697号公報Japanese Unexamined Patent Publication No. 2011-081697
 しかしながら、正常なシステム運用で取り得るデータの範囲に対して、網羅性が低い学習データを用いて正常モデルを生成した場合、実際には正常である評価対象データを異常と判定してしまうことが多く、判定の精度が低いという課題があった。 However, when a normal model is generated using learning data with low coverage for the range of data that can be obtained by normal system operation, the evaluation target data that is actually normal may be judged as abnormal. In many cases, there was a problem that the accuracy of judgment was low.
 この発明の異常兆候検知装置は、
 時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、前記部分時系列データの異常度を算出する異常度算出部と、
 前記部分時系列データの前記異常度が閾値を超過している場合に、前記部分時系列データを異常兆候データと判定する異常兆候判定部と、
 前記異常兆候データの信頼度を、前記異常兆候データの前記特徴量と対応する特徴データに基づいて算出し、前記信頼度を許容できない場合に、前記異常兆候データを平常データと判定する平常判定部と
を備え、
 前記平常判定部は、前記異常兆候データの前記特徴量と対応する異常特徴データを、前記特徴データとして特徴データ記憶部に記憶させる。
The abnormality sign detection device of the present invention
An abnormality degree calculation unit that calculates the abnormality degree of the partial time series data based on the feature amount of the partial time series data that is at least a part of the time series data.
When the degree of abnormality of the partial time-series data exceeds the threshold value, the abnormality sign determination unit that determines the partial time-series data as abnormality sign data,
A normal determination unit that calculates the reliability of the abnormal sign data based on the feature data corresponding to the feature amount of the abnormal sign data, and determines the abnormal sign data as normal data when the reliability cannot be tolerated. With and
The normal determination unit stores the abnormal feature data corresponding to the feature amount of the abnormal sign data in the feature data storage unit as the feature data.
 本発明の異常兆候検知装置によれば、網羅性が低い学習データを用いて平常モデルを生成した場合であっても、平常判定部が、異常兆候データの特徴量を用いて異常兆候データを判定することにより、部分時系列データの判定の精度を高めることができる。 According to the abnormality sign detection device of the present invention, even when a normal model is generated using learning data having low comprehensiveness, the normal determination unit determines the abnormal sign data using the feature amount of the abnormal sign data. By doing so, the accuracy of determining the partial time series data can be improved.
実施の形態1に係る異常兆候検知装置100を用いた異常兆候検知システムの構成図。FIG. 3 is a configuration diagram of an abnormality sign detection system using the abnormality sign detection device 100 according to the first embodiment. 実施の形態1に係る平常判定部110の構成図。The block diagram of the normal determination part 110 which concerns on Embodiment 1. FIG. 実施の形態1に係る特徴データ記憶部109のデータ構造。The data structure of the feature data storage unit 109 according to the first embodiment. 実施の形態1に係る特徴データ記憶部109のデータ構造。The data structure of the feature data storage unit 109 according to the first embodiment. 実施の形態1に係る異常兆候検知装置100のハードウェア構成図。The hardware block diagram of the abnormality sign detection apparatus 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る異常兆候検知装置100の学習フェーズの動作を示すフローチャート。The flowchart which shows the operation of the learning phase of the abnormality sign detection apparatus 100 which concerns on Embodiment 1. 実施の形態1に係る異常兆候検知装置100の運用フェーズの動作を示すフローチャート。The flowchart which shows the operation of the operation phase of the abnormality sign detection apparatus 100 which concerns on Embodiment 1. FIG. 実施の形態1に係る平常判定部110の動作を示すフローチャート。The flowchart which shows the operation of the normal determination part 110 which concerns on Embodiment 1. 実施の形態1に係る信頼度判定部202の動作を示すフローチャート。The flowchart which shows the operation of the reliability determination unit 202 which concerns on Embodiment 1. 実施の形態1に係る信頼度判定処理の概念図。The conceptual diagram of the reliability determination process which concerns on Embodiment 1. FIG. 実施の形態2に係る平常判定部110の構成図。The block diagram of the normal determination part 110 which concerns on Embodiment 2. FIG. 実施の形態2に係る平常判定部110の処理を示すフローチャート。The flowchart which shows the process of the normal determination part 110 which concerns on Embodiment 2. 実施の形態3に係る異常兆候検知装置100を用いた異常兆候検知システムの構成図。FIG. 3 is a configuration diagram of an abnormality sign detection system using the abnormality sign detection device 100 according to the third embodiment. 実施の形態3に係る異常兆候検知装置100の動作を示すフローチャート。The flowchart which shows the operation of the abnormality sign detection apparatus 100 which concerns on Embodiment 3.
 実施の形態1.
 以下、本実施の形態について、図面を参照しながら詳細に説明する。
Embodiment 1.
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
***構成の説明***
 図1は、本実施の形態における異常兆候検知装置100の構成例、及び、異常兆候検知装置100を用いた異常兆候検知システムの構成の例である。
 図中の矢印は、データの流れを表す。異常兆候検知装置100の実行中に、データは矢先の方向へ流れ、矢先が両端にある場合、データはどちらの方向にも流れる。
*** Explanation of configuration ***
FIG. 1 shows an example of the configuration of the abnormality sign detection device 100 according to the present embodiment and an example of the configuration of the abnormality sign detection system using the abnormality sign detection device 100.
The arrows in the figure represent the flow of data. During the execution of the anomaly sign detection device 100, the data flows in the direction of the arrowhead, and if the arrowheads are at both ends, the data flows in either direction.
 異常兆候検知装置100は、
 対象設備101からセンサデータと、運転データとに関する時系列データを取得し、
 各時刻におけるセンサデータから、異常兆候の有無を検知する装置である。
 対象設備101から異常兆候検知装置100へのデータ送信は、任意の方法で行われて良い。異常兆候検知装置100と、対象設備101とがネットワークによって接続されており、対象設備101は、ネットワークを介して異常兆候検知装置100にデータを送信しても良い。
 異常兆候検知装置100は、対象設備101に組み込まれていても良い。
The abnormality sign detection device 100
Acquire time series data related to sensor data and operation data from the target equipment 101,
It is a device that detects the presence or absence of abnormal signs from the sensor data at each time.
Data transmission from the target equipment 101 to the abnormality sign detection device 100 may be performed by any method. The abnormality sign detection device 100 and the target equipment 101 are connected by a network, and the target equipment 101 may transmit data to the abnormality sign detection device 100 via the network.
The abnormality sign detection device 100 may be incorporated in the target equipment 101.
 なお、異常兆候検知装置100は、時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、異常兆候を検出することができる。しかし、説明の便宜上、異常兆候検知装置100が、センサデータから成る時系列データを解析する場合について説明する。
 下記のセンサデータは、時系列データ、又は、部分時系列データと読み替えても良い。
The abnormality sign detection device 100 can detect the abnormality sign based on the feature amount of the partial time series data which is at least a part of the time series data. However, for convenience of explanation, a case where the abnormality sign detection device 100 analyzes time-series data including sensor data will be described.
The following sensor data may be read as time series data or partial time series data.
 対象設備101は、
 異常兆候検知装置100が異常兆候の有無を検知する対象とする設備であり、
 時系列データを生成する、任意のものであって良い。
The target equipment 101 is
The equipment for which the abnormality sign detection device 100 detects the presence or absence of an abnormality sign.
It can be anything that produces time series data.
 異常兆候検知装置100は、工場又は発電所等の各種プラントの、設備の稼働状況を表す運転データと、設備に組み込まれたセンサから取得したデータとを活用し、現在のプラントの運転状況を監視するだけでなく、今後のプラントの異常発生の可能性を検知することもできる。 The abnormality sign detection device 100 monitors the current operation status of the plant by utilizing the operation data representing the operation status of the equipment of various plants such as factories or power plants and the data acquired from the sensors incorporated in the equipment. Not only that, it is also possible to detect the possibility of future plant abnormalities.
 異常兆候は、
 決められた閾値を超過していないために、対象設備101が異常状態に至っていないが、対象設備101の異常の兆候と考えられることでもあり、
 対象設備101の状態が、平常な状態である平常状態とは異なる状態であることでもある。
 平常状態は、学習データから導かれる正常状態のことである。
 時系列データには、異常兆候検知装置100が時刻順に取得するデータが含まれる。
 センサデータは、対象設備101のセンサが取得したデータである。センサデータには、ある時刻において対象設備101のセンサが取得したデータと、異なる2の時刻間において対象設備101のセンサが取得し続けたデータとが含まれる。
 運転データには、人が対象設備101に対して操作した操作、及び、操作の結果を示すデータが含まれる。
The signs of abnormality are
The target equipment 101 has not reached an abnormal state because the threshold value has not been exceeded, but it is also considered to be a sign of an abnormality in the target equipment 101.
It also means that the state of the target equipment 101 is different from the normal state, which is the normal state.
The normal state is a normal state derived from the training data.
The time-series data includes data acquired by the abnormality sign detection device 100 in chronological order.
The sensor data is data acquired by the sensor of the target equipment 101. The sensor data includes data acquired by the sensor of the target equipment 101 at a certain time and data continuously acquired by the sensor of the target equipment 101 between two different times.
The operation data includes an operation performed by a person on the target equipment 101 and data indicating the result of the operation.
 検知結果管理部102は、対象設備101が出力したセンサデータ及び運転データと、異常兆候検知装置100がセンサデータに基づいて異常兆候を検知した結果とを紐づけて管理する。 The detection result management unit 102 manages the sensor data and operation data output by the target equipment 101 in association with the result of the abnormality sign detection device 100 detecting the abnormality sign based on the sensor data.
 特徴量変換部103は、
 異常兆候検知装置100が取得したセンサデータから、異常兆候検知に使用するモデルに対応するセンサデータを抽出し、
 抽出したセンサデータに基づき、算術計算等により特徴量を算出する処理を実施し、
 必要であれば、対象設備101のセンサが出力したセンサデータに対し、欠損値への対処、及び、ノイズ除去等の処理を実施する。
The feature amount conversion unit 103
From the sensor data acquired by the abnormality sign detection device 100, the sensor data corresponding to the model used for the abnormality sign detection is extracted, and the sensor data is extracted.
Based on the extracted sensor data, the feature amount is calculated by arithmetic calculation etc.
If necessary, the sensor data output by the sensor of the target equipment 101 is subjected to processing such as dealing with missing values and removing noise.
 特徴量変換部103は、
 センサデータの抽出に、任意の方法を適用して良く、
 特徴量の算出に、入力された各センサデータを一定の時刻幅で抽出したセンサデータから特徴量を算出する方法、又は、同一時刻における複数のセンサデータから、1つの特徴量を算出する方法等、任意の方法を適用して良い。
The feature amount conversion unit 103
Any method may be applied to the extraction of sensor data.
For the calculation of the feature amount, a method of calculating the feature amount from the sensor data obtained by extracting each input sensor data with a fixed time width, or a method of calculating one feature amount from a plurality of sensor data at the same time, etc. , Any method may be applied.
 設備状態判定部104は、運転データに基づき、対象設備101の状態である設備状態を判定する処理を実施する。
 設備状態には、対象設備101の一部又は全体の、稼働状況と、人等が対象設備101に対して実施する操作とが含まれても良い。異常兆候検知装置100は、対象設備101が対象設備101の状態として管理する状態とは異なる状態を、設備状態としても良い。
 設備状態判定部104が対象設備101の設備状態を1以上の設備状態に分類する場合、対象設備101は、1以上の設備状態を取り得る設備である。
The equipment state determination unit 104 executes a process of determining the equipment state, which is the state of the target equipment 101, based on the operation data.
The equipment state may include the operating status of a part or the whole of the target equipment 101 and the operation performed by a person or the like on the target equipment 101. The abnormality sign detection device 100 may set a state different from the state managed by the target equipment 101 as the state of the target equipment 101 as the equipment state.
When the equipment state determination unit 104 classifies the equipment state of the target equipment 101 into one or more equipment states, the target equipment 101 is equipment that can take one or more equipment states.
 設備状態判定部104は、対象設備101全体の設備状態だけでなく、対象設備101を構成するより小さな単位毎に、具体例としては対象設備101の各構成要素別に、設備状態を判定する機能を実装しても良い。対象設備101が発電プラント全体である場合、より小さな単位の具体例は、発電機と、ボイラと等である。 The equipment status determination unit 104 has a function of determining not only the equipment status of the entire target equipment 101 but also the equipment status of each smaller unit constituting the target equipment 101, specifically, for each component of the target equipment 101. It may be implemented. When the target equipment 101 is the entire power plant, specific examples of smaller units are a generator, a boiler, and the like.
 平常モデル生成部105は、特徴量変換部103が算出した特徴量と、設備状態判定部104が判定した設備状態とに基づき、対象設備101の設備状態毎に、平常モデルを生成する。
 平常モデル生成部105は、平常データ記憶部111が記憶している学習データに基づいて平常モデルを生成する。
The normal model generation unit 105 generates a normal model for each equipment state of the target equipment 101 based on the feature amount calculated by the feature amount conversion unit 103 and the equipment state determined by the equipment state determination unit 104.
The normal model generation unit 105 generates a normal model based on the learning data stored in the normal data storage unit 111.
 平常モデル生成部105は、異常兆候検知装置100が取得したセンサデータを学習データとして利用する場合、
 センサデータと、センサデータに対応する運転データとを対応させて平常データ記憶部111に記憶させ、
 平常データ記憶部111が記憶するセンサデータの数が一定数に達する等、所定の条件を満たした場合、平常モデルを生成する。
 平常モデル生成部105は、
 平常モデルを生成する条件として任意の条件を採用して良く、
 設備状態毎に異なる条件を採用しても良い。
When the normal model generation unit 105 uses the sensor data acquired by the abnormality sign detection device 100 as learning data,
The sensor data and the operation data corresponding to the sensor data are associated with each other and stored in the normal data storage unit 111.
When a predetermined condition is satisfied, such as when the number of sensor data stored in the normal data storage unit 111 reaches a certain number, a normal model is generated.
The normal model generation unit 105
Arbitrary conditions may be adopted as the conditions for generating a normal model.
Different conditions may be adopted for each equipment condition.
 平常モデル生成部105は、
 時系列データを分析する際に、1つのセンサデータの時系列的な動きに着目して異常を判断することができるだけでなく、
 相関分析のように複数のセンサデータ間の動きや値の関係性に着目して当該関係性を1つの特徴量と考えることができる。
The normal model generation unit 105
When analyzing time-series data, it is not only possible to judge anomalies by focusing on the time-series movement of one sensor data.
As in the correlation analysis, the relationship between the movements and values between a plurality of sensor data can be focused on and the relationship can be considered as one feature quantity.
 平常モデルは、
 対象設備101が平常状態である場合のセンサデータの特徴量が取り得る範囲にも対応し、
 平常なデータの特徴量が取り得る範囲にも対応し、
 通常は、教師なし学習により生成される。
 特徴量は、1次元の値であっても良く、多次元の値であっても良い。
The normal model is
Corresponding to the range that the feature amount of the sensor data can be taken when the target equipment 101 is in the normal state,
Corresponding to the range that the feature amount of normal data can be taken,
Usually generated by unsupervised learning.
The feature quantity may be a one-dimensional value or a multidimensional value.
 教師なし学習による異常兆候検知システムは、今までに見たことのある状態に基づいて「正常な状態」と判断し、今まで見たことの無い状態を「正常でない状態」と判断する。
 今までに見たことのある状態とは、学習データに含まれる状態のことである。
 「正常でない状態」は、真の異常兆候を示す状態と、異常兆候検知システムが異常兆候と判断したものの本当は異常兆候ではない状態とから成る。異常兆候検知システムが異常兆候と判断したものの本当は異常兆候ではない状態が生じる原因としては、学習データが不足しているために、学習データが網羅していない領域であって、真の正常状態に対応する領域のデータに対する判断を誤ってしまうことが挙げられる。
 真の正常状態は、対象設備101が実際に正常である状態のことである。
 なお、「正常な状態」は、平常状態に対応する。
The abnormal sign detection system by unsupervised learning determines a "normal state" based on a state that has been seen so far, and determines a state that has never been seen as an "unnormal state".
The states that have been seen so far are the states included in the training data.
An "abnormal state" consists of a state showing a true sign of abnormality and a state determined by the abnormality sign detection system as a sign of abnormality but not really a sign of abnormality. The cause of the abnormal sign detection system determining that it is an abnormal sign but not really an abnormal sign is the area that is not covered by the learning data due to lack of training data, and it becomes a true normal state. It is possible to make a mistake in judging the data in the corresponding area.
The true normal state is the state in which the target equipment 101 is actually normal.
The "normal state" corresponds to the normal state.
 異常度算出部106は、平常モデル生成部105が生成した平常モデルと、センサデータから算出された各特徴量とから、各特徴量の異常度を算出する。 The abnormality degree calculation unit 106 calculates the abnormality degree of each feature amount from the normal model generated by the normal model generation unit 105 and each feature amount calculated from the sensor data.
 異常度算出部106は、
 任意の異常度の定義を採用して良く、
 具体例としては、異常度を、平常モデルと、センサデータの特徴量との距離に基づいて定義しても良い。
 異常度算出部106は、平常モデルと、特徴量との距離の定義として、任意のものを採用して良い。特徴量との距離の定義の具体例としては、重心等の平常モデル全体の統計的代表値と、特徴量との距離であっても良く、平常モデルの要素であり、特徴量に最も近い平常モデルの要素と、特徴量との距離であっても良い。
The abnormality degree calculation unit 106
Any definition of anomaly may be adopted
As a specific example, the degree of abnormality may be defined based on the distance between the normal model and the feature amount of the sensor data.
The anomaly degree calculation unit 106 may adopt an arbitrary definition of the distance between the normal model and the feature amount. As a specific example of the definition of the distance from the feature amount, the distance between the statistical representative value of the entire normal model such as the center of gravity and the feature amount may be used, which is an element of the normal model and is the normal one closest to the feature amount. It may be the distance between the elements of the model and the features.
 閾値決定部107は、平常モデル等に基づいて、異常兆候を判定するための閾値を決定する処理を行う。
 閾値決定部107は、個々の特徴量から算出される異常度を考慮し、異常兆候を判定するための閾値を決定する。
The threshold value determination unit 107 performs a process of determining a threshold value for determining an abnormal sign based on a normal model or the like.
The threshold value determination unit 107 determines the threshold value for determining the abnormality sign in consideration of the degree of abnormality calculated from each feature amount.
 閾値決定部107は、閾値決定について、任意の手法を採用して良く、統計的な手法を用いても良い。
 統計的な手法の具体例としては、
 平常モデル生成部105が、平常モデルを、学習データの特徴量の分布の平均とし、
 異常度算出部106が、異常度を、センサデータの特徴量と、平常モデルとの距離とした場合に、
 閾値決定部107は、閾値を、学習データの特徴量の分布の標準偏差に基づく値に決定しても良い。
 具体例としては、センサデータの特徴量が、平常モデル±3σの外側である場合に、即ち、(平常モデル-3σ)以下、又は、(平常モデル+3σ)以上である場合に、異常兆候を示すものとする。この場合、閾値は3σである。なお、σは、異常度の分布の標準偏差である。
 異常度算出部106は、実際のセンサデータに応じて、閾値を動的に決定しても良い。
The threshold value determination unit 107 may adopt an arbitrary method for threshold value determination, or may use a statistical method.
As a concrete example of the statistical method,
The normal model generation unit 105 uses the normal model as the average of the distribution of the features of the training data.
When the anomaly degree calculation unit 106 sets the anomaly degree as the distance between the feature amount of the sensor data and the normal model,
The threshold value determination unit 107 may determine the threshold value as a value based on the standard deviation of the distribution of the feature amount of the training data.
As a specific example, when the feature amount of the sensor data is outside the normal model ± 3σ, that is, when it is (normal model-3σ) or less, or (normal model + 3σ) or more, an abnormal sign is shown. It shall be. In this case, the threshold is 3σ. Σ is the standard deviation of the distribution of the degree of anomaly.
The abnormality degree calculation unit 106 may dynamically determine the threshold value according to the actual sensor data.
 異常兆候判定部108は、異常度算出部106が算出した特徴量の異常度が、閾値決定部107が決定した閾値を超過しているか否か、即ち、特徴量が閾値超過か否かを判定する。 The abnormality sign determination unit 108 determines whether or not the abnormality degree of the feature amount calculated by the abnormality degree calculation unit 106 exceeds the threshold value determined by the threshold value determination unit 107, that is, whether or not the feature amount exceeds the threshold value. To do.
 異常兆候判定部108は、
 センサデータの前記特徴量の異常度が前記閾値を超過している場合に、前記センサデータを異常兆候データと判定し、
 それ以外の場合に、前記センサデータを平常データと判定する。
 異常兆候データは、異常兆候が認められるセンサデータの総称でもある。平常データは、異常兆候が認められないセンサデータの総称でもある。
The abnormality sign determination unit 108
When the degree of abnormality of the feature amount of the sensor data exceeds the threshold value, the sensor data is determined as abnormality sign data, and the abnormality is determined.
In other cases, the sensor data is determined to be normal data.
Abnormal sign data is also a general term for sensor data in which abnormal signs are observed. Normal data is also a general term for sensor data with no signs of abnormality.
 特徴データ記憶部109は、異常兆候判定部108が閾値超過と判定した特徴量、即ち異常兆候データの特徴量と対応する異常特徴データを、特徴データとして記憶する。ここで、異常特徴データは、異常兆候データの特徴量と何らかの対応があるデータのことである。
 異常特徴データは、
 複数の異常兆候データの特徴量を集約したデータであっても良く、
 異常兆候データの特徴量と1対1に対応するデータであっても良い。
The feature data storage unit 109 stores the feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value, that is, the abnormality feature data corresponding to the feature amount of the abnormality sign data as feature data. Here, the abnormal feature data is data that has some correspondence with the feature amount of the abnormal sign data.
Anomalous feature data
It may be data that aggregates the features of multiple abnormal sign data.
The data may have a one-to-one correspondence with the feature amount of the abnormality sign data.
 平常判定部110は、
 特徴データ記憶部109が記憶している特徴データと、異常兆候データの特徴量とに基づいて、異常兆候データの信頼度を算出し、
 前記信頼度に基づいて、前記異常兆候データが、平常データであるか否かを判定する。
 信頼度は、
 異常兆候判定部108が異常兆候データと判定したセンサデータが、実際に異常兆候データである度合いを示すものであり、
 任意の方法によって算出したものであって良い。信頼度は、真理値であっても良い。
 平常判定部110が判定対象とする異常兆候データを、判定対象の異常兆候データと呼ぶ。
 過去に異常兆候判定部108異常兆候データと判定したセンサデータであって、特徴データ記憶部109が記憶している異常特徴データに対応するセンサデータを、過去の異常兆候データと呼ぶ。
The normal determination unit 110
The reliability of the abnormality sign data is calculated based on the feature data stored in the feature data storage unit 109 and the feature amount of the abnormality sign data.
Based on the reliability, it is determined whether or not the abnormality sign data is normal data.
Reliability is
The sensor data determined by the abnormality sign determination unit 108 as abnormality sign data indicates the degree to which the abnormality sign data is actually.
It may be calculated by any method. The reliability may be a truth value.
The abnormality sign data to be determined by the normal determination unit 110 is referred to as abnormality sign data to be determined.
The sensor data that has been determined to be the abnormality sign data of the abnormality sign determination unit 108 in the past and corresponds to the abnormality feature data stored in the feature data storage unit 109 is referred to as the past abnormality sign data.
 図2は、本実施の形態における平常判定部110の構成図である。 FIG. 2 is a configuration diagram of the normal determination unit 110 according to the present embodiment.
 結果確認部201は、
 異常兆候判定部108の判定結果を確認し、
 前記判定結果が平常データである場合に、平常判定部110の出力として、「平常」を出力し、
 前記判定結果が異常兆候データである場合に、「異常兆候」を出力する。
 「平常」は、対象設備101が平常状態であることを意味する。「異常兆候」は、対象設備101が平常状態でないことを意味する。
The result confirmation unit 201
Check the determination result of the abnormality sign determination unit 108,
When the determination result is normal data, "normal" is output as the output of the normal determination unit 110.
When the determination result is the abnormality sign data, the "abnormal sign" is output.
“Normal” means that the target equipment 101 is in a normal state. The “abnormal sign” means that the target equipment 101 is not in a normal state.
 信頼度判定部202は、
 結果確認部201が「異常兆候」を出力した場合に、特徴データ記憶部109が記憶している特徴データと、判定対象の異常兆候データの特徴量とに基づいて、信頼度を算出し、
 信頼度を許容できない場合に、判定対象の異常兆候データを平常データと判定する。
The reliability determination unit 202
When the result confirmation unit 201 outputs an "abnormal sign", the reliability is calculated based on the feature data stored in the feature data storage unit 109 and the feature amount of the abnormality sign data to be determined.
When the reliability is unacceptable, the abnormality sign data to be judged is judged as normal data.
 異常兆候データ学習部203は、
 特徴データ記憶部109に判定対象の異常兆候データの特徴量に対応する異常特徴データを、特徴データとして記憶させ、
 信頼度判定部202が判定対象の異常兆候データを平常データと判定した場合に、平常判定部110の出力として、「平常」を出力し、
 それ以外の場合に、平常判定部110の出力として、「異常兆候」を出力する。
 即ち、平常判定部110は、異常兆候データの特徴量に対応する異常特徴データを、特徴データとして特徴データ記憶部109に記憶させる。
The abnormality sign data learning unit 203
The feature data storage unit 109 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data to be determined as feature data.
When the reliability determination unit 202 determines that the abnormality sign data to be determined is normal data, "normal" is output as the output of the normal determination unit 110.
In other cases, an "abnormal sign" is output as the output of the normal determination unit 110.
That is, the normal determination unit 110 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit 109 as the feature data.
 図3は、特徴データ記憶部109のデータ構造の例である。 FIG. 3 is an example of the data structure of the feature data storage unit 109.
 本図の特徴データ記憶部109は、特徴データ層401毎に、異常兆候データ累積数404を記憶している。
 各特徴データ層401は、下限値402と、上限値403とにより定義されている。即ち、1の特徴データ層401は、1の下限値402と、1の上限値403とにより定まる。
 異常兆候データ累積数404は、異常兆候データ累積数404に対応する下限値402以上、かつ、異常兆候データ累積数404に対応する上限値403以下である特徴量であって、過去に異常兆候判定部108が閾値超過と判定した特徴量の累積数である。
 異常兆候データ累積数404は、異常兆候データの特徴量に対応する異常特徴データでもある。
The feature data storage unit 109 of this figure stores the cumulative number of abnormality sign data 404 for each feature data layer 401.
Each feature data layer 401 is defined by a lower limit value 402 and an upper limit value 403. That is, the feature data layer 401 of 1 is determined by the lower limit value 402 of 1 and the upper limit value 403 of 1.
The abnormal sign data cumulative number 404 is a feature amount having a lower limit value 402 or more corresponding to the abnormal sign data cumulative number 404 and an upper limit value 403 or less corresponding to the abnormal sign data cumulative number 404, and the abnormal sign determination is performed in the past. Part 108 is the cumulative number of feature quantities determined to exceed the threshold.
The cumulative number of abnormal sign data 404 is also abnormal feature data corresponding to the feature amount of the abnormal sign data.
 特徴データ記憶部109が本図のように実装されている場合、特徴データ記憶部109が記憶している異常兆候データ累積数404から、異常兆候データ累積数404の総数に対する、特定の特徴データ層401の異常兆候データ累積数404の割合を求めることができる。 When the feature data storage unit 109 is implemented as shown in this figure, a specific feature data layer with respect to the total number of abnormal sign data cumulative numbers 404 stored in the feature data storage unit 109 from the abnormal sign data cumulative number 404. The ratio of the cumulative number of abnormal sign data 404 of 401 can be obtained.
 本図は、異常兆候データの特徴量が1次元の値である場合の特徴データ層401の例を示しているが、前記特徴量は、多次元の値であっても良い。
 特徴データ層401の定義は、異常兆候データの特徴量に応じて任意のものであって良い。
This figure shows an example of the feature data layer 401 when the feature amount of the abnormality sign data is a one-dimensional value, but the feature amount may be a multidimensional value.
The definition of the feature data layer 401 may be arbitrary depending on the feature amount of the abnormality sign data.
 本例によれば、
 平常判定部110は、特徴データ記憶部109に、
 異常兆候データの特徴量の値の範囲に対応する層である特徴データ層401に対応付けて記憶させ、
 特徴データ層401毎に、特徴データ層401に対応する異常兆候データの異常兆候データ累積数404を、特徴データとして記憶させ、
 平常判定部110は、異常兆候データ累積数404の総数に対する、異常兆候データに対応する異常兆候データ累積数404の割合に基づいて、異常兆候データの信頼度を算出する。
According to this example
The normal determination unit 110 is stored in the feature data storage unit 109.
It is stored in association with the feature data layer 401, which is a layer corresponding to the range of the feature amount values of the abnormality sign data.
For each feature data layer 401, the cumulative number of abnormality sign data 404 of the abnormality sign data corresponding to the feature data layer 401 is stored as feature data.
The normal determination unit 110 calculates the reliability of the abnormal sign data based on the ratio of the cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to the total number of cumulative numbers of abnormal sign data 404.
 図4は、特徴データ記憶部109のデータ構造の、別の例である。 FIG. 4 is another example of the data structure of the feature data storage unit 109.
 本図の特徴データ記憶部109は、特徴データ層401毎に、異常兆候データ累積数604に加えて、異常兆候データの特徴量である異常兆候データ特徴量405を記憶している。
 異常兆候データ特徴量405は、異常兆候データの特徴量に対応する異常特徴データでもある。
The feature data storage unit 109 of this figure stores the abnormality sign data feature amount 405, which is the feature amount of the abnormality sign data, in addition to the abnormality sign data cumulative number 604 for each feature data layer 401.
The abnormality sign data feature amount 405 is also the abnormality feature data corresponding to the feature amount of the abnormality sign data.
 特徴データ記憶部109が異常兆候データ特徴量405も合わせて記憶することにより、異常兆候検知装置100は、各特徴データ層401の下限値402及び上限値403を、異常兆候検知装置100の運用中に変更することができる。
 異常兆候検知装置100は、各特徴データ層401の下限値402及び上限値403を変更した場合、特徴データ記憶部109が記憶している異常兆候データ累積数604を、特徴データ層401毎に再計算することができる。そのため、図4に示すデータ構造を採用する異常兆候検知装置100の運用性は、図3に示すデータ構造を採用する異常兆候検知装置100の運用性よりも高いと考えられる。
The feature data storage unit 109 also stores the abnormality sign data feature amount 405, so that the abnormality sign detection device 100 sets the lower limit value 402 and the upper limit value 403 of each feature data layer 401 during the operation of the abnormality sign detection device 100. Can be changed to.
When the lower limit value 402 and the upper limit value 403 of each feature data layer 401 are changed, the abnormality sign detection device 100 recycles the cumulative number of abnormality sign data 604 stored in the feature data storage unit 109 for each feature data layer 401. Can be calculated. Therefore, it is considered that the operability of the abnormality sign detection device 100 adopting the data structure shown in FIG. 4 is higher than the operability of the abnormality sign detection device 100 adopting the data structure shown in FIG.
 図5は、異常兆候検知装置100のハードウェア構成図である。 FIG. 5 is a hardware configuration diagram of the abnormality sign detection device 100.
 本図に示すように、異常兆候検知装置100は、一般的なコンピュータ10から構成される。
 特徴量変換部103と、設備状態判定部104と、平常モデル生成部105と、異常度算出部106と、閾値決定部107と、異常兆候判定部108と、平常判定部110とは、プロセッサ11及びメモリ12から構成される。
 特徴データ記憶部109と、平常データ記憶部111とは、メモリ12及び記憶装置13から構成される。
As shown in this figure, the abnormality sign detection device 100 is composed of a general computer 10.
The feature amount conversion unit 103, the equipment state determination unit 104, the normal model generation unit 105, the abnormality degree calculation unit 106, the threshold value determination unit 107, the abnormality sign determination unit 108, and the normality determination unit 110 are the processors 11. And memory 12.
The feature data storage unit 109 and the normal data storage unit 111 are composed of a memory 12 and a storage device 13.
 プロセッサ11は、データバス14(信号線)を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 記憶装置13は、異常兆候検知プログラムを記憶する。
The processor 11 is connected to other hardware via the data bus 14 (signal line) and controls these other hardware.
The storage device 13 stores the abnormality sign detection program.
 プロセッサ11は、プログラム及びOS(Operating System)等を実行するプロセッシング装置である。プロセッシング装置は、IC(Integrated Circuit)と呼ぶこともあり、プロセッサ11は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。プロセッサ11は、メモリ12に格納されたプログラムを読み出して実行する。 The processor 11 is a processing device that executes a program, an OS (Operating System), and the like. The processing device is sometimes called an IC (Integrated Circuit), and specific examples of the processor 11 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit). The processor 11 reads and executes the program stored in the memory 12.
 本図のコンピュータ10は、プロセッサ11を1つだけ備えているが、コンピュータ10は、プロセッサ11を代替する複数のプロセッサを備えていても良い。これら複数のプロセッサは、プログラムの実行等を分担する。 The computer 10 in this figure includes only one processor 11, but the computer 10 may include a plurality of processors that replace the processor 11. These plurality of processors share the execution of programs and the like.
 メモリ12は、データを一時的に記憶する記憶装置であり、プロセッサ11の作業領域として使用されるメインメモリとして機能する。メモリ12は、具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等のRAM(Random Access Memory)である。メモリ12は、プロセッサ11の演算結果を保持する。 The memory 12 is a storage device that temporarily stores data, and functions as a main memory used as a work area of the processor 11. As a specific example, the memory 12 is a RAM (Random Access Memory) such as a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory). The memory 12 holds the calculation result of the processor 11.
 記憶装置13は、データを不揮発的に保管する記憶装置であり、OS、プロセッサ11によって実行される各プログラム、各プログラムの実行時に使用されるデータ等を記憶する。記憶装置13は、具体例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)である。また、記憶装置13は、メモリカード、SD(Secure Digital、登録商標)メモリカード、CF(Compact Flash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)等の可搬記録媒体であってもよい。 The storage device 13 is a storage device that stores data non-volatilely, and stores the OS, each program executed by the processor 11, data used when executing each program, and the like. Specific examples of the storage device 13 are an HDD (Hard Disk Drive) and an SSD (Solid State Drive). The storage device 13 includes a memory card, an SD (Secure Digital, registered trademark) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Versailles Disk). ) Etc. may be a portable recording medium.
 本図には記載していないが、OSは、プロセッサ11によって記憶装置13からロードされ、メモリ12に展開され、プロセッサ11上で実行される。OSは、具体例としては、Linux(登録商標)又はWindows(登録商標)等、プロセッサ11に適合する任意のものでよい。なお、異常兆候検知プログラム及びOSは、メモリ12に記憶されていてもよい。 Although not shown in this figure, the OS is loaded from the storage device 13 by the processor 11, expanded into the memory 12, and executed on the processor 11. As a specific example, the OS may be any one compatible with the processor 11, such as Linux (registered trademark) or Windows (registered trademark). The abnormality sign detection program and the OS may be stored in the memory 12.
***動作の説明***
 異常兆候検知装置100の動作は、学習データに基づいて平常モデルの学習を行う学習フェーズと、学習フェーズにおいて学習した平常モデルを使用して異常兆候か否かを判定する運用フェーズとに分けられる。
*** Explanation of operation ***
The operation of the abnormality sign detection device 100 is divided into a learning phase in which the normal model is learned based on the learning data and an operation phase in which the normal model learned in the learning phase is used to determine whether or not there is an abnormality sign.
 異常兆候検知装置100の動作手順は、異常兆候検知方法に相当する。また、異常兆候検知装置100の動作を実現するプログラムは、異常兆候検知プログラムに相当する。 The operation procedure of the abnormality sign detection device 100 corresponds to the abnormality sign detection method. Further, the program that realizes the operation of the abnormality sign detection device 100 corresponds to the abnormality sign detection program.
***学習フェーズの動作の説明***
 図6は、異常兆候検知装置100の学習フェーズの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
*** Explanation of the operation of the learning phase ***
FIG. 6 is an example of a flowchart showing the operation of the learning phase of the abnormality sign detection device 100.
The order of processing shown in this flowchart may be changed as appropriate.
(ステップS201:特徴量変換処理)
 特徴量変換部103は、異常兆候検知装置100が取得したセンサデータを、特徴量に変換する。
(Step S201: Feature conversion process)
The feature amount conversion unit 103 converts the sensor data acquired by the abnormality sign detection device 100 into a feature amount.
(ステップS202:運転状態判定処理)
 設備状態判定部104は、異常兆候検知装置100が取得した運転データから、対象設備101の設備状態を判定する。
(Step S202: Operating state determination process)
The equipment state determination unit 104 determines the equipment state of the target equipment 101 from the operation data acquired by the abnormality sign detection device 100.
(ステップS203:平常モデル生成処理)
 平常モデル生成部105は、
 ステップS201において特徴量変換部103が変換した特徴量と、ステップS202において設備状態判定部104が判定した設備状態とを対応させて、平常データ記憶部111に記憶させ、
 所定の条件を満たした場合、平常データ記憶部111が記憶する特徴量と、設備状態とに基づいて、設備状態毎に平常モデルを生成する。
 平常モデル生成部105は、
 設備状態に対応する条件が満たされる度に平常モデルを生成しても良く、
 設備状態に対応する条件が全て満たされたときに平常モデルを生成しても良い。
(Step S203: Normal model generation process)
The normal model generation unit 105
The feature amount converted by the feature amount conversion unit 103 in step S201 is associated with the equipment state determined by the equipment state determination unit 104 in step S202, and is stored in the normal data storage unit 111.
When a predetermined condition is satisfied, a normal model is generated for each equipment state based on the feature amount stored in the normal data storage unit 111 and the equipment state.
The normal model generation unit 105
A normal model may be generated each time the conditions corresponding to the equipment condition are met.
A normal model may be generated when all the conditions corresponding to the equipment conditions are satisfied.
 異常兆候検知装置100は、
 平常モデル生成部105が、平常モデルの生成が完了した場合、即ち、平常モデルを全ての設備状態について生成した場合、ステップS204を実行し、
 それ以外の場合、ステップS201を実行する。
The abnormality sign detection device 100
When the normal model generation unit 105 completes the generation of the normal model, that is, when the normal model is generated for all the equipment states, step S204 is executed.
Otherwise, step S201 is executed.
(ステップS204:閾値決定処理)
 閾値決定部107は、閾値を決定する。
 閾値決定部107は、
 平常データ記憶部111が記憶する特徴量の異常度を異常度算出部106に算出させ、
 前記異常度に基づいて閾値を決定しても良く、
 前記異常度と、平常モデルとに基づいて閾値を決定しても良い。
(Step S204: Threshold determination process)
The threshold value determination unit 107 determines the threshold value.
The threshold value determination unit 107
The abnormality degree of the feature amount stored in the normal data storage unit 111 is calculated by the abnormality degree calculation unit 106.
The threshold value may be determined based on the degree of abnormality.
The threshold value may be determined based on the degree of abnormality and the normal model.
***運用フェーズの動作の説明***
 図7は、異常兆候検知装置100の運用フェーズの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
(ステップS211:特徴量変換処理)
 特徴量変換部103は、異常兆候検知装置100が取得したセンサデータを、特徴量に変換する。
 前記センサデータを、判定対象のセンサデータと表記する。
 前記特徴量を、判定対象の特徴量と表記する。
*** Explanation of operation in the operation phase ***
FIG. 7 is an example of a flowchart showing the operation of the operation phase of the abnormality sign detection device 100.
The order of processing shown in this flowchart may be changed as appropriate.
(Step S211: Feature conversion process)
The feature amount conversion unit 103 converts the sensor data acquired by the abnormality sign detection device 100 into a feature amount.
The sensor data is referred to as sensor data to be determined.
The feature amount is referred to as a feature amount to be determined.
(ステップS212:異常兆候判定処理)
 設備状態判定部104は、異常兆候検知装置100が取得した運転データから、設備状態を判定する。
(Step S212: Abnormal sign determination process)
The equipment state determination unit 104 determines the equipment state from the operation data acquired by the abnormality sign detection device 100.
 異常度算出部106は、設備状態に対応する平常モデルであって、ステップS203において生成した平常モデルに基づいて、ステップS211において特徴量変換部103が変換した特徴量の異常度を算出する。 The abnormality degree calculation unit 106 is a normal model corresponding to the equipment state, and calculates the abnormality degree of the feature amount converted by the feature amount conversion unit 103 in step S211 based on the normal model generated in step S203.
 異常兆候判定部108は、
 前記異常度が、ステップS204において閾値決定部107が決定した閾値を超過しているか否かを判定し、
 前記異常度が前記閾値を超過している場合、判定対象のセンサデータを、異常兆候データと判定し、
 それ以外の場合、判定対象のセンサデータを、平常データと判定する。
The abnormality sign determination unit 108
It is determined whether or not the degree of abnormality exceeds the threshold value determined by the threshold value determination unit 107 in step S204.
When the degree of abnormality exceeds the threshold value, the sensor data to be determined is determined to be abnormality sign data.
In other cases, the sensor data to be determined is determined to be normal data.
 なお、本ステップの処理は、
 設備状態判定部104と、異常度算出部106と、異常兆候判定部108との連携によって、「現在の設備状態に対応する平常モデルに基づいて異常兆候判定を実施する」というものであり、
 上述の順に処理される必要はない。
The processing of this step is
By coordinating the equipment status determination unit 104, the abnormality degree calculation unit 106, and the abnormality sign determination unit 108, "the abnormality sign determination is performed based on the normal model corresponding to the current equipment condition".
It is not necessary to process in the above order.
(ステップS213:平常判定処理)
 平常判定部110は、ステップS212において異常兆候データと判定された判定対象のセンサデータが、平常データであるか否かを判定する。
 本ステップの詳細は、ステップS301からステップS307によって説明する。
 異常兆候検知装置100は、ステップS211からS213までの処理を繰り返し実行する。
(Step S213: Normal determination process)
The normal determination unit 110 determines whether or not the sensor data to be determined, which is determined to be abnormal sign data in step S212, is normal data.
Details of this step will be described in steps S301 to S307.
The abnormality sign detection device 100 repeatedly executes the processes from steps S211 to S213.
***平常判定部110の動作の説明***
 図8は、本実施の形態に係る平常判定部110の動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
*** Explanation of the operation of the normal determination unit 110 ***
FIG. 8 is an example of a flowchart showing the operation of the normal determination unit 110 according to the present embodiment.
The order of processing shown in this flowchart may be changed as appropriate.
(ステップS301:結果確認処理)
 結果確認部201は、異常兆候判定部108の判定結果を確認する。
 平常判定部110は、
 異常兆候判定部108の判定結果が閾値超過である場合、ステップS302を実行し、
 それ以外の場合、ステップS305を実行する。
(Step S301: Result confirmation process)
The result confirmation unit 201 confirms the determination result of the abnormality sign determination unit 108.
The normal determination unit 110
If the determination result of the abnormality sign determination unit 108 exceeds the threshold value, step S302 is executed.
Otherwise, step S305 is executed.
(ステップS302:信頼度算出処理)
 信頼度判定部202は、特徴データ記憶部109が記憶するデータに基づいて、異常兆候データの特徴量の信頼度を算出する。
 なお、本ステップの処理は、算術計算によって値を算出することに限られない。
(Step S302: Reliability calculation process)
The reliability determination unit 202 calculates the reliability of the feature amount of the abnormality sign data based on the data stored in the feature data storage unit 109.
The process of this step is not limited to calculating the value by arithmetic calculation.
(ステップS303:信頼度判定処理)
 信頼度判定部202は、ステップS302において算出した信頼度を許容できるか否かに基づいて、判定対象の異常兆候データが平常データであるか否かを判定する。
(Step S303: Reliability determination process)
The reliability determination unit 202 determines whether or not the abnormality sign data to be determined is normal data based on whether or not the reliability calculated in step S302 can be tolerated.
 信頼度判定部202は、
 閾値を設定し、前記閾値に基づいて許容できるか否かを決定しても良く、
 過去の異常兆候データの特徴量と、判定対象の異常兆候データの特徴量との間に一定以上の類似性が認められる場合に、信頼度を許容できると判断しても良い。
The reliability determination unit 202
A threshold may be set and whether or not it is acceptable may be determined based on the threshold.
When a certain degree of similarity is found between the feature amount of the past abnormality sign data and the feature amount of the abnormality sign data to be determined, it may be judged that the reliability is acceptable.
 信頼度判定部202は、
 異常兆候判定部108が閾値超過と判定した特徴量と類似関係にある特徴データを、特徴データ記憶部109が記憶している場合、異常兆候判定部108の判定の信頼性が低いと判断して、判定対象の異常兆候データを平常データと判定し、
 それ以外の場合、判定対象の異常兆候データを異常兆候データと判定しても良い。
The reliability determination unit 202
When the feature data storage unit 109 stores the feature data having a similar relationship with the feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value, it is determined that the determination of the abnormality sign determination unit 108 is unreliable. , Judge the abnormal sign data to be judged as normal data,
In other cases, the abnormality sign data to be determined may be determined as the abnormality sign data.
 信頼度判定部202は、具体例としては、
 異常度算出部106が採用している異常度の算出方法により信頼度を算出し、
 閾値決定部107と同様に閾値を決定し、
 信頼度が前記閾値以下である場合に、判定対象の異常兆候データを平常データと判定しても良い。
As a specific example, the reliability determination unit 202 may be used.
The reliability is calculated by the abnormality calculation method adopted by the abnormality calculation unit 106.
The threshold value is determined in the same manner as the threshold value determination unit 107,
When the reliability is equal to or less than the threshold value, the abnormality sign data to be determined may be determined as normal data.
 信頼度判定部202は、具体例としては、
 判定対象の異常兆候データの特徴量と、特徴データ記憶部109が記憶している特徴データの内、判定対象の異常兆候データの特徴量との距離が最も短い特徴データとの距離を信頼度として算出し、
 前記信頼度が一定の閾値以下である場合に、判定対象の異常兆候データを平常データと判定しても良く、
 判定対象の異常兆候データの特徴量から一定距離以内に存在する前記特徴データの個数の逆数を信頼度として算出し、
 前記信頼度が一定の閾値以下である場合に、判定対象の異常兆候データを平常データと判定しても良い。
As a specific example, the reliability determination unit 202 may be used.
Of the feature data stored in the feature data storage unit 109, the distance between the feature amount of the abnormality sign data to be determined and the feature data having the shortest distance from the feature amount of the abnormality sign data to be judged is set as the reliability. Calculate and
When the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data.
The reciprocal of the number of the feature data existing within a certain distance from the feature amount of the abnormality sign data to be judged is calculated as the reliability.
When the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data.
 信頼度判定部202は、特徴データ記憶部109が図3又は図4に示すようなデータ構造を採用している場合、異常兆候データ累積数の総数に対する、判定対象の異常兆候データに対応する異常兆候データ累積数の割合の逆数を信頼度とし、
 信頼度が一定の閾値以下である場合に、判定対象の異常兆候データを平常データと判定しても良い。
When the feature data storage unit 109 adopts the data structure as shown in FIG. 3 or 4, the reliability determination unit 202 has an abnormality corresponding to the abnormality sign data to be determined with respect to the total number of accumulated abnormality sign data. The reciprocal of the ratio of the cumulative number of symptom data is used as the reliability.
When the reliability is equal to or less than a certain threshold value, the abnormality sign data to be determined may be determined as normal data.
 図10は、異常兆候データの特徴量が3次元の値である場合の、本ステップの処理の概念の例を示したものである。本例は、図示の都合上、特徴量を3次元の値としているが、特徴量は任意の次元の値であって良い。
 記憶特徴量701は、特徴データ記憶部109が記憶する特徴量であって、過去に異常兆候判定部108に閾値超過と判定された特徴量である。
 判定対象特徴量702は、判定対象の特徴量である。
 近傍703は、判定対象特徴量702からの距離が一定値以内である領域である。
FIG. 10 shows an example of the concept of processing in this step when the feature amount of the abnormality sign data is a three-dimensional value. In this example, the feature amount is a three-dimensional value for convenience of illustration, but the feature amount may be a value of any dimension.
The storage feature amount 701 is a feature amount stored by the feature data storage unit 109, and is a feature amount determined by the abnormality sign determination unit 108 to exceed the threshold value in the past.
The determination target feature amount 702 is a determination target feature amount.
The neighborhood 703 is an area where the distance from the determination target feature amount 702 is within a certain value.
 信頼度判定部202は、
 判定対象特徴量702の近傍703に、記憶特徴量701が含まれるか否かを判定し、
 含まれる場合に、判定対象の異常兆候データを平常データと判定し、
 含まれない場合に、判定対象の異常兆候データを異常兆候データと判定する。
 本例において、信頼度は、判定対象特徴量702の近傍703に、記憶特徴量701が含まれるか否かによって定まる真理値である。
The reliability determination unit 202
It is determined whether or not the storage feature amount 701 is included in the vicinity 703 of the determination target feature amount 702.
If it is included, the abnormality sign data to be judged is judged as normal data, and
If it is not included, the abnormality sign data to be determined is determined to be the abnormality sign data.
In this example, the reliability is a truth value determined by whether or not the storage feature amount 701 is included in the vicinity 703 of the determination target feature amount 702.
 信頼度判定部202は、判定対象特徴量702の近傍703に含まれる記憶特徴量701の数の逆数を信頼度としても良い。 The reliability determination unit 202 may use the reciprocal of the number of the storage feature amount 701 included in the vicinity 703 of the determination target feature amount 702 as the reliability.
 信頼度判定部202は、
 判定対象特徴量702と、判定対象特徴量702に最も近い記憶特徴量701との距離を信頼度とし、信頼度が一定値以下である場合に、即ち、近傍とみなす距離の最大値以下である場合に、判定対象の異常兆候データを平常データと判定し、
 それ以外の場合に、判定対象の異常兆候データを異常兆候データと判定しても良い。
 信頼度判定部202は、このように判定する場合、
 距離の定義、及び、近傍とみなす距離の最大値等として任意のものを採用して良く、
 異常兆候検知装置100を適用するシステムに応じて、これらを自由に変更して良い。
The reliability determination unit 202
The distance between the judgment target feature amount 702 and the storage feature amount 701 closest to the judgment target feature amount 702 is defined as the reliability, and when the reliability is equal to or less than a certain value, that is, it is equal to or less than the maximum value of the distance regarded as the vicinity. In this case, the abnormality sign data to be judged is judged as normal data, and
In other cases, the abnormality sign data to be determined may be determined as the abnormality sign data.
When the reliability determination unit 202 determines in this way,
Any one may be adopted as the definition of the distance and the maximum value of the distance considered to be in the vicinity.
These may be freely changed depending on the system to which the abnormality sign detection device 100 is applied.
(ステップS304:判定結果確定処理)
 異常兆候データ学習部203は、
 ステップS303の判定結果が平常データである場合、平常判定部110の判定結果を「平常」に確定し、
 それ以外の場合、平常判定部110の判定結果を「異常兆候」に確定する。
(Step S304: Judgment result confirmation process)
The abnormality sign data learning unit 203
When the determination result in step S303 is normal data, the determination result of the normal determination unit 110 is determined to be "normal".
In other cases, the determination result of the normal determination unit 110 is determined as an "abnormal sign".
(ステップS305:判定結果確定処理)
 結果確認部201は、平常判定部110の判定結果を「平常」に確定する。
(Step S305: Judgment result confirmation process)
The result confirmation unit 201 determines the determination result of the normal determination unit 110 to be "normal".
(ステップS306:異常兆候データ学習処理)
 異常兆候データ学習部203は、判定対象の異常兆候データの特徴量に対応する異常特徴データを、特徴データとして、特徴データ記憶部109に記憶させる。
(Step S306: Abnormal sign data learning process)
The abnormality sign data learning unit 203 stores the abnormality feature data corresponding to the feature amount of the abnormality sign data to be determined in the feature data storage unit 109 as feature data.
(ステップS307:結果出力処理)
 結果確認部201又は異常兆候データ学習部203は、平常判定部110の判定結果を出力する。
(Step S307: Result output processing)
The result confirmation unit 201 or the abnormality sign data learning unit 203 outputs the determination result of the normal determination unit 110.
***信頼度判定部202の動作の説明***
 図9は、信頼度判定部202の動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
 上述の通り、信頼度判定部202は、信頼度の算出手法として任意の手法を採用して良いが、ここでは、特徴データ記憶部109が、図3又は図4に示すデータ構造を採用する場合における手法について説明する。
*** Explanation of the operation of the reliability determination unit 202 ***
FIG. 9 is an example of a flowchart showing the operation of the reliability determination unit 202.
The order of processing shown in this flowchart may be changed as appropriate.
As described above, the reliability determination unit 202 may adopt an arbitrary method as the reliability calculation method, but here, when the feature data storage unit 109 adopts the data structure shown in FIG. 3 or FIG. The method in is described.
(ステップS501:合計値算出処理)
 信頼度判定部202は、
 特徴データ記憶部109が記憶する、全ての異常兆候データ累積数404を取得し、
 その合計値を算出する。
(Step S5011: Total value calculation process)
The reliability determination unit 202
Acquire all the abnormal sign data cumulative number 404 stored in the feature data storage unit 109,
Calculate the total value.
(ステップS502:信頼度算出処理)
 信頼度判定部202は、
 判定対象の異常兆候データに対応する異常兆候データ累積数404を、特徴データ記憶部109から取得し、
 ステップS502において算出した合計値に対する、判定対象の異常兆候データに対応する異常兆候データ累積数404の割合を算出する。
(Step S502: Reliability calculation process)
The reliability determination unit 202
The cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to be determined is acquired from the feature data storage unit 109.
The ratio of the cumulative number of abnormal sign data 404 corresponding to the abnormal sign data to be determined is calculated with respect to the total value calculated in step S502.
(ステップS503:信頼度判定処理)
 信頼度判定部202は、
 ステップS502において算出された値が、一定値を超えていない場合に、判定対象の異常兆候データを平常データと判定し、
 それ以外の場合、判定対象の異常兆候データを異常兆候データと判定する。
(Step S503: Reliability determination process)
The reliability determination unit 202
When the value calculated in step S502 does not exceed a certain value, the abnormality sign data to be determined is determined to be normal data.
In other cases, the abnormality sign data to be determined is determined to be the abnormality sign data.
***実施の形態1の特徴***
 本実施の形態に係る異常兆候検知装置100は、時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、部分時系列データの異常度を算出する異常度算出部106と、
 部分時系列データの異常度が閾値を超過している場合に、部分時系列データを異常兆候データと判定する異常兆候判定部108と、
 異常兆候データの異常の度合いである信頼度を、異常兆候データの特徴量と対応する特徴データに基づいて算出し、信頼度を許容できる場合に、異常兆候データを平常データと判定する平常判定部110と
を備え、
 平常判定部110は、異常兆候データの特徴量と対応する異常特徴データを、特徴データとして特徴データ記憶部109に記憶させる。
*** Features of Embodiment 1 ***
The abnormality sign detection device 100 according to the present embodiment includes an abnormality degree calculation unit 106 that calculates an abnormality degree of the partial time series data based on a feature amount of the partial time series data that is at least a part of the time series data.
When the degree of abnormality of the partial time series data exceeds the threshold value, the abnormality sign determination unit 108 that determines the partial time series data as the abnormality sign data, and
A normal judgment unit that calculates the reliability, which is the degree of abnormality of the abnormal sign data, based on the feature amount of the abnormal sign data and the corresponding feature data, and determines the abnormal sign data as normal data when the reliability is acceptable. With 110
The normal determination unit 110 stores the abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit 109 as feature data.
 本実施の形態に係る異常兆候検知装置100は、閾値を決定する閾値決定部107を備え、
 異常兆候判定部108は、閾値決定部107が決定した閾値に基づいて判定する。
The abnormality sign detection device 100 according to the present embodiment includes a threshold value determination unit 107 for determining a threshold value.
The abnormality sign determination unit 108 determines based on the threshold value determined by the threshold value determination unit 107.
 本実施の形態に係る異常兆候検知装置100は、平常なデータの特徴量が取り得る範囲に対応する平常モデルを生成する平常モデル生成部105を備え、
 異常度算出部106は、部分時系列データの特徴量と、平常モデル生成部105が生成した平常モデルとに基づいて、異常度を算出する。
The abnormality sign detection device 100 according to the present embodiment includes a normal model generation unit 105 that generates a normal model corresponding to a range in which the feature amount of normal data can be taken.
The abnormality degree calculation unit 106 calculates the abnormality degree based on the feature amount of the partial time series data and the normal model generated by the normal model generation unit 105.
 本実施の形態に係る異常兆候検知装置100によれば、
 平常モデル生成部105は、平常モデルを1以上の設備状態を取り得る対象設備101(設備)の設備状態毎に生成し、
 異常兆候検知装置100は、対象設備101(設備)から時系列データを取得し、
 異常度算出部106は、部分時系列データの特徴量と、部分時系列データに対応する設備状態に対応する平常モデルとに基づいて、異常度を算出する。
According to the abnormality sign detection device 100 according to the present embodiment.
The normal model generation unit 105 generates a normal model for each equipment state of the target equipment 101 (equipment) capable of taking one or more equipment states.
The abnormality sign detection device 100 acquires time series data from the target equipment 101 (equipment) and obtains time series data.
The abnormality degree calculation unit 106 calculates the abnormality degree based on the feature amount of the partial time series data and the normal model corresponding to the equipment state corresponding to the partial time series data.
***実施の形態1の効果の説明***
 以上のように、本実施の形態に係る異常兆候検知装置100によれば、
 異常兆候判定部108が閾値超過と判定したセンサデータを活用して、平常判定部110が異常兆候判定部108の判定結果を見直すことにより、
 網羅率の低い平常データの集合を、学習データとして平常モデルを生成した場合であっても、異常兆候検知装置100が最終的に異常兆候データと判定したセンサデータが、実際に異常兆候データである度合いを向上させることができる。
 網羅率の低い平常データの集合とは、全ての平常データから成る空間に占める、平常データの集合に対応する空間の割合が低い平常データの集合を意味する。
*** Explanation of the effect of Embodiment 1 ***
As described above, according to the abnormality sign detection device 100 according to the present embodiment,
By utilizing the sensor data determined by the abnormality sign determination unit 108 to exceed the threshold value, the normal determination unit 110 reviews the determination result of the abnormality sign determination unit 108.
Even when a normal model is generated as training data from a set of normal data having a low coverage rate, the sensor data finally determined by the abnormality sign detection device 100 as abnormality sign data is actually the abnormality sign data. The degree can be improved.
A set of normal data having a low coverage rate means a set of normal data in which the ratio of the space corresponding to the set of normal data to the space consisting of all normal data is low.
 本実施の形態に係る異常兆候検知装置100は、
 様々な信頼度を評価する手法を採用することができるため、
 様々な特性を有する時系列データに基づいて、異常兆候を検出することができる。
The abnormality sign detection device 100 according to the present embodiment is
Since various methods for evaluating reliability can be adopted,
Abnormal signs can be detected based on time series data having various characteristics.
<変形例1>
 異常兆候検知装置100は、対象設備101からセンサデータを取得しなくても良い。
 本変形例において、異常兆候検知装置100は、
 あらかじめ用意された時系列データの異常兆候を検出し、
 対象設備101の状態を出力しなくても良い。
<Modification example 1>
The abnormality sign detection device 100 does not have to acquire sensor data from the target equipment 101.
In this modification, the abnormality sign detection device 100 is
Detects abnormal signs of time series data prepared in advance,
It is not necessary to output the state of the target equipment 101.
<変形例2>
 異常兆候検知装置100は、センサデータ以外から成る時系列データを解析することもできる。
 異常兆候検知装置100は、具体例としては、装置等の操作者の操作パターンから成る時系列データを解析し、操作者の状態に異変の兆候があるか否かを検出することができる。
<Modification 2>
The abnormality sign detection device 100 can also analyze time-series data composed of data other than sensor data.
As a specific example, the abnormality sign detection device 100 can analyze time-series data including operation patterns of an operator of the device or the like, and detect whether or not there is a sign of an abnormality in the state of the operator.
<変形例3>
 検知結果管理部102は、図1において異常兆候検知装置100の外部に実装されている。しかし、検知結果管理部102は、異常兆候検知装置100の内部に実装されていても良い。
<Modification example 3>
The detection result management unit 102 is mounted outside the abnormality sign detection device 100 in FIG. However, the detection result management unit 102 may be mounted inside the abnormality sign detection device 100.
<変形例4>
 平常モデル生成部105は、対象設備101から取得したデータを使用して平常モデルを生成しなくても良い。
 本変形例において、異常兆候検知装置100は、
 対象設備101から取得したデータを使用して平常モデルを生成せず、
 図6に示すステップS201及びステップS202の処理を実行しない。
 本変形例の平常データ記憶部111は、用意されたセンサデータ及び運転データを記憶している。
 本変形例によれば、
 平常モデルを生成するまでに要する時間を短縮することができ、
 一定の平常モデルを生成することができる。
<Modification example 4>
The normal model generation unit 105 does not have to generate a normal model using the data acquired from the target equipment 101.
In this modification, the abnormality sign detection device 100 is
A normal model is not generated using the data acquired from the target equipment 101,
The processes of steps S201 and S202 shown in FIG. 6 are not executed.
The normal data storage unit 111 of this modification stores the prepared sensor data and operation data.
According to this modification,
The time required to generate a normal model can be shortened,
It is possible to generate a constant normal model.
<変形例5>
 異常兆候検知装置100は、平常モデル生成部105を備えなくても良い。
 本変形例の異常兆候検知装置100は、
 用意された平常モデルを使用し、
 図6のステップS201からS203までの処理を実行しない。
<Modification 5>
The abnormality sign detection device 100 does not have to include the normal model generation unit 105.
The abnormality sign detection device 100 of this modification is
Using the prepared normal model,
The processes from steps S201 to S203 in FIG. 6 are not executed.
<変形例6>
 平常モデル生成部105は、設備状態毎に平常モデルを生成しなくても良い。平常モデル生成部105が、設備状態毎に平常モデルを生成しない場合であっても、平常モデル生成部105が、設備状態毎に平常モデルを生成したとみなす。
 本変形例の異常兆候検知装置100は、
 設備状態判定部104を備えなくても良く、
 ステップS202及びステップS213の処理を実行しない。
 本変形例の平常データ記憶部111は、設備状態を記憶しなくても良い。
<Modification 6>
The normal model generation unit 105 does not have to generate a normal model for each equipment state. Even if the normal model generation unit 105 does not generate a normal model for each equipment state, it is considered that the normal model generation unit 105 has generated a normal model for each equipment state.
The abnormality sign detection device 100 of this modification is
It is not necessary to provide the equipment status determination unit 104.
The processing of step S202 and step S213 is not executed.
The normal data storage unit 111 of this modification does not have to store the equipment state.
<変形例7>
 平常モデル生成部105は、設備状態毎に異なる手法により平常モデルを生成しても良い。
<Modification 7>
The normal model generation unit 105 may generate a normal model by a method different for each equipment state.
<変形例8>
 異常兆候検知装置100は、閾値決定部107を備えなくても良い。
 本変形例において、
 異常兆候検知装置100は、図6のステップS204の処理を実行せず、
 異常兆候判定部108は、あらかじめ用意された閾値等を用いて判定する。
<Modification 8>
The abnormality sign detection device 100 does not have to include the threshold value determination unit 107.
In this modification,
The abnormality sign detection device 100 does not execute the process of step S204 of FIG.
The abnormality sign determination unit 108 makes a determination using a threshold value or the like prepared in advance.
<変形例9>
 閾値決定部107は、設備状態毎に閾値を決定しても良い。
 本変形例において、異常兆候判定部108は、判定対象のセンサデータの設備状態に対応する閾値を用いて判定する。
<Modification 9>
The threshold value determination unit 107 may determine the threshold value for each equipment state.
In this modification, the abnormality sign determination unit 108 makes a determination using a threshold value corresponding to the equipment state of the sensor data to be determined.
<変形例10>
 異常兆候データ学習部203は、特徴データ記憶部109に、判定対象の特徴量と、判定対象のセンサデータとを合わせて記憶させても良い。
 本変形例によれば、信頼度判定部202は、特徴量変換部103が変換した特徴量とは別の特徴量を用いて、即ち、平常モデルの生成に用いる特徴量とは別の特徴量を用いて、判定対象の異常兆候データを評価することができる。
<Modification example 10>
The abnormality sign data learning unit 203 may store the feature amount of the determination target and the sensor data of the determination target together in the feature data storage unit 109.
According to this modification, the reliability determination unit 202 uses a feature amount different from the feature amount converted by the feature amount conversion unit 103, that is, a feature amount different from the feature amount used for generating the normal model. Can be used to evaluate the abnormality sign data to be determined.
<変形例11>
 信頼度判定部202は、設備状態毎に、異なる手法により信頼度を算出しても良い。
 本変形例において、異常兆候データ学習部203は、
 特徴データ記憶部109に、設備状態も合わせて記憶させても良く、
 設備状態毎に特徴データを記憶させても良い。
<Modification 11>
The reliability determination unit 202 may calculate the reliability by a different method for each equipment state.
In this modification, the abnormality sign data learning unit 203
The feature data storage unit 109 may also store the equipment status.
Feature data may be stored for each equipment state.
<変形例12>
 異常度算出部106は、設備状態毎に異なる手法により異常度を算出しても良い。
<Modification example 12>
The abnormality degree calculation unit 106 may calculate the abnormality degree by a method different for each equipment state.
<変形例13>
 本実施の形態に係る異常兆候検知装置100は、対象設備101の状態が「平常」と「異常兆候」とのどちらであるか分類する。しかし、異常兆候検知装置100は、対象設備101の状態を、より多段階に分類しても良い。
 本変形例において、異常兆候検知装置100は、「平常」「異常兆候」以外の判定結果を出力する。
 本変形例において、
 信頼度判定部202は、具体例としては、判定対象の異常兆候データを、閾値超過は発生したが類似データが多いこと等を理由として異常兆候判定部108による判定結果の信頼性が低いと判断したことを表すデータであることを表す「低異常兆候データ」と判定し、
 異常兆候検知装置100は、対象設備101の状態として「低異常兆候」を出力しても良い。
<Modification example 13>
The abnormality sign detection device 100 according to the present embodiment classifies whether the state of the target equipment 101 is “normal” or “abnormal sign”. However, the abnormality sign detection device 100 may classify the state of the target equipment 101 into more stages.
In this modification, the abnormality sign detection device 100 outputs a determination result other than "normal" and "abnormal sign".
In this modification,
As a specific example, the reliability determination unit 202 determines that the abnormality sign data of the determination target has low reliability of the determination result by the abnormality sign determination unit 108 because the threshold value is exceeded but there are many similar data. Judging that it is "low abnormality sign data" indicating that it is data indicating that it has been done,
The abnormality sign detection device 100 may output a "low abnormality sign" as the state of the target equipment 101.
<変形例14>
 本実施の形態では、異常兆候検知装置100の各機能をソフトウェアで実現する場合を説明した。しかし、変形例として、前記各機能は、ハードウェアにより実現されても良い。
<Modification 14>
In the present embodiment, the case where each function of the abnormality sign detection device 100 is realized by software has been described. However, as a modification, each of the above functions may be realized by hardware.
 前記各機能がハードウェアにより実現される場合には、異常兆候検知装置100は、プロセッサ11に代えて、電子回路(処理回路)を備える。あるいは、異常兆候検知装置100は、プロセッサ11、及び、メモリ12に代えて、電子回路を備える。電子回路は、前記各機能(及びメモリ12)を実現する専用の電子回路である。 When each of the above functions is realized by hardware, the abnormality sign detection device 100 includes an electronic circuit (processing circuit) instead of the processor 11. Alternatively, the abnormality sign detection device 100 includes an electronic circuit instead of the processor 11 and the memory 12. The electronic circuit is a dedicated electronic circuit that realizes each of the above functions (and the memory 12).
 電子回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。 The electronic circuit is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). To.
 前記各機能を1つの電子回路で実現してもよいし、前記各機能を複数の電子回路に分散させて実現してもよい。 Each of the above functions may be realized by one electronic circuit, or each of the above functions may be distributed and realized in a plurality of electronic circuits.
 あるいは、一部の前記各機能がハードウェアで実現され、他の前記各機能がソフトウェアで実現されてもよい。 Alternatively, some of the above-mentioned functions may be realized by hardware, and other above-mentioned functions may be realized by software.
 前述したプロセッサ11とメモリ12と電子回路とを、総称して「プロセッシングサーキットリー」という。つまり、前記各機能は、プロセッシングサーキットリーにより実現される。 The above-mentioned processor 11, memory 12, and electronic circuit are collectively referred to as "processing circuit Lee". That is, each of the above functions is realized by the processing circuit.
 実施の形態2.
 以下、前述した実施の形態と異なる点について、図面を参照しながら説明する。
Embodiment 2.
Hereinafter, points different from the above-described embodiment will be described with reference to the drawings.
***構成の説明***
 図11は、実施の形態2における平常判定部110の機能構成を示している。
 本図に示すように、本実施の形態に係る平常判定部110は、平常データ学習部204を備える。
*** Explanation of configuration ***
FIG. 11 shows the functional configuration of the normal determination unit 110 according to the second embodiment.
As shown in this figure, the normal determination unit 110 according to the present embodiment includes a normal data learning unit 204.
***動作の説明***
 図12は、本実施の形態に係る平常判定部110の動作を示すフローチャートの例を示している。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
*** Explanation of operation ***
FIG. 12 shows an example of a flowchart showing the operation of the normal determination unit 110 according to the present embodiment.
The order of processing shown in this flowchart may be changed as appropriate.
(ステップS308:平常データ学習処理)
 平常データ学習部204は、
 異常兆候判定部108が平常データと判定したセンサデータの特徴量に対応する平常特徴データを、特徴データとして特徴データ記憶部109に記憶させ、
 結果確認部201が出力した「平常」を、そのまま出力する。
 平常特徴データは、平常データの特徴量と何らかの対応があるデータのことである。
 平常特徴データの形式は、異常特徴データと同様であっても良く、異なっても良い。
 なお、特徴データ記憶部109が記憶している平常特徴データに対応するセンサデータを、過去の平常データと呼ぶ。
(Step S308: Normal data learning process)
Normal data learning unit 204
The feature data storage unit 109 stores the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as the normal data as the feature data.
The "normal" output by the result confirmation unit 201 is output as it is.
Normal feature data is data that has some correspondence with the features of normal data.
The format of the normal feature data may be the same as or different from the anomalous feature data.
The sensor data corresponding to the normal feature data stored in the feature data storage unit 109 is referred to as past normal data.
***実施の形態2の特徴***
 本実施の形態に係る異常兆候検知装置100によれば、
 異常兆候判定部108は、部分時系列データの異常度が閾値を超過していない場合に、部分時系列データを平常データと判定し、
 平常判定部110は、特徴データ記憶部109に、平常データの特徴量と対応する平常特徴データを、特徴データとして記憶させる。
*** Features of Embodiment 2 ***
According to the abnormality sign detection device 100 according to the present embodiment.
The abnormality sign determination unit 108 determines that the partial time series data is normal data when the degree of abnormality of the partial time series data does not exceed the threshold value.
The normal determination unit 110 stores the normal feature data corresponding to the feature amount of the normal data in the feature data storage unit 109 as the feature data.
***実施の形態2の効果の説明***
 以上のように、本実施の形態に係る異常兆候検知装置100によれば、
 平常データ学習部204は、異常兆候判定部108が平常データと判定したセンサデータの特徴量に対応する平常特徴データを、特徴データとして特徴データ記憶部109に記憶させるため、
 信頼度判定部202は、過去の平常データも考慮して判定する。
 そのため、本実施の形態に係る信頼度判定部202は、
 過去の異常兆候データを鑑みると、判定対象の異常兆候データを平常データと判定できる場合であっても、
 過去の平常データを鑑みると、判定対象の異常兆候データを平常データと判定できない場合に、判定対象の異常兆候データを、平常データと判定しない。
*** Explanation of the effect of Embodiment 2 ***
As described above, according to the abnormality sign detection device 100 according to the present embodiment,
The normal data learning unit 204 stores the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as normal data in the feature data storage unit 109 as feature data.
The reliability determination unit 202 also considers past normal data for determination.
Therefore, the reliability determination unit 202 according to the present embodiment is
Considering the past abnormal sign data, even if the abnormal sign data to be judged can be judged as normal data,
In view of the past normal data, when the abnormal sign data to be determined cannot be determined as normal data, the abnormal sign data to be determined is not determined to be normal data.
 信頼度判定部202は、具体例としては、過去の平常データの数に対する、判定対象の異常兆候データに対応する過去の異常兆候データの数の割合が著しく低い場合、判定対象の異常兆候データを平常データと判定しない。 As a specific example, when the ratio of the number of past abnormal sign data corresponding to the abnormal sign data to be determined to the number of past normal data is extremely low, the reliability determination unit 202 determines the abnormal sign data to be determined. Not judged as normal data.
 従って、本実施の形態に係る異常兆候検知装置100は、異常兆候データ検出の精度を高めることができる。 Therefore, the abnormality sign detection device 100 according to the present embodiment can improve the accuracy of abnormality sign data detection.
<変形例15>
 平常データ学習部204は、異常兆候判定部108が平常データと判定したセンサデータの特徴量に対応する平常特徴データを、特徴データとして特徴データ記憶部109に記憶させなくても良い。
 本変形例において、平常データ学習部204は、
 異常兆候判定部108が平常データと判定したセンサデータの累積数をカウントし、
 前記累積値を特徴データ記憶部109に記憶させても良い。
<Modification 15>
The normal data learning unit 204 does not have to store the normal feature data corresponding to the feature amount of the sensor data determined by the abnormality sign determination unit 108 as normal data in the feature data storage unit 109 as feature data.
In this modified example, the normal data learning unit 204
The abnormality sign determination unit 108 counts the cumulative number of sensor data determined to be normal data, and
The cumulative value may be stored in the feature data storage unit 109.
 実施の形態3.
 以下、前述した実施の形態と異なる点について、図面を参照しながら説明する。
Embodiment 3.
Hereinafter, points different from the above-described embodiment will be described with reference to the drawings.
***構成の説明***
 図13は、本実施の形態に係る異常兆候検知装置100の構成図の例と、本実施の形態に係る異常兆候検知装置100を用いた異常兆候検知システムの構成例とを示す。
 本図に示すように、本実施の形態に係る異常兆候検知装置100は、特徴データ管理部121を備える。
*** Explanation of configuration ***
FIG. 13 shows an example of a configuration diagram of the abnormality sign detection device 100 according to the present embodiment and a configuration example of an abnormality sign detection system using the abnormality sign detection device 100 according to the present embodiment.
As shown in this figure, the abnormality sign detection device 100 according to the present embodiment includes a feature data management unit 121.
***動作の説明***
 図14は、本実施の形態に係る異常兆候検知装置100の動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
*** Explanation of operation ***
FIG. 14 is an example of a flowchart showing the operation of the abnormality sign detection device 100 according to the present embodiment.
The order of processing shown in this flowchart may be changed as appropriate.
(ステップS214:平常モデル再生成指示処理)
 異常兆候検知装置100は、
 特徴データ管理部121が平常モデルを再生成する再生成指示を出した場合、ステップS215を実行し、
 それ以外の場合、ステップS211を実行する。
 特徴データ管理部121は、再生成指示を何度出しても良い。
(Step S214: Normal model regeneration instruction processing)
The abnormality sign detection device 100
When the feature data management unit 121 issues a regeneration instruction to regenerate the normal model, step S215 is executed.
In other cases, step S211 is executed.
The feature data management unit 121 may issue a regeneration instruction any number of times.
 特徴データ管理部121は、任意の条件により、再生成指示を出して良い。前記条件の具体例としては、特徴データ記憶部109が記憶する特徴データの数であって、平常データの異常兆候データに対応する特徴データの数が、一定値を超えた場合である。
 特徴データ管理部121は、
 平常モデル毎に再生成指示を出しても良いし、
 全ての平常モデルに対する再生成指示を出しても良い。
 平常データの異常兆候データは、信頼度判定部202が平常データと判定した判定対象の異常兆候データのことである。
The feature data management unit 121 may issue a regeneration instruction under arbitrary conditions. A specific example of the above condition is the number of feature data stored in the feature data storage unit 109, when the number of feature data corresponding to the abnormal sign data of the normal data exceeds a certain value.
The feature data management unit 121
You may issue a regeneration instruction for each normal model,
Regeneration instructions may be issued for all normal models.
The abnormality sign data of the normal data is the abnormality sign data of the determination target determined by the reliability determination unit 202 as the normal data.
(ステップS215:平常モデル再生成処理)
 平常モデル生成部105は、特徴データ記憶部109が平常データの異常兆候データとして記憶している記憶している異常兆候データと、平常データ記憶部111が記憶している学習データとに基づいて、特徴データ管理部121が出した再生成指示に対応する平常モデルを再生成する。
 平常モデル生成部105は、平常モデルを何度再生成しても良い。
(Step S215: Normal model regeneration process)
The normal model generation unit 105 is based on the abnormal sign data stored by the feature data storage unit 109 as the abnormal sign data of the normal data and the learning data stored by the normal data storage unit 111. The normal model corresponding to the regeneration instruction issued by the feature data management unit 121 is regenerated.
The normal model generation unit 105 may regenerate the normal model many times.
***平常判定部110の動作の説明***
 平常判定部110の動作を示すフローチャートの例は、図8又は図12に示すフローチャートと同じである。
 しかし、一部の処理の内容に差異があるので、以下で説明する。
*** Explanation of the operation of the normal determination unit 110 ***
An example of a flowchart showing the operation of the normal determination unit 110 is the same as the flowchart shown in FIG. 8 or FIG.
However, since there are differences in the contents of some processes, they will be described below.
(ステップS306:異常兆候データ学習処理)
 異常兆候データ学習部203は、
 判定対象の異常兆候データの特徴量に対応する異常特徴データを、特徴データとして、特徴データ記憶部109に記憶させる。
 異常兆候データ学習部203は、判定対象の異常兆候データが平常データの異常兆候データである場合、
 判定対象の異常兆候データを平常データの異常兆候データとして、特徴データ記憶部109に記憶させ、
 判定対象の異常兆候データに対応する設備状態を、判定対象の異常兆候データに対応させて記憶させる。
(Step S306: Abnormal sign data learning process)
The abnormality sign data learning unit 203
Abnormal feature data corresponding to the feature amount of the abnormality sign data to be determined is stored in the feature data storage unit 109 as feature data.
When the abnormal sign data to be determined is the abnormal sign data of the normal data, the abnormality sign data learning unit 203 determines.
The abnormal sign data to be determined is stored in the feature data storage unit 109 as the abnormal sign data of normal data.
The equipment status corresponding to the abnormality sign data of the judgment target is stored in correspondence with the abnormality sign data of the judgment target.
***実施の形態3の特徴***
 本実施の形態に係る異常兆候検知装置100によれば、
 平常判定部110は、異常兆候データを平常データと判定した場合に、特徴データ記憶部109に、
 異常兆候データを、平常データの異常兆候データとして記憶させ、
 異常兆候データに対応する設備状態を、異常兆候データに対応させて記憶させ、
 平常モデル生成部105は、設備状態毎に、特徴データ記憶部109が平常データの異常兆候データとして記憶している異常兆候データに基づいて、平常モデルを再生成する。
*** Features of Embodiment 3 ***
According to the abnormality sign detection device 100 according to the present embodiment.
When the normality determination unit 110 determines that the abnormal sign data is normal data, the feature data storage unit 109 stores the abnormality data.
Abnormal sign data is stored as abnormal sign data of normal data,
The equipment status corresponding to the abnormal sign data is stored in correspondence with the abnormal sign data.
The normal model generation unit 105 regenerates the normal model based on the abnormal sign data stored as the abnormal sign data of the normal data by the feature data storage unit 109 for each equipment state.
***実施の形態3の効果の説明***
 以上のように、本実施の形態に係る異常兆候検知装置100によれば、特徴データ管理部121の再生成指示を契機として、平常モデル生成部105は、特徴データ記憶部109と、平常データ記憶部111とが記憶しているデータに基づいて、平常モデルを再生成する。
*** Explanation of the effect of Embodiment 3 ***
As described above, according to the abnormality sign detection device 100 according to the present embodiment, the normal model generation unit 105 has the feature data storage unit 109 and the normal data storage unit triggered by the regeneration instruction of the feature data management unit 121. A normal model is regenerated based on the data stored by the unit 111.
 従って、本実施の形態に係る異常兆候検知装置100が使用する平常モデルの網羅性が、異常兆候検知装置100の運用中に徐々に高まるため、本実施の形態に係る異常兆候検知装置100は、異常兆候データ検出の精度を向上させることができる。 Therefore, since the comprehensiveness of the normal model used by the abnormality sign detection device 100 according to the present embodiment gradually increases during the operation of the abnormality sign detection device 100, the abnormality sign detection device 100 according to the present embodiment gradually increases. The accuracy of abnormality sign data detection can be improved.
<変形例16>
 信頼度判定部202は、平常データの異常兆候データを平常データ記憶部111に記憶させても良い。
 本変形例において、
 特徴データ管理部121は、平常データ記憶部111を監視し、
 平常モデル生成部105は、平常データ記憶部111が記憶している学習データと、平常データの異常兆候データとに基づいて、平常モデルを再生成する。
<Modification 16>
The reliability determination unit 202 may store the abnormal sign data of the normal data in the normal data storage unit 111.
In this modification,
The feature data management unit 121 monitors the normal data storage unit 111,
The normal model generation unit 105 regenerates the normal model based on the learning data stored in the normal data storage unit 111 and the abnormal sign data of the normal data.
<変形例17>
 閾値決定部107は、閾値を動的に決定しても良い。
 具体例としては、閾値決定部107は、平常モデル生成部105が平常モデルを再生成することに合わせて、閾値を再設定しても良い。
 本変形例によれば、異常兆候判定部108は、平常モデルが再生成された場合であっても、平常モデルに対応した閾値を用いて判定することができる。
<Modification 17>
The threshold value determination unit 107 may dynamically determine the threshold value.
As a specific example, the threshold value determination unit 107 may reset the threshold value in accordance with the normal model generation unit 105 regenerating the normal model.
According to this modification, the abnormality sign determination unit 108 can determine by using the threshold value corresponding to the normal model even when the normal model is regenerated.
***他の実施の形態***
 前述した各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
*** Other embodiments ***
It is possible to freely combine the above-described embodiments, modify any component of each embodiment, or omit any component in each embodiment.
 また、実施の形態は、実施の形態1から3で示したものに限定されるものではなく、必要に応じて種々の変更が可能である。 Further, the embodiment is not limited to the one shown in the first to third embodiments, and various changes can be made as needed.
 10 コンピュータ、11 プロセッサ、12 メモリ、13 記憶装置、14 データバス、100 異常兆候検知装置、101 対象設備、102 検知結果管理部、103 特徴量変換部、104 設備状態判定部、105 平常モデル生成部、106 異常度算出部、107 閾値決定部、108 異常兆候判定部、109 特徴データ記憶部、110 平常判定部、111 平常データ記憶部、121 特徴データ管理部、201 結果確認部、202 信頼度判定部、203 異常兆候データ学習部、204 平常データ学習部、401 特徴データ層、402 下限値、403 上限値、404 異常兆候データ累積数、405 異常兆候データ特徴量、701 記憶特徴量、702 判定対象特徴量、703 近傍。 10 computer, 11 processor, 12 memory, 13 storage device, 14 data bus, 100 abnormality sign detection device, 101 target equipment, 102 detection result management unit, 103 feature quantity conversion unit, 104 equipment status determination unit, 105 normal model generation unit , 106 Abnormality calculation unit, 107 Threshold determination unit, 108 Abnormal sign determination unit, 109 Feature data storage unit, 110 Normal judgment unit, 111 Normal data storage unit, 121 Feature data management unit, 201 Result confirmation unit, 202 Reliability determination Department, 203 Abnormal sign data learning unit, 204 Normal data learning unit, 401 Feature data layer, 402 Lower limit value, 403 Upper limit value, 404 Abnormal sign data cumulative number, 405 Abnormal sign data feature amount, 701 Memory feature amount, 702 Judgment target Feature amount, near 703.

Claims (9)

  1.  時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、前記部分時系列データの異常度を算出する異常度算出部と、
     前記部分時系列データの前記異常度が閾値を超過している場合に、前記部分時系列データを異常兆候データと判定する異常兆候判定部と、
     前記異常兆候データの信頼度を、前記異常兆候データの前記特徴量と対応する特徴データに基づいて算出し、前記信頼度を許容できない場合に、前記異常兆候データを平常データと判定する平常判定部と
    を備え、
     前記平常判定部は、前記異常兆候データの前記特徴量と対応する異常特徴データを、前記特徴データとして特徴データ記憶部に記憶させる異常兆候検知装置。
    An abnormality degree calculation unit that calculates the abnormality degree of the partial time series data based on the feature amount of the partial time series data that is at least a part of the time series data.
    When the degree of abnormality of the partial time-series data exceeds the threshold value, the abnormality sign determination unit that determines the partial time-series data as abnormality sign data,
    A normal determination unit that calculates the reliability of the abnormal sign data based on the feature data corresponding to the feature amount of the abnormal sign data, and determines the abnormal sign data as normal data when the reliability cannot be tolerated. With and
    The normal determination unit is an abnormality sign detection device that stores abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit as the feature data.
  2.  閾値を決定する閾値決定部を備え、
     前記異常兆候判定部は、前記閾値決定部が決定した閾値に基づいて判定する請求項1に記載の異常兆候検知装置。
    Equipped with a threshold value determination unit that determines the threshold value
    The abnormality sign detection device according to claim 1, wherein the abnormality sign determination unit determines based on a threshold value determined by the threshold value determination unit.
  3.  前記平常判定部は、前記特徴データ記憶部に、
     前記異常兆候データの前記特徴量の値の範囲に対応する層である特徴データ層に対応付けて記憶させ、
     前記特徴データ層毎に、前記特徴データ層に対応する前記異常兆候データの異常兆候データ累積数を、前記特徴データとして記憶させ、
     前記平常判定部は、前記異常兆候データ累積数の総数に対する、前記異常兆候データに対応する前記異常兆候データ累積数の割合に基づいて、前記異常兆候データの前記信頼度を算出する請求項1又は2に記載の異常兆候検知装置。
    The normal determination unit is stored in the feature data storage unit.
    It is stored in association with the feature data layer, which is a layer corresponding to the range of the feature amount values of the abnormality sign data.
    For each feature data layer, the cumulative number of abnormal sign data of the abnormal sign data corresponding to the feature data layer is stored as the feature data.
    The normal determination unit calculates the reliability of the abnormal sign data based on the ratio of the cumulative number of the abnormal sign data corresponding to the abnormal sign data to the total number of the cumulative number of the abnormal sign data. The abnormality sign detection device according to 2.
  4.  前記異常兆候判定部は、前記部分時系列データの前記異常度が前記閾値を超過していない場合に、前記部分時系列データを前記平常データと判定し、
     前記平常判定部は、前記特徴データ記憶部に、前記平常データの前記特徴量と対応する平常特徴データを、前記特徴データとして記憶させる請求項1から3のいずれか1項に記載の異常兆候検知装置。
    When the degree of abnormality of the partial time series data does not exceed the threshold value, the abnormality sign determination unit determines the partial time series data as the normal data.
    The abnormality sign detection according to any one of claims 1 to 3, wherein the normality determination unit stores the normal feature data corresponding to the feature amount of the normal data in the feature data storage unit as the feature data. apparatus.
  5.  平常なデータの特徴量が取り得る範囲に対応する平常モデルを生成する平常モデル生成部を備え、
     前記異常度算出部は、前記部分時系列データの前記特徴量と、前記平常モデル生成部が生成した前記平常モデルとに基づいて、前記異常度を算出する請求項1から4のいずれか1項に記載の異常兆候検知装置。
    Equipped with a normal model generator that generates a normal model corresponding to the range in which the features of normal data can be taken.
    The abnormality degree calculation unit is any one of claims 1 to 4 for calculating the abnormality degree based on the feature amount of the partial time series data and the normal model generated by the normal model generation unit. Abnormal sign detection device described in.
  6.  前記平常モデル生成部は、前記平常モデルを1以上の設備状態を取り得る設備の設備状態毎に生成し、
     前記異常兆候検知装置は、前記設備から前記時系列データを取得し、
     前記異常度算出部は、前記部分時系列データの前記特徴量と、前記部分時系列データに対応する前記設備状態に対応する前記平常モデルとに基づいて、前記異常度を算出する請求項5に記載の異常兆候検知装置。
    The normal model generation unit generates the normal model for each equipment state of equipment that can take one or more equipment states.
    The abnormality sign detection device acquires the time series data from the equipment and obtains the time series data.
    The fifth aspect of claim 5 is that the abnormality degree calculation unit calculates the abnormality degree based on the feature amount of the partial time series data and the normal model corresponding to the equipment state corresponding to the partial time series data. The described anomaly sign detector.
  7.  前記平常判定部は、前記異常兆候データを前記平常データと判定した場合に、前記特徴データ記憶部に、
     前記異常兆候データを、前記平常データの前記異常兆候データとして記憶させ、
     前記異常兆候データに対応する前記設備状態を、前記異常兆候データに対応させて記憶させ、
     前記平常モデル生成部は、前記設備状態毎に、前記特徴データ記憶部が前記平常データの前記異常兆候データとして記憶している前記異常兆候データに基づいて、前記平常モデルを再生成する請求項6に記載の異常兆候検知装置。
    When the abnormal sign data is determined to be the normal data, the normal determination unit stores the characteristic data storage unit.
    The abnormal sign data is stored as the abnormal sign data of the normal data,
    The equipment state corresponding to the abnormality sign data is stored in correspondence with the abnormality sign data.
    6. The normal model generation unit regenerates the normal model based on the abnormal sign data stored as the abnormal sign data of the normal data by the feature data storage unit for each equipment state. Abnormal sign detection device described in.
  8.  異常度算出部が、時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、前記部分時系列データの異常度を算出し、
     異常兆候判定部が、前記部分時系列データの前記異常度が閾値を超過している場合に、前記部分時系列データを異常兆候データと判定し、
     平常判定部が、前記異常兆候データの信頼度を、前記異常兆候データの前記特徴量と対応する特徴データに基づいて算出し、前記信頼度を許容できない場合に、前記異常兆候データを平常データと判定し、
     前記平常判定部は、前記異常兆候データの前記特徴量と対応する異常特徴データを、前記特徴データとして特徴データ記憶部に記憶させる異常兆候検知方法。
    The anomaly degree calculation unit calculates the anomaly degree of the partial time series data based on the feature amount of the partial time series data which is at least a part of the time series data.
    When the degree of abnormality of the partial time-series data exceeds the threshold value, the abnormality sign determination unit determines the partial time-series data as abnormality sign data.
    The normal determination unit calculates the reliability of the abnormal sign data based on the feature data corresponding to the feature amount of the abnormal sign data, and when the reliability cannot be tolerated, the abnormal sign data is referred to as normal data. Judge,
    The normal determination unit is an abnormality sign detection method for storing abnormal feature data corresponding to the feature amount of the abnormality sign data in the feature data storage unit as the feature data.
  9.  コンピュータに、
     時系列データの少なくとも一部である部分時系列データの特徴量に基づいて、前記部分時系列データの異常度を算出させ、
     前記部分時系列データの前記異常度が閾値を超過している場合に、前記部分時系列データを異常兆候データと判定させ、
     前記異常兆候データの信頼度を、前記異常兆候データの前記特徴量と対応する特徴データに基づいて算出し、前記信頼度を許容できない場合に、前記異常兆候データを平常データと判定させ、
     前記異常兆候データの前記特徴量と対応する異常特徴データを、前記特徴データとして記憶させる異常兆候検知プログラム。
    On the computer
    The degree of abnormality of the partial time series data is calculated based on the feature amount of the partial time series data which is at least a part of the time series data.
    When the degree of abnormality of the partial time series data exceeds the threshold value, the partial time series data is determined to be abnormality sign data.
    The reliability of the abnormal sign data is calculated based on the feature data corresponding to the feature amount of the abnormal sign data, and when the reliability is unacceptable, the abnormal sign data is determined to be normal data.
    An abnormality sign detection program that stores abnormal feature data corresponding to the feature amount of the abnormality sign data as the feature data.
PCT/JP2019/022495 2019-06-06 2019-06-06 Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program WO2020245968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524591A JP7016450B2 (en) 2019-06-06 2019-06-06 Abnormal sign detection device, abnormal sign detection method, and abnormal sign detection program
PCT/JP2019/022495 WO2020245968A1 (en) 2019-06-06 2019-06-06 Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022495 WO2020245968A1 (en) 2019-06-06 2019-06-06 Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program

Publications (1)

Publication Number Publication Date
WO2020245968A1 true WO2020245968A1 (en) 2020-12-10

Family

ID=73653055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022495 WO2020245968A1 (en) 2019-06-06 2019-06-06 Abnormality sign detection device, abnormality sign detection method, and abnormality sign detection program

Country Status (2)

Country Link
JP (1) JP7016450B2 (en)
WO (1) WO2020245968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047859A1 (en) * 2022-09-02 2024-03-07 三菱電機株式会社 Abnormality detecting device, abnormality detecting method, and abnormality detecting program
US12130698B2 (en) 2022-01-27 2024-10-29 Toyota Jidosha Kabushiki Kaisha Information processing system for abnormal event determination from time-series data, and methods and programs for operating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163517A (en) * 2004-12-02 2006-06-22 Petroleum Energy Center Abnormality detector
JP2009259020A (en) * 2008-04-17 2009-11-05 Japan Energy Corp Anomaly detection apparatus
JP2017097712A (en) * 2015-11-26 2017-06-01 株式会社日立製作所 Instrument diagnosis device and system as well as method
JP2019067136A (en) * 2017-09-29 2019-04-25 ファナック株式会社 Numerical control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163517A (en) * 2004-12-02 2006-06-22 Petroleum Energy Center Abnormality detector
JP2009259020A (en) * 2008-04-17 2009-11-05 Japan Energy Corp Anomaly detection apparatus
JP2017097712A (en) * 2015-11-26 2017-06-01 株式会社日立製作所 Instrument diagnosis device and system as well as method
JP2019067136A (en) * 2017-09-29 2019-04-25 ファナック株式会社 Numerical control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12130698B2 (en) 2022-01-27 2024-10-29 Toyota Jidosha Kabushiki Kaisha Information processing system for abnormal event determination from time-series data, and methods and programs for operating the same
WO2024047859A1 (en) * 2022-09-02 2024-03-07 三菱電機株式会社 Abnormality detecting device, abnormality detecting method, and abnormality detecting program
JP7562055B2 (en) 2022-09-02 2024-10-04 三菱電機株式会社 Anomaly detection device, anomaly detection method, and anomaly detection program

Also Published As

Publication number Publication date
JP7016450B2 (en) 2022-02-04
JPWO2020245968A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
CN102713862B (en) Error cause extraction device, failure cause extracting method and program recorded medium
CN105474577B (en) System and method for monitoring system performance and availability
US10354197B2 (en) Pattern analytics for real-time detection of known significant pattern signatures
Shang et al. Automated detection of performance regressions using regression models on clustered performance counters
Compare et al. Reliability model of a component equipped with PHM capabilities
CN110164501B (en) Hard disk detection method, device, storage medium and equipment
US20220368614A1 (en) Method and system for anomaly detection based on time series
US9524223B2 (en) Performance metrics of a computer system
WO2019239542A1 (en) Abnormality sensing apparatus, abnormality sensing method, and abnormality sensing program
JP7016450B2 (en) Abnormal sign detection device, abnormal sign detection method, and abnormal sign detection program
CN113196311A (en) System and method for identifying and predicting abnormal sensing behavior patterns of a machine
KR20190008515A (en) Process Monitoring Device and Method using RTC method with improved SAX method
CN102792278B (en) For the method and apparatus that the diagnostic data in computing environment is caught
KR102132077B1 (en) Facility data fault diagnosis system and method of the same
Reda Taha A Neural‐Wavelet Technique for Damage Identification in the ASCE Benchmark Structure Using Phase II Experimental Data
CN111555899B (en) Alarm rule configuration method, equipment state monitoring method, device and storage medium
US10157113B2 (en) Information processing device, analysis method, and recording medium
CN104035866B (en) The software action appraisal procedure and device of analysis are called based on system
CN115794479B (en) Log data processing method and device, electronic equipment and storage medium
CN115659351B (en) Information security analysis method, system and equipment based on big data office
WO2023181241A1 (en) Monitoring server device, system, method, and program
US10467082B2 (en) Device driver verification
KR102212022B1 (en) Method of automatically determining condition of hydro turbine in hydroelectric power plant and system for the same
CN115189961A (en) Fault identification method, device, equipment and storage medium
CN116659826B (en) Method and device for detecting state of wind power bolt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931931

Country of ref document: EP

Kind code of ref document: A1