WO2020241822A1 - Methacrylic copolymer and molded article - Google Patents
Methacrylic copolymer and molded article Download PDFInfo
- Publication number
- WO2020241822A1 WO2020241822A1 PCT/JP2020/021319 JP2020021319W WO2020241822A1 WO 2020241822 A1 WO2020241822 A1 WO 2020241822A1 JP 2020021319 W JP2020021319 W JP 2020021319W WO 2020241822 A1 WO2020241822 A1 WO 2020241822A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- methacrylic copolymer
- less
- molecular weight
- average molecular
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
Definitions
- the present invention relates to methacrylic copolymers and molded articles. More specifically, the present invention relates to a methacrylic copolymer having excellent fluidity during heat molding and less mold stain, and a molded product having high heat resistance and high mechanical strength.
- Methacrylic resin has high transparency and is useful as a material for molded products used for optical members, lighting members, signboard members, decorative members and the like. In some fields where molded products of methacrylic resin are used, there is a demand for weight reduction or thinning of molded products. In order to obtain a thin-walled molded product, it is necessary for the methacrylic resin to have high fluidity when melted. As measures for increasing the fluidity of the resin, it is generally known to lower the softening temperature or the glass transition temperature, lower the molecular weight, widen the molecular weight distribution, and the like. However, when these measures are applied to methacrylic resin, the heat resistance is lowered and the mechanical strength is lowered. In consideration of such a situation, Cited Documents 1 to 3 propose various methacrylic resins and methods for producing the same.
- An object of the present invention is to provide a methacrylic copolymer having excellent fluidity during heat molding and less mold stain, and a molded product having high heat resistance and high mechanical strength.
- Weight average molecular weight Mw is 48,000-59000, The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0.
- thermoplastic resin composition containing the methacrylic copolymer according to [1] or [2] and acrylic rubber particles.
- the amount of the acetone-insoluble content contained in the thermoplastic resin composition is 59% by mass or less, and the acetone-soluble content contained in the thermoplastic resin composition is under the conditions of 230 ° C. and a load of 3.8 kg.
- the thermoplastic resin composition according to [3] or [4], wherein the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R in the above is 6.0 to 1.5 ° C. for 10 minutes / g.
- Weight average molecular weight Mw is 48,000-59000, The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0.
- the methacrylic copolymer of the present invention has excellent fluidity and is unlikely to cause molding defects such as silver streaks, cracks, sink marks, flow marks, resin burns, gas stains, and coloring.
- the molding material containing the methacrylic copolymer of the present invention is suitable for injection molding.
- the molding material containing the methacrylic copolymer of the present invention is suitable for obtaining a thin-walled molded product, for example, a plate having a thickness of 0.5 mm or less.
- the molded product containing the methacrylic copolymer of the present invention has high heat resistance and mechanical strength, and has no appearance defects such as coloring.
- the molding material containing the methacrylic copolymer of the present invention has low heat generation due to shearing, and an injection-molded product having a good appearance can be obtained even at a low temperature and a high injection pressure.
- the methacrylic copolymer of the present invention comprises a monomer unit derived from methyl methacrylate and a monomer unit derived from an acrylic acid ester.
- the content of the monomer unit derived from methyl methacrylate is 85.0 to 95.0% by mass, preferably 85.0 to 93.5% by mass, and more preferably 87.5 to 93.5% by mass. More preferably, it is 88 to 93.5% by mass.
- the content of the monomer unit derived from the acrylic acid ester is 5.0 to 15.0% by mass, preferably 6.5 to 15.0% by mass, and more preferably 6.5 to 12.5% by mass. More preferably, it is 6.5 to 12% by mass.
- the total of the monomer unit derived from methyl methacrylate and the monomer unit derived from the acrylic acid ester is preferably 99% by mass or more, preferably 100% by mass. Is more preferable.
- Acrylate esters include acrylic acids such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, myristyl acrylate, dodecyl acrylate, palmityl acrylate, stearyl acrylate, and behenyl acrylate.
- Acrylic acid branched alkyl ester such as isopropyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate; Acrylic acid cyclic alkyl ester such as cyclohexyl acrylate; Acrylic acid aryl ester such as phenyl acrylate; benzyl acrylate and the like Acrylate aralkyl ester; etc.
- acrylic acid linear, branched or cyclic alkyl esters are preferred, and acrylic acid linear alkyl esters are more preferred.
- the alkyl group in the acrylic acid alkyl ester preferably has 1 to 18, more preferably 1 or 2, and even more preferably 1.
- the methacrylic copolymer of the present invention may have a monomer unit other than a monomer unit derived from methyl methacrylate and a monomer unit derived from an acrylic acid ester, and such a single amount may be present.
- an alkyl ester of acyclic C2 or more of methacrylic acid such as ethyl methacrylate, butyl butyl methacrylate, hexyl methacrylate, and heptyl methacrylate, preferably an alkyl ester of acyclic C2 or more and C7 or less of methacrylic acid; bicyclo methacrylate [3].
- the methacrylic copolymer of the present invention has a weight average molecular weight Mw and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn, both of which are within the following ranges. That is, the methacrylic copolymer of the present invention has a weight average molecular weight Mw of 48,000 to 59000, preferably 48,000 to 55,000, and more preferably 49000 to 53000, and the ratio of the weight average molecular weight Mw to the number average molecular weight Mn is Mw / Mn. However, it is 2.1 or less, preferably 1.7 or more and 2.0 or less.
- the weight average molecular weight Mw and the number average molecular weight Mn are values calculated by converting the chart measured by gel permeation chromatography into the molecular weight of standard polystyrene.
- the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is preferably 5.0 to 1.5 ° C. for 10 minutes / g. Is 4.0 to 1.5 ° C. for 10 minutes / g, more preferably 3.5 to 1.5 ° C. for 10 minutes / g, and even more preferably 3.3 to 1.5 ° C. for 10 minutes / g. ..
- the glass transition temperature is once raised to 230 ° C.
- the DSC curve was measured under the condition that the temperature was raised from 1 to 230 ° C. at 10 ° C./min. It is an intermediate point glass transition temperature (Tmg) determined based on the DSC curve measured at the time of the second temperature rise.
- Tmg intermediate point glass transition temperature
- the lower limit of the melt flow rate R of the methacrylic copolymer of the present invention measured at 230 ° C. and a load of 3.8 kg is preferably 15 g / 10 minutes, more preferably 25 g / 10 from the viewpoint of moldability, toughness and the like. Minutes, with an upper limit of preferably 60 g / 10 minutes.
- the amount of bound sulfur atom with respect to the monomer unit derived from methyl methacrylate is preferably 0.4 mol% or less, more preferably 0.3 to 0.38 mol%, still more preferably. It is 0.31 to 0.36 mol%.
- the amount of sulfur bond is related to imparting good moldability, low mold stain, and high fluidity to the methacrylic copolymer.
- the amount of bound sulfur atom is a value S p which is determined as follows. The methacrylic copolymer is dissolved in chloroform to obtain a solution. This solution is added to n-hexane to give a precipitate. The precipitate is dried at 80 ° C. for 12 hours or longer under vacuum.
- An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with.
- the obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A). From the mass W p (mass%) of sulfur atoms per mass of the dried product, the amount of bound sulfur atoms (mol%) with respect to the monomer unit derived from methyl methacrylate is calculated.
- the method for producing the methacrylic copolymer of the present invention is not particularly limited.
- it can be produced by a known polymerization reaction such as a radical polymerization reaction or an anionic polymerization reaction.
- a radical polymerization reaction is preferable.
- the polymerization reaction can be carried out by a suspension polymerization method, a bulk polymerization method, a solution polymerization method, or an emulsion polymerization method.
- the massive polymerization method is preferable because it contains less impurities.
- the polymerization conversion rate is preferably 35 to 65%.
- the bulk polymerization method is preferably carried out by a continuous flow method. In the continuous flow type massive polymerization method, the average residence time in the reactor is preferably 1.5 to 3 hours.
- a preferred method for producing the methacrylic copolymer of the present invention is a monomer containing methyl methacrylate and an acrylic acid ester, preferably methyl methacrylate 81.0 to 94.2% by mass and an acrylic acid ester 5.8 to 19.
- a monomer containing at least 0% by mass, more preferably a monomer containing 81.0 to 91.9% by mass of methyl methacrylate and 8.1 to 19.0% by mass of an acrylic acid ester are polymerized by a massive polymerization method. Including that.
- Acrylic acid esters are involved in imparting high fluidity and high melt flow rate R to methacrylic copolymers.
- the monomers used for polymerization include methacrylic acid acyclic C2 or more alkyl ester (preferably methacrylic acid acyclic C2 or more and C7 or less alkyl ester), methacrylic acid cyclic alkyl ester; Aromatic vinyl such as styrene and methylstyrene may be contained.
- the content of these monomers other than methyl methacrylate and acrylic acid ester is preferably 1% by mass or less.
- the total amount of methyl methacrylate and acrylic acid ester contained in the monomer to be polymerized is preferably 99% by mass or more, and more preferably 100% by mass.
- the polymerization reaction is carried out using a polymerization initiator, a predetermined monomer, and if necessary, a chain transfer agent or the like.
- the temperature at the time of polymerization is preferably 100 to 150 ° C, more preferably 110 to 140 ° C, and even more preferably 120 to 140 ° C. The lower the polymerization temperature, the higher the heat resistance of the methacrylic copolymer of the present invention tends to be.
- the polymerization initiator used in the present invention is not particularly limited.
- an azo-based polymerization initiator such as azobisisobutyronitrile
- a peroxide-based polymerization initiator such as t-hexyl peroxyisopropyl monocarbonate and the like
- the polymerization initiator used in the present invention preferably has a half-life of 1 second to 1 minute at the temperature at the time of polymerization. When the amount of the polymerization initiator used is small, the methacrylic copolymer of the present invention tends to have less mold stain.
- azobisisobutyronitrile is preferably 0.02 parts by mass or less, more preferably 0 parts by mass, based on a total of 100 parts by mass of the monomers to be polymerized. It can be used in an amount of .002 parts by mass or more and 0.01 parts by mass or less.
- the chain transfer agent used in the present invention is not particularly limited.
- mercaptan chain transfer agents such as n-octyl mercaptan and n-dodecyl mercaptan; ⁇ -methylstyrene dimer; terpinolene and the like can be mentioned.
- the amount of the chain transfer agent used is preferably 0.42 to 0.52 parts by mass with respect to a total of 100 parts by mass of the monomers to be polymerized. As the amount of the mercaptan chain transfer agent used increases, the amount of bound sulfur atoms with respect to the monomer unit derived from methyl methacrylate increases.
- n-octyl mercaptan is preferably 0.3 mass by mass with respect to 100 parts by mass of the total amount of the monomers to be polymerized. It can be used in an amount of 0.6 parts by mass or more, more preferably 0.41 parts by mass or more and 0.50 parts by mass or less.
- the unreacted monomer is preferably removed by a thermal devolatile method at a temperature of 220 to 260 ° C.
- volatile components are removed from a device for heating a liquid containing a reaction product discharged from a reactor, for example, a heat exchanger and a liquid heated to a predetermined temperature by the device for heating.
- An extruder with a vent for removal is preferably used.
- a vented extruder usually consists of a cylinder and a screw.
- the cylinder is provided with a hopper (introduction port for liquid including reaction products), a rear vent on the upstream side of the hopper, a front vent on the downstream side of the hopper, and a polymer discharge port on the most downstream side. Then, it is preferable to set the temperature and pressure in the hopper and the cylinder so that the liquid heated in the hopper evaporates in a flash. The removed volatile matter is discharged from the rear vent and the front vent. Then, it is preferable to add an inert gas such as nitrogen gas at the rear vent and / or the front vent to the volatile matter discharged through the rear vent and / or the front vent. Further, the screw may be either a single shaft type or a biaxial type.
- the screw may, for example, have a smaller shaft diameter of the screw in that portion than that of the other portion so as to release pressure at the portion corresponding to the front vent.
- a valve mechanism for providing a dynamic valve immediately before the front vent, or a bypass mechanism for providing a reverse screw portion on the screw immediately before the front vent and providing a bypass connecting immediately before and after the front vent in the cylinder may be provided.
- thermoplastic resin composition of the present invention contains the methacrylic copolymer of the present invention and acrylic rubber particles.
- the acrylic rubber particles include those composed of an outer layer made of a thermoplastic polymer (P) and an inner layer made of a crosslinked elastic body in contact with and covered with the outer layer, and the inner layer and the outer layer are a core and a shell. It is preferable that the above is formed.
- the inner layer consists of a core and an inner shell.
- the core (inner layer) is a crosslinked rubber polymer (Q)
- the outer shell (outer layer) is a thermoplastic polymer (P)
- the core (inner layer) is a crosslinked polymer (R).
- -Inner shell (inner layer) is a crosslinked rubber polymer
- Q) -Outer shell (outer layer) is a three-layer polymer of thermoplastic polymer (P)
- core (inner layer) is a crosslinked rubber polymer (Q) -First
- a four-layer polymer in which the inner shell (inner layer) is a crosslinked polymer (R) -the second inner shell (inner layer) is a crosslinked rubber polymer (Q) -the outer shell (outer layer) is a thermoplastic polymer (P).
- the polymer contained in each layer so that the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select.
- the mass ratio of the inner layer to the outer layer of the acrylic rubber particles is preferably 60/40 to 95/5, more preferably 70/30 to 90/10.
- the ratio of the layer containing the crosslinked rubber polymer (Q) is preferably 20 to 70% by mass, more preferably 30 to 50% by mass.
- the acrylic rubber particles have an average particle diameter of preferably 0.05 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m, and even more preferably 0.15 to 0.2 ⁇ m.
- an average particle size within such a range particularly an average particle size of 0.15 to 0.2 ⁇ m, toughness can be exhibited with a small amount of compounding, and therefore rigidity and surface hardness are not impaired. ..
- the average particle size in the present specification is an average value in a volume-based particle size distribution measured by a light scattered light method.
- thermoplastic polymer (P) is a polymer composed of a methacrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms and, if necessary, a monofunctional monomer unit other than the methacrylic acid alkyl ester.
- the thermoplastic polymer (P) preferably does not contain a polyfunctional monomer unit.
- the amount of the methacrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms constituting the thermoplastic polymer (P) is preferably 80 to 100% by mass with respect to the mass of the thermoplastic polymer (P). More preferably, it is 85 to 95% by mass.
- methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms (hereinafter, may be referred to as methacrylic acid C1-8 alkyl ester), for example, methyl methacrylate is preferable.
- the amount of the monofunctional monomer unit other than the methacrylic acid C1-8 alkyl ester constituting the thermoplastic polymer (P) is preferably 0 to 20% by mass with respect to the mass of the thermoplastic polymer (P). More preferably, it is 5 to 15% by mass.
- monofunctional monomers other than methacrylic acid C1-8 alkyl ester include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and prol acrylate; aromatic vinyl such as styrene. Compounds can be mentioned.
- the amount of the thermoplastic polymer (P) is preferably 40 to 75% by mass, more preferably 45 to 70% by mass, and further preferably 50 to 65% by mass with respect to the acrylic rubber particles.
- the crosslinked elastic layer which is an inner layer, has an intermediate layer made of a crosslinked rubber polymer (Q) and an inner layer made of a crosslinked polymer (R) and covered in contact with the intermediate layer.
- the crosslinked polymer (R) is composed of a methyl methacrylate unit, a monofunctional monomer unit other than methyl methacrylate, and a polyfunctional monomer unit.
- the amount of the methyl methacrylate unit constituting the crosslinked polymer (R) is preferably 40 to 98.5% by mass, more preferably 45 to 95% by mass, based on the mass of the crosslinked polymer (R).
- the amount of the monofunctional monomer unit other than methyl methacrylate constituting the crosslinked polymer (R) is 1 to 59.5% by mass, preferably 5 to 55% by mass, based on the mass of the crosslinked polymer (R). %.
- the monofunctional monomer other than methyl methacrylate include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate; and aromatic vinyl compounds such as styrene. Can be done.
- the amount of the polyfunctional monomer unit constituting the crosslinked polymer (R) is preferably 0.05 to 0.4% by mass, more preferably 0.1 to 0.1, based on the mass of the crosslinked polymer (R). It is 0.3% by mass.
- the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
- the amount of the crosslinked polymer (R) is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass with respect to the acrylic rubber particles.
- the crosslinked rubber polymer (Q) is composed of an acrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene unit, and a polyfunctional monomer unit.
- the amount of the acrylic acid alkyl ester unit and / or the conjugated diene unit having an alkyl group having 1 to 8 carbon atoms constituting the crosslinked rubber polymer (Q) is preferable with respect to the mass of the crosslinked rubber polymer (Q). It is 85 to 99% by mass, more preferably 95 to 98% by mass.
- acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate.
- the amount of the polyfunctional monomer unit constituting the crosslinked rubber polymer (Q) is preferably 1 to 1.7% by mass, more preferably 1.2 to 1% by mass, based on the mass of the crosslinked rubber polymer (Q). It is 1.6% by mass, more preferably 1.3 to 1.5% by mass.
- Examples of the polyfunctional monomer include those mentioned in the crosslinked polymer (R).
- the ratio of the mass of the polyfunctional monomer unit in the crosslinked rubber polymer (Q) to the mass of the polyfunctional monomer unit in the crosslinked polymer (R) is preferable. It is 0.05 to 0.25, more preferably 0.1 to 0.2.
- the glass transition temperature of the crosslinked rubber polymer (Q) is preferably lower than the glass transition temperature of the crosslinked polymer (R).
- the amount of the crosslinked rubber polymer (Q) is preferably 20 to 55% by mass, more preferably 25 to 45% by mass, and further preferably 30 to 40% by mass with respect to the amount of acrylic rubber particles.
- the average diameter of the inner layer of the acrylic rubber particles is preferably 60 to 110 nm, more preferably 65 to 105 nm, and further preferably 70 to 100 nm.
- the average diameter of the inner layer can be determined as follows. Using a hydraulic press molding machine, mold size 50 mm x 120 mm, press temperature 250 ° C, preheating time 3 minutes, press pressure 50 kg / cm 2 , press time 30 seconds, cooling temperature 20 ° C, cooling pressure 50 kg / cm 2. Under the condition that the cooling time is 10 minutes, the resin composition containing the acrylic rubber particles is molded into a flat plate having a thickness of 3 mm. Using a microtome, the obtained flat plate is cut at ⁇ 100 ° C.
- the slice is dyed with ruthenium.
- the dyed flakes are observed with a scanning transmission electron microscope (JSM7600F manufactured by JEOL Ltd.) at an accelerating voltage of 25 kV and a photograph is taken.
- JSM7600F scanning transmission electron microscope
- the acrylic rubber particles are not particularly limited depending on the production method thereof.
- emulsion polymerization and the like can be mentioned.
- the monomer (r) for forming the crosslinked polymer (R) is emulsion-polymerized to obtain a latex containing the crosslinked polymer (R), and the crosslinked rubber polymer (R) is obtained.
- a monomer (q) for constituting Q) is added, and the monomer (q) is seed-emulsified polymerized to obtain a latex containing a crosslinked polymer (R) and a crosslinked rubber polymer (q).
- a monomer (p) for forming a thermoplastic polymer (P) is added thereto, and the monomer (p) is seed-emulsified polymerized to obtain a latex containing acrylic rubber particles.
- Emulsion polymerization is a known method used to obtain a latex containing a polymer.
- Seed emulsion polymerization is a method in which a monomer polymerization reaction is carried out on the surface of seed particles. Seed emulsion polymerization is preferably used to obtain core-shell structural polymer particles.
- thermoplastic resin composition of the present invention can further contain an acrylic block copolymer.
- the acrylic block copolymer is preferably composed of a polymer block (b1) having a methacrylic acid ester unit as a main component and a polymer block (b2) having an acrylic acid ester unit as a main component.
- the number of polymer blocks (b1) in one molecule of the acrylic block copolymer may be 1, or may be 2 or more. Further, the number of polymer blocks (b2) in one molecule of the acrylic block copolymer may be 1, or may be 2 or more.
- the amount of the methacrylic acid ester unit contained in the polymer block (b1) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more. ..
- the methacrylic acid ester for example, methyl methacrylate is preferable.
- the methacrylic acid ester can be used alone or in combination of two or more for the polymer block (b1).
- the amount of the polymer block (b1) contained in the acrylic block copolymer is preferable from the viewpoints of transparency, flexibility, bending resistance, impact resistance, flexibility, molding processability, surface smoothness, and the like. Is 40% by mass or more and 90% by mass or less, more preferably 45% by mass or more and 80% by mass or less.
- the glass transition temperature of the polymer block (b2) is preferably 20 ° C. or lower, more preferably ⁇ 20 ° C. or lower.
- the amount of the acrylic ester unit contained in the polymer block (b2) is preferably 90% by mass or more.
- the acrylic acid ester include n-butyl acrylate and benzyl acrylate. These acrylic acid esters can be used alone or in combination of two or more for the polymer block (b2).
- the polymer block (b2) may contain monomer units other than the acrylic acid ester as long as it does not interfere with the object and effect of the present invention.
- the polymer block (b2) is preferably composed of an acrylic acid alkyl ester unit and a (meth) acrylic acid aromatic ester unit from the viewpoint of transparency and the like.
- the mass ratio of the acrylic acid alkyl ester unit / (meth) acrylic acid aromatic ester is preferably 50/50 to 90/10, more preferably 60/40 to 80/20.
- the bond form between the polymer block (b1) and the polymer block (b2) contained in the acrylic block copolymer is not particularly limited.
- a block (b1) in which one end is connected (b1-b2-b1 triblock copolymer) is preferable.
- the weight average molecular weight of the acrylic block copolymer is preferably 52,000 or more and 400,000 or less, and more preferably 60,000 or more and 300,000 or less. Further, in the acrylic block copolymer, the ratio of the weight average molecular weight to the number average molecular weight is preferably 1.01 or more and 2.00 or less, and more preferably 1.05 or more and 1.60 or less.
- the weight average molecular weight and the number average molecular weight of the acrylic block copolymer can be appropriately set from the viewpoints of moldability, tensile strength, appearance and the like.
- the weight average molecular weight and the number average molecular weight are standard polystyrene-equivalent values measured by GPC (gel permeation chromatography).
- the acrylic block copolymer is not particularly limited depending on the production method thereof, and can be obtained by a known method.
- a method including living polymerization of the monomers constituting each polymer block is generally used.
- a living polymerization method a method including anionic polymerization in the presence of an organoalkali metal compound and an organoaluminum compound is a method in which the molecular weight and composition ratio can be easily controlled, the production cost, and the obtained acrylic block copolymer. It is preferable from the viewpoint of purity.
- the amount of acetone insoluble matter contained in the thermoplastic resin composition of the present invention is preferably 59% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass.
- the amount of acetone insoluble matter contained in the thermoplastic resin composition is determined as follows. 2 g (w0) of the precisely weighed thermoplastic resin composition is added to 50 ml of acetone, and the mixture is stirred at room temperature for 24 hours. The obtained liquid is placed in a centrifuge tube and centrifuged at 0 ° C. and 20000 rpm for 180 minutes. The supernatant is then removed by decantation. Acetone is added to the centrifuge tube and stirred. Centrifuge at 5 ° C. and 20000 rpm for 120 minutes. The supernatant is then removed by decantation. The centrifuge is taken out from the bottom of the centrifuge tube, dried at 50 ° C. under reduced pressure, and its mass w1 is measured.
- the amount (percentage) of acetone insoluble matter is calculated by the formula: 100 ⁇ w1 / w0.
- the amount (percentage) of the acetone-soluble component is calculated by the formula: 100 ⁇ (w0-w1) / w0.
- the acetone-soluble component contained in the thermoplastic resin composition of the present invention can be obtained by drying the supernatant at 50 ° C. under reduced pressure.
- the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is preferably 6.0 to 1.5 ° C. for 10 minutes / g, more preferably. Is 5.6 to 2.0 ° C. for 10 minutes / g.
- the acetone-soluble component contained in the thermoplastic resin composition of the present invention has a glass transition temperature of preferably 90 to 115 ° C, more preferably 95 to 110 ° C.
- the acetone-soluble component contained in the thermoplastic resin composition of the present invention has a melt flow rate R of preferably 15 to 60 g / 10 minutes, more preferably 20 to 55 g / 10 under the conditions of 230 ° C. and a load of 3.8 kg. Minutes.
- the molding material of the present invention contains the methacrylic copolymer (or thermoplastic resin composition) of the present invention.
- the molding material of the present invention is an antioxidant, a heat deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic agent, as long as the effects of the present invention are not impaired.
- Additives such as flame retardant, dye pigment, light diffusing agent, organic dye, matting agent, impact resistance modifier, and phosphor may be further contained.
- the antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen.
- phosphorus-based antioxidants hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned.
- phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
- a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, it is recommended to use a phosphorus-based antioxidant / hindered phenol-based antioxidant in a mass ratio of 0.2 / 1 to 2/1. It is preferably used at 0.5 / 1/1 to 1/1, more preferably.
- Phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite (manufactured by ADEKA; trade name: ADEKA STAB HP-10), tris (2,4-di-). t-butylphenyl) phosphite (manufactured by BASF; trade name: IRUGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa 3 , 9-Diphosphaspiro [5.5] Undecan (manufactured by ADEKA; trade name: ADEKA STAB PEP-36) and the like.
- pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- (3,5-Di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) and the like are preferable.
- the heat deterioration of the resin can be prevented by capturing the polymer radicals generated when exposed to high heat under a substantially oxygen-free state.
- the heat deterioration inhibitor include 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: Sumilyzer GM).
- 2,4-dit-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy- ⁇ -methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GS) and the like are preferable. ..
- the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is said to have a function of mainly converting light energy into heat energy.
- the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like.
- benzotriazoles, triazines, and ultraviolet absorbers having a maximum molar extinction coefficient ⁇ max of 100 dm 3 ⁇ mol -1 cm -1 or less at a wavelength of 380 to 450 nm are preferable.
- Benzotriazoles are highly effective in suppressing deterioration of optical properties such as coloring due to exposure to ultraviolet rays, and are therefore preferable as an ultraviolet absorber used when the molded product of the present invention is applied to optical applications.
- benzotriazoles include 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H-).
- Benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2'-methylenebis [6- (2H-benzotriazole-2) -Il) -4-t-octylphenol] (manufactured by ADEKA; LA-31) and the like are preferable.
- an ultraviolet absorber having a maximum molar extinction coefficient ⁇ max of 1200 dm 3 ⁇ mol -1 cm -1 or less at a wavelength of 380 to 450 nm can suppress discoloration of the obtained molded product.
- examples of such an ultraviolet absorber include 2-ethyl-2'-ethoxy-oxalanilide (manufactured by Clariant Japan Co., Ltd .; trade name: Sandeuboa VSU).
- benzotriazoles are preferably used from the viewpoint of suppressing resin deterioration due to UV exposure.
- a triazine-type ultraviolet absorber is preferably used.
- examples of such an ultraviolet absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70).
- examples thereof include hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN 477 and TINUVIN 460), which are related thereto.
- the maximum value ⁇ max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane and dissolved so that there is no undissolved substance by visual observation. This solution is injected into a quartz glass cell of 1 cm ⁇ 1 cm ⁇ 3 cm, and the absorbance at a wavelength of 380 to 450 nm and an optical path length of 1 cm is measured using a U-3410 spectrophotometer manufactured by Hitachi, Ltd.
- the light stabilizer is a compound that is said to have a function of capturing radicals mainly generated by oxidation by light.
- Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
- lubricant examples include stearic acid, behenic acid, stearoamic acid, methylene bisstearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. Increasing the amount of lubricant used tends to increase the melt flow rate R of the molding material of the present invention and increase the fluidity.
- the mold release agent is a compound having a function of facilitating separation of a molded product from a mold.
- the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
- higher alcohols and glycerin fatty acid monoester in combination as a release agent.
- the mass ratio of the higher alcohols / glycerin fatty acid monoester is preferably in the range of 2.5 / 1 to 3.5 / 1, 2.8. It is more preferable to use it in the range of / 1 to 3.2 / 1.
- polymer particles having a particle size of 0.05 to 0.5 ⁇ m can be used.
- the polymer particles may be single-layer particles composed of polymers having a single composition ratio and a single ultimate viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or ultimate viscosities. You may. Among these, particles having a two-layer structure having a polymer layer having a low ultimate viscosity in the inner layer and a polymer layer having a high ultimate viscosity of 5 dl / g or more in the outer layer are preferable.
- the polymer processing aid preferably has an ultimate viscosity of 3 to 6 dl / g.
- the amount of the polymer processing aid used is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the methacrylic copolymer. Good processing characteristics are obtained when the amount of the polymer processing aid used is 0.1 parts by mass or more, and surface smoothness is good when the amount of the polymer processing aid used is 5 parts by mass or less.
- the impact resistance modifier examples include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; and a modifier containing a plurality of rubber particles.
- the organic dye a compound having a function of converting ultraviolet rays, which are considered to be harmful to the resin, into visible light is preferably used.
- the light diffusing agent and the matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate and the like.
- the phosphor include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
- additives may be used alone or in combination of two or more. These additives may be added at the time of producing the methacrylic copolymer, or may be added to the produced methacrylic copolymer.
- the total amount of the additives contained in the methacrylic copolymer of the present invention is preferably 1% by mass or less, more preferably 0.% by mass, based on the methacrylic copolymer resin, from the viewpoint of suppressing poor appearance of the molded product. It is 8% by mass or less, more preferably 0.5% by mass or less.
- the methacrylic copolymer or thermoplastic resin composition of the present invention can be used as a molding material in any form such as pellets, granules, and powder in order to enhance convenience such as transportation and storage.
- the molded product of the present invention can be obtained by molding the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention. Molding can be performed by a known method such as an injection molding method, a compression molding method, an extrusion molding method, a vacuum forming method, or a cast molding method. Of these, the injection molding method is preferable.
- the methacrylic copolymer of the present invention can provide a thin-walled and wide-area molded product with little residual strain and almost no coloring even when injection-molded at a low cylinder temperature and a high injection pressure with high production efficiency. it can.
- the maximum value of the ratio of the resin flow length to the thickness of the mold that can be used in injection molding is preferably 450 or more.
- the methacrylic copolymer of the present invention is suitable for producing a thin-walled molded product.
- the molded product of the preferred form of the present invention has a plate shape, and the thickness thereof is preferably 0.5 mm or less, more preferably 0.45 mm or less, still more preferably 0.4 mm or less, still more preferably 0.35 mm. It is as follows.
- the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention is suitable for manufacturing a housing of a mobile phone terminal.
- a mobile phone terminal is a terminal used for a telephone service (that is, a mobile phone) capable of making a call while moving.
- a mobile phone terminal consists of at least an antenna, a speaker, a microphone, an input / output device, a display device, an electronic circuit and a power supply, and a housing for accommodating them.
- the housing for mobile phone terminals is required to be thinned while ensuring the strength at a practical level.
- the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention can secure the strength at a practical level even if it is thinned.
- the housing for the mobile phone terminal of the present invention is made of the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention, and has, for example, a thickness of preferably 0.8 mm. Below, more preferably 0.7 mm or less, still more preferably 0.6 mm or less, the portion is composed of the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention.
- Examples of the molded product of the present invention include signboard parts such as advertising towers, stand signs, sleeve signs, column signboards, and roof signboards; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting covers, etc.
- signboard parts such as advertising towers, stand signs, sleeve signs, column signboards, and roof signboards
- display parts such as showcases, dividers, and store displays
- Lighting parts such as lamp shades, light ceilings, light walls, chandeliers; Interior parts such as pendants and mirrors; Building parts such as doors, dome, safety window glass, partitions, staircase wainscots, balcony wainscots, roofs of leisure buildings Transport equipment related parts such as aircraft windshields, pilot visors, motorcycles, motor boat windshields, bus shading plates, automobile side visors, rear visors, head wings, headlight covers; audiovisual nameplates, stereo covers, TV protective masks, Electronic equipment parts such as vending machines; Medical equipment parts such as incubators and roentgen parts; Equipment-related parts such as machine covers, instrument covers, experimental equipment, rulers, dials, observation windows; LCD protective plates, light guide plates, guides Optical parts such as optical films, frennel lenses, lenticular lenses, front plates of various displays, diffusers, polarizer protective films, polarizing plate protective films, retardation films, housings for mobile phones; road signs, information boards, Traffic-related parts such as curved mirrors and soundproof walls; Surface materials for
- the light guide is used, for example, as a member of the backlight of the liquid crystal display element. It guides the light from the light source on the side or back so that the light can be radiated uniformly from the entire plate surface.
- the plate surface of the light guide may be provided with micron-sized irregularities for uniformly radiating light.
- Examples 1 to 7 and Comparative Examples 1 to 4 Purified methyl methacrylate (MMA), methyl acrylate (MA), 2,2'-azobis (2-methylpropionitrile) (AIBN) and n-octyl mercaptan (n-OM) in an autoclave with a stirrer. was charged at the ratio shown in Table 1 and uniformly dissolved to obtain a polymerization raw material.
- the polymerization raw material is continuously supplied from the autoclave to a tank reactor controlled at a temperature of 140 ° C. at 1.5 kg / hr, and the polymerization reaction is carried out by a massive polymerization method with an average residence time of 120 minutes, and the polymerization reaction is carried out from the tank reactor.
- the liquid containing the methacrylic copolymer was continuously discharged.
- the polymerization conversion rate was 57% by mass.
- the liquid discharged from the reactor was heated to 230 ° C. and supplied to a twin-screw extruder controlled to 240 ° C.
- the twin-screw extruder the volatile matter containing the unreacted monomer as a main component was separated and removed, and the methacrylic copolymer was extruded as a strand.
- the strand was cut with a pelletizer to obtain a pellet-shaped methacrylic copolymer.
- the physical properties of the methacrylic copolymer were measured by the following method. The results are shown in Table 1.
- the amount of the unit derived from MMA is the amount of the unit other than the MA unit, so the description in the table is omitted.
- the amount of the bonded sulfur atom of the methacrylic copolymer is a value determined as follows.
- the methacrylic copolymer is dissolved in chloroform to obtain a solution.
- This solution is added to n-hexane to give a precipitate.
- the precipitate is dried at 80 ° C. for 12 hours or longer under vacuum.
- An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with.
- the obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A).
- ICS-1500 manufactured by DIONEX, column: AS12A.
- Glass transition temperature Tg Glass transition temperature Tg
- the acetone-insoluble content of the methacrylic copolymer and the thermoplastic resin obtained in the examples was 250 using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121.
- the DSC curve was measured under the condition that the temperature was raised once to ° C., then cooled to room temperature, and then the temperature was raised from room temperature to 200 ° C. at 10 ° C./min.
- the midpoint glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
- injection moldability Using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: SE-180DU-HP), injection molding is performed in a cylinder temperature of 280 ° C., a mold temperature of 75 ° C., and a molding cycle of 1 minute, and the long side is 205 mm and the short side is 160 mm.
- a flat plate S having a thickness of 0.4 mm was manufactured.
- the appearance of the flat plate S was observed and evaluated by the following indexes.
- C There is a crack.
- the methacrylic copolymer of the present invention has high fluidity, excellent injection moldability, and is less likely to cause mold stains.
- Production Example 1 (Acrylic rubber particles) In a reactor equipped with a stirrer, thermometer, nitrogen gas introduction tube, monomer introduction tube and reflux condenser, 1050 parts by mass of ion-exchanged water, 0.44 parts by mass of polyoxyethylene tridecyl ether sodium acetate and sodium carbonate 0. .7 parts by mass was charged and the inside of the reactor was replaced with nitrogen gas. Then, the internal temperature was adjusted to 80 ° C. 0.25 parts by mass of potassium persulfate was added thereto, and the mixture was stirred for 5 minutes.
- Examples 8 to 13 and Comparative Examples 5 to 7 The methacrylic copolymer, the acrylic rubber particles, and the acrylic block copolymer are mixed at the ratios shown in Table 2, melt-kneaded at 250 ° C. with a twin-screw extruder having a shaft diameter of 20 mm, extruded, and thermoplastic. A resin composition was obtained.
- thermoplastic resin composition The physical properties of the thermoplastic resin composition were measured by the following method. The results are shown in Table 2.
- the composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
- Each test piece was evaluated by the following indexes by measuring the total light transmittance Tt and haze H using a spectrocolor difference meter SE5000 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with the method described in JIS K7361-1. Was done.
- C Tt is less than 80% or H is greater than 10%
- the composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
- a table-movable pencil scratching tester model P (manufactured by Toyo Seiki Co., Ltd.)
- Pencil hardness is 2H or more
- Pencil hardness is F or more and less than 2H
- Pencil hardness is less than F
- the composition was injection-molded to obtain a strip-shaped injection-molded piece having a thickness of 4 mm, a long side of 80 mm, and a short side of 10 mm.
- the flatwise method measured by performing a Charpy impact test on each test piece in accordance with the method described in ISO179-1, and the Charpy impact strength without a notch is defined as the Charpy impact strength, and the obtained Charpy impact strength is obtained.
- Charpy impact strength is 60 kJ / m 2 or more
- Charpy impact strength is 40 kJ / m 2 or more and less than 60 kJ / m 2
- Charpy impact strength is less than 40 kJ / m 2
- thermoplastic resin composition of the present invention can provide a thin-walled molded product having excellent transparency, surface hardness, and impact resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A methacrylic copolymer which comprises 85.0-95.0 mass% monomer units derived from methyl methacrylate and 5.0-15.0 mass% monomer units derived from an acrylic ester and has a weight-average molecular weight Mw of 48,000-59,000 and in which the ratio of the weight-average molecular weight Mw to the number-average molecular weight Mn, Mw/Mn, is 2.1 or less and the ratio of the glass transition temperature Tg to the melt flow rate R measured under the conditions of 230°C and a load of 3.8 kg, Tg/R, is 5.0-1.5 °C·10-min/g.
Description
本発明はメタクリル共重合体および成形品に関する。より詳細に、本発明は、加熱成形時における流動性に優れ且つ金型汚れの少ないメタクリル共重合体、および耐熱性が高く且つ力学強度が高い成形品に関する。
The present invention relates to methacrylic copolymers and molded articles. More specifically, the present invention relates to a methacrylic copolymer having excellent fluidity during heat molding and less mold stain, and a molded product having high heat resistance and high mechanical strength.
メタクリル樹脂は、高い透明性を有し、光学部材、照明部材、看板部材、装飾部材等に用いる成形品の材料として有用である。メタクリル樹脂の成形品が用いられているいくつかの分野では、成形品の軽量化または薄肉化が要望されている。
薄肉の成形品を得るためには、メタクリル樹脂が溶融時に高い流動性を有することが必要である。樹脂の流動性を高める方策としては、軟化温度またはガラス転移温度を下げること、分子量を下げること、分子量分布を広くすることなどが、一般に知られている。しかし、これらの方策をメタクリル樹脂に適用すると、耐熱性の低下、力学強度の低下などを引き起こす。このようなことを考慮して、引用文献1~3は、様々なメタクリル樹脂および、その製造方法を提案している。 Methacrylic resin has high transparency and is useful as a material for molded products used for optical members, lighting members, signboard members, decorative members and the like. In some fields where molded products of methacrylic resin are used, there is a demand for weight reduction or thinning of molded products.
In order to obtain a thin-walled molded product, it is necessary for the methacrylic resin to have high fluidity when melted. As measures for increasing the fluidity of the resin, it is generally known to lower the softening temperature or the glass transition temperature, lower the molecular weight, widen the molecular weight distribution, and the like. However, when these measures are applied to methacrylic resin, the heat resistance is lowered and the mechanical strength is lowered. In consideration of such a situation, Cited Documents 1 to 3 propose various methacrylic resins and methods for producing the same.
薄肉の成形品を得るためには、メタクリル樹脂が溶融時に高い流動性を有することが必要である。樹脂の流動性を高める方策としては、軟化温度またはガラス転移温度を下げること、分子量を下げること、分子量分布を広くすることなどが、一般に知られている。しかし、これらの方策をメタクリル樹脂に適用すると、耐熱性の低下、力学強度の低下などを引き起こす。このようなことを考慮して、引用文献1~3は、様々なメタクリル樹脂および、その製造方法を提案している。 Methacrylic resin has high transparency and is useful as a material for molded products used for optical members, lighting members, signboard members, decorative members and the like. In some fields where molded products of methacrylic resin are used, there is a demand for weight reduction or thinning of molded products.
In order to obtain a thin-walled molded product, it is necessary for the methacrylic resin to have high fluidity when melted. As measures for increasing the fluidity of the resin, it is generally known to lower the softening temperature or the glass transition temperature, lower the molecular weight, widen the molecular weight distribution, and the like. However, when these measures are applied to methacrylic resin, the heat resistance is lowered and the mechanical strength is lowered. In consideration of such a situation, Cited Documents 1 to 3 propose various methacrylic resins and methods for producing the same.
本発明の課題は、加熱成形時における流動性に優れ且つ金型汚れの少ないメタクリル共重合体、および耐熱性が高く且つ力学強度が高い成形品を提供することである。
An object of the present invention is to provide a methacrylic copolymer having excellent fluidity during heat molding and less mold stain, and a molded product having high heat resistance and high mechanical strength.
上記課題を解決するために検討を重ねた結果、以下の形態を包含する本発明を完成するに至った。
As a result of repeated studies to solve the above problems, the present invention including the following forms has been completed.
〔1〕 メタクリル酸メチルに由来する単量体単位85.0~95.0質量%とアクリル酸エステルに由来する単量体単位5.0~15.0質量%とを含んで成り、
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gである、メタクリル共重合体。
〔2〕 メタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量が0.4mol%以下であり、且つメルトフローレートRが25g/10分以上である、〔1〕に記載のメタクリル共重合体。 [1] Containing 85.0 to 95.0% by mass of a monomer unit derived from methyl methacrylate and 5.0 to 15.0% by mass of a monomer unit derived from an acrylic acid ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g.
[2] The methacrylic according to [1], wherein the amount of bound sulfur atoms with respect to the monomer unit derived from methyl methacrylate is 0.4 mol% or less, and the melt flow rate R is 25 g / 10 minutes or more. Polymer.
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gである、メタクリル共重合体。
〔2〕 メタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量が0.4mol%以下であり、且つメルトフローレートRが25g/10分以上である、〔1〕に記載のメタクリル共重合体。 [1] Containing 85.0 to 95.0% by mass of a monomer unit derived from methyl methacrylate and 5.0 to 15.0% by mass of a monomer unit derived from an acrylic acid ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g.
[2] The methacrylic according to [1], wherein the amount of bound sulfur atoms with respect to the monomer unit derived from methyl methacrylate is 0.4 mol% or less, and the melt flow rate R is 25 g / 10 minutes or more. Polymer.
〔3〕 〔1〕または〔2〕に記載のメタクリル共重合体と、アクリル系ゴム粒子とを含有して成る、熱可塑性樹脂組成物。
〔4〕 アクリル系ブロック共重合体をさらに含有してなる、〔3〕に記載の熱可塑性樹脂組成物。
〔5〕 熱可塑性樹脂組成物に含まれるアセトン不溶分は、その量が59質量%以下であり、且つ
熱可塑性樹脂組成物に含まれるアセトン可溶分は、230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが6.0~1.5℃・10分/gである、〔3〕または〔4〕に記載の熱可塑性樹脂組成物。 [3] A thermoplastic resin composition containing the methacrylic copolymer according to [1] or [2] and acrylic rubber particles.
[4] The thermoplastic resin composition according to [3], which further contains an acrylic block copolymer.
[5] The amount of the acetone-insoluble content contained in the thermoplastic resin composition is 59% by mass or less, and the acetone-soluble content contained in the thermoplastic resin composition is under the conditions of 230 ° C. and a load of 3.8 kg. The thermoplastic resin composition according to [3] or [4], wherein the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R in the above is 6.0 to 1.5 ° C. for 10 minutes / g.
〔4〕 アクリル系ブロック共重合体をさらに含有してなる、〔3〕に記載の熱可塑性樹脂組成物。
〔5〕 熱可塑性樹脂組成物に含まれるアセトン不溶分は、その量が59質量%以下であり、且つ
熱可塑性樹脂組成物に含まれるアセトン可溶分は、230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが6.0~1.5℃・10分/gである、〔3〕または〔4〕に記載の熱可塑性樹脂組成物。 [3] A thermoplastic resin composition containing the methacrylic copolymer according to [1] or [2] and acrylic rubber particles.
[4] The thermoplastic resin composition according to [3], which further contains an acrylic block copolymer.
[5] The amount of the acetone-insoluble content contained in the thermoplastic resin composition is 59% by mass or less, and the acetone-soluble content contained in the thermoplastic resin composition is under the conditions of 230 ° C. and a load of 3.8 kg. The thermoplastic resin composition according to [3] or [4], wherein the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R in the above is 6.0 to 1.5 ° C. for 10 minutes / g.
〔6〕 〔1〕または〔2〕に記載のメタクリル共重合体を含む、ペレット状の成形材料
〔7〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、成形品。
〔8〕 厚さ0.5mm以下の板状である、〔7〕に記載の成形品。
〔9〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有、携帯電話端末用の筐体。
〔10〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、厚さ0.8mm以下の部分を有する、携帯電話端末用の筐体。
〔11〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、光学部材。 [6] Pellet-shaped molding material containing the methacrylic copolymer according to [1] or [2] [7] A molded product containing the methacrylic copolymer according to [1] or [2]. ..
[8] The molded product according to [7], which is in the form of a plate having a thickness of 0.5 mm or less.
[9] A housing for a mobile phone terminal containing the methacrylic copolymer according to [1] or [2].
[10] A housing for a mobile phone terminal having a portion having a thickness of 0.8 mm or less and containing the methacrylic copolymer according to [1] or [2].
[11] An optical member containing the methacrylic copolymer according to [1] or [2].
〔7〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、成形品。
〔8〕 厚さ0.5mm以下の板状である、〔7〕に記載の成形品。
〔9〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有、携帯電話端末用の筐体。
〔10〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、厚さ0.8mm以下の部分を有する、携帯電話端末用の筐体。
〔11〕 〔1〕または〔2〕に記載のメタクリル共重合体を含有して成る、光学部材。 [6] Pellet-shaped molding material containing the methacrylic copolymer according to [1] or [2] [7] A molded product containing the methacrylic copolymer according to [1] or [2]. ..
[8] The molded product according to [7], which is in the form of a plate having a thickness of 0.5 mm or less.
[9] A housing for a mobile phone terminal containing the methacrylic copolymer according to [1] or [2].
[10] A housing for a mobile phone terminal having a portion having a thickness of 0.8 mm or less and containing the methacrylic copolymer according to [1] or [2].
[11] An optical member containing the methacrylic copolymer according to [1] or [2].
〔12〕 メタクリル酸メチルとアクリル酸エステルとを含む単量体を塊状重合法で重合反応させることを含む、請求項1または2に記載のメタクリル共重合体の製造方法。
[12] The method for producing a methacrylic copolymer according to claim 1 or 2, which comprises subjecting a monomer containing methyl methacrylate and an acrylic acid ester to a polymerization reaction by a massive polymerization method.
〔13〕 メタクリル酸メチル81.0~94.2質量%およびアクリル酸エステル5.8~19.0質量%を少なくとも含む単量体100質量部、連鎖移動剤0.42~0.52質量部、ならびに重合開始剤を連続流通式反応器に平均滞留時間1.5~3時間で供給して温度110~140℃にて溶媒を用いずに、重合転化率35~65%で重合し、
次いで220~260℃にて加熱脱揮して未反応単量体を除去することを含む、
メタクリル酸メチルに由来する構造単位85~95.0質量%およびアクリル酸エステルに由来する構造単位5.0~15.0質量%を含んで成り、
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gであるメタクリル共重合体を
製造する方法。 [13] 100 parts by mass of a monomer containing at least 81.0 to 94.2% by mass of methyl methacrylate and 5.8 to 19.0% by mass of an acrylic acid ester, 0.42 to 0.52 parts by mass of a chain transfer agent. , And the polymerization initiator was supplied to a continuous flow reactor with an average residence time of 1.5 to 3 hours and polymerized at a temperature of 110 to 140 ° C. without using a solvent and having a polymerization conversion rate of 35 to 65%.
It then comprises removing unreacted monomers by heating and devolatile at 220-260 ° C.
Containing 85-95.0% by mass of structural units derived from methyl methacrylate and 5.0-15.0% by mass of structural units derived from acrylic ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A method for producing a methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g.
次いで220~260℃にて加熱脱揮して未反応単量体を除去することを含む、
メタクリル酸メチルに由来する構造単位85~95.0質量%およびアクリル酸エステルに由来する構造単位5.0~15.0質量%を含んで成り、
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gであるメタクリル共重合体を
製造する方法。 [13] 100 parts by mass of a monomer containing at least 81.0 to 94.2% by mass of methyl methacrylate and 5.8 to 19.0% by mass of an acrylic acid ester, 0.42 to 0.52 parts by mass of a chain transfer agent. , And the polymerization initiator was supplied to a continuous flow reactor with an average residence time of 1.5 to 3 hours and polymerized at a temperature of 110 to 140 ° C. without using a solvent and having a polymerization conversion rate of 35 to 65%.
It then comprises removing unreacted monomers by heating and devolatile at 220-260 ° C.
Containing 85-95.0% by mass of structural units derived from methyl methacrylate and 5.0-15.0% by mass of structural units derived from acrylic ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A method for producing a methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g.
本発明のメタクリル共重合体は、流動性に優れ、シルバーストリーク、クラック、ヒケ、フローマーク、樹脂焼け、ガス汚れ、着色等などの成形不良を生じ難い。本発明のメタクリル共重合体を含む成形材料は、射出成形に適する。本発明のメタクリル共重合体を含む成形材料は、薄肉の成形品、例えば厚さ0.5mm以下の板を得るのに適している。本発明のメタクリル共重合体を含む成形品は、耐熱性および力学強度が高く、着色などの外観不良が無い。本発明のメタクリル共重合体を含む成形材料は、せん断による発熱が低く、低い温度で且つ高い射出圧力においても外観良好な射出成形品を得ることができる。
The methacrylic copolymer of the present invention has excellent fluidity and is unlikely to cause molding defects such as silver streaks, cracks, sink marks, flow marks, resin burns, gas stains, and coloring. The molding material containing the methacrylic copolymer of the present invention is suitable for injection molding. The molding material containing the methacrylic copolymer of the present invention is suitable for obtaining a thin-walled molded product, for example, a plate having a thickness of 0.5 mm or less. The molded product containing the methacrylic copolymer of the present invention has high heat resistance and mechanical strength, and has no appearance defects such as coloring. The molding material containing the methacrylic copolymer of the present invention has low heat generation due to shearing, and an injection-molded product having a good appearance can be obtained even at a low temperature and a high injection pressure.
本発明のメタクリル共重合体は、メタクリル酸メチルに由来する単量体単位、およびアクリル酸エステルに由来する単量体単位を含んで成るものである。
メタクリル酸メチルに由来する単量体単位の含有量は、85.0~95.0質量%、好ましくは85.0~93.5質量%、より好ましくは87.5~93.5質量%、さらに好ましくは88~93.5質量%である。アクリル酸エステルに由来する単量体単位の含有量は、5.0~15.0質量%、好ましくは6.5~15.0質量%、より好ましくは6.5~12.5質量%、さらに好ましくは6.5~12質量%である。本発明のメタクリル共重合体においては、メタクリル酸メチルに由来する単量体単位およびアクリル酸エステルに由来する単量体単位の合計は、99質量%以上であることが好ましく、100質量%であることがより好ましい。 The methacrylic copolymer of the present invention comprises a monomer unit derived from methyl methacrylate and a monomer unit derived from an acrylic acid ester.
The content of the monomer unit derived from methyl methacrylate is 85.0 to 95.0% by mass, preferably 85.0 to 93.5% by mass, and more preferably 87.5 to 93.5% by mass. More preferably, it is 88 to 93.5% by mass. The content of the monomer unit derived from the acrylic acid ester is 5.0 to 15.0% by mass, preferably 6.5 to 15.0% by mass, and more preferably 6.5 to 12.5% by mass. More preferably, it is 6.5 to 12% by mass. In the methacrylic copolymer of the present invention, the total of the monomer unit derived from methyl methacrylate and the monomer unit derived from the acrylic acid ester is preferably 99% by mass or more, preferably 100% by mass. Is more preferable.
メタクリル酸メチルに由来する単量体単位の含有量は、85.0~95.0質量%、好ましくは85.0~93.5質量%、より好ましくは87.5~93.5質量%、さらに好ましくは88~93.5質量%である。アクリル酸エステルに由来する単量体単位の含有量は、5.0~15.0質量%、好ましくは6.5~15.0質量%、より好ましくは6.5~12.5質量%、さらに好ましくは6.5~12質量%である。本発明のメタクリル共重合体においては、メタクリル酸メチルに由来する単量体単位およびアクリル酸エステルに由来する単量体単位の合計は、99質量%以上であることが好ましく、100質量%であることがより好ましい。 The methacrylic copolymer of the present invention comprises a monomer unit derived from methyl methacrylate and a monomer unit derived from an acrylic acid ester.
The content of the monomer unit derived from methyl methacrylate is 85.0 to 95.0% by mass, preferably 85.0 to 93.5% by mass, and more preferably 87.5 to 93.5% by mass. More preferably, it is 88 to 93.5% by mass. The content of the monomer unit derived from the acrylic acid ester is 5.0 to 15.0% by mass, preferably 6.5 to 15.0% by mass, and more preferably 6.5 to 12.5% by mass. More preferably, it is 6.5 to 12% by mass. In the methacrylic copolymer of the present invention, the total of the monomer unit derived from methyl methacrylate and the monomer unit derived from the acrylic acid ester is preferably 99% by mass or more, preferably 100% by mass. Is more preferable.
アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、オクチルアクリレート、ミリスチルアクリレート、ドデシルアクリレート、パルミチルアクリレート、ステアリルアクリレート、ベヘニルアクリレートなどのアクリル酸直鎖アルキルエステル;イソプロピルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレートなどのアクリル酸分岐アルキルエステル;シクロヘキシルアクリレートなどのアクリル酸環状アルキルエステル;フェニルアクリレートなどのアクリル酸アリールエステル;ベンジルアクリレートなどのアクリル酸アラルキルエステル;などを挙げることができる。これらのうちアクリル酸直鎖、分岐若しくは環状アルキルエステルが好ましく、アクリル酸直鎖アルキルエステルがより好ましい。アクリル酸アルキルエステル中のアルキル基は、その炭素数が、好ましくは1~18、より好ましく1または2、さらに好ましくは1である。
Acrylate esters include acrylic acids such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, myristyl acrylate, dodecyl acrylate, palmityl acrylate, stearyl acrylate, and behenyl acrylate. Linear alkyl ester; Acrylic acid branched alkyl ester such as isopropyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate; Acrylic acid cyclic alkyl ester such as cyclohexyl acrylate; Acrylic acid aryl ester such as phenyl acrylate; benzyl acrylate and the like Acrylate aralkyl ester; etc. Of these, acrylic acid linear, branched or cyclic alkyl esters are preferred, and acrylic acid linear alkyl esters are more preferred. The alkyl group in the acrylic acid alkyl ester preferably has 1 to 18, more preferably 1 or 2, and even more preferably 1.
本発明のメタクリル共重合体は、メタクリル酸メチルに由来する単量体単位、およびアクリル酸エステルに由来する単量体単位以外の単量体単位を有していてもよく、そのような単量体としては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸へキシル、メタクリル酸へプチルなどのメタクリル酸非環状C2以上アルキルエステル、好ましくはメタクリル酸非環状C2以上C7以下アルキルエステル;メタクリル酸ビシクロ[3.2.1]オクチル、メタクリル酸トリシクロ[3.2.1.02,7]オクチル、メタクリル酸トリシクロ[5.2.1.02,6]デシル、メタクリル酸3,9:8,10-ジメタノトリシクロ[4.2.1.12,5]デシルなどのメタクリル酸環状アルキルエステル;スチレン、メチルスチレンなどの芳香族ビニル等を挙げることができる。これらの単量体単位の含有量は、1質量%以下であるのが好ましい。なお、「C2以上C7以下」とは、アルキル基を構成する炭素原子の数が2以上7以下のことである。
The methacrylic copolymer of the present invention may have a monomer unit other than a monomer unit derived from methyl methacrylate and a monomer unit derived from an acrylic acid ester, and such a single amount may be present. As the body, an alkyl ester of acyclic C2 or more of methacrylic acid such as ethyl methacrylate, butyl butyl methacrylate, hexyl methacrylate, and heptyl methacrylate, preferably an alkyl ester of acyclic C2 or more and C7 or less of methacrylic acid; bicyclo methacrylate [3]. .2.1] Octyl, Tricyclo Methacrylic Acid [3.2.1.0 2,7 ] Octyl, Tricyclo Methacrylic Acid [5.2.1.0 2,6 ] Decyl, 3,9: 8,10 Methacrylic Acid -Methacrylic acid cyclic alkyl ester such as dimethanotricyclo [4.2.1.1 2,5 ] decyl; aromatic vinyl such as styrene and methylstyrene can be mentioned. The content of these monomer units is preferably 1% by mass or less. In addition, "C2 or more and C7 or less" means that the number of carbon atoms constituting the alkyl group is 2 or more and 7 or less.
本発明のメタクリル共重合体は、靭性、表面硬度などの観点から、重量平均分子量Mwと、数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnとの、両者が下記の範囲内である。すなわち、本発明のメタクリル共重合体は、重量平均分子量Mwが、48000~59000、好ましくは48000~55000、より好ましくは49000~53000であり、数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが、2.1以下、好ましくは1.7以上2.0以下である。重量平均分子量Mwおよび数平均分子量Mnは、ゲルパーミエーションクロマトグラフィーによって測定されたチャートを標準ポリスチレンの分子量に換算して算出した値である。
From the viewpoint of toughness, surface hardness, etc., the methacrylic copolymer of the present invention has a weight average molecular weight Mw and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn, both of which are within the following ranges. That is, the methacrylic copolymer of the present invention has a weight average molecular weight Mw of 48,000 to 59000, preferably 48,000 to 55,000, and more preferably 49000 to 53000, and the ratio of the weight average molecular weight Mw to the number average molecular weight Mn is Mw / Mn. However, it is 2.1 or less, preferably 1.7 or more and 2.0 or less. The weight average molecular weight Mw and the number average molecular weight Mn are values calculated by converting the chart measured by gel permeation chromatography into the molecular weight of standard polystyrene.
本発明のメタクリル共重合体は、230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが、5.0~1.5℃・10分/g、好ましくは4.0~1.5℃・10分/g、より好ましくは3.5~1.5℃・10分/g、さらに好ましくは3.3~1.5℃・10分/gである。
ガラス転移温度は、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、230℃まで一度昇温し、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線に基づいて定まる中間点ガラス転移温度(Tmg)である。メルトフローレートは、JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で測定した値である。 In the methacrylic copolymer of the present invention, the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is preferably 5.0 to 1.5 ° C. for 10 minutes / g. Is 4.0 to 1.5 ° C. for 10 minutes / g, more preferably 3.5 to 1.5 ° C. for 10 minutes / g, and even more preferably 3.3 to 1.5 ° C. for 10 minutes / g. ..
The glass transition temperature is once raised to 230 ° C. using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121, then cooled to room temperature, and then to room temperature. The DSC curve was measured under the condition that the temperature was raised from 1 to 230 ° C. at 10 ° C./min. It is an intermediate point glass transition temperature (Tmg) determined based on the DSC curve measured at the time of the second temperature rise. The melt flow rate is a value measured under the conditions of 230 ° C., 3.8 kg load, and 10 minutes in accordance with JIS K7210.
ガラス転移温度は、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、230℃まで一度昇温し、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線に基づいて定まる中間点ガラス転移温度(Tmg)である。メルトフローレートは、JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で測定した値である。 In the methacrylic copolymer of the present invention, the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is preferably 5.0 to 1.5 ° C. for 10 minutes / g. Is 4.0 to 1.5 ° C. for 10 minutes / g, more preferably 3.5 to 1.5 ° C. for 10 minutes / g, and even more preferably 3.3 to 1.5 ° C. for 10 minutes / g. ..
The glass transition temperature is once raised to 230 ° C. using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121, then cooled to room temperature, and then to room temperature. The DSC curve was measured under the condition that the temperature was raised from 1 to 230 ° C. at 10 ° C./min. It is an intermediate point glass transition temperature (Tmg) determined based on the DSC curve measured at the time of the second temperature rise. The melt flow rate is a value measured under the conditions of 230 ° C., 3.8 kg load, and 10 minutes in accordance with JIS K7210.
本発明のメタクリル共重合体の、230℃、3.8kg荷重で測定したメルトフローレートRは、成形性、靭性などの観点から、下限が、好ましくは15g/10分、より好ましくは25g/10分であり、上限が、好ましくは60g/10分である。
The lower limit of the melt flow rate R of the methacrylic copolymer of the present invention measured at 230 ° C. and a load of 3.8 kg is preferably 15 g / 10 minutes, more preferably 25 g / 10 from the viewpoint of moldability, toughness and the like. Minutes, with an upper limit of preferably 60 g / 10 minutes.
本発明のメタクリル共重合体は、メタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量が、好ましくは0.4mol%以下、より好ましくは0.3~0.38mol%、さらに好ましくは0.31~0.36mol%である。硫黄結合量は、メタクリル共重合体に、良好な成形性、少ない金型汚れ、および高い流動性を付与することに関係する。
結合硫黄原子の量は次のようにして決定される値Spである。
メタクリル共重合体をクロロホルムに溶解させて溶液を得る。この溶液をn-ヘキサンに添加して沈殿物を得る。該沈殿物を80℃で12時間以上真空下で乾燥させる。得られた乾燥品を適量精秤して、硫黄燃焼装置にセットし、温度400℃の反応炉で分解させ、生成したガスを温度900℃の炉に通し、次いで0.3%過酸化水素水で吸収する。得られた液(分解ガス水溶液)を純水で適宜希釈し、イオンクロマトグラフィ(DIONEX製ICS-1500,カラム:AS12A)により硫酸イオンを定量する。乾燥品の質量あたりの硫黄原子の質量Wp(質量%)からメタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量(モル%)を算出する。 In the methacrylic copolymer of the present invention, the amount of bound sulfur atom with respect to the monomer unit derived from methyl methacrylate is preferably 0.4 mol% or less, more preferably 0.3 to 0.38 mol%, still more preferably. It is 0.31 to 0.36 mol%. The amount of sulfur bond is related to imparting good moldability, low mold stain, and high fluidity to the methacrylic copolymer.
The amount of bound sulfur atom is a value S p which is determined as follows.
The methacrylic copolymer is dissolved in chloroform to obtain a solution. This solution is added to n-hexane to give a precipitate. The precipitate is dried at 80 ° C. for 12 hours or longer under vacuum. An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with. The obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A). From the mass W p (mass%) of sulfur atoms per mass of the dried product, the amount of bound sulfur atoms (mol%) with respect to the monomer unit derived from methyl methacrylate is calculated.
結合硫黄原子の量は次のようにして決定される値Spである。
メタクリル共重合体をクロロホルムに溶解させて溶液を得る。この溶液をn-ヘキサンに添加して沈殿物を得る。該沈殿物を80℃で12時間以上真空下で乾燥させる。得られた乾燥品を適量精秤して、硫黄燃焼装置にセットし、温度400℃の反応炉で分解させ、生成したガスを温度900℃の炉に通し、次いで0.3%過酸化水素水で吸収する。得られた液(分解ガス水溶液)を純水で適宜希釈し、イオンクロマトグラフィ(DIONEX製ICS-1500,カラム:AS12A)により硫酸イオンを定量する。乾燥品の質量あたりの硫黄原子の質量Wp(質量%)からメタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量(モル%)を算出する。 In the methacrylic copolymer of the present invention, the amount of bound sulfur atom with respect to the monomer unit derived from methyl methacrylate is preferably 0.4 mol% or less, more preferably 0.3 to 0.38 mol%, still more preferably. It is 0.31 to 0.36 mol%. The amount of sulfur bond is related to imparting good moldability, low mold stain, and high fluidity to the methacrylic copolymer.
The amount of bound sulfur atom is a value S p which is determined as follows.
The methacrylic copolymer is dissolved in chloroform to obtain a solution. This solution is added to n-hexane to give a precipitate. The precipitate is dried at 80 ° C. for 12 hours or longer under vacuum. An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with. The obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A). From the mass W p (mass%) of sulfur atoms per mass of the dried product, the amount of bound sulfur atoms (mol%) with respect to the monomer unit derived from methyl methacrylate is calculated.
本発明のメタクリル共重合体の製造方法は特に制限されない。例えば、ラジカル重合反応、アニオン重合反応などの公知の重合反応によって製造することができる。本発明においてはラジカル重合反応が好ましい。重合反応は、懸濁重合法、塊状重合法、溶液重合法、または乳化重合法によって行うことができる。これらの重合方法のうち、不純物の混入が少ないことから塊状重合法が好ましい。塊状重合法においては重合転化率を35~65%にすることが好ましい。塊状重合法は連続流通式で行うことが好ましい。連続流通式塊状重合法においては反応器における平均滞留時間を1.5~3時間にすることが好ましい。
The method for producing the methacrylic copolymer of the present invention is not particularly limited. For example, it can be produced by a known polymerization reaction such as a radical polymerization reaction or an anionic polymerization reaction. In the present invention, a radical polymerization reaction is preferable. The polymerization reaction can be carried out by a suspension polymerization method, a bulk polymerization method, a solution polymerization method, or an emulsion polymerization method. Of these polymerization methods, the massive polymerization method is preferable because it contains less impurities. In the massive polymerization method, the polymerization conversion rate is preferably 35 to 65%. The bulk polymerization method is preferably carried out by a continuous flow method. In the continuous flow type massive polymerization method, the average residence time in the reactor is preferably 1.5 to 3 hours.
本発明のメタクリル共重合体の好ましい製造方法は、メタクリル酸メチルおよびアクリル酸エステルを含む単量体、好ましくはメタクリル酸メチル81.0~94.2質量%およびアクリル酸エステル5.8~19.0質量%を少なくとも含む単量体、より好ましくはメタクリル酸メチル81.0~91.9質量%およびアクリル酸エステル8.1~19.0質量%を含む単量体を塊状重合法で重合させることを含む。アクリル酸エステルは、メタクリル共重合体に、高い流動性、および高いメルトフローレートRを与えることに関係する。重合に供される単量体には、メタクリル酸メチルおよびアクリル酸エステル以外に、メタクリル酸非環状C2以上アルキルエステル(好ましくはメタクリル酸非環状C2以上C7以下アルキルエステル)、メタクリル酸環状アルキルエステル;スチレン、メチルスチレンなどの芳香族ビニル等などが含まれていてもよい。メタクリル酸メチルおよびアクリル酸エステル以外のこれら単量体の含有量は、1質量%以下であるのが好ましい。本発明の製造方法においては、重合に供される単量体に含まれるメタクリル酸メチルおよびアクリル酸エステルの合計が、99質量%以上であることが好ましく、100質量%であることがより好ましい。
A preferred method for producing the methacrylic copolymer of the present invention is a monomer containing methyl methacrylate and an acrylic acid ester, preferably methyl methacrylate 81.0 to 94.2% by mass and an acrylic acid ester 5.8 to 19. A monomer containing at least 0% by mass, more preferably a monomer containing 81.0 to 91.9% by mass of methyl methacrylate and 8.1 to 19.0% by mass of an acrylic acid ester are polymerized by a massive polymerization method. Including that. Acrylic acid esters are involved in imparting high fluidity and high melt flow rate R to methacrylic copolymers. In addition to methyl methacrylate and acrylic acid ester, the monomers used for polymerization include methacrylic acid acyclic C2 or more alkyl ester (preferably methacrylic acid acyclic C2 or more and C7 or less alkyl ester), methacrylic acid cyclic alkyl ester; Aromatic vinyl such as styrene and methylstyrene may be contained. The content of these monomers other than methyl methacrylate and acrylic acid ester is preferably 1% by mass or less. In the production method of the present invention, the total amount of methyl methacrylate and acrylic acid ester contained in the monomer to be polymerized is preferably 99% by mass or more, and more preferably 100% by mass.
重合反応は、重合開始剤と、所定の単量体と、必要に応じて連鎖移動剤などとを用いて行われる。重合時の温度は、好ましくは100~150℃、より好ましくは110~140℃、さらに好ましくは120~140℃である。重合温度を低くするほど、本発明のメタクリル共重合体の耐熱性が高くなる傾向がある。
The polymerization reaction is carried out using a polymerization initiator, a predetermined monomer, and if necessary, a chain transfer agent or the like. The temperature at the time of polymerization is preferably 100 to 150 ° C, more preferably 110 to 140 ° C, and even more preferably 120 to 140 ° C. The lower the polymerization temperature, the higher the heat resistance of the methacrylic copolymer of the present invention tends to be.
本発明に用いられる重合開始剤は特に限定されない。例えば、アゾビスイソブチロニトリルなどのアゾ系重合開始剤;t-ヘキシルパーオキシイソプロピルモノカーボネートなどの過酸化物系重合開始剤などを挙げることができる。本発明に用いられる重合開始剤は重合時の温度における半減期が1秒間~1分間であるものが好ましい。重合開始剤の使用量を少なめにすると、本発明のメタクリル共重合体は金型汚れが小さくなる傾向がある。金型汚れを小さくすることの観点から、例えば、重合に供される単量体の合計100質量部に対し、アゾビスイソブチロニトリルを、好ましくは0.02質量部以下、より好ましくは0.002質量部以上0.01質量部以下で用いることができる。
The polymerization initiator used in the present invention is not particularly limited. For example, an azo-based polymerization initiator such as azobisisobutyronitrile; a peroxide-based polymerization initiator such as t-hexyl peroxyisopropyl monocarbonate and the like can be mentioned. The polymerization initiator used in the present invention preferably has a half-life of 1 second to 1 minute at the temperature at the time of polymerization. When the amount of the polymerization initiator used is small, the methacrylic copolymer of the present invention tends to have less mold stain. From the viewpoint of reducing mold stains, for example, azobisisobutyronitrile is preferably 0.02 parts by mass or less, more preferably 0 parts by mass, based on a total of 100 parts by mass of the monomers to be polymerized. It can be used in an amount of .002 parts by mass or more and 0.01 parts by mass or less.
本発明に用いられる連鎖移動剤は特に限定されない。例えば、n-オクチルメルカプタン、n-ドデシルメルカプタンなどのメルカプタン系連鎖移動剤;α-メチルスチレンダイマー; テルピノレンなどを挙げることができる。連鎖移動剤の使用量は、重合に供される単量体の合計100質量部に対し、好ましくは0.42~0.52質量部である。メルカプタン系連鎖移動剤の使用量を増やすほどメタクリル酸メチルに由来由来する単量体単位に対する結合硫黄原子の量が増える。射出成形性が良く、金型汚れが少なく、流動性を高くする観点から、例えば、重合に供される単量体の合計100質量部に対し、n-オクチルメルカプタンを、好ましくは0.3質量部以上0.6質量部以下、より好ましくは0.41質量部以上0.50質量部以下で用いることができる。
The chain transfer agent used in the present invention is not particularly limited. For example, mercaptan chain transfer agents such as n-octyl mercaptan and n-dodecyl mercaptan; α-methylstyrene dimer; terpinolene and the like can be mentioned. The amount of the chain transfer agent used is preferably 0.42 to 0.52 parts by mass with respect to a total of 100 parts by mass of the monomers to be polymerized. As the amount of the mercaptan chain transfer agent used increases, the amount of bound sulfur atoms with respect to the monomer unit derived from methyl methacrylate increases. From the viewpoint of good injection moldability, less mold contamination, and high fluidity, for example, n-octyl mercaptan is preferably 0.3 mass by mass with respect to 100 parts by mass of the total amount of the monomers to be polymerized. It can be used in an amount of 0.6 parts by mass or more, more preferably 0.41 parts by mass or more and 0.50 parts by mass or less.
重合反応後、反応生成物から未反応の単量体を除去することが好ましい。未反応の単量体の除去は、温度220~260℃にての加熱脱揮法にて行うことが好ましい。加脱揮法においては、反応器から排出された反応生成物を含む液を加熱するための装置、例えば、熱交換器と、加熱するため装置で所定の温度に加熱された液から揮発分を除去するためのベント付押し出し機とが、好ましく使用される。ベント付押し出し機は、通常、シリンダとスクリューからなる。シリンダには、ホッパ(反応生成物を含め液の導入口)、ホッパの上流側にリアベント、ホッパの下流側にフロントベント、最下流にポリマー排出口などが設置されている。そして、ホッパにおいて加熱された液がフラッシュ蒸発するようにホッパおよびシリンダ内の温度および圧力を設定することが好ましい。リアベントおよびフロントベントから、除去された揮発分が排出される。そして、リアベントおよび/またはフロントベントを通過して排出される揮発分にリアベントおよび/またはフロントベントにおいて窒素ガスなどの不活性ガスを添加することが好ましい。また、スクリューは、単軸式、二軸式のいずれでもよい。スクリューは、フロントベントに対応する部分において圧力を開放するように、例えば、その部分のスクリューの軸径を他の部分のそれよりも細くすることができる。また、フロントベントの直前にダイナミックバルブを設けるバルブ機構や、フロントベントの直前のスクリューに逆ねじ部分を設け且つフロントベントの直前と直後を繋ぐバイパスをシリンダに設けるバイパス機構を設けてもよい。
After the polymerization reaction, it is preferable to remove the unreacted monomer from the reaction product. The unreacted monomer is preferably removed by a thermal devolatile method at a temperature of 220 to 260 ° C. In the addition / volatilization method, volatile components are removed from a device for heating a liquid containing a reaction product discharged from a reactor, for example, a heat exchanger and a liquid heated to a predetermined temperature by the device for heating. An extruder with a vent for removal is preferably used. A vented extruder usually consists of a cylinder and a screw. The cylinder is provided with a hopper (introduction port for liquid including reaction products), a rear vent on the upstream side of the hopper, a front vent on the downstream side of the hopper, and a polymer discharge port on the most downstream side. Then, it is preferable to set the temperature and pressure in the hopper and the cylinder so that the liquid heated in the hopper evaporates in a flash. The removed volatile matter is discharged from the rear vent and the front vent. Then, it is preferable to add an inert gas such as nitrogen gas at the rear vent and / or the front vent to the volatile matter discharged through the rear vent and / or the front vent. Further, the screw may be either a single shaft type or a biaxial type. The screw may, for example, have a smaller shaft diameter of the screw in that portion than that of the other portion so as to release pressure at the portion corresponding to the front vent. Further, a valve mechanism for providing a dynamic valve immediately before the front vent, or a bypass mechanism for providing a reverse screw portion on the screw immediately before the front vent and providing a bypass connecting immediately before and after the front vent in the cylinder may be provided.
本発明の熱可塑性樹脂組成物は、本発明のメタクリル共重合体と、アクリル系ゴム粒子とを含有する。
The thermoplastic resin composition of the present invention contains the methacrylic copolymer of the present invention and acrylic rubber particles.
アクリル系ゴム粒子としては、熱可塑性重合体(P)からなる外層と、該外層に接し且つ覆われた架橋弾性体からなる内層とからなるものを挙げることができ、内層と外層がコアとシェルを成していることが好ましい。内層は、芯と内殻とからなる。アクリル系ゴム粒子は、例えば、芯(内層)が架橋ゴム重合体(Q)-外殻(外層)が熱可塑性重合体(P)の2層重合体、芯(内層)が架橋重合体(R)-内殻(内層)が架橋ゴム重合体(Q)-外殻(外層)が熱可塑性重合体(P)の3層重合体、芯(内層)が架橋ゴム重合体(Q)-第一内殻(内層)が架橋重合体(R)-第二内殻(内層)が架橋ゴム重合体(Q)-外殻(外層)が熱可塑性重合体(P)の4層重合体などを挙げることができる。
Examples of the acrylic rubber particles include those composed of an outer layer made of a thermoplastic polymer (P) and an inner layer made of a crosslinked elastic body in contact with and covered with the outer layer, and the inner layer and the outer layer are a core and a shell. It is preferable that the above is formed. The inner layer consists of a core and an inner shell. In the acrylic rubber particles, for example, the core (inner layer) is a crosslinked rubber polymer (Q) -the outer shell (outer layer) is a thermoplastic polymer (P), and the core (inner layer) is a crosslinked polymer (R). ) -Inner shell (inner layer) is a crosslinked rubber polymer (Q) -Outer shell (outer layer) is a three-layer polymer of thermoplastic polymer (P), core (inner layer) is a crosslinked rubber polymer (Q) -First A four-layer polymer in which the inner shell (inner layer) is a crosslinked polymer (R) -the second inner shell (inner layer) is a crosslinked rubber polymer (Q) -the outer shell (outer layer) is a thermoplastic polymer (P). be able to.
透明性の観点から、隣り合う層の屈折率の差が、好ましくは0.005未満、より好ましくは0.004未満、さらに好ましくは0.003未満になるように各層に含有される重合体を選択することが好ましい。
From the viewpoint of transparency, the polymer contained in each layer so that the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select.
アクリル系ゴム粒子における内層と外層との質量比は、好ましくは60/40~95/5、より好ましくは70/30~90/10である。内層において、架橋ゴム重合体(Q)を含有してなる層が占める割合は、好ましくは20~70質量%、より好ましくは30~50質量%である。
The mass ratio of the inner layer to the outer layer of the acrylic rubber particles is preferably 60/40 to 95/5, more preferably 70/30 to 90/10. In the inner layer, the ratio of the layer containing the crosslinked rubber polymer (Q) is preferably 20 to 70% by mass, more preferably 30 to 50% by mass.
アクリル系ゴム粒子は、平均粒子径が、好ましくは0.05~3μm、より好ましくは0.1~1μm、さらに好ましくは0.15~0.2μmである。このような範囲内の平均粒子径、特に0.15~0.2μmの平均粒子径を有することにより、少量の配合で、靭性を発現することができ、このため剛性や表面硬度を損なうことない。なお、本明細書における平均粒子径は、光散乱光法によって測定される、体積基準の粒径分布における平均値である。
The acrylic rubber particles have an average particle diameter of preferably 0.05 to 3 μm, more preferably 0.1 to 1 μm, and even more preferably 0.15 to 0.2 μm. By having an average particle size within such a range, particularly an average particle size of 0.15 to 0.2 μm, toughness can be exhibited with a small amount of compounding, and therefore rigidity and surface hardness are not impaired. .. The average particle size in the present specification is an average value in a volume-based particle size distribution measured by a light scattered light method.
熱可塑性重合体(P)は、炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単位および必要に応じて該メタクリル酸アルキルエステル以外の単官能単量体単位からなる重合体である。熱可塑性重合体(P)は、多官能単量体単位を含まない方が好ましい。
The thermoplastic polymer (P) is a polymer composed of a methacrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms and, if necessary, a monofunctional monomer unit other than the methacrylic acid alkyl ester. The thermoplastic polymer (P) preferably does not contain a polyfunctional monomer unit.
熱可塑性重合体(P)を構成する炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル単位の量は、熱可塑性重合体(P)の質量に対して、好ましくは80~100質量%、より好ましくは85~95質量%である。
The amount of the methacrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms constituting the thermoplastic polymer (P) is preferably 80 to 100% by mass with respect to the mass of the thermoplastic polymer (P). More preferably, it is 85 to 95% by mass.
炭素数1~8のアルキル基を有するメタクリル酸アルキルエステル(以下、メタクリル酸C1-8アルキルエステルということがある。)としては、例えば、メタクリル酸メチルが好ましい。
As the methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms (hereinafter, may be referred to as methacrylic acid C1-8 alkyl ester), for example, methyl methacrylate is preferable.
熱可塑性重合体(P)を構成するメタクリル酸C1-8アルキルエステル以外の単官能単量体単位の量は、熱可塑性重合体(P)の質量に対して、好ましくは0~20質量%、より好ましくは5~15質量%である。
メタクリル酸C1-8アルキルエステル以外の単官能単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロルなどのアクリル酸エステル;スチレンなどの芳香族ビニル化合物を挙げることができる。 The amount of the monofunctional monomer unit other than the methacrylic acid C1-8 alkyl ester constituting the thermoplastic polymer (P) is preferably 0 to 20% by mass with respect to the mass of the thermoplastic polymer (P). More preferably, it is 5 to 15% by mass.
Examples of monofunctional monomers other than methacrylic acid C1-8 alkyl ester include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and prol acrylate; aromatic vinyl such as styrene. Compounds can be mentioned.
メタクリル酸C1-8アルキルエステル以外の単官能単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロルなどのアクリル酸エステル;スチレンなどの芳香族ビニル化合物を挙げることができる。 The amount of the monofunctional monomer unit other than the methacrylic acid C1-8 alkyl ester constituting the thermoplastic polymer (P) is preferably 0 to 20% by mass with respect to the mass of the thermoplastic polymer (P). More preferably, it is 5 to 15% by mass.
Examples of monofunctional monomers other than methacrylic acid C1-8 alkyl ester include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and prol acrylate; aromatic vinyl such as styrene. Compounds can be mentioned.
熱可塑性重合体(P)の量は、アクリル系ゴム粒子に対して、好ましくは40~75質量%、より好ましくは45~70質量%、さらに好ましくは50~65質量%である。
The amount of the thermoplastic polymer (P) is preferably 40 to 75% by mass, more preferably 45 to 70% by mass, and further preferably 50 to 65% by mass with respect to the acrylic rubber particles.
内層である架橋弾性体の層は、架橋ゴム重合体(Q)からなる中間層と、架橋重合体(R)からなり且つ前記中間層に接して覆われた内層とを有する。
The crosslinked elastic layer, which is an inner layer, has an intermediate layer made of a crosslinked rubber polymer (Q) and an inner layer made of a crosslinked polymer (R) and covered in contact with the intermediate layer.
架橋重合体(R)は、メタクリル酸メチル単位、メタクリル酸メチル以外の単官能単量体単位、および多官能単量体単位からなる。
The crosslinked polymer (R) is composed of a methyl methacrylate unit, a monofunctional monomer unit other than methyl methacrylate, and a polyfunctional monomer unit.
架橋重合体(R)を構成するメタクリル酸メチル単位の量は、架橋重合体(R)の質量に対して、好ましくは40~98.5質量%、より好ましくは45~95質量%である。
The amount of the methyl methacrylate unit constituting the crosslinked polymer (R) is preferably 40 to 98.5% by mass, more preferably 45 to 95% by mass, based on the mass of the crosslinked polymer (R).
架橋重合体(R)を構成するメタクリル酸メチル以外の単官能単量体単位の量は、架橋重合体(R)の質量に対して、1~59.5質量%、好ましくは5~55質量%である。
メタクリル酸メチル以外の単官能単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル;スチレンなどの芳香族ビニル化合物を挙げることができる。 The amount of the monofunctional monomer unit other than methyl methacrylate constituting the crosslinked polymer (R) is 1 to 59.5% by mass, preferably 5 to 55% by mass, based on the mass of the crosslinked polymer (R). %.
Examples of the monofunctional monomer other than methyl methacrylate include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate; and aromatic vinyl compounds such as styrene. Can be done.
メタクリル酸メチル以外の単官能単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどのアクリル酸エステル;スチレンなどの芳香族ビニル化合物を挙げることができる。 The amount of the monofunctional monomer unit other than methyl methacrylate constituting the crosslinked polymer (R) is 1 to 59.5% by mass, preferably 5 to 55% by mass, based on the mass of the crosslinked polymer (R). %.
Examples of the monofunctional monomer other than methyl methacrylate include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate; and aromatic vinyl compounds such as styrene. Can be done.
架橋重合体(R)を構成する多官能単量体単位の量は、架橋重合体(R)の質量に対して、好ましくは0.05~0.4質量%、より好ましくは0.1~0.3質量%である。
多官能単量体としては、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート、トリアリルイソシアヌレートなどを挙げることができる。 The amount of the polyfunctional monomer unit constituting the crosslinked polymer (R) is preferably 0.05 to 0.4% by mass, more preferably 0.1 to 0.1, based on the mass of the crosslinked polymer (R). It is 0.3% by mass.
Examples of the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
多官能単量体としては、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート、トリアリルイソシアヌレートなどを挙げることができる。 The amount of the polyfunctional monomer unit constituting the crosslinked polymer (R) is preferably 0.05 to 0.4% by mass, more preferably 0.1 to 0.1, based on the mass of the crosslinked polymer (R). It is 0.3% by mass.
Examples of the polyfunctional monomer include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene glycol diacrylate, allyl methacrylate, and triallyl. Isocyanurate and the like can be mentioned.
架橋重合体(R)の量は、アクリル系ゴム粒子に対して、好ましくは5~40質量%、より好ましくは7~35質量%、さらに好ましくは10~30質量%である。
The amount of the crosslinked polymer (R) is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass with respect to the acrylic rubber particles.
架橋ゴム重合体(Q)は、炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位および/または共役ジエン単位、および多官能単量体単位からなる。
The crosslinked rubber polymer (Q) is composed of an acrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms and / or a conjugated diene unit, and a polyfunctional monomer unit.
架橋ゴム重合体(Q)を構成する炭素数1~8のアルキル基を有するアクリル酸アルキルエステル単位および/または共役ジエン単位の量は、架橋ゴム重合体(Q)の質量に対して、好ましくは85~99質量%、より好ましくは95~98質量%である。
The amount of the acrylic acid alkyl ester unit and / or the conjugated diene unit having an alkyl group having 1 to 8 carbon atoms constituting the crosslinked rubber polymer (Q) is preferable with respect to the mass of the crosslinked rubber polymer (Q). It is 85 to 99% by mass, more preferably 95 to 98% by mass.
炭素数1~8のアルキル基を有するアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸プロピルなどを挙げることができる。
Examples of the acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and propyl acrylate.
架橋ゴム重合体(Q)を構成する多官能単量体単位の量は、架橋ゴム重合体(Q)の質量に対して、好ましくは1~1.7質量%、より好ましくは1.2~1.6質量%、さらに好ましくは1.3~1.5質量%である。
多官能単量体としては、架橋重合体(R)で挙げたものなどを挙げることができる。 The amount of the polyfunctional monomer unit constituting the crosslinked rubber polymer (Q) is preferably 1 to 1.7% by mass, more preferably 1.2 to 1% by mass, based on the mass of the crosslinked rubber polymer (Q). It is 1.6% by mass, more preferably 1.3 to 1.5% by mass.
Examples of the polyfunctional monomer include those mentioned in the crosslinked polymer (R).
多官能単量体としては、架橋重合体(R)で挙げたものなどを挙げることができる。 The amount of the polyfunctional monomer unit constituting the crosslinked rubber polymer (Q) is preferably 1 to 1.7% by mass, more preferably 1.2 to 1% by mass, based on the mass of the crosslinked rubber polymer (Q). It is 1.6% by mass, more preferably 1.3 to 1.5% by mass.
Examples of the polyfunctional monomer include those mentioned in the crosslinked polymer (R).
耐屈曲性の向上の観点から、架橋ゴム重合体(Q)中の多官能単量体単位の質量に対する、架橋重合体(R)中の多官能単量体単位の質量の比が、好ましくは0.05~0.25、より好ましくは0.1~0.2である。架橋ゴム重合体(Q)のガラス転移温度は、架橋重合体(R)のガラス転移温度より低いことが好ましい。
From the viewpoint of improving bending resistance, the ratio of the mass of the polyfunctional monomer unit in the crosslinked rubber polymer (Q) to the mass of the polyfunctional monomer unit in the crosslinked polymer (R) is preferable. It is 0.05 to 0.25, more preferably 0.1 to 0.2. The glass transition temperature of the crosslinked rubber polymer (Q) is preferably lower than the glass transition temperature of the crosslinked polymer (R).
架橋ゴム重合体(Q)の量は、アクリル系ゴム粒子の量に対して、好ましくは20~55質量%、より好ましくは25~45質量%、さらに好ましくは30~40質量%である。
The amount of the crosslinked rubber polymer (Q) is preferably 20 to 55% by mass, more preferably 25 to 45% by mass, and further preferably 30 to 40% by mass with respect to the amount of acrylic rubber particles.
アクリル系ゴム粒子は、内層の平均直径が、好ましくは60~110nm、より好ましくは65~105nm、更に好ましくは70~100nmである。内層の平均直径は次のようにして決定できる。油圧式プレス成形機を用いて、金型サイズ50mm×120mm、プレス温度250℃、予熱時間3分、プレス圧力50kg/cm2、プレス時間30秒間、冷却温度20℃、冷却時の圧力50kg/cm2、冷却時間10分間の条件にて、アクリル系ゴム粒子を含む樹脂組成物を厚さ3mmの平板に成形する。ミクロトームを用いて、得られた平板を-100℃にて長辺に平行な方向に切削して、厚さ40nmの薄片を得、この薄片をルテニウムで染色処理する。染色処理された薄片を走査型透過電子顕微鏡(日本電子製JSM7600F)にて加速電圧25kVにて観察し写真を撮影する。ルテニウム染色された部分(架橋弾性体の層の切片露出部)の短径と長径を測定し、(短径+長径)/2を内層の直径とし、20個以上計測した後、その数平均値(平均直径)を算出する。
The average diameter of the inner layer of the acrylic rubber particles is preferably 60 to 110 nm, more preferably 65 to 105 nm, and further preferably 70 to 100 nm. The average diameter of the inner layer can be determined as follows. Using a hydraulic press molding machine, mold size 50 mm x 120 mm, press temperature 250 ° C, preheating time 3 minutes, press pressure 50 kg / cm 2 , press time 30 seconds, cooling temperature 20 ° C, cooling pressure 50 kg / cm 2. Under the condition that the cooling time is 10 minutes, the resin composition containing the acrylic rubber particles is molded into a flat plate having a thickness of 3 mm. Using a microtome, the obtained flat plate is cut at −100 ° C. in a direction parallel to the long side to obtain a slice having a thickness of 40 nm, and the slice is dyed with ruthenium. The dyed flakes are observed with a scanning transmission electron microscope (JSM7600F manufactured by JEOL Ltd.) at an accelerating voltage of 25 kV and a photograph is taken. Measure the minor axis and major axis of the ruthenium-stained part (exposed part of the crosslinked elastic layer), set (minor axis + major axis) / 2 as the diameter of the inner layer, measure 20 or more, and then average the number. Calculate (average diameter).
アクリル系ゴム粒子は、その製造方法によって、特に限定されない。例えば、乳化重合などを挙げることができる。
乳化重合による場合は、例えば、架橋重合体(R)を構成するための単量体(r)を乳化重合して架橋重合体(R)を含有するラテックスを得、これに架橋ゴム重合体(Q)を構成するための単量体(q)を添加して、単量体(q)をシード乳化重合して架橋重合体(R)と架橋ゴム重合体(q)を含有するラテックスを得、これに熱可塑性重合体(P)を構成するための単量体(p)を加えて、単量体(p)をシード乳化重合してアクリル系ゴム粒子を含有するラテックスを得ることができる。なお、乳化重合は重合体を含有するラテックスを得るために用いられる公知の方法である。シード乳化重合はシード粒子の表面で単量体の重合反応を行わせる方法である。シード乳化重合はコアシェル構造重合体粒子を得るために好ましく用いられる。 The acrylic rubber particles are not particularly limited depending on the production method thereof. For example, emulsion polymerization and the like can be mentioned.
In the case of emulsion polymerization, for example, the monomer (r) for forming the crosslinked polymer (R) is emulsion-polymerized to obtain a latex containing the crosslinked polymer (R), and the crosslinked rubber polymer (R) is obtained. A monomer (q) for constituting Q) is added, and the monomer (q) is seed-emulsified polymerized to obtain a latex containing a crosslinked polymer (R) and a crosslinked rubber polymer (q). , A monomer (p) for forming a thermoplastic polymer (P) is added thereto, and the monomer (p) is seed-emulsified polymerized to obtain a latex containing acrylic rubber particles. .. Emulsion polymerization is a known method used to obtain a latex containing a polymer. Seed emulsion polymerization is a method in which a monomer polymerization reaction is carried out on the surface of seed particles. Seed emulsion polymerization is preferably used to obtain core-shell structural polymer particles.
乳化重合による場合は、例えば、架橋重合体(R)を構成するための単量体(r)を乳化重合して架橋重合体(R)を含有するラテックスを得、これに架橋ゴム重合体(Q)を構成するための単量体(q)を添加して、単量体(q)をシード乳化重合して架橋重合体(R)と架橋ゴム重合体(q)を含有するラテックスを得、これに熱可塑性重合体(P)を構成するための単量体(p)を加えて、単量体(p)をシード乳化重合してアクリル系ゴム粒子を含有するラテックスを得ることができる。なお、乳化重合は重合体を含有するラテックスを得るために用いられる公知の方法である。シード乳化重合はシード粒子の表面で単量体の重合反応を行わせる方法である。シード乳化重合はコアシェル構造重合体粒子を得るために好ましく用いられる。 The acrylic rubber particles are not particularly limited depending on the production method thereof. For example, emulsion polymerization and the like can be mentioned.
In the case of emulsion polymerization, for example, the monomer (r) for forming the crosslinked polymer (R) is emulsion-polymerized to obtain a latex containing the crosslinked polymer (R), and the crosslinked rubber polymer (R) is obtained. A monomer (q) for constituting Q) is added, and the monomer (q) is seed-emulsified polymerized to obtain a latex containing a crosslinked polymer (R) and a crosslinked rubber polymer (q). , A monomer (p) for forming a thermoplastic polymer (P) is added thereto, and the monomer (p) is seed-emulsified polymerized to obtain a latex containing acrylic rubber particles. .. Emulsion polymerization is a known method used to obtain a latex containing a polymer. Seed emulsion polymerization is a method in which a monomer polymerization reaction is carried out on the surface of seed particles. Seed emulsion polymerization is preferably used to obtain core-shell structural polymer particles.
本発明の熱可塑性樹脂組成物は、アクリル系ブロック共重合体をさらに含有することができる。
The thermoplastic resin composition of the present invention can further contain an acrylic block copolymer.
アクリル系ブロック共重合体は、メタクリル酸エステル単位を主に有する重合体ブロック(b1)と、アクリル酸エステル単位を主に有する重合体ブロック(b2)とからなるものが好ましい。アクリル系ブロック共重合体の一分子中に在る重合体ブロック(b1)の数は、1であってもよいし、2以上であってもよい。また、アクリル系ブロック共重合体の一分子中に在る重合体ブロック(b2)の数は、1であってもよいし、2以上であってもよい。
The acrylic block copolymer is preferably composed of a polymer block (b1) having a methacrylic acid ester unit as a main component and a polymer block (b2) having an acrylic acid ester unit as a main component. The number of polymer blocks (b1) in one molecule of the acrylic block copolymer may be 1, or may be 2 or more. Further, the number of polymer blocks (b2) in one molecule of the acrylic block copolymer may be 1, or may be 2 or more.
重合体ブロック(b1)に含まれるメタクリル酸エステル単位の量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、よりさらに好ましくは98質量%以上である。メタクリル酸エステルとしては、例えば、メタクリル酸メチルが好ましい。メタクリル酸エステルは1種単独でまたは2種以上を組み合わせて重合体ブロック(b1)に用いることができる。
The amount of the methacrylic acid ester unit contained in the polymer block (b1) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more. .. As the methacrylic acid ester, for example, methyl methacrylate is preferable. The methacrylic acid ester can be used alone or in combination of two or more for the polymer block (b1).
アクリル系ブロック共重合体に含まれる重合体ブロック(b1)の量は、透明性、可撓性、耐屈曲性、耐衝撃性、柔軟性、成形加工性、表面平滑性などの観点から、好ましくは40質量%以上90質量%以下、より好ましくは45質量%以上80質量%以下である。
The amount of the polymer block (b1) contained in the acrylic block copolymer is preferable from the viewpoints of transparency, flexibility, bending resistance, impact resistance, flexibility, molding processability, surface smoothness, and the like. Is 40% by mass or more and 90% by mass or less, more preferably 45% by mass or more and 80% by mass or less.
重合体ブロック(b2)のガラス転移温度は、好ましくは20℃以下、更に好ましくは-20℃以下である。
The glass transition temperature of the polymer block (b2) is preferably 20 ° C. or lower, more preferably −20 ° C. or lower.
重合体ブロック(b2)に含まれるアクリル酸エステル単位の量は、好ましくは90質量%以上である。アクリル酸エステルとしては、例えば、アクリル酸n-ブチル、アクリル酸ベンジルなどが挙げられる。これらアクリル酸エステルは1種単独でまたは2種以上を組み合わせて重合体ブロック(b2)に用いることができる。
The amount of the acrylic ester unit contained in the polymer block (b2) is preferably 90% by mass or more. Examples of the acrylic acid ester include n-butyl acrylate and benzyl acrylate. These acrylic acid esters can be used alone or in combination of two or more for the polymer block (b2).
重合体ブロック(b2)は、本発明の目的および効果の妨げにならない限りにおいて、アクリル酸エステル以外の単量体単位を含んでもよい。
The polymer block (b2) may contain monomer units other than the acrylic acid ester as long as it does not interfere with the object and effect of the present invention.
重合体ブロック(b2)は、透明性などの観点から、アクリル酸アルキルエステル単位と(メタ)アクリル酸芳香族エステル単位とからなることが好ましい。アクリル酸アルキルエステル単位/(メタ)アクリル酸芳香族エステルの質量比は、好ましくは50/50~90/10、より好ましくは60/40~80/20である。
The polymer block (b2) is preferably composed of an acrylic acid alkyl ester unit and a (meth) acrylic acid aromatic ester unit from the viewpoint of transparency and the like. The mass ratio of the acrylic acid alkyl ester unit / (meth) acrylic acid aromatic ester is preferably 50/50 to 90/10, more preferably 60/40 to 80/20.
アクリル系ブロック共重合体に含まれる重合体ブロック(b1)と重合体ブロック(b2)との結合形態は特に限定されない。例えば、重合体ブロック(b1)の一末端に重合体ブロック(b2)の一末端が繋がったもの(b1-b2ジブロック共重合体);重合体ブロック(b2)の両末端のそれぞれに重合体ブロック(b1)の一末端が繋がったもの(b1-b2-b1トリブロック共重合体)が好ましい。
The bond form between the polymer block (b1) and the polymer block (b2) contained in the acrylic block copolymer is not particularly limited. For example, one end of a polymer block (b1) connected to one end of a polymer block (b2) (b1-b2 diblock copolymer); a polymer at both ends of a polymer block (b2). A block (b1) in which one end is connected (b1-b2-b1 triblock copolymer) is preferable.
アクリル系ブロック共重合体は、重量平均分子量が、好ましくは52,000以上400,000以下、より好ましくは60,000以上300,000以下である。また、アクリル系ブロック共重合体は、数平均分子量に対する重量平均分子量の比が、好ましくは1.01以上2.00以下、より好ましくは1.05以上1.60以下である。アクリル系ブロック共重合体の重量平均分子量および数平均分子量は、成形性、引張強度、外観などの観点から、適宜設定できる。重量平均分子量および数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算値である。
The weight average molecular weight of the acrylic block copolymer is preferably 52,000 or more and 400,000 or less, and more preferably 60,000 or more and 300,000 or less. Further, in the acrylic block copolymer, the ratio of the weight average molecular weight to the number average molecular weight is preferably 1.01 or more and 2.00 or less, and more preferably 1.05 or more and 1.60 or less. The weight average molecular weight and the number average molecular weight of the acrylic block copolymer can be appropriately set from the viewpoints of moldability, tensile strength, appearance and the like. The weight average molecular weight and the number average molecular weight are standard polystyrene-equivalent values measured by GPC (gel permeation chromatography).
アクリル系ブロック共重合体は、その製造方法によって特に限定されず、公知の手法にて得ることができる。例えば、各重合体ブロックを構成する単量体をリビング重合することを含む方法が一般に使用される。リビング重合法としては、有機アルカリ金属化合物と有機アルミニウム化合物との存在下でアニオン重合させることを含む方法が、分子量や組成比の制御のし易さ、製造コスト、得られるアクリル系ブロック共重合体の純度の観点から、好ましい。
The acrylic block copolymer is not particularly limited depending on the production method thereof, and can be obtained by a known method. For example, a method including living polymerization of the monomers constituting each polymer block is generally used. As a living polymerization method, a method including anionic polymerization in the presence of an organoalkali metal compound and an organoaluminum compound is a method in which the molecular weight and composition ratio can be easily controlled, the production cost, and the obtained acrylic block copolymer. It is preferable from the viewpoint of purity.
本発明の熱可塑性樹脂組成物に含まれるアセトン不溶分の量は、好ましくは59質量%以下、より好ましくは50質量%以下、さらに好ましくは45質量%である。
The amount of acetone insoluble matter contained in the thermoplastic resin composition of the present invention is preferably 59% by mass or less, more preferably 50% by mass or less, and further preferably 45% by mass.
熱可塑性樹脂組成物に含まれるアセトン不溶分の量は、次のようにして決定する。精秤された熱可塑性樹脂組成物2g(w0)をアセトン50mlに添加し室温で24時間撹拌する。得られた液を遠沈管に入れ、0℃、20000rpmにて遠心分離を180分間施す。次いで、上澄み液をデカンテーションにより取り除く。該遠沈管にアセトンを加え撹拌する。5℃、20000rpmにて遠心分離を120分間施す。次いで上澄み液をデカンテーションにより取り除く。遠沈管の底から遠沈物を取り出し、減圧下50℃で乾燥させて、その質量w1を測定する。
アセトン不溶分の量(百分率)は、式:100×w1/w0にて算出する。
アセトン可溶分の量(百分率)は、式:100×(w0-w1)/w0にて算出する。 The amount of acetone insoluble matter contained in the thermoplastic resin composition is determined as follows. 2 g (w0) of the precisely weighed thermoplastic resin composition is added to 50 ml of acetone, and the mixture is stirred at room temperature for 24 hours. The obtained liquid is placed in a centrifuge tube and centrifuged at 0 ° C. and 20000 rpm for 180 minutes. The supernatant is then removed by decantation. Acetone is added to the centrifuge tube and stirred. Centrifuge at 5 ° C. and 20000 rpm for 120 minutes. The supernatant is then removed by decantation. The centrifuge is taken out from the bottom of the centrifuge tube, dried at 50 ° C. under reduced pressure, and its mass w1 is measured.
The amount (percentage) of acetone insoluble matter is calculated by the formula: 100 × w1 / w0.
The amount (percentage) of the acetone-soluble component is calculated by the formula: 100 × (w0-w1) / w0.
アセトン不溶分の量(百分率)は、式:100×w1/w0にて算出する。
アセトン可溶分の量(百分率)は、式:100×(w0-w1)/w0にて算出する。 The amount of acetone insoluble matter contained in the thermoplastic resin composition is determined as follows. 2 g (w0) of the precisely weighed thermoplastic resin composition is added to 50 ml of acetone, and the mixture is stirred at room temperature for 24 hours. The obtained liquid is placed in a centrifuge tube and centrifuged at 0 ° C. and 20000 rpm for 180 minutes. The supernatant is then removed by decantation. Acetone is added to the centrifuge tube and stirred. Centrifuge at 5 ° C. and 20000 rpm for 120 minutes. The supernatant is then removed by decantation. The centrifuge is taken out from the bottom of the centrifuge tube, dried at 50 ° C. under reduced pressure, and its mass w1 is measured.
The amount (percentage) of acetone insoluble matter is calculated by the formula: 100 × w1 / w0.
The amount (percentage) of the acetone-soluble component is calculated by the formula: 100 × (w0-w1) / w0.
本発明の熱可塑性樹脂組成物に含まれるアセトン可溶分は、前記上澄み液を減圧下50℃で乾燥させることによって得ることができる。アセトン可溶分は、230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが、好ましくは6.0~1.5℃・10分/g、より好ましくは5.6~2.0℃・10分/gである。
The acetone-soluble component contained in the thermoplastic resin composition of the present invention can be obtained by drying the supernatant at 50 ° C. under reduced pressure. As for the acetone-soluble content, the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is preferably 6.0 to 1.5 ° C. for 10 minutes / g, more preferably. Is 5.6 to 2.0 ° C. for 10 minutes / g.
本発明の熱可塑性樹脂組成物に含まれるアセトン可溶分は、そのガラス転移温度が、好ましくは90~115℃、より好ましくは95~110℃である。
The acetone-soluble component contained in the thermoplastic resin composition of the present invention has a glass transition temperature of preferably 90 to 115 ° C, more preferably 95 to 110 ° C.
本発明の熱可塑性樹脂組成物に含まれるアセトン可溶分は、230℃および3.8kg荷重の条件におけるメルトフローレートRが、好ましくは15~60g/10分、より好ましくは20~55g/10分である。
The acetone-soluble component contained in the thermoplastic resin composition of the present invention has a melt flow rate R of preferably 15 to 60 g / 10 minutes, more preferably 20 to 55 g / 10 under the conditions of 230 ° C. and a load of 3.8 kg. Minutes.
本発明の成形材料は、本発明のメタクリル共重合体(または熱可塑性樹脂組成物)を含有するものである。本発明の成形材料は、本発明の効果を損なわない範囲で、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などの添加剤をさらに含有していてもよい。
The molding material of the present invention contains the methacrylic copolymer (or thermoplastic resin composition) of the present invention. The molding material of the present invention is an antioxidant, a heat deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic agent, as long as the effects of the present invention are not impaired. Additives such as flame retardant, dye pigment, light diffusing agent, organic dye, matting agent, impact resistance modifier, and phosphor may be further contained.
酸化防止剤は、酸素存在下においてそれ単独で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などを挙げることができる。これらの中、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤/ヒンダードフェノール系酸化防止剤を質量比で0.2/1~2/1で使用するのが好ましく、0.5/1~1/1で使用するのがより好ましい。 The antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen. For example, phosphorus-based antioxidants, hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned. Of these, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, it is recommended to use a phosphorus-based antioxidant / hindered phenol-based antioxidant in a mass ratio of 0.2 / 1 to 2/1. It is preferably used at 0.5 / 1/1 to 1/1, more preferably.
リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤/ヒンダードフェノール系酸化防止剤を質量比で0.2/1~2/1で使用するのが好ましく、0.5/1~1/1で使用するのがより好ましい。 The antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen. For example, phosphorus-based antioxidants, hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned. Of these, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, it is recommended to use a phosphorus-based antioxidant / hindered phenol-based antioxidant in a mass ratio of 0.2 / 1 to 2/1. It is preferably used at 0.5 / 1/1 to 1/1, more preferably.
リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRUGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)などを挙げることができる。
Phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite (manufactured by ADEKA; trade name: ADEKA STAB HP-10), tris (2,4-di-). t-butylphenyl) phosphite (manufactured by BASF; trade name: IRUGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa 3 , 9-Diphosphaspiro [5.5] Undecan (manufactured by ADEKA; trade name: ADEKA STAB PEP-36) and the like.
ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。
As hindered phenolic antioxidants, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- (3,5-Di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) and the like are preferable.
熱劣化防止剤としては、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジt-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。 As the heat deterioration inhibitor, the heat deterioration of the resin can be prevented by capturing the polymer radicals generated when exposed to high heat under a substantially oxygen-free state.
Examples of the heat deterioration inhibitor include 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: Sumilyzer GM). 2,4-dit-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy-α-methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GS) and the like are preferable. ..
該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジt-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。 As the heat deterioration inhibitor, the heat deterioration of the resin can be prevented by capturing the polymer radicals generated when exposed to high heat under a substantially oxygen-free state.
Examples of the heat deterioration inhibitor include 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: Sumilyzer GM). 2,4-dit-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy-α-methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GS) and the like are preferable. ..
紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われるものである。
紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などを挙げることができる。これらの中でも、ベンゾトリアゾール類、トリアジン類、または波長380~450nmにおけるモル吸光係数の最大値εmax が100dm3 ・mol-1cm-1以下である紫外線吸収剤が好ましい。 The ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is said to have a function of mainly converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. Among these, benzotriazoles, triazines, and ultraviolet absorbers having a maximum molar extinction coefficient ε max of 100 dm 3 · mol -1 cm -1 or less at a wavelength of 380 to 450 nm are preferable.
紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などを挙げることができる。これらの中でも、ベンゾトリアゾール類、トリアジン類、または波長380~450nmにおけるモル吸光係数の最大値εmax が100dm3 ・mol-1cm-1以下である紫外線吸収剤が好ましい。 The ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is said to have a function of mainly converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. Among these, benzotriazoles, triazines, and ultraviolet absorbers having a maximum molar extinction coefficient ε max of 100 dm 3 · mol -1 cm -1 or less at a wavelength of 380 to 450 nm are preferable.
ベンゾトリアゾール類は紫外線被曝による着色などの光学特性低下を抑制する効果が高いので、本発明の成形品を光学用途に適用する場合に用いる紫外線吸収剤として好ましい。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2‘-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製;LA-31)などが好ましい。
Benzotriazoles are highly effective in suppressing deterioration of optical properties such as coloring due to exposure to ultraviolet rays, and are therefore preferable as an ultraviolet absorber used when the molded product of the present invention is applied to optical applications. Examples of benzotriazoles include 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H-). Benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2'-methylenebis [6- (2H-benzotriazole-2) -Il) -4-t-octylphenol] (manufactured by ADEKA; LA-31) and the like are preferable.
また、波長380~450nmにおけるモル吸光係数の最大値εmax が1200dm3 ・mol-1 cm-1 以下である紫外線吸収剤は、得られる成形品の変色を抑制できる。このような紫外線吸収剤としては、2-エチル-2’-エトキシ-オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)などを挙げることができる。
これら紫外線吸収剤の中、紫外線被照による樹脂劣化が抑えられるという観点からベンゾトリアゾール類が好ましく用いられる。 Further, an ultraviolet absorber having a maximum molar extinction coefficient ε max of 1200 dm 3 · mol -1 cm -1 or less at a wavelength of 380 to 450 nm can suppress discoloration of the obtained molded product. Examples of such an ultraviolet absorber include 2-ethyl-2'-ethoxy-oxalanilide (manufactured by Clariant Japan Co., Ltd .; trade name: Sandeuboa VSU).
Among these UV absorbers, benzotriazoles are preferably used from the viewpoint of suppressing resin deterioration due to UV exposure.
これら紫外線吸収剤の中、紫外線被照による樹脂劣化が抑えられるという観点からベンゾトリアゾール類が好ましく用いられる。 Further, an ultraviolet absorber having a maximum molar extinction coefficient ε max of 1200 dm 3 · mol -1 cm -1 or less at a wavelength of 380 to 450 nm can suppress discoloration of the obtained molded product. Examples of such an ultraviolet absorber include 2-ethyl-2'-ethoxy-oxalanilide (manufactured by Clariant Japan Co., Ltd .; trade name: Sandeuboa VSU).
Among these UV absorbers, benzotriazoles are preferably used from the viewpoint of suppressing resin deterioration due to UV exposure.
また、波長380nm以下の短波長を効率的に吸収したい場合は、トリアジン類の紫外線吸収剤が好ましく用いられる。このような紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)などを挙げることができる。
Further, when it is desired to efficiently absorb a short wavelength having a wavelength of 380 nm or less, a triazine-type ultraviolet absorber is preferably used. Examples of such an ultraviolet absorber include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70). Examples thereof include hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN 477 and TINUVIN 460), which are related thereto.
なお、紫外線吸収剤のモル吸光係数の最大値ε max は、次のようにして測定する。シクロヘキサン1Lに紫外線吸収剤10.00mgを添加し、目視による観察で未溶解物がないように溶解させる。この溶液を1cm×1cm×3cmの石英ガラスセルに注入し、日立製作所社製U-3410型分光光度計を用いて、波長380~450nm、光路長1cmでの吸光度を測定する。紫外線吸収剤の分子量(MUV )と、測定された吸光度の最大値(Amax )とから次式により計算し、モル吸光係数の最大値εmax を算出する。
εmax=[Amax/(10×10-3)]×MUV The maximum value ε max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane and dissolved so that there is no undissolved substance by visual observation. This solution is injected into a quartz glass cell of 1 cm × 1 cm × 3 cm, and the absorbance at a wavelength of 380 to 450 nm and an optical path length of 1 cm is measured using a U-3410 spectrophotometer manufactured by Hitachi, Ltd. The maximum value ε max of the molar extinction coefficient is calculated from the molecular weight ( MVV ) of the ultraviolet absorber and the maximum value (A max ) of the measured absorbance by the following equation.
ε max = [A max / (10 × 10 -3 )] × M UV
εmax=[Amax/(10×10-3)]×MUV The maximum value ε max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. 10.00 mg of an ultraviolet absorber is added to 1 L of cyclohexane and dissolved so that there is no undissolved substance by visual observation. This solution is injected into a quartz glass cell of 1 cm × 1 cm × 3 cm, and the absorbance at a wavelength of 380 to 450 nm and an optical path length of 1 cm is measured using a U-3410 spectrophotometer manufactured by Hitachi, Ltd. The maximum value ε max of the molar extinction coefficient is calculated from the molecular weight ( MVV ) of the ultraviolet absorber and the maximum value (A max ) of the measured absorbance by the following equation.
ε max = [A max / (10 × 10 -3 )] × M UV
光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類を挙げることができる。
The light stabilizer is a compound that is said to have a function of capturing radicals mainly generated by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などを挙げることができる。滑剤の使用量を増やすと、本発明の成形材料のメルトフローレートRを大きくし、流動性を高くする傾向がある。
Examples of the lubricant include stearic acid, behenic acid, stearoamic acid, methylene bisstearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. Increasing the amount of lubricant used tends to increase the melt flow rate R of the molding material of the present invention and increase the fluidity.
離型剤としては、成形品の金型からの分離を容易にする機能を有する化合物である。離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどを挙げることができる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、高級アルコール類/グリセリン脂肪酸モノエステルの質量比が、2.5/1~3.5/1の範囲で使用するのが好ましく、2.8/1~3.2/1の範囲で使用するのがより好ましい。
The mold release agent is a compound having a function of facilitating separation of a molded product from a mold. Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. In the present invention, it is preferable to use higher alcohols and glycerin fatty acid monoester in combination as a release agent. When the higher alcohols and the glycerin fatty acid monoester are used in combination, the mass ratio of the higher alcohols / glycerin fatty acid monoester is preferably in the range of 2.5 / 1 to 3.5 / 1, 2.8. It is more preferable to use it in the range of / 1 to 3.2 / 1.
高分子加工助剤としては、例えば、0.05~0.5μmの粒子径を有する重合体粒子を用いることができる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。具体的には、三菱レイヨン社製メタブレン-Pシリーズや、ダウケミカル社製のパラロイドシリーズが挙げられる。高分子加工助剤の使用量は、メタクリル共重合体100質量部に対して、好ましくは0.1質量部以上5質量部以下である。高分子加工助剤の使用量が0.1質量部以上であると良好な加工特性が得られ、高分子加工助剤の使用量が5質量部以下であると表面平滑性が良好である。
As the polymer processing aid, for example, polymer particles having a particle size of 0.05 to 0.5 μm can be used. The polymer particles may be single-layer particles composed of polymers having a single composition ratio and a single ultimate viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or ultimate viscosities. You may. Among these, particles having a two-layer structure having a polymer layer having a low ultimate viscosity in the inner layer and a polymer layer having a high ultimate viscosity of 5 dl / g or more in the outer layer are preferable. The polymer processing aid preferably has an ultimate viscosity of 3 to 6 dl / g. Specific examples thereof include the Metabren-P series manufactured by Mitsubishi Rayon and the Pararoid series manufactured by Dow Chemical. The amount of the polymer processing aid used is preferably 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the methacrylic copolymer. Good processing characteristics are obtained when the amount of the polymer processing aid used is 0.1 parts by mass or more, and surface smoothness is good when the amount of the polymer processing aid used is 5 parts by mass or less.
耐衝撃性改質剤としては、アクリル系ゴムもしくはジエン系ゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などを挙げることができる。
有機色素としては、樹脂に対しては有害とされている紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどを挙げることができる。
蛍光体として、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などを挙げることができる。 Examples of the impact resistance modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; and a modifier containing a plurality of rubber particles.
As the organic dye, a compound having a function of converting ultraviolet rays, which are considered to be harmful to the resin, into visible light is preferably used.
Examples of the light diffusing agent and the matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate and the like.
Examples of the phosphor include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
有機色素としては、樹脂に対しては有害とされている紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどを挙げることができる。
蛍光体として、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などを挙げることができる。 Examples of the impact resistance modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; and a modifier containing a plurality of rubber particles.
As the organic dye, a compound having a function of converting ultraviolet rays, which are considered to be harmful to the resin, into visible light is preferably used.
Examples of the light diffusing agent and the matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate and the like.
Examples of the phosphor include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
これらの添加剤は、1種を単独でまたは2種以上を組み合わせて用いてもよい。これらの添加剤は、メタクリル共重合体を製造する際に添加してもよいし、製造されたメタクリル共重合体に添加してもよい。本発明のメタクリル共重合体に含有される添加剤の合計量は、成形品の外観不良を抑制する観点から、メタクリル共重合体樹脂に対して、好ましくは1質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下である。
These additives may be used alone or in combination of two or more. These additives may be added at the time of producing the methacrylic copolymer, or may be added to the produced methacrylic copolymer. The total amount of the additives contained in the methacrylic copolymer of the present invention is preferably 1% by mass or less, more preferably 0.% by mass, based on the methacrylic copolymer resin, from the viewpoint of suppressing poor appearance of the molded product. It is 8% by mass or less, more preferably 0.5% by mass or less.
本発明のメタクリル共重合体または熱可塑性樹脂組成物は、輸送、貯蔵などの利便性などを高めるために、ペレット、顆粒、粉末などの任意の形態にして、成形材料として使用することができる。
The methacrylic copolymer or thermoplastic resin composition of the present invention can be used as a molding material in any form such as pellets, granules, and powder in order to enhance convenience such as transportation and storage.
本発明の成形品は、本発明のメタクリル共重合体(または熱可塑性樹脂組成物若しくは成形材料)に成形を施すことによって得られる。成形は、射出成形法、圧縮成形法、押出成形法、真空成形法、キャスト成形法などの公知の方法で行うことができる。これらのうち、射出成形法が好ましい。本発明のメタクリル共重合体は、低いシリンダ温度において高い射出圧力で射出成形した場合でも、残留歪みが少なく且つ着色が殆んどない薄肉且つ広面積の成形品を高い生産効率で提供することができる。本発明のメタクリル共重合体は、射出成形において使用可能な金型の、厚さに対する樹脂流動長の比の最大値が、好ましくは450以上である。厚さに対する樹脂流動長の比の最大値が上記のように大きいと、本発明のメタクリル共重合体は薄肉の成形品の製造に好適である。本発明の好ましい形態の成形品は、板状であり、その厚さが、好ましくは0.5mm以下、より好ましくは0.45mm以下、さらに好ましくは0.4mm以下、さらにより好ましくは0.35mm以下である。
The molded product of the present invention can be obtained by molding the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention. Molding can be performed by a known method such as an injection molding method, a compression molding method, an extrusion molding method, a vacuum forming method, or a cast molding method. Of these, the injection molding method is preferable. The methacrylic copolymer of the present invention can provide a thin-walled and wide-area molded product with little residual strain and almost no coloring even when injection-molded at a low cylinder temperature and a high injection pressure with high production efficiency. it can. In the methacrylic copolymer of the present invention, the maximum value of the ratio of the resin flow length to the thickness of the mold that can be used in injection molding is preferably 450 or more. When the maximum value of the ratio of the resin flow length to the thickness is large as described above, the methacrylic copolymer of the present invention is suitable for producing a thin-walled molded product. The molded product of the preferred form of the present invention has a plate shape, and the thickness thereof is preferably 0.5 mm or less, more preferably 0.45 mm or less, still more preferably 0.4 mm or less, still more preferably 0.35 mm. It is as follows.
本発明のメタクリル共重合体(または熱可塑性樹脂組成物若しくは成形材料)は、携帯電話端末の筐体を製造するために好適である。携帯電話端末は、移動しながらの通話が可能な電話サービス(すなわち携帯電話)に使用される端末である。携帯電話端末は、少なくとも、アンテナ、スピーカ、マイク、入出力装置、表示装置、電子回路および電源、ならびにそれらを収納する筐体から成る。携帯電話端末は、小型化および軽量化の要望が高い。そのため、携帯電話端末用の筐体は、実用レベルでの強度を確保した上での薄肉化が要望されている。
The methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention is suitable for manufacturing a housing of a mobile phone terminal. A mobile phone terminal is a terminal used for a telephone service (that is, a mobile phone) capable of making a call while moving. A mobile phone terminal consists of at least an antenna, a speaker, a microphone, an input / output device, a display device, an electronic circuit and a power supply, and a housing for accommodating them. There is a high demand for miniaturization and weight reduction of mobile phone terminals. Therefore, the housing for mobile phone terminals is required to be thinned while ensuring the strength at a practical level.
本発明のメタクリル共重合体(または熱可塑性樹脂組成物若しくは成形材料)は、薄肉化しても実用レベルでの強度を確保できる。本発明の携帯電話端末用の筐体は、本発明のメタクリル共重合体(または熱可塑性樹脂組成物若しくは成形材料)を含有してなるものであり、例えば、厚さが、好ましくは0.8mm以下、より好ましくは0.7mm以下、さらに好ましくは0.6mm以下の、部分が、本発明のメタクリル共重合体(または熱可塑性樹脂組成物若しくは成形材料)を含有してなるものである。
The methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention can secure the strength at a practical level even if it is thinned. The housing for the mobile phone terminal of the present invention is made of the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention, and has, for example, a thickness of preferably 0.8 mm. Below, more preferably 0.7 mm or less, still more preferably 0.6 mm or less, the portion is composed of the methacrylic copolymer (or thermoplastic resin composition or molding material) of the present invention.
本発明の成形品としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板などの看板部品;ショーケース、仕切板、店舗ディスプレイなどのディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリアなどの照明部品;ペンダント、ミラーなどのインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根などの建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバーなどの輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機などの電子機器部品;保育器、レントゲン部品などの医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓などの機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板、偏光子保護フィルム、偏光板保護フィルム、位相差フィルム、携帯電話用の筐体などの光学関係部品;道路標識、案内板、カーブミラー、防音壁などの交通関係部品;自動車内装用表面材、携帯電話の表面材、マーキングフィルムなどのフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネルなどの家電製品用部材;その他、温室、大型水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスクなどが挙げられる。これらのうち、本発明のメタクリル共重合体は光学部材に好適であり、光学部材のなかでも、導光体、携帯電話用の筐体に好適である。
Examples of the molded product of the present invention include signboard parts such as advertising towers, stand signs, sleeve signs, column signboards, and roof signboards; display parts such as showcases, dividers, and store displays; fluorescent lamp covers, mood lighting covers, etc. Lighting parts such as lamp shades, light ceilings, light walls, chandeliers; Interior parts such as pendants and mirrors; Building parts such as doors, dome, safety window glass, partitions, staircase wainscots, balcony wainscots, roofs of leisure buildings Transport equipment related parts such as aircraft windshields, pilot visors, motorcycles, motor boat windshields, bus shading plates, automobile side visors, rear visors, head wings, headlight covers; audiovisual nameplates, stereo covers, TV protective masks, Electronic equipment parts such as vending machines; Medical equipment parts such as incubators and roentgen parts; Equipment-related parts such as machine covers, instrument covers, experimental equipment, rulers, dials, observation windows; LCD protective plates, light guide plates, guides Optical parts such as optical films, frennel lenses, lenticular lenses, front plates of various displays, diffusers, polarizer protective films, polarizing plate protective films, retardation films, housings for mobile phones; road signs, information boards, Traffic-related parts such as curved mirrors and soundproof walls; Surface materials for automobile interiors, surface materials for mobile phones, film materials such as marking films; For home appliances such as canopy materials and control panels for washing machines, and top panels for rice cookers Members; Other examples include greenhouses, large water tanks, box water tanks, clock panels, bathtubs, sanitary, desk mats, game parts, toys, and face protection masks during welding. Of these, the methacrylic copolymer of the present invention is suitable for an optical member, and among the optical members, it is suitable for a light guide body and a housing for a mobile phone.
導光体は、例えば、液晶表示素子のバックライトの一部材として用いられる。側面または背面にある光源からの光を導き、板面全体から均一に光を放射できるようにするものである。導光体の板面には光を均一に放射するためのミクロンサイズの凹凸を設けることがある。本発明のメタクリル共重合体を用いると、薄く(0.5mm以下)且つ広い面積の導光体を得ることができる。また、本発明のメタクリル共重合体を用いると、金型スタンパに刻まれたミクロンサイズの凹凸微細形状を成形品の表面に忠実に再現することができる。
The light guide is used, for example, as a member of the backlight of the liquid crystal display element. It guides the light from the light source on the side or back so that the light can be radiated uniformly from the entire plate surface. The plate surface of the light guide may be provided with micron-sized irregularities for uniformly radiating light. By using the methacrylic copolymer of the present invention, a thin (0.5 mm or less) and wide area light guide can be obtained. Further, by using the methacrylic copolymer of the present invention, it is possible to faithfully reproduce the micron-sized uneven fine shape engraved on the mold stamper on the surface of the molded product.
次に実施例を示して本発明をより具体的に説明する。なお、本発明は実施例によって制限されるものではない。
Next, the present invention will be described in more detail with reference to Examples. The present invention is not limited to the examples.
実施例1~7および比較例1~4
撹拌機付オートクレーブに、精製されたメタクリル酸メチル(MMA)、アクリル酸メチル(MA)、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)およびn-オクチルメルカプタン(n-OM)を表1に記載の割合で仕込み、均一に溶解させて重合原料を得た。
重合原料を、オートクレーブから1.5kg/hrで、温度140℃に制御された槽型反応器に連続的に供給し、平均滞留時間120分間で塊状重合法によって重合反応させ、槽型反応器からメタクリル共重合体を含む液を連続的に排出した。重合転化率は57質量%であった。
次いで、反応器から排出された液を230℃に加温し、240℃に制御された二軸押出機に供給した。該二軸押出機において未反応単量体を主成分とする揮発分を分離除去して、メタクリル共重合体をストランドにして押し出した。該ストランドをペレタイザーでカットし、ペレット状のメタクリル共重合体を得た。 Examples 1 to 7 and Comparative Examples 1 to 4
Purified methyl methacrylate (MMA), methyl acrylate (MA), 2,2'-azobis (2-methylpropionitrile) (AIBN) and n-octyl mercaptan (n-OM) in an autoclave with a stirrer. Was charged at the ratio shown in Table 1 and uniformly dissolved to obtain a polymerization raw material.
The polymerization raw material is continuously supplied from the autoclave to a tank reactor controlled at a temperature of 140 ° C. at 1.5 kg / hr, and the polymerization reaction is carried out by a massive polymerization method with an average residence time of 120 minutes, and the polymerization reaction is carried out from the tank reactor. The liquid containing the methacrylic copolymer was continuously discharged. The polymerization conversion rate was 57% by mass.
Then, the liquid discharged from the reactor was heated to 230 ° C. and supplied to a twin-screw extruder controlled to 240 ° C. In the twin-screw extruder, the volatile matter containing the unreacted monomer as a main component was separated and removed, and the methacrylic copolymer was extruded as a strand. The strand was cut with a pelletizer to obtain a pellet-shaped methacrylic copolymer.
撹拌機付オートクレーブに、精製されたメタクリル酸メチル(MMA)、アクリル酸メチル(MA)、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)およびn-オクチルメルカプタン(n-OM)を表1に記載の割合で仕込み、均一に溶解させて重合原料を得た。
重合原料を、オートクレーブから1.5kg/hrで、温度140℃に制御された槽型反応器に連続的に供給し、平均滞留時間120分間で塊状重合法によって重合反応させ、槽型反応器からメタクリル共重合体を含む液を連続的に排出した。重合転化率は57質量%であった。
次いで、反応器から排出された液を230℃に加温し、240℃に制御された二軸押出機に供給した。該二軸押出機において未反応単量体を主成分とする揮発分を分離除去して、メタクリル共重合体をストランドにして押し出した。該ストランドをペレタイザーでカットし、ペレット状のメタクリル共重合体を得た。 Examples 1 to 7 and Comparative Examples 1 to 4
Purified methyl methacrylate (MMA), methyl acrylate (MA), 2,2'-azobis (2-methylpropionitrile) (AIBN) and n-octyl mercaptan (n-OM) in an autoclave with a stirrer. Was charged at the ratio shown in Table 1 and uniformly dissolved to obtain a polymerization raw material.
The polymerization raw material is continuously supplied from the autoclave to a tank reactor controlled at a temperature of 140 ° C. at 1.5 kg / hr, and the polymerization reaction is carried out by a massive polymerization method with an average residence time of 120 minutes, and the polymerization reaction is carried out from the tank reactor. The liquid containing the methacrylic copolymer was continuously discharged. The polymerization conversion rate was 57% by mass.
Then, the liquid discharged from the reactor was heated to 230 ° C. and supplied to a twin-screw extruder controlled to 240 ° C. In the twin-screw extruder, the volatile matter containing the unreacted monomer as a main component was separated and removed, and the methacrylic copolymer was extruded as a strand. The strand was cut with a pelletizer to obtain a pellet-shaped methacrylic copolymer.
メタクリル共重合体の物性等の測定は以下の方法によって実施した。その結果を表1に示す。なお、本実施例および比較例において、MMAに由来する単位の量は、MA単位以外の単位の量であるので、表への記載を省略した。
The physical properties of the methacrylic copolymer were measured by the following method. The results are shown in Table 1. In this example and the comparative example, the amount of the unit derived from MMA is the amount of the unit other than the MA unit, so the description in the table is omitted.
(アクリル酸メチルに由来する単位(MA単位)の割合)
樹脂ペレット1gをジクロロメタン40mlに溶解させた。得られた溶液25μlを白金ボードに採取した。ジクロロメタンを除去し、熱分解ガスクロマトグラフ(島津製作所社製 GC-14A、熱分解炉温度:500℃、カラム:SGE BPX-5、温度条件:40℃で5分間保持→5℃/分で280℃まで昇温)により記録したクロマトグラムに基づいてMA単位の割合を算出した。 (Ratio of units (MA units) derived from methyl acrylate)
1 g of the resin pellet was dissolved in 40 ml of dichloromethane. 25 μl of the obtained solution was collected on a platinum board. Remove dichloromethane and pyrolyze gas chromatograph (GC-14A manufactured by Shimadzu Corporation, pyrolysis furnace temperature: 500 ° C, column: SGE BPX-5, temperature condition: hold at 40 ° C for 5 minutes → 280 ° C at 5 ° C / min The ratio of MA units was calculated based on the chromatogram recorded by heating up to.
樹脂ペレット1gをジクロロメタン40mlに溶解させた。得られた溶液25μlを白金ボードに採取した。ジクロロメタンを除去し、熱分解ガスクロマトグラフ(島津製作所社製 GC-14A、熱分解炉温度:500℃、カラム:SGE BPX-5、温度条件:40℃で5分間保持→5℃/分で280℃まで昇温)により記録したクロマトグラムに基づいてMA単位の割合を算出した。 (Ratio of units (MA units) derived from methyl acrylate)
1 g of the resin pellet was dissolved in 40 ml of dichloromethane. 25 μl of the obtained solution was collected on a platinum board. Remove dichloromethane and pyrolyze gas chromatograph (GC-14A manufactured by Shimadzu Corporation, pyrolysis furnace temperature: 500 ° C, column: SGE BPX-5, temperature condition: hold at 40 ° C for 5 minutes → 280 ° C at 5 ° C / min The ratio of MA units was calculated based on the chromatogram recorded by heating up to.
(重合転化率、残存揮発分)
島津製作所社製ガスクロマトグラフGC-14Aに、カラムとしてGL Sciences Inc.製INERTCAP1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、下記の条件にて分析を行い、それに基づいて算出した。
injection温度=250℃
detector温度=250℃
温度条件:60℃で5分間保持→10℃/分で250℃まで昇温→250℃で10分間保持 (Polymerization conversion rate, residual volatile matter)
GL Sciences Inc. was used as a column on a gas chromatograph GC-14A manufactured by Shimadzu Corporation. INERTCAP1 manufactured by INERTCAP1 (df = 0.4 μm, 0.25 mm ID × 60 m) was connected, and analysis was performed under the following conditions, and calculation was performed based on the analysis.
injection temperature = 250 ° C
detector temperature = 250 ° C
Temperature conditions: Hold at 60 ° C for 5 minutes → Raise to 250 ° C at 10 ° C / min → Hold at 250 ° C for 10 minutes
島津製作所社製ガスクロマトグラフGC-14Aに、カラムとしてGL Sciences Inc.製INERTCAP1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、下記の条件にて分析を行い、それに基づいて算出した。
injection温度=250℃
detector温度=250℃
温度条件:60℃で5分間保持→10℃/分で250℃まで昇温→250℃で10分間保持 (Polymerization conversion rate, residual volatile matter)
GL Sciences Inc. was used as a column on a gas chromatograph GC-14A manufactured by Shimadzu Corporation. INERTCAP1 manufactured by INERTCAP1 (df = 0.4 μm, 0.25 mm ID × 60 m) was connected, and analysis was performed under the following conditions, and calculation was performed based on the analysis.
injection temperature = 250 ° C
detector temperature = 250 ° C
Temperature conditions: Hold at 60 ° C for 5 minutes → Raise to 250 ° C at 10 ° C / min → Hold at 250 ° C for 10 minutes
(分子量分布Mw/Mn)
GPC(ゲル・パーミエイション・クロマトグラフィー)により測定されたクロマトグラムから標準ポリスチレンの分子量に相当する値を共重合体の分子量とした。
装置:東ソー社製GPC装置HLC-8320
分離カラム:東ソー社製のTSKguardcoIumSuperHZ-HとTSKgeIHZM-MとTSKgeISuperHZ4000とを直列に連結
溶離剤:テトラヒドロフラン
溶離剤流量:0.35mI/分
カラム温度:40℃
検出方法:示差屈折率(RI) (Molecular weight distribution Mw / Mn)
From the chromatogram measured by GPC (gel permeation chromatography), the value corresponding to the molecular weight of standard polystyrene was taken as the molecular weight of the copolymer.
Equipment: Tosoh GPC equipment HLC-8320
Separation column: Tosoh's TSKguardcoIumSuperHZ-H, TSKgeIHZM-M and TSKgeISuperHZ4000 are connected in series. Eluent: tetrahydrofuran Eluent flow rate: 0.35 mI / min Column temperature: 40 ° C
Detection method: Differential refractometer (RI)
GPC(ゲル・パーミエイション・クロマトグラフィー)により測定されたクロマトグラムから標準ポリスチレンの分子量に相当する値を共重合体の分子量とした。
装置:東ソー社製GPC装置HLC-8320
分離カラム:東ソー社製のTSKguardcoIumSuperHZ-HとTSKgeIHZM-MとTSKgeISuperHZ4000とを直列に連結
溶離剤:テトラヒドロフラン
溶離剤流量:0.35mI/分
カラム温度:40℃
検出方法:示差屈折率(RI) (Molecular weight distribution Mw / Mn)
From the chromatogram measured by GPC (gel permeation chromatography), the value corresponding to the molecular weight of standard polystyrene was taken as the molecular weight of the copolymer.
Equipment: Tosoh GPC equipment HLC-8320
Separation column: Tosoh's TSKguardcoIumSuperHZ-H, TSKgeIHZM-M and TSKgeISuperHZ4000 are connected in series. Eluent: tetrahydrofuran Eluent flow rate: 0.35 mI / min Column temperature: 40 ° C
Detection method: Differential refractometer (RI)
(結合硫黄原子(結合S)の量)
メタクリル共重合体の結合硫黄原子の量は次のようにして決定される値である。メタクリル共重合体をクロロホルムに溶解させて溶液を得る。この溶液をn-ヘキサンに添加して沈殿物を得る。該沈殿物を80℃で12時間以上真空下で乾燥させる。得られた乾燥品を適量精秤して、硫黄燃焼装置にセットし、温度400℃の反応炉で分解させ、生成したガスを温度900℃の炉に通し、次いで0.3%過酸化水素水で吸収する。得られた液(分解ガス水溶液)を純水で適宜希釈し、イオンクロマトグラフィ(DIONEX製ICS-1500,カラム:AS12A)により硫酸イオンを定量する。乾燥品の質量あたりの硫黄原子の質量W p (質量%)を算出する。メタクリル共重合体に対するメタクリル酸メチル由来の構造単位の質量W MMA (質量%)を用いて、次式にて、メタクリル酸メチル由来の構造単位に対する、結合硫黄原子の量S p (モル%)を算出する。
Sp=Wp×(100/32)/(WMMA/100) (Amount of bonded sulfur atom (bond S))
The amount of the bonded sulfur atom of the methacrylic copolymer is a value determined as follows. The methacrylic copolymer is dissolved in chloroform to obtain a solution. This solution is added to n-hexane to give a precipitate. The precipitate is dried at 80 ° C. for 12 hours or longer under vacuum. An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with. The obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A). Calculate the mass W p (mass%) of sulfur atoms per mass of the dried product. Using the mass WMMA (mass%) of the structural unit derived from methyl methacrylate with respect to the methacrylic copolymer, the amount Sp (mol%) of the bound sulfur atom with respect to the structural unit derived from methyl methacrylate is calculated by the following equation. calculate.
S p = W p × (100/32 ) / (W MMA / 100)
メタクリル共重合体の結合硫黄原子の量は次のようにして決定される値である。メタクリル共重合体をクロロホルムに溶解させて溶液を得る。この溶液をn-ヘキサンに添加して沈殿物を得る。該沈殿物を80℃で12時間以上真空下で乾燥させる。得られた乾燥品を適量精秤して、硫黄燃焼装置にセットし、温度400℃の反応炉で分解させ、生成したガスを温度900℃の炉に通し、次いで0.3%過酸化水素水で吸収する。得られた液(分解ガス水溶液)を純水で適宜希釈し、イオンクロマトグラフィ(DIONEX製ICS-1500,カラム:AS12A)により硫酸イオンを定量する。乾燥品の質量あたりの硫黄原子の質量W p (質量%)を算出する。メタクリル共重合体に対するメタクリル酸メチル由来の構造単位の質量W MMA (質量%)を用いて、次式にて、メタクリル酸メチル由来の構造単位に対する、結合硫黄原子の量S p (モル%)を算出する。
Sp=Wp×(100/32)/(WMMA/100) (Amount of bonded sulfur atom (bond S))
The amount of the bonded sulfur atom of the methacrylic copolymer is a value determined as follows. The methacrylic copolymer is dissolved in chloroform to obtain a solution. This solution is added to n-hexane to give a precipitate. The precipitate is dried at 80 ° C. for 12 hours or longer under vacuum. An appropriate amount of the obtained dried product is precisely weighed, set in a sulfur combustion device, decomposed in a reactor having a temperature of 400 ° C., and the generated gas is passed through a furnace having a temperature of 900 ° C., and then 0.3% hydrogen peroxide solution is used. Absorb with. The obtained liquid (decomposition gas aqueous solution) is appropriately diluted with pure water, and sulfate ions are quantified by ion chromatography (ICS-1500 manufactured by DIONEX, column: AS12A). Calculate the mass W p (mass%) of sulfur atoms per mass of the dried product. Using the mass WMMA (mass%) of the structural unit derived from methyl methacrylate with respect to the methacrylic copolymer, the amount Sp (mol%) of the bound sulfur atom with respect to the structural unit derived from methyl methacrylate is calculated by the following equation. calculate.
S p = W p × (100/32 ) / (W MMA / 100)
試験試料2gをアセトン50mLに入れ常温にて24時間撹拌した。得られた液全量を、遠心分離機(日立工機(株)製、CR20GIII)を用いて、回転数20000rpm、温度0℃、180分間の条件にて、遠心分離した。上澄み液と沈殿物を分け採り、それぞれを50℃にて8時間真空下で乾燥させて、アセトン不溶分(A)およびアセトン可溶分(B)を得た。
2 g of the test sample was placed in 50 mL of acetone and stirred at room temperature for 24 hours. The entire amount of the obtained liquid was centrifuged using a centrifuge (CR20GIII manufactured by Hitachi Koki Co., Ltd.) under the conditions of a rotation speed of 20000 rpm, a temperature of 0 ° C., and 180 minutes. The supernatant and the precipitate were separated and dried at 50 ° C. for 8 hours under vacuum to obtain an acetone-insoluble component (A) and an acetone-soluble component (B).
(メルトフローレートR)
JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で測定した。 (Melt flow rate R)
According to JIS K7210, the measurement was carried out under the conditions of 230 ° C., 3.8 kg load and 10 minutes.
JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で測定した。 (Melt flow rate R)
According to JIS K7210, the measurement was carried out under the conditions of 230 ° C., 3.8 kg load and 10 minutes.
(ガラス転移温度Tg)
実施例で得られたメタクリル共重合体、熱可塑性樹脂のアセトン可不溶分を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、250℃まで一度昇温し、次いで室温まで冷却し、その後、室温から200℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。 (Glass transition temperature Tg)
The acetone-insoluble content of the methacrylic copolymer and the thermoplastic resin obtained in the examples was 250 using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121. The DSC curve was measured under the condition that the temperature was raised once to ° C., then cooled to room temperature, and then the temperature was raised from room temperature to 200 ° C. at 10 ° C./min. The midpoint glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
実施例で得られたメタクリル共重合体、熱可塑性樹脂のアセトン可不溶分を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、250℃まで一度昇温し、次いで室温まで冷却し、その後、室温から200℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。 (Glass transition temperature Tg)
The acetone-insoluble content of the methacrylic copolymer and the thermoplastic resin obtained in the examples was 250 using a differential scanning calorimetry device (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121. The DSC curve was measured under the condition that the temperature was raised once to ° C., then cooled to room temperature, and then the temperature was raised from room temperature to 200 ° C. at 10 ° C./min. The midpoint glass transition temperature obtained from the DSC curve measured at the time of the second temperature rise was defined as the glass transition temperature in the present invention.
(曲げ強度)
実施例、比較例で得られたメタクリル共重合体の曲げ強度。この試験片を用いて、JIS K7171に準拠し、試験片厚さ4mmで測定した。 (Bending strength)
Bending strength of the methacrylic copolymer obtained in Examples and Comparative Examples. Using this test piece, the measurement was performed with a test piece thickness of 4 mm in accordance with JIS K7171.
実施例、比較例で得られたメタクリル共重合体の曲げ強度。この試験片を用いて、JIS K7171に準拠し、試験片厚さ4mmで測定した。 (Bending strength)
Bending strength of the methacrylic copolymer obtained in Examples and Comparative Examples. Using this test piece, the measurement was performed with a test piece thickness of 4 mm in accordance with JIS K7171.
(射出成形性)
射出成形機(住友重機械工業社製:SE-180DU-HP)を使用し、シリンダ温度280℃、金型温度75℃、成形サイクル1分間で射出成形して、長辺205mm、短辺160mm、厚さ0.4mmの平板Sを製造した。平板Sは、厚さに対するゲートからの樹脂流動長さの比が475(=190mm/0.4mm)である。
平板Sの外観を観察し以下の指標で評価した。
A : 割れおよびヒケがともに無い。
B : ヒケが有る。
C : 割れが有る。 (Injection moldability)
Using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: SE-180DU-HP), injection molding is performed in a cylinder temperature of 280 ° C., a mold temperature of 75 ° C., and a molding cycle of 1 minute, and the long side is 205 mm and the short side is 160 mm. A flat plate S having a thickness of 0.4 mm was manufactured. The flat plate S has a ratio of the resin flow length from the gate to the thickness of 475 (= 190 mm / 0.4 mm).
The appearance of the flat plate S was observed and evaluated by the following indexes.
A: There are no cracks or sink marks.
B: There is a sink mark.
C: There is a crack.
射出成形機(住友重機械工業社製:SE-180DU-HP)を使用し、シリンダ温度280℃、金型温度75℃、成形サイクル1分間で射出成形して、長辺205mm、短辺160mm、厚さ0.4mmの平板Sを製造した。平板Sは、厚さに対するゲートからの樹脂流動長さの比が475(=190mm/0.4mm)である。
平板Sの外観を観察し以下の指標で評価した。
A : 割れおよびヒケがともに無い。
B : ヒケが有る。
C : 割れが有る。 (Injection moldability)
Using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: SE-180DU-HP), injection molding is performed in a cylinder temperature of 280 ° C., a mold temperature of 75 ° C., and a molding cycle of 1 minute, and the long side is 205 mm and the short side is 160 mm. A flat plate S having a thickness of 0.4 mm was manufactured. The flat plate S has a ratio of the resin flow length from the gate to the thickness of 475 (= 190 mm / 0.4 mm).
The appearance of the flat plate S was observed and evaluated by the following indexes.
A: There are no cracks or sink marks.
B: There is a sink mark.
C: There is a crack.
(金型汚れ)
名機製作所社製「M-100C」射出成形機を用いて、平板金型(成形品寸法:40mm×200mm×2mm)で、成形温度260℃、金型温度60℃、成形サイクル26秒および保圧無し(ショートショット)の条件で、40ショットの射出成形を行なった。金型表面の汚れ具合を調べ、以下の指標で評価した。
A : 金型汚れ無し。
C : 金型汚れ有り。 (Die stain)
Using a "M-100C" injection molding machine manufactured by Meiki Co., Ltd., a flat plate mold (molded product dimensions: 40 mm x 200 mm x 2 mm), molding temperature 260 ° C, mold temperature 60 ° C, molding cycle 26 seconds and maintenance 40 shots of injection molding were performed under the condition of no pressure (short shot). The degree of dirt on the mold surface was examined and evaluated using the following indexes.
A: No mold stains.
C: There is dirt on the mold.
名機製作所社製「M-100C」射出成形機を用いて、平板金型(成形品寸法:40mm×200mm×2mm)で、成形温度260℃、金型温度60℃、成形サイクル26秒および保圧無し(ショートショット)の条件で、40ショットの射出成形を行なった。金型表面の汚れ具合を調べ、以下の指標で評価した。
A : 金型汚れ無し。
C : 金型汚れ有り。 (Die stain)
Using a "M-100C" injection molding machine manufactured by Meiki Co., Ltd., a flat plate mold (molded product dimensions: 40 mm x 200 mm x 2 mm), molding temperature 260 ° C, mold temperature 60 ° C, molding cycle 26 seconds and maintenance 40 shots of injection molding were performed under the condition of no pressure (short shot). The degree of dirt on the mold surface was examined and evaluated using the following indexes.
A: No mold stains.
C: There is dirt on the mold.
(流動性)
住友重機社製SE-180DU-HP成形機において、金型温度50℃、成形温度300℃、射出速度100mm/秒、および充填圧力150MPaの条件で、スパイラルフロー金型(製品厚み0.4mm、幅10mm)に射出成形を行った。そのときのスパイラルフロー長さを測定し、流動性を以下の指標で評価した。
A : 125mm以上
B : 115mm以上125mm未満
C : 115mm未満 (Liquidity)
In the SE-180DU-HP molding machine manufactured by Sumitomo Heavy Industries, Ltd., a spiral flow mold (product thickness 0.4 mm, width) under the conditions of a mold temperature of 50 ° C., a molding temperature of 300 ° C., an injection speed of 100 mm / sec, and a filling pressure of 150 MPa. Injection molding was performed on 10 mm). The spiral flow length at that time was measured, and the fluidity was evaluated by the following indexes.
A: 125 mm or more B: 115 mm or more and less than 125 mm C: less than 115 mm
住友重機社製SE-180DU-HP成形機において、金型温度50℃、成形温度300℃、射出速度100mm/秒、および充填圧力150MPaの条件で、スパイラルフロー金型(製品厚み0.4mm、幅10mm)に射出成形を行った。そのときのスパイラルフロー長さを測定し、流動性を以下の指標で評価した。
A : 125mm以上
B : 115mm以上125mm未満
C : 115mm未満 (Liquidity)
In the SE-180DU-HP molding machine manufactured by Sumitomo Heavy Industries, Ltd., a spiral flow mold (product thickness 0.4 mm, width) under the conditions of a mold temperature of 50 ° C., a molding temperature of 300 ° C., an injection speed of 100 mm / sec, and a filling pressure of 150 MPa. Injection molding was performed on 10 mm). The spiral flow length at that time was measured, and the fluidity was evaluated by the following indexes.
A: 125 mm or more B: 115 mm or more and less than 125 mm C: less than 115 mm
以上の結果が示すとおり、本発明のメタクリル共重合体は、流動性が高く、射出成形性に優れ、金型汚れを生じ難い。
As the above results show, the methacrylic copolymer of the present invention has high fluidity, excellent injection moldability, and is less likely to cause mold stains.
製造例1 (アクリル系ゴム粒子)
攪拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器に、イオン交換水1050質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.44質量部および炭酸ナトリウム0.7質量部を仕込み、反応器内を窒素ガスで置換した。次いで内温を80℃にした。そこに、過硫酸カリウム0.25質量部を投入し、5分間攪拌した。これに、メタクリル酸メチル95.4質量%、アクリル酸メチル4.4質量%およびメタクリル酸アリル0.2質量%からなる単量体混合物245質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
次いで、同反応器に、過硫酸カリウム0.32質量部を投入して5分間攪拌した。その後、アクリル酸ブチル80.5質量%、スチレン17.5質量%およびメタクリル酸アリル2質量%からなる単量体混合物315質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
次に、同反応器に、過硫酸カリウム0.14質量部を投入して5分間攪拌した。その後、メタクリル酸メチル95.2質量%、アクリル酸メチル4.4質量%およびn-オクチルメルカプタン0.4質量%からなる単量体混合物140質量部を30分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。
以上の操作によって、アクリル系ゴム粒子を含むラテックスを得た。該ラテックスを凍結して凝固させた。次いで水洗・乾燥してアクリル系ゴム粒子を得た。アクリル系ゴム粒子の平均粒子径は0.2μmであった。 Production Example 1 (Acrylic rubber particles)
In a reactor equipped with a stirrer, thermometer, nitrogen gas introduction tube, monomer introduction tube and reflux condenser, 1050 parts by mass of ion-exchanged water, 0.44 parts by mass of polyoxyethylene tridecyl ether sodium acetate and sodium carbonate 0. .7 parts by mass was charged and the inside of the reactor was replaced with nitrogen gas. Then, the internal temperature was adjusted to 80 ° C. 0.25 parts by mass of potassium persulfate was added thereto, and the mixture was stirred for 5 minutes. To this, 245 parts by mass of a monomer mixture composed of 95.4% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.32 parts by mass of potassium persulfate was added to the reactor and stirred for 5 minutes. Then, 315 parts by mass of a monomer mixture composed of 80.5% by mass of butyl acrylate, 17.5% by mass of styrene and 2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.14 parts by mass of potassium persulfate was added to the reactor and stirred for 5 minutes. Then, 140 parts by mass of a monomer mixture consisting of 95.2% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.4% by mass of n-octyl mercaptan was continuously added dropwise over 30 minutes. After completion of the dropping, a polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or more.
By the above operation, a latex containing acrylic rubber particles was obtained. The latex was frozen and solidified. Then, it was washed with water and dried to obtain acrylic rubber particles. The average particle size of the acrylic rubber particles was 0.2 μm.
攪拌機、温度計、窒素ガス導入管、単量体導入管および還流冷却器を備えた反応器に、イオン交換水1050質量部、ポリオキシエチレントリデシルエーテル酢酸ナトリウム0.44質量部および炭酸ナトリウム0.7質量部を仕込み、反応器内を窒素ガスで置換した。次いで内温を80℃にした。そこに、過硫酸カリウム0.25質量部を投入し、5分間攪拌した。これに、メタクリル酸メチル95.4質量%、アクリル酸メチル4.4質量%およびメタクリル酸アリル0.2質量%からなる単量体混合物245質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
次いで、同反応器に、過硫酸カリウム0.32質量部を投入して5分間攪拌した。その後、アクリル酸ブチル80.5質量%、スチレン17.5質量%およびメタクリル酸アリル2質量%からなる単量体混合物315質量部を60分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに30分間重合反応を行った。
次に、同反応器に、過硫酸カリウム0.14質量部を投入して5分間攪拌した。その後、メタクリル酸メチル95.2質量%、アクリル酸メチル4.4質量%およびn-オクチルメルカプタン0.4質量%からなる単量体混合物140質量部を30分間かけて連続的に滴下した。滴下終了後、重合転化率が98%以上になるようにさらに60分間重合反応を行った。
以上の操作によって、アクリル系ゴム粒子を含むラテックスを得た。該ラテックスを凍結して凝固させた。次いで水洗・乾燥してアクリル系ゴム粒子を得た。アクリル系ゴム粒子の平均粒子径は0.2μmであった。 Production Example 1 (Acrylic rubber particles)
In a reactor equipped with a stirrer, thermometer, nitrogen gas introduction tube, monomer introduction tube and reflux condenser, 1050 parts by mass of ion-exchanged water, 0.44 parts by mass of polyoxyethylene tridecyl ether sodium acetate and sodium carbonate 0. .7 parts by mass was charged and the inside of the reactor was replaced with nitrogen gas. Then, the internal temperature was adjusted to 80 ° C. 0.25 parts by mass of potassium persulfate was added thereto, and the mixture was stirred for 5 minutes. To this, 245 parts by mass of a monomer mixture composed of 95.4% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.32 parts by mass of potassium persulfate was added to the reactor and stirred for 5 minutes. Then, 315 parts by mass of a monomer mixture composed of 80.5% by mass of butyl acrylate, 17.5% by mass of styrene and 2% by mass of allyl methacrylate was continuously added dropwise over 60 minutes. After completion of the dropping, the polymerization reaction was further carried out for 30 minutes so that the polymerization conversion rate was 98% or more.
Next, 0.14 parts by mass of potassium persulfate was added to the reactor and stirred for 5 minutes. Then, 140 parts by mass of a monomer mixture consisting of 95.2% by mass of methyl methacrylate, 4.4% by mass of methyl acrylate and 0.4% by mass of n-octyl mercaptan was continuously added dropwise over 30 minutes. After completion of the dropping, a polymerization reaction was further carried out for 60 minutes so that the polymerization conversion rate was 98% or more.
By the above operation, a latex containing acrylic rubber particles was obtained. The latex was frozen and solidified. Then, it was washed with water and dried to obtain acrylic rubber particles. The average particle size of the acrylic rubber particles was 0.2 μm.
製造例2 (アクリル系ブロック共重合体)
[メチルメタクリレート(MMA)重合体ブロック(b1-1)]-[n-ブチルアクリレート(BA)重合体ブロック(b2)]-[メチルメタクリレート(MMA)重合体ブロック(b1-2)]からなり、重量平均分子量(Mw)が65,000であり、重合体ブロックの合計質量比(b1-1):(c2):(b1-2)が15:70:15、各単量体の質量比(MMA:BA)=(30:70)であるトリブロック共重合体を常法に従い製造した。 Production Example 2 (Acrylic block copolymer)
It consists of [methyl methacrylate (MMA) polymer block (b1-1)]-[n-butyl acrylate (BA) polymer block (b2)]-[methyl methacrylate (MMA) polymer block (b1-2)]. The weight average molecular weight (Mw) is 65,000, the total mass ratio of the polymer blocks (b1-1) :( c2) :( b1-2) is 15:70:15, and the mass ratio of each monomer ( A triblock copolymer having MMA: BA) = (30:70) was produced according to a conventional method.
[メチルメタクリレート(MMA)重合体ブロック(b1-1)]-[n-ブチルアクリレート(BA)重合体ブロック(b2)]-[メチルメタクリレート(MMA)重合体ブロック(b1-2)]からなり、重量平均分子量(Mw)が65,000であり、重合体ブロックの合計質量比(b1-1):(c2):(b1-2)が15:70:15、各単量体の質量比(MMA:BA)=(30:70)であるトリブロック共重合体を常法に従い製造した。 Production Example 2 (Acrylic block copolymer)
It consists of [methyl methacrylate (MMA) polymer block (b1-1)]-[n-butyl acrylate (BA) polymer block (b2)]-[methyl methacrylate (MMA) polymer block (b1-2)]. The weight average molecular weight (Mw) is 65,000, the total mass ratio of the polymer blocks (b1-1) :( c2) :( b1-2) is 15:70:15, and the mass ratio of each monomer ( A triblock copolymer having MMA: BA) = (30:70) was produced according to a conventional method.
実施例8~13および比較例5~7
メタクリル共重合体とアクリル系ゴム粒子とアクリル系ブロック共重合体とを表2に記載の割合で混ぜ合わせ、軸径20mmの二軸押出機で250℃にて溶融混練し、押出して、熱可塑性樹脂組成物を得た。 Examples 8 to 13 and Comparative Examples 5 to 7
The methacrylic copolymer, the acrylic rubber particles, and the acrylic block copolymer are mixed at the ratios shown in Table 2, melt-kneaded at 250 ° C. with a twin-screw extruder having a shaft diameter of 20 mm, extruded, and thermoplastic. A resin composition was obtained.
メタクリル共重合体とアクリル系ゴム粒子とアクリル系ブロック共重合体とを表2に記載の割合で混ぜ合わせ、軸径20mmの二軸押出機で250℃にて溶融混練し、押出して、熱可塑性樹脂組成物を得た。 Examples 8 to 13 and Comparative Examples 5 to 7
The methacrylic copolymer, the acrylic rubber particles, and the acrylic block copolymer are mixed at the ratios shown in Table 2, melt-kneaded at 250 ° C. with a twin-screw extruder having a shaft diameter of 20 mm, extruded, and thermoplastic. A resin composition was obtained.
熱可塑性樹脂組成物の物性等の測定は以下の方法によって実施した。その結果を表2に示す。
The physical properties of the thermoplastic resin composition were measured by the following method. The results are shown in Table 2.
(透明性)
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ3mm、一辺50mmの正方形の射出成形片を得た。
各試験片をJIS K7361-1に記載された方法に準拠して、分光色差計SE5000 日本電色工業株式会社製を使用し、全光線透過率TtおよびヘイズHを測定した、下記の指標で評価を行った。
A:Ttが90%以上かつHが5%以下
B:Ttが80%以上90%未満またはHが10%以下
C:Ttが80%未満またはHが10%より大きい (transparency)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
Each test piece was evaluated by the following indexes by measuring the total light transmittance Tt and haze H using a spectrocolor difference meter SE5000 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with the method described in JIS K7361-1. Was done.
A: Tt is 90% or more and H is 5% or less B: Tt is 80% or more and less than 90% or H is 10% or less C: Tt is less than 80% or H is greater than 10%
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ3mm、一辺50mmの正方形の射出成形片を得た。
各試験片をJIS K7361-1に記載された方法に準拠して、分光色差計SE5000 日本電色工業株式会社製を使用し、全光線透過率TtおよびヘイズHを測定した、下記の指標で評価を行った。
A:Ttが90%以上かつHが5%以下
B:Ttが80%以上90%未満またはHが10%以下
C:Ttが80%未満またはHが10%より大きい (transparency)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
Each test piece was evaluated by the following indexes by measuring the total light transmittance Tt and haze H using a spectrocolor difference meter SE5000 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with the method described in JIS K7361-1. Was done.
A: Tt is 90% or more and H is 5% or less B: Tt is 80% or more and less than 90% or H is 10% or less C: Tt is less than 80% or H is greater than 10%
(表面硬度)
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ3mm、一辺50mmの正方形の射出成形片を得た。
テーブル移動式鉛筆引掻き試験機(型式P)(東洋精機社製)を用い、射出成型片の片面の熱可塑性樹脂組成物面側の表面に対して角度45度、荷重750gで鉛筆の芯を押し付けながら引掻き傷の傷跡の有無を確認した。鉛筆の芯の硬度は順に増していき、傷跡を生じた時点よりも1段階軟らかい芯の硬度を鉛筆硬度とし、得られた鉛筆硬度から下記の指標で評価を行った。
A:鉛筆硬度が2H以上
B:鉛筆硬度がF以上2H未満
C:鉛筆硬度がF未満 (surface hardness)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
Using a table-movable pencil scratching tester (model P) (manufactured by Toyo Seiki Co., Ltd.), press the pencil lead against the surface of the thermoplastic resin composition on one side of the injection molded piece at an angle of 45 degrees and a load of 750 g. However, the presence or absence of scratches was confirmed. The hardness of the pencil lead gradually increased, and the hardness of the lead, which was one step softer than the time when the scar was generated, was defined as the pencil hardness, and the obtained pencil hardness was evaluated by the following index.
A: Pencil hardness is 2H or more B: Pencil hardness is F or more and less than 2H C: Pencil hardness is less than F
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ3mm、一辺50mmの正方形の射出成形片を得た。
テーブル移動式鉛筆引掻き試験機(型式P)(東洋精機社製)を用い、射出成型片の片面の熱可塑性樹脂組成物面側の表面に対して角度45度、荷重750gで鉛筆の芯を押し付けながら引掻き傷の傷跡の有無を確認した。鉛筆の芯の硬度は順に増していき、傷跡を生じた時点よりも1段階軟らかい芯の硬度を鉛筆硬度とし、得られた鉛筆硬度から下記の指標で評価を行った。
A:鉛筆硬度が2H以上
B:鉛筆硬度がF以上2H未満
C:鉛筆硬度がF未満 (surface hardness)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection molded to obtain a square injection molded piece having a thickness of 3 mm and a side of 50 mm.
Using a table-movable pencil scratching tester (model P) (manufactured by Toyo Seiki Co., Ltd.), press the pencil lead against the surface of the thermoplastic resin composition on one side of the injection molded piece at an angle of 45 degrees and a load of 750 g. However, the presence or absence of scratches was confirmed. The hardness of the pencil lead gradually increased, and the hardness of the lead, which was one step softer than the time when the scar was generated, was defined as the pencil hardness, and the obtained pencil hardness was evaluated by the following index.
A: Pencil hardness is 2H or more B: Pencil hardness is F or more and less than 2H C: Pencil hardness is less than F
(耐衝撃性)
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ4mm、長辺80mm、短辺10mmの短冊状の射出成形片を得た。
各試験片をISO179-1に記載された方法に準拠して、シャルピー衝撃試験を行って測定したフラットワイズ方式、ノッチ無しのシャルピー衝撃強さを、シャルピー衝撃強さとし、得られたシャルピー衝撃強さから下記の指標で評価を行った。
A:シャルピー衝撃強さが60kJ/m2以上
B:シャルピー衝撃強さが40kJ/m2以上60kJ/m2未満
C:シャルピー衝撃強さが40kJ/m2未満 (Impact resistance)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection-molded to obtain a strip-shaped injection-molded piece having a thickness of 4 mm, a long side of 80 mm, and a short side of 10 mm.
The flatwise method measured by performing a Charpy impact test on each test piece in accordance with the method described in ISO179-1, and the Charpy impact strength without a notch is defined as the Charpy impact strength, and the obtained Charpy impact strength is obtained. The evaluation was performed using the following indicators.
A: Charpy impact strength is 60 kJ / m 2 or more B: Charpy impact strength is 40 kJ / m 2 or more and less than 60 kJ / m 2 C: Charpy impact strength is less than 40 kJ / m 2
射出成形機(株式会社名機製作所製、M-100C)を用いて、シリンダ温度260℃、金型温度50℃、射出速度50mm/秒の条件で実施例および比較例で得られた熱可塑性樹脂組成物を射出成形して、厚さ4mm、長辺80mm、短辺10mmの短冊状の射出成形片を得た。
各試験片をISO179-1に記載された方法に準拠して、シャルピー衝撃試験を行って測定したフラットワイズ方式、ノッチ無しのシャルピー衝撃強さを、シャルピー衝撃強さとし、得られたシャルピー衝撃強さから下記の指標で評価を行った。
A:シャルピー衝撃強さが60kJ/m2以上
B:シャルピー衝撃強さが40kJ/m2以上60kJ/m2未満
C:シャルピー衝撃強さが40kJ/m2未満 (Impact resistance)
Thermoplastic resin obtained in Examples and Comparative Examples using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of a cylinder temperature of 260 ° C., a mold temperature of 50 ° C., and an injection speed of 50 mm / sec. The composition was injection-molded to obtain a strip-shaped injection-molded piece having a thickness of 4 mm, a long side of 80 mm, and a short side of 10 mm.
The flatwise method measured by performing a Charpy impact test on each test piece in accordance with the method described in ISO179-1, and the Charpy impact strength without a notch is defined as the Charpy impact strength, and the obtained Charpy impact strength is obtained. The evaluation was performed using the following indicators.
A: Charpy impact strength is 60 kJ / m 2 or more B: Charpy impact strength is 40 kJ / m 2 or more and less than 60 kJ / m 2 C: Charpy impact strength is less than 40 kJ / m 2
(流動性)
射出成形機(株式会社名機製作所製、M-100C)を用いて、金型温度50℃、成形温度250℃、射出速度100mm/秒、および充填圧力100MPaの条件で、スパイラルフロー金型(製品厚み1mm、幅10mm)に射出成形を行った。そのときのスパイラルフロー長さを測定し、流動性を以下の指標で評価した。
A:スパイラルフロー長さが350mm以上
B:スパイラルフロー長さが300mm以上350mm未満
C:スパイラルフロー長さが300mm未満 (Liquidity)
Spiral flow mold (product) using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of mold temperature 50 ° C, molding temperature 250 ° C, injection speed 100 mm / sec, and filling pressure 100 MPa. Injection molding was performed on a thickness of 1 mm and a width of 10 mm). The spiral flow length at that time was measured, and the fluidity was evaluated by the following indexes.
A: Spiral flow length is 350 mm or more B: Spiral flow length is 300 mm or more and less than 350 mm C: Spiral flow length is less than 300 mm
射出成形機(株式会社名機製作所製、M-100C)を用いて、金型温度50℃、成形温度250℃、射出速度100mm/秒、および充填圧力100MPaの条件で、スパイラルフロー金型(製品厚み1mm、幅10mm)に射出成形を行った。そのときのスパイラルフロー長さを測定し、流動性を以下の指標で評価した。
A:スパイラルフロー長さが350mm以上
B:スパイラルフロー長さが300mm以上350mm未満
C:スパイラルフロー長さが300mm未満 (Liquidity)
Spiral flow mold (product) using an injection molding machine (M-100C, manufactured by Meiki Co., Ltd.) under the conditions of mold temperature 50 ° C, molding temperature 250 ° C, injection speed 100 mm / sec, and filling pressure 100 MPa. Injection molding was performed on a thickness of 1 mm and a width of 10 mm). The spiral flow length at that time was measured, and the fluidity was evaluated by the following indexes.
A: Spiral flow length is 350 mm or more B: Spiral flow length is 300 mm or more and less than 350 mm C: Spiral flow length is less than 300 mm
以上の結果が示すとおり、本発明の熱可塑性樹脂組成物は、透明性、表面硬度、耐衝撃性に優れる薄肉成形体を提供することができる。
As shown in the above results, the thermoplastic resin composition of the present invention can provide a thin-walled molded product having excellent transparency, surface hardness, and impact resistance.
Claims (13)
- メタクリル酸メチルに由来する単量体単位85.0~95.0質量%とアクリル酸エステルに由来する単量体単位5.0~15.0質量%とを含んで成り、
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gである、メタクリル共重合体。 It comprises 85.0 to 95.0% by mass of a monomer unit derived from methyl methacrylate and 5.0 to 15.0% by mass of a monomer unit derived from an acrylic acid ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g. - メタクリル酸メチルに由来する単量体単位に対する結合硫黄原子の量が0.4mol%以下であり、且つメルトフローレートRが25g/10分以上である、請求項1に記載のメタクリル共重合体。 The methacrylic copolymer according to claim 1, wherein the amount of bound sulfur atoms with respect to the monomer unit derived from methyl methacrylate is 0.4 mol% or less, and the melt flow rate R is 25 g / 10 minutes or more.
- 請求項1または2に記載のメタクリル共重合体と、アクリル系ゴム粒子とを含有して成る、熱可塑性樹脂組成物。 A thermoplastic resin composition containing the methacrylic copolymer according to claim 1 or 2 and acrylic rubber particles.
- アクリル系ブロック共重合体をさらに含有してなる、請求項3に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 3, further containing an acrylic block copolymer.
- 熱可塑性樹脂組成物に含まれるアセトン不溶分は、その量が59質量%以下であり、且つ
熱可塑性樹脂組成物に含まれるアセトン可溶分は、230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが6.0~1.5℃・10分/gである、請求項3または4に記載の熱可塑性樹脂組成物。 The amount of acetone-insoluble matter contained in the thermoplastic resin composition is 59% by mass or less, and the amount of acetone-soluble matter contained in the thermoplastic resin composition is melt flow under the conditions of 230 ° C. and a 3.8 kg load. The thermoplastic resin composition according to claim 3 or 4, wherein the ratio Tg / R of the glass transition temperature Tg to the rate R is 6.0 to 1.5 ° C. for 10 minutes / g. - 請求項1または2に記載のメタクリル共重合体を含む、ペレット状の成形材料 Pellet-shaped molding material containing the methacrylic copolymer according to claim 1 or 2.
- 請求項1または2に記載のメタクリル共重合体を含有して成る、成形品。 A molded product containing the methacrylic copolymer according to claim 1 or 2.
- 厚さ0.5mm以下の板状である、請求項7に記載の成形品。 The molded product according to claim 7, which is in the form of a plate having a thickness of 0.5 mm or less.
- 請求項1または2に記載のメタクリル共重合体を含有して成る、携帯電話端末用の筐体。 A housing for a mobile phone terminal, which contains the methacrylic copolymer according to claim 1 or 2.
- 請求項1または2に記載のメタクリル共重合体を含有して成る、厚さ0.8mm以下の部分を有する、携帯電話端末用の筐体。 A housing for a mobile phone terminal having a portion having a thickness of 0.8 mm or less and containing the methacrylic copolymer according to claim 1 or 2.
- 請求項1または2に記載のメタクリル共重合体を含有して成る、光学部材。 An optical member containing the methacrylic copolymer according to claim 1 or 2.
- メタクリル酸メチルとアクリル酸エステルとを含む単量体を塊状重合法で重合反応させることを含む、請求項1または2に記載のメタクリル共重合体の製造方法。 The method for producing a methacrylic copolymer according to claim 1 or 2, which comprises subjecting a monomer containing methyl methacrylate and an acrylic acid ester to a polymerization reaction by a massive polymerization method.
- メタクリル酸メチル81.0~94.2質量%およびアクリル酸エステル5.8~19.0質量%を少なくとも含む単量体100質量部、連鎖移動剤0.42~0.52質量部、ならびに重合開始剤を連続流通式反応器に平均滞留時間1.5~3時間で供給して温度110~140℃にて溶媒を用いずに、重合転化率35~65%で重合し、
次いで220~260℃にて加熱脱揮して未反応単量体を除去することを含む、
メタクリル酸メチルに由来する構造単位85~95.0質量%およびアクリル酸エステルに由来する構造単位5.0~15.0質量%を含んで成り、
重量平均分子量Mwが48000~59000で、
数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.1以下で、且つ
230℃および3.8kg荷重の条件におけるメルトフローレートRに対するガラス転移温度Tgの比Tg/Rが5.0~1.5℃・10分/gであるメタクリル共重合体を
製造する方法。 100 parts by mass of a monomer containing at least 81.0 to 94.2% by mass of methyl methacrylate and 5.8 to 19.0% by mass of an acrylic acid ester, 0.42 to 0.52 parts by mass of a chain transfer agent, and polymerization. The initiator was supplied to a continuous flow reactor with an average residence time of 1.5 to 3 hours and polymerized at a temperature of 110 to 140 ° C. without using a solvent and having a polymerization conversion rate of 35 to 65%.
It then comprises removing unreacted monomers by heating and devolatile at 220-260 ° C.
Containing 85-95.0% by mass of structural units derived from methyl methacrylate and 5.0-15.0% by mass of structural units derived from acrylic ester.
Weight average molecular weight Mw is 48,000-59000,
The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is 2.1 or less, and the ratio Tg / R of the glass transition temperature Tg to the melt flow rate R under the conditions of 230 ° C. and a 3.8 kg load is 5.0. A method for producing a methacrylic copolymer at ~ 1.5 ° C. for 10 minutes / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021522896A JP7442520B2 (en) | 2019-05-29 | 2020-05-29 | Methacrylic copolymers and molded products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019100340 | 2019-05-29 | ||
JP2019-100340 | 2019-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241822A1 true WO2020241822A1 (en) | 2020-12-03 |
Family
ID=73553183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021319 WO2020241822A1 (en) | 2019-05-29 | 2020-05-29 | Methacrylic copolymer and molded article |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7442520B2 (en) |
TW (1) | TW202106732A (en) |
WO (1) | WO2020241822A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016167292A1 (en) * | 2015-04-17 | 2016-10-20 | 株式会社クラレ | Methacrylic resin composition |
WO2017146169A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社クラレ | Methacrylic resin composition and injection-molded article |
JP2017178975A (en) * | 2016-03-28 | 2017-10-05 | 三菱ケミカル株式会社 | Acrylic resin, molded body, light guide body and manufacturing method of acrylic resin |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918636B1 (en) | 2012-11-09 | 2017-08-09 | Kuraray Co., Ltd. | Methacrylic resin composition |
TWI607051B (en) | 2013-05-16 | 2017-12-01 | 可樂麗股份有限公司 | Film |
TWI633147B (en) | 2013-11-25 | 2018-08-21 | Kuraray Co., Ltd. | Acrylic resin film and manufacturing method thereof |
JP6317131B2 (en) | 2014-02-21 | 2018-04-25 | 株式会社クラレ | Plate-shaped molded body made of methacrylic resin composition |
-
2020
- 2020-05-29 JP JP2021522896A patent/JP7442520B2/en active Active
- 2020-05-29 WO PCT/JP2020/021319 patent/WO2020241822A1/en active Application Filing
- 2020-05-29 TW TW109118011A patent/TW202106732A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016167292A1 (en) * | 2015-04-17 | 2016-10-20 | 株式会社クラレ | Methacrylic resin composition |
WO2017146169A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社クラレ | Methacrylic resin composition and injection-molded article |
JP2017178975A (en) * | 2016-03-28 | 2017-10-05 | 三菱ケミカル株式会社 | Acrylic resin, molded body, light guide body and manufacturing method of acrylic resin |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020241822A1 (en) | 2020-12-03 |
JP7442520B2 (en) | 2024-03-04 |
TW202106732A (en) | 2021-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10619043B2 (en) | Methacrylic resin composition | |
JP6576931B2 (en) | Copolymer and molded body | |
JP7009377B2 (en) | Methacrylic resin composition | |
JP6345086B2 (en) | Resin composition and molded body | |
WO2021193922A1 (en) | Acrylic composition and molded article | |
KR101958051B1 (en) | (meth)acrylic resin composition | |
JP6909209B2 (en) | Methacrylic resin composition and molded article | |
JP6230589B2 (en) | Sheet shaped product | |
JP5844262B2 (en) | POLYMER COMPOSITION AND MOLDED ARTICLE | |
WO2014073215A1 (en) | Methacrylic resin composition | |
WO2014002505A1 (en) | Methacrylic resin composition, molded product of same, and method for producing same | |
JP7184793B2 (en) | Methacrylic resin, methacrylic resin composition and molded article | |
JP6842456B2 (en) | Methacrylic resin composition and injection molded product | |
JP7442520B2 (en) | Methacrylic copolymers and molded products | |
JP7187482B2 (en) | METHACRYLIC RESIN COMPOSITION, MOLDED PRODUCT AND FILM | |
JP7422753B2 (en) | Methacrylic copolymer, its manufacturing method, and molded product | |
WO2019093385A1 (en) | Methacrylic copolymer and molded article thereof | |
JP6908629B2 (en) | Methacryl copolymer and molded article | |
WO2021193521A1 (en) | Methacrylic copolymer, composition, shaped object, method for producing film or sheet, and layered product | |
JP2022072065A (en) | Methacrylic polymer, production method thereof, and molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814396 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021522896 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20814396 Country of ref document: EP Kind code of ref document: A1 |