WO2020241763A1 - ホットスタンプ成形体 - Google Patents
ホットスタンプ成形体 Download PDFInfo
- Publication number
- WO2020241763A1 WO2020241763A1 PCT/JP2020/021138 JP2020021138W WO2020241763A1 WO 2020241763 A1 WO2020241763 A1 WO 2020241763A1 JP 2020021138 W JP2020021138 W JP 2020021138W WO 2020241763 A1 WO2020241763 A1 WO 2020241763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- hot
- content
- surface layer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
Definitions
- the present invention relates to a hot stamp molded article.
- the present application claims priority based on Japanese Patent Application No. 2019-101987 filed in Japan on May 31, 2019, the contents of which are incorporated herein by reference.
- the conventional hot stamping compact manufactured by hot stamping has poor deformability because the entire area in the plate thickness direction is formed of a hard structure (mainly martensite).
- a hard structure mainly martensite.
- Patent Document 1 describes that by controlling the cooling rate from finish rolling to winding in the hot rolling process, the crystal orientation difference in bainite is controlled to 5 to 14 °, and the deformability such as elongation flangeability is defined. Techniques for improvement are disclosed.
- Patent Document 2 describes a technique for improving local deformability by controlling the strength of a specific crystal orientation group among ferrite crystal grains by controlling the manufacturing conditions from finish rolling to winding in the hot rolling process. Is disclosed.
- Patent Document 3 by heat-treating a steel sheet for hot stamping to form ferrite on the surface layer, voids formed at the interface between ZnO and the steel sheet and the interface between ZnO and the Zn-based plating layer during heating before hot pressing There is disclosed a technique for improving perforated corrosion resistance and the like by reducing the amount of zinc oxide.
- An object of the present invention is to provide a hot stamped molded product having excellent strength and bendability in view of the problems of the prior art.
- the present inventors examined the bendability of the hot stamp molded product. As a result, the present inventors have found that the metal structure of the surface layer region, which is a region from the surface to a depth of 50 ⁇ m, of the base steel sheet constituting the hot stamped compact is 80.0% or more in area% of martensite. It was found that the bendability of the hot stamped molded product was improved when the content of the retained austenite was 8.0% or more and the Ni concentration in the surface layer region was 8% by mass or more.
- the present inventors set the average dislocation density to 4 ⁇ in the surface layer region of the hot stamping steel sheet before hot stamping. 10 15 m / m 3 or more, the ratio of one or more crystal grains of martensite and lower bainite that have not been auto-tempered is 15.0% or more in area%, and hot stamping under predetermined conditions. It was found that it is necessary to apply.
- the hot stamp molded product according to one aspect of the present invention has a chemical component of mass%. C: 0.15% or more, less than 0.70%, Si: 0.005% or more, 0.250% or less, Mn: 0.30% or more, 3.00% or less, sol.
- Al 0.0002% or more, 0.500% or less, P: 0.100% or less, S: 0.1000% or less, N: 0.0100% or less, Nb: 0% or more, 0.150% or less, Ti: 0% or more, 0.150% or less, Mo: 0% or more, 1.000% or less, Cr: 0% or more, 1.000% or less, B: 0% or more, 0.0100% or less, A base steel sheet containing Ca: 0% or more and 0.0100% or less and REM: 0% or more and 0.30% or less, and the balance being Fe and impurities.
- the amount of adhesion per side to the surface of the base steel sheet is 10 g / m 2 or more and 90 g / m 2 or less, the Ni content is 10% by mass or more and 25% by mass or less, and the balance is from Zn and impurities.
- the metallographic structure of the surface layer region which is a region from the surface of the base steel plate to a depth of 50 ⁇ m, contains 80.0% or more of martensite and 8.0% or more of retained austenite in an area%.
- the Ni concentration in the surface layer region is 8% by mass or more.
- Nb 0.010% or more, 0.150% or less, Ti: 0.010% or more, 0.150% or less, Mo: 0.005% or more, 1.000% or less, Cr: 0.005% or more, 1.000% or less, B: 0.0005% or more, 0.0100% or less, It may contain one or more selected from the group consisting of Ca: 0.0005% or more and 0.0100% or less and REM: 0.0005% or more and 0.30% or less.
- the hot stamped body according to the present embodiment has a metal structure of a surface layer region which is a region from the surface of the base steel sheet constituting the hot stamped molded body, in other words, a region from the surface of the base steel plate after hot stamping to a depth of 50 ⁇ m.
- it is characterized in that it contains 80.0% or more of martensite and 8.0% or more of retained austenite in area%, and the Ni concentration in the surface layer region is 8% by mass or more.
- "having excellent strength” means that the tensile (maximum) strength is 1500 MPa or more.
- cooling is started so that the average cooling rate on the surface of the base steel sheet becomes 80 ° C./s or more within 5 seconds after the finish rolling is completed, and the temperature range is less than 500 ° C. Cool and wind up. Even after winding, continue water cooling until it reaches room temperature (about 40 ° C or less).
- room temperature about 40 ° C or less.
- the ratio of one or two types of crystal grains of martensite and lower bainite that have not undergone autotempering is set to 15.0% or more in area%, and the surface layer.
- the average dislocation density of the region can be 4 ⁇ 10 15 m / m 3 or more.
- a Zn-based plating layer containing 10 to 25% by mass of Ni is formed on the surface of the base steel sheet so that the adhesion amount per side is 10 to 90 g / m 2, and the steel sheet for hot stamping is formed. To do.
- Ni in the plating layer arranged on the surface of the base steel sheet is diffused into the surface layer region of the base steel sheet.
- hot-rolled steel sheets having a high dislocation density containing 0.15% by mass or more of C, having a metal structure containing martensite, and not being tempered have significantly deteriorated ductility, toughness, and hydrogen embrittlement resistance.
- the hot-rolled steel sheet as described above is not excellent in ductility, so that cracks are likely to occur. Therefore, the hot-rolled steel sheet as described above is generally tempered after hot rolling and before going to a subsequent process.
- the bendability of the hot stamped molded product may not be excellent.
- the metal structure of the surface layer region of the hot stamping steel sheet is in a preferable state, and Ni in the plating layer arranged on the surface of the base steel sheet is diffused into the surface layer region of the base steel sheet by heating before hot stamping.
- the bendability or hydrogen embrittlement resistance of the hot stamped molded product can be improved without tempering after hot stamping.
- the metal structure of the surface layer region of the hot stamping steel sheet applied to the hot stamping compact according to the present embodiment is composed of one or two crystal grains of martensite and lower bainite that have not been autotempered in an area% of 15. Includes 0.0% or more.
- the dislocation density is high inside the crystal grains of martensite and lower bainite that have not been autotempered, and these crystal grains have a small grain size. Therefore, in the hot stamping steel sheet according to the present embodiment, Ni contained in the plating layer is likely to diffuse into the surface layer region through the grain boundaries and dislocations in the surface layer region of the base steel sheet by heating before hot stamping.
- Ni is an austenite stabilizing element
- the base steel sheet constituting the hot stamped steel sheet is formed. Residual austenite is likely to remain in the surface layer region of.
- the bendability of the hot stamped body can be improved by leaving a predetermined amount of retained austenite in the surface layer region of the base steel sheet constituting the hot stamped body using Ni as well as C.
- the present inventors heat the material before hot stamping.
- the average heating rate of the steel sheet should be less than 100 ° C./s.
- Ni diffuses not only at the grain boundaries in the surface layer region of the base steel sheet but also through dislocations, and is uniformly diffused in the surface layer region. Ni can be diffused.
- the hot stamp molded product and the manufacturing method thereof according to the present embodiment will be described in detail.
- the numerical limit range described below includes the lower limit value and the upper limit value. Numerical values indicated as “less than” and “greater than” do not include the values in the numerical range. All% of the chemical composition indicate mass%.
- the base steel sheet constituting the hot stamped molded product according to the present embodiment has, as a chemical component, C: 0.15% or more and less than 0.70%, Si: 0.005% or more, 0.250 in mass%. % Or less, Mn: 0.30% or more, 3.00% or less, sol. Al: 0.0002% or more, 0.500% or less, P: 0.100% or less, S: 0.1000% or less and N: 0.0100% or less, balance: Fe and impurities are contained.
- C 0.15% or more, less than 0.70%
- C is an important element for obtaining a tensile strength of 1500 MPa or more in a hot stamped molded product. If the C content is less than 0.15%, the martensite becomes soft and it is difficult to obtain a tensile strength of 1500 MPa or more. Further, when the C content is less than 0.15%, the area ratio of martensite and lower bainite not subjected to autotempering becomes small. Therefore, the C content is set to 0.15% or more.
- the C content is preferably 0.20% or more, and more preferably 0.30% or more.
- the C content is set to less than 0.70%.
- the C content is preferably 0.50% or less, more preferably 0.45% or less.
- Si: 0.005% or more, 0.250% or less Si is an element contained to ensure hardenability. If the Si content is less than 0.005%, the above effect cannot be obtained, and in the hot stamping steel sheet, the dislocation density may decrease or martensite and lower bainite that have not been autotempered may not be obtained. The desired metal structure cannot be obtained in the stamp molded product. Therefore, the Si content is set to 0.005% or more. Since the above effect is saturated even if Si of more than 0.250% is contained, the Si content is set to 0.250% or less. The Si content is preferably 0.210% or less.
- Mn 0.30% or more, 3.00% or less
- Mn is an element that contributes to the improvement of the strength of the hot stamped molded product by strengthening the solid solution. If the Mn content is less than 0.30%, the solid solution strengthening ability is poor and martensite becomes soft, and it is difficult to obtain a tensile strength of 1500 MPa or more in the hot stamped molded product. Therefore, the Mn content is set to 0.30% or more.
- the Mn content is preferably 0.50% or more, and 0.70% or more. On the other hand, if the Mn content is more than 3.00%, coarse inclusions are generated in the steel and fracture is likely to occur, and the bendability and hydrogen embrittlement resistance of the hot stamped compact are lowered. The upper limit is .00%.
- the Mn content is preferably 2.50% or less, or 2.00% or less.
- Al is an element having an action of deoxidizing molten steel to make the steel sound (suppressing the occurrence of defects such as blow holes in the steel). sol. If the Al content is less than 0.0002%, deoxidation is not sufficiently performed and the above effect cannot be obtained. The Al content is 0.0002% or more. sol. The Al content is preferably 0.0010% or more, or 0.0020% or more. On the other hand, sol. When the Al content exceeds 0.500%, coarse oxides are formed in the steel, and the bendability and hydrogen embrittlement resistance of the hot stamped compact are deteriorated. Therefore, sol. The Al content is 0.500% or less. sol. The Al content is preferably 0.400% or less, or 0.300% or less.
- P 0.100% or less
- P is an element that segregates at the grain boundaries and reduces the strength of the grain boundaries.
- the P content is set to 0.100% or less.
- the P content is preferably 0.050% or less.
- the lower limit of the P content is not particularly limited, but if it is reduced to less than 0.0001%, the cost of removing P is significantly increased, which is economically unfavorable. Therefore, 0.0001% may be set as the lower limit in actual operation.
- S 0.1000% or less
- S is an element that forms inclusions in steel.
- the S content is preferably 0.0050% or less.
- the lower limit of the S content is not particularly limited, but if it is reduced to less than 0.00015%, the cost of removing S is significantly increased, which is economically unfavorable. Therefore, 0.00015% may be set as the lower limit in actual operation.
- N 0.0100% or less
- N is an impurity element, which is an element that forms a nitride in steel and deteriorates the toughness and hydrogen embrittlement resistance of the hot stamped product.
- the N content exceeds 0.0100%, coarse nitrides are formed in the steel, and the bendability and hydrogen embrittlement resistance of the hot stamped body are significantly lowered. Therefore, the N content is set to 0.0100% or less.
- the N content is preferably 0.0075% or less.
- the lower limit of the N content is not particularly limited, but if it is reduced to less than 0.0001%, the N removal cost will increase significantly, which is economically unfavorable. Therefore, 0.0001% may be set as the lower limit in actual operation.
- the balance of the chemical composition of the base steel sheet constituting the hot stamped molded product according to the present embodiment is Fe and impurities.
- impurities include elements that are unavoidably mixed from steel raw materials or scrap and / or in the steelmaking process and are allowed as long as they do not impair the characteristics of the hot stamped article according to the present embodiment.
- the Ni content of the base steel sheet constituting the hot stamped molded product according to the present embodiment is less than 0.005%. Since Ni is an expensive element, in the present embodiment, the cost can be kept low as compared with the case where Ni is intentionally contained and the Ni content is 0.005% or more.
- the base steel sheet constituting the hot stamped molded product according to the present embodiment may contain the following elements as optional elements. When the following optional elements are not contained, the content is 0%.
- Nb 0% or more, 0.150% or less Since Nb is an element that contributes to improving the strength of the hot stamped molded product by strengthening the solid solution, it may be contained as necessary.
- the Nb content is preferably 0.010% or more in order to surely exert the above effect.
- the Nb content is more preferably 0.035% or more.
- the Nb content is preferably 0.150% or less.
- the Nb content is more preferably 0.120% or less.
- Ti 0% or more, 0.150% or less Since Ti is an element that contributes to improving the strength of the hot stamped molded product by strengthening the solid solution, it may be contained if necessary. When Ti is contained, the Ti content is preferably 0.010% or more in order to ensure that the above effects are exhibited. The Ti content is preferably 0.020% or more. On the other hand, since the above effect is saturated even if the content exceeds 0.150%, the Ti content is preferably 0.150% or less. The Ti content is more preferably 0.120% or less.
- Mo 0% or more, 1.000% or less Since Mo is an element that contributes to improving the strength of the hot stamped molded product by strengthening the solid solution, it may be contained if necessary. When Mo is contained, the Mo content is preferably 0.005% or more in order to surely exert the above effect. The Mo content is more preferably 0.010% or more. On the other hand, since the above effect is saturated even if the content exceeds 1.000%, the Mo content is preferably 1.000% or less. The Mo content is more preferably 0.800% or less.
- Cr 0% or more, 1.000% or less Since Cr is an element that contributes to improving the strength of the hot stamped molded product by strengthening the solid solution, it may be contained if necessary. When Cr is contained, the Cr content is preferably 0.005% or more in order to ensure the above effect. The Cr content is more preferably 0.100% or more. On the other hand, since the above effect is saturated even if the content exceeds 1.000%, the Cr content is preferably 1.000% or less. The Cr content is more preferably 0.800% or less.
- B 0% or more, 0.0100% or less Since B is an element that segregates at the grain boundaries and improves the strength of the grain boundaries, it may be contained as necessary.
- the B content is preferably 0.0005% or more in order to surely exert the above effect.
- the B content is preferably 0.0010% or more.
- the B content is preferably 0.0100% or less.
- the B content is more preferably 0.0075% or less.
- Ca 0% or more, 0.0100% or less
- Ca is an element having an action of deoxidizing molten steel to make the steel sound.
- the Ca content is preferably 0.0005% or more.
- the Ca content is preferably 0.0100% or less.
- REM 0% or more, 0.30% or less
- REM is an element that has the effect of deoxidizing molten steel and hardening the steel.
- the REM content is preferably 0.0005% or more.
- the REM content is preferably 0.30% or less.
- REM refers to a total of 17 elements composed of Sc, Y and lanthanoids, and the content of REM refers to the total content of these elements.
- the chemical composition of the hot stamped product described above may be measured by a general analysis method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrum). In addition, C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method. The plating layer on the surface may be removed by mechanical grinding and then the chemical composition may be analyzed.
- ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrum
- C and S may be measured by using the combustion-infrared absorption method
- N may be measured by using the inert gas melting-thermal conductivity method.
- the plating layer on the surface may be removed by mechanical grinding and then the chemical composition may be analyzed.
- the metal structure of the surface layer region which is the region from the surface of the base steel plate to a depth of 50 ⁇ m, contains 1 or 2 types of crystal grains of martensite and lower bainite that have not undergone autotempering in an area% of 15.0%. Including the above, and the average dislocation density of the surface layer region is 4 ⁇ 10 15 m / m 3 or more.
- the ratio of one or two types of crystal grains of martensite and lower bainite that have not undergone autotempering is 15.0 in area%.
- the average dislocation density in the surface layer region is 4 ⁇ 10 15 m / m 3 or more, so that Ni in the plating layer can be diffused into the surface layer region of the steel sheet by heating before hot stamping.
- the upper limit of the average dislocation density in the surface layer region is not particularly limited, and may be, for example, 5 ⁇ 10 17 m / m 3 or less, or 1 ⁇ 10 18 m / m 3 or less.
- Ni is uniformly diffused over the entire surface layer region, and the retained austenite in the surface layer region of the base steel sheet constituting the hot stamped body is 8 in area%. It can be 0.0% or more. Thereby, the bendability of the hot stamp molded product can be improved.
- the ratio of one or two types of crystal grains of martensite and lower bainite that have not undergone autotempering in the surface layer region is set to 15.0% or more in area%.
- the ratio of these crystal grains is area%, preferably 20.0% or more. From the viewpoint of suppressing the occurrence of cracks during cold spreading in the subsequent step, the ratio of these crystal grains may be 30.0% or more in terms of area%.
- the upper limit of the ratio of one or two crystal grains of untempered martensite and lower bainite in the metal structure of the surface layer region is not particularly limited, and may be, for example, 50% or less in area%. However, it may be 90% or less.
- the metallographic structure in the surface layer region is one or more of ferrite, upper bainite, retained austenite, and autotempered martensite as the residual structure other than martensite and lower bainite that have not been autotempered. It may be included.
- the metal structure at the center of the base steel plate is not particularly limited, but usually, it is one or more of ferrite, upper bainite, lower bainite, martensite, retained austenite, iron carbide and alloy carbide.
- the central portion of the base steel sheet is from a position 0.2 mm in the center direction of the plate thickness from one surface of the base steel plate to a position of 0.2 mm in the center direction of the plate thickness from the other surface of the base steel plate.
- a sample is cut out from an arbitrary position 50 mm or more away from the end face of the hot stamping steel plate so that a cross section in the rolling direction (thickness cross section) perpendicular to the surface can be observed.
- the size of the sample depends on the measuring device, but is set to a size that can be observed by about 10 mm in the rolling direction.
- the measurement surface is subjected to diamond powder having a particle size of 1 to 6 ⁇ m in a diluted solution such as alcohol or pure water. Use the dispersed liquid to finish the mirror surface.
- a region having a length of 50 ⁇ m and a depth of 50 ⁇ m from the interface between the plating layer and the surface of the base steel sheet is measured by electron backscatter diffraction at a measurement interval of 0.1 ⁇ m.
- an apparatus composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the apparatus is 9.6 ⁇ 10 -5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the electron beam irradiation time is 0.5 seconds / point.
- the obtained crystal orientation information is analyzed using the "Grain Average Image Quality" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer.
- This function the sharpness of crystal orientation information can be quantified as an IQ value, and it is possible to discriminate a structure that has not been auto-tempered. Martensite and lower bainite that have not been auto-tempered have low IQ values due to poor crystallinity.
- the area where the IQ value is calculated to be 60,000 or less by the "Grain Average Image Quality” function is defined as martensite or lower bainite which has not been auto-tempered, and its surface integral is calculated.
- the average dislocation density can be measured by X-ray diffraction or transmission electron microscope observation, but in this embodiment, it is measured by using X-ray diffraction.
- a sample is cut out from an arbitrary position 50 mm or more away from the end face of the base steel plate.
- the size of the sample depends on the measuring device, but is about 20 mm square.
- the front surface and the back surface of the sample are each reduced by 25 ⁇ m, for a total thickness reduction of 50 ⁇ m.
- a region of 25 ⁇ m is exposed from the sample surface before thickness reduction.
- X-ray diffraction measurements are performed on this exposed surface to identify multiple diffraction peaks in the body-centered cubic lattice. By analyzing the average dislocation density from the half width of these diffraction peaks, the average dislocation density in the surface layer region can be obtained.
- the modified Williamson-Hall method described in Non-Patent Document 1 is used.
- a plating layer in which the adhesion amount per side is 10 g / m 2 or more and 90 g / m 2 or less, the Ni content is 10% by mass or more and 25% by mass or less, and the balance is Zn and impurities.
- the hot stamping steel sheet applied to the hot stamping molded body according to the present embodiment has an adhesion amount of 10 g / m 2 or more and 90 g / m 2 or less per side to the surface of the base steel sheet constituting the hot stamping steel sheet.
- the Ni content is 10% by mass or more and 25% by mass or less, and the balance has a plating layer composed of Zn and impurities. As a result, Ni can be diffused in the surface layer region during heating before hot stamping.
- the adhesion amount per one side of the plating layer is less than 10 g / m 2 , or the Ni content in the plating layer is less than 10% by mass, the amount of Ni concentrated in the surface layer region of the base steel sheet decreases, and hot stamping The desired metallographic structure cannot be obtained in the later surface layer region.
- the adhesion amount per side exceeds 90 g / m 2 , or when the Ni content in the plating layer exceeds 25% by mass, Ni is excessively concentrated at the interface between the plating layer and the base steel sheet, and plating is performed.
- the adhesion between the layer and the base steel sheet is lowered, Ni in the plating layer is difficult to diffuse to the surface layer region of the base steel sheet, and a desired metal structure cannot be obtained in the hot stamped molded body after hot stamping.
- the amount of adhesion of the plating layer per side is preferably 30 g / m 2 or more, and more preferably 40 g / m 2 or more.
- the amount of adhesion of the plating layer per side is preferably 80 g / m 2 or less, and more preferably 60 g / m 2 or less.
- the plating adhesion amount of the hot stamping steel sheet and the Ni content in the plating layer are measured by the following methods.
- the amount of plating adhesion is measured by collecting a test piece from an arbitrary position on the hot stamping steel plate according to the test method described in JIS H 0401: 2013.
- the Ni content in the plating layer is determined by collecting a test piece from an arbitrary position on the hot stamping steel sheet according to the test method described in JIS K 0150: 2005 and containing Ni at 1/2 position of the total thickness of the plating layer. By measuring the amount, the Ni content of the plating layer in the hot stamping steel sheet is obtained.
- the thickness of the hot stamping steel plate applied to the hot stamping compact according to the present embodiment is not particularly limited, but is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
- ⁇ Hot stamp molded body> "The metallographic structure of the surface layer region, which is the region from the surface of the base steel sheet to a depth of 50 ⁇ m, contains 80.0% or more of martensite and 8.0% or more of retained austenite in area%.”
- the metal structure of the surface layer region which is the region from the surface of the base steel sheet constituting the hot stamped body to a depth of 50 ⁇ m, has martensite of 80.0% or more and retained austenite of 8.0% or more in area%. By including it, excellent strength and bendability can be obtained.
- the residual structure other than martensite and retained austenite in the surface layer region may contain one or more of ferrite, upper bainite and lower bainite.
- the proportion of martensite in the metal structure of the surface layer region is less than 80.0% in area%, the desired strength cannot be obtained in the hot stamped molded product, and it cannot be applied to automobile members and the like.
- the proportion of martensite is preferably 85.0% or more in terms of area%.
- the proportion of martensite is 92.0% or less in area%.
- the ratio of retained austenite is less than 8.0% in area%, the bendability of the hot stamp molded product deteriorates.
- the ratio of retained austenite is preferably 10.0% or more in terms of area%.
- the upper limit is not particularly limited, but when a higher yield strength is to be obtained, the ratio of retained austenite may be 15.0% or less in area%.
- a method for measuring the metallographic structure of the surface layer region will be described.
- a sample is cut out so that a rolling direction cross section (plate thickness cross section) perpendicular to the surface can be observed from an arbitrary position 50 mm or more away from the end face of the hot stamped compact.
- the size of the sample depends on the measuring device, but is set to a size that can be observed by about 10 mm in the rolling direction.
- the surface integrals of retained austenite and martensite are measured using the samples collected in this way.
- an apparatus composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
- the degree of vacuum in the apparatus is 9.6 ⁇ 10-5 Pa or less
- the acceleration voltage is 15 kV
- the irradiation current level is 13
- the electron beam irradiation time is 0.01 seconds / point.
- the obtained crystal orientation information is used in the surface layer region by calculating the area fraction of retained austenite using the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. Obtain the area fraction of retained austenite. Those having a crystal structure of fcc structure are judged to be retained austenite.
- the measurement surface of the above sample After polishing the measurement surface of the above sample (a sample different from the one used for measuring the area fraction of retained austenite) with silicon carbide paper of # 600 to # 1500, the measurement surface has a particle size of 1 to 6 ⁇ m.
- the diamond powder is mirror-finished using a diluted solution such as alcohol or a liquid dispersed in pure water, and night tar etching is performed.
- observation is performed using a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) with a region within 50 ⁇ m from the end of the base steel plate surface side on the observation surface as an observation field.
- the surface integral of martensite can be calculated by the sum of the surface integrals of tempered martensite and fresh martensite.
- Tempering martensite is a collection of lath-shaped crystal grains, and is distinguished as a structure in which iron carbides have two or more elongation directions. Fresh martensite is not sufficiently etched by nightal etching and is therefore distinguishable from other etched structures. However, since retained austenite is not sufficiently etched like fresh martensite, the area% of fresh martensite is calculated by the difference between the area fraction of the structure not etched by nightal etching and the area fraction of retained austenite calculated above. .. By calculating the total area% of tempered martensite and fresh martensite obtained by the above method, the surface integral of martensite in the surface layer region can be obtained.
- Ni concentration in the surface layer region is 8% by mass or more
- the Ni concentration in the surface layer region of the base steel sheet constituting the hot stamped body is 8% by mass.
- the Ni concentration in the surface layer region is preferably 10% by mass or more, and more preferably 12% by mass or more.
- the upper limit of the Ni concentration in the surface layer region is not particularly limited, but the Ni concentration may be, for example, 15% by mass or less, or 20% by mass or less.
- Measurement method of Ni concentration in the surface layer region A method for measuring the Ni concentration in the surface layer region will be described. First, a sample is cut out from an arbitrary position 50 mm or more away from the end face of the hot stamp molded product. The size of the sample depends on the measuring device, but is about 20 mm square. The Ni concentration is measured by the glow discharge emission analysis method, and analysis is performed at 10 points on the surface of the sample in the depth direction from the surface of the base steel plate to the plate thickness direction, and the position at a depth of 25 ⁇ m from the surface of the base steel plate in the plate thickness direction. The Ni concentration of is calculated, and the average value of 10 points is calculated. The obtained average value is defined as the Ni concentration in the surface layer region.
- a plating layer in which the adhesion amount per side is 10 g / m 2 or more and 90 g / m 2 or less, the Ni content is 10% by mass or more and 25% by mass or less, and the balance is Zn and impurities.
- the hot stamped body according to the present embodiment has an adhesion amount of 10 g / m 2 or more and 90 g / m 2 or less per side to the surface of the base steel sheet constituting the hot stamped body, and has a Ni content of 10. It has a mass% or more and 25% by mass or less, and has a plating layer in which the balance is made of Zn and impurities.
- the adhesion amount per side is less than 10 g / m 2 or the Ni content in the plating layer is less than 10% by mass, the amount of Ni concentrated in the surface layer region of the base steel sheet decreases, and the surface layer after hot stamping The desired metallographic structure cannot be obtained in the region.
- the adhesion amount per side exceeds 90 g / m 2 , or when the Ni content in the plating layer exceeds 25% by mass, Ni is excessively concentrated at the interface between the plating layer and the base steel sheet, and plating is performed. The adhesion between the layer and the base steel sheet is lowered, Ni in the plating layer is difficult to diffuse to the surface layer region of the base steel sheet, and a desired metal structure cannot be obtained in the hot stamped body.
- the amount of adhesion of the plating layer per side is preferably 30 g / m 2 or more, and more preferably 40 g / m 2 or more.
- the amount of adhesion of the plating layer per side is preferably 80 g / m 2 or less, and more preferably 60 g / m 2 or less.
- the plating adhesion amount of the hot stamp molded product and the Ni content in the plating layer are measured by the following methods.
- the amount of plating adhered is measured by collecting a test piece from an arbitrary position of the hot stamped molded product according to the test method described in JIS H 0401: 2013.
- the Ni content in the plating layer is determined by collecting a test piece from an arbitrary position of the hot stamped body according to the test method described in JIS K 0150: 2005 and containing Ni at 1/2 position of the total thickness of the plating layer. By measuring the amount, the Ni content of the plating layer in the hot stamping compact is obtained.
- the steel piece (steel material) to be subjected to hot rolling may be a steel piece manufactured by a conventional method, and may be, for example, a steel piece manufactured by a general method such as a continuously cast slab or a thin slab caster. Rough rolling may also be performed by a general method and is not particularly limited.
- a 3 points 850 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo ...
- C, N, Mn, Nb, Ti, B, Cr and Mo are the contents (mass%) of each element.
- cooling Within 5 seconds after the completion of finish rolling, cooling with an average cooling rate of 80 ° C./s or more is started, and the product is cooled to a temperature range of less than 500 ° C. and wound up. In addition, even after winding, water cooling is continued until the room temperature is reached.
- the cooling start time exceeds 5 seconds, the average cooling rate is less than 80 ° C / s, or the winding start temperature exceeds 500 ° C, ferrite, pearlite, and upper bainite are likely to be formed, and in the surface layer region, The ratio of one or two crystal grains of martensite and lower bainite that have not been auto-tempered cannot be 15.0% or more in area%.
- the average cooling rate at this time is calculated from the temperature change on the surface of the steel sheet, and indicates the average cooling rate from the finish rolling temperature to the winding start temperature.
- the adhesion amount per side is 10 g / m 2 or more and 90 g / m 2 or less, and the Ni content is 10% by mass or more and 25% by mass or less.
- a steel sheet for hot stamping is obtained by forming a plating layer containing Zn and impurities in the balance.
- the rolling reduction in cold rolling is not particularly limited, but it is preferably 40 to 60% from the viewpoint of shape stability of the steel sheet.
- a known production method such as pickling or temper rolling may be included before plating is applied.
- the ratio of one or two types of crystal grains of martensite and lower bainite that have not undergone autotempering in the surface layer region is 15.0% in area%.
- the above cannot be achieved, and the average dislocation density cannot be 4 ⁇ 10 15 m / m 3 or more, and as a result, a hot stamped molded product having a desired metal structure cannot be obtained. Therefore, when it is necessary to perform tempering before plating is applied due to a high C content or the like, tempering is performed at a temperature of less than Ms point ⁇ 15 ° C.
- the Ms point is represented by the following equation (2).
- the steel sheet for hot stamping obtained above is heated in a temperature range of 500 ° C. or higher and A 3 points or lower at an average heating rate of less than 100 ° C./s, and then A 3 points or higher and A. It is manufactured by holding it at a temperature of 3 points + 150 ° C. or lower, hot stamping so that the elapsed time from the start of heating to the start of molding is within a predetermined time, and cooling to room temperature. Further, in order to adjust the strength of the hot stamped product, a softened region may be formed by baking a part or all of the hot stamped product at a temperature of less than Ms point ⁇ 15 ° C. ..
- the average heating rate is preferably less than 80 ° C./s.
- the lower limit of the average heating rate is not particularly limited, but in actual operation, setting it to less than 0.01 ° C./s causes an increase in manufacturing cost. Therefore, the average heating rate may be 0.01 ° C./s or higher.
- the elapsed time from the start of heating to the start of molding is preferably 280 seconds or more, and preferably 320 seconds or less.
- Holding temperature during hot stamping it is preferable that the A 3 point + 10 ° C. or higher.
- the holding temperature during hot stamping it is preferable that the A 3 point + 150 °C or less.
- the average cooling rate after hot stamping is preferably 10 ° C./s or higher.
- the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
- Steel pieces produced by casting molten steel having the chemical compositions shown in Tables 1 and 2 are hot-rolled, cold-rolled, and plated under the conditions shown in Tables 3 and 4, and are used for hot stamping shown in Tables 3 and 4.
- a steel plate was obtained.
- the obtained steel sheet for hot stamping was subjected to the heat treatment shown in Tables 5 and 6 and hot stamped to obtain a hot stamped molded product shown in Tables 5 and 6.
- the partially softened region was formed by irradiating a part of the hot stamped molded product with a laser to bring the irradiated portion to less than Ms-15 ° C. and baking it.
- the underline in the table indicates that the product is outside the scope of the present invention, that the manufacturing conditions are not preferable, or that the characteristic value is not preferable.
- the metallographic structure, average dislocation density and Ni concentration (content) of the hot stamping steel plate and the hot stamping compact were measured by the above-mentioned measuring method. Moreover, the mechanical property of the hot stamp molded article was evaluated by the following method.
- the tensile strength of the hot stamped molded product was determined by preparing the No. 5 test piece described in JIS Z 2201: 2011 from an arbitrary position of the hot stamped molded product and according to the test method described in JIS Z 2241: 2011. If the tensile strength was less than 1500 MPa, it was judged to be unacceptable, and the test described later was not performed.
- the hot stamped article having a chemical composition, a plating composition and a metal structure within the scope of the present invention has excellent strength and bendability.
- a hot stamped article in which any one or more of the chemical composition and the metal structure deviates from the present invention is inferior in one or more of strength and bendability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
[1]本発明の一態様に係るホットスタンプ成形体は、化学成分として、質量%で、
C:0.15%以上、0.70%未満、
Si:0.005%以上、0.250%以下、
Mn:0.30%以上、3.00%以下、
sol.Al:0.0002%以上、0.500%以下、
P :0.100%以下、
S :0.1000%以下、
N :0.0100%以下、
Nb:0%以上、0.150%以下、
Ti:0%以上、0.150%以下、
Mo:0%以上、1.000%以下、
Cr:0%以上、1.000%以下、
B :0%以上、0.0100%以下、
Ca:0%以上、0.0100%以下および
REM:0%以上、0.30%以下を含有し、残部がFeおよび不純物からなる母材鋼板と、
前記母材鋼板の表面に、片面当たりの付着量が10g/m2以上、90g/m2以下であり、Ni含有量が10質量%以上、25質量%以下であり、残部がZnおよび不純物からなるめっき層と、を有し、
前記母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織が、面積%で、80.0%以上のマルテンサイトおよび8.0%以上の残留オーステナイトを含み、
前記表層領域のNi濃度が8質量%以上である。
[2]上記[1]に記載のホットスタンプ成形体は、前記母材鋼板に、化学成分として、質量%で、
Nb:0.010%以上、0.150%以下、
Ti:0.010%以上、0.150%以下、
Mo:0.005%以上、1.000%以下、
Cr:0.005%以上、1.000%以下、
B :0.0005%以上、0.0100%以下、
Ca:0.0005%以上、0.0100%以下および
REM:0.0005%以上、0.30%以下からなる群から選択される1種または2種以上を含有してもよい。
Cは、ホットスタンプ成形体において1500MPa以上の引張強度を得るために重要な元素である。C含有量が0.15%未満では、マルテンサイトが軟らかくなり、1500MPa以上の引張強度を得ることが困難である。また、C含有量が0.15%未満であると、オートテンパを受けていないマルテンサイトおよび下部ベイナイト面積率が小さくなる。そのため、C含有量は0.15%以上とする。C含有量は、好ましくは0.20%以上であり、より好ましくは0.30%以上である。一方、C含有量が0.70%以上では、粗大な炭化物が生成して破壊が生じやすくなり、ホットスタンプ成形体の曲げ性および耐水素脆化特性が低下する。そのため、C含有量は0.70%未満とする。C含有量は、好ましくは0.50%以下であり、より好ましくは0.45%以下である。
Siは、焼入れ性を確保するために含有させる元素である。Si含有量が0.005%未満では上記効果が得られず、ホットスタンプ用鋼板において、転位密度が低下する場合およびオートテンパを受けていないマルテンサイトおよび下部ベイナイトが得られなくなる場合があり、ホットスタンプ成形体において所望の金属組織が得られなくなる。そのため、Si含有量は0.005%以上とする。0.250%超のSiを含有させても上記効果が飽和するため、Si含有量は0.250%以下とする。Si含有量は、好ましくは0.210%以下である。
Mnは、固溶強化によりホットスタンプ成形体の強度の向上に寄与する元素である。Mn含有量が0.30%未満では、固溶強化能が乏しくマルテンサイトが軟らかくなり、ホットスタンプ成形体において1500MPa以上の引張強度を得ることが困難である。そのため、Mn含有量は0.30%以上とする。Mn含有量は、好ましくは0.50%以上、また0.70%以上である。一方、Mn含有量を3.00%超とすると、鋼中に粗大な介在物が生成して破壊が生じやすくなり、ホットスタンプ成形体の曲げ性および耐水素脆化特性が低下するので、3.00%を上限とする。Mn含有量は、好ましくは2.50%以下、または2.00%以下である。
Alは、溶鋼を脱酸して鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する元素である。sol.Al含有量が0.0002%未満では、脱酸が十分に行われず上記効果が得られないため、sol.Al含有量は0.0002%以上とする。sol.Al含有量は、好ましくは0.0010%以上、または0.0020%以上である。一方、sol.Al含有量が0.500%を超えると、鋼中に粗大な酸化物が生成し、ホットスタンプ成形体の曲げ性および耐水素脆化特性が低下する。そのため、sol.Al含有量は0.500%以下とする。sol.Al含有量は、好ましくは0.400%以下、または0.300%以下である。
Pは、粒界に偏析し、粒界の強度を低下させる元素である。P含有量が0.100%を超えると、粒界の強度が著しく低下して、ホットスタンプ成形体の曲げ性および耐水素脆化特性が低下する。そのため、P含有量は0.100%以下とする。P含有量は、好ましくは0.050%以下である。P含有量の下限は特に限定しないが、0.0001%未満に低減すると、脱Pコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.0001%を下限としてもよい。
Sは、鋼中に介在物を形成する元素である。S含有量が0.1000%を超えると、鋼中に多量の介在物が生成し、ホットスタンプ成形体の曲げ性および耐水素脆化特性が低下する。そのため、S含有量は0.1000%以下とする。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に限定しないが、0.00015%未満に低減すると、脱Sコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.00015%を下限としてもよい。
Nは、不純物元素であり、鋼中に窒化物を形成してホットスタンプ成形体の靱性および耐水素脆化特性を劣化させる元素である。N含有量が0.0100%を超えると、鋼中に粗大な窒化物が生成して、ホットスタンプ成形体の曲げ性および耐水素脆化特性が著しく低下する。そのため、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0075%以下である。N含有量の下限は特に限定しないが、0.0001%未満に低減すると、脱Nコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.0001%を下限としてもよい。
Nbは、固溶強化によりホットスタンプ成形体の強度の向上に寄与する元素であるため、必要に応じて含有させても良い。Nbを含有させる場合、上記効果を確実に発揮させるために、Nb含有量は0.010%以上とすることが好ましい。Nb含有量は、より好ましくは0.035%以上である。一方、0.150%を超えてNbを含有させても上記効果は飽和するので、Nb含有量は0.150%以下とすることが好ましい。Nb含有量は、より好ましくは0.120%以下である。
Tiは、固溶強化によりホットスタンプ成形体の強度の向上に寄与する元素であるため、必要に応じて含有させても良い。Tiを含有させる場合、上記効果を確実に発揮させるために、Ti含有量は0.010%以上とすることが好ましい。Ti含有量は、好ましくは0.020%以上である。一方、0.150%を超えて含有させても上記効果は飽和するので、Ti含有量は0.150%以下とすることが好ましい。Ti含有量は、より好ましくは0.120%以下である。
Moは、固溶強化によりホットスタンプ成形体の強度の向上に寄与する元素であるため、必要に応じて含有させても良い。Moを含有させる場合、上記効果を確実に発揮させるために、Mo含有量は0.005%以上とすることが好ましい。Mo含有量は、より好ましくは0.010%以上である。一方、1.000%を超えて含有させても上記効果は飽和するため、Mo含有量は1.000%以下とすることが好ましい。Mo含有量は、より好ましくは0.800%以下である。
Crは、固溶強化によりホットスタンプ成形体の強度の向上に寄与する元素であるため、必要に応じて含有させても良い。Crを含有させる場合、上記効果を確実に発揮させるために、Cr含有量は0.005%以上とすることが好ましい。Cr含有量は、より好ましくは0.100%以上である。一方、1.000%を超えて含有させても上記効果は飽和するため、Cr含有量は1.000%以下とすることが好ましい。Cr含有量は、より好ましくは0.800%以下である。
Bは、粒界に偏析して粒界の強度を向上させる元素であるため、必要に応じて含有させても良い。Bを含有させる場合、上記効果を確実に発揮させるために、B含有量は0.0005%以上とすることが好ましい。B含有量は、好ましくは0.0010%以上である。一方、0.0100%を超えて含有させても上記効果は飽和するため、B含有量は0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0075%以下である。
Caは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この作用を確実に発揮させるためには、Ca含有量を0.0005%以上とすることが好ましい。一方、0.0100%を超えて含有させても上記効果は飽和するため、Ca含有量は0.0100%以下とすることが好ましい。
REMは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この作用を確実に発揮させるためには、REM含有量を0.0005%以上とすることが好ましい。一方、0.30%を超えて含有させても上記効果は飽和するため、REM含有量は0.30%以下とすることが好ましい。
なお、本実施形態においてREMとは、Sc、Yおよびランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
「母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織が、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの1種または2種の結晶粒を面積%で15.0%以上含み、且つ表層領域の平均転位密度が4×1015m/m3以上」
母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織において、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの1種または2種の結晶粒の割合を面積%で15.0%以上とし、且つ表層領域の平均転位密度を4×1015m/m3以上とすることにより、ホットスタンプ前の加熱により、めっき層中のNiを鋼板の表層領域に拡散させることができる。表層領域の平均転位密度の上限は、特段制限されず、例えば、5×1017m/m3以下であってもよいし、1×1018m/m3以下であってもよい。
本実施形態に係るホットスタンプ成形体に適用されるホットスタンプ用鋼板を構成する母材鋼板の表層領域における、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの結晶粒の面積分率の測定方法について説明する。
次に、表層領域の平均転位密度の測定方法について説明する。平均転位密度は、X線回折法あるいは透過型電子顕微鏡観察によって測定することができるが、本実施形態ではX線回折法を用いて測定する。
本実施形態に係るホットスタンプ成形体に適用されるホットスタンプ用鋼板は、ホットスタンプ用鋼板を構成する母材鋼板の表面に、片面当たりの付着量が10g/m2以上、90g/m2以下であり、Ni含有量が10質量%以上、25質量%以下であり、残部がZnおよび不純物からなるめっき層を有する。これにより、ホットスタンプ前の加熱時に表層領域にNiを拡散させることができる。
めっき層の片面当たりの付着量は、好ましくは、30g/m2以上であり、より好ましくは、40g/m2以上である。また、めっき層の片面当たりの付着量は、好ましくは、80g/m2以下であり、より好ましくは、60g/m2以下である。
めっき付着量は、JIS H 0401:2013に記載の試験方法に従って、ホットスタンプ用鋼板の任意の位置から試験片を採取して測定する。めっき層中のNi含有量は、ホットスタンプ用鋼板の任意の位置から、JIS K 0150:2005に記載の試験方法に従って、試験片を採取し、めっき層の全厚の1/2位置のNi含有量を測定することで、ホットスタンプ用鋼板におけるめっき層のNi含有量を得る。
「母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織が、面積%で、80.0%以上のマルテンサイトおよび8.0%以上の残留オーステナイトを含む」
ホットスタンプ成形体を構成する母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織が、面積%で、80.0%以上のマルテンサイトおよび8.0%以上の残留オーステナイトを含むことで、優れた強度と曲げ性とを得ることができる。なお、表層領域におけるマルテンサイトおよび残留オーステナイト以外の残部組織としては、フェライト、上部ベイナイトおよび下部ベイナイトの1種以上を含んでもよい。
まず、ホットスタンプ成形体の端面から50mm以上離れた任意の位置から表面に垂直な圧延方向断面(板厚断面)が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、圧延方向に10mm程度観察できる大きさとする。このような方法で採取したサンプルを用いて、残留オーステナイトおよびマルテンサイトの面積分率を測定する。
上記圧延方向断面に対応するサンプルの測定面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、当該測定面を粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に存在するひずみを除去する。サンプルの測定面の圧延方向の任意の位置において、長さ50μm、母材鋼板の表面から深さ50μmまでの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成された装置を用いる。この際、装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射時間は0.01秒/点とする。得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、残留オーステナイトの面積分率を算出することで、表層領域における残留オーステナイトの面積分率を得る。なお、結晶構造がfcc構造であるものを残留オーステナイトと判断する。
上記サンプル(残留オーステナイトの面積分率の測定に使用したものとは別のサンプル)の測定面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、当該測定面を粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げ、ナイタールエッチングを施す。次いで、観察面における母材鋼板表面側の端部から50μm以内の領域を観察視野として、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)を用いて観察する。マルテンサイトの面積分率は、焼戻しマルテンサイトおよびフレッシュマルテンサイトの面積分率の合計で求めることができる。焼戻しマルテンサイトはラス状の結晶粒の集合であり、内部に鉄炭化物の伸長方向が二つ以上である組織として区別する。フレッシュマルテンサイトはナイタールエッチングでは充分にエッチングされないため、エッチングされる他の組織とは区別が可能である。ただし、残留オーステナイトもフレッシュマルテンサイト同様に充分にエッチングされないため、ナイタールエッチングでエッチングされない組織の面積分率と上述で算出した残留オーステナイトの面積分率との差分でフレッシュマルテンサイトの面積%を求める。以上の方法で得た焼戻しマルテンサイトおよびフレッシュマルテンサイトの合計の面積%を算出することで、表層領域におけるマルテンサイトの面積分率を得る。
ホットスタンプ成形体を構成する母材鋼板の表層領域のNi濃度は、8質量%である。表層領域のNi濃度を8質量%以上とすることで、表層領域における残留オーステナイトが安定化し、ホットスタンプ成形体の残留オーステナイト量を増加することができる。その結果、ホットスタンプ成形体の曲げ性を向上することができる。表層領域におけるNi濃度は、好ましくは、10質量%以上であり、より好ましくは、12質量%以上である。また、表層領域におけるNi濃度の上限は特段制限されないが、Ni濃度は、例えば、15質量%以下であってもよく、20質量%以下であってもよい。
表層領域におけるNi濃度の測定方法について説明する。
まず、ホットスタンプ成形体の端面から50mm以上離れた任意の位置からサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、20mm角程度の大きさとする。Ni濃度の測定はグロー放電発光分析法で、サンプルの表面10点において、母材鋼板表面から板厚方向の深さ方向に分析を行い、母材鋼板表面から板厚方向に25μm深さの位置のNi濃度を求め、10点の平均値を算出する。得られた平均値を表層領域のNi濃度と定義する。
本実施形態に係るホットスタンプ成形体は、ホットスタンプ成形体を構成する母材鋼板の表面に、片面当たりの付着量が10g/m2以上、90g/m2以下であり、Ni含有量が10質量%以上、25質量%以下であり、残部がZnおよび不純物からなるめっき層を有する。
めっき層の片面当たりの付着量は、好ましくは、30g/m2以上であり、より好ましくは、40g/m2以上である。また、めっき層の片面当たりの付着量は、好ましくは、80g/m2以下であり、より好ましくは、60g/m2以下である。
めっき付着量は、JIS H 0401:2013に記載の試験方法に従って、ホットスタンプ成形体の任意の位置から試験片を採取して測定する。めっき層中のNi含有量は、ホットスタンプ成形体の任意の位置から、JIS K 0150:2005に記載の試験方法に従って、試験片を採取し、めっき層の全厚の1/2位置のNi含有量を測定することで、ホットスタンプ成形体におけるめっき層のNi含有量を得る。
熱間圧延に供する鋼片(鋼材)は、常法で製造した鋼片であればよく、例えば、連続鋳造スラブ、薄スラブキャスターなどの一般的な方法で製造した鋼片であればよい。粗圧延も一般的な方法で行えばよく、特に限定しない。
仕上げ圧延の最終圧下(最終パス)では、A3点以上の温度域で20%未満の圧下率で仕上げ圧延を行う必要がある。仕上げ圧延の最終圧下において、A3点未満の温度で圧延したり、圧下率が20%以上であったりすると、表層領域においてフェライトが生成し、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの1種または2種の結晶粒の割合を面積%で15.0%以上とすることができない。なお、A3点は下記式(1)により表される。
上記式(1)中、C、N、Mn、Nb、Ti、B、CrおよびMoは、それぞれの元素の含有量(質量%)である。
仕上げ圧延終了後は5秒以内に平均冷却速度が80℃/s以上である冷却を開始し、500℃未満の温度域まで冷却して巻き取る。また、巻き取った後も室温になるまで水冷を続ける。冷却開始時間が5秒を超える場合、平均冷却速度が80℃/s未満の場合、または巻取り開始温度が500℃超の場合、フェライト、パーライト、上部ベイナイトが生成しやすくなり、表層領域において、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの1種または2種の結晶粒の割合を面積%で15.0%以上とすることができない。この時の平均冷却速度は、鋼板の表面の温度変化から算出するものであり、仕上げ圧延温度から巻取り開始温度に到達するまでの平均冷却速度を示す。
上記熱延鋼板をそのまま、もしくは冷間圧延を施した後、片面当たりの付着量が10g/m2以上、90g/m2以下であり、Ni含有量が10質量%以上、25質量%以下であり、残部がZnおよび不純物からなる含むめっき層を形成させて、ホットスタンプ用鋼板を得る。めっき付与の前に冷間圧延を行う場合、冷間圧延における圧下率は特に限定しないが、鋼板の形状安定性の観点から、40~60%とすることが好ましい。ホットスタンプ用鋼板の製造においては、めっき付与の前に、その他、酸洗、調質圧延等、公知の製法を含んでもよい。ただし、Ms点-15℃以上の温度で焼戻しを施すと、表層領域において、オートテンパを受けていないマルテンサイトおよび下部ベイナイトの1種または2種の結晶粒の割合を面積%で15.0%以上とすることができず、また平均転位密度を4×1015m/m3以上とすることができず、結果として所望の金属組織を有するホットスタンプ成形体を得ることができない。そのため、C含有量が高い等の理由によりめっき付与の前に焼戻しを施すことが必要な場合は、Ms点-15℃未満の温度で焼戻しを施す。なお、Ms点は下記式(2)により表される。
上記式(2)中、C、Mn、Si、Cr、NiおよびMoは、それぞれの元素の含有量(質量%)である。
ホットスタンプ成形体は、上述して得られたホットスタンプ用鋼板を、500℃以上、A3点以下の温度域を100℃/s未満の平均加熱速度で加熱した後、A3点以上、A3点+150℃以下の温度で保持し、加熱開始から成形開始までの経過時間が所定の時間内になるようにホットスタンプし、室温まで冷却することにより製造する。
また、ホットスタンプ成形体の強度を調整するために、ホットスタンプ成形体の一部の領域または全ての領域をMs点-15℃未満の温度で焼戻すことで、軟化領域を形成してもよい。
なお、表中の下線は、本発明の範囲外であること、好ましい製造条件を外れることまたは特性値が好ましくないことを示す。
ホットスタンプ成形体の引張強度は、ホットスタンプ成形体の任意の位置からJIS Z 2201:2011に記載の5号試験片を作製し、JIS Z 2241:2011に記載の試験方法に従って求めた。なお、引張強度が1500MPa未満であった場合は不合格と判定し、後述する試験を行わなかった。
ホットスタンプ成形体の曲げ性は、ドイツ自動車工業会で規定されたVDA基準(VDA238-100)に基づいて、以下の方法により評価した。本実施例では、曲げ試験で得られる最大荷重時の変位をVDA基準で角度に変換し、最大曲げ角度(°)を求めた。
試験片寸法:60mm(圧延方向)×60mm(板幅方向に平行な方向)、または、30mm(圧延方向)×60mm(板幅方向に平行な方向)
試験片板厚:1.0mm(表裏面を同量ずつ研削)
曲げ稜線:板幅方向に平行な方向
試験方法:ロール支持、ポンチ押し込み
ロール径:φ30mm
ポンチ形状:先端R=0.4mm
ロール間距離:2.0×板厚(mm)+0.5mm
押し込み速度:20mm/min
試験機:SHIMADZU AUTOGRAPH 20kN
一方、化学組成および金属組織のうちいずれか1つ以上が本発明を外れるホットスタンプ成形体は、強度および曲げ性のうち1つ以上が劣ることが分かる。
Claims (2)
- 化学成分として、質量%で、
C:0.15%以上、0.70%未満、
Si:0.005%以上、0.250%以下、
Mn:0.30%以上、3.00%以下、
sol.Al:0.0002%以上、0.500%以下、
P :0.100%以下、
S :0.1000%以下、
N :0.0100%以下、
Nb:0%以上、0.150%以下、
Ti:0%以上、0.150%以下、
Mo:0%以上、1.000%以下、
Cr:0%以上、1.000%以下、
B :0%以上、0.0100%以下、
Ca:0%以上、0.0100%以下および
REM:0%以上、0.30%以下
を含有し、残部がFeおよび不純物からなる母材鋼板と、
前記母材鋼板の表面に、片面当たりの付着量が10g/m2以上、90g/m2以下であり、Ni含有量が10質量%以上、25質量%以下であり、残部がZnおよび不純物からなるめっき層と、を有し、
前記母材鋼板の表面から深さ50μmまでの領域である表層領域の金属組織が、面積%で、80.0%以上のマルテンサイトおよび8.0%以上の残留オーステナイトを含み、
前記表層領域のNi濃度が8質量%以上である
ことを特徴とする、ホットスタンプ成形体。 - 前記母材鋼板が、化学成分として、質量%で、
Nb:0.010%以上、0.150%以下、
Ti:0.010%以上、0.150%以下、
Mo:0.005%以上、1.000%以下、
Cr:0.005%以上、1.000%以下、
B :0.0005%以上、0.0100%以下、
Ca:0.0005%以上、0.0100%以下および
REM:0.0005%以上、0.30%以下からなる群から選択される1種または2種以上を含有する
ことを特徴とする、請求項1に記載のホットスタンプ成形体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080039351.7A CN113906151B (zh) | 2019-05-31 | 2020-05-28 | 热压成型体 |
US17/614,400 US11904573B2 (en) | 2019-05-31 | 2020-05-28 | Hot-stamp-molded article |
KR1020217038131A KR102603495B1 (ko) | 2019-05-31 | 2020-05-28 | 핫 스탬프 성형체 |
JP2021522866A JP7188584B2 (ja) | 2019-05-31 | 2020-05-28 | ホットスタンプ成形体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-101987 | 2019-05-31 | ||
JP2019101987 | 2019-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241763A1 true WO2020241763A1 (ja) | 2020-12-03 |
Family
ID=73552588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021138 WO2020241763A1 (ja) | 2019-05-31 | 2020-05-28 | ホットスタンプ成形体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11904573B2 (ja) |
JP (1) | JP7188584B2 (ja) |
KR (1) | KR102603495B1 (ja) |
CN (1) | CN113906151B (ja) |
WO (1) | WO2020241763A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012197505A (ja) * | 2011-03-10 | 2012-10-18 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP2012233249A (ja) * | 2010-11-25 | 2012-11-29 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP6477978B1 (ja) * | 2018-03-29 | 2019-03-06 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4849186B2 (ja) | 2009-10-28 | 2012-01-11 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
JP5533729B2 (ja) | 2011-02-22 | 2014-06-25 | 新日鐵住金株式会社 | 局部変形能に優れ、成形性の方位依存性の少ない延性に優れた高強度熱延鋼板及びその製造方法 |
EP2803746B1 (en) * | 2012-01-13 | 2019-05-01 | Nippon Steel & Sumitomo Metal Corporation | Hot stamped steel and method for producing the same |
WO2013132816A1 (ja) | 2012-03-07 | 2013-09-12 | Jfeスチール株式会社 | 熱間プレス用鋼板、その製造方法、およびそれを用いた熱間プレス部材の製造方法 |
JP5835624B2 (ja) * | 2012-08-21 | 2015-12-24 | 新日鐵住金株式会社 | 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法 |
US10662494B2 (en) * | 2014-05-29 | 2020-05-26 | Nippon Steel Corporation | Heat-treated steel material and method of manufacturing the same |
EP3181715B1 (en) * | 2014-10-24 | 2019-01-02 | JFE Steel Corporation | High-strength hot-pressing member and method for producing same |
KR101981876B1 (ko) | 2015-02-20 | 2019-05-23 | 닛폰세이테츠 가부시키가이샤 | 열연 강판 |
JP6168118B2 (ja) | 2015-10-19 | 2017-07-26 | Jfeスチール株式会社 | ホットプレス部材およびその製造方法 |
JP6222198B2 (ja) * | 2015-10-19 | 2017-11-01 | Jfeスチール株式会社 | ホットプレス部材およびその製造方法 |
JP6398967B2 (ja) | 2015-12-25 | 2018-10-03 | Jfeスチール株式会社 | 表面外観及びめっき密着性に優れた高強度溶融めっき熱延鋼板およびその製造方法 |
EP3438316B1 (en) * | 2016-03-29 | 2022-03-09 | JFE Steel Corporation | Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor |
WO2019003451A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
EP3778948B1 (en) * | 2018-03-29 | 2024-10-16 | Nippon Steel Corporation | Steel sheet for hot stamping use |
-
2020
- 2020-05-28 KR KR1020217038131A patent/KR102603495B1/ko active IP Right Grant
- 2020-05-28 CN CN202080039351.7A patent/CN113906151B/zh active Active
- 2020-05-28 JP JP2021522866A patent/JP7188584B2/ja active Active
- 2020-05-28 WO PCT/JP2020/021138 patent/WO2020241763A1/ja active Application Filing
- 2020-05-28 US US17/614,400 patent/US11904573B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012233249A (ja) * | 2010-11-25 | 2012-11-29 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP2012197505A (ja) * | 2011-03-10 | 2012-10-18 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP6477978B1 (ja) * | 2018-03-29 | 2019-03-06 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
Also Published As
Publication number | Publication date |
---|---|
US20220234330A1 (en) | 2022-07-28 |
JPWO2020241763A1 (ja) | 2020-12-03 |
CN113906151B (zh) | 2022-11-11 |
KR20210151975A (ko) | 2021-12-14 |
US11904573B2 (en) | 2024-02-20 |
CN113906151A (zh) | 2022-01-07 |
KR102603495B1 (ko) | 2023-11-20 |
JP7188584B2 (ja) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6966023B2 (ja) | ホットスタンプ成形体 | |
JP7436917B2 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 | |
WO2020241258A1 (ja) | ホットスタンプ成形体 | |
WO2022239731A1 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 | |
WO2020241764A1 (ja) | ホットスタンプ成形体 | |
JP7436916B2 (ja) | ホットスタンプ成形体 | |
JP7151889B2 (ja) | ホットスタンプ用鋼板 | |
WO2021141103A1 (ja) | ホットスタンプ成形体 | |
JP7188584B2 (ja) | ホットスタンプ成形体 | |
JP7188583B2 (ja) | ホットスタンプ用鋼板 | |
CN114787405B (zh) | 热压成形体 | |
CN113874536B (zh) | 热冲压成型体 | |
WO2023074189A1 (ja) | ホットスタンプ成形体 | |
WO2021141097A1 (ja) | ホットスタンプ成形体 | |
WO2022239758A1 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20815281 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021522866 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217038131 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20815281 Country of ref document: EP Kind code of ref document: A1 |