WO2020241661A1 - 通信機器、通信機器の制御方法、通信方法、サーバ、及び通信システム - Google Patents
通信機器、通信機器の制御方法、通信方法、サーバ、及び通信システム Download PDFInfo
- Publication number
- WO2020241661A1 WO2020241661A1 PCT/JP2020/020836 JP2020020836W WO2020241661A1 WO 2020241661 A1 WO2020241661 A1 WO 2020241661A1 JP 2020020836 W JP2020020836 W JP 2020020836W WO 2020241661 A1 WO2020241661 A1 WO 2020241661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication
- data
- server
- communication device
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/60—Software deployment
- G06F8/65—Updates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
- H04W8/245—Transfer of terminal data from a network towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a communication device, a control method of the communication device, a communication method, a server, and a communication system.
- Non-Patent Document 1 describes the technical specifications of LwM2M (Lightweight Machine to Machine), which is one of the communication protocols for device management for IoT (Internet of Things) devices.
- LwM2M Lightweight Machine to Machine
- IoT Internet of Things
- LwM2M is used, for example, for the purpose of performing firmware update (FOTA: Firmware updates Over-The-Air) for a LwM2M client by wireless communication under control from a LwM2M server.
- FOTA Firmware updates Over-The-Air
- the IoT device is generally activated only during data communication in order to reduce power consumption, and switches to a hibernation state (power off state or sleep state) when data communication is completed.
- a hibernation state power off state or sleep state
- LwM2M is capable of exchanging data with a small amount of data for IoT devices.
- LwM2M adopts a client-server model, and the server is a Pull type to acquire client data.
- the communication device switches the communication unit to the activated state when starting data communication between the communication unit that performs wireless communication and the server via the communication unit, and when the data communication is completed.
- the control unit including a control unit that switches the communication unit to the hibernation state maintains the communication unit in the activated state even when the data communication is completed when there is a firmware update.
- the control method according to the second aspect is when the communication unit that performs wireless communication and the communication unit are switched to the activated state when starting data communication with the server via the communication unit, and the data communication is completed.
- This is a method of controlling a communication device including a control unit that switches the communication unit to a hibernation state.
- the control method is that the communication unit confirms the presence or absence of a firmware update during the data communication, and if there is a firmware update, the control unit activates the communication unit even if the data communication is completed. Includes maintaining in.
- the communication system has a server and a communication device, and the communication device performs wireless communication and switches to an activated state when starting data communication with the server, and the data communication is completed.
- the communication device In the communication system that switches to the hibernation state when the data communication is performed, the communication device maintains the communication unit in the activated state even if the data communication is completed when there is a firmware update during the data communication.
- the communication method is a method using a server, a communication device that communicates with the server, and a rear device that is electrically connected to the communication device.
- the communication device holds the first data to be notified to the server and the second data used to request the server to read the first data, and after that.
- the position device notifies the server of the first data from the communication device
- the communication device is controlled so as to change the second data, and the communication device changes the second data.
- Notifying the server of the second data, and when the server receives the second data from the communication device the received second data is regarded as a read request of the first data, and the first data is received. Includes sending a read command to the communication device.
- the communication device is used for a communication system including a server, a communication device that communicates with the server, and a secondary device that is electrically connected to the communication device.
- the communication device changes the storage unit that holds the first data to be notified to the server and the second data used for requesting the server to read the first data, and the second data.
- the control unit that notifies the server of the second data when the second data changes, and the server that regards the second data as a read request of the first data.
- a communication unit that receives a read command for reading the first data is provided.
- the server according to the sixth aspect is used for a communication system including a server, a communication device that communicates with the server, and a secondary device that is electrically connected to the communication device.
- the server refers to the communication device that holds the first data to be notified to the server and the second data used to request the server to read the first data.
- a communication unit for transmitting a notification instruction command instructing the server to notify the second data when a change occurs is provided.
- the communication unit receives the second data from the communication device, the communication unit transmits the read command for reading the first data to the communication device by regarding the received second data as a read request for the first data. To do.
- the communication system is a communication system including a server and a communication device that communicates with the server.
- the communication device changes the storage unit that holds the first data to be notified to the server and the second data used for requesting the server to read the first data, and the second data.
- the control unit that notifies the server of the second data when the second data changes, and the first data from the server. It is provided with a first communication unit that receives a read command to read.
- the server includes a second communication unit that transmits a notification instruction command instructing the communication device to notify the server of the second data when the second data changes.
- the second communication unit regards the received second data as a read request for the first data, and issues a read command for reading the first data to the communication device. Send to.
- LwM2M assumes that the LwM2M client is always running, but even if the LwM2M server sends a FOTA start request to the IoT device, the FOTA start request is sent to the IoT device while the IoT device is in hibernation. Cannot be received.
- the amount of data sent and received by the IoT device is as small as a few bytes, and the time in the activated state can be several seconds, so it is difficult for the LwM2M server to cause the IoT device to start FOTA within this time.
- the IoT device (LwM2M client) is always in the activated state, the power consumption of the IoT device increases and the remaining battery level runs out early, so that it is not possible to meet the demand for long-time driving of the IoT device. ..
- FIG. 1 is a diagram showing a configuration of a communication system 1 according to the first embodiment.
- the communication system 1 has a communication device 100, a communication network 200, a server 300, an LwM2M server 400, and a FOTA server 500.
- the communication device 100 is an IoT device having a wireless communication function.
- the communication device 100 is driven by a battery provided in the own device.
- the communication device 100 is a device that orders a specific product from the server 300 in response to a button press will be mainly described.
- the communication device 100 may be a device that has various sensors and uploads sensor data to the server 300 at a predetermined event or a predetermined cycle.
- the amount of data sent and received by the communication device 100 to and from the server 300 may be about several bytes.
- the communication device 100 performs LPWA (Low Power Wide Area) wireless communication with the communication network 200.
- the LPWA method is a method that realizes long-distance wireless communication while suppressing power consumption.
- the LPWA method is, for example, cellular LPWA, SIGFOX, or LoRaWAN.
- Cellular LPWA may be 3GPP (3 rd Generation Partnership Project) eMTC specified in Standard (enhanced Machine Type Communications) or NB-IoT (Narrow Band-Internet of Things).
- the communication device 100 is basically in a hibernate state (power off state or sleep state) in which wireless communication is not performed, and switches from the hibernate state to the activated state only when performing wireless communication with the base station 210 to perform wireless communication. Do. In the hibernation state, the power supply to the communication unit 140 (see FIG. 2) that performs wireless communication can be stopped, so that the battery drive time of the communication device 100 can be extended.
- a hibernate state power off state or sleep state
- the communication network 200 includes a network provided by a telecommunications carrier.
- the communication network 200 may include the Internet.
- the communication network 200 has a base station 210 that performs wireless communication with the communication device 100. In FIG. 1, only one base station 210 included in the communication network 200 is illustrated, but the communication network 200 includes a plurality of base stations 210.
- the server 300 is a device that provides a service to the communication device 100 via the communication network 200.
- the server 300 receives the order data for ordering a specific product from the communication device 100 via the communication network 200, and performs a process of delivering the ordered product to the user of the communication device 100.
- the server 300 may receive the sensor data from the communication device 100 via the communication network 200 and manage the received sensor data.
- the LwM2M server 400 is a device that manages the communication device 100, which is an LwM2M client, based on the LwM2M standard via the communication network 200.
- the LwM2M server 400 manages firmware update (FOTA) for the communication device 100.
- FOTA firmware update
- the FOTA server 500 is a device that distributes firmware to the communication device 100 via the communication network 200.
- the FOTA server 500 is an example of a firmware distribution server.
- FIG. 2 is a diagram showing the configuration of the communication device 100.
- the communication device 100 includes an operation button 110, a control unit 120, a power management unit 130, a battery 131, a communication unit 140, and an antenna 150.
- the operation button 110 is an example of an operation unit that accepts user operations.
- the operation button 110 receives the pressing operation, the operation button 110 outputs a signal indicating the pressing operation to the control unit 120.
- the control unit 120 controls the communication unit 140.
- the control unit 120 is composed of a microcomputer (so-called microcomputer) having a processor and a memory electrically connected to the processor.
- the control unit 120 is activated in response to a signal output from the operation button 110 to activate the communication unit 140, and the power management unit 130 supplies electric power to the communication unit 140.
- the control unit 120 switches the communication unit 140 to the activated state when the communication unit 140 starts data communication with the server 300, and switches the communication unit 140 to the hibernate state when the data communication is completed. ..
- the hibernation state is a state in which power supply to the communication unit 140 is stopped.
- the hibernation state corresponds to the power-off state of the communication unit 140.
- the hibernation state may be a sleep state in PSM (Power Saving Mode).
- the power management unit 130 manages the supply of electric power from the battery 131 to the control unit 120 and the communication unit 140.
- the power management unit 130 may always supply power to the control unit 120.
- the power management unit 130 manages the start and stop of power supply to the communication unit 140 under the control of the control unit 120.
- the battery 131 is a primary battery or a secondary battery that stores electric power.
- the battery 131 outputs electric power to the power management unit 130.
- the communication unit 140 is activated by the control of the control unit 120, and performs LPWA wireless communication via the antenna 150.
- the antenna 150 is used for transmitting and receiving radio signals.
- the communication unit 140 includes a wireless transmission / reception unit 141, an application processing unit 142, an LwM2M function unit 143, a FOTA processing unit 144, and a firmware storage unit 145.
- the wireless transmission / reception unit 141 is composed of a wireless communication circuit, a baseband processor, and the like.
- the application processing unit 142, the LwM2M function unit 143, and the FOTA processing unit 144 are composed of at least one processor.
- the firmware storage unit 145 is composed of a non-volatile memory.
- the radio transmission / reception unit 141 performs amplification processing, filtering processing, etc. on the radio signal received from the base station 210 by the antenna 150, converts the radio signal into reception data which is a baseband signal, and demodulates and decodes the reception data. To do. Further, the radio transmission / reception unit 141 encodes and modulates the transmission data, converts it into a radio signal, performs amplification processing or the like on the radio signal, and transmits the radio signal from the antenna 150.
- the application processing unit 142 transmits / receives data to / from the server 300 by communicating with the server 300 via the wireless transmission / reception unit 141. For example, when the control unit 120 notifies the information indicating that the operation button 110 has been pressed, the application processing unit 142 generates order data for ordering a specific product, and the server 300 via the wireless transmission / reception unit 141. Send the order data to.
- the LwM2M function unit 143 communicates with the LwM2M server 400 via the wireless transmission / reception unit 141 based on the LwM2M standard. For example, the LwM2M function unit 143 communicates with the LwM2M server 400 to update the firmware.
- the FOTA processing unit 144 downloads the firmware from the FOTA server 500 by communicating with the FOTA server 500 via the wireless transmission / reception unit 141.
- the FOTA processing unit 144 updates the firmware stored in the firmware storage unit 145 with the downloaded firmware.
- the firmware storage unit 145 stores the firmware that is the control program of the communication unit 140.
- the firmware is a program that controls at least one of the wireless transmission / reception unit 141, the application processing unit 142, the LwM2M function unit 143, and the FOTA processing unit 144.
- the firmware may include a program that controls the control unit 120.
- FIG. 3 is a diagram showing the operation of general communication equipment 100. This operation does not consider FOTA.
- step S1 the control unit 120 detects a pressing operation on the operation button 110.
- step S2 the control unit 120 activates the communication unit 140 and causes the power management unit 130 to start supplying power to the communication unit 140 in response to the detection of the pressing operation. As a result, the communication unit 140 switches from the hibernation state (power off state) to the start state.
- step S3 the control unit 120 notifies the application processing unit 142 of the button pressing information indicating the pressing operation.
- step S4 when the button pressing information is notified from the control unit 120, the application processing unit 142 generates data for ordering a specific product and transmits this data to the server 300.
- step S5 the application processing unit 142 receives the delivery confirmation information (ACK) indicating that the server 300 has correctly received the data from the server 300.
- ACK delivery confirmation information
- step S6 the application processing unit 142 notifies the control unit 120 that the data communication with the server 300 is completed.
- step S7 the control unit 120 notifies the application processing unit 142 of the power off instruction, and stops the power supply to the communication unit 140 to the power management unit 130.
- step S8 the communication unit 140 is switched to the hibernation state (power off state).
- the communication device 100 (communication unit 140) is in the activated state during the time from step S2 to step S8.
- LwM2M is based on the premise that the LwM2M client is always running. Even if the FOTA start request is transmitted from the LwM2M server 400 to the communication device 100, the communication device 100 cannot receive the FOTA start request while the communication device 100 is in the hibernation state. Since the amount of data transmitted and received by the communication device 100 is as small as several bytes and the activated state can be several seconds, it is difficult for the LwM2M server 400 to cause the communication device 100 to start FOTA within this time.
- FIGS. 4 and 5 are diagrams showing the operation of the communication device 100 improved so as to efficiently perform FOTA.
- step S100 the control unit 120 detects a pressing operation on the operation button 110.
- step S101 the control unit 120 activates the communication unit 140 and causes the power management unit 130 to start supplying power to the communication unit 140 in response to the detection of the pressing operation.
- the communication unit 140 switches from the hibernation state (power off state) to the start state.
- the application processing unit 142 is activated, but the LwM2M function unit 143 is not activated.
- step S102 the control unit 120 notifies the application processing unit 142 of the button pressing information indicating the pressing operation.
- step S103 when the button pressing information is notified from the control unit 120, the application processing unit 142 generates data for ordering a specific product and transmits this data to the server 300.
- the application processing unit 142 transmits version information (version number) indicating the firmware version of the communication unit 140 to the server 300 during data communication. It is assumed that the version information is stored in the firmware storage unit 145 together with the firmware.
- step S104 the application processing unit 142 receives the delivery confirmation information (ACK) indicating that the server 300 has correctly received the data from the server 300. Further, the server 300 confirms the version information from the communication device 100, and transmits the information on the presence or absence of FOTA to the communication device 100 together with the delivery confirmation information (ACK) of the data communication. For example, when the version indicated by the version information from the communication device 100 is older than the latest version, the server 300 transmits the information indicating the presence of FOTA to the communication device 100 together with the delivery confirmation information (ACK). The application processing unit 142 confirms whether or not the firmware has been updated based on the information on the presence or absence of FOTA from the server 300. In the following, the description will proceed on the assumption that the server 300 has notified that "FOTA is present".
- step S105 the application processing unit 142 sets the LwM2M valid flag (that is, sets "1").
- the LwM2M valid flag is a flag indicating that the LwM2M functional unit 143 needs to be activated after the communication unit 140 is reset.
- step S106 the application processing unit 142 notifies the control unit 120 that there is a firmware update (FOTA).
- FOTA firmware update
- step S107 when the communication unit 140 notifies that there is a firmware update, the control unit 120 maintains the communication unit 140 in the activated state (power on state) even when the data communication with the server 300 is completed. That is, the control unit 120 prevents the power off instruction.
- step S108 the application processing unit 142 resets (initializes) its own state.
- the communication unit 140 is reset (step S109).
- the LwM2M function unit 143 is activated according to the setting of the LwM2M valid flag.
- step S110 the LwM2M functional unit 143 communicates with the LwM2M server 400 and authenticates with the LwM2M server 400.
- the LwM2M server 400 determines that FOTA is necessary, and notifies the LwM2M function unit 143 of the "Package URI" used for accessing the FOTA server 500.
- the LwM2M function unit 143 notifies the FOTA processing unit 144 of this "Package URI" (step S112).
- step S113 the FOTA processing unit 144 performs a connection process to the FOTA server 500 based on the "Package URI". Further, the FOTA processing unit 144 notifies the LwM2M function unit 143 of the start of firmware download (step S114).
- step S115 the FOTA processing unit 144 downloads the firmware difference package from the FOTA server 500, for example, using HTTPS communication.
- the difference package is the firmware corresponding to the difference between the old firmware and the latest firmware.
- step S116 the FOTA processing unit 144 notifies the LwM2M function unit 143 that the firmware download is complete.
- step S117 the FOTA processing unit 144 updates the firmware stored in the firmware storage unit 145 with the downloaded firmware.
- the FOTA processing unit 144 notifies the LwM2M function unit 143 and the application processing unit 142 of the completion of the firmware update.
- step S120 the application processing unit 142 turns off the LwM2M valid flag (that is, sets zero) in response to the notification of the completion of the firmware update.
- step S121 the application processing unit 142 notifies the control unit 120 that the firmware update (FOTA) has been completed.
- FOTA firmware update
- step S122 the control unit 120 notifies the application processing unit 142 of the power-off instruction in response to the notification that the firmware update is completed, and stops the power supply to the communication unit 140 to the power management unit 130.
- step S123 the communication unit 140 is switched to the hibernation state (power off state).
- the communication unit 140 confirms the presence or absence of the firmware update during the data communication, and notifies the control unit 120 of the firmware update if there is a firmware update.
- the control unit 120 maintains the communication unit 140 in the activated state even when the data communication is completed.
- the communication unit 140 is configured to start only during data communication in order to reduce power consumption, if it is confirmed that there is a firmware update at startup, the boot state can be maintained for firmware update. , Firmware update can be performed efficiently.
- the communication unit 140 transmits version information indicating the firmware version of the communication unit 140 to the server 300 during data communication.
- the communication unit 140 confirms the presence / absence of the firmware update by receiving the information indicating the presence / absence of the firmware update from the server 300.
- the presence or absence of a firmware update can be confirmed in the operation of the general communication device 100, so that the firmware can be updated efficiently.
- the communication unit 140 when the communication unit 140 notifies the control unit 120 that there is a firmware update, it activates the LwM2M function (LwM2M function unit 143) for updating the firmware, and uses the LwM2M function to activate the LwM2M server 400. Communicate with.
- LwM2M function unit 143 since it is only necessary to start the LwM2M function unit 143 when updating the firmware, the power consumption can be reduced as compared with the case where the LwM2M function unit 143 is always started.
- the communication unit 140 downloads the firmware from the FOTA server 500 by communicating with the FOTA server 500 based on the communication with the LwM2M server 400. This allows the firmware to be properly downloaded in FOTA.
- the communication unit 140 when the firmware update is completed, the communication unit 140 notifies the control unit 120 that the firmware update is completed.
- the control unit 120 switches the communication unit 140 from the activated state to the hibernate state.
- the communication unit 140 can be switched to the hibernation state after waiting for the completion of the firmware update, so that FOTA can be efficiently performed while suppressing an increase in power consumption.
- LwM2M is a Pull type, and the server basically acquires data from the communication device, and it is not assumed that the communication device voluntarily sends data to the server, so that the efficiency from the communication device to the server is achieved. Data transmission is difficult.
- the second embodiment makes it possible to efficiently transmit data to the server under the premise that the server acquires data in the Pull type.
- FIG. 6 is a diagram showing a configuration of the communication system 2 according to the second embodiment.
- the communication system 2 includes a communication device 100, a secondary device 600, a communication network 200, and an LwM2M server 400.
- the LwM2M server 400 is an example of a server that acquires data from the communication device 100.
- the communication device 100 corresponds to the LwM2M client.
- the communication device 100 is an IoT device having a wireless communication function.
- the communication device 100 has various sensors and uploads the data obtained by the sensors to the LwM2M server 400.
- the communication device 100 may perform LPWA (Low Power Wide Area) wireless communication with the communication network 200.
- the LPWA method is a method that realizes long-distance wireless communication while suppressing power consumption.
- the LPWA method is, for example, cellular LPWA, SIGFOX, or LoRaWAN.
- Cellular LPWA may be 3GPP (3 rd Generation Partnership Project) eMTC specified in Standard (enhanced Machine Type Communications) or NB-IoT (Narrow Band-Internet of Things).
- the rear device 600 is a device that is electrically connected to the communication device 100.
- the rear device 600 is directly connected to the communication device 100 or indirectly connected to the communication device 100 via a cable.
- the secondary device 600 performs wired communication with the communication device 100, for example, by a UART (Universal Asynchronous Receiver / Transmitter) system or a USB (Universal Serial Bus) system.
- UART Universal Asynchronous Receiver / Transmitter
- USB Universal Serial Bus
- the rear device 600 is a device such as a PC (Personal Computer), a sensor device, a meter device, or a vending machine.
- the rear device 600 executes an application for IoT.
- the rear-end device 600 connected to the communication device 100 can communicate with the communication network 200 and the LwM2M server 400 via the communication device 100 even if it does not have a wireless communication function.
- the communication network 200 includes a network provided by a telecommunications carrier.
- the communication network 200 may include the Internet.
- the communication network 200 has a base station 210 that performs wireless communication with the communication device 100. In FIG. 1, only one base station 210 included in the communication network 200 is illustrated, but the communication network 200 includes a plurality of base stations 210.
- the LwM2M server 400 manages the communication device 100, which is an LwM2M client, based on the LwM2M standard via the communication network 200.
- the LwM2M adopts a client-server model, and the LwM2M server 400 acquires data in a pull type from the communication device 100 which is a LwM2M client.
- the following four commands are mainly transmitted from the LwM2M server 400 to the communication device 100.
- Read A read command for acquiring data from the communication device 100.
- Execute An execution command that causes the communication device 100 to execute processing such as restarting.
- the life period (Lifetime) is held by both the LwM2M server 400 and the communication device 100 in consideration of the state in which the communication device 100 cannot communicate.
- the state in which the communication device 100 cannot communicate means, for example, a state in which the communication device 100 is out of service area, a state in which the communication device 100 is in a sleep mode in order to reduce power consumption, and the like.
- the communication device 100 extends the survival period by updating the registration of the LwM2M server 400 before the survival period ends.
- the following three messages are transmitted from the communication device 100 to the LwM2M server 400.
- Notify Notification message notifying the data corresponding to the Observe command.
- the communication device 100 adds some parameters to the Register message and the Update message and transmits the message to the LwM2M server 400.
- the parameters are, for example, the Lifetime described above, the number of supported objects, and the like.
- the communication device 100 manages data in the form of a resource model.
- the resource model has a tree structure of objects, object instances, and resources. Each element is assigned a number.
- the resource representing the manufacturer of the device Manufacturer
- the communication device 100 receives the Read command for specifying / 3/0/0 from the LwM2M server 400, the communication device 100 returns the manufacturer data of the communication device 100 to the LwM2M server 400.
- FIG. 7 is a diagram showing a configuration of a communication device 100 according to an embodiment.
- the communication device 100 includes an antenna 150, a communication unit 140, a control unit 120, a storage unit 190, a power management unit 130, and a connection unit 160.
- the UIM / SIM 170 and the sensor 180 can be connected to the communication device 100 via an interface (not shown).
- the antenna 150 is used for transmitting and receiving wireless signals.
- the communication unit 140 performs wireless communication with the base station 210 under the control of the control unit 120, and also communicates with the LwM2M server 400 via the base station 210.
- the communication unit 140 performs amplification processing, filter processing, and the like on the radio signal received from the base station 210 by the antenna 150, converts the radio signal into a baseband signal, and outputs the radio signal to the control unit 120. Further, the communication unit 140 converts the baseband signal input from the control unit 120 into a wireless signal, performs amplification processing and the like, and transmits the baseband signal from the antenna 150.
- the communication unit 140 communicates with the LwM2M server 400 based on the LwM2M standard. For example, the communication unit 140 receives any one of the Read command, Write command, Execute command, and Observe command from the LwM2M server 400. Further, the communication unit 140 transmits any one of the Register message, the Update message, and the Notice message to the LwM2M server 400.
- the control unit 120 performs various processes and controls on the communication device 100.
- the control unit 120 controls the communication unit 140 so as to perform wireless communication with the base station 210 by the LPWA method.
- the control unit 120 includes at least one processor.
- the processor may include a baseband processor and a CPU (Central Processing Unit).
- the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
- the CPU executes the program stored in the storage unit 190 to perform various processes.
- the control unit 120 performs processing based on the LwM2M standard. For example, when the communication unit 140 receives any of the Read command, Write command, Execute command, and Observe command, the control unit 120 performs processing according to the received command. Further, the control unit 120 generates one of a Register message, an Update message, and a Notify message, and outputs the generated message to the communication unit 140. In addition, the control unit 120 manages the survival period (Lifetime), and extends the survival period by updating the registration with the LwM2M server 400 before the survival period ends.
- the survival period Lifetime
- the storage unit 190 includes a volatile memory and a non-volatile memory, and stores a program executed by the control unit 120 and information and data used for processing by the control unit 120.
- the power management unit 130 includes a battery and its peripheral circuits.
- the power management unit 130 supplies the driving power of the communication device 100.
- the drive power may be supplied from the rear device 600 by USB power supply.
- the connection unit 160 is an interface for electrically connecting to the rear device 600.
- the control unit 120 performs a data transfer process for the rear device 600 to send and receive data to and from the communication network 200.
- the UIM / SIM 170 stores subscriber information and the like necessary for communicating with the communication network 200.
- the sensor 180 includes a plurality of types of sensors, measures temperature, humidity, atmospheric pressure, illuminance, acceleration, and / or geomagnetism, and outputs data consisting of measured values.
- the data output by the sensor 180 is stored in the storage unit 190 via the control unit 120.
- the control unit 120 manages the data stored in the storage unit 190.
- FIG. 8 is a diagram showing the configuration of the LwM2M server 400.
- the LwM2M server 400 has a communication unit 410, a control unit 420, and a storage unit 430.
- the communication unit 410 is connected to the communication network 200 by wire or wirelessly.
- the communication unit 410 communicates with the LwM2M server 400 via the communication network 200 under the control of the control unit 420.
- the communication unit 410 communicates with the communication device 100 based on the LwM2M standard. For example, the communication unit 410 transmits any one of the Read command, the Write command, the Execute command, and the Observe command to the communication device 100. Further, the communication unit 410 receives any one of the Register message, the Update message, and the Notice message from the communication device 100.
- the control unit 420 performs various processes and controls on the LwM2M server 400.
- the control unit 420 includes at least one processor.
- the processor executes the program stored in the storage unit 430 to perform various processes.
- the control unit 420 performs processing based on the LwM2M standard. For example, when the communication unit 410 receives any one of the Register message, the Update message, and the Notice message, the control unit 420 performs processing according to the received message. Further, the control unit 420 generates any one of the Read command, the Write command, the Execute command, and the Observe command, and outputs the generated message to the communication unit 410.
- the storage unit 430 includes a volatile memory and a non-volatile memory, and stores a program executed by the control unit 420 and information and data used for processing by the control unit 420.
- the communication system 2 is a Pull type, and the LwM2M server 400 basically acquires data from the communication device 100, and it is difficult to transmit desired data from the communication device 100 to the LwM2M server 400 at an arbitrary timing.
- the rear device 600 communicates the desired data even when the communication device 100 wants the LwM2M server 400 to notify the desired data unless the LwM2M server 400 issues a Read command for the desired data.
- the device 100 cannot notify the LwM2M server 400.
- the Notify message is used so that the LwM2M server 400 can be prompted to issue the Read command by the Notify message.
- the Notify message is used so that the LwM2M server 400 can be prompted to issue the Read command by the Notify message.
- FIG. 9 is a sequence diagram showing a communication method according to the second embodiment.
- the communication method according to the second embodiment is a method using a LwM2M server 400, a communication device 100 that communicates with the LwM2M server 400, and a rear device 600 that is electrically connected to the communication device 100.
- the storage unit 190 of the communication device 100 includes the first data to be notified to the LwM2M server 400 and the second data used to request the LwM2M server 400 to read the first data. To hold.
- FIG. 9 shows an example in which the first data is the data of the resource A and the second data is the data of the resource Z. It is assumed that the secondary device 600 and the LwM2M server 400 grasp and hold in advance the correspondence between the first data (resource A) and the second data (resource Z).
- Step S21 In the LwM2M server 400, the control unit 420 generates an Observ command instructing the LwM2M server 400 to notify the second data (resource Z) when the second data (resource Z) changes.
- This Observe command includes an identifier of the second data (resource Z).
- the communication unit 410 transmits the Observe command generated by the control unit 420 to the communication device 100.
- the communication unit 140 receives the Observe command from the LwM2M server 400.
- the control unit 120 starts monitoring the second data (resource Z) based on the Observe command received by the communication unit 140.
- Step S22 When the communication device 100 notifies the LwM2M server 400 of the first data (resource A), the rear device 600 controls the communication device 100 so as to change the second data (resource Z). For example, the rear device 600 generates an AT Command that changes the second data (resource Z), and outputs the generated AT Command to the communication device 100.
- Step S23 In the communication device 100, when the control unit 120 receives the AT Command from the rear device 600 via the connection unit 160, the control unit 120 changes the first data (resource A) based on the AT Command.
- Step S24 In the communication device 100, the control unit 120 issues an Observ command for the first data (resource A), so that the first data (resource A) is transferred to the LwM2M server 400 due to a change in the first data (resource A). It is determined that it is necessary to notify, and a Notify message including the changed first data (resource A) is generated. This Notify message includes the second data (resource Z) and its identifier.
- the communication unit 140 transmits the Notice message generated by the control unit 120 to the LwM2M server 400.
- Step S25 In the LwM2M server 400, the communication unit 410 receives a Notify message from the communication device 100.
- the control unit 420 regards the Notify message as a read request for the first data (resource A), and also regards the first data (resource A). Generate a Read command to read resource A). This Read command includes the identifier of the first data (resource A). Then, the communication unit 410 transmits the Read command generated by the control unit 420 to the communication device 100.
- the communication unit 140 receives a Read command from the LwM2M server 400.
- Step S26 When the communication unit 140 receives the Read command for the first data (resource A), the control unit 120 acquires the first data (resource A) from the storage unit 190. The communication unit 140 transmits this first data (resource A) to the LwM2M server 400.
- the desired data is based on the LwM2M standard in which the LwM2M server 400 is a Pull type and the LwM2M server 400 reads data from the communication device 100 as a starting point. Can be transmitted from the communication device 100 to the LwM2M server 400 at an arbitrary timing. Therefore, it is possible to efficiently transmit data to the LwM2M server 400.
- the communication device 100 is a device for ordering a specific product from the server 300 in response to a button press
- the communication device 100 is a sensor device having various sensors. It may be.
- the communication device 100 may download data from the server 300.
- the communication device 100 may communicate with the LwM2M server 400 by wireless communication.
- the communication system 2 based on the LwM2M standard has been described. However, it is not limited to the LwM2M standard as long as it is a Pull type standard or protocol based on the server acquiring data from a communication device.
- a program that causes a computer to execute each process performed by the communication device 100 or the LwM2M server 400 may be provided.
- the program may be recorded on a computer-readable medium.
- Computer-readable media can be used to install programs on a computer.
- the computer-readable medium on which the program is recorded may be a non-transient recording medium.
- the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
- the communication device 100 may be configured as a semiconductor integrated circuit (chipset, SoC) by integrating functional units (circuits) that execute each process performed by the communication device 100.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Computer Security & Cryptography (AREA)
- Telephonic Communication Services (AREA)
- Information Transfer Between Computers (AREA)
Abstract
通信機器100は、無線通信を行う通信部140と、通信部140によりサーバとのデータ通信を開始する際に通信部140を起動状態に切り替え、このデータ通信が完了した際に通信部140を休止状態に切り替える制御部120とを備える。通信部140は、通信部140のファームウェア更新の有無をデータ通信中に確認し、ファームウェア更新がある場合はその旨を制御部120に通知する。制御部120は、ファームウェア更新がある旨を通信部140から通知されると、データ通信が完了しても通信部140を起動状態に維持する。
Description
本発明は、通信機器、通信機器の制御方法、通信方法、サーバ、及び通信システムに関する。
非特許文献1には、IoT(Internet of Things)機器向けの機器管理用の通信プロトコルの1つであるLwM2M(Lightweight Machine to Machine)の技術仕様が記載されている。
LwM2Mは、例えば、LwM2Mサーバからの制御により、LwM2Mクライアントに対して無線通信によるファームウェア更新(FOTA:Firmware updates Over-The-Air)を行う用途で用いられる。
また、IoT機器は、消費電力を削減するためにデータ通信時にのみ起動し、データ通信が完了すると休止状態(電源オフ状態又はスリープ状態)に切り替わることが一般的である。
さらに、LwM2Mは、IoT機器用に少ないデータ量でのデータのやり取りをすることが可能になっている。また、LwM2Mは、クライアント・サーバモデルを採用しており、Pull型でサーバがクライアントのデータを取得するようになっている。
「Lightweight Machine to Machine Technical Specification」、Open Mobile Alliance、インターネット<URL:http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf>
第1の態様に係る通信機器は、無線通信を行う通信部と、前記通信部を介してサーバとのデータ通信を開始する際に前記通信部を起動状態に切り替え、前記データ通信が完了した際に前記通信部を休止状態に切り替える制御部とを備える前記制御部は、ファームウェア更新がある場合、前記データ通信が完了しても前記通信部を前記起動状態に維持する。
第2の態様に係る制御方法は、無線通信を行う通信部と、前記通信部を介してサーバとのデータ通信を開始する際に前記通信部を起動状態に切り替え、前記データ通信が完了した際に前記通信部を休止状態に切り替える制御部とを備える通信機器を制御する方法である。前記制御方法は、前記通信部がファームウェア更新の有無を前記データ通信中に確認することと、前記ファームウェア更新がある場合、前記データ通信が完了しても前記制御部が前記通信部を前記起動状態に維持することとを含む。
第3の態様に係る通信システムは、サーバと通信機器とを有し、前記通信機器は、無線通信を行い、前記サーバとのデータ通信を開始する際に起動状態に切り替え、前記データ通信が完了した際に休止状態に切り替える通信システムにおいて、前記通信機器は、前記データ通信中において、ファームウェア更新がある場合、前記データ通信が完了しても前記通信部を前記起動状態に維持する。
第4の態様に係る通信方法は、サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器とを用いる方法である。前記通信方法は、前記通信機器が、前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持することと、前記後位機器が、前記第1データを前記通信機器から前記サーバに通知させる場合、前記第2データを変化させるよう前記通信機器を制御することと、前記通信機器が、前記第2データの変化時に前記第2データを前記サーバに通知することと、前記サーバが、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすとともに、前記第1データを読み出す読み出しコマンドを前記通信機器に送信することとを含む。
第5の態様に係る通信機器は、サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器と、を含む通信システムに用いる。前記通信機器は、前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する記憶部と、前記第2データを変化させる制御を前記後位機器から受け付けると、前記第2データの変化時に前記第2データを前記サーバに通知する制御部と、前記第2データを前記第1データの読み出し要求とみなした前記サーバから、前記第1データを読み出す読み出しコマンドを受信する通信部とを備える。
第6の態様に係るサーバは、サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器と、を含む通信システムに用いる。前記サーバは、前記サーバへの通知対象である第1データと前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する前記通信機器に対して、前記第2データの変化時に前記第2データを前記サーバに通知するよう指示する通知指示コマンドを送信する通信部を備える。前記通信部は、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすことにより、前記第1データを読み出す読み出しコマンドを前記通信機器に送信する。
第7の態様に係る通信システムは、サーバと、前記サーバとの通信を行う通信機器と、を含む通信システムである。前記通信機器は、前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する記憶部と、前記第2データを変化させる制御を、前記通信機器と電気的に接続される後位機器から受け付けると、前記第2データの変化時に前記第2データを前記サーバに通知する制御部と、前記サーバから、前記第1データを読み出す読み出しコマンドを受信する第1通信部とを備える。前記サーバは、前記通信機器に対して、前記第2データの変化時に前記第2データを前記サーバに通知するよう指示する通知指示コマンドを送信する第2通信部を備える。前記第2通信部は、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすことにより、前記第1データを読み出す読み出しコマンドを前記通信機器に送信する。
[第1実施形態]
LwM2MはLwM2Mクライアントが常時起動していることを前提としているが、LwM2MサーバからFOTAの開始要求をIoT機器に送信しても、IoT機器が休止状態にある間においてはFOTAの開始要求をIoT機器が受信できない。
LwM2MはLwM2Mクライアントが常時起動していることを前提としているが、LwM2MサーバからFOTAの開始要求をIoT機器に送信しても、IoT機器が休止状態にある間においてはFOTAの開始要求をIoT機器が受信できない。
特に、IoT機器が送受信するデータ量は数バイト程度と少なく、起動状態にある時間が数秒でありうるため、この時間内でLwM2MサーバがIoT機器にFOTAを開始させることが難しい。
一方で、IoT機器(LwM2Mクライアント)を常に起動状態にしておくと、IoT機器の消費電力が増大してバッテリ残量が早期に尽きてしまい、IoT機器に対する長時間駆動の要求に応えることができない。
そこで、第1実施形態では、消費電力の増大を抑制しつつ、無線通信によるファームウェア更新を効率的に行うことを可能にする。
図面を参照して実施形態について説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(通信システムの構成)
まず、第1実施形態に係る通信システムの構成について説明する。図1は、第1実施形態に係る通信システム1の構成を示す図である。
まず、第1実施形態に係る通信システムの構成について説明する。図1は、第1実施形態に係る通信システム1の構成を示す図である。
図1に示すように、通信システム1は、通信機器100と、通信ネットワーク200と、サーバ300と、LwM2Mサーバ400と、FOTAサーバ500とを有する。
通信機器100は、無線通信機能を有するIoT機器である。通信機器100は、自機器に設けられるバッテリにより駆動される。以下において、通信機器100が、ボタン押下に応じてサーバ300に特定の商品を発注する機器である一例について主として説明する。但し、通信機器100は、各種のセンサを有し、所定のイベント又は所定の周期でセンサデータをサーバ300にアップロードする機器であってもよい。通信機器100がサーバ300と送受信するデータ量は数バイト程度であってもよい。
例えば、通信機器100は、LPWA(Low Power Wide Area)方式の無線通信を通信ネットワーク200と行う。LPWA方式は、消費電力を抑えつつ遠距離の無線通信を実現する方式である。LPWA方式は、例えば、セルラLPWA、SIGFOX、又はLoRaWANである。セルラLPWAは、3GPP(3rd Generation Partnership Project)規格において規定されたeMTC(enhanced Machine Type Communications)又はNB-IoT(Narrow Band-Internet of Things)であってもよい。
通信機器100は、基本的には無線通信を行わない休止状態(電源オフ状態又はスリープ状態)にあり、基地局210との無線通信を行うときにだけ休止状態から起動状態に切り替わり、無線通信を行う。休止状態では、無線通信を行う通信部140(図2参照)への給電を停止できるため、通信機器100のバッテリ駆動時間を延ばすことができる。
通信ネットワーク200は、通信事業者により提供されるネットワークを含む。通信ネットワーク200は、インターネットを含んでもよい。通信ネットワーク200は、通信機器100との無線通信を行う基地局210を有する。図1において、通信ネットワーク200に含まれる基地局210を1つのみ例示しているが、通信ネットワーク200には複数の基地局210が含まれている。
サーバ300は、通信ネットワーク200を介して通信機器100にサービスを提供する装置である。サーバ300は、通信ネットワーク200を介して、特定の商品を発注する発注データを通信機器100から受信し、発注された商品を通信機器100のユーザに配送する処理を行う。或いは、サーバ300は、通信ネットワーク200を介してセンサデータを通信機器100から受信し、受信したセンサデータを管理してもよい。
LwM2Mサーバ400は、通信ネットワーク200を介して、LwM2M規格に基づいてLwM2Mクライアントである通信機器100を管理する装置である。LwM2Mサーバ400は、通信機器100に対するファームウェア更新(FOTA)を管理する。
FOTAサーバ500は、通信ネットワーク200を介して通信機器100にファームウェアを配信する装置である。FOTAサーバ500は、ファームウェア配信サーバの一例である。
(通信機器の構成)
次に、第1実施形態に係る通信機器100の構成について説明する。図2は、通信機器100の構成を示す図である。
次に、第1実施形態に係る通信機器100の構成について説明する。図2は、通信機器100の構成を示す図である。
図2に示すように、通信機器100は、操作ボタン110と、制御部120と、電源管理部130と、バッテリ131と、通信部140と、アンテナ150とを有する。
操作ボタン110は、ユーザ操作を受け付ける操作部の一例である。操作ボタン110は、押下操作を受け付けると、押下操作を示す信号を制御部120に出力する。
制御部120は、通信部140を制御する。制御部120は、プロセッサとこのプロセッサと電気的に接続されたメモリとを有するマイクロコンピュータ(いわゆる、マイコン)により構成される。制御部120は、操作ボタン110から出力される信号に応じて起動し、通信部140を起動させるとともに、電源管理部130から通信部140に電力を供給させる。
具体的には、制御部120は、通信部140によりサーバ300とのデータ通信を開始する際に通信部140を起動状態に切り替え、このデータ通信が完了した際に通信部140を休止状態に切り替える。休止状態は、通信部140への給電が停止される状態である。休止状態は、通信部140の電源オフ状態に相当する。休止状態は、PSM(Power Saving Mode)におけるスリープ状態であってもよい。
電源管理部130は、バッテリ131から制御部120及び通信部140への電力の供給を管理する。電源管理部130は、制御部120への電力供給を常に行ってもよい。電源管理部130は、制御部120の制御下で通信部140への給電開始及び給電停止を管理する。
バッテリ131は、電力を蓄える一次電池又は二次電池である。バッテリ131は、電源管理部130に電力を出力する。
通信部140は、制御部120の制御により起動し、アンテナ150を介してLPWA方式の無線通信を行う。アンテナ150は、無線信号の送受信に用いられる。
通信部140は、無線送受信部141と、アプリケーション処理部142と、LwM2M機能部143と、FOTA処理部144と、ファームウェア記憶部145とを有する。無線送受信部141は、無線通信回路及びベースバンドプロセッサ等により構成される。アプリケーション処理部142、LwM2M機能部143、及びFOTA処理部144は、少なくとも1つのプロセッサにより構成される。ファームウェア記憶部145は、不揮発性メモリにより構成される。
無線送受信部141は、アンテナ150が基地局210から受信した無線信号に対して増幅処理及びフィルタ処理等を行い、無線信号をベースバンド信号である受信データに変換し、この受信データを復調及び復号する。また、無線送受信部141は、送信データを符号化及び変調したうえで無線信号に変換し、この無線信号に対して増幅処理等を行ってアンテナ150から送信する。
アプリケーション処理部142は、無線送受信部141を介してサーバ300との通信を行うことにより、データをサーバ300と送受信する。例えば、アプリケーション処理部142は、操作ボタン110が押下されたことを示す情報が制御部120から通知されると、特定の商品を発注する発注データを生成し、無線送受信部141を介してサーバ300に発注データを送信する。
LwM2M機能部143は、LwM2M規格に基づいて、無線送受信部141を介してLwM2Mサーバ400との通信を行う。例えば、LwM2M機能部143は、ファームウェア更新を行うための通信をLwM2Mサーバ400と行う。
FOTA処理部144は、無線送受信部141を介してFOTAサーバ500との通信を行うことにより、FOTAサーバ500からファームウェアをダウンロードする。FOTA処理部144は、ダウンロードしたファームウェアにより、ファームウェア記憶部145に記憶されたファームウェアを更新する。
ファームウェア記憶部145は、通信部140の制御プログラムであるファームウェアを記憶する。ファームウェアは、無線送受信部141、アプリケーション処理部142、LwM2M機能部143、及びFOTA処理部144のうち少なくとも1つを制御するプログラムである。ファームウェアは、制御部120を制御するプログラムを含んでもよい。
(通信機器の動作)
次に、第1実施形態に係る通信機器100の動作について説明する。
次に、第1実施形態に係る通信機器100の動作について説明する。
(1)一般的な通信機器100の動作
図3は、一般的な通信機器100の動作を示す図である。この動作は、FOTAを考慮しない動作である。
図3は、一般的な通信機器100の動作を示す図である。この動作は、FOTAを考慮しない動作である。
図3に示すように、ステップS1において、制御部120は、操作ボタン110に対する押下操作を検知する。
ステップS2において、制御部120は、押下操作の検知に応じて、通信部140を起動させるとともに、通信部140への給電を電源管理部130に開始させる。その結果、通信部140は、休止状態(電源オフ状態)から起動状態に切り替わる。
ステップS3において、制御部120は、押下操作を示すボタン押下情報をアプリケーション処理部142に通知する。
ステップS4において、アプリケーション処理部142は、ボタン押下情報が制御部120から通知されると、特定の商品を発注するデータを生成し、このデータをサーバ300に送信する。
ステップS5において、アプリケーション処理部142は、サーバ300が正しくデータを受信したことを示す送達確認情報(ACK)をサーバ300から受信する。
ステップS6において、アプリケーション処理部142は、サーバ300とのデータ通信が完了した旨を制御部120に通知する。
ステップS7において、制御部120は、電源オフ指示をアプリケーション処理部142に通知するとともに、通信部140への給電を電源管理部130に停止させる。
ステップS8において、通信部140は、休止状態(電源オフ状態)に切り替わる。
ここで、ステップS2からステップS8までの時間において通信機器100(通信部140)が起動状態にある。
LwM2MはLwM2Mクライアントが常時起動していることを前提としている。LwM2Mサーバ400からFOTAの開始要求を通信機器100に送信しても、通信機器100が休止状態にある間においてはFOTAの開始要求を通信機器100が受信できない。通信機器100が送受信するデータ量は数バイト程度と少なく、起動状態にある時間が数秒でありうるため、この時間内でLwM2Mサーバ400が通信機器100にFOTAを開始させることが難しい。
(2)改良された通信機器100の動作
図4及び図5は、FOTAを効率的に行うように改良された通信機器100の動作を示す図である。
図4及び図5は、FOTAを効率的に行うように改良された通信機器100の動作を示す図である。
図4に示すように、ステップS100において、制御部120は、操作ボタン110に対する押下操作を検知する。
ステップS101において、制御部120は、押下操作の検知に応じて、通信部140を起動させるとともに、通信部140への給電を電源管理部130に開始させる。その結果、通信部140は、休止状態(電源オフ状態)から起動状態に切り替わる。ここで、通信部140において、アプリケーション処理部142は起動するが、LwM2M機能部143は起動しない。
ステップS102において、制御部120は、押下操作を示すボタン押下情報をアプリケーション処理部142に通知する。
ステップS103において、アプリケーション処理部142は、ボタン押下情報が制御部120から通知されると、特定の商品を発注するデータを生成し、このデータをサーバ300に送信する。アプリケーション処理部142は、通信部140のファームウェアのバージョンを示すバージョン情報(バージョン番号)をデータ通信中にサーバ300に送信する。バージョン情報は、ファームウェアと共にファームウェア記憶部145に記憶されているものとする。
ステップS104において、アプリケーション処理部142は、サーバ300が正しくデータを受信したことを示す送達確認情報(ACK)をサーバ300から受信する。また、サーバ300は、通信機器100からのバージョン情報を確認し、データ通信の送達確認情報(ACK)と共にFOTA有無の情報を通信機器100に送信する。例えば、サーバ300は、通信機器100からのバージョン情報が示すバージョンが最新のバージョンよりも古い場合、FOTA有を示す情報を送達確認情報(ACK)と共に通信機器100に送信する。アプリケーション処理部142は、サーバ300からのFOTA有無の情報に基づいて、ファームウェア更新の有無を確認する。以下において、サーバ300から「FOTA有」が通知されたと仮定して説明を進める。
ステップS105において、アプリケーション処理部142は、LwM2M有効フラグをセットする(すなわち、「1」を設定する)。LwM2M有効フラグは、通信部140のリセット後にLwM2M機能部143を起動させる必要があることを示すフラグである。
ステップS106において、アプリケーション処理部142は、ファームウェア更新(FOTA)がある旨を制御部120に通知する。
ステップS107において、制御部120は、ファームウェア更新がある旨を通信部140から通知されると、サーバ300とのデータ通信が完了しても通信部140を起動状態(電源オン状態)に維持する。すなわち、制御部120は、電源オフ指示を行わないようにする。
ステップS108において、アプリケーション処理部142は、自身の状態をリセット(初期化)する。その結果、通信部140がリセットされる(ステップS109)。通信部140がリセットされると、LwM2M有効フラグがセットされていることに応じてLwM2M機能部143が起動する。
ステップS110において、LwM2M機能部143は、LwM2Mサーバ400と通信し、LwM2Mサーバ400との認証を行う。認証が完了すると、LwM2Mサーバ400は、FOTAが必要であると判断し、FOTAサーバ500へのアクセスに用いる「Package URI」をLwM2M機能部143に通知する。LwM2M機能部143は、この「Package URI」をFOTA処理部144に通知する(ステップS112)。
図5に示すように、ステップS113において、FOTA処理部144は、「Package URI」に基づいてFOTAサーバ500への接続処理を行う。また、FOTA処理部144は、ファームウェアのダウンロード開始をLwM2M機能部143に通知する(ステップS114)。
ステップS115において、FOTA処理部144は、例えばHTTPs通信を用いて、ファームウェアの差分パッケージをFOTAサーバ500からダウンロードする。差分パッケージは、古いファームウェアと最新のファームウェアとの差分に相当するファームウェアである。
ステップS116において、FOTA処理部144は、ファームウェアのダウンロード完了をLwM2M機能部143に通知する。
ステップS117において、FOTA処理部144は、ダウンロードしたファームウェアにより、ファームウェア記憶部145に記憶されたファームウェアを更新する。
ステップS118及びS119において、FOTA処理部144は、ファームウェアの更新完了をLwM2M機能部143及びアプリケーション処理部142に通知する。
ステップS120において、アプリケーション処理部142は、ファームウェアの更新完了の通知に応じて、LwM2M有効フラグをオフする(すなわち、ゼロを設定する)。
ステップS121において、アプリケーション処理部142は、ファームウェア更新(FOTA)が完了した旨を制御部120に通知する。
ステップS122において、制御部120は、ファームウェア更新が完了した旨の通知に応じて、電源オフ指示をアプリケーション処理部142に通知するとともに、通信部140への給電を電源管理部130に停止させる。その結果、ステップS123において、通信部140は、休止状態(電源オフ状態)に切り替わる。
(第1実施形態のまとめ)
以上説明したように、第1実施形態に係る通信機器100において、通信部140は、ファームウェア更新の有無をデータ通信中に確認し、ファームウェア更新がある場合はその旨を制御部120に通知する。制御部120は、ファームウェア更新がある旨を通信部140から通知されると、データ通信が完了しても通信部140を起動状態に維持する。
以上説明したように、第1実施形態に係る通信機器100において、通信部140は、ファームウェア更新の有無をデータ通信中に確認し、ファームウェア更新がある場合はその旨を制御部120に通知する。制御部120は、ファームウェア更新がある旨を通信部140から通知されると、データ通信が完了しても通信部140を起動状態に維持する。
これにより、消費電力を削減するためにデータ通信時にのみ通信部140が起動する構成であっても、起動時にファームウェア更新があることが確認された場合はファームウェア更新のために起動状態を維持できるため、ファームウェア更新を効率的に行うことができる。
第1実施形態において、通信部140は、通信部140のファームウェアのバージョンを示すバージョン情報をデータ通信中にサーバ300に送信する。通信部140は、ファームウェア更新の有無を示す情報をサーバ300から受信することにより、ファームウェア更新の有無を確認する。これにより、一般的な通信機器100の動作においてファームウェア更新の有無を確認できるため、ファームウェア更新を効率的に行うことができる。
第1実施形態において、通信部140は、ファームウェア更新がある旨を制御部120に通知すると、ファームウェア更新を行うためのLwM2M機能(LwM2M機能部143)を起動し、LwM2M機能を用いてLwM2Mサーバ400と通信する。これにより、ファームウェア更新を行うときにのみLwM2M機能部143を起動すればよいため、LwM2M機能部143を常に起動させておく場合に比べて消費電力を削減できる。
第1実施形態において、通信部140は、LwM2Mサーバ400との通信に基づいてFOTAサーバ500と通信することにより、FOTAサーバ500からファームウェアをダウンロードする。これにより、FOTAにおいてファームウェアを適切にダウンロードできる。
第1実施形態において、通信部140は、ファームウェア更新が完了すると、ファームウェア更新が完了した旨を制御部120に通知する。制御部120は、ファームウェア更新が完了した旨を通信部140から通知されると、通信部140を起動状態から休止状態に切り替える。これにより、ファームウェア更新の完了を待って通信部140を休止状態に切り替えることができるため、消費電力の増大を抑制しつつFOTAを効率的に行うことができる。
[第2実施形態]
以下において、第2実施形態について、第1実施形態との相違点を主に説明する。
以下において、第2実施形態について、第1実施形態との相違点を主に説明する。
クライアントである通信機器からサーバに対して効率的なデータ送信を行うために、データを任意のタイミングで通信機器からサーバに送信したいというニーズがある。
しかしながら、LwM2Mは、Pull型でサーバが通信機器からデータを取得することが基本であり、通信機器が自発的にデータをサーバに送ることを想定していないため、通信機器からサーバに対して効率的なデータ送信を行うことが難しい。
そこで、第2実施形態は、Pull型でサーバがデータを取得する前提下においてサーバに対して効率的なデータ送信を行うことを可能とする。
図面を参照して第2実施形態について説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(通信システムの構成)
まず、第1実施形態に係る通信システムの構成について説明する。図6は、第2実施形態に係る通信システム2の構成を示す図である。
まず、第1実施形態に係る通信システムの構成について説明する。図6は、第2実施形態に係る通信システム2の構成を示す図である。
図6に示すように、通信システム2は、通信機器100と、後位機器600と、通信ネットワーク200と、LwM2Mサーバ400とを有する。LwM2Mサーバ400は、データを通信機器100から取得するサーバの一例である。
通信機器100は、LwM2Mクライアントに相当する。通信機器100は、無線通信機能を有するIoT機器である。例えば、通信機器100は、各種のセンサを有し、センサにより得られたデータをLwM2Mサーバ400にアップロードする。
通信機器100は、LPWA(Low Power Wide Area)方式の無線通信を通信ネットワーク200と行ってもよい。LPWA方式は、消費電力を抑えつつ遠距離の無線通信を実現する方式である。LPWA方式は、例えば、セルラLPWA、SIGFOX、又はLoRaWANである。セルラLPWAは、3GPP(3rd Generation Partnership Project)規格において規定されたeMTC(enhanced Machine Type Communications)又はNB-IoT(Narrow Band-Internet of Things)であってもよい。
後位機器600は、通信機器100と電気的に接続される機器である。後位機器600は、通信機器100と直接接続されるか、又はケーブルを介して間接的に通信機器100と接続される。後位機器600は、例えば、UART(Universal Asynchronous Receiver/Transmitter)方式又はUSB(Universal Serial Bus)方式の有線通信を通信機器100と行う。
後位機器600は、PC(Personal Computer)、センサ機器、メータ機器、又は自動販売機等の機器である。後位機器600は、IoT向けのアプリケーションを実行する。通信機器100と接続された後位機器600は、自身が無線通信の機能を有していなくても、通信機器100を介して通信ネットワーク200及びLwM2Mサーバ400との通信を行うことができる。
通信ネットワーク200は、通信事業者により提供されるネットワークを含む。通信ネットワーク200は、インターネットを含んでもよい。通信ネットワーク200は、通信機器100との無線通信を行う基地局210を有する。図1において、通信ネットワーク200に含まれる基地局210を1つのみ例示しているが、通信ネットワーク200には複数の基地局210が含まれている。
LwM2Mサーバ400は、通信ネットワーク200を介して、LwM2M規格に基づいてLwM2Mクライアントである通信機器100を管理する。LwM2Mはクライアント・サーバモデルを採用しており、LwM2Mサーバ400は、LwM2Mクライアントである通信機器100からPull型でデータを取得する。
LwM2Mサーバ400から通信機器100へ送信されるコマンドは主に以下の4つである。
1)Read:
通信機器100からデータを取得するための読み出しコマンド。
通信機器100からデータを取得するための読み出しコマンド。
2)Write:
通信機器100にデータやパラメータを書き込むための書き込みコマンド。
通信機器100にデータやパラメータを書き込むための書き込みコマンド。
3)Execute:
通信機器100に再起動などの処理を実行させる実行コマンド。
通信機器100に再起動などの処理を実行させる実行コマンド。
4)Observe:
Readコマンドの拡張版であり、LwM2Mサーバ400から指定されたデータが変化したタイミング及び指定された時間間隔でこのデータをLwM2Mサーバ400へ通知させるよう指示する通知指示コマンド。
Readコマンドの拡張版であり、LwM2Mサーバ400から指定されたデータが変化したタイミング及び指定された時間間隔でこのデータをLwM2Mサーバ400へ通知させるよう指示する通知指示コマンド。
なお、通信システム2では、通信機器100が通信できない状態を考慮して、生存期間(Lifetime)をLwM2Mサーバ400及び通信機器100の両方で保持する。通信機器100が通信できない状態とは、例えば、通信機器100が圏外にある状態、通信機器100が消費電力を低減させるためにスリープモードに入っている状態等をいう。通信機器100は、この生存期間が終了する前に、LwM2Mサーバ400に対して登録の更新(Update)を行うことにより生存期間を延長する。
通信機器100からLwM2Mサーバ400へ送信されるメッセージは以下の3つである。
1)Register:
LwM2Mサーバ400への初回時の登録要求メッセージ。
LwM2Mサーバ400への初回時の登録要求メッセージ。
2)Update:
生存期間延長のための更新要求メッセージ。
生存期間延長のための更新要求メッセージ。
3)Notify:
Observeコマンドに対応したデータを通知する通知メッセージ。
Observeコマンドに対応したデータを通知する通知メッセージ。
通信機器100は、Registerメッセージ及びUpdateメッセージにいくつかのパラメータを付与してLwM2Mサーバ400に送信する。パラメータは、例えば、上述の生存期間(Lifetime)やサポートしているオブジェクトの番号等である。
なお、通信機器100は、リソースモデルという形式でデータを管理する。リソースモデルは、オブジェクト、オブジェクトインスタンス、リソースのツリー構造になっている。各要素には番号が割り当てられる。例えば、デバイスの製造元(Manufacturer)を表すリソースは/3/0/0のように表現され、これは3番のオブジェクト、0番のオブジェクトインスタンス、0番のリソースであることを意味する。通信機器100は、/3/0/0を指定するReadコマンドをLwM2Mサーバ400から受信すると、通信機器100の製造元データをLwM2Mサーバ400に返す。
(通信機器の構成)
次に、第2実施形態に係る通信機器100の構成について説明する。図7は、一実施形態に係る通信機器100の構成を示す図である。
次に、第2実施形態に係る通信機器100の構成について説明する。図7は、一実施形態に係る通信機器100の構成を示す図である。
図7に示すように、通信機器100は、アンテナ150と、通信部140と、制御部120と、記憶部190と、電源管理部130と、接続部160とを有する。通信機器100には、図示を省略するインターフェイスを介してUIM/SIM170及びセンサ180を接続可能である。
アンテナ150は、無線信号の送受信に用いられる。通信部140は、制御部120の制御下で基地局210との無線通信を行うとともに、基地局210を介してLwM2Mサーバ400との通信を行う。通信部140は、アンテナ150が基地局210から受信した無線信号に対して増幅処理及びフィルタ処理等を行い、無線信号をベースバンド信号に変換して制御部120に出力する。また、通信部140は、制御部120から入力されたベースバンド信号を無線信号に変換し、増幅処理等を行ってアンテナ150から送信する。
通信部140は、LwM2M規格に基づく通信をLwM2Mサーバ400と行う。例えば、通信部140は、Readコマンド、Writeコマンド、Executeコマンド、及びObserveコマンドのいずれかをLwM2Mサーバ400から受信する。また、通信部140は、Registerメッセージ、Updateメッセージ、及びNotifyメッセージのいずれかをLwM2Mサーバ400に送信する。
制御部120は、通信機器100における各種の処理及び制御を行う。例えば、制御部120は、LPWA方式によって基地局210との無線通信を行うように通信部140を制御する。制御部120は、少なくとも1つのプロセッサを含む。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、記憶部190に記憶されたプログラムを実行して各種の処理を行う。
制御部120は、LwM2M規格に基づく処理を行う。例えば、制御部120は、Readコマンド、Writeコマンド、Executeコマンド、及びObserveコマンドのいずれかを通信部140が受信すると、受信したコマンドに応じた処理を行う。また、制御部120は、Registerメッセージ、Updateメッセージ、及びNotifyメッセージのいずれかを生成し、生成したメッセージを通信部140に出力する。また、制御部120は、生存期間(Lifetime)を管理し、この生存期間が終了する前にLwM2Mサーバ400に対して登録の更新(Update)を行うことにより生存期間を延長する。
記憶部190は、揮発性メモリ及び不揮発性メモリを含み、制御部120により実行されるプログラム、及び制御部120による処理に用いられる情報及びデータを記憶する。
電源管理部130は、バッテリ及びその周辺回路を含む。電源管理部130は、通信機器100の駆動電力を供給する。なお、通信機器100が後位機器600とUSBにより接続される場合、駆動電力が後位機器600からUSB給電により供給されてもよい。
接続部160は、後位機器600と電気的に接続するためのインターフェイスである。接続部160に後位機器600が電気的に接続された状態において、制御部120は、後位機器600が通信ネットワーク200と送受信するデータの転送処理を行う。
UIM/SIM170は、通信ネットワーク200との通信を行うために必要な加入者情報等を記憶する。
センサ180は、複数種類のセンサを含み、温度、湿度、気圧、照度、加速度、及び/又は地磁気等を測定して測定値からなるデータを出力する。センサ180が出力するデータは、制御部120を介して記憶部190に記憶される。制御部120は、記憶部190に記憶されたデータを管理する。
(LwM2Mサーバの構成)
次に、第2実施形態に係るLwM2Mサーバ400の構成について説明する。図8は、LwM2Mサーバ400の構成を示す図である。
次に、第2実施形態に係るLwM2Mサーバ400の構成について説明する。図8は、LwM2Mサーバ400の構成を示す図である。
図8に示すように、LwM2Mサーバ400は、通信部410と、制御部420と、記憶部430とを有する。
通信部410は、通信ネットワーク200に有線又は無線で接続される。通信部410は、制御部420の制御下で、通信ネットワーク200を介してLwM2Mサーバ400との通信を行う。
通信部410は、LwM2M規格に基づく通信を通信機器100と行う。例えば、通信部410は、Readコマンド、Writeコマンド、Executeコマンド、及びObserveコマンドのいずれかを通信機器100に送信する。また、通信部410は、Registerメッセージ、Updateメッセージ、及びNotifyメッセージのいずれかを通信機器100から受信する。
制御部420は、LwM2Mサーバ400における各種の処理及び制御を行う。制御部420は、少なくとも1つのプロセッサを含む。プロセッサは、記憶部430に記憶されたプログラムを実行して各種の処理を行う。
制御部420は、LwM2M規格に基づく処理を行う。例えば、制御部420は、Registerメッセージ、Updateメッセージ、及びNotifyメッセージのいずれかを通信部410が受信すると、受信したメッセージに応じた処理を行う。また、制御部420は、Readコマンド、Writeコマンド、Executeコマンド、及びObserveコマンドのいずれかを生成し、生成したメッセージを通信部410に出力する。
記憶部430は、揮発性メモリ及び不揮発性メモリを含み、制御部420により実行されるプログラム、及び制御部420による処理に用いられる情報及びデータを記憶する。
(通信システムの動作)
次に、第2実施形態に係る通信システム2の動作について説明する。
次に、第2実施形態に係る通信システム2の動作について説明する。
通信システム2は、Pull型でLwM2Mサーバ400が通信機器100からデータを取得することを基本としており、所望のデータを任意のタイミングで通信機器100からLwM2Mサーバ400に送信することが難しい。
特に、後位機器600は、所望のデータを通信機器100からLwM2Mサーバ400に通知させたい場合であっても、所望のデータに対するReadコマンドをLwM2Mサーバ400が発行しなければ、所望のデータを通信機器100からLwM2Mサーバ400に通知させることができない。
そこで、Notifyメッセージを利用し、NotifyメッセージによりLwM2Mサーバ400にReadコマンドの発行を促すことができるようにする。以下において、そのような通信方法について説明する。
図9は、第2実施形態に係る通信方法を示すシーケンス図である。第2実施形態に係る通信方法は、LwM2Mサーバ400と、LwM2Mサーバ400との通信を行う通信機器100と、通信機器100と電気的に接続される後位機器600とを用いる方法である。
図9に示すシーケンスに先立ち、通信機器100の記憶部190は、LwM2Mサーバ400への通知対象である第1データと、第1データの読み出しをLwM2Mサーバ400に要求するために用いる第2データとを保持する。
図9において、第1データがリソースAのデータであり、第2データがリソースZのデータである一例を示している。なお、後位機器600及びLwM2Mサーバ400は、第1データ(リソースA)と第2データ(リソースZ)との対応関係を予め把握及び保持しているものとする。
ステップS21:
LwM2Mサーバ400において、制御部420は、第2データ(リソースZ)の変化時に第2データ(リソースZ)をLwM2Mサーバ400に通知するよう指示するObserveコマンドを生成する。このObserveコマンドは、第2データ(リソースZ)の識別子を含む。通信部410は、制御部420が生成したObserveコマンドを通信機器100に送信する。
LwM2Mサーバ400において、制御部420は、第2データ(リソースZ)の変化時に第2データ(リソースZ)をLwM2Mサーバ400に通知するよう指示するObserveコマンドを生成する。このObserveコマンドは、第2データ(リソースZ)の識別子を含む。通信部410は、制御部420が生成したObserveコマンドを通信機器100に送信する。
通信機器100において、通信部140は、LwM2Mサーバ400からObserveコマンドを受信する。制御部120は、通信部140が受信したObserveコマンドに基づいて、第2データ(リソースZ)の監視を開始する。
ステップS22:
後位機器600は、第1データ(リソースA)を通信機器100からLwM2Mサーバ400に通知させる場合、第2データ(リソースZ)を変化させるよう通信機器100を制御する。例えば、後位機器600は、第2データ(リソースZ)を変化させるAT Commandを生成し、生成したAT Commandを通信機器100に出力する。
後位機器600は、第1データ(リソースA)を通信機器100からLwM2Mサーバ400に通知させる場合、第2データ(リソースZ)を変化させるよう通信機器100を制御する。例えば、後位機器600は、第2データ(リソースZ)を変化させるAT Commandを生成し、生成したAT Commandを通信機器100に出力する。
ステップS23:
通信機器100において、制御部120は、接続部160を介して後位機器600からAT Commandを受け付けると、AT Commandに基づいて第1データ(リソースA)を変化させる。
通信機器100において、制御部120は、接続部160を介して後位機器600からAT Commandを受け付けると、AT Commandに基づいて第1データ(リソースA)を変化させる。
ステップS24:
通信機器100において、制御部120は、第1データ(リソースA)についてObserveコマンドが発行されているため、第1データ(リソースA)の変化により、第1データ(リソースA)をLwM2Mサーバ400に通知する必要が生じたと判断し、変化後の第1データ(リソースA)を含むNotifyメッセージを生成する。このNotifyメッセージは、第2データ(リソースZ)及びその識別子を含む。通信部140は、制御部120が生成したNotifyメッセージをLwM2Mサーバ400に送信する。
通信機器100において、制御部120は、第1データ(リソースA)についてObserveコマンドが発行されているため、第1データ(リソースA)の変化により、第1データ(リソースA)をLwM2Mサーバ400に通知する必要が生じたと判断し、変化後の第1データ(リソースA)を含むNotifyメッセージを生成する。このNotifyメッセージは、第2データ(リソースZ)及びその識別子を含む。通信部140は、制御部120が生成したNotifyメッセージをLwM2Mサーバ400に送信する。
ステップS25:
LwM2Mサーバ400において、通信部410は、通信機器100からNotifyメッセージを受信する。制御部420は、第2データ(リソースZ)及びその識別子を含むNotifyメッセージを通信部410が受信すると、このNotifyメッセージを、第1データ(リソースA)の読み出し要求とみなすとともに、第1データ(リソースA)を読み出すReadコマンドを生成する。このReadコマンドは、第1データ(リソースA)の識別子を含む。そして、通信部410は、制御部420が生成したReadコマンドを通信機器100に送信する。
LwM2Mサーバ400において、通信部410は、通信機器100からNotifyメッセージを受信する。制御部420は、第2データ(リソースZ)及びその識別子を含むNotifyメッセージを通信部410が受信すると、このNotifyメッセージを、第1データ(リソースA)の読み出し要求とみなすとともに、第1データ(リソースA)を読み出すReadコマンドを生成する。このReadコマンドは、第1データ(リソースA)の識別子を含む。そして、通信部410は、制御部420が生成したReadコマンドを通信機器100に送信する。
通信機器100において、通信部140は、LwM2Mサーバ400からReadコマンドを受信する。
ステップS26:
制御部120は、第1データ(リソースA)に対するReadコマンドを通信部140が受信すると、第1データ(リソースA)を記憶部190から取得する。通信部140は、この第1データ(リソースA)をLwM2Mサーバ400に送信する。
制御部120は、第1データ(リソースA)に対するReadコマンドを通信部140が受信すると、第1データ(リソースA)を記憶部190から取得する。通信部140は、この第1データ(リソースA)をLwM2Mサーバ400に送信する。
このように、第2実施形態に係る通信方法によれば、Pull型でLwM2Mサーバ400が通信機器100からデータを読み出すことを基本とするLwM2M規格に従いつつ、後位機器600を起点として所望のデータを任意のタイミングで通信機器100からLwM2Mサーバ400に送信することができる。よって、LwM2Mサーバ400に対して効率的なデータ送信を行うことを可能とすることができる。
(その他の実施形態)
上述した第1実施形態において、通信システム1が、サーバ300、LwM2Mサーバ400、及びFOTAサーバ500の3つのサーバを有する一例について説明したが、これらのサーバはさらに細分化されてもよいし、2以上のサーバを1つに統合してもよい。
上述した第1実施形態において、通信システム1が、サーバ300、LwM2Mサーバ400、及びFOTAサーバ500の3つのサーバを有する一例について説明したが、これらのサーバはさらに細分化されてもよいし、2以上のサーバを1つに統合してもよい。
また、上述した第1実施形態において、通信機器100が、ボタン押下に応じてサーバ300に特定の商品を発注する機器である一例について主として説明したが、通信機器100は各種のセンサを有するセンサ機器であってもよい。
また、上述した第1実施形態において、通信機器100からサーバ300に対してデータのアップロードを行う一例について説明したが、通信機器100は、サーバ300からデータのダウンロードを行ってもよい。
上述した第2実施形態において、通信機器100が無線通信によりLwM2Mサーバ400との通信を行う一例について説明したが、通信機器100は、有線通信によりLwM2Mサーバ400との通信を行ってもよい。
上述した第2実施形態において、通信機器100が無線通信によりLwM2Mサーバ400との通信を行う一例について説明したが、通信機器100は、有線通信によりLwM2Mサーバ400との通信を行ってもよい。
また、上述した第2実施形態において、LwM2M規格に基づく通信システム2について説明した。しかしながら、Pull型でサーバが通信機器からデータを取得することを基本とする規格又はプロトコルであればよく、LwM2M規格に限定されるものではない。
通信機器100又はLwM2Mサーバ400が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。また、通信機器100が行う各処理を実行する機能部(回路)を集積化し、通信機器100を半導体集積回路(チップセット、SoC)として構成してもよい。
以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
本願は、日本国特許出願第2019-101517号(2019年5月30日出願)及び日本国特許出願第2019-101537号(2019年5月30日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
Claims (14)
- 無線通信を行う通信部と、
前記通信部によりサーバとのデータ通信を開始する際に前記通信部を起動状態に切り替え、前記データ通信が完了した際に前記通信部を休止状態に切り替える制御部と、を備え、
前記データ通信中において、前記制御部は、ファームウェア更新がある場合、前記データ通信が完了しても前記通信部を前記起動状態に維持する
通信機器。 - 前記通信部は、
前記ファームウェアのバージョンを示すバージョン情報を前記データ通信中に前記サーバに送信し、
前記ファームウェア更新の有無を示す情報を前記サーバから受信することにより、前記ファームウェア更新の有無を確認する
請求項1に記載の通信機器。 - 前記通信部は、前記ファームウェア更新がある旨を前記制御部に通知すると、前記ファームウェア更新を行うためのLwM2M機能を起動し、前記LwM2M機能を用いてLwM2Mサーバと通信する
請求項1又は2に記載の通信機器。 - 前記通信部は、前記LwM2Mサーバとの通信に基づいてファームウェア配信サーバと通信することにより、前記ファームウェア配信サーバからファームウェアをダウンロードする
請求項3に記載の通信機器。 - 前記通信部は、前記ファームウェア更新が完了すると、前記ファームウェア更新が完了した旨を前記制御部に通知し、
前記制御部は、前記ファームウェア更新が完了した旨を前記通信部から通知されると、前記通信部を前記起動状態から前記休止状態に切り替える
請求項1乃至4のいずれか1項に記載の通信機器。 - 無線通信を行う通信部と、
前記通信部によりサーバとのデータ通信を開始する際に前記通信部を起動状態に切り替え、前記データ通信が完了した際に前記通信部を休止状態に切り替える制御部と、を備える通信機器を制御する制御方法であって、
前記通信部が前記ファームウェア更新の有無を前記データ通信中に確認することと、
前記データ通信中において、前記ファームウェア更新がある場合、前記データ通信が完了しても前記制御部が前記通信部を前記起動状態に維持することと、を含む
制御方法。 - サーバと通信機器とを有し、
前記通信機器は、無線通信を行い、前記サーバとのデータ通信を開始する際に起動状態に切り替え、前記データ通信が完了した際に休止状態に切り替える通信システムにおいて、
前記通信機器は、前記データ通信中において、ファームウェア更新がある場合、前記データ通信が完了しても前記起動状態に維持する通信システム。 - サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器と、を用いる通信方法であって、
前記通信機器が、前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持することと、
前記後位機器が、前記第1データを前記通信機器から前記サーバに通知させる場合、前記第2データを変化させるよう前記通信機器を制御することと、
前記通信機器が、前記第2データの変化時に前記第2データを前記サーバに通知することと、
前記サーバが、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすとともに、前記第1データを読み出す読み出しコマンドを前記通信機器に送信することと、を含む
通信方法。 - 前記サーバが、前記第2データの変化時に前記第2データを前記サーバに通知するよう指示する通知指示コマンドを前記通信機器に送信することをさらに含み、
前記通信機器は、前記通知指示コマンドに基づいて、前記第2データの変化時に前記第2データを前記サーバに通知する
請求項8に記載の通信方法。 - 前記読み出しコマンドは、LwM2M規格で規定されるReadコマンドである
請求項8又は9に記載の通信方法。 - 前記通知指示コマンドは、LwM2M規格で規定されるObserveコマンドである
請求項9に記載の通信方法。 - サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器と、を含む通信システムに用いる前記通信機器であって、
前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する記憶部と、
前記第2データを変化させる制御を前記後位機器から受け付けると、前記第2データの変化時に前記第2データを前記サーバに通知する制御部と、
前記第2データを前記第1データの読み出し要求とみなした前記サーバから、前記第1データを読み出す読み出しコマンドを受信する通信部と、を備える
通信機器。 - サーバと、前記サーバとの通信を行う通信機器と、前記通信機器と電気的に接続される後位機器と、を含む通信システムに用いる前記サーバであって、
前記サーバへの通知対象である第1データと前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する前記通信機器に対して、前記第2データの変化時に前記第2データを前記サーバに通知するよう指示する通知指示コマンドを送信する通信部を備え、
前記通信部は、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすことにより、前記第1データを読み出す読み出しコマンドを前記通信機器に送信する
サーバ。 - サーバと、前記サーバとの通信を行う通信機器と、を含む通信システムであって、
前記通信機器は、
前記サーバへの通知対象である第1データと、前記第1データの読み出しを前記サーバに要求するために用いる第2データとを保持する記憶部と、
前記第2データを変化させる制御を、前記通信機器と電気的に接続される後位機器から受け付けると、前記第2データの変化時に前記第2データを前記サーバに通知する制御部と、
前記サーバから、前記第1データを読み出す読み出しコマンドを受信する第1通信部と、を備え、
前記サーバは、
前記通信機器に対して、前記第2データの変化時に前記第2データを前記サーバに通知するよう指示する通知指示コマンドを送信する第2通信部を備え、
前記第2通信部は、前記通信機器から前記第2データを受信すると、該受信した第2データを前記第1データの読み出し要求とみなすことにより、前記読み出しコマンドを前記通信機器に送信する
通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/454,678 US12137417B2 (en) | 2019-05-30 | 2021-11-12 | Communication device, communication device control method, communication method, server, and communication system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019101517A JP2020195122A (ja) | 2019-05-30 | 2019-05-30 | 通信機器及びその制御方法 |
JP2019101537A JP7245717B2 (ja) | 2019-05-30 | 2019-05-30 | 通信方法、通信機器、サーバ、及び通信システム |
JP2019-101537 | 2019-05-30 | ||
JP2019-101517 | 2019-05-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/454,678 Continuation US12137417B2 (en) | 2019-05-30 | 2021-11-12 | Communication device, communication device control method, communication method, server, and communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241661A1 true WO2020241661A1 (ja) | 2020-12-03 |
Family
ID=73552243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020836 WO2020241661A1 (ja) | 2019-05-30 | 2020-05-27 | 通信機器、通信機器の制御方法、通信方法、サーバ、及び通信システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US12137417B2 (ja) |
WO (1) | WO2020241661A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007281810A (ja) * | 2006-04-05 | 2007-10-25 | Sharp Corp | 画像処理装置 |
WO2017056206A1 (ja) * | 2015-09-29 | 2017-04-06 | 株式会社テイエルブイ | データ送信システム、管理装置、データ送信プログラム、データ送信方法 |
US20180359621A1 (en) * | 2015-12-03 | 2018-12-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and devices for managing constrained devices |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6276954A (ja) | 1985-09-30 | 1987-04-09 | Toshiba Corp | 通信制御装置 |
JP5010985B2 (ja) | 2007-05-30 | 2012-08-29 | 株式会社日立製作所 | センサノード |
CN109997114B (zh) | 2016-10-07 | 2023-09-29 | 康维达无线有限责任公司 | 用于通用互通和可扩展性的服务层资源管理 |
EP3721349B1 (en) * | 2017-12-04 | 2022-02-02 | Telefonaktiebolaget LM Ericsson (publ) | Data from a source device to a data requester |
US11159658B2 (en) * | 2018-07-23 | 2021-10-26 | Moj.Io, Inc. | Homogenization of telematics data through unified messaging protocol |
-
2020
- 2020-05-27 WO PCT/JP2020/020836 patent/WO2020241661A1/ja active Application Filing
-
2021
- 2021-11-12 US US17/454,678 patent/US12137417B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007281810A (ja) * | 2006-04-05 | 2007-10-25 | Sharp Corp | 画像処理装置 |
WO2017056206A1 (ja) * | 2015-09-29 | 2017-04-06 | 株式会社テイエルブイ | データ送信システム、管理装置、データ送信プログラム、データ送信方法 |
US20180359621A1 (en) * | 2015-12-03 | 2018-12-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and devices for managing constrained devices |
Non-Patent Citations (1)
Title |
---|
MATSUURA, NOBUHIKO: "A Proposal of the Distributed Date Management System for Large-scale Sensor Date", IPSJ JOURNAL, vol. 54, no. 2, 15 February 2013 (2013-02-15), pages 721 - 729 * |
Also Published As
Publication number | Publication date |
---|---|
US12137417B2 (en) | 2024-11-05 |
US20220078711A1 (en) | 2022-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101442618B1 (ko) | 디바이스 활성화 방법 및 장치 | |
JP4863465B2 (ja) | 基地局及びその制御方法 | |
US20140187163A1 (en) | Information processing apparatus, control method therefor, and recording medium | |
US10194371B2 (en) | Communication apparatus and control method of communication apparatus | |
US20070149140A1 (en) | Communication apparatus and electric power control method | |
TW202106055A (zh) | 建立用於交換測距資訊的通訊的方法 | |
US9998993B2 (en) | Communication apparatus, method of controlling a communication apparatus and storage medium | |
US20190305594A1 (en) | Information processing device, control method for information processing device, and program | |
JP2016001391A (ja) | 情報処理装置および情報処理システム | |
WO2012094853A1 (zh) | 终端软件的安装方法、装置和系统 | |
CN106648721A (zh) | 一种软件升级方法及装置 | |
WO2020241661A1 (ja) | 通信機器、通信機器の制御方法、通信方法、サーバ、及び通信システム | |
WO2019188677A1 (ja) | 通信システム、通信モジュール、サーバ、制御方法、及び制御プログラム | |
WO2020241662A1 (ja) | 通信機器、サーバ、制御方法、及び通信システム | |
JP2020195122A (ja) | 通信機器及びその制御方法 | |
JP2015176234A (ja) | センサネットワークのソフトウェア配信システム、無線端末、ソフトウェア配信方法、および、プログラム | |
EP2248363B1 (en) | Communication apparatus, and communication method therefor | |
JP6364866B2 (ja) | 端末装置、通信制御システム及び通信制御方法 | |
US20220317999A1 (en) | Communication apparatus, server, and control method | |
JP7245717B2 (ja) | 通信方法、通信機器、サーバ、及び通信システム | |
US20180255593A1 (en) | Non-Transitory Computer-Readable Recording Medium Storing Computer-Readable Instructions For Communication Device, Communication Device, and Method Executed By Communication Device | |
JP5547941B2 (ja) | 通信装置及び通信管理システム | |
JP7393800B2 (ja) | 基地局、通信端末、通信システム、制御方法、および、通信方法 | |
CN109561515B (zh) | 无线通信装置、电子表、无线通信方法以及存储介质 | |
EP4376389A1 (en) | Method for notifying at least one client module implemented in a wireless device, corresponding computer program product and devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20812916 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20812916 Country of ref document: EP Kind code of ref document: A1 |