WO2020241251A1 - クロロプレン系重合体ラテックスの製造方法 - Google Patents
クロロプレン系重合体ラテックスの製造方法 Download PDFInfo
- Publication number
- WO2020241251A1 WO2020241251A1 PCT/JP2020/019042 JP2020019042W WO2020241251A1 WO 2020241251 A1 WO2020241251 A1 WO 2020241251A1 JP 2020019042 W JP2020019042 W JP 2020019042W WO 2020241251 A1 WO2020241251 A1 WO 2020241251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- latex
- chloroprene
- mixed fluid
- based polymer
- volatile organic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/14—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
- C08F36/16—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
- C08F36/18—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C1/00—Treatment of rubber latex
- C08C1/02—Chemical or physical treatment of rubber latex before or during concentration
- C08C1/04—Purifying; Deproteinising
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/14—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
- C08F236/16—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
- C08F236/18—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/001—Removal of residual monomers by physical means
- C08F6/003—Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
Definitions
- the present invention relates to a method for producing a chloroprene-based polymer latex capable of efficiently removing residual volatile organic substances such as residual monomers and residual organic solvents.
- the concentration of residual volatile organic substances such as unreacted monomers (residual monomers) in the polymerization reaction of chloroprene-based polymer latex is reduced to 1% by mass or less by undergoing a stripping step or the like in the manufacturing process. Has been done.
- awareness of the effects of volatile organic substances on the environment and the human body has increased, and along with this, further reduction of residual volatile organic substances in chloroprene-based polymer latex is required.
- Patent Document 1 describes a method in which a polymer latex is forcibly circulated in a circulation circuit and heated by an external heat exchanger to evaporate and remove residual monomers.
- Patent Document 2 describes a method of reducing residual monomers by spraying a polymer dispersion liquid vertically (vertically downward) in a container and discharging vaporized monomers from above the container.
- Patent Document 3 describes a method of supplying water vapor to a polychloroprene dispersion in a stripping column and discharging the residual monomer chloroprene from the top of the column.
- Japanese Unexamined Patent Publication No. 2003-147016 Japanese Unexamined Patent Publication No. 51-37175 Japanese Unexamined Patent Publication No. 2012-524132
- the chloroprene-based polymer latex is treated at a high temperature of more than 60 ° C. to remove residual volatile organic substances. ..
- agglomerates tend to precipitate due to evaporation of water, the solid content concentration decreases, and the piping through which the chloroprene-based polymer latex and gas flow is blocked for treatment. It had problems such as having to stop.
- the present invention has been made to solve the above-mentioned problems, and is capable of efficiently removing residual volatile organic substances from chloroprene-based polymer latex while suppressing precipitation of aggregates.
- An object of the present invention is to provide a method for producing a system polymer latex.
- the present invention efficiently removes residual volatile organic substances from chloroprene-based polymer latex even at a relatively low temperature such as 60 ° C. or lower. This is based on the finding that it is possible to suppress the precipitation of agglomerates.
- the present invention provides the following [1] to [7].
- [1] In the method for producing a chloroprene-based polymer latex, when the residual volatile organic substance contained in the latex is volatilized and removed, the latex is subjected to a pressure higher than the saturated water vapor pressure at the latex liquid temperature. Chloroprene-based polymer latex in which a mixed fluid of water is brought into contact with one or more gases selected from inert gas and air so that the temperature of the mixed fluid is lower than the boiling point of water at the atmospheric pressure. Manufacturing method.
- a chloroprene-based polymer latex In the method for producing a chloroprene-based polymer latex of the present invention, when residual volatile organic substances contained in a chloroprene-based polymer latex (hereinafter, also simply referred to as latex) are volatilized and removed, the latex is used. Under a pressure higher than the saturated water vapor pressure at the latex liquid temperature, a mixed fluid of one or more gases selected from inert gas and air (hereinafter, also referred to as inert gas or the like) and water is brought into contact with each other, and the mixture is described. The temperature of the fluid is set to be lower than the boiling point of water at the pressure.
- a mixed fluid of an inert gas or the like and water is brought into contact with latex under conditions of a predetermined atmospheric pressure and temperature to suppress precipitation of agglomerates and residual volatility in latex. Latex organic substances can be removed efficiently.
- the chloroprene-based polymer latex is an emulsion in which the chloroprene-based polymer is stably dispersed in water.
- the solid content concentration of latex is not particularly limited as long as a stable dispersed state is maintained. It is preferably 40 to 70% by mass, more preferably 42 to 65% by mass, and further preferably 45 to 62% by mass.
- the solid content concentration of latex in the present specification is the ratio of the mass of the dry residue to the mass of the latex before drying when the latex is heated at 140 ° C. for 25 minutes and dried.
- the chloroprene-based polymer is a polymer using chloroprene (2-chloro-1,3-butadiene) as a monomer, and may be a homopolymer in which the monomer is only chloroprene, or chloroprene and another monomer. It may be a copolymer.
- the other monomer copolymerized with chloroprene is not particularly limited, but for example, 2,3-dichloro-1,3-butadiene, butadiene, isoprene, styrene, acrylonitrile, acrylic acid and its esters, and methacryl. Examples thereof include acids and esters thereof. These may be used alone or in combination of two or more.
- the monomer constituting the copolymer preferably contains chloroprene as a main component, and the total content of all the monomers constituting the copolymer is 100% by mass, and chloroprene is 70.0 to 99.9% by mass. It is preferably 75.0 to 99.8% by mass, and more preferably 80.0 to 99.7% by mass.
- the method for synthesizing the chloroprene-based polymer latex in the present invention is not particularly limited, and the production method of the present invention can be applied to the chloroprene-based polymer latex obtained by a known synthetic method.
- the chloroprene-based polymer latex can be synthesized, for example, by the method described in Synthesis Examples described later.
- residual volatile organic substance contained in the chloroprene-based polymer latex examples include an unreacted monomer (residual monomer) in the polymerization reaction in the production of the latex and an organic solvent (residual organic solvent) used in the production process of the latex. ) Etc. can be mentioned.
- the residual monomer is an unreacted monomer among the monomers constituting the above-mentioned chloroprene-based polymer, and is mainly a chloroprene monomer which is a main component of the chloroprene-based polymer. From the viewpoint of maintaining the quality and properties of the latex well, it is preferable that these residual monomers are removed.
- the chloroprene monomer is a residual monomer that can be contained most as a main component, and is preferably removed from the latex as much as possible.
- the residual organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane and heptane; alicyclic hydrocarbon solvents such as cyclopentane, cyclohexane and methylcyclohexane; alcohol solvents such as methanol, ethanol and isopropanol.
- Aromatic hydrocarbon solvents such as toluene and xylene; ether solvents such as tetrahydrofuran, diethyl ether, cyclopentyl methyl ether and 4-methylcyclohydropyran; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; acetone, Examples thereof include ketone solvents such as methyl ethyl ketone and cyclopentanone.
- the concentration of the residual volatile organic substance contained in the latex before contact with the mixed fluid is preferably 150 to 10000 mass ppm, more preferably 175 to 5000 mass ppm, based on the total mass of the latex. It is preferably 200 to 1000 mass ppm. It is advantageous to apply the present invention in order to further reduce the concentration of the residual volatile organic substance when the concentration is 150 mass ppm or more. Further, when the concentration is 10,000 mass ppm or less, further reduction of the concentration can be efficiently performed.
- the residual volatile organic substance in the latex is removed, and the concentration of the residual volatile organic substance is reduced.
- the concentration of the residual volatile organic substance is preferably reduced to less than 150 mass ppm, more preferably 140 mass ppm or less, still more preferably 100 mass ppm or less, still more preferably 50 mass ppm or less, based on the total mass of the latex. It is reduced to mass ppm or less.
- the inert gas or the like referred to in the present invention may be a gas that hardly causes a chemical reaction with the chloroprene-based polymer latex, and is selected from the inert gas and air.
- the inert gas include a rare gas such as argon and a nitrogen gas.
- the air may be the atmosphere, but as it has a lower reactivity, it preferably does not contain an acid gas such as carbon dioxide, and more preferably synthetic air in which oxygen gas and nitrogen gas are artificially mixed.
- the inert gas or the like may be used alone or in combination of two or more. Of these, nitrogen gas and / or air is preferable from the viewpoint of ease of handling, cost, and the like.
- the mixed fluid to be brought into contact with the latex is a mixed fluid of the inert gas or the like and water.
- the "water” in the mixed fluid includes both a liquid and a gas (water vapor).
- water vapor water vapor
- the water content in the latex evaporates into the atmosphere of the inert gas or the like, and agglomerates are likely to precipitate.
- the cause of the precipitation of agglomerates is considered to be destabilization or destruction of micelles of latex particles due to local drying of the latex surface in contact with an inert gas or the like. Therefore, in the present invention, when contacting an inert gas or the like to suppress precipitation of agglomerates, water is latexed together with the inert gas or the like to the extent that the surface of the latex in contact with the inert gas or the like is not dried. To contact.
- the amount of water in the mixed fluid varies depending on the composition of latex, the solid content concentration, etc., and therefore cannot be unconditionally determined.
- the volume of nitrogen flow rate and water flow rate in the standard state (0 ° C., 101.3 kPa). It can be determined by the ratio.
- the volume ratio of the nitrogen flow rate to the water flow rate (N 2 flow rate / H 2 O flow rate) is preferably 0.05 to 1.00, more preferably 0., from the viewpoint of suppressing the precipitation of agglomerates from the latex. It is 10 to 0.75, more preferably 0.15 to 0.50.
- the temperature of the mixed fluid is preferably high in order to volatilize the residual volatile organic substances and efficiently remove them, but on the other hand, from the viewpoint of preventing agglomerates from precipitating from the latex, as much as possible. It is preferably low temperature.
- the mixed fluid is brought into contact with the latex at a pressure higher than the saturated water vapor pressure at the latex liquid temperature and at a temperature lower than the boiling point of water at the pressure, so that the treatment temperature is lower than before. Residual volatile organic substances can be efficiently removed.
- the atmospheric pressure of the mixed fluid is not too high than the saturated water vapor pressure at the latex liquid temperature.
- the atmospheric pressure of the mixed fluid is higher than the saturated water vapor pressure, and the atmospheric pressure difference between the two is preferably 0.1 to 30.0 kPa, more preferably 0.2 to 20.0 kPa, and further preferably 0.3. It is ⁇ 10.0 kPa.
- the temperature of the mixed fluid when the mixed fluid is brought into contact with the latex is higher than the boiling point of water at the atmospheric pressure at the time of contact, the water content in the latex is likely to evaporate locally and agglomerates are precipitated. It will be easier.
- the temperature of the mixed fluid is not too low than the boiling point of water at atmospheric pressure at the time of contact. .. It is preferable that the temperature of the mixed fluid when the mixed fluid is brought into contact with the latex is lower than the boiling point of water at the atmospheric pressure at the time of contact, and the temperature difference between the two is 0.5 to 50.0 ° C.
- the temperature is preferably 1.0 to 30.0 ° C, more preferably 1.2 to 10.0 ° C.
- the degree of progress of desorption of hydrogen chloride is considered to depend almost exclusively on temperature. Therefore, from the viewpoint of suppressing the desorption of hydrogen chloride from the polymer, it is preferable to lower the temperature of the latex.
- the amount of hydrogen chloride desorbed can be confirmed by using changes in the chlorine ion concentration and pH in the latex, the concentration of the alkali residue (hydroxide ion), and the like as indicators.
- the temperature of the latex to be brought into contact with the mixed fluid is preferably maintained at 10 to 60 ° C., more preferably 20 to 55 ° C., still more preferably 30 to 50 ° C.
- the temperature of the mixed fluid in contact with the latex is preferably 10 to 60 ° C, more preferably 20 to 55 ° C, and even more preferably 30 to 50 ° C. From the viewpoint of ease of temperature control in the operation of removing the residual volatile organic substance, it is preferable that the temperature of the latex and the temperature of the mixed fluid are about the same.
- the method and apparatus for bringing the mixed fluid into contact with the latex are not particularly limited, and may be any one capable of removing residual volatile organic substances in the latex under the above-mentioned atmospheric pressure and temperature conditions. ..
- there are methods such as mixing in a pipe, blowing a mixed fluid into a container such as a tank, and countercurrent contact using a stripping tower.
- the method for heating the latex when the mixed fluid is brought into contact with the latex is not particularly limited.
- it can be heated by a container jacket, heat exchangers inside and outside the container, steam contact, a heater, and the like.
- a container jacket heat exchangers inside and outside the container, steam contact, a heater, and the like.
- the method for heating the mixed fluid is also not particularly limited, and for example, it can be heated by a heat exchanger or a heater. From the viewpoint of operability, cost, etc., it is preferable to adjust the temperature to a desired temperature by steam when mixing the inert gas or the like with water.
- the contact time between the mixed fluid and the latex is appropriately set according to the amount of latex, the concentration of residual volatile organic substances in the latex, the scale of the apparatus, etc., but the efficiency and cost of removing the residual volatile organic substances, and the coagulation.
- the time is preferably about 0.5 to 20.0 hours, more preferably 1.0 to 15 hours. It is 0.0 hours, more preferably 1.5 to 12.0 hours.
- chloroprene-based polymer latex 2-Chloro-1,3-butadiene (chloroprene) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 18.2 kg and 2,3-dichloro-1,3-butadiene (Tokyo Kasei Kogyo Co., Ltd.) in a reactor with an internal volume of 60 L.
- the polymerization conversion rate was determined as the ratio of the amount of chloroprene-based polymer produced to the amount of monomer charged.
- the amount of the chloroprene-based polymer produced was the amount obtained by subtracting the solid content (emulsifier, etc.) other than the chloroprene-based polymer from the solid content after the polymerization.
- the solid content other than the chloroprene-based polymer was defined as the amount obtained by subtracting the components other than the monomer that do not volatilize at 140 ° C. from the charged raw materials.
- FIG. 1 shows an outline of the apparatus used in the following Examples and Comparative Examples.
- a separable flask is used as the container 1, and the container 1 is a mixing fluid in which a stirring blade 2 rotated by an external motor (not shown) and a mixed fluid are introduced from the vicinity of the bottom in the container 1.
- the introduction pipe 4, the container 1 is provided with a decompression pipe 5, a thermometer (not shown) and a pressure gauge (not shown).
- a vaporizer and a pressure gauge are connected to the mixed fluid introduction pipe 4.
- the latex 6 was heated by using a water bath, and the decompression in the container 1 was performed by using a diaphragm pump 8 through the decompression pipe 5.
- a mixed fluid of nitrogen gas 9 and water was used as the mixed fluid 3.
- the flow rate of the nitrogen gas 9 was adjusted by the mass flow meter 10.
- pure water 11 was sent to the vaporizer 13 by the liquid feed pump 12, heated by the vaporizer 13, and nitrogen gas 9 was introduced into the vaporizer 13 to prepare the mixed fluid 3.
- the flow rate of water was adjusted by adjusting the amount of pure water 11 sent to the vaporizer 13.
- the temperature of the mixed fluid 3 was adjusted using a tape heater (not shown) wound around the mixed fluid introduction pipe 4.
- the latex 6 is put in the container 1, and the mixed fluid 3 of the nitrogen gas 9 and water is blown into the latex 6 from the mixed fluid introduction pipe 4 while stirring with the stirring blade 2.
- the air pressure (operating pressure) in the container 1 was adjusted through the depressurizing pipe 5.
- Latex 6 500 mL was heated to 40 ° C. and the operating pressure P 1 was reduced to 8.0 kPa.
- Example 2 Examples 2 to 7 and Comparative Examples 1 to 4
- Example 1 the liquid temperature and amount of latex 6, the operating pressure P 1 , the flow rates of nitrogen gas 9 and water, and the temperature TG of the mixed fluid 3 were changed to the test conditions as shown in Table 1 below. However, other than that, each test was carried out in the same manner as in Example 1.
- Comparative Example 1 is a blank when the mixed fluid 3 is not blown (the mixed fluid is not introduced).
- the test was stopped because the mixed fluid introduction pipe 4 was blocked by agglutination about 30 minutes after the start of the test. Further, in Comparative Example 4, since the foaming in the container 1 increased immediately after the start of the test, the test was stopped after 10 minutes.
- thermocouple specified in JIS C 1602: 2015 through an intubation at the measurement site.
- the operating atmospheric pressure was measured with a Pirani digital vacuum gauge (“DVR2pro” manufactured by Vacuum Brand Co., Ltd.).
- Chloroprene which is a residual monomer after the polymerization reaction of the above synthetic example, was regarded as a residual volatile organic substance, and was measured by high performance liquid chromatography under the following measurement conditions.
- the concentration C (t) [mass ppm] of the residual volatile organic substance in the latex 6 after the time t [h] when the removal test was performed is the concentration of the residual volatile organic substance C 0 [mass ppm] before the removal test. ], And with the removal rate constant as k [h -1 ], it was found that the decay was performed according to the following equation (2).
- C (t) C 0 ⁇ exp (-k ⁇ t) (2)
- the removal rate constant k is an index of the removal efficiency of the residual volatile organic substance, and the larger the value, the higher the removal efficiency of the residual volatile organic substance.
- the alkali residue (hydroxide ion amount) A in the latex 6 was determined by neutralization titration with hydrochloric acid, and the amount of decrease (A 0 ⁇ A) from the alkali residue A 0 before the removal test was calculated. It was used as an index of the amount of hydrogen chloride desorbed from the chloroprene-based polymer in latex 6. In the above removal test, the amount of decrease in the alkali residue 6 hours after the start of the test was determined. It can be said that the larger the value of the alkali residue reduction amount, the larger the amount of hydrogen chloride desorbed from the chloroprene-based polymer, and the more the latex is denatured.
- the alkaline residue A is prepared by adding 20 mL of Emargen (registered trademark) 709 (manufactured by Kao Corporation) as a surfactant to 100 g of latex 6 in order to maintain the dispersed state at the time of titration, and then burette.
- Emargen registered trademark
- 709 manufactured by Kao Corporation
- the mixed fluid of nitrogen gas and water is latexed at an operating pressure higher than the saturated water vapor pressure at the latex liquid temperature and at a temperature lower than the boiling point of water at the operating pressure. It was confirmed that the residual volatile organic substance can be efficiently removed without precipitating agglomerates in the latex and the apparatus by introducing the mixture into the latex. Further, in Examples 1, 6 and 7, the amount of decrease in the alkali residue at a temperature of 40 ° C. and a test time of 6 hours of the latex and the mixed fluid was about the same as that of the blank (Comparative Example 1) in which the mixed fluid was not introduced. It can be said that the latex is not significantly denatured by the desorption of hydrogen chloride from the chloroprene-based polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
クロロプレン系重合体ラテックスから、凝集物の析出を抑制しつつ、残留揮発性有機物質を効率よく除去することができるクロロプレン系重合体ラテックスの製造方法を提供する。本発明のクロロプレン系重合体ラテックスの製造方法は、前記ラテックスに含まれる残留揮発性有機物質を揮発させて除去する際に、前記ラテックスに、飽和水蒸気圧より高い気圧下で、不活性ガス及び空気から選ばれる1種以上のガスと、水との混合流体を接触させ、前記混合流体の温度を、前記気圧での水の沸点よりも低い温度とする。
Description
本発明は、残留モノマーや残留有機溶媒等の残留揮発性有機物質を効率的に除去することができるクロロプレン系重合体ラテックスの製造方法に関する。
クロロプレン系重合体ラテックスは、一般に、その製造過程において、ストリッピング工程等を経ることにより、重合反応での未反応モノマー(残留モノマー)等の残留揮発性有機物質の濃度が1質量%以下に低減されている。
しかしながら、近年、揮発性有機物質が環境や人体に及ぼす影響に対する意識が高まり、それに伴って、クロロプレン系重合体ラテックス中の残留揮発性有機物質についても、さらなる低減が求められている。
しかしながら、近年、揮発性有機物質が環境や人体に及ぼす影響に対する意識が高まり、それに伴って、クロロプレン系重合体ラテックス中の残留揮発性有機物質についても、さらなる低減が求められている。
クロロプレン系重合体ラテックスから残留揮発性有機物質を除去する技術としては、加熱蒸発や減圧下での蒸留、水蒸気をラテックスに導入するストリッピング、ラテックスの噴霧による揮発促進等が知られている。
例えば、特許文献1には、重合体ラテックスを循環回路に強制循環させて、外部熱交換器により加熱して、残留モノマーを蒸発除去させる方法が記載されている。
また、特許文献2には、重合物分散液を容器内で垂直(鉛直下方)に放射状に噴霧して、気化したモノマーを前記容器上方から排出させることにより、残留モノマーを低減させる方法が記載されている。
また、特許文献3には、ストリッピング塔内で、ポリクロロプレン分散体に水蒸気を供給し、残留モノマーのクロロプレンを塔頂部から排出させる方法が記載されている。
例えば、特許文献1には、重合体ラテックスを循環回路に強制循環させて、外部熱交換器により加熱して、残留モノマーを蒸発除去させる方法が記載されている。
また、特許文献2には、重合物分散液を容器内で垂直(鉛直下方)に放射状に噴霧して、気化したモノマーを前記容器上方から排出させることにより、残留モノマーを低減させる方法が記載されている。
また、特許文献3には、ストリッピング塔内で、ポリクロロプレン分散体に水蒸気を供給し、残留モノマーのクロロプレンを塔頂部から排出させる方法が記載されている。
上記特許文献1~3に記載されているような方法では、いずれも、クロロプレン系重合体ラテックスは、60℃を超える高温での処理が施されることにより、残留揮発性有機物質が除去される。
しかしながら、クロロプレン系重合体ラテックスを高温で処理すると、水分の蒸発によって凝集物が析出しやすくなり、固形分濃度の低下や、該クロロプレン系重合体ラテックスやガスが流通する配管が閉塞して処理を停止しなければならない等の課題を有していた。このため、クロロプレン系重合体ラテックスの性状を保持しつつ、残留揮発性有機物質を安全に除去するには、高温のクロロプレン系重合体ラテックス中及び処理系内の凝集物を除去する作業を頻繁に行う必要があった。
しかしながら、クロロプレン系重合体ラテックスを高温で処理すると、水分の蒸発によって凝集物が析出しやすくなり、固形分濃度の低下や、該クロロプレン系重合体ラテックスやガスが流通する配管が閉塞して処理を停止しなければならない等の課題を有していた。このため、クロロプレン系重合体ラテックスの性状を保持しつつ、残留揮発性有機物質を安全に除去するには、高温のクロロプレン系重合体ラテックス中及び処理系内の凝集物を除去する作業を頻繁に行う必要があった。
本発明は、上記のような課題を解決するためになされたものであり、クロロプレン系重合体ラテックスから、凝集物の析出を抑制しつつ、残留揮発性有機物質を効率よく除去することができるクロロプレン系重合体ラテックスの製造方法を提供することを目的とする。
本発明は、不活性ガス等と水との混合流体によるストリッピングによれば、例えば60℃以下のような比較的低温でも、クロロプレン系重合体ラテックスから、残留揮発性有機物質を効率よく除去することができ、かつ、凝集物の析出を抑制できることを見出したことに基づくものである。
すなわち、本発明は、以下の[1]~[7]を提供するものである。
[1]クロロプレン系重合体ラテックスの製造方法において、前記ラテックスに含まれる残留揮発性有機物質を揮発させて除去する際に、該ラテックス液温における飽和水蒸気圧より高い気圧下で、前記ラテックスに、不活性ガス及び空気から選ばれる1種以上のガスと、水との混合流体を接触させ、前記混合流体の温度を、前記気圧での水の沸点よりも低い温度とする、クロロプレン系重合体ラテックスの製造方法。
[2]前記混合流体と接触させる前記ラテックスの温度が10~60℃である、上記[1]に記載のクロロプレン系重合体ラテックスの製造方法。
[3]前記ラテックスに接触させる前記混合流体の温度が10~60℃である、上記[1]又は[2]に記載のクロロプレン系重合体ラテックスの製造方法。
[4]前記混合流体を前記ラテックスの液中に吹き込むことにより、前記ラテックスに接触させる、上記[1]~[3]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[5]前記混合流体と接触させる前の前記ラテックスに含まれる残留揮発性有機物質の濃度が、該ラテックスの総質量を基準として150~10000質量ppmである、上記[1]~[4]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[6]前記ラテックスに含まれる残留揮発性有機物質の濃度を、該ラテックスの総質量を基準として150質量ppm未満に低減させる、上記[1]~[5]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[7]前記残留揮発性有機物質が、前記ラテックスの製造における重合反応での残留モノマーである上記[1]~[6]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[1]クロロプレン系重合体ラテックスの製造方法において、前記ラテックスに含まれる残留揮発性有機物質を揮発させて除去する際に、該ラテックス液温における飽和水蒸気圧より高い気圧下で、前記ラテックスに、不活性ガス及び空気から選ばれる1種以上のガスと、水との混合流体を接触させ、前記混合流体の温度を、前記気圧での水の沸点よりも低い温度とする、クロロプレン系重合体ラテックスの製造方法。
[2]前記混合流体と接触させる前記ラテックスの温度が10~60℃である、上記[1]に記載のクロロプレン系重合体ラテックスの製造方法。
[3]前記ラテックスに接触させる前記混合流体の温度が10~60℃である、上記[1]又は[2]に記載のクロロプレン系重合体ラテックスの製造方法。
[4]前記混合流体を前記ラテックスの液中に吹き込むことにより、前記ラテックスに接触させる、上記[1]~[3]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[5]前記混合流体と接触させる前の前記ラテックスに含まれる残留揮発性有機物質の濃度が、該ラテックスの総質量を基準として150~10000質量ppmである、上記[1]~[4]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[6]前記ラテックスに含まれる残留揮発性有機物質の濃度を、該ラテックスの総質量を基準として150質量ppm未満に低減させる、上記[1]~[5]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
[7]前記残留揮発性有機物質が、前記ラテックスの製造における重合反応での残留モノマーである上記[1]~[6]のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
本発明によれば、クロロプレン系重合体ラテックスの製造において、該ラテックスから、凝集物の析出を抑制しつつ、残留揮発性有機物質を効率よく除去することができる。
以下、本発明のクロロプレン系重合体ラテックスの製造方法を詳細に説明する。なお、本発明で言う「除去」とは、少なくとも一部を取り除くことを意味する。
本発明のクロロプレン系重合体ラテックスの製造方法は、クロロプレン系重合体ラテックス(以下、単に、ラテックスとも言う。)に含まれる残留揮発性有機物質を揮発させて除去する際に、前記ラテックスに、該ラテックス液温における飽和水蒸気圧より高い気圧下で、不活性ガス及び空気から選ばれる1種以上のガス(以下、不活性ガス等とも言う。)と、水との混合流体を接触させ、前記混合流体の温度を、前記気圧での水の沸点よりも低い温度とすることを特徴とする。
上記製造方法によれば、不活性ガス等と水との混合流体を、所定の気圧及び温度の条件下で、ラテックスと接触させることにより、凝集物の析出を抑制して、ラテックス中の残留揮発性有機物質を効率よく除去することができる。
上記製造方法によれば、不活性ガス等と水との混合流体を、所定の気圧及び温度の条件下で、ラテックスと接触させることにより、凝集物の析出を抑制して、ラテックス中の残留揮発性有機物質を効率よく除去することができる。
[クロロプレン系重合体ラテックス]
クロロプレン系重合体ラテックスとは、クロロプレン系重合体が水中に安定に分散した乳濁液である。ラテックスの固形分濃度は、安定な分散状態が保持されている限り、特に限定されるものではない。好ましくは40~70質量%であり、より好ましくは42~65質量%、さらに好ましくは45~62質量%である。
なお、本明細書におけるラテックスの固形分濃度は、ラテックスを140℃で25分間加温して乾燥させたときの、乾燥前のラテックスの質量に対する乾燥残分の質量の割合である。
クロロプレン系重合体ラテックスとは、クロロプレン系重合体が水中に安定に分散した乳濁液である。ラテックスの固形分濃度は、安定な分散状態が保持されている限り、特に限定されるものではない。好ましくは40~70質量%であり、より好ましくは42~65質量%、さらに好ましくは45~62質量%である。
なお、本明細書におけるラテックスの固形分濃度は、ラテックスを140℃で25分間加温して乾燥させたときの、乾燥前のラテックスの質量に対する乾燥残分の質量の割合である。
クロロプレン系重合体とは、モノマーとしてクロロプレン(2-クロロ-1,3-ブタジエン)を用いた重合体であり、モノマーがクロロプレンのみである単独重合体でもよく、また、クロロプレンと他のモノマーとの共重合体でもよい。
クロロプレンと共重合する前記他のモノマーは、特に限定されるものではないが、例えば、2,3-ジクロロ-1,3-ブタジエン、ブタジエン、イソプレン、スチレン、アクリロニトリル、アクリル酸及びそのエステル類、メタクリル酸及びそのエステル類等が挙げられる。これらは、1種単独であっても、2種以上が併用されてもよい。
前記共重合体を構成するモノマーは、クロロプレンが主成分であることが好ましく、該共重合体を構成する全モノマーの合計含有量100質量%中、クロロプレンが70.0~99.9質量%であることが好ましく、より好ましくは75.0~99.8質量%、さらに好ましくは80.0~99.7質量%である。
クロロプレンと共重合する前記他のモノマーは、特に限定されるものではないが、例えば、2,3-ジクロロ-1,3-ブタジエン、ブタジエン、イソプレン、スチレン、アクリロニトリル、アクリル酸及びそのエステル類、メタクリル酸及びそのエステル類等が挙げられる。これらは、1種単独であっても、2種以上が併用されてもよい。
前記共重合体を構成するモノマーは、クロロプレンが主成分であることが好ましく、該共重合体を構成する全モノマーの合計含有量100質量%中、クロロプレンが70.0~99.9質量%であることが好ましく、より好ましくは75.0~99.8質量%、さらに好ましくは80.0~99.7質量%である。
なお、本発明におけるクロロプレン系重合体ラテックスの合成方法は、特に限定されるものではなく、本発明の製造方法は、公知の合成方法で得られるクロロプレン系重合体ラテックスに適用することができる。クロロプレン系重合体ラテックスは、例えば、後述する合成例に記載の方法により合成することができる。
[残留揮発性有機物質]
クロロプレン系重合体ラテックスに含まれる残留揮発性有機物質としては、例えば、該ラテックスの製造における重合反応での未反応モノマー(残留モノマー)、該ラテックスの製造過程で使用された有機溶媒(残留有機溶媒)等が挙げられる。
前記残留モノマーは、上述したクロロプレン系重合体を構成するモノマーのうちの未反応モノマーであり、主に、クロロプレン系重合体の主成分であるクロロプレンモノマーである。ラテックスの品質及び性状等を良好に保持する観点から、これらの残留モノマーが除去されることが好ましい。特に、クロロプレンモノマーは、主成分として最も多く含まれ得る残留モノマーであり、ラテックス中から、できる限り除去されることが好ましい。
前記残留有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテル、4-メチルシクロヒドロピラン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン等のケトン系溶媒等が挙げられる。
クロロプレン系重合体ラテックスに含まれる残留揮発性有機物質としては、例えば、該ラテックスの製造における重合反応での未反応モノマー(残留モノマー)、該ラテックスの製造過程で使用された有機溶媒(残留有機溶媒)等が挙げられる。
前記残留モノマーは、上述したクロロプレン系重合体を構成するモノマーのうちの未反応モノマーであり、主に、クロロプレン系重合体の主成分であるクロロプレンモノマーである。ラテックスの品質及び性状等を良好に保持する観点から、これらの残留モノマーが除去されることが好ましい。特に、クロロプレンモノマーは、主成分として最も多く含まれ得る残留モノマーであり、ラテックス中から、できる限り除去されることが好ましい。
前記残留有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテル、4-メチルシクロヒドロピラン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン等のケトン系溶媒等が挙げられる。
前記混合流体と接触させる前のラテックスに含まれる残留揮発性有機物質の濃度は、該ラテックスの総質量を基準として150~10000質量ppmであることが好ましく、より好ましくは175~5000質量ppm、さらに好ましくは200~1000質量ppmである。
本発明は、前記残留揮発性有機物質の濃度が150質量ppm以上である場合に、前記濃度をより低減させるために適用することが有利である。また、前記濃度が10000質量ppm以下であれば、該濃度のさらなる低減を効率よく行うことができる。
本発明は、前記残留揮発性有機物質の濃度が150質量ppm以上である場合に、前記濃度をより低減させるために適用することが有利である。また、前記濃度が10000質量ppm以下であれば、該濃度のさらなる低減を効率よく行うことができる。
本発明によれば、ラテックス中の残留揮発性有機物質が除去され、該残留揮発性有機物質の濃度が低減する。前記残留揮発性有機物質の濃度は、該ラテックスの総質量を基準として、好ましくは150質量ppm未満に低減され、より好ましくは140質量ppm以下、さらに好ましくは100質量ppm以下、よりさらに好ましくは50質量ppm以下に低減される。
[不活性ガス等]
本発明で言う不活性ガス等とは、クロロプレン系重合体ラテックスとの化学反応をほとんど生じないガスであればよく、不活性ガス及び空気から選ばれる。前記不活性ガスとしては、アルゴン等の希ガス、窒素ガスが挙げられる。空気は、大気でもよいが、より反応性が低いものとして、二酸化炭素等の酸性ガスを含まないことが好ましく、酸素ガス及び窒素ガスが人工的に混合された合成空気がより好ましい。
前記不活性ガス等は、1種単独でもよく、2種以上を併用してもよい。これらのうち、取り扱い容易性やコスト等の観点から、窒素ガス及び/又は空気が好ましい。
本発明で言う不活性ガス等とは、クロロプレン系重合体ラテックスとの化学反応をほとんど生じないガスであればよく、不活性ガス及び空気から選ばれる。前記不活性ガスとしては、アルゴン等の希ガス、窒素ガスが挙げられる。空気は、大気でもよいが、より反応性が低いものとして、二酸化炭素等の酸性ガスを含まないことが好ましく、酸素ガス及び窒素ガスが人工的に混合された合成空気がより好ましい。
前記不活性ガス等は、1種単独でもよく、2種以上を併用してもよい。これらのうち、取り扱い容易性やコスト等の観点から、窒素ガス及び/又は空気が好ましい。
[混合流体]
前記ラテックスに接触させる混合流体は、前記不活性ガス等と水との混合流体である。なお、前記混合流体における「水」には、液体も気体(水蒸気)も含まれる。
水(水蒸気)のみをラテックスに接触させる従来のストリッピングでは、ラテックスに接触させる際の水及びラテックスの温度を水の沸点に近づくか超えるよう高温にする必要があり、凝集物が析出しやすくなる。
一方、不活性ガス等のみをラテックスに接触させた場合、ラテックス中の水分が不活性ガス等の雰囲気中に蒸発して、凝集物が析出しやすくなる。この場合に凝集物が析出する要因としては、不活性ガス等と接触するラテックス表面の局所的な乾燥によるラテックス粒子のミセルの不安定化や破壊等が考えられる。
このため、本発明においては、不活性ガス等を接触させて凝集物の析出を抑制するのに際し、不活性ガス等と接触するラテックス表面を乾燥させない程度に、不活性ガス等とともに、水をラテックスに接触させる。
前記ラテックスに接触させる混合流体は、前記不活性ガス等と水との混合流体である。なお、前記混合流体における「水」には、液体も気体(水蒸気)も含まれる。
水(水蒸気)のみをラテックスに接触させる従来のストリッピングでは、ラテックスに接触させる際の水及びラテックスの温度を水の沸点に近づくか超えるよう高温にする必要があり、凝集物が析出しやすくなる。
一方、不活性ガス等のみをラテックスに接触させた場合、ラテックス中の水分が不活性ガス等の雰囲気中に蒸発して、凝集物が析出しやすくなる。この場合に凝集物が析出する要因としては、不活性ガス等と接触するラテックス表面の局所的な乾燥によるラテックス粒子のミセルの不安定化や破壊等が考えられる。
このため、本発明においては、不活性ガス等を接触させて凝集物の析出を抑制するのに際し、不活性ガス等と接触するラテックス表面を乾燥させない程度に、不活性ガス等とともに、水をラテックスに接触させる。
前記混合流体中の水の量は、ラテックスの組成や固形分濃度等によって異なるため、一概には決められないが、例えば、標準状態(0℃、101.3kPa)における窒素流量と水流量の容積比にて定めることができる。
窒素流量と水流量の容積比(N2流量/H2O流量)は、ラテックスからの凝集物の析出抑制の観点から、0.05~1.00であることが好ましく、より好ましくは0.10~0.75、さらに好ましくは0.15~0.50である。
窒素流量と水流量の容積比(N2流量/H2O流量)は、ラテックスからの凝集物の析出抑制の観点から、0.05~1.00であることが好ましく、より好ましくは0.10~0.75、さらに好ましくは0.15~0.50である。
前記混合流体の温度は、残留揮発性有機物質を揮発させて効率よく除去するためには、高温であることが好ましいが、一方で、ラテックスから凝集物が析出しないようにする観点からは、できるだけ低温であることが好ましい。
本発明では、前記混合流体を、該ラテックス液温における飽和水蒸気圧より高い気圧下で、該気圧での水の沸点よりも低い温度でラテックスに接触させることにより、従来よりも低い処理温度で、残留揮発性有機物質を効率よく除去することができる。
本発明では、前記混合流体を、該ラテックス液温における飽和水蒸気圧より高い気圧下で、該気圧での水の沸点よりも低い温度でラテックスに接触させることにより、従来よりも低い処理温度で、残留揮発性有機物質を効率よく除去することができる。
前記混合流体をラテックスに接触させる際の該混合流体の気圧が、該ラテックス液温における飽和水蒸気圧よりも低い場合、水が沸騰することによって、ラテックス表面が局所的に乾燥し、凝集物が析出しやすくなる。ただし、残留揮発性有機物質の除去操作に要する時間が長くなりすぎないようにする観点からは、前記混合流体の気圧が該ラテックス液温における飽和水蒸気圧よりも高すぎないことが好ましい。
前記混合流体の気圧が飽和水蒸気圧よりも高く、両者の気圧差が0.1~30.0kPaであることが好ましく、より好ましくは0.2~20.0kPaであり、さらに好ましくは0.3~10.0kPaである。
前記混合流体の気圧が飽和水蒸気圧よりも高く、両者の気圧差が0.1~30.0kPaであることが好ましく、より好ましくは0.2~20.0kPaであり、さらに好ましくは0.3~10.0kPaである。
前記混合流体をラテックスに接触させる際の該混合流体の温度が、接触させる際の気圧での水の沸点よりも高い場合、ラテックス中の水分が局所的に蒸発しやすくなり、凝集物が析出しやすくなる。ただし、残留揮発性有機物質の除去操作に要する時間が長くなりすぎないようにする観点からは、前記混合流体の温度が、接触させる際の気圧での水の沸点よりも低すぎないことが好ましい。
前記混合流体をラテックスに接触させる際の該混合流体の温度が、接触させる際の気圧での水の沸点よりも低く、両者の温度差が0.5~50.0℃であること好ましく、より好ましくは1.0~30.0℃、さらに好ましくは1.2~10.0℃である。
前記混合流体をラテックスに接触させる際の該混合流体の温度が、接触させる際の気圧での水の沸点よりも低く、両者の温度差が0.5~50.0℃であること好ましく、より好ましくは1.0~30.0℃、さらに好ましくは1.2~10.0℃である。
なお、クロロプレン系重合体ラテックスの温度は、高いほど、重合体中の塩素原子が経時的に塩化水素として脱離しやすく、pHの低下による分散状態の不安定化や、架橋点の減少によって、変性や品質の低下を生じやすくなる。塩化水素の脱離の進行の程度は、ほぼ温度にのみ依存すると考えられる。
このため、前記重合体からの塩化水素の脱離を抑制する観点から、前記ラテックスの温度は低くすることが好ましい。
前記塩化水素の脱離量は、ラテックス中の塩素イオン濃度やpH、アルカリ残分(水酸化物イオン)の濃度等の変化を指標として、確認することができる。
このため、前記重合体からの塩化水素の脱離を抑制する観点から、前記ラテックスの温度は低くすることが好ましい。
前記塩化水素の脱離量は、ラテックス中の塩素イオン濃度やpH、アルカリ残分(水酸化物イオン)の濃度等の変化を指標として、確認することができる。
前記混合流体と接触させるラテックスの温度は、10~60℃に保持することが好ましく、より好ましくは20~55℃、さらに好ましくは30~50℃である。
また、ラテックスに接触させる前記混合流体の温度は、10~60℃であることが好ましく、より好ましくは20~55℃、さらに好ましくは30~50℃である。
残留揮発性有機物質の除去操作における温度制御の容易性の観点からは、前記ラテックスの温度と前記混合流体の温度は、同等程度とすることが好ましい。
また、ラテックスに接触させる前記混合流体の温度は、10~60℃であることが好ましく、より好ましくは20~55℃、さらに好ましくは30~50℃である。
残留揮発性有機物質の除去操作における温度制御の容易性の観点からは、前記ラテックスの温度と前記混合流体の温度は、同等程度とすることが好ましい。
[方法・装置]
前記混合流体をラテックスに接触させる方法及び装置は、特に限定されるものではなく、上記の気圧及び温度の条件でラテックス中の残留揮発性有機物質の除去操作を行うことができるものであればよい。例えば、配管内でのミキシング、タンク等の容器内への混合流体の吹き込み、ストリッピング塔を用いた向流接触等の方法が挙げられる。これらのうち、装置のメンテナンスや増設のしやすさ、コスト等の観点から、容器内への混合流体の吹き込みが好ましい。この場合、ラテックスに満遍なく、効率的に前記混合流体を接触させる観点から、前記混合流体をラテックスの液中に吹き込む、いわゆるバブリングを行うことが好ましい。その際、ラテックスを撹拌することが好ましい。
なお、本発明の製造方法においては、ラテックスからの凝集物の析出を抑制するという本発明の効果を妨げない範囲内であれば、ラテックス中の残留揮発性有機物質を除去するために、例えば、蒸留や吸着、噴霧等の他の方法を併用してもよい。
前記混合流体をラテックスに接触させる方法及び装置は、特に限定されるものではなく、上記の気圧及び温度の条件でラテックス中の残留揮発性有機物質の除去操作を行うことができるものであればよい。例えば、配管内でのミキシング、タンク等の容器内への混合流体の吹き込み、ストリッピング塔を用いた向流接触等の方法が挙げられる。これらのうち、装置のメンテナンスや増設のしやすさ、コスト等の観点から、容器内への混合流体の吹き込みが好ましい。この場合、ラテックスに満遍なく、効率的に前記混合流体を接触させる観点から、前記混合流体をラテックスの液中に吹き込む、いわゆるバブリングを行うことが好ましい。その際、ラテックスを撹拌することが好ましい。
なお、本発明の製造方法においては、ラテックスからの凝集物の析出を抑制するという本発明の効果を妨げない範囲内であれば、ラテックス中の残留揮発性有機物質を除去するために、例えば、蒸留や吸着、噴霧等の他の方法を併用してもよい。
前記混合流体をラテックスに接触させる際のラテックスの加温方法は、特に限定されるものではない。例えば、容器のジャケット、容器内外の熱交換器、水蒸気接触、ヒーター等によって加温することができる。過度な温度上昇を抑制する観点から、容器のジャケット又は/及び容器外の熱交換器にて温水により加温することが好ましい。
前記混合流体の加温方法も、特に限定されるものではなく、例えば、熱交換器やヒーターによって加温することができる。操作容易性やコスト等の観点から、不活性ガス等と水とを混合する際に、水蒸気により、所望の温度に調整することが好ましい。
前記混合流体の加温方法も、特に限定されるものではなく、例えば、熱交換器やヒーターによって加温することができる。操作容易性やコスト等の観点から、不活性ガス等と水とを混合する際に、水蒸気により、所望の温度に調整することが好ましい。
前記混合流体とラテックスとの接触時間は、ラテックスの量やラテックス中の残留揮発性有機物質の濃度、装置規模等に応じて適宜設定されるが、残留揮発性有機物質の除去効率やコスト、凝集体の析出の抑制、加温によるクロロプレン系重合体からの塩化水素の脱離の抑制等の観点から、0.5~20.0時間程度であることが好ましく、より好ましくは1.0~15.0時間、さらに好ましくは1.5~12.0時間である。
以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
[クロロプレン系重合体ラテックスの合成例]
内容積60Lの反応器に、モノマーとして2-クロロ-1,3-ブタジエン(クロロプレン)(東京化成工業株式会社製)18.2kg及び2,3-ジクロロ-1,3-ブタジエン(東京化成工業株式会社製)1.8kgと、純水18kgと、不均化ロジン酸(荒川化学工業株式会社製、「R-300」)860gと、n-ドデシルメルカプタン(東京化成工業株式会社製)20.0gと、水酸化カリウム(純正化学工業株式会社製)240gと、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)160gとを仕込んだ。
これらの仕込み原料を乳化させて、不均化ロジン酸をロジン石鹸とした後、開始剤として過硫酸カリウム(三菱ガス化学株式会社製)を加えて、窒素雰囲気下、40℃で重合を行った。重合転化率が88.1%に達したところで、直ちにフェノチアジンの乳濁液を添加して重合を停止した。
次いで、水蒸気蒸留にて残留モノマーの除去処理を行い、クロロプレン系重合体ラテックス(固形分濃度59質量%)を得た。
内容積60Lの反応器に、モノマーとして2-クロロ-1,3-ブタジエン(クロロプレン)(東京化成工業株式会社製)18.2kg及び2,3-ジクロロ-1,3-ブタジエン(東京化成工業株式会社製)1.8kgと、純水18kgと、不均化ロジン酸(荒川化学工業株式会社製、「R-300」)860gと、n-ドデシルメルカプタン(東京化成工業株式会社製)20.0gと、水酸化カリウム(純正化学工業株式会社製)240gと、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)160gとを仕込んだ。
これらの仕込み原料を乳化させて、不均化ロジン酸をロジン石鹸とした後、開始剤として過硫酸カリウム(三菱ガス化学株式会社製)を加えて、窒素雰囲気下、40℃で重合を行った。重合転化率が88.1%に達したところで、直ちにフェノチアジンの乳濁液を添加して重合を停止した。
次いで、水蒸気蒸留にて残留モノマーの除去処理を行い、クロロプレン系重合体ラテックス(固形分濃度59質量%)を得た。
なお、前記固形分濃度は、重合後のラテックスを採取して質量M1を測定し、また、この採取したラテックスを140℃で25分乾燥した後の固形分の質量M2を測定し、下記式より求めた。
固形分濃度[質量%]=M2/M1×100
固形分濃度[質量%]=M2/M1×100
また、重合転化率は、モノマー仕込み量に対するクロロプレン系重合体の生成量の割合として求めた。なお、クロロプレン系重合体の生成量は、重合後の固形分からクロロプレン系重合体以外の固形分(乳化剤等)を差し引いた量とした。前記クロロプレン系重合体以外の固形分は、前記仕込み原料から、前記モノマー以外に140℃で揮発しない成分を差し引いた量とした。
[ラテックス中の残留揮発性有機物質の除去試験]
上記合成例で得られたクロロプレン系重合体ラテックスを用いて、残留揮発性有機物質の除去試験を実施した。
図1に、下記実施例及び比較例で用いた装置の概略を示す。図1に示す装置においては、容器1としてセパラブルフラスコを用い、該容器1は、外部モーター(図示せず)によって回転する撹拌翼2、容器1内の底部近傍から混合流体を導入する混合流体導入管4、容器1上部に減圧用配管5、温度計(図示せず)及び圧力計(図示せず)を備えている。
混合流体導入管4には、気化器及び圧力計が接続されている。ラテックス6の加温はウォーターバスを用いて行い、また、容器1内の減圧は、減圧用配管5を通じて、ダイアフラムポンプ8を用いて行った。
混合流体3としては、窒素ガス9及び水の混合流体を用いた。窒素ガス9の流量は、マスフローメーター10で調整した。水は、純水11を送液ポンプ12で気化器13へ送り、気化器13で加熱し、気化器13に窒素ガス9を導入して混合流体3とした。水の流量は、気化器13へ送る純水11の量を調節することにより調整した。混合流体3の温度は、混合流体導入管4に巻いたテープヒーター(図示せず)を用いて調節した。
上記合成例で得られたクロロプレン系重合体ラテックスを用いて、残留揮発性有機物質の除去試験を実施した。
図1に、下記実施例及び比較例で用いた装置の概略を示す。図1に示す装置においては、容器1としてセパラブルフラスコを用い、該容器1は、外部モーター(図示せず)によって回転する撹拌翼2、容器1内の底部近傍から混合流体を導入する混合流体導入管4、容器1上部に減圧用配管5、温度計(図示せず)及び圧力計(図示せず)を備えている。
混合流体導入管4には、気化器及び圧力計が接続されている。ラテックス6の加温はウォーターバスを用いて行い、また、容器1内の減圧は、減圧用配管5を通じて、ダイアフラムポンプ8を用いて行った。
混合流体3としては、窒素ガス9及び水の混合流体を用いた。窒素ガス9の流量は、マスフローメーター10で調整した。水は、純水11を送液ポンプ12で気化器13へ送り、気化器13で加熱し、気化器13に窒素ガス9を導入して混合流体3とした。水の流量は、気化器13へ送る純水11の量を調節することにより調整した。混合流体3の温度は、混合流体導入管4に巻いたテープヒーター(図示せず)を用いて調節した。
上記のような構成を備えた装置で、容器1内にラテックス6を入れ、撹拌翼2で撹拌しながら、窒素ガス9と水との混合流体3を混合流体導入管4からラテックス6に吹き込み、減圧用配管5を通じて、容器1内の気圧(操作気圧)を調節した。
(実施例1)
ラテックス6 500mLを40℃に加温して、操作気圧P1を8.0kPaに減圧した。窒素ガス9(N2;流量5.2mL/min(標準状態:0℃、101.3kPa))及び水(H2O;流量34.5mL/min(標準状態))の混合流体3を、温度TGを40℃として、ラテックス6に吹き込んだ。
ラテックス6 500mLを40℃に加温して、操作気圧P1を8.0kPaに減圧した。窒素ガス9(N2;流量5.2mL/min(標準状態:0℃、101.3kPa))及び水(H2O;流量34.5mL/min(標準状態))の混合流体3を、温度TGを40℃として、ラテックス6に吹き込んだ。
(実施例2~7及び比較例1~4)
実施例1において、ラテックス6の液温及び液量、操作気圧P1、窒素ガス9及び水の流量、並びに混合流体3の温度TGのそれぞれを、下記表1に示すような試験条件に変更し、それ以外は実施例1と同様にして各試験を実施した。
実施例1において、ラテックス6の液温及び液量、操作気圧P1、窒素ガス9及び水の流量、並びに混合流体3の温度TGのそれぞれを、下記表1に示すような試験条件に変更し、それ以外は実施例1と同様にして各試験を実施した。
比較例1は、混合流体3を吹き込まなかった場合(混合流体未導入)のブランクである。
比較例2では、試験開始から約30分後に混合流体導入管4が凝集物により閉塞したため、試験を中止した。
また、比較例4では、試験開始直後から容器1内での発泡が増大したため、10分後に試験を中止した。
比較例2では、試験開始から約30分後に混合流体導入管4が凝集物により閉塞したため、試験を中止した。
また、比較例4では、試験開始直後から容器1内での発泡が増大したため、10分後に試験を中止した。
[各種分析評価]
上記実施例及び比較例で実施した各試験について、下記の各項目についての分析評価を行った。これらの分析評価結果を、下記表1にまとめて示す。なお、表1における「-」との表記は、未測定であることを示している。
上記実施例及び比較例で実施した各試験について、下記の各項目についての分析評価を行った。これらの分析評価結果を、下記表1にまとめて示す。なお、表1における「-」との表記は、未測定であることを示している。
(温度)
温度は、測定部位に内挿管を通して、JIS C 1602:2015に規定されるK熱電対にて測定した。
温度は、測定部位に内挿管を通して、JIS C 1602:2015に規定されるK熱電対にて測定した。
(操作気圧)
操作気圧は、ピラニー式デジタル真空計(バキューブランド株式会社製、「DVR2pro」)にて測定した。
操作気圧は、ピラニー式デジタル真空計(バキューブランド株式会社製、「DVR2pro」)にて測定した。
(残留揮発性有機物質の定量)
上記合成例の重合反応後の残留モノマーであるクロロプレンを残留揮発性有機物質とみなして、高速液体クロマトグラフィーにより、以下の測定条件で測定した。
<測定条件>
・測定試料:ラテックス0.1gにシクロヘキサン(純正化学株式会社製)20gを添加混合して得られたクロロプレンの抽出液と、プロピオン酸ブチルを100倍(質量基準)のシクロヘキサンで希釈した溶液とを、質量比9:1で混合して調製したもの
・測定機器:高速液体クロマトグラフ;株式会社島津製作所製、「Prominence(登録商標)」
・検出器:UV 220nm
・カラム:昭和電工株式会社製、「Shodex(登録商標) Asahipak(登録商標) ODP-50 4D」
・カラム温度:40℃
・溶離液:アセトニトリル/水=6/4(体積比)
・流速:0.8mL/min
・注入量:10μL
・内部標準物質:プロピオン酸ブチル
上記合成例の重合反応後の残留モノマーであるクロロプレンを残留揮発性有機物質とみなして、高速液体クロマトグラフィーにより、以下の測定条件で測定した。
<測定条件>
・測定試料:ラテックス0.1gにシクロヘキサン(純正化学株式会社製)20gを添加混合して得られたクロロプレンの抽出液と、プロピオン酸ブチルを100倍(質量基準)のシクロヘキサンで希釈した溶液とを、質量比9:1で混合して調製したもの
・測定機器:高速液体クロマトグラフ;株式会社島津製作所製、「Prominence(登録商標)」
・検出器:UV 220nm
・カラム:昭和電工株式会社製、「Shodex(登録商標) Asahipak(登録商標) ODP-50 4D」
・カラム温度:40℃
・溶離液:アセトニトリル/水=6/4(体積比)
・流速:0.8mL/min
・注入量:10μL
・内部標準物質:プロピオン酸ブチル
除去試験を実施した時間t[h]後におけるラテックス6中の残留揮発性有機物質の濃度C(t)[質量ppm]は、除去試験前の残留揮発性有機物質の濃度をC0[質量ppm]、及び除去速度定数をk[h-1]として、下記式(2)に従って減衰することが認められた。
C(t)=C0・exp(-k・t) (2)
除去速度定数kは、残留揮発性有機物質の除去効率の指標であり、値が大きいほど、残留揮発性有機物質の除去効率が高いことを示している。
C(t)=C0・exp(-k・t) (2)
除去速度定数kは、残留揮発性有機物質の除去効率の指標であり、値が大きいほど、残留揮発性有機物質の除去効率が高いことを示している。
(凝集物の有無)
除去試験後のラテックス6中における凝集物の析出の有無、また、容器1の内壁、撹拌翼2、及び混合流体導入管4における凝集物の付着の有無を目視で確認した。
除去試験後のラテックス6中における凝集物の析出の有無、また、容器1の内壁、撹拌翼2、及び混合流体導入管4における凝集物の付着の有無を目視で確認した。
(アルカリ残分減少量)
塩酸による中和滴定により、ラテックス6中のアルカリ残分(水酸化物イオン量)Aを求め、除去試験前のアルカリ残分A0からの減少量(A0-A)を算出して、該ラテックス6中のクロロプレン系重合体からの塩化水素の脱離量の指標とした。上記除去試験においては、試験開始から6時間後のアルカリ残分減少量を求めた。
前記アルカリ残分減少量の値が大きいほど、クロロプレン系重合体からの塩化水素の脱離量が多く、ラテックスの変性が進んでいると言える。
塩酸による中和滴定により、ラテックス6中のアルカリ残分(水酸化物イオン量)Aを求め、除去試験前のアルカリ残分A0からの減少量(A0-A)を算出して、該ラテックス6中のクロロプレン系重合体からの塩化水素の脱離量の指標とした。上記除去試験においては、試験開始から6時間後のアルカリ残分減少量を求めた。
前記アルカリ残分減少量の値が大きいほど、クロロプレン系重合体からの塩化水素の脱離量が多く、ラテックスの変性が進んでいると言える。
アルカリ残分Aは、具体的には、ラテックス6 100gに、滴定時の分散状態を保持するために、界面活性物質としてエマルゲン(登録商標)709(花王株式会社製)を20mL加えた後、ビュレットを用いて、0.5mol/Lの塩酸(ファクター:f)をpH10.5(第一中和点)となるまで滴下し、この滴下量D[mL]から、下記式(3)より求めた。
A[mmol/100g]=f・D・0.5 (3)
A[mmol/100g]=f・D・0.5 (3)
表1に示した結果から分かるように、窒素ガスと水との混合流体を、ラテックス液温における飽和水蒸気圧よりも高い操作気圧下で、前記操作気圧での水の沸点よりも低い温度でラテックスに導入することにより、該ラテックス及び装置内で凝集物が析出することなく、残留揮発性有機物質を効率よく除去できることが認められた。
また、ラテックス及び混合流体の温度40℃、試験時間6時間でのアルカリ残分減少量が、実施例1、6及び7においては、混合流体を未導入のブランク(比較例1)と同等程度もしくはそれ以下であり、クロロプレン系重合体からの塩化水素の脱離によってラテックスが著しく変性することはないと言える。
また、ラテックス及び混合流体の温度40℃、試験時間6時間でのアルカリ残分減少量が、実施例1、6及び7においては、混合流体を未導入のブランク(比較例1)と同等程度もしくはそれ以下であり、クロロプレン系重合体からの塩化水素の脱離によってラテックスが著しく変性することはないと言える。
混合流体の温度TGが操作気圧での水の沸点TBよりも高い場合(比較例3:TG-TB>0)は、残留揮発性有機物質の除去効率が高いものの、ラテックス中に凝集物が析出した。また、アルカリ残分減少量が、混合流体未導入のブランク(比較例1)に比べて著しく多く、クロロプレン系重合体からの塩化水素の脱離によるラテックスの変性が著しいと言える。
また、操作気圧P1とラテックス液温での飽和水蒸気圧Psが等しい場合(比較例4:P1-PS=0)は、上述したように、発泡が増大したため試験を中止したが、容器内壁への凝集物の付着も確認された。
また、操作気圧P1とラテックス液温での飽和水蒸気圧Psが等しい場合(比較例4:P1-PS=0)は、上述したように、発泡が増大したため試験を中止したが、容器内壁への凝集物の付着も確認された。
1 容器
2 撹拌翼
3 混合流体
4 混合流体導入管
5 減圧用配管
6 ラテックス
7 ウォーターバス
8 ダイアフラムポンプ
9 窒素ガス
10 マスフローコントローラー
11 純水
12 送液ポンプ
13 気化器
2 撹拌翼
3 混合流体
4 混合流体導入管
5 減圧用配管
6 ラテックス
7 ウォーターバス
8 ダイアフラムポンプ
9 窒素ガス
10 マスフローコントローラー
11 純水
12 送液ポンプ
13 気化器
Claims (7)
- クロロプレン系重合体ラテックスの製造方法において、
前記ラテックスに含まれる残留揮発性有機物質を揮発させて除去する際に、該ラテックス液温における飽和水蒸気圧より高い気圧下で、前記ラテックスに、不活性ガス及び空気から選ばれる1種以上のガスと、水との混合流体を接触させ、
前記混合流体の温度を、前記気圧での水の沸点よりも低い温度とする、クロロプレン系重合体ラテックスの製造方法。 - 前記混合流体と接触させる前記ラテックスの温度が10~60℃である、請求項1に記載のクロロプレン系重合体ラテックスの製造方法。
- 前記ラテックスに接触させる前記混合流体の温度が10~60℃である、請求項1又は2に記載のクロロプレン系重合体ラテックスの製造方法。
- 前記混合流体を前記ラテックスの液中に吹き込むことにより、前記ラテックスに接触させる、請求項1~3のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
- 前記混合流体と接触させる前の前記ラテックスに含まれる残留揮発性有機物質の濃度が、該ラテックスの総質量を基準として150~10000質量ppmである、請求項1~4のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
- 前記ラテックスに含まれる残留揮発性有機物質の濃度を、該ラテックスの総質量を基準として150質量ppm未満に低減させる、請求項1~5のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
- 前記残留揮発性有機物質が、前記ラテックスの製造における重合反応での残留モノマーである、請求項1~6のいずれか1項に記載のクロロプレン系重合体ラテックスの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/612,674 US11891470B2 (en) | 2019-05-31 | 2020-05-13 | Method for producing chloroprene-based-polymer latex |
CN202080038644.3A CN113874403B (zh) | 2019-05-31 | 2020-05-13 | 氯丁二烯系聚合物胶乳的制造方法 |
JP2021522188A JP7459871B2 (ja) | 2019-05-31 | 2020-05-13 | クロロプレン系重合体ラテックスの製造方法 |
EP20813209.2A EP3978538A4 (en) | 2019-05-31 | 2020-05-13 | PROCESS FOR MANUFACTURING CHLOROPRENE-BASED POLYMER LATEX |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019103105 | 2019-05-31 | ||
JP2019-103105 | 2019-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241251A1 true WO2020241251A1 (ja) | 2020-12-03 |
Family
ID=73553423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019042 WO2020241251A1 (ja) | 2019-05-31 | 2020-05-13 | クロロプレン系重合体ラテックスの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11891470B2 (ja) |
EP (1) | EP3978538A4 (ja) |
JP (1) | JP7459871B2 (ja) |
CN (1) | CN113874403B (ja) |
WO (1) | WO2020241251A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111878A (en) * | 1974-07-19 | 1976-01-30 | Kureha Chemical Ind Co Ltd | Ratetsukusuyori mihannomonomaano jokyohoho |
JPS5641212A (en) * | 1979-09-12 | 1981-04-17 | Denki Kagaku Kogyo Kk | Treatment of polymer emulsion |
JP2010537011A (ja) * | 2007-08-24 | 2010-12-02 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | 低粘性の接着性ポリマー水性分散体 |
JP2012524132A (ja) * | 2009-04-17 | 2012-10-11 | ランクセス・ドイチュランド・ゲーエムベーハー | ポリクロロプレンに基づくポリマー分散体を生産するプロセス、および、ポリクロロプレンに基づくポリマー分散体を生産する装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017355A (en) * | 1970-12-18 | 1977-04-12 | Nippon Oil Company Ltd. | Process for treating latices |
US3930931A (en) * | 1973-03-26 | 1976-01-06 | The General Tire & Rubber Company | Apparatus and method for stripping styrene from an aqueous dispersion of styrene-butadiene polymer latex |
DE2435704C3 (de) | 1974-07-25 | 1987-06-19 | Hoechst Ag, 6230 Frankfurt | Verfahren und Vorrichtung zur kontinuierlichen Entfernung von Restgehalten an Monomeren aus wäßrigen Dispersionen von Polymerisaten des Vinylchlorids |
US4130527A (en) | 1977-12-29 | 1978-12-19 | Stauffer Chemical Company | Method of treating a polymer latex to remove unreacted monomer by treatment in a column |
JP2003147016A (ja) | 2001-11-09 | 2003-05-21 | Nippon Zeon Co Ltd | 重合体ラテックスの残留モノマー除去方法 |
JP4509663B2 (ja) * | 2004-06-17 | 2010-07-21 | 株式会社イーテック | セメント混和材およびセメント組成物 |
US8211987B2 (en) * | 2010-04-13 | 2012-07-03 | Basf Se | Deodorization of polymer compositions |
JP5641212B2 (ja) | 2010-09-28 | 2014-12-17 | Toto株式会社 | 暖房便座装置 |
EP2636441A1 (en) * | 2012-03-07 | 2013-09-11 | Dow Global Technologies LLC | Membrane stripping process for removing volatile organic compounds from a latex |
-
2020
- 2020-05-13 JP JP2021522188A patent/JP7459871B2/ja active Active
- 2020-05-13 EP EP20813209.2A patent/EP3978538A4/en active Pending
- 2020-05-13 WO PCT/JP2020/019042 patent/WO2020241251A1/ja unknown
- 2020-05-13 CN CN202080038644.3A patent/CN113874403B/zh active Active
- 2020-05-13 US US17/612,674 patent/US11891470B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111878A (en) * | 1974-07-19 | 1976-01-30 | Kureha Chemical Ind Co Ltd | Ratetsukusuyori mihannomonomaano jokyohoho |
JPS5641212A (en) * | 1979-09-12 | 1981-04-17 | Denki Kagaku Kogyo Kk | Treatment of polymer emulsion |
JP2010537011A (ja) * | 2007-08-24 | 2010-12-02 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | 低粘性の接着性ポリマー水性分散体 |
JP2012524132A (ja) * | 2009-04-17 | 2012-10-11 | ランクセス・ドイチュランド・ゲーエムベーハー | ポリクロロプレンに基づくポリマー分散体を生産するプロセス、および、ポリクロロプレンに基づくポリマー分散体を生産する装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3978538A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20220242979A1 (en) | 2022-08-04 |
EP3978538A4 (en) | 2023-05-31 |
JPWO2020241251A1 (ja) | 2020-12-03 |
US11891470B2 (en) | 2024-02-06 |
CN113874403A (zh) | 2021-12-31 |
CN113874403B (zh) | 2024-05-10 |
EP3978538A1 (en) | 2022-04-06 |
JP7459871B2 (ja) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100344137B1 (ko) | 수소화고무의제조방법 | |
CA2091128C (en) | Removal of organic volatiles from polymer solutions and dispersions | |
US5516818A (en) | Method for removing small amounts of high boiling point organic compound from aqueous polymerization products | |
FI59604B (fi) | Saett att genom upphettning avlaegsna restmonomer fraon akrylnitrilpolymerer | |
WO2020241251A1 (ja) | クロロプレン系重合体ラテックスの製造方法 | |
US2462013A (en) | Stripping of emulsion polymerization latcies | |
KR20230080419A (ko) | 히드록시-관능화된 폴리부타디엔의 제조 방법 | |
JP5002930B2 (ja) | 低臭気エマルションの製造方法 | |
JPWO2013084671A1 (ja) | 変性重合体及びその水素付加物の製造方法 | |
US4061849A (en) | Process for the recovery of gaseous or vaporous monomers from reaction off-gases | |
CN106660925B (zh) | 用于回收羧酸的方法和木材处理方法 | |
JPS6274908A (ja) | 金属腐蝕性が小さいゴム状重合体の製造方法 | |
US3280085A (en) | Purification of monomers | |
EP3945075A1 (en) | Process for removal of fluoroorganic compounds from emulsions | |
JPS606364B2 (ja) | Abs樹脂の改善された製法 | |
CN114149519B (zh) | 一种聚合物的凝聚方法 | |
CN114316095B (zh) | 一种聚合物的凝聚方法 | |
JP6053435B2 (ja) | ブタジエン及びその製造方法 | |
JP2001081127A (ja) | 塩化ビニル系ペースト樹脂ラテックスの消泡方法 | |
RU2717508C1 (ru) | Способ извлечения йода | |
JP2002363204A (ja) | 重合方法およびジエン系重合体の製造方法 | |
KR20220026727A (ko) | 중합체 제조방법 | |
JP4867234B2 (ja) | 高粘度低臭気エマルションの製造方法 | |
US3052645A (en) | Process for separating unreacted polymerizable material from diene polymer latex in the presence of a long chain aliphatic alcohol | |
JPH11116616A (ja) | 未反応単量体の回収方法および回収装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021522188 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020813209 Country of ref document: EP Effective date: 20220103 |