[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020240892A1 - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
WO2020240892A1
WO2020240892A1 PCT/JP2019/047381 JP2019047381W WO2020240892A1 WO 2020240892 A1 WO2020240892 A1 WO 2020240892A1 JP 2019047381 W JP2019047381 W JP 2019047381W WO 2020240892 A1 WO2020240892 A1 WO 2020240892A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
blade
flute groove
groove
flute
Prior art date
Application number
PCT/JP2019/047381
Other languages
French (fr)
Japanese (ja)
Inventor
孝政 遠藤
昌之 高野
千田 聡
Original Assignee
日進工具株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日進工具株式会社 filed Critical 日進工具株式会社
Publication of WO2020240892A1 publication Critical patent/WO2020240892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft

Definitions

  • the present invention relates to a cutting tool including an end mill in which a bottom blade is formed on the tip surface of a tool body and an outer peripheral blade is formed on the outer peripheral surface.
  • a square end mill is used for cutting high-precision dies and parts.
  • This square end mill is used as a cutting tool for cutting difficult-to-cut materials such as stainless steel, titanium alloys, and heat-resistant alloys. While rotating this end mill at high speed, it is fed laterally to perform shoulder cutting and grooving, or it is fed in the direction of the central axis to make a cut in the work and perform drilling. At that time, since chips are continuously generated and travel in the chip discharge groove, the surface of the chip discharge groove is easily scratched and clogged, and the outer peripheral blade and the bottom blade are likely to be chipped or the tool body is easily broken. ..
  • Patent Document 1 As an end mill having improved chip evacuation in lateral feed processing, for example, the one described in Patent Document 1 has been proposed.
  • four first bottom blades are formed on the tip surface of the tool body, and chip discharge grooves are spirally formed on the outer peripheral surface continuing from the gash groove formed in front of each first bottom blade in the rotation direction.
  • An outer peripheral blade is spirally formed between the chip discharge groove and the outer peripheral flank.
  • the core thickness is formed so as to gradually increase from the tip end side to the base end side of the tool body. As a result, the bending of the tool body is suppressed.
  • the chip discharge groove is formed by overlapping the first groove, which is relatively deep in cross-sectional view orthogonal to the axis, and the second groove, which is relatively shallow and surrounds the first groove, shoulder cutting and grooves are formed. It is said to prevent chip clogging during processing.
  • the core thickness is considerably smaller than that of the rear end portion, especially in the region of the outer peripheral surface close to the bottom blade of the tip surface, and the circumference of the second groove following the first groove in the chip discharge groove.
  • a wide range of directions is formed. Therefore, there is a problem that the strength of the cutting edge portion on the tip side is reduced and the tool rigidity is small, so that the tool is easily chipped during lateral feed machining and drilling machining, and the tool life is short.
  • the first groove is formed in the central portion of the chip discharge groove on the tip end side, there is also a problem that the chips traveling in the first groove are easily clogged and the discharge performance is poor.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a cutting tool capable of ensuring tool rigidity and chip evacuation without causing chip clogging.
  • the cutting tool according to the present invention has a plurality of outer peripheral blades formed spirally on the outer peripheral surface on the tip side of the tool body that can rotate around the central axis at predetermined intervals, and the outer peripheral blades formed on the front side in the rotation direction.
  • a cutting tool having a chip discharge groove and a plurality of bottom blades formed on the tip surface of the tool body and continuous with the outer peripheral blade, and the chip discharge groove having the outer peripheral rake face of the outer peripheral blade has a tip.
  • the first flute groove extending from the surface to the rear end side and the tip side region of the first flute groove are cut off to have a shorter length than the first flute groove, and the rear end is connected to the first flute groove.
  • the second flute groove is provided with a second flute groove, and the second flute groove is formed in the circumferential direction from the outer peripheral rake face side of the first flute groove to the outer peripheral escape surface.
  • the first core thickness of the portion having the second flute groove formed by cutting the first flute groove of the chip discharge groove is the rear end side having no second flute groove. Since it is smaller than the second core thickness of the portion having the first flute groove, the tool rigidity is smaller on the front end side than on the rear end side, but the groove depth of the chip discharge groove is large.
  • the second flute groove is formed in the circumferential direction from the outer peripheral rake face side of the first flute groove to the outer peripheral escape surface, it is wide and the chips are discharged smoothly, and the chip discharging property is high.
  • the radius length connecting the central axis and the outer peripheral blade in the cross-sectional view orthogonal to the central axis of the tool body is set to D / 2, and the outer circumference is 20 ° in the direction of the outer peripheral flank surface of the outer peripheral blade having the second flute groove.
  • the surface has a wall thickness of 88% to 97% of the radius length D / 2 in length from the central axis, and at an angle of 30 ° toward the outer peripheral escape surface of the outer peripheral blade, the outer peripheral escape surface is from the central axis. It is preferable that the length has a wall thickness of 78% to 93% of the radius length D / 2.
  • the first core thickness on the front end side is smaller than the second core thickness on the rear end side, but the cutting edge strength can be reinforced by forming a large wall thickness on the outer peripheral surface of the outer peripheral blade.
  • an intersecting protrusion may be formed as a step at the boundary between the first flute groove and the second flute groove on the outer rake face of the outer peripheral blade. .. Since the intersecting protrusion forming the boundary between the first flute groove and the second flute groove is formed on the outer rake surface of the outer peripheral blade, the area where the generated chips come into contact with the outer rake surface is reduced, and the vehicle runs more smoothly. ..
  • the intersecting protrusion protrudes by 5 ° or less with respect to the virtual line connecting the central axis and the outer peripheral blade, and is formed at a position of 65% or more of the radius length D / 2 from the central axis to the outer peripheral blade. It is preferable to have.
  • the radius length connecting the central axis and the outer peripheral blade is set to D / 2
  • the first core thickness in the region of the second flute groove is set in the range of 0.55D to 0.70D from the second flute groove.
  • the second core thickness in the region of the first flute groove at the rear is set in the range of 0.60D to 0.80D and is set to be 0.05D or more larger than the first core thickness. This makes it possible to smoothly discharge chips on the tip side of the cutting tool and to secure the rigidity of the tool body by making the second core thickness on the rear side larger than the first core thickness on the tip side. it can.
  • the length of the second flute groove is preferably set in the range of 0.5D to 1.5D from the tip surface.
  • the width of the outer peripheral flank surface in the circumferential direction is preferably set in the range of 0.05D to 0.15D. Even if the first core thickness on the tip side is small, the tool rigidity can be reinforced by setting the width of the outer peripheral flank surface of the outer peripheral blade in the range of 0.05D to 0.25D.
  • the plurality of bottom blades may be unequally divided, and the plurality of outer peripheral blades may be set to unequal leads. Since the plurality of bottom blades are unequally divided and the plurality of outer peripheral blades are set to unequal leads, it is possible to suppress the occurrence of chatter vibration during cutting.
  • the core thickness on the tip side is made smaller than that on the rear end side by the second flute groove to deepen the chip discharge groove on the tip side and improve the chip discharge property.
  • the tool rigidity on the tip side can be reinforced and the overall tool rigidity can be increased.
  • the second flute groove on the tip side reaches from the outer peripheral rake face side of the outer peripheral blade to the outer peripheral relief surface of the outer peripheral blade in the circumferential direction, so that chips can be smoothly discharged while increasing the tool rigidity.
  • FIG. 5 is a cross-sectional view taken along the line AA at a position 0.5D from the tip surface of the end mill. It is an enlarged view of the outer peripheral rake face of the outer peripheral blade in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB at a position 1.5D from the tip surface of the end mill.
  • FIG. 3 is a cross-sectional view similar to FIG. 3 at a position 0.5D from the tip surface of the end mill according to the second embodiment. It is a cross-sectional view similar to FIG. 5 at a length position of 1.5D from the tip surface of the end mill.
  • the end mill 1 is, for example, a 4-flute square end mill.
  • the end mill 1 according to the embodiment includes a tool body 2 which is formed in a substantially columnar shape and is rotated about a central axis O, and a blade portion 3 formed at a tip portion thereof.
  • the blade portion 3 side along the central axis O of the tool body 2 is referred to as the tip side
  • the opposite side connected to the spindle is referred to as the proximal end side and the rear side.
  • This end mill 1 is a small-diameter end mill formed in which the maximum outer diameter D of the bottom blade on the tip surface 4 of the blade portion 3 is, for example, in the range of 1 mm to 12 mm, preferably 1 to 6 mm, and is used for mechanical parts, dies, and the like. Is machined. Alternatively, the end mill 1 may have an outer diameter D of less than 1 mm. This end mill 1 is suitable for cutting difficult-to-cut materials such as stainless steel, titanium alloys, and heat-resistant alloys.
  • a plurality of chip discharge grooves 5 twisted at a predetermined angle around the central axis O from the tip end side to the base end side are formed at predetermined intervals in the circumferential direction, for example, a four-row spiral shape. Is formed in.
  • the outer peripheral blade 6 is formed at the intersecting ridge line portion between the wall surface facing the rotation direction and the outer peripheral surface connected to the rear in the rotation direction.
  • the wall surface of the chip discharge groove 5 facing the rotation direction is the outer peripheral rake surface 7 of the outer peripheral blade 6, and the outer peripheral surface facing rearward in the rotation direction via the outer peripheral blade 6 is the outer peripheral relief surface 8.
  • the four outer peripheral blades 6 are also arranged at predetermined intervals in the circumferential direction and are formed in a spiral shape.
  • the outer peripheral relief surface 8 of the outer peripheral blade 6 has a convex curved surface shape along the rotation locus of the outer peripheral blade 6 and forms a positive clearance angle to secure the cutting edge strength of the outer peripheral blade 6.
  • the outer peripheral flank surface 8 may be flat and have a positive flank angle.
  • a pair of long blades 10 extending linearly from a pair of outer peripheral blades 6 facing the central axis O forming the center of rotation thereof, for example, toward the central axis O. Is formed rotationally symmetrically.
  • a pair of short blades 11 are formed rotationally symmetrically on the front side of each long blade 10 in the rotational direction at a predetermined angle. The short blade 11 also extends continuously from the outer peripheral blade 6 on the outer peripheral surface toward the center side in the radial direction, for example, in a straight line.
  • each short blade 11 is formed to have a length of, for example, about 1/2 of the radius (D / 2) of the tip surface 4 from the outer peripheral end connected to the outer peripheral blade 6. ing. Therefore, the short blade 11 does not reach the vicinity of the central axis O and is interrupted in the middle.
  • the long blade 10 and the short blade 11 form a bottom blade.
  • the long blade 10 is recessed toward the base end side of the short blade 11.
  • the outer peripheral side region is first cut with the short blade 11 and is delayed.
  • the central region (center axis O side) where the short blade 11 is not provided is cut by the long blade 10. Therefore, in the long blade 10, cutting is performed only at the cutting edge portion 10a in the central region that does not overlap with the short blade 11 that is rotationally cut.
  • the cutting load of the long blade 10 and the short blade 11 can be set to be about the same, so that the long blade 10 can be cut. Vibration of the blade portion 10a and the short blade 11 can be suppressed.
  • the bottom blade is unequally divided, it may be arranged evenly.
  • the outer peripheral blades 6 connected to the long blade 10 and the short blade 11, respectively, may be arranged on equal leads or unequal leads. By arranging the outer peripheral blades 6 on the unequal leads, it is possible to suppress the occurrence of chatter vibration during the rotary cutting process of the end mill 1.
  • the outer peripheral blades 6 may be arranged on equal leads or unequal leads.
  • four gosh grooves 12 are formed at predetermined intervals on the front side in the rotation direction of the long blade 10 and the short blade 11 so as to be concavely cut toward the base end side.
  • the gash groove 12 formed in front of the long blade 10 in the rotation direction is represented by reference numeral 12A
  • the gash groove 12 formed in front of the short blade 11 in the rotation direction is represented by reference numeral 12B.
  • the chip discharge groove 5 formed on the front side in the rotation direction of the outer peripheral blade 6 is formed by the first flute groove 13 and the second flute groove 14.
  • the first flute groove 13 spirally extends the outer peripheral surface of the blade portion 3 from the tip surface 4 along the central axis O toward the base end side, and is cut off toward the outer peripheral side at the rear end.
  • the second flute groove 14 forms a deeper flute groove by cutting the first flute groove 13 at the distal end side portion in the longitudinal direction of the first flute groove 13.
  • Each second flute groove 14 is smoothly connected to each of the gash grooves 12A and 12B at the tip surface 4.
  • FIG. 3 is an axis orthogonal cross-sectional view orthogonal to the central axis O at a position at a distance of 0.5D in the longitudinal direction from the tip surface 4 of the blade portion 3, and FIG. 5 is a center at a position at a distance of 1.5D from the tip surface. It is an axis orthogonal sectional view orthogonal to axis line O.
  • the second flute groove 14 has a shorter length than the first flute groove 13, and is formed to have a length in the range of 0.5D to 1.5D from the tip surface 4 of the tool body 2 toward the base end side.
  • the first flute groove 13 is formed to have a length longer than 1.5D from the tip surface 4.
  • the end of the second flute groove 14 is formed at a position not reaching the length of 1.5D from the tip surface 4.
  • the first flute groove 13 smoothly draws a concave curve in the circumferential direction from the outer peripheral blade 6 to form the first outer peripheral rake face 15, and is further curved in a convex curve to the front outer circumference. It is connected to the outer peripheral flank surface 8 of the blade 6.
  • the second flute groove 14 formed by further cutting the first flute groove 13 is formed by partially cutting the first outer peripheral rake face 15 of the first flute groove 13 to form a concave curved surface in the circumferential direction and forming a second outer peripheral rake.
  • a surface 17 is formed, and the surface 17 is further curved in a convex curve to be connected to the outer peripheral escape surface 8.
  • the outer peripheral rake surface 7 of the portion of the second flute groove 14 on the tip end side of the outer peripheral blade 6 is formed by the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17.
  • An intersecting protrusion 16 is formed as a step at the intersection of the first outer peripheral rake face 15 and the second outer peripheral rake surface 17. As shown in FIG. 4, the intersecting protrusion 16 projects within 5 °, for example, 2.22 ° with respect to the virtual line L (radius) connecting the central axis O and the outer peripheral blade 6. Moreover, the intersecting protrusion 16 is formed at a position of 65% or more of the radius length D / 2 connecting the central axis O and the outer peripheral blade 6.
  • the outer peripheral rake face 7 of the outer peripheral blade 6 is formed in two stages by the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17, and the contact with chips is reduced by the intersecting protrusion 16 to reduce the traveling load and processing.
  • the load is reduced.
  • the protruding angle of the crossing protrusion 16 exceeds 5 °, it hinders the running of chips and prevents smooth flow.
  • the position of the intersecting protrusion 16 is a length less than 65% of the radius D / 2 from the central axis O, the portion where the chips come into contact with the outer peripheral rake face 7 increases, and the effect of reducing the machining load is lost. ..
  • the intersecting protrusion 16 extends from the front end side to the rear end side along the second flute groove 14, and ends at the end of the second flute groove 14.
  • the first flute groove 13 and the second flute groove 14 are formed at the same depth in the direction along the central axis O except for the portion rounded up to the outer peripheral surface.
  • the first core thickness S1 of the blade portion 3 in the tip side region where the second flute groove 14 is formed is formed in the range of 0.55D to 0.70D by the inscribed circle of the second flute groove 14. ..
  • the chip discharge groove 5 in the tip side region where the second flute groove 14 is formed the tool rigidity is relatively small because the first core thickness S1 is small, but the groove depth is large and the chip discharge property is high. ..
  • the second core thickness S2 of the blade portion 3 is set to 0 by the inscribed circle of the first flute groove 13. It is formed in the range of 60D to 0.80D.
  • the second core thickness S2 of the first flute groove 13 is set to be 0.05D or more larger than the first core thickness S1 of the second flute groove 14, and the tool rigidity is high.
  • the first core thickness S1 on the tip side on which the second flute groove 14 is formed is smaller than the second core thickness S2 on the base end side, and the tool rigidity is low. Therefore, in order to reinforce the tool rigidity, the following configuration is added to the outer peripheral relief surface 8 of the outer peripheral blade 6 in the region provided with the second flute groove 14.
  • the outer peripheral flank 8 has a second flank connected to the rear side in the rotation direction of the outer peripheral blade 6, but the flank may be further rearward.
  • the width M of the outer peripheral flank surface 8 of the outer peripheral blade 6 in the circumferential direction is set in the range of 0.05D to 0.25D.
  • the rigidity of the portion of the outer peripheral flank surface 8 of the outer peripheral blade 6 is improved. If the width M of the outer peripheral flank 8 is smaller than 0.05D, the reinforcing effect of rigidity is small, and if it is larger than 0.25D, the width of the second flute groove 14 on the rear side in the rotation direction of the outer peripheral blade 6 becomes narrow, and chip evacuation is possible. Decreases.
  • the radius D / 2 is 88 at a position 20 ° to the rear side in the rotation direction with respect to the radius of the virtual line L connecting the central axis O and the outer peripheral blade 6. It has a thickness of% to 97% and overhangs. At a position 30 ° to the rear side in the rotation direction with respect to the radius of the virtual line L, the thickness is 78% to 93% of the radius D / 2 and overhangs. Moreover, the inclination gradually changes from the position of 20 ° to the position of 30 °.
  • the wall thicknesses at these 20 ° and 30 ° positions are formed in the second flute groove 14 that continues behind the outer peripheral escape surface 8 in the rotational direction, but can also be formed in the outer peripheral escape surface 8. If the thickness of the outer peripheral flank 8 is within this range, the tool rigidity can be improved without impairing the chip evacuation property. If the thickness of the outer peripheral relief surface 8 exceeds the above range, the width of the second flute groove 14 in the circumferential direction becomes small and the chip evacuation property decreases, and if it is smaller than the above range, the improvement of the tool rigidity cannot be achieved.
  • the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high. Therefore, the width M of the outer peripheral relief surface 8 and the wall thickness of the outer peripheral relief surface 8 at positions 20 ° and 30 ° rearward in the rotation direction of the outer peripheral blade 6 may be smaller than the region of the second flute groove 14.
  • the end mill 1 has the above-described configuration.
  • first drilling is performed to feed the work material in the O direction of the central axis, and then lateral feed is performed for shoulder cutting. Shall be performed.
  • the cutting process is first performed with a pair of short blades 11 arranged on the outer peripheral side of the tip surface 4 of the blade portion 3. Do.
  • the chips generated by the short blade 11 have a width and volume of about half that of cutting with the entire length of the long blade 10.
  • the chips smoothly travel from the gash groove 12B through the second flute groove 14 of the chip discharge groove 5 and are discharged from the first flute groove 13. Further, the inner portion of the work material can be cut by the cutting edge portion 10a of the long blade 10 after the cutting by the short blade 11.
  • the chips traveling in the chip discharge groove 5 travel in the first flute groove 13 and the second flute groove 14, the chips of the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17, which are the outer peripheral rake surfaces 7, The vehicle travels in contact with the intersection 16. Therefore, the contact area of chips with respect to the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 is small, and the resistance and machining load during running can be reduced. Moreover, since the second flute groove 14 is formed so as to overlap the first flute groove 13, the groove depth is large and the chip evacuation property is high.
  • the second outer peripheral rake face 17 formed in the second flute groove 14 has a concave curved surface and a convex curved surface from an intermediate portion of the first outer peripheral rake surface 15 of the outer peripheral blade 6 toward the outer peripheral escape surface 8 of the outer peripheral blade 6 in the forward rotation direction. Since it is formed continuously, it is wide and chips can be smoothly discharged to the base end side.
  • the first core thickness S1 on the tip side is the first behind it. It is smaller than the second core thickness S2 in the region where only the flute groove 13 is provided, and the tool rigidity is small.
  • the outer peripheral relief surface 8 of each outer peripheral blade 6 is formed to have a wall thickness in the circumferential width M in the range of 0.05D to 0.25D.
  • the outer peripheral flank surface 8 of the outer peripheral blade 6 is located at a position of 20 ° behind the rotation direction of the virtual line L connecting the central axis O and the outer peripheral blade 6, and has a radius D / 2 in the range of 88% to 97% and 30 °. At the position, it is formed overhanging to a wall thickness in the range of 78% to 93% of the radius D / 2. Therefore, the relatively small tool rigidity of the first core thickness S1 can be reinforced by the wall thickness of the outer peripheral flank surface 8, and both chip evacuation and tool rigidity can be improved. Further, since only the first flute groove 13 is formed on the base end side of the chip discharge groove 5, the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high.
  • the end mill 1 can be laterally fed to perform shoulder cutting of the machined surface of the work material.
  • the chips cut by the outer peripheral blade 6 on the tip side travel on the first outer peripheral rake face 15 of the first flute groove 13 and the second outer peripheral rake face 17 of the second flute groove 14, but the intersecting protrusion 16
  • the area of contact with the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 is small. Therefore, the chips smoothly travel from the second flute groove 14 to the first flute groove 13 while suppressing the frictional resistance, and are discharged to the proximal end side.
  • the second flute groove 14 is formed in the first flute groove 13 on the tip end side of the blade portion 3, the groove depth is deep and the chip evacuation property can be further improved.
  • the second flute groove 14 is formed on the tip side of the blade portion 3 of the tool body 2 by overlapping with the first flute groove 13, the chip evacuation property on the tip side is improved. high. Further, the tool rigidity on the proximal end side is increased by forming the second flute groove 14 shorter than the first flute groove 13. Moreover, since the second flute groove 14 of the chip discharge groove 5 is formed from the first outer peripheral rake surface 15 side of the first flute groove 13 to the outer peripheral escape surface 8 in the circumferential direction, it is wide and has high chip discharge property.
  • the intersecting protrusion 16 is provided at the intersection of the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 formed in the first flute groove 13 and the second flute groove 14, the contact area of chips is increased. It runs less smoothly and is discharged.
  • the second flute groove 14 is formed shorter than the first flute groove 13, and the first core thickness S1 of the region where the second flute groove 14 is formed is the region where only the first flute groove 13 on the base end side thereof is formed.
  • the tool rigidity is small because it is smaller than the second core thickness S2.
  • a predetermined width M is provided on the outer peripheral flank surface 8 of the outer peripheral blade 6, and the outer peripheral surface (outer peripheral flank surface) at positions 20 ° and 30 ° behind the virtual line L from the central axis O to the outer peripheral blade 6 in the rotation direction.
  • the tool rigidity can be reinforced by projecting the wall thickness of the outer peripheral rake face 7) to 88 to 97% and 78% to 93% of the radius D / 2.
  • FIG. 6 is a cross-sectional view of the blade portion 3 of the tool body 2 orthogonal to the central axis O at a distance of 0.5D from the tip surface 4
  • FIG. 7 is a cross-sectional view orthogonal to the central axis O at a distance of 1.5D from the tip surface 4. It is a figure.
  • a spiral outer peripheral blade 6 formed on the outer peripheral surface of the blade portion 3 is connected to the outer peripheral side ends of the long blade 10 and the short blade 11. ..
  • a chip discharge groove 5 having an outer peripheral rake face 7 is formed on the front side in the rotation direction of the outer peripheral blade 6, and an outer peripheral relief surface 20 is formed on the rear side in the rotation direction of the outer peripheral blade 6.
  • the outer peripheral rake face 7 has a large inclination angle in the region where the second flute groove 14 shown in FIG. 6 is provided.
  • a step is formed between the outer peripheral relief surface 20 and the outer peripheral rake face 7 rearward in the rotational direction thereof.
  • a second flute groove 14 is formed by cutting the bottom of the first flute groove 13 deeper at a position 0.5D from the tip surface 4 shown in FIG. 6 in the tip end side region of the blade portion 3.
  • the second core thickness S2 is 0.05D or more larger than the first core thickness S1.
  • the shape of the outer peripheral relief surface 20 is devised as in the first embodiment in order to reinforce the tool rigidity of the blade portion 3 on the tip side.
  • the width M of the outer peripheral flank surface 20 of the outer peripheral blade 6 in the circumferential direction is set in the range of 0.05D to 0.25D.
  • the rigidity of the portion of the outer peripheral flank surface 8 of the outer peripheral blade 6 is improved.
  • the outer peripheral surface has a wall thickness of 88% to 97% of the radius length D / 2 in length from the central axis O.
  • the outer peripheral flank 20 has a wall thickness of 78% to 93% of the radius length D / 2 in length from the central axis O. .. If the thickness of the outer peripheral flank surface 20 extends beyond the above range, the width of the second flute groove 14 in the circumferential direction becomes small and the chip evacuation property decreases, and if it is smaller than the above range, it cannot contribute to the improvement of tool rigidity. There are drawbacks. In the region of the first flute groove 13 in which the second flute groove 14 is not formed, the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high.
  • the width M of the outer peripheral relief surface 20 and the outer circumference The wall thickness of the outer peripheral flank surface 20 in the range of 20 ° to 30 ° on the rear side in the rotation direction of the blade 6 may be smaller than the region where the second flute groove 14 is provided.
  • the two long blades 10 and the two short blades 11 are alternately arranged on the tip surface 4, and the outer peripheral blade 6 is a four-blade.
  • the configuration is not limited to the bottom blade and the outer peripheral blade 6 having a single blade.
  • the total of the bottom blade and the outer peripheral blade 6 may be arranged in 3 or 2 blades, or 5 or more blades.
  • the bottom blade is not limited to the long blade 10 and the short blade 11, and a bottom blade having an appropriate length can be adopted.
  • the rake face of the outer peripheral blade 6 is formed with an intersecting protrusion 16 as a step at the boundary between the first flute groove 13 and the second flute groove 14.
  • the intersecting protrusion 16 is not always necessary, and the boundary between the first flute groove 13 and the second flute groove 14 in the circumferential direction may be formed in a smooth concave curve shape.
  • the arrangement interval of the plurality of outer peripheral blades 6 arranged on the outer peripheral surface of the blade portion 3 can be appropriately set.
  • the square end mill has been described as the end mill 1, but the present invention can be applied to various cutting tools such as a radius end mill, a ball end mill, and a drill instead.
  • the present invention relates to a cutting tool including an end mill in which a bottom blade is formed on the tip surface of a tool body and an outer peripheral blade is formed on the outer peripheral surface.
  • a plurality of outer peripheral blades formed in a spiral shape with a predetermined interval on the outer peripheral surface on the tip side of the tool body that can rotate around the central axis, and a plurality of outer peripheral blades formed on the front side in the rotation direction of the outer peripheral blades. It has a chip discharge groove and a plurality of bottom blades formed on the tip surface of the tool body and continuous with the outer peripheral blade.
  • the chip discharge groove having the outer peripheral rake face of the outer peripheral blade has a length shorter than that of the first flute groove by cutting off the first flute groove extending from the tip surface to the rear end side and the tip side region of the first flute groove.
  • the second flute groove is provided with a second flute groove whose rear end is connected to the first flute groove, and the second flute groove is formed in the circumferential direction from the outer rake face side of the first flute groove to the outer peripheral escape surface. It is characterized by being done.
  • the core thickness on the tip side is made smaller than that on the rear end side by the second flute groove to deepen the chip discharge groove on the tip side and improve the chip discharge property.
  • the tool rigidity on the tip side can be reinforced and the overall tool rigidity can be increased.
  • the second flute groove on the tip side reaches from the outer peripheral rake face side of the outer peripheral blade to the outer peripheral relief surface of the outer peripheral blade in the circumferential direction, so that chips can be smoothly discharged while increasing the tool rigidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

This cutting tool has a peripheral cutting edge (6) with a chip discharging groove (5) having a first flute groove (13) extending from the point surface to the rear end, and a second flute groove (14) formed by cutting off a point-side region of the first flute groove (13). The second flute groove (14) is formed in the circumferential direction from the second peripheral rake face (17) side of the first flute groove (13) until reaching a peripheral flank surface (8). This cutting tool is capable of ensuring good chip discharging performance and tool rigidity.

Description

切削工具Cutting tools
 本発明は、工具本体の先端面に底刃が形成され外周面に外周刃が形成されたエンドミルを含む切削工具に関する。
 本願は、2019年5月24日に日本に出願された特願2019-097728号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cutting tool including an end mill in which a bottom blade is formed on the tip surface of a tool body and an outer peripheral blade is formed on the outer peripheral surface.
The present application claims priority based on Japanese Patent Application No. 2019-097728 filed in Japan on May 24, 2019, the contents of which are incorporated herein by reference.
一般に精密機械加工分野において、高精度な金型や部品等を切削加工するために例えばスクエアエンドミルが用いられている。このスクエアエンドミルは例えばステンレス鋼やチタン合金や耐熱合金等の難削材を切削加工する切削工具として用いられている。このエンドミルを高速回転させながら横送りして肩削り加工や溝加工をし、或いは中心軸線方向に送ってワークに切り込みを入れてドリリング加工する。その際、切り屑が連続的に生成されて切り屑排出溝を走行するため切り屑排出溝の面を擦過して詰まり易くなり、外周刃や底刃の欠損や工具本体の折損等を生じ易い。 Generally, in the field of precision machining, for example, a square end mill is used for cutting high-precision dies and parts. This square end mill is used as a cutting tool for cutting difficult-to-cut materials such as stainless steel, titanium alloys, and heat-resistant alloys. While rotating this end mill at high speed, it is fed laterally to perform shoulder cutting and grooving, or it is fed in the direction of the central axis to make a cut in the work and perform drilling. At that time, since chips are continuously generated and travel in the chip discharge groove, the surface of the chip discharge groove is easily scratched and clogged, and the outer peripheral blade and the bottom blade are likely to be chipped or the tool body is easily broken. ..
横送り加工における切り屑排出性を改善したエンドミルとして、例えば特許文献1に記載されたものが提案されている。このエンドミルは、工具本体の先端面に4枚の第一底刃が形成され、各第一底刃の回転方向前方に形成したギャッシュ溝から続く外周面には切り屑排出溝が螺旋状に形成されている。この切り屑排出溝と外周逃げ面との間に外周刃が螺旋状に形成されている。
しかも、工具本体の先端側から基端側に向けて芯厚が次第に大きくなるように形成されている。これによって、工具本体の撓みを抑制している。また、切り屑排出溝は軸に直交する断面視で比較的深さの深い第1溝と第1溝を囲む比較的浅い第2溝とを重ねて形成しているため、肩削り加工や溝加工における切り屑詰まりを防ぐとしている。
As an end mill having improved chip evacuation in lateral feed processing, for example, the one described in Patent Document 1 has been proposed. In this end mill, four first bottom blades are formed on the tip surface of the tool body, and chip discharge grooves are spirally formed on the outer peripheral surface continuing from the gash groove formed in front of each first bottom blade in the rotation direction. Has been done. An outer peripheral blade is spirally formed between the chip discharge groove and the outer peripheral flank.
Moreover, the core thickness is formed so as to gradually increase from the tip end side to the base end side of the tool body. As a result, the bending of the tool body is suppressed. In addition, since the chip discharge groove is formed by overlapping the first groove, which is relatively deep in cross-sectional view orthogonal to the axis, and the second groove, which is relatively shallow and surrounds the first groove, shoulder cutting and grooves are formed. It is said to prevent chip clogging during processing.
国際公開第2017/038763号公報International Publication No. 2017/038763
しかしながら、上述したエンドミルでは、特に先端面の底刃に近い外周面の領域において、後端部と比較して芯厚がかなり小さく、しかも切り屑排出溝における第1溝に続く第2溝の周方向範囲が広く形成されている。そのため、先端側の切刃部の強度が小さくなり、工具剛性が小さいために横送り加工及びドリリング加工時に工具を欠損し易くなり、工具寿命が短いという問題があった。
しかも、切り屑排出溝の第2溝の先端側中央部分に第1溝が形成されているため第1溝を走行する切り屑が詰まり易く排出性が悪いという問題もあった。
However, in the above-mentioned end mill, the core thickness is considerably smaller than that of the rear end portion, especially in the region of the outer peripheral surface close to the bottom blade of the tip surface, and the circumference of the second groove following the first groove in the chip discharge groove. A wide range of directions is formed. Therefore, there is a problem that the strength of the cutting edge portion on the tip side is reduced and the tool rigidity is small, so that the tool is easily chipped during lateral feed machining and drilling machining, and the tool life is short.
Moreover, since the first groove is formed in the central portion of the chip discharge groove on the tip end side, there is also a problem that the chips traveling in the first groove are easily clogged and the discharge performance is poor.
本発明は、このような実情に鑑みてなされたものであり、切り屑詰まりを生じることがなく、工具剛性と切屑排出性を確保することができる切削工具を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a cutting tool capable of ensuring tool rigidity and chip evacuation without causing chip clogging.
本発明による切削工具は、中心軸線回りに回転可能な工具本体の先端側外周面に所定間隔を開けて螺旋状に形成された複数の外周刃と、該外周刃の回転方向前側に形成された切り屑排出溝と、工具本体の先端面に形成されていて外周刃に連続する複数の底刃と、を有する切削工具であって、外周刃の外周すくい面を有する切り屑排出溝は、先端面から後端側まで延びる第一フルート溝と、第一フルート溝の先端側領域を切除して形成されていて第一フルート溝より短い長さとされ且つその後端が第一フルート溝に接続されている第二フルート溝と、を備え、第二フルート溝は第一フルート溝の外周すくい面側から外周逃げ面に到達するまで周方向に形成されていることを特徴とする。
本発明の切削工具によれば、切り屑排出溝の第一フルート溝を切除して形成した第二フルート溝を有する部分の第一の芯厚は第二フルート溝を有さない後端側の第一フルート溝を有する部分の第二の芯厚より小さいため、先端側では後端側より工具剛性が小さいが切り屑排出溝の溝深さが大きい。しかも、第二フルート溝は第一フルート溝の外周すくい面側から外周逃げ面に到達するまで周方向に形成されているため、幅広で切り屑排出がスムーズであり、切り屑排出性が高い。
The cutting tool according to the present invention has a plurality of outer peripheral blades formed spirally on the outer peripheral surface on the tip side of the tool body that can rotate around the central axis at predetermined intervals, and the outer peripheral blades formed on the front side in the rotation direction. A cutting tool having a chip discharge groove and a plurality of bottom blades formed on the tip surface of the tool body and continuous with the outer peripheral blade, and the chip discharge groove having the outer peripheral rake face of the outer peripheral blade has a tip. The first flute groove extending from the surface to the rear end side and the tip side region of the first flute groove are cut off to have a shorter length than the first flute groove, and the rear end is connected to the first flute groove. The second flute groove is provided with a second flute groove, and the second flute groove is formed in the circumferential direction from the outer peripheral rake face side of the first flute groove to the outer peripheral escape surface.
According to the cutting tool of the present invention, the first core thickness of the portion having the second flute groove formed by cutting the first flute groove of the chip discharge groove is the rear end side having no second flute groove. Since it is smaller than the second core thickness of the portion having the first flute groove, the tool rigidity is smaller on the front end side than on the rear end side, but the groove depth of the chip discharge groove is large. Moreover, since the second flute groove is formed in the circumferential direction from the outer peripheral rake face side of the first flute groove to the outer peripheral escape surface, it is wide and the chips are discharged smoothly, and the chip discharging property is high.
また、工具本体の中心軸線に直交する断面視で中心軸線と外周刃を結ぶ半径長さをD/2として、第二フルート溝を有する外周刃の外周逃げ面方向に20°の角度では、外周面は中心軸線からの長さが半径長さD/2の88%~97%の肉厚を有し、外周刃の外周逃げ面方向に30°の角度では、外周逃げ面は中心軸線からの長さが半径長さD/2の78%~93%の肉厚を有していることが好ましい。
本発明によれば、先端側の第一の芯厚は後端側の第二の芯厚より小さいが外周刃の外周面の肉厚を大きく形成したことで刃先強度を補強することができる。
Further, the radius length connecting the central axis and the outer peripheral blade in the cross-sectional view orthogonal to the central axis of the tool body is set to D / 2, and the outer circumference is 20 ° in the direction of the outer peripheral flank surface of the outer peripheral blade having the second flute groove. The surface has a wall thickness of 88% to 97% of the radius length D / 2 in length from the central axis, and at an angle of 30 ° toward the outer peripheral escape surface of the outer peripheral blade, the outer peripheral escape surface is from the central axis. It is preferable that the length has a wall thickness of 78% to 93% of the radius length D / 2.
According to the present invention, the first core thickness on the front end side is smaller than the second core thickness on the rear end side, but the cutting edge strength can be reinforced by forming a large wall thickness on the outer peripheral surface of the outer peripheral blade.
また、工具本体の先端面近傍における中心軸線に直交する断面において、外周刃の外周すくい面には第一フルート溝と第二フルート溝との境界に交差突部が段差として形成されていてもよい。
外周刃の外周すくい面に第一フルート溝と第二フルート溝との境界をなす交差突部を形成したため、生成される切り屑が外周すくい面と接触する面積が少なくなり、よりスムーズに走行する。
Further, in the cross section orthogonal to the central axis in the vicinity of the tip surface of the tool body, an intersecting protrusion may be formed as a step at the boundary between the first flute groove and the second flute groove on the outer rake face of the outer peripheral blade. ..
Since the intersecting protrusion forming the boundary between the first flute groove and the second flute groove is formed on the outer rake surface of the outer peripheral blade, the area where the generated chips come into contact with the outer rake surface is reduced, and the vehicle runs more smoothly. ..
また、交差突部は中心軸線と外周刃とを結ぶ仮想線に対して5°以下突出していると共に、中心軸線から外周刃までの半径長さD/2の65%以上の位置に形成されていることが好ましい。
外周刃の外周すくい面に形成された交差突部の突出が5°以下で中心軸線から外周刃までの半径長さD/2の65%以上の位置に設けたことによって、切り屑の接触を小さくして走行負荷及び加工負荷を低減することができる。
Further, the intersecting protrusion protrudes by 5 ° or less with respect to the virtual line connecting the central axis and the outer peripheral blade, and is formed at a position of 65% or more of the radius length D / 2 from the central axis to the outer peripheral blade. It is preferable to have.
By providing the protrusion of the crossing protrusion formed on the outer rake face of the outer peripheral blade at a position of 5 ° or less and 65% or more of the radius length D / 2 from the central axis to the outer peripheral blade, contact with chips can be prevented. It can be made smaller to reduce the running load and the processing load.
また、中心軸線と外周刃を結ぶ半径長さをD/2として、第二フルート溝の領域における第一の芯厚は0.55D~0.70Dの範囲に設定され、第二のフルート溝より後方で第一のフルート溝の領域における第二の芯厚は0.60D~0.80Dの範囲に設定され且つ第一の芯厚より0.05D以上大きく設定することが好ましい。
これにより、切削工具の先端側での切り屑排出をスムーズにすると共に、後方側の第二の芯厚を先端側の第一の芯厚より大きくすることで工具本体の剛性を確保することができる。
Further, the radius length connecting the central axis and the outer peripheral blade is set to D / 2, and the first core thickness in the region of the second flute groove is set in the range of 0.55D to 0.70D from the second flute groove. It is preferable that the second core thickness in the region of the first flute groove at the rear is set in the range of 0.60D to 0.80D and is set to be 0.05D or more larger than the first core thickness.
This makes it possible to smoothly discharge chips on the tip side of the cutting tool and to secure the rigidity of the tool body by making the second core thickness on the rear side larger than the first core thickness on the tip side. it can.
また、第二フルート溝の長さは先端面から0.5D~1.5Dまでの範囲に設定されていることが好ましい。
切り屑排出溝の第二フルート溝の長さを中心軸線方向に先端面から0.5D~1.5Dまでの範囲にすることで、切り屑排出性を向上できると共に工具剛性を確保することができる。
Further, the length of the second flute groove is preferably set in the range of 0.5D to 1.5D from the tip surface.
By setting the length of the second flute groove of the chip discharge groove in the range of 0.5D to 1.5D from the tip surface in the central axis direction, it is possible to improve the chip discharge property and secure the tool rigidity. it can.
また、外周逃げ面の周方向の幅は0.05D~0.15Dの範囲に設定されていることが好ましい。
先端側の第一の芯厚が小さくても外周刃の外周逃げ面の幅を0.05D~0.25Dの範囲に設定することで、工具剛性を補強することができる。
Further, the width of the outer peripheral flank surface in the circumferential direction is preferably set in the range of 0.05D to 0.15D.
Even if the first core thickness on the tip side is small, the tool rigidity can be reinforced by setting the width of the outer peripheral flank surface of the outer peripheral blade in the range of 0.05D to 0.25D.
また、複数の底刃は不等分割され、複数の外周刃は不等リードに設定されていてもよい。
複数の底刃は不等分割され、複数の外周刃は不等リードに設定されているため、切削時にビビり振動の発生を抑制できる。
Further, the plurality of bottom blades may be unequally divided, and the plurality of outer peripheral blades may be set to unequal leads.
Since the plurality of bottom blades are unequally divided and the plurality of outer peripheral blades are set to unequal leads, it is possible to suppress the occurrence of chatter vibration during cutting.
本発明に係る切削工具によれば、第二フルート溝によって先端側の芯厚を後端側より小さくすることで先端側の切り屑排出溝を深くして切り屑排出性を向上させると共に、後端側の芯厚を大きくすることで先端側の工具剛性を補強して全体の工具剛性を高くすることができる。
また、先端側の第二フルート溝は周方向に外周刃の外周すくい面側から外周刃の外周逃げ面まで到達することで、工具剛性を高めつつ切り屑をスムーズに排出できる。
According to the cutting tool according to the present invention, the core thickness on the tip side is made smaller than that on the rear end side by the second flute groove to deepen the chip discharge groove on the tip side and improve the chip discharge property. By increasing the core thickness on the end side, the tool rigidity on the tip side can be reinforced and the overall tool rigidity can be increased.
Further, the second flute groove on the tip side reaches from the outer peripheral rake face side of the outer peripheral blade to the outer peripheral relief surface of the outer peripheral blade in the circumferential direction, so that chips can be smoothly discharged while increasing the tool rigidity.
本発明の第一実施形態によるエンドミルの刃部を示す側面図である。It is a side view which shows the blade part of the end mill by 1st Embodiment of this invention. 図1に示すエンドミルの先端面図である。It is a front end view of the end mill shown in FIG. エンドミルの先端面から0.5Dの長さ位置におけるA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA at a position 0.5D from the tip surface of the end mill. 図3における外周刃の外周すくい面の拡大図である。It is an enlarged view of the outer peripheral rake face of the outer peripheral blade in FIG. エンドミルの先端面から1.5Dの長さ位置におけるB-B線断面図である。FIG. 5 is a cross-sectional view taken along the line BB at a position 1.5D from the tip surface of the end mill. 第二実施形態によるエンドミルの先端面から0.5Dの長さ位置における図3と同様な断面図である。FIG. 3 is a cross-sectional view similar to FIG. 3 at a position 0.5D from the tip surface of the end mill according to the second embodiment. エンドミルの先端面から1.5Dの長さ位置における図5と同様な断面図である。It is a cross-sectional view similar to FIG. 5 at a length position of 1.5D from the tip surface of the end mill.
以下、本発明の実施形態によるエンドミルについて添付図面に基づいて説明する。
図1乃至図5は本発明の第一実施形態による切削工具としてのエンドミル1を示すものである。エンドミル1は例えば4枚刃のスクエアエンドミルである。図1において、実施形態によるエンドミル1は、略円柱状に形成されていて中心軸線Oを中心に回転される工具本体2とその先端部に形成された刃部3とを備えている。本明細書では工具本体2の中心軸線Oに沿った刃部3側を先端側といい、主軸に連結する反対側を基端側、後方というものとする。
Hereinafter, the end mill according to the embodiment of the present invention will be described with reference to the accompanying drawings.
1 to 5 show an end mill 1 as a cutting tool according to the first embodiment of the present invention. The end mill 1 is, for example, a 4-flute square end mill. In FIG. 1, the end mill 1 according to the embodiment includes a tool body 2 which is formed in a substantially columnar shape and is rotated about a central axis O, and a blade portion 3 formed at a tip portion thereof. In the present specification, the blade portion 3 side along the central axis O of the tool body 2 is referred to as the tip side, and the opposite side connected to the spindle is referred to as the proximal end side and the rear side.
このエンドミル1は刃部3の先端面4における底刃の最大外径Dが例えば1mm~12mmの範囲、好ましくは1~6mmの範囲に形成された小径のエンドミルであり、機械部品や金型等を切削加工する。或いは、このエンドミル1は外径Dが1mm未満でもよい。
このエンドミル1はステンレス鋼やチタン合金や耐熱合金等の難削材の切削加工に好適である。
This end mill 1 is a small-diameter end mill formed in which the maximum outer diameter D of the bottom blade on the tip surface 4 of the blade portion 3 is, for example, in the range of 1 mm to 12 mm, preferably 1 to 6 mm, and is used for mechanical parts, dies, and the like. Is machined. Alternatively, the end mill 1 may have an outer diameter D of less than 1 mm.
This end mill 1 is suitable for cutting difficult-to-cut materials such as stainless steel, titanium alloys, and heat-resistant alloys.
刃部3の外周面には、先端側から基端側に向けて中心軸線O回りに所定角度で捩じれる切り屑排出溝5が周方向に所定間隔を開けて複数条、例えば4条螺旋状に形成されている。刃部3の側面に形成された各切り屑排出溝5において、回転方向を向く壁面とその回転方向後方に連なる外周面との交差稜線部に外周刃6が形成されている。切り屑排出溝5の回転方向を向く壁面が外周刃6の外周すくい面7とされ、外周刃6を介して回転方向後方を向く外周面が外周逃げ面8とされている。
4枚の外周刃6も周方向に所定間隔で配列されてそれぞれ螺旋状に形成されている。外周刃6の外周逃げ面8は外周刃6の回転軌跡に沿って凸曲面状とされ且つ正の逃げ角を形成して外周刃6の刃先強度を確保している。或いは、外周逃げ面8は平坦面状で正の逃げ角を有していてもよい。
On the outer peripheral surface of the blade portion 3, a plurality of chip discharge grooves 5 twisted at a predetermined angle around the central axis O from the tip end side to the base end side are formed at predetermined intervals in the circumferential direction, for example, a four-row spiral shape. Is formed in. In each chip discharge groove 5 formed on the side surface of the blade portion 3, the outer peripheral blade 6 is formed at the intersecting ridge line portion between the wall surface facing the rotation direction and the outer peripheral surface connected to the rear in the rotation direction. The wall surface of the chip discharge groove 5 facing the rotation direction is the outer peripheral rake surface 7 of the outer peripheral blade 6, and the outer peripheral surface facing rearward in the rotation direction via the outer peripheral blade 6 is the outer peripheral relief surface 8.
The four outer peripheral blades 6 are also arranged at predetermined intervals in the circumferential direction and are formed in a spiral shape. The outer peripheral relief surface 8 of the outer peripheral blade 6 has a convex curved surface shape along the rotation locus of the outer peripheral blade 6 and forms a positive clearance angle to secure the cutting edge strength of the outer peripheral blade 6. Alternatively, the outer peripheral flank surface 8 may be flat and have a positive flank angle.
図2に示す刃部3の先端面4には、その回転中心をなす中心軸線Oに対して、対向する一対の外周刃6から中心軸線Oに向けて例えば直線状に延びる一対の長刃10が回転対称に形成されている。各長刃10の回転方向前方側には所定角度を以って一対の短刃11が回転対称に形成されている。短刃11も外周面の外周刃6に連続して径方向中心側に向けて例えば直線状に延びている。
しかも、底刃の外径長さをDとして、各短刃11は外周刃6に接続される外周端から先端面4の半径(D/2)の例えば1/2程度の長さで形成されている。そのため、短刃11は中心軸線Oの近傍に到達しておらず、途中で途切れている。長刃10と短刃11とで底刃を形成する。
On the tip surface 4 of the blade portion 3 shown in FIG. 2, a pair of long blades 10 extending linearly from a pair of outer peripheral blades 6 facing the central axis O forming the center of rotation thereof, for example, toward the central axis O. Is formed rotationally symmetrically. A pair of short blades 11 are formed rotationally symmetrically on the front side of each long blade 10 in the rotational direction at a predetermined angle. The short blade 11 also extends continuously from the outer peripheral blade 6 on the outer peripheral surface toward the center side in the radial direction, for example, in a straight line.
Moreover, where the outer diameter length of the bottom blade is D, each short blade 11 is formed to have a length of, for example, about 1/2 of the radius (D / 2) of the tip surface 4 from the outer peripheral end connected to the outer peripheral blade 6. ing. Therefore, the short blade 11 does not reach the vicinity of the central axis O and is interrupted in the middle. The long blade 10 and the short blade 11 form a bottom blade.
また、長刃10は短刃11よりも基端側に凹んでいる。これにより、エンドミル1を回転させながら被削材に対して中心軸線O方向に送るドリリング加工を行う、即ちドリリング加工を行う場合、先に短刃11で外周側領域を切削加工し、これに遅れて短刃11を設けない中心側領域(中心軸線O側)を長刃10で切削加工する。そのため、長刃10では、回転切削する短刃11に重複しない中心側領域の切刃部10aでのみ切削加工を行う。
短刃11の長さを長刃10の切刃部10aの長さと同程度に設定することで、長刃10と短刃11の切削負担をほぼ同程度に設定できるため、長刃10の切刃部10aと短刃11の振動を抑制できる。底刃は不等分割されているが、等分割に配設されていてもよい。
Further, the long blade 10 is recessed toward the base end side of the short blade 11. As a result, when performing drilling processing in which the end mill 1 is rotated and sent to the work material in the direction of the central axis O, that is, when performing drilling processing, the outer peripheral side region is first cut with the short blade 11 and is delayed. The central region (center axis O side) where the short blade 11 is not provided is cut by the long blade 10. Therefore, in the long blade 10, cutting is performed only at the cutting edge portion 10a in the central region that does not overlap with the short blade 11 that is rotationally cut.
By setting the length of the short blade 11 to be about the same as the length of the cutting edge portion 10a of the long blade 10, the cutting load of the long blade 10 and the short blade 11 can be set to be about the same, so that the long blade 10 can be cut. Vibration of the blade portion 10a and the short blade 11 can be suppressed. Although the bottom blade is unequally divided, it may be arranged evenly.
長刃10と短刃11にそれぞれ接続される外周刃6は等リードまたは不等リードに配設されていてもよい。外周刃6を不等リードに配設することで、エンドミル1の回転切削加工時にビビり振動の発生を抑制できる。
先端面4における中心軸線Oの周囲には、長刃10と短刃11の回転方向前側に基端側に向けて凹状に切除されたギャッシュ溝12が所定間隔で4つ形成されている。ここで、長刃10の回転方向前方に形成されたギャッシュ溝12を符号12Aで表し、短刃11の回転方向前方に形成されたギャッシュ溝12を符号12Bで表すものとする。
The outer peripheral blades 6 connected to the long blade 10 and the short blade 11, respectively, may be arranged on equal leads or unequal leads. By arranging the outer peripheral blades 6 on the unequal leads, it is possible to suppress the occurrence of chatter vibration during the rotary cutting process of the end mill 1.
Around the central axis O on the tip surface 4, four gosh grooves 12 are formed at predetermined intervals on the front side in the rotation direction of the long blade 10 and the short blade 11 so as to be concavely cut toward the base end side. Here, it is assumed that the gash groove 12 formed in front of the long blade 10 in the rotation direction is represented by reference numeral 12A, and the gash groove 12 formed in front of the short blade 11 in the rotation direction is represented by reference numeral 12B.
図1に示す刃部3において、外周刃6の回転方向前方側に形成された切り屑排出溝5は第一フルート溝13と第二フルート溝14とで形成されている。第一フルート溝13は刃部3の外周面を先端面4から中心軸線Oに沿って螺旋状に基端側に延びていて後端で外周側に切れ上がっている。第二フルート溝14は、図3に示すように、第一フルート溝13の長手方向の先端側部分で第一フルート溝13を切除することでより深いフルート溝を形成している。各第二フルート溝14は先端面4で各ギャッシュ溝12A、12Bに滑らかに接続されている。
なお、図3は刃部3の先端面4から長手方向に距離0.5Dの位置における中心軸線Oに直交する軸直交断面図であり、図5は先端面から距離1.5Dの位置における中心軸線Oに直交する軸直交断面図である。
In the blade portion 3 shown in FIG. 1, the chip discharge groove 5 formed on the front side in the rotation direction of the outer peripheral blade 6 is formed by the first flute groove 13 and the second flute groove 14. The first flute groove 13 spirally extends the outer peripheral surface of the blade portion 3 from the tip surface 4 along the central axis O toward the base end side, and is cut off toward the outer peripheral side at the rear end. As shown in FIG. 3, the second flute groove 14 forms a deeper flute groove by cutting the first flute groove 13 at the distal end side portion in the longitudinal direction of the first flute groove 13. Each second flute groove 14 is smoothly connected to each of the gash grooves 12A and 12B at the tip surface 4.
FIG. 3 is an axis orthogonal cross-sectional view orthogonal to the central axis O at a position at a distance of 0.5D in the longitudinal direction from the tip surface 4 of the blade portion 3, and FIG. 5 is a center at a position at a distance of 1.5D from the tip surface. It is an axis orthogonal sectional view orthogonal to axis line O.
第二フルート溝14は第一フルート溝13より長さが短く、工具本体2の先端面4から基端側に向けて0.5D~1.5Dまでの範囲の長さに形成されている。第一フルート溝13は先端面4から1.5Dより長い長さに形成されている。第二フルート溝14の後端では徐々に径方向外側に切れ上がって滑らかに第一フルート溝13に接続されている。本実施形態では、図1に示すように、第二フルート溝14は先端面4から1.5Dの長さに到達しない位置に終端が形成されている。 The second flute groove 14 has a shorter length than the first flute groove 13, and is formed to have a length in the range of 0.5D to 1.5D from the tip surface 4 of the tool body 2 toward the base end side. The first flute groove 13 is formed to have a length longer than 1.5D from the tip surface 4. At the rear end of the second flute groove 14, it gradually cuts outward in the radial direction and is smoothly connected to the first flute groove 13. In the present embodiment, as shown in FIG. 1, the end of the second flute groove 14 is formed at a position not reaching the length of 1.5D from the tip surface 4.
図3の軸直交断面図において、第一フルート溝13は外周刃6から周方向に滑らかに凹曲線を描いて第一外周すくい面15を形成して更に凸曲線状に湾曲して前方の外周刃6の外周逃げ面8に接続されている。第一フルート溝13を更に切除して形成された第二フルート溝14は第一フルート溝13の第一外周すくい面15を一部切除して周方向に凹曲面を形成して第二外周すくい面17を形成し、更に凸曲線状に湾曲して外周逃げ面8に接続されている。 In the axially orthogonal cross-sectional view of FIG. 3, the first flute groove 13 smoothly draws a concave curve in the circumferential direction from the outer peripheral blade 6 to form the first outer peripheral rake face 15, and is further curved in a convex curve to the front outer circumference. It is connected to the outer peripheral flank surface 8 of the blade 6. The second flute groove 14 formed by further cutting the first flute groove 13 is formed by partially cutting the first outer peripheral rake face 15 of the first flute groove 13 to form a concave curved surface in the circumferential direction and forming a second outer peripheral rake. A surface 17 is formed, and the surface 17 is further curved in a convex curve to be connected to the outer peripheral escape surface 8.
そのため、外周刃6の先端側の第二フルート溝14の部分の外周すくい面7は第一外周すくい面15と第二外周すくい面17とで形成されている。第一外周すくい面15と第二外周すくい面17の交差部に段差として交差突部16が突出形成されている。図4に示すように、交差突部16は中心軸線Oと外周刃6とを結ぶ仮想線L(半径)に対して5°以内、例えば2.22°突出している。しかも、交差突部16は中心軸線Oと外周刃6とを結ぶ半径長さD/2の65%以上の位置に形成されている。そのため、外周刃6の外周すくい面7は第一外周すくい面15と第二外周すくい面17とで二段に形成され、交差突部16によって切り屑との接触を小さくして走行負荷及び加工負荷を低減している。
ここで、交差突部16の突出角度が5°を超えると切り屑の走行の障害になりスムーズに流れなくなる。また、交差突部16の位置が中心軸線Oから半径D/2の65%未満の長さ位置であると切り屑が外周すくい面7に接触する部分が増えて加工負荷を低減する効果がなくなる。交差突部16は第二フルート溝14に沿って先端側から後端側に延びていて第二フルート溝14の終端部で終了する。
Therefore, the outer peripheral rake surface 7 of the portion of the second flute groove 14 on the tip end side of the outer peripheral blade 6 is formed by the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17. An intersecting protrusion 16 is formed as a step at the intersection of the first outer peripheral rake face 15 and the second outer peripheral rake surface 17. As shown in FIG. 4, the intersecting protrusion 16 projects within 5 °, for example, 2.22 ° with respect to the virtual line L (radius) connecting the central axis O and the outer peripheral blade 6. Moreover, the intersecting protrusion 16 is formed at a position of 65% or more of the radius length D / 2 connecting the central axis O and the outer peripheral blade 6. Therefore, the outer peripheral rake face 7 of the outer peripheral blade 6 is formed in two stages by the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17, and the contact with chips is reduced by the intersecting protrusion 16 to reduce the traveling load and processing. The load is reduced.
Here, if the protruding angle of the crossing protrusion 16 exceeds 5 °, it hinders the running of chips and prevents smooth flow. Further, if the position of the intersecting protrusion 16 is a length less than 65% of the radius D / 2 from the central axis O, the portion where the chips come into contact with the outer peripheral rake face 7 increases, and the effect of reducing the machining load is lost. .. The intersecting protrusion 16 extends from the front end side to the rear end side along the second flute groove 14, and ends at the end of the second flute groove 14.
図3及び図5において、第一フルート溝13と第二フルート溝14は外周面への切り上げ部を除いてその中心軸線Oに沿う方向に同一深さで形成されている。第二フルート溝14が形成された先端側領域での刃部3の第一の芯厚S1は、第二フルート溝14の内接円で0.55D~0.70Dの範囲に形成されている。切り屑排出溝5において、第二フルート溝14が形成された先端側領域では、第一の芯厚S1が小さいため工具剛性は比較的小さいが、溝深さが大きく切り屑の排出性が高い。
第二フルート溝14が形成されておらず第一フルート溝13だけが形成された基端側領域では、刃部3の第二の芯厚S2は第一フルート溝13の内接円により0.60D~0.80Dの範囲に形成されている。第一フルート溝13の第二の芯厚S2は第二フルート溝14の第一の芯厚S1より0.05D以上大きく設定され、工具剛性が高い。
In FIGS. 3 and 5, the first flute groove 13 and the second flute groove 14 are formed at the same depth in the direction along the central axis O except for the portion rounded up to the outer peripheral surface. The first core thickness S1 of the blade portion 3 in the tip side region where the second flute groove 14 is formed is formed in the range of 0.55D to 0.70D by the inscribed circle of the second flute groove 14. .. In the chip discharge groove 5, in the tip side region where the second flute groove 14 is formed, the tool rigidity is relatively small because the first core thickness S1 is small, but the groove depth is large and the chip discharge property is high. ..
In the base end side region where the second flute groove 14 is not formed and only the first flute groove 13 is formed, the second core thickness S2 of the blade portion 3 is set to 0 by the inscribed circle of the first flute groove 13. It is formed in the range of 60D to 0.80D. The second core thickness S2 of the first flute groove 13 is set to be 0.05D or more larger than the first core thickness S1 of the second flute groove 14, and the tool rigidity is high.
上述したように、刃部3において、第二フルート溝14を形成した先端側の第一の芯厚S1は基端側の第二の芯厚S2より小さく工具剛性が低い。そのため、工具剛性を補強するため、第二フルート溝14を備えた領域の外周刃6の外周逃げ面8に次の構成を付加している。
図3において、外周逃げ面8として外周刃6の回転方向後方側に接続された二番逃げ面を有しているが、更に後方に逃げ面が形成されていてもよい。しかも、外周刃6の外周逃げ面8の周方向の幅Mが0.05D~0.25Dの範囲に設定されている。これにより、外周刃6の外周逃げ面8の部分の剛性を向上させている。外周逃げ面8の幅Mが0.05Dより小さいと剛性の補強効果が小さく0.25Dより大きいと外周刃6の回転方向後方側の第二フルート溝14の幅が狭くなり、切り屑排出性が低下する。
As described above, in the blade portion 3, the first core thickness S1 on the tip side on which the second flute groove 14 is formed is smaller than the second core thickness S2 on the base end side, and the tool rigidity is low. Therefore, in order to reinforce the tool rigidity, the following configuration is added to the outer peripheral relief surface 8 of the outer peripheral blade 6 in the region provided with the second flute groove 14.
In FIG. 3, the outer peripheral flank 8 has a second flank connected to the rear side in the rotation direction of the outer peripheral blade 6, but the flank may be further rearward. Moreover, the width M of the outer peripheral flank surface 8 of the outer peripheral blade 6 in the circumferential direction is set in the range of 0.05D to 0.25D. As a result, the rigidity of the portion of the outer peripheral flank surface 8 of the outer peripheral blade 6 is improved. If the width M of the outer peripheral flank 8 is smaller than 0.05D, the reinforcing effect of rigidity is small, and if it is larger than 0.25D, the width of the second flute groove 14 on the rear side in the rotation direction of the outer peripheral blade 6 becomes narrow, and chip evacuation is possible. Decreases.
図3に示すように、外周刃6の外周逃げ面8において、中心軸線Oと外周刃6を結ぶ仮想線Lの半径に対して回転方向後方側に20°の位置では半径D/2の88%~97%の厚みを有して張り出している。仮想線Lの半径に対して回転方向後方側に30°の位置では、半径D/2の78%~93%の厚みを持たせて張り出している。しかも、20°の位置から30°の位置までなだらかに傾斜が変化している。これら20°と30°の位置の肉厚は外周逃げ面8の回転方向後方に続く第二フルート溝14に形成されているが、外周逃げ面8に形成することも可能である。
外周逃げ面8の厚みがこの範囲であれば切り屑排出性を損なうことなく工具剛性を向上できる。外周逃げ面8の厚みが上記の範囲を超えると第二フルート溝14の周方向の幅が小さくなり切り屑排出性が低下し、上記の範囲より小さいと工具剛性の向上を達成できない。
As shown in FIG. 3, on the outer peripheral escape surface 8 of the outer peripheral blade 6, the radius D / 2 is 88 at a position 20 ° to the rear side in the rotation direction with respect to the radius of the virtual line L connecting the central axis O and the outer peripheral blade 6. It has a thickness of% to 97% and overhangs. At a position 30 ° to the rear side in the rotation direction with respect to the radius of the virtual line L, the thickness is 78% to 93% of the radius D / 2 and overhangs. Moreover, the inclination gradually changes from the position of 20 ° to the position of 30 °. The wall thicknesses at these 20 ° and 30 ° positions are formed in the second flute groove 14 that continues behind the outer peripheral escape surface 8 in the rotational direction, but can also be formed in the outer peripheral escape surface 8.
If the thickness of the outer peripheral flank 8 is within this range, the tool rigidity can be improved without impairing the chip evacuation property. If the thickness of the outer peripheral relief surface 8 exceeds the above range, the width of the second flute groove 14 in the circumferential direction becomes small and the chip evacuation property decreases, and if it is smaller than the above range, the improvement of the tool rigidity cannot be achieved.
なお、図5において、刃部3の第二フルート溝14が形成されない基端側の第一フルート溝13の領域では第二の芯厚S2が第一の芯厚S1より大きく工具剛性が高い。そのため、外周逃げ面8の幅M、外周刃6の回転方向後方側の20°、30°の位置の外周逃げ面8の肉厚は第二フルート溝14の領域より小さくてもよい。 In FIG. 5, in the region of the first flute groove 13 on the base end side where the second flute groove 14 of the blade portion 3 is not formed, the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high. Therefore, the width M of the outer peripheral relief surface 8 and the wall thickness of the outer peripheral relief surface 8 at positions 20 ° and 30 ° rearward in the rotation direction of the outer peripheral blade 6 may be smaller than the region of the second flute groove 14.
本実施形態によるエンドミル1は上述の構成を備えており、エンドミル1で被削材を切削加工する際、例えば最初に中心軸線O方向に送るドリリング加工を行い、その後に横送りして肩削り加工を行うものとする。
エンドミル1を中心軸線O周りに高速回転させながら中心軸線O方向に送ってドリリング加工を行う場合、最初に刃部3の先端面4の外周側に配設した一対の短刃11で切削加工を行う。短刃11で生成される切り屑は、長刃10の全長で切削加工する場合のほぼ半分程度の幅と体積になる。そのため、切り屑はギャッシュ溝12Bから切り屑排出溝5の第二フルート溝14をスムーズに走行して第一フルート溝13から排出される。また、短刃11による切削に遅れて、被削材の内側の部分を長刃10の切刃部10aで切削加工できる。
The end mill 1 according to the present embodiment has the above-described configuration. When cutting a work material with the end mill 1, for example, first drilling is performed to feed the work material in the O direction of the central axis, and then lateral feed is performed for shoulder cutting. Shall be performed.
When the end mill 1 is sent in the direction of the central axis O while rotating at high speed around the central axis O for drilling, the cutting process is first performed with a pair of short blades 11 arranged on the outer peripheral side of the tip surface 4 of the blade portion 3. Do. The chips generated by the short blade 11 have a width and volume of about half that of cutting with the entire length of the long blade 10. Therefore, the chips smoothly travel from the gash groove 12B through the second flute groove 14 of the chip discharge groove 5 and are discharged from the first flute groove 13. Further, the inner portion of the work material can be cut by the cutting edge portion 10a of the long blade 10 after the cutting by the short blade 11.
しかも、切り屑排出溝5を走行する切り屑は、第一フルート溝13及び第二フルート溝14を走行する際、外周すくい面7である第一外周すくい面15及び第二外周すくい面17の交差突部16に接触して走行する。そのため、第一外周すくい面15及び第二外周すくい面17に対する切り屑の接触面積が小さく走行時の抵抗と加工負荷を低減できる。
しかも、第一フルート溝13に重ねて第二フルート溝14を形成したため、溝深さが大きく切り屑排出性が高い。第二フルート溝14に形成された第二外周すくい面17は外周刃6の第一外周すくい面15の途中部分から回転方向前方の外周刃6の外周逃げ面8に向けて凹曲面と凸曲面とを連続して形成しているため幅広であり、切り屑をスムーズに基端側に排出できる。
Moreover, when the chips traveling in the chip discharge groove 5 travel in the first flute groove 13 and the second flute groove 14, the chips of the first outer peripheral rake surface 15 and the second outer peripheral rake surface 17, which are the outer peripheral rake surfaces 7, The vehicle travels in contact with the intersection 16. Therefore, the contact area of chips with respect to the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 is small, and the resistance and machining load during running can be reduced.
Moreover, since the second flute groove 14 is formed so as to overlap the first flute groove 13, the groove depth is large and the chip evacuation property is high. The second outer peripheral rake face 17 formed in the second flute groove 14 has a concave curved surface and a convex curved surface from an intermediate portion of the first outer peripheral rake surface 15 of the outer peripheral blade 6 toward the outer peripheral escape surface 8 of the outer peripheral blade 6 in the forward rotation direction. Since it is formed continuously, it is wide and chips can be smoothly discharged to the base end side.
また、エンドミル1の刃部3は先端側の切り屑排出溝5に第一フルート溝13に重ねて第二フルート溝14を形成したため、先端側の第一の芯厚S1がその後方の第一フルート溝13だけ設けた領域の第二の芯厚S2と比較して小さく、工具剛性が小さい。しかしながら、第二フルート溝14の領域において、各外周刃6の外周逃げ面8は周方向の幅Mが0.05D~0.25Dの範囲の肉厚に形成されている。
しかも、外周刃6の外周逃げ面8は中心軸線Oと外周刃6を結ぶ仮想線Lの回転方向後方側の20°の位置で半径D/2の88%~97%の範囲、30°の位置で半径D/2の78%~93%の範囲の肉厚に張り出し形成されている。そのため、第一の芯厚S1の比較的小さい工具剛性を外周逃げ面8の肉厚によって補強することができ、切り屑排出性と工具剛性を共に向上させることができる。また、切り屑排出溝5の基端側は第一フルート溝13だけが形成されているため、第二の芯厚S2が第一の芯厚S1より大きく工具剛性が高い。
Further, since the blade portion 3 of the end mill 1 is overlapped with the first flute groove 13 in the chip discharge groove 5 on the tip side to form the second flute groove 14, the first core thickness S1 on the tip side is the first behind it. It is smaller than the second core thickness S2 in the region where only the flute groove 13 is provided, and the tool rigidity is small. However, in the region of the second flute groove 14, the outer peripheral relief surface 8 of each outer peripheral blade 6 is formed to have a wall thickness in the circumferential width M in the range of 0.05D to 0.25D.
Moreover, the outer peripheral flank surface 8 of the outer peripheral blade 6 is located at a position of 20 ° behind the rotation direction of the virtual line L connecting the central axis O and the outer peripheral blade 6, and has a radius D / 2 in the range of 88% to 97% and 30 °. At the position, it is formed overhanging to a wall thickness in the range of 78% to 93% of the radius D / 2. Therefore, the relatively small tool rigidity of the first core thickness S1 can be reinforced by the wall thickness of the outer peripheral flank surface 8, and both chip evacuation and tool rigidity can be improved. Further, since only the first flute groove 13 is formed on the base end side of the chip discharge groove 5, the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high.
なお、ドリリング加工終了後にエンドミル1を横送りして被削材の加工面の肩削り切削を行うことができる。その際、先端側の外周刃6によって切削された切り屑は第一フルート溝13の第一外周すくい面15及び第二フルート溝14の第二外周すくい面17を走行するが、交差突部16に接触するため第一外周すくい面15及び第二外周すくい面17に接触する面積は小さい。そのため、切り屑は摩擦抵抗を抑えてスムーズに第二フルート溝14から第一フルート溝13を走行して基端側に排出される。
しかも、刃部3の先端側では第一フルート溝13に第二フルート溝14が形成されているために溝深さが深くて一層切り屑排出性を向上できる。
After the drilling process is completed, the end mill 1 can be laterally fed to perform shoulder cutting of the machined surface of the work material. At that time, the chips cut by the outer peripheral blade 6 on the tip side travel on the first outer peripheral rake face 15 of the first flute groove 13 and the second outer peripheral rake face 17 of the second flute groove 14, but the intersecting protrusion 16 The area of contact with the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 is small. Therefore, the chips smoothly travel from the second flute groove 14 to the first flute groove 13 while suppressing the frictional resistance, and are discharged to the proximal end side.
Moreover, since the second flute groove 14 is formed in the first flute groove 13 on the tip end side of the blade portion 3, the groove depth is deep and the chip evacuation property can be further improved.
上述したように本実施形態によるエンドミル1によれば、工具本体2の刃部3の先端側に第一フルート溝13に重ねて第二フルート溝14を形成したため、先端側の切り屑排出性が高い。また、第二フルート溝14を第一フルート溝13より短く形成することで基端側の工具剛性を大きくした。
しかも、切り屑排出溝5の第二フルート溝14は周方向に第一フルート溝13の第一外周すくい面15側から外周逃げ面8まで形成したため、幅広で切り屑排出性が高い。また、第一フルート溝13及び第二フルート溝14に形成した2段の第一外周すくい面15及び第二外周すくい面17の交差部に交差突部16を設けたため、切り屑の接触面積が少なくよりスムーズに走行して排出される。
As described above, according to the end mill 1 according to the present embodiment, since the second flute groove 14 is formed on the tip side of the blade portion 3 of the tool body 2 by overlapping with the first flute groove 13, the chip evacuation property on the tip side is improved. high. Further, the tool rigidity on the proximal end side is increased by forming the second flute groove 14 shorter than the first flute groove 13.
Moreover, since the second flute groove 14 of the chip discharge groove 5 is formed from the first outer peripheral rake surface 15 side of the first flute groove 13 to the outer peripheral escape surface 8 in the circumferential direction, it is wide and has high chip discharge property. Further, since the intersecting protrusion 16 is provided at the intersection of the first outer peripheral rake face 15 and the second outer peripheral rake surface 17 formed in the first flute groove 13 and the second flute groove 14, the contact area of chips is increased. It runs less smoothly and is discharged.
また、第二フルート溝14を第一フルート溝13より短く形成し、第二フルート溝14を形成した領域の第一の芯厚S1はその基端側の第一フルート溝13のみを形成した領域の第二の芯厚S2より小さいため工具剛性が小さい。しかし、外周刃6の外周逃げ面8に所定幅Mを設け、中心軸線Oから外周刃6までの仮想線Lの回転方向後方側に20°及び30°の位置での外周面(外周逃げ面または外周すくい面7)の肉厚を半径D/2の88~97%、78%~93%に張り出させることで工具剛性を補強することができる。 Further, the second flute groove 14 is formed shorter than the first flute groove 13, and the first core thickness S1 of the region where the second flute groove 14 is formed is the region where only the first flute groove 13 on the base end side thereof is formed. The tool rigidity is small because it is smaller than the second core thickness S2. However, a predetermined width M is provided on the outer peripheral flank surface 8 of the outer peripheral blade 6, and the outer peripheral surface (outer peripheral flank surface) at positions 20 ° and 30 ° behind the virtual line L from the central axis O to the outer peripheral blade 6 in the rotation direction. Alternatively, the tool rigidity can be reinforced by projecting the wall thickness of the outer peripheral rake face 7) to 88 to 97% and 78% to 93% of the radius D / 2.
以上、本発明の実施形態によるエンドミル1について説明したが、本発明はこのような実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で種々の異なる形態や態様を採用できることはいうまでもない。これらはいずれも本発明の技術的範囲に含まれる。
以下に本発明の他の実施形態や変形例について説明するが、上述した実施形態の部分や部品と同一または同様なものについては同一の符号を用いて説明を行うものとする。
Although the end mill 1 according to the embodiment of the present invention has been described above, the present invention is not limited to such an embodiment, and various different forms and modes can be adopted without departing from the spirit of the present invention. Needless to say. All of these are within the technical scope of the present invention.
Other embodiments and modifications of the present invention will be described below, but the same or similar parts and parts of the above-described embodiments will be described using the same reference numerals.
次に本発明の第二実施形態によるエンドミル1Aについて図6及び図7により説明する。
第二実施形態によるエンドミル1Aは、第一実施形態によるエンドミル1と基本構成を共通にしており、外周刃6の逃げ面の形状において相違する。図6は工具本体2の刃部3における先端面4から0.5Dの距離の中心軸線Oに直交する断面図、図7は先端面4から1.5Dの距離の中心軸線Oに直交する断面図である。
本第二実施形態によるエンドミル1Aの刃部3において、各長刃10及び短刃11の外周側端部には刃部3の外周面に形成された螺旋状の外周刃6が連結されている。外周刃6の回転方向前方側には外周すくい面7を有する切り屑排出溝5が形成され、外周刃6の回転方向後方側には外周逃げ面20が形成されている。外周逃げ面20は、図6に示す第二フルート溝14を設けた領域では、外周すくい面7の傾斜角度が大きくなっている。図7に示す第一フルート溝13のみを設けた領域では、外周逃げ面20とその回転方向後方の外周すくい面7の間に段差が形成されている。
Next, the end mill 1A according to the second embodiment of the present invention will be described with reference to FIGS. 6 and 7.
The end mill 1A according to the second embodiment has the same basic configuration as the end mill 1 according to the first embodiment, and differs in the shape of the flank surface of the outer peripheral blade 6. FIG. 6 is a cross-sectional view of the blade portion 3 of the tool body 2 orthogonal to the central axis O at a distance of 0.5D from the tip surface 4, and FIG. 7 is a cross-sectional view orthogonal to the central axis O at a distance of 1.5D from the tip surface 4. It is a figure.
In the blade portion 3 of the end mill 1A according to the second embodiment, a spiral outer peripheral blade 6 formed on the outer peripheral surface of the blade portion 3 is connected to the outer peripheral side ends of the long blade 10 and the short blade 11. .. A chip discharge groove 5 having an outer peripheral rake face 7 is formed on the front side in the rotation direction of the outer peripheral blade 6, and an outer peripheral relief surface 20 is formed on the rear side in the rotation direction of the outer peripheral blade 6. The outer peripheral rake face 7 has a large inclination angle in the region where the second flute groove 14 shown in FIG. 6 is provided. In the region provided with only the first flute groove 13 shown in FIG. 7, a step is formed between the outer peripheral relief surface 20 and the outer peripheral rake face 7 rearward in the rotational direction thereof.
刃部3の先端側領域において、図6に示す先端面4から0.5Dの位置には、第一フルート溝13の底部を更に深く切除して第二フルート溝14が形成されている。4つの第二フルート溝14の内接円として第一の芯厚S1(=0.55D~0.70D)が形成されている。図7に示す先端面から1.5Dの位置には、外周面の周方向に所定間隔で4つの第一フルート溝13が形成され、その内接円として第二の芯厚S2(=0.60D~0.80D)が形成されている。しかも、第二の芯厚S2は第一の芯厚S1より0.05D以上大きい。
本第二実施形態によるエンドミル1Aでは、先端側の刃部3の工具剛性を補強するために第一実施形態と同様に外周逃げ面20の形状を工夫している。
A second flute groove 14 is formed by cutting the bottom of the first flute groove 13 deeper at a position 0.5D from the tip surface 4 shown in FIG. 6 in the tip end side region of the blade portion 3. The first core thickness S1 (= 0.55D to 0.70D) is formed as the inscribed circle of the four second flute grooves 14. At the position 1.5D from the tip surface shown in FIG. 7, four first flute grooves 13 are formed at predetermined intervals in the circumferential direction of the outer peripheral surface, and the second core thickness S2 (= 0. 60D to 0.80D) is formed. Moreover, the second core thickness S2 is 0.05D or more larger than the first core thickness S1.
In the end mill 1A according to the second embodiment, the shape of the outer peripheral relief surface 20 is devised as in the first embodiment in order to reinforce the tool rigidity of the blade portion 3 on the tip side.
即ち、図6において、外周刃6の外周逃げ面20の周方向の幅Mが0.05D~0.25Dの範囲に設定されている。これにより、外周刃6の外周逃げ面8の部分の剛性を向上させている。
また、外周刃6の外周逃げ面20において、中心軸線Oと外周刃6を結ぶ仮想線Lの半径D/2に対して第二フルート溝14を有する外周刃6の外周逃げ面方向に20°の角度では、外周面は中心軸線Oからの長さが半径長さD/2の88%~97%の肉厚を有している。また、外周刃6の外周逃げ面方向に30°の角度では、外周逃げ面20は中心軸線Oからの長さが半径長さD/2の78%~93%の肉厚を有している。
外周逃げ面20の厚みが上記の範囲を超えて延びると第二フルート溝14の周方向の幅が小さくなり切り屑排出性が低下し、上記の範囲より小さいと工具剛性の向上に寄与できないという欠点が生じる。
なお、第二フルート溝14が形成されていない第一フルート溝13の領域では第二の芯厚S2が第一の芯厚S1より大きく工具剛性が高いため、外周逃げ面20の幅M、外周刃6の回転方向後方側の20°から30°の範囲での外周逃げ面20の肉厚は第二フルート溝14を設けた領域より小さくてもよい。
That is, in FIG. 6, the width M of the outer peripheral flank surface 20 of the outer peripheral blade 6 in the circumferential direction is set in the range of 0.05D to 0.25D. As a result, the rigidity of the portion of the outer peripheral flank surface 8 of the outer peripheral blade 6 is improved.
Further, on the outer peripheral escape surface 20 of the outer peripheral blade 6, 20 ° in the outer peripheral escape surface direction of the outer peripheral blade 6 having the second flute groove 14 with respect to the radius D / 2 of the virtual line L connecting the central axis O and the outer peripheral blade 6. At the angle of, the outer peripheral surface has a wall thickness of 88% to 97% of the radius length D / 2 in length from the central axis O. Further, at an angle of 30 ° in the direction of the outer peripheral flank of the outer peripheral blade 6, the outer peripheral flank 20 has a wall thickness of 78% to 93% of the radius length D / 2 in length from the central axis O. ..
If the thickness of the outer peripheral flank surface 20 extends beyond the above range, the width of the second flute groove 14 in the circumferential direction becomes small and the chip evacuation property decreases, and if it is smaller than the above range, it cannot contribute to the improvement of tool rigidity. There are drawbacks.
In the region of the first flute groove 13 in which the second flute groove 14 is not formed, the second core thickness S2 is larger than the first core thickness S1 and the tool rigidity is high. Therefore, the width M of the outer peripheral relief surface 20 and the outer circumference The wall thickness of the outer peripheral flank surface 20 in the range of 20 ° to 30 ° on the rear side in the rotation direction of the blade 6 may be smaller than the region where the second flute groove 14 is provided.
上述した各実施形態によるエンドミル1、1Aでは、先端面4に2枚の長刃10と2枚の短刃11を交互に配列させ、外周刃6を4枚刃としたが、本発明は4枚刃による底刃や外周刃6の構成に限定されない。例えば底刃や外周刃6の合計が3枚または2枚、或いは5枚以上に配列されて構成してもよい。これらの場合、底刃は長刃10と短刃11に限定されることなく、適宜の長さの底刃を採用できる。
上述の各実施形態において、外周刃6のすくい面には第一フルート溝13と第二フルート溝14との境界に交差突部16が段差として形成されている。しかしながら、必ずしも交差突部16は必要なく、第一フルート溝13と第二フルート溝14との周方向の境界を滑らかな凹曲線状に形成してもよい。
In the end mills 1 and 1A according to the above-described embodiments, the two long blades 10 and the two short blades 11 are alternately arranged on the tip surface 4, and the outer peripheral blade 6 is a four-blade. The configuration is not limited to the bottom blade and the outer peripheral blade 6 having a single blade. For example, the total of the bottom blade and the outer peripheral blade 6 may be arranged in 3 or 2 blades, or 5 or more blades. In these cases, the bottom blade is not limited to the long blade 10 and the short blade 11, and a bottom blade having an appropriate length can be adopted.
In each of the above-described embodiments, the rake face of the outer peripheral blade 6 is formed with an intersecting protrusion 16 as a step at the boundary between the first flute groove 13 and the second flute groove 14. However, the intersecting protrusion 16 is not always necessary, and the boundary between the first flute groove 13 and the second flute groove 14 in the circumferential direction may be formed in a smooth concave curve shape.
また、刃部3の外周面に配列させた複数の外周刃6の配設間隔は適宜に設定できる。
上述した各実施形態や変形例では、エンドミル1としてスクエアエンドミルについて説明したが、これに代えてラジアスエンドミルやボールエンドミルやドリル等の各種の切削工具にも本発明を適用できる。
Further, the arrangement interval of the plurality of outer peripheral blades 6 arranged on the outer peripheral surface of the blade portion 3 can be appropriately set.
In each of the above-described embodiments and modifications, the square end mill has been described as the end mill 1, but the present invention can be applied to various cutting tools such as a radius end mill, a ball end mill, and a drill instead.
 本発明は、工具本体の先端面に底刃が、外周面に外周刃が形成されたエンドミルを含む切削工具に関する。本発明の切削工具によれば、中心軸線回りに回転可能な工具本体の先端側外周面に所定間隔を開けて螺旋状に形成された複数の外周刃と、外周刃の回転方向前側に形成された切り屑排出溝と、工具本体の先端面に形成されていて外周刃に連続する複数の底刃と、を有する。しかも、外周刃の外周すくい面を有する切り屑排出溝は、先端面から後端側まで延びる第一フルート溝と、第一フルート溝の先端側領域を切除していて第一フルート溝より短い長さとされ且つその後端が第一フルート溝に接続されている第二フルート溝と、を備え、第二フルート溝は第一フルート溝の外周すくい面側から外周逃げ面に到達するまで周方向に形成されていることを特徴とする。
 本発明に係る切削工具によれば、第二フルート溝によって先端側の芯厚を後端側より小さくすることで先端側の切り屑排出溝を深くして切り屑排出性を向上させると共に、後端側の芯厚を大きくすることで先端側の工具剛性を補強して全体の工具剛性を高くすることができる。先端側の第二フルート溝は周方向に外周刃の外周すくい面側から外周刃の外周逃げ面まで到達することで、工具剛性を高めつつ切り屑をスムーズに排出できる。
The present invention relates to a cutting tool including an end mill in which a bottom blade is formed on the tip surface of a tool body and an outer peripheral blade is formed on the outer peripheral surface. According to the cutting tool of the present invention, a plurality of outer peripheral blades formed in a spiral shape with a predetermined interval on the outer peripheral surface on the tip side of the tool body that can rotate around the central axis, and a plurality of outer peripheral blades formed on the front side in the rotation direction of the outer peripheral blades. It has a chip discharge groove and a plurality of bottom blades formed on the tip surface of the tool body and continuous with the outer peripheral blade. Moreover, the chip discharge groove having the outer peripheral rake face of the outer peripheral blade has a length shorter than that of the first flute groove by cutting off the first flute groove extending from the tip surface to the rear end side and the tip side region of the first flute groove. The second flute groove is provided with a second flute groove whose rear end is connected to the first flute groove, and the second flute groove is formed in the circumferential direction from the outer rake face side of the first flute groove to the outer peripheral escape surface. It is characterized by being done.
According to the cutting tool according to the present invention, the core thickness on the tip side is made smaller than that on the rear end side by the second flute groove to deepen the chip discharge groove on the tip side and improve the chip discharge property. By increasing the core thickness on the end side, the tool rigidity on the tip side can be reinforced and the overall tool rigidity can be increased. The second flute groove on the tip side reaches from the outer peripheral rake face side of the outer peripheral blade to the outer peripheral relief surface of the outer peripheral blade in the circumferential direction, so that chips can be smoothly discharged while increasing the tool rigidity.
1 エンドミル
2 工具本体
3 刃部
5 切り屑排出溝
6 外周刃
7 外周すくい面
8、20 外周逃げ面
10 長刃
10a 切刃部
11 短刃
13 第一フルート溝
14 第二フルート溝
15 第一外周すくい面
16 交差突部
17 第二外周すくい面
S1 第一の芯厚
S2 第二の芯厚
L 仮想線
O 中心軸線
1 End mill 2 Tool body 3 Blade part 5 Chip discharge groove 6 Outer blade 7 Outer outer rake surface 8, 20 Outer outer relief surface 10 Long blade 10a Cutting blade 11 Short blade 13 First flute groove 14 Second flute groove 15 First outer circumference Scoop surface 16 Crossing protrusion 17 Second outer peripheral rake surface S1 First core thickness S2 Second core thickness L Virtual line O Center axis

Claims (8)

  1. 中心軸線回りに回転可能な工具本体の先端側外周面に所定間隔を開けて螺旋状に形成された複数の外周刃と、該外周刃の回転方向前側に形成された切り屑排出溝と、前記工具本体の先端面に形成されていて前記外周刃に連続する複数の底刃と、を有する切削工具であって、
    前記外周刃の外周すくい面を有する前記切り屑排出溝は、
    前記先端面から後端側まで延びる第一フルート溝と、
    前記第一フルート溝の先端側領域を切除して形成されていて前記第一フルート溝より短い長さとされ且つその後端が前記第一フルート溝に接続されている第二フルート溝と、を備え、
    前記第二フルート溝は前記第一フルート溝の外周すくい面側から外周逃げ面に到達するまで周方向に形成されていることを特徴とする切削工具。
    A plurality of outer peripheral blades formed spirally on the outer peripheral surface on the tip side of the tool body that can rotate around the central axis at predetermined intervals, a chip discharge groove formed on the front side in the rotation direction of the outer peripheral blade, and the above. A cutting tool having a plurality of bottom blades formed on the tip surface of the tool body and continuous with the outer peripheral blade.
    The chip discharge groove having the outer peripheral rake face of the outer peripheral blade is
    A first flute groove extending from the front end surface to the rear end side,
    A second flute groove formed by cutting off a region on the distal end side of the first flute groove, having a length shorter than that of the first flute groove, and having a trailing end connected to the first flute groove.
    A cutting tool characterized in that the second flute groove is formed in the circumferential direction from the outer peripheral rake face side of the first flute groove to the outer peripheral relief surface.
  2. 前記工具本体の中心軸線に直交する断面視で前記中心軸線と前記外周刃を結ぶ半径長さをD/2として、
    前記第二フルート溝を有する前記外周刃の外周逃げ面方向に20°の角度では、前記外周面は前記中心軸線からの長さが前記半径長さD/2の88%~97%の肉厚を有し、
    前記外周刃の外周逃げ面方向に30°の角度では、前記外周逃げ面は前記中心軸線からの長さが前記半径長さD/2の78%~93%の肉厚を有している請求項1に記載された切削工具。
    The radius length connecting the central axis and the outer peripheral blade in a cross-sectional view orthogonal to the central axis of the tool body is set to D / 2.
    At an angle of 20 ° toward the outer peripheral flank surface of the outer peripheral blade having the second flute groove, the outer peripheral surface has a wall thickness of 88% to 97% of the radius length D / 2 in length from the central axis. Have,
    At an angle of 30 ° in the direction of the outer peripheral flank of the outer peripheral blade, the outer peripheral flank has a wall thickness of 78% to 93% of the radius length D / 2 in length from the central axis. Item 1. The cutting tool according to Item 1.
  3. 前記工具本体の先端面近傍における中心軸線に直交する断面において、前記外周刃の外周すくい面には前記第一フルート溝と前記第二フルート溝との境界に交差突部が突出して形成されている請求項1に記載された切削工具。 In a cross section orthogonal to the central axis in the vicinity of the tip surface of the tool body, an intersecting protrusion is formed on the outer rake face of the outer peripheral blade so as to project at the boundary between the first flute groove and the second flute groove. The cutting tool according to claim 1.
  4. 前記交差突部は前記中心軸線と外周刃とを結ぶ仮想線に対して5°以下突出していると共に、前記中心軸線から外周刃までの半径長さD/2の65%以上の位置に形成されている請求項3に記載された切削工具。 The intersecting protrusion protrudes by 5 ° or less with respect to the virtual line connecting the central axis and the outer peripheral blade, and is formed at a position of 65% or more of the radius length D / 2 from the central axis to the outer peripheral blade. The cutting tool according to claim 3.
  5. 前記中心軸線と前記外周刃を結ぶ半径長さをD/2として、
    前記第二フルート溝の領域における第一の芯厚は0.55D~0.70Dの範囲に設定され、
    前記第二フルート溝より後方で前記第一フルート溝の領域における第二の芯厚は0.60D~0.80Dの範囲に設定され且つ前記第一の芯厚より0.05D以上大きい請求項1に記載された切削工具。
    Let the radius length connecting the central axis and the outer peripheral blade be D / 2,
    The first core thickness in the region of the second flute groove is set in the range of 0.55D to 0.70D.
    Claim 1 that the second core thickness in the region of the first flute groove behind the second flute groove is set in the range of 0.60D to 0.80D and is 0.05D or more larger than the first core thickness. Cutting tools listed in.
  6. 前記第二フルート溝の長さは先端面から0.5D~1.5Dまでの範囲に設定されている請求項1に記載された切削工具。 The cutting tool according to claim 1, wherein the length of the second flute groove is set in the range of 0.5D to 1.5D from the tip surface.
  7. 先端側の前記外周逃げ面の周方向の幅は0.05D~0.25Dの範囲に設定されている請求項1に記載された切削工具。 The cutting tool according to claim 1, wherein the width of the outer peripheral flank surface on the tip side in the circumferential direction is set in the range of 0.05D to 0.25D.
  8. 前記複数の底刃は不等分割され、前記複数の外周刃は不等リードに設定されている請求項1に記載された切削工具。 The cutting tool according to claim 1, wherein the plurality of bottom blades are unequally divided, and the plurality of outer peripheral blades are set to unequal leads.
PCT/JP2019/047381 2019-05-24 2019-12-04 Cutting tool WO2020240892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-097728 2019-05-24
JP2019097728A JP6902284B2 (en) 2019-05-24 2019-05-24 Cutting tools

Publications (1)

Publication Number Publication Date
WO2020240892A1 true WO2020240892A1 (en) 2020-12-03

Family

ID=73548461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047381 WO2020240892A1 (en) 2019-05-24 2019-12-04 Cutting tool

Country Status (2)

Country Link
JP (1) JP6902284B2 (en)
WO (1) WO2020240892A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535676A (en) * 2022-02-28 2022-05-27 广东鼎泰高科技术股份有限公司 Machining tool capable of inhibiting burrs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204921A (en) * 1994-01-14 1995-08-08 Hitachi Tool Eng Ltd End mill
JP2000288826A (en) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp End mill
JP2006212744A (en) * 2005-02-04 2006-08-17 Nisshin Kogu Kk End mill
JP2012091306A (en) * 2010-10-29 2012-05-17 Hitachi Tool Engineering Ltd End mill made of cemented carbide
WO2017038763A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 End mill and manufacturing method for cut work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204921A (en) * 1994-01-14 1995-08-08 Hitachi Tool Eng Ltd End mill
JP2000288826A (en) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp End mill
JP2006212744A (en) * 2005-02-04 2006-08-17 Nisshin Kogu Kk End mill
JP2012091306A (en) * 2010-10-29 2012-05-17 Hitachi Tool Engineering Ltd End mill made of cemented carbide
WO2017038763A1 (en) * 2015-08-28 2017-03-09 京セラ株式会社 End mill and manufacturing method for cut work

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535676A (en) * 2022-02-28 2022-05-27 广东鼎泰高科技术股份有限公司 Machining tool capable of inhibiting burrs
CN114535676B (en) * 2022-02-28 2023-08-29 广东鼎泰高科技术股份有限公司 Machining tool capable of inhibiting burrs

Also Published As

Publication number Publication date
JP2020192611A (en) 2020-12-03
JP6902284B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6057038B1 (en) drill
JP6473761B2 (en) End mill and method of manufacturing cut product
JP5940205B1 (en) drill
JP5845218B2 (en) Ball end mill
JP5194680B2 (en) Radius end mill
JP4677722B2 (en) 3-flute ball end mill
JP4125909B2 (en) Square end mill
JP2006000985A (en) Cutting tool
JP6902284B2 (en) Cutting tools
JP6902285B2 (en) Cutting tools
JP2004276142A (en) End mill
JP2003275913A (en) Drill
JP2023140443A (en) end mill
JP7138927B2 (en) Drill
WO2021260774A1 (en) Rotary cutting tool
JP7706561B2 (en) Rotary tool and method for manufacturing machined product
WO2020202640A1 (en) Cutting tool
CN116060680A (en) Rotary cutting tool capable of high ramp angles
JP2023140813A (en) end mill
JP2022129078A (en) rotary tool
JP2000288826A (en) End mill
JP2023050214A (en) end mill
WO2023054574A1 (en) Rotary tool, and method for manufacturing cut workpiece
JP2002301613A (en) Drill with diamond sintered material
JP2010162644A (en) Drill and grinding method of the drill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931164

Country of ref document: EP

Kind code of ref document: A1