[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020137927A1 - 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ - Google Patents

熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ Download PDF

Info

Publication number
WO2020137927A1
WO2020137927A1 PCT/JP2019/050234 JP2019050234W WO2020137927A1 WO 2020137927 A1 WO2020137927 A1 WO 2020137927A1 JP 2019050234 W JP2019050234 W JP 2019050234W WO 2020137927 A1 WO2020137927 A1 WO 2020137927A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
ppb
thermoplastic resin
atom
dicarboxylic acid
Prior art date
Application number
PCT/JP2019/050234
Other languages
English (en)
French (fr)
Inventor
篤志 茂木
健太朗 石原
克吏 西森
慎也 池田
加藤 宣之
近藤 光輝
健輔 大島
正大 神田
章子 鈴木
龍展 緒方
三豪 末松
隆実 森下
平川 学
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020217013301A priority Critical patent/KR20210108943A/ko
Priority to CN201980085972.6A priority patent/CN113260883A/zh
Priority to JP2020563228A priority patent/JP7548015B2/ja
Publication of WO2020137927A1 publication Critical patent/WO2020137927A1/ja
Priority to JP2024058426A priority patent/JP2024079821A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a thermoplastic resin, a method for producing the same, and an optical lens including the thermoplastic resin. More specifically, it relates to a thermoplastic resin having a high refractive index, a high heat resistance and a low YI value, and an optical lens including the same.
  • Optical glass or optical resin is used as a material for optical lenses used in optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., but has the problems of high material cost, poor moldability, and low productivity.
  • optical lenses made of optical resins have the advantage that they can be mass-produced by injection molding, and polycarbonate, polyester carbonate, polyester resins, etc. are used as high refractive index materials for camera lenses.
  • resins having a high refractive index has been required due to the lighter, thinner, shorter and smaller products.
  • a lens element having the same refractive index can be realized by a surface having a smaller curvature, so that the amount of aberration generated on this surface can be reduced, the number of lenses can be reduced, and It is possible to reduce the polarization sensitivity and reduce the lens thickness to reduce the weight.
  • An object of the present invention is to provide a thermoplastic resin having a high refractive index, a high heat resistance, and a low YI value, a method for producing the same, and an optical lens including the thermoplastic resin.
  • thermoplastic resin using a dicarboxylic acid containing a specific metal in a specific amount, and have reached the present invention. did.
  • thermoplastic resin by reacting at least a composition containing a dicarboxylic acid represented by the following formula (1) and a metal derived from the dicarboxylic acid, It is a production method in which the metal contains Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 10,000 ppb or less.
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or O, N and S.
  • a and b each independently represent an integer of 0 to 5.
  • the metal is 1 to 100 ppb for Li, 2 to 500 ppb for Na, 1 to 1000 ppb for Mg, 5 to 500 ppb for Al, 20 to 3000 ppb for K, 5 to 1000 ppb for Ca, 1 to 100 ppb for Ti, and 1 to 100 ppb for Cr.
  • the composition containing a dicarboxylic acid represented by the above formula (1) and a metal derived from the dicarboxylic acid is reacted with a diol compound represented by the following formula (2).
  • R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or O, N and S.
  • thermoplastic resin is polyester or polyester carbonate.
  • thermoplastic resin comprising a constitutional unit represented by the following formula (3) and a metal derived from a dicarboxylic acid constituting the constitutional unit:
  • the metal is a thermoplastic resin containing Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 10,000 ppb or less.
  • R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or O, N and S.
  • thermoplastic resin according to ⁇ 7> wherein the thermoplastic resin has a YI value of 7 to 40.
  • thermoplastic resin of the present invention has a high refractive index, a high heat resistance and a low YI value, and can exert an excellent effect particularly when used in an optical lens.
  • FIG. 1 is the NMR measurement result of the polyester resin obtained in Example 1.
  • the method for producing a thermoplastic resin of the present invention is a method for producing a thermoplastic resin by reacting at least a composition containing a dicarboxylic acid represented by the following formula (1) and a metal derived from the dicarboxylic acid.
  • the metal contains Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 10,000 ppb or less.
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or O, N and S.
  • R 1 and R 2 each independently represent a hydrogen atom, a phenyl group, a naphthyl group or a substituent selected from the group consisting of the following.
  • a and b each independently represent an integer of 0 to 5, and preferably each independently represent 0 or 1.
  • 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl and the compounds represented by the following structural formulas are preferable, and 2,2′-bis (Hydroxycarbonylmethoxy)-1,1′-binaphthyl is particularly preferred.
  • the 1,1′-binaphthyl skeleton improves the heat resistance and refractive index of the thermoplastic resin, and has a conformation orthogonal to the bond axis connecting the two naphthalene rings. Therefore, there is an effect of reducing birefringence.
  • the binaphthyl skeleton may be any of R-form, S-form, and racemic form, and preferably the racemic form.
  • the racemate which does not require optical resolution, has a cost advantage.
  • the metal derived from the dicarboxylic acid represented by the formula (1) means a metal component mixed as an impurity when the dicarboxylic acid represented by the formula (1) is produced.
  • metals include Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn, Sn, V, Mn, Co, Cu, Ge, Sr, Zr, Mo, Ag, Cd.
  • the metal derived from the dicarboxylic acid represented by the formula (1) has a total content of Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn of 10,000 ppb or less.
  • thermoplastic resin by reacting a dicarboxylic acid containing Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 10,000 ppb or less. It was surprisingly found that a thermoplastic resin having a high refractive index, a high heat resistance and a low YI value can be obtained.
  • the metal derived from the dicarboxylic acid represented by the formula (1) is Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 54 ppb. It is preferable to include the above amount.
  • the metal derived from the dicarboxylic acid represented by the formula (1) preferably contains Fe in an amount of 20 to 3000 ppb. Also, 1 to 100 ppb for Li, 2 to 500 ppb for Na, 1 to 1000 ppb for Mg, 5 to 500 ppb for Al, 20 to 3000 ppb for K, 5 to 1000 ppb for Ca, 1 to 100 ppb for Ti, 5 to 500 ppb for Cr, It is preferable to contain Ni in an amount of 1 to 100 ppb, Zn in an amount of 2 to 100 ppb, and Sn in an amount of 1 to 100 ppb. Table 1 below shows the more preferable content of each metal component and the upper limit of the particularly preferable content.
  • the thermoplastic resin of the present invention obtained by the above-mentioned production method is a thermoplastic resin containing a structural unit represented by the following formula (3) and a metal derived from a dicarboxylic acid constituting the structural unit:
  • the metal contains Li, Na, Mg, Al, K, Ca, Ti, Cr, Fe, Ni, Zn and Sn in a total amount of 10,000 ppb or less.
  • R 5 , R 6 , e and f have the same meanings as R 1 , R 2 , a and b in the formula (1), respectively.
  • a specific thermoplastic resin is preferably a polyester resin or a polyester carbonate resin, and particularly preferably a polyester resin from the viewpoint of the effect of the present invention.
  • thermoplastic resin of the present invention has a high refractive index, and the refractive index at a measurement wavelength of 589 nm at 25° C. (hereinafter sometimes abbreviated as “nD”) is 1.650 to 1 It is preferably 0.720, more preferably 1.660 to 1.710, still more preferably 1.670 to 1.700.
  • nD the refractive index at a measurement wavelength of 589 nm at 25° C.
  • nD the refractive index at a measurement wavelength of 589 nm at 25° C.
  • Tg glass transition point
  • thermoplastic resin of the present invention has a low YI value, and the YI value is preferably from 7 to 40, more preferably from 9 to 38. Furthermore, the thermoplastic resin of the present invention preferably has a weight average molecular weight (Mw) of 10,000 to 50,000, more preferably 15,000 to 40,000. As a method for measuring the weight average molecular weight (Mw), the method described in Examples below can be used.
  • thermoplastic resin of the present invention is not particularly limited as long as it is obtained by reacting a composition containing a dicarboxylic acid represented by the formula (1) and a metal derived from the dicarboxylic acid. Any diol compound may be used as the raw material. In the present invention, it is preferable to react a composition containing a dicarboxylic acid represented by the above formula (1) and a metal derived from the dicarboxylic acid with a diol compound represented by the following formula (2).
  • R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or O, N and S. It represents an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aralkyl group having 7 to 17 carbon atoms, which may contain a selected heterocyclic atom. ..
  • R 3 and R 4 each independently represent a hydrogen atom, a phenyl group, a naphthyl group or a substituent selected from the group consisting of the following.
  • c and d each independently represent an integer of 0 to 5, and preferably each independently represent 0 or 1.
  • the thermoplastic resin in the present invention has a constitutional unit represented by the above formula (3), preferably a constitutional unit derived from a diol compound represented by the above formula (2). It may contain components.
  • the copolymerization component include dicarboxylic acid components other than those represented by the above formula (1), diol components other than those represented by the above formula (2), and repeating units having a carbonate bond.
  • dicarboxylic acid component as a copolymerization component
  • dicarboxylic acid component examples include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, and ethyldicarboxylic acid components such as ethylmalonic acid.
  • Monocyclic aromatic dicarboxylic acid components such as phthalic acid, isophthalic acid and terephthalic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid , Polycyclic aromatic dicarboxylic acid components such as anthracene dicarboxylic acid and phenanthrene dicarboxylic acid, biphenyl dicarboxylic acid components such as 2,2′-biphenyldicarboxylic acid, 1,4-cyclodicarboxylic acid, 2,6-decalindicarboxylic acid, etc. Alicyclic dicarboxylic acid component of.
  • a monocyclic aromatic dicarboxylic acid component a polycyclic aromatic dicarboxylic acid component, and a biphenyl dicarboxylic acid component are preferable because they can easily increase the heat resistance and the refractive index.
  • diol component as a copolymerization component examples include aliphatic diol components such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol and nonanediol, and tricyclo[5.2].
  • ethylene glycol and 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl are preferable because they can easily suppress the deterioration of heat resistance and refractive index while improving the moldability.
  • repeating unit having a carbonate bond as a copolymerization component examples include those in which the diol component exemplified in the formula (2) and the diol component exemplified as the above-mentioned copolymerization component are carbonate-bonded.
  • thermoplastic resin of the present invention is obtained by subjecting the dicarboxylic acid and diol compound represented by the above formula (1) to an esterification reaction or a transesterification reaction, and subjecting the obtained reaction product to a polycondensation reaction to obtain a desired high molecular weight compound. It may be a molecular weight substance.
  • the diol component and the dicarboxylic acid component or its diester in the presence of an inert gas, and react under reduced pressure usually at 120 to 350°C, preferably at 150 to 300°C. ..
  • the degree of pressure reduction is changed stepwise, and finally water or alcohol produced at 0.13 kPa or less is distilled out of the system, and the reaction time is usually about 1 to 10 hours.
  • antimony compounds, titanium compounds, germanium compounds, tin compounds or aluminum compounds are preferable.
  • antimony compounds, titanium, germanium, tin, aluminum oxides, acetates, carboxylates, hydrides, alcoholates, halides, carbonates and sulfates are preferable.
  • these compounds can be used in combination of 2 or more types.
  • tin, titanium and germanium compounds are preferable from the viewpoint of melt stability and hue of the thermoplastic resin.
  • the transesterification catalyst one known per se can be adopted, and for example, a compound containing manganese, magnesium, titanium, zinc, aluminum, calcium, cobalt, sodium, lithium, or a lead element can be used. Specific examples include oxides, acetates, carboxylates, hydrides, alcoholates, halides, carbonates and sulfates containing these elements. Of these, compounds such as manganese, magnesium, zinc, titanium, cobalt oxides, acetates, and alcoholates are preferable from the viewpoints of melt stability of the thermoplastic resin, hue, and small amount of polymer-insoluble foreign matter. Further, manganese, magnesium and titanium compounds are preferable. These compounds can be used in combination of two or more kinds.
  • the thermoplastic resin of the present invention may contain a copolymerization component other than the constitutional unit represented by the formula (3).
  • a copolymerization component other than the constitutional unit represented by the formula (3).
  • dicarboxylic acid chloride or phosgene may be reacted in addition to the diol component and the dicarboxylic acid component, or the polyester carbonate resin can be produced by reacting the diol, dicarboxylic acid and biaryl carbonate. ..
  • biaryl carbonate examples include carbonic acid diesters such as diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, and dinaphthyl carbonate. Of these, diphenyl carbonate is preferred.
  • the content of the dicarboxylic acid chloride, phosgene, or biaryl carbonate component is preferably less than 42 mol%, more preferably less than 30 mol%, and further preferably less than 20 mol% with respect to 100 mol% of the dicarboxylic acid component.
  • thermoplastic resin of the present invention if necessary, additives such as a heat stabilizer, an antioxidant, a release agent, a plasticizer, a filler, and an ultraviolet absorber are appropriately added to obtain a thermoplastic resin composition. Can be used.
  • the release agent it is preferable that 90% by weight or more thereof is composed of an ester of alcohol and fatty acid.
  • the ester of alcohol and fatty acid include esters of monohydric alcohol and fatty acid and/or partial or total ester of polyhydric alcohol and fatty acid.
  • the ester of monohydric alcohol and fatty acid is preferably an ester of monohydric alcohol having 1 to 20 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms.
  • the partial or total ester of polyhydric alcohol and fatty acid is preferably partial ester or total ester of polyhydric alcohol having 1 to 25 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms.
  • ester of monohydric alcohol and saturated fatty acid examples include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like, with stearyl stearate being preferred.
  • partial or whole ester of polyhydric alcohol and saturated fatty acid include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetraglyceride.
  • esters or parts of dipentaerythritol such as stearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate.
  • esters include esters.
  • stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
  • the amount of the ester in the release agent is preferably 90% by weight or more, more preferably 95% by weight or more, based on 100% by weight of the release agent.
  • the release agent to be added to the thermoplastic resin composition is preferably 0.005 to 2.0 parts by weight, more preferably 0.01 to 0.6 parts by weight, based on 100 parts by weight of the thermoplastic resin. A range of 0.02 to 0.5 parts by weight is more preferable.
  • the heat stabilizer examples include phosphorus-based heat stabilizers, sulfur-based heat stabilizers and hindered phenol-based heat stabilizers.
  • phosphorus-based heat stabilizer tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylene diphosphonite is preferably used.
  • the content of the phosphorus-based heat stabilizer in the thermoplastic resin is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • hindered phenol heat stabilizers octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate is particularly preferably used.
  • the content of the hindered phenolic heat stabilizer in the thermoplastic resin is preferably 0.001 to 0.3 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • UV absorber at least one UV absorber selected from the group consisting of benzotriazole UV absorbers, benzophenone UV absorbers, triazine UV absorbers, cyclic iminoester UV absorbers and cyanoacrylate UV absorbers. Is preferred.
  • benzotriazole type ultraviolet absorbers more preferable are 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole and 2,2′-methylenebis[4-(1,1,3,3-tetramethyl Butyl)-6-(2H-benzotriazol-2-yl)phenol].
  • benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
  • triazine-based ultraviolet absorber examples include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol and 2-(4,6-bis( 2.4-Dimethylphenyl)-1,3,5-triazin-2-yl)-5-[(octyl)oxy]-phenol and the like can be mentioned.
  • cyclic imino ester-based ultraviolet absorber 2,2'-p-phenylenebis(3,1-benzoxazin-4-one) is particularly preferable.
  • the blending amount of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If the blending amount is within the above range, a thermoplastic resin molded article can be prepared according to the application. It is possible to impart sufficient weather resistance.
  • the thermoplastic resin of the present invention is suitable for optical members, particularly optical lenses.
  • the optical lens containing the thermoplastic resin of the present invention is manufactured by injection molding, it is preferable to mold under the conditions of a cylinder temperature of 260 to 350° C. and a mold temperature of 90 to 170° C. More preferably, molding is performed under the conditions of a cylinder temperature of 270 to 320° C. and a mold temperature of 100 to 160° C. If the cylinder temperature is higher than 350°C, the thermoplastic resin is decomposed and colored, and if it is lower than 260°C, the melt viscosity is high and molding tends to be difficult.
  • the mold temperature is higher than 170° C., it tends to be difficult to take out the molded piece made of the thermoplastic resin from the mold.
  • the mold temperature is lower than 90°C, the resin may harden too quickly in the mold at the time of molding, making it difficult to control the shape of the molded piece, or sufficiently transferring the mold attached to the mold. Is likely to be difficult.
  • the optical lens of the present invention is preferably implemented in the form of an aspherical lens, if necessary. Since it is possible to reduce the spherical aberration to substantially zero with a single aspherical lens, it is not necessary to remove the spherical aberration by combining a plurality of spherical lenses, and it is possible to reduce the weight and the molding cost. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the optical lens of the present invention has high molding fluidity, it is particularly useful as a material for an optical lens that is thin, small, and has a complicated shape.
  • the thickness of the central portion is preferably 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and further preferably 0.1 to 2.0 mm.
  • the diameter is preferably 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, still more preferably 3.0 to 10.0 mm.
  • the meniscus lens has a convex shape on one side and a concave shape on one side.
  • the optical lens of the present invention is molded by any method such as mold molding, cutting, polishing, laser processing, electric discharge machining, and etching. Among these, die molding is more preferable from the viewpoint of manufacturing cost.
  • Mw ⁇ (Wi ⁇ Mi) ⁇ (Wi)
  • i the i-th division point when the molecular weight M is divided
  • Wi the i-th weight
  • Mi the i-th molecular weight.
  • the molecular weight M represents the polystyrene molecular weight value at the same elution time of the calibration curve.
  • HLC-8320GPC manufactured by Tosoh Corporation was used as a GPC device, one TSKguardcolumn SuperMPHZ-M was used as a guard column, and three TSKgel SuperMultiporeHZ-M were connected in series as an analytical column. Other conditions are as follows.
  • nD, ⁇ d ⁇ Method of measuring refractive index (nD, ⁇ d)> The obtained resin was press-molded into a disc having a diameter of 40 mm and a thickness of 3 mm (molding condition: 200° C., 100 kgf/cm 2 , 2 minutes), cut out at a right angle, and measured at a wavelength of 589 nm at 25° C. by KPR-200 manufactured by Kalnew. The refractive index was measured.
  • BINOL-DC 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl
  • BINOL-DC 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl
  • DP-BHBNA 2,2′-bis(2-hydroxyethoxy)-6,6′diphenyl-1,1′-binaphthalene
  • EG ethylene glycol
  • EG ethylene glycol
  • Example 2 A polyester resin was obtained in the same manner as in Example 1 except that 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl of different lots was used. Table 2 shows the physical properties of the obtained polyester resin.
  • BINOL-DC-A 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl used in Example 1 was designated as BINOL-DC-A, and 2,2′-bis used in Example 2 was used.
  • BINOL-DC-B 2,2′-bis used in Example 2 was used.
  • Example 3 Further, a polyester resin was obtained in the same manner as in Example 1 except that 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl of different lot was used. Table 2 shows the physical properties of the obtained polyester resin. In Table 2, 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl used in Example 3 was designated as BINOL-DC-C.
  • Example 4 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl (BINOL-DC-A) 50.29 g (0.12 mol) used in Example 1, represented by the following structural formula 9,9 '-Bis(4-(2-hydroxyethoxy)phenyl)fluorene (BPEF) 164.41 g (0.37 mol), diphenyl carbonate 55.95 g (0.26 mol) and 0.015 g of tetrabutoxy titanium as a catalyst Then, the mixture was placed in a reaction kettle equipped with a distillation device, heated to 180° C. under a nitrogen atmosphere at atmospheric pressure, and stirred for 30 minutes.
  • BPEF BPEF
  • Example 2 A polyester resin was obtained in the same manner as in Example 1 except that 2,2′-bis(hydroxycarbonylmethoxy)-1,1′-binaphthyl containing the amount of metal shown in Table 2 below was used. Table 2 shows the physical properties of the obtained polyester resin.
  • thermoplastic resin of the present invention Since the thermoplastic resin of the present invention has a high refractive index, high heat resistance and low YI value, it is an optical disc, a transparent conductive substrate, an optical card, a sheet, a film, an optical fiber, a lens, a prism, an optical film, a substrate, an optical filter. It can be used as an optical member such as a hard coat film, and is particularly useful as a lens for a camera such as a smartphone, a DSC, and a vehicle. By using the thermoplastic resin of the present invention, it is possible to reduce the thickness of the lens unit used for telephoto and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明によれば、少なくとも、下記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物を反応させて熱可塑性樹脂を製造する方法であって、前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含む、製造方法を提供することができる。(式(1)中、R1およびR2は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。aおよびbは、それぞれ独立して0~5の整数を表す。)

Description

熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ
  本発明は、熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズに関する。更に詳しくは、高屈折率、高耐熱性及び低いYI値を有する熱可塑性樹脂およびそれを含む光学レンズに関する。
  カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
  一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、カメラレンズ用高屈折率材料としてポリカーボネート、ポリエステルカーボネート、ポリエステル樹脂等が使用されている。しかしながら、近年、製品の軽薄短小化により、高い屈折率の樹脂の開発が求められている。一般に光学材料の屈折率が高いと、同一の屈折率を有するレンズエレメントを、より曲率の小さい面で実現できるため、この面で発生する収差量を小さくでき、レンズの枚数を減らしたり、レンズの偏光感度を低減したり、レンズ厚みを薄くして軽量化することが可能になる。
  光学用樹脂を光学レンズとして用いる場合、屈折率やアッベ数以外にも、耐熱性、透明性、低吸水性、耐薬品性、低複屈折、耐湿熱性が求められる。特に近年、高屈折率および高耐熱性を有する光学レンズが求められており、様々な樹脂の開発が行われているが(特許文献1~4)、更に優れた高屈折率および高耐熱性を有する光学レンズが求められているのが現状である。
特開2018-2893号公報 特開2018-2894号公報 特開2018-2895号公報 特開2018-59074号公報
  本発明は、高屈折率及び高耐熱性、更には低いYI値を有する熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズを提供することを課題とする。
  本発明者らは鋭意研究を重ねた結果、特定の金属を特定の量で含有するジカルボン酸を用いて熱可塑性樹脂を製造することにより、上記課題を解決することができることを見出し本発明に到達した。
  すなわち、本発明は、以下の通りである。
<1> 少なくとも、下記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物を反応させて熱可塑性樹脂を製造する方法であって、
 前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含む、製造方法である。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。aおよびbは、それぞれ独立して0~5の整数を表す。)
<2> 前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnを合計で54ppb以上の量で含む、上記<1>に記載の製造方法である。
<3> 前記金属が、Feを20~3000ppbの量で含む、上記<1>または<2>に記載の製造方法である。
<4> 前記金属が、Liを1~100ppb、Naを2~500ppb、Mgを1~1000ppb、Alを5~500ppb、Kを20~3000ppb、Caを5~1000ppb、Tiを1~100ppb、Crを5~500ppb、Niを1~100ppb、Znを2~100ppb、Sn を1~100ppbの量で含む、上記<1>~<3>のいずれかに記載の製造方法である。
<5> 前記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物に、下記式(2)で表されるジオール化合物を反応させる、上記<1>~<4>のいずれかに記載の製造方法である。
Figure JPOXMLDOC01-appb-C000005
(式(2)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。cおよびdは、それぞれ独立して0~5の整数を表す。)
<6> 前記熱可塑性樹脂が、ポリエステルまたはポリエステルカーボネートである、上記<1>~<5>のいずれかに記載の製造方法である。
<7> 下記式(3)で表される構成単位と、該構成単位を構成するジカルボン酸に由来する金属とを含む熱可塑性樹脂であって、
 前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含む、熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000006
(式(3)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。eおよびfは、それぞれ独立して0~5の整数を表す。)
<8> 前記熱可塑性樹脂が7~40のYI値を有する、上記<7>に記載の熱可塑性樹脂である。
<9> 上記<7>または<8>に記載の熱可塑性樹脂を含む、光学レンズである。
  本発明の熱可塑性樹脂は、高屈折率、高耐熱性及び低YI値を有し、特に光学レンズに用いた場合に優れた効果を発揮することができる。
図1は、実施例1で得られたポリエステル樹脂のNMR測定結果である。
  本発明をさらに詳しく説明する。
  本発明の熱可塑性樹脂の製造方法は、少なくとも、下記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物を反応させて熱可塑性樹脂を製造する方法であって、前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含むものである。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。好ましくは、RおよびRは、それぞれ独立して、水素原子、フェニル基、ナフチル基または下記からなる群より選択される置換基を表す。
Figure JPOXMLDOC01-appb-C000008
 aおよびbは、それぞれ独立して0~5の整数を表し、好ましくはそれぞれ独立して0または1を表す。
 式(1)で表される化合物のなかでも、2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチル、及び下記構造式で表される化合物が好ましく、2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルが特に好ましい。
Figure JPOXMLDOC01-appb-C000009
  前記式(1)において、1,1’-ビナフチル骨格は、熱可塑性樹脂の耐熱性と屈折率を向上させるとともに、二つのナフタレン環を結ぶ結合軸で直交するような立体配座になっているため、複屈折を低減させる効果がある。
  また、ビナフチル骨格は、R体、S体、ラセミ体のいずれでもよく、好ましくは、ラセミ体がよい。光学分割する必要のないラセミ体はコストメリットがある。
 本発明において、前記式(1)で表されるジカルボン酸に由来する金属とは、前記式(1)で表されるジカルボン酸を製造する際に不純物として混入した金属成分を意味する。そのような金属としては、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn、Sn、V、Mn、Co、Cu、Ge、Sr、Zr、Mo、Ag、Cd、Sb、Ba、W、Pbなどが挙げられるが、これらのうち、V、Mn、Co、Cu、Ge、Sr、Zr、Mo、Ag、Cd、Sb、Ba、W及びPbについては検出限界(<0.005μg/g)以下であるため、本発明では、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnの合計含有量を測定する。
 本発明では、前記式(1)で表されるジカルボン酸に由来する金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnを合計で10000ppb以下の量で含むことを特徴とし、より好ましくは5870ppb以下の量で含み、特に好ましくは3738ppb以下の量で含む。本発明者らは、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnを合計で10000ppb以下の量で含むジカルボン酸を反応させて熱可塑性樹脂を製造することによって、驚くべきことに高屈折率、高耐熱性及び低いYI値を有する熱可塑性樹脂が得られることを見出した。
 また、本発明では、前記式(1)で表されるジカルボン酸に由来する金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnを合計で54ppb以上の量で含むことが好ましい。
 本発明において、前記式(1)で表されるジカルボン酸に由来する金属は、Feを20~3000ppbの量で含むことが好ましい。また、Liを1~100ppb、Naを2~500ppb、Mgを1~1000ppb、Alを5~500ppb、Kを20~3000ppb、Caを5~1000ppb、Tiを1~100ppb、Crを5~500ppb、Niを1~100ppb、Znを2~100ppb、Sn を1~100ppbの量で含むことが好ましい。以下の表1に各金属成分のより好ましい含有量及び特に好ましい含有量の上限値を示す。
Figure JPOXMLDOC01-appb-T000010
 上述した製造方法によって得られる本発明の熱可塑性樹脂は、下記式(3)で表される構成単位と、該構成単位を構成するジカルボン酸に由来する金属とを含む熱可塑性樹脂であって、前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含むものである。
Figure JPOXMLDOC01-appb-C000011
 式(3)中、R、R、eおよびfは、それぞれ前記式(1)におけるR、R、aおよびbと同義である。具体的な熱可塑性樹脂としてはポリエステル樹脂またはポリエステルカーボネート樹脂であることが好ましく、特に本発明の効果の点からポリエステル樹脂であることが好ましい。
  本発明の熱可塑性樹脂は、高屈折率であることが特徴の一つであり、25℃で測定波長589nmの屈折率(以下、「nD」と略すことがある)は、1.650~1.720であることが好ましく、1.660~1.710であるとさらに好ましく、1.670~1.700であるとよりさらに好ましい。
 また、本発明の熱可塑性樹脂は、高耐熱性であることが特徴の一つであり、ガラス転移点(以下、「Tg」と略することがある)は、130~160℃であることが好ましく、140~155℃であることがより好ましい。
 また、本発明の熱可塑性樹脂は、低いYI値を有することが特徴の一つであり、YI値は、7~40であることが好ましく、9~38であることがより好ましい。
 更に、本発明の熱可塑性樹脂は、重量平均分子量(Mw)が好ましくは10,000~50,000であり、より好ましくは15,000~40,000である。重量平均分子量(Mw)の測定方法としては、後述する実施例に記載された方法を用いることができる。
 本発明の熱可塑性樹脂は、前記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物を反応させて得られたものであれば特に制限されるものではなく、原料としていずれのジオール化合物を用いてもよい。
 本発明においては、前記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物に、下記式(2)で表されるジオール化合物を反応させることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(2)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。好ましくは、RおよびRは、それぞれ独立して、水素原子、フェニル基、ナフチル基または下記からなる群より選択される置換基を表す。
Figure JPOXMLDOC01-appb-C000013
 cおよびdは、それぞれ独立して0~5の整数を表し、好ましくはそれぞれ独立して0または1を表す。
<その他の共重合成分>
  本発明における熱可塑性樹脂は、前記式(3)で表される構成単位を有し、好ましくは前記式(2)で表されるジオール化合物に由来する構成単位を有するが、それとは別に共重合成分を含んでいてもよい。共重合成分としては前記式(1)で示される以外のジカルボン酸成分、前記式(2)で示される以外のジオール成分、さらにカーボネート結合を有する繰り返し単位などが例示される。
  具体的な共重合成分としてのジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸成分、フタル酸、イソフタル酸、テレフタル酸等の単環式芳香族ジカルボン酸成分、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸等の多環式芳香族ジカルボン酸成分、2,2’-ビフェニルジカルボン酸等のビフェニルジカルボン酸成分、1,4-シクロジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸成分が挙げられる。これらは単独または二種類以上組み合わせて用いてもよい。また、これらの誘導体としては酸クロライドやエステル類を用いてもよい。これらの中でも耐熱性と屈折率をより高くしやすいことから単環式芳香族ジカルボン酸成分、多環式芳香族ジカルボン酸成分、ビフェニルジカルボン酸成分が好ましい。
  また、具体的な共重合成分としてのジオール成分としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール等の脂肪族ジオール成分、トリシクロ[5.2.1.02,6 ]デカンジメタノール、シクロヘキサン-1,4-ジメタノール、デカリン-2,6-ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン-1,3-ジメタノール、スピログリコール、イソソルビド等の脂環式ジオール成分、ヒドロキノン、レゾルシノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-(2-ヒドロキシエトキシ)フェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビフェノール、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル、1,1’-ビ-2-ナフトール、ジヒドロキシナフタレン、ビス(2-ヒドロキシエトキシ)ナフタレン、10,10-ビス(4-ヒドロキシフェニル)アントロン等の芳香族ジオール成分等が挙げられる。これらは単独または二種類以上組み合わせて用いてもよい。これらの中でも成形性を高めつつ、耐熱性や屈折率の低下を抑えやすいことからエチレングリコールや2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチルが好ましい。
  また、具体的な共重合成分としてのカーボネート結合を有する繰り返し単位としては、前記式(2)で例示したジオール成分および前述の共重合成分として例示したジオール成分をカーボネート結合させたものが挙げられる。
  本発明の熱可塑性樹脂は、前述の式(1)で表されるジカルボン酸およびジオール化合物をエステル化反応もしくはエステル交換反応させ、得られた反応生成物を重縮合反応させ、所望の分子量の高分子量体とすればよい。
  具体的には、例えば不活性ガスの存在下で、ジオール成分と、ジカルボン酸成分またはそのジエステルを混合し、減圧下、通常、120~350℃、好ましくは150~300℃で反応させることが好ましい。減圧度は段階的に変化させ、最終的には0.13kPa以下にして生成した水または、アルコール類を系外に留去させ、反応時間は通常1~10時間程度である。
  重合触媒としては、それ自体公知のものを採用でき、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、スズ化合物またはアルミニウム化合物が好ましい。このような化合物としては、例えばアンチモン、チタン、ゲルマニウム、スズ、アルミニウムの酸化物、酢酸塩、カルボン酸塩、水素化物、アルコラート、ハロゲン化物、炭酸塩、硫酸塩等を挙げることができる。また、これらの化合物は二種以上組み合わせて使用できる。この中でも、熱可塑性樹脂の溶融安定性、色相の観点からスズ、チタン、ゲルマニウム化合物が好ましい。
  エステル交換触媒としては、それ自体公知のものを採用でき、例えば、マンガン、マグネシウム、チタン、亜鉛、アルミニウム、カルシウム、コバルト、ナトリウム、リチウム、または鉛元素を含む化合物などを用いることができる。具体的にはこれらの元素を含む酸化物、酢酸塩、カルボン酸塩、水素化物、アルコラート、ハロゲン化物、炭酸塩、硫酸塩等を挙げることができる。この中でも、熱可塑性樹脂の溶融安定性、色相、ポリマー不溶異物の少なさの観点からマンガン、マグネシウム、亜鉛、チタン、コバルトの酸化物、酢酸塩、アルコラート等の化合物が好ましい。さらにマンガン、マグネシウム、チタン化合物が好ましい。これらの化合物は二種以上組み合わせて使用できる。
  なお、本発明の熱可塑性樹脂は、前述の通り、前記式(3)で表される構成単位以外の共重合成分を含有させてもよい。例えば、ポリエステルカーボネート樹脂とする場合は、ジオール成分およびジカルボン酸成分の他に、ジカルボン酸クロライドやホスゲンを反応させてもよく、またはジオール、ジカルボン酸およびビアリールカーボネートを反応させることにより製造することができる。
  ビアリールカーボネートの具体例としては、ジフェニルカーボネート、ジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート、ジナフチルカーボネート等の炭酸ジエステルが挙げられる。なかでもジフェニルカーボネートが好ましい。
  該ジカルボン酸クロライドやホスゲン、またはビアリールカーボネート成分の含有量は、ジカルボン酸成分100mоl%に対し、好ましくは42mоl%未満、より好ましくは30mоl%未満、さらに好ましくは20mоl%未満である。
<添加剤>
  本発明の熱可塑性樹脂には、必要に応じて、熱安定剤、酸化防止剤、離型剤、可塑剤、充填剤、紫外線吸収剤などの添加剤を適宜添加して熱可塑性樹脂組成物として用いることができる。
  離型剤としては、その90重量%以上がアルコールと脂肪酸のエステルからなるものが好ましい。アルコールと脂肪酸のエステルとしては、具体的には一価アルコールと脂肪酸のエステルおよび/または多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。前記一価アルコールと脂肪酸のエステルとは、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとは、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。具体的に一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等があげられ、ステアリルステアレートが好ましい。
  具体的に多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。これらのエステルのなかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸トリグリセリドとステアリルステアレートの混合物が好ましく用いられる。
  離型剤中の前記エステルの量は、離型剤を100重量%とした時、90重量%以上が好ましく、95重量%以上がより好ましい。
  熱可塑性樹脂組成物に配合させる離型剤としては、熱可塑性樹脂100重量部に対して0.005~2.0重量部の範囲が好ましく、0.01~0.6重量部の範囲がより好ましく、0.02~0.5重量部の範囲がさらに好ましい。
  熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤およびヒンダードフェノール系熱安定剤が挙げられる。
  リン系熱安定剤において、好ましくはテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトが使用される。
  熱可塑性樹脂のリン系熱安定剤の含有量としては、熱可塑性樹脂100重量部に対して0.001~0.2重量部が好ましい。
  ヒンダードフェノール系熱安定剤において、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが特に好ましく用いられる。
  熱可塑性樹脂中のヒンダードフェノール系熱安定剤の含有量としては、熱可塑性樹脂100重量部に対して0.001~0.3重量部が好ましい。
  紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系からなる群より選ばれた少なくとも1種の紫外線吸収剤が好ましい。
  ベンゾトリアゾール系紫外線吸収剤において、より好ましくは、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]である。ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンが挙げられる。トリアジン系紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2.4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(オクチル)オキシ]-フェノール等が挙げられる。環状イミノエステル系紫外線吸収剤としては、特に2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)が好適である。
  紫外線吸収剤の配合量は、熱可塑性樹脂100重量部に対して好ましくは0.01~3.0重量部であり、かかる配合量の範囲であれば、用途に応じ、熱可塑性樹脂成形品に十分な耐候性を付与することが可能である。
<光学レンズ>
  本発明の熱可塑性樹脂は、光学部材、特に光学レンズに好適である。
  本発明の熱可塑性樹脂を含む光学レンズを射出成型で製造する場合、シリンダー温度260~350℃、金型温度90~170℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度270~320℃、金型温度100~160℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、熱可塑性樹脂が分解着色し、260℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また金型温度が170℃より高い場合では、熱可塑性樹脂からなる成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、90℃未満では、成型時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になりやすい。
  本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化および成形コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
  また、本発明の光学レンズは、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mmであることが好ましく、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mmであることが好ましく、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
  本発明の光学レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
  以下に実施例を挙げて本発明をさらに説明するが、本発明は、これらに限定されるものではない。なお、各物性の測定は次に示す方法で行った。
<金属分析>
 試料の硫酸炭化を行った後、ICP-MSにより金属濃度を測定した。
 即ち、合成石英ビーカーに試料2gを秤量し、炭化時2.5ml、炭化前に0.1mlの硫酸を加えながらホットプレート上で加熱し炭化した。引き続き、石英皿でフタをし、電気炉で500℃、10時間、加熱し、炭化した。さらに、硫酸を加え加熱し乾固、硝酸を加え加熱し乾固することにより、加熱酸分解を行った。硝酸水溶液を加え50mLとし、50℃に加温し、ICP-MSによる定量分析を行った。
 ICP-MS装置:株式会社島津製作所:ICPE-9000
<重量平均分子量(Mw)の測定方法>
 予め作成した標準ポリスチレンの検量線からポリスチレン換算重量平均分子量を求めた。即ち、分子量既知(分子量分布=1)の標準ポリスチレン(東ソー株式会社製、“PStQuick MP-M”)を用いて検量線を作成し、測定した標準ポリスチレンから各ピークの溶出時間と分子量値をプロットし、3次式による近似を行い、較正曲線とした。Mwは、以下の計算式より求めた。
  Mw=Σ(Wi×Mi)÷Σ(Wi)
 ここで、iは分子量Mを分割した際のi番目の分割点、Wiはi番目の重量、Miはi番目の分子量を表す。また分子量Mとは、較正曲線の同溶出時間でのポリスチレン分子量値を表す。GPC装置として、東ソー株式会社製、HLC-8320GPCを用い、ガードカラムとして、TSKguardcolumn SuperMPHZ-Mを1本、分析カラムとしてTSKgel SuperMultiporeHZ-Mを3本直列に連結したものを用いた。その他の条件は以下の通りである。
  溶媒:HPLCグレードテトラヒドロフラン
  注入量:10μL
  試料濃度:0.2w/v% HPLCグレードクロロホルム溶液
  溶媒流速:0.35ml/min
  測定温度:40℃
  検出器:RI
<屈折率(nD、νd)の測定方法>
 得られた樹脂を、40φ、3mm厚の円板にプレス成形(成形条件:200℃、100kgf/cm、2分)し、直角に切り出し、カルニュー製KPR-200により25℃で測定波長589nmの屈折率を測定した。
<YI値の測定方法>
 得られた樹脂6gを60mlの塩化メチレンに溶解し、光路長6cmのセルにて、分光式色差計(日本電色工業社製、商品名「SE-2000」)を用い、JIS 7373に基づきYI値を測定した。
(実施例1)
 下記構造式で表される2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチル(以下、「BINOL-DC」と呼ぶ)50.29g(0.12mol)、下記構造式で表される2,2’-ビス(2-ヒドロキシエトキシ)-6,6’ジフェニル-1,1’-ビナフタレン(以下、「DP-BHBNA」と呼ぶ)52.66g(0.10mol)、エチレングリコール(以下、「EG」と呼ぶ)3.49g(0.06mol)、及び触媒としてテトラブトキシチタン0.011gを撹拌器および留出装置付きの反応釜に入れ、窒素雰囲気常圧下、180℃に加熱し、30分間撹拌した。その後、250℃、0.13kPa以下まで昇温、減圧することにより重合反応を行った。内容物を反応器から取り出し、ポリエステル樹脂を得た。
 得られたポリエステル樹脂をNMRにより分析した結果、ポリエステル樹脂に導入されたジオール成分の80モル%がDP-BHBNA由来、20モル%がEG由来であり、ポリエステル樹脂に導入されたカルボン酸成分の100モル%がBINOL-DC由来であった。NMRの測定結果を図1に示す。得られたポリエステルの樹脂の物性を表2に示す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(実施例2)
 ロットの異なる2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルを用いた以外は、実施例1と同様にしてポリエステル樹脂を得た。得られたポリエステルの樹脂の物性を表2に示す。なお、表2では、実施例1で用いた2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルをBINOL-DC-Aとし、実施例2で用いた2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルをBINOL-DC-Bとした。
(実施例3)
 更にロットの異なる2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルを用いた以外は、実施例1と同様にしてポリエステル樹脂を得た。得られたポリエステルの樹脂の物性を表2に示す。なお、表2では、実施例3で用いた2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルをBINOL-DC-Cとした。
(実施例4)
 実施例1で用いた2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチル(BINOL-DC-A)50.29g(0.12mol)、下記構造式で表される9,9’-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(BPEF)164.41g(0.37mol)、ジフェニルカーボネート55.95g(0.26mol)、及び触媒としてテトラブトキシチタン0.015gを撹拌器および留出装置付きの反応釜に入れ、窒素雰囲気常圧下、180℃に加熱し、30分間撹拌した。その後、1時間かけて255℃、0.13kPaまで昇温、減圧し、引き続き255℃、0.13kPaで1時間撹拌を続け、重合反応を行った。内容物を反応器から取り出し、ポリエステルカーボネート樹脂を得た。得られたポリエステルカーボネート樹脂の物性を表2に示す。
Figure JPOXMLDOC01-appb-C000016
(比較例)
 下記表2に示す金属量を含む2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルを用いた以外は、実施例1と同様にしてポリエステル樹脂を得た。得られたポリエステルの樹脂の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000017
  本発明の熱可塑性樹脂は、高屈折率、高耐熱性及び低YI値を有するため、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等の光学部材に用いることができ、特に、スマートフォン、DSC、車載などのカメラ用レンズに極めて有用である。本発明の熱可塑性樹脂を用いることにより、望遠等に用いられるレンズユニットの薄型化を図ることが可能となる。
 

Claims (9)

  1.  少なくとも、下記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物を反応させて熱可塑性樹脂を製造する方法であって、
     前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含む、製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。aおよびbは、それぞれ独立して0~5の整数を表す。)
  2.  前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、Zn及びSnを合計で54ppb以上の量で含む、請求項1に記載の製造方法。
  3.  前記金属が、Feを20~3000ppbの量で含む、請求項1または2に記載の製造方法。
  4.  前記金属が、Liを1~100ppb、Naを2~500ppb、Mgを1~1000ppb、Alを5~500ppb、Kを20~3000ppb、Caを5~1000ppb、Tiを1~100ppb、Crを5~500ppb、Niを1~100ppb、Znを2~100ppb、Sn を1~100ppbの量で含む、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記式(1)で表されるジカルボン酸および該ジカルボン酸に由来する金属を含有する組成物に、下記式(2)で表されるジオール化合物を反応させる、請求項1~4のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。cおよびdは、それぞれ独立して0~5の整数を表す。)
  6.  前記熱可塑性樹脂が、ポリエステルまたはポリエステルカーボネートである、請求項1~5のいずれか一項に記載の製造方法。
  7.  下記式(3)で表される構成単位と、該構成単位を構成するジカルボン酸に由来する金属とを含む熱可塑性樹脂であって、
     前記金属が、Li、Na、Mg、Al、K、Ca、Ti、Cr、Fe、Ni、ZnおよびSnを合計で10000ppb以下の量で含む、熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、RおよびRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。eおよびfは、それぞれ独立して0~5の整数を表す。)
  8.  前記熱可塑性樹脂が7~40のYI値を有する、請求項7に記載の熱可塑性樹脂。
  9.  請求項7または8に記載の熱可塑性樹脂を含む、光学レンズ。
     
PCT/JP2019/050234 2018-12-28 2019-12-23 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ WO2020137927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217013301A KR20210108943A (ko) 2018-12-28 2019-12-23 열가소성 수지 및 그 제조 방법 그리고 그 열가소성 수지를 포함하는 광학 렌즈
CN201980085972.6A CN113260883A (zh) 2018-12-28 2019-12-23 热塑性树脂及其制造方法和包含该热塑性树脂的光学透镜
JP2020563228A JP7548015B2 (ja) 2018-12-28 2019-12-23 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ
JP2024058426A JP2024079821A (ja) 2018-12-28 2024-04-01 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-247634 2018-12-28
JP2018247634 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137927A1 true WO2020137927A1 (ja) 2020-07-02

Family

ID=71127314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050234 WO2020137927A1 (ja) 2018-12-28 2019-12-23 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ

Country Status (5)

Country Link
JP (2) JP7548015B2 (ja)
KR (1) KR20210108943A (ja)
CN (1) CN113260883A (ja)
TW (1) TW202037632A (ja)
WO (1) WO2020137927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009948A1 (ja) * 2020-07-08 2022-01-13 三菱瓦斯化学株式会社 リソグラフィー膜形成用組成物、レジストパターン形成方法、及び回路パターン形成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072872A (ja) * 1999-07-02 2001-03-21 Konica Corp 樹脂組成物および光学用レンズ
JP2014074106A (ja) * 2012-10-03 2014-04-24 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP2018077523A (ja) * 2012-10-16 2018-05-17 三菱ケミカル株式会社 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
JP2018177887A (ja) * 2017-04-06 2018-11-15 帝人株式会社 熱可塑性樹脂
WO2019043060A1 (en) * 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg BINAPHTYLE COMPOUNDS
WO2019230685A1 (ja) * 2018-05-31 2019-12-05 本州化学工業株式会社 2,2'-ビス(カルボキシメトキシ)-1,1'-ビナフチルの結晶体
JP2020012094A (ja) * 2017-08-30 2020-01-23 帝人株式会社 光学レンズ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466759B (zh) 2006-07-21 2012-05-30 帝人株式会社 芳香族聚酯及其制造方法
JP2009298101A (ja) 2008-06-17 2009-12-24 Teijin Chem Ltd 光学用ポリエチレン−2,6−ナフタレートフィルム及びその製造方法
JP2011168635A (ja) 2010-02-16 2011-09-01 Teijin Fibers Ltd ポリエステル重合用触媒
JP6739255B2 (ja) 2016-07-04 2020-08-12 帝人株式会社 熱可塑性樹脂
JP6689146B2 (ja) 2016-07-04 2020-04-28 帝人株式会社 熱可塑性樹脂
JP6689147B2 (ja) 2016-07-04 2020-04-28 帝人株式会社 熱可塑性樹脂
JP6968642B2 (ja) 2016-10-06 2021-11-17 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072872A (ja) * 1999-07-02 2001-03-21 Konica Corp 樹脂組成物および光学用レンズ
JP2014074106A (ja) * 2012-10-03 2014-04-24 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP2018077523A (ja) * 2012-10-16 2018-05-17 三菱ケミカル株式会社 樹脂組成物、延伸フィルム、円偏光板及び画像表示装置
JP2018177887A (ja) * 2017-04-06 2018-11-15 帝人株式会社 熱可塑性樹脂
WO2019043060A1 (en) * 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg BINAPHTYLE COMPOUNDS
JP2020012094A (ja) * 2017-08-30 2020-01-23 帝人株式会社 光学レンズ
WO2019230685A1 (ja) * 2018-05-31 2019-12-05 本州化学工業株式会社 2,2'-ビス(カルボキシメトキシ)-1,1'-ビナフチルの結晶体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009948A1 (ja) * 2020-07-08 2022-01-13 三菱瓦斯化学株式会社 リソグラフィー膜形成用組成物、レジストパターン形成方法、及び回路パターン形成方法
CN115836045A (zh) * 2020-07-08 2023-03-21 三菱瓦斯化学株式会社 光刻膜形成用组合物、抗蚀图案形成方法和电路图案形成方法

Also Published As

Publication number Publication date
JP7548015B2 (ja) 2024-09-10
JP2024079821A (ja) 2024-06-11
CN113260883A (zh) 2021-08-13
TW202037632A (zh) 2020-10-16
KR20210108943A (ko) 2021-09-03
JPWO2020137927A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6689146B2 (ja) 熱可塑性樹脂
JP6739255B2 (ja) 熱可塑性樹脂
JP6689147B2 (ja) 熱可塑性樹脂
KR102362026B1 (ko) 열가소성 수지 및 광학 부재
WO2018008483A1 (ja) 熱可塑性樹脂
JP2019143152A (ja) 熱可塑性樹脂の製造方法
JP2018177887A (ja) 熱可塑性樹脂
JP2019131824A (ja) 熱可塑性樹脂の製造方法
WO2017175693A1 (ja) ポリカーボネート共重合体、それを用いた光学レンズ及びフィルム、並びに該共重合体の製造方法
KR102719729B1 (ko) 폴리에스테르카보네이트 수지 및 광학 렌즈
JP2024079821A (ja) 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ
CN112867762B (zh) 热塑性树脂组合物和使用其的光学透镜或膜
JP2020122032A (ja) 熱可塑性樹脂および光学部材
CN115702214B (zh) 树脂组合物
TW202233756A (zh) 熱可塑性樹脂及包含其之光學構件
EP4130096B1 (en) Resin composition, optical lens containing this, and optical film
WO2020162533A1 (ja) ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
US20240209181A1 (en) Thermoplastic resin composition, and compounding ingredient to be added to same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903559

Country of ref document: EP

Kind code of ref document: A1