[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020137747A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2020137747A1
WO2020137747A1 PCT/JP2019/049629 JP2019049629W WO2020137747A1 WO 2020137747 A1 WO2020137747 A1 WO 2020137747A1 JP 2019049629 W JP2019049629 W JP 2019049629W WO 2020137747 A1 WO2020137747 A1 WO 2020137747A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
azimuth
approaching object
ghost
Prior art date
Application number
PCT/JP2019/049629
Other languages
English (en)
French (fr)
Inventor
寛己 堀
尭之 北村
宏次 竹内
巌 泉川
裕己 嶋津
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to DE112019006516.5T priority Critical patent/DE112019006516T5/de
Priority to CN201980086618.5A priority patent/CN113228133B/zh
Publication of WO2020137747A1 publication Critical patent/WO2020137747A1/ja
Priority to US17/357,742 priority patent/US11798417B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/056Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/462Indirect determination of position data using multipath signals
    • G01S2013/464Indirect determination of position data using multipath signals using only the non-line-of-sight signal(s), e.g. to enable survey of scene 'behind' the target only the indirect signal is evaluated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present disclosure relates to a driving support device that executes driving support based on object detection information behind a vehicle.
  • Patent Document 1 describes a system that transmits an electromagnetic wave in front of the own vehicle and receives the reflected wave to detect and notify another vehicle approaching the own vehicle.
  • a vehicle travels in a closed space such as under a viaduct or in a tunnel, reflected waves from other vehicles are further reflected by road structures to detect objects that do not actually exist (ghost objects).
  • ghost objects objects that do not actually exist
  • Patent Document 1 when it is determined that the object detected by the reflected wave is a ghost object, the object is excluded from the notification target.
  • Patent Document 1 describes a technique aiming at surely excluding a ghost object that is difficult to determine, but regarding a technique for suppressing an erroneous determination of an actual approaching object as a ghost object. Not listed. If the actual approaching object is erroneously determined to be a ghost object and no notification is given, the traveling safety of the vehicle cannot be ensured.
  • the present disclosure aims to provide a driving support device capable of discriminating an actual approaching object and a ghost object with higher accuracy.
  • the present disclosure uses an reflected wave of an exploration wave to detect an object behind a vehicle and recognizes an object approaching the vehicle as an approaching object, a speed of the vehicle, and the object.
  • An acquisition unit that acquires a relative speed and a direction of the object detected by the detection unit with respect to the own vehicle, a ghost determination unit that determines that the approaching object is a ghost target that does not actually exist, and the ghost determination unit
  • the approach determination unit that excludes the approaching object determined to be the ghost target from the target object that executes the driving support for avoiding the danger of the own vehicle.
  • the ghost determination unit calculates the relative speed of the approaching object with respect to the own vehicle, the speed of the own vehicle, and the relative speed of a succeeding object between the own vehicle and the approaching object with respect to the own vehicle.
  • a velocity difference between the approaching object and a calculated value of the relative speed of the own vehicle is calculated, and a bearing difference between the following object and the approaching object is calculated based on the orientation of the following object and the orientation of the approaching object. Then, it is determined that the approaching object is the ghost target based on the speed difference and the heading difference.
  • the ghost determination unit of the driving support apparatus determines the relative speed of the approaching object with respect to the own vehicle, and the relative speed of the approaching object with respect to the own vehicle calculated based on the speed of the own vehicle and the relative speed of the following object to the own vehicle. The speed difference from the calculated speed value is calculated. Further, the ghost determination unit calculates the azimuth difference between the following object and the approaching object with respect to the own vehicle, based on the azimuth of the following object and the azimuth of the approaching object. Then, the ghost determination unit determines that the approaching object is a ghost target based on both the speed difference and the bearing difference.
  • the speed difference and the direction difference are calculated. Since it is determined whether or not the approaching object is a ghost target based on both the speed difference and the azimuth difference, the actual approaching object and the ghost object can be discriminated with higher accuracy.
  • FIG. 1 is a driving support system according to an embodiment
  • FIG. 2 is a diagram illustrating a speed condition and an azimuth condition in the ghost determination according to the embodiment
  • FIG. 3 is a frequency distribution map of the relative speed of the ghost target
  • FIG. 4 is a diagram showing an example of setting the heading difference threshold based on the vehicle speed Vs and the distance R between the following vehicle and the vehicle.
  • FIG. 5 is a diagram for explaining the setting of the heading difference threshold based on the distance R between the following vehicle and the own vehicle
  • FIG. 6 is a diagram showing the relationship between the distance R between the following vehicle and the own vehicle and the heading difference between the following vehicle and the ghost target
  • FIG. 7 is a flowchart of the driving support process according to the embodiment.
  • the driving support system 10 includes a radar device 11, a vehicle speed sensor 12, an ECU 20, and an alarm device 30.
  • the radar device 11 is, for example, a known millimeter wave radar that uses a millimeter wave band high frequency signal as a transmission wave. Only one radar device 11 may be installed in the host vehicle, or a plurality of radar devices 11 may be installed. The radar device 11 is provided, for example, at the rear end of the host vehicle, and detects a position of an object within the detection range by setting an area within a predetermined detection angle as a detection range in which the object can be detected.
  • the distance to the object can be calculated from the transmission time of the exploration wave and the reception time of the reflected wave.
  • the relative speed is calculated from the frequency of the reflected wave reflected by the object that has changed due to the Doppler effect.
  • the azimuth of the object can be calculated from the phase difference of the reflected waves received by the plurality of antennas. If the position and direction of the object can be calculated, the relative position of the object with respect to the own vehicle can be specified.
  • the radar device 11 is an example of a surroundings monitoring device that transmits exploration waves, detects reflected waves of exploration waves from an object in the vicinity of the vehicle, and acquires surrounding information of the vehicle.
  • an ultrasonic sensor, a LIDAR (Light Detection and Ranging/Laser Imaging, Detection and Ranging), or the like may be provided as the surrounding monitoring device that uses the exploration wave.
  • a millimeter wave radar such as the radar device 11, a sensor that transmits an exploration wave such as a sonar and a LIDAR, sequentially outputs a scanning result based on a reception signal obtained when a reflected wave reflected by an obstacle is received to the ECU 20 as sensing information. Output.
  • the vehicle speed sensor 12 is a sensor that detects the traveling speed of the host vehicle, and is not limited, but for example, a wheel speed sensor that can detect the rotation speed of the wheels can be used.
  • the wheel speed sensor used as the vehicle speed sensor 12 is attached to, for example, the wheel portion of the wheel, and outputs a wheel speed signal corresponding to the wheel speed of the vehicle to the ECU 20.
  • the driving support system 10 may further include various sensors such as an imaging device, a steering angle sensor, a yaw rate sensor, and a GNSS (Global Navigation Satellite System) receiving device such as a GPS receiving device.
  • the ECU 20 may be able to acquire the detection signals of those sensors.
  • the alarm device 30 is a device for notifying a driver or the like, and may be, for example, a device such as a speaker or a buzzer installed in the passenger compartment of the own vehicle, or a device such as a display for visually notifying. Although it can be illustrated, it is not limited thereto.
  • the alarm device 30 emits an alarm sound or the like based on a control command from the ECU 20 to notify the driver, for example, that there is a risk of collision with an object.
  • the ECU 20 includes a data acquisition unit 21, an object detection unit 22, a support determination unit 23, and a ghost determination unit 40.
  • the ECU 20 has a CPU, a ROM, a RAM, an I/O, and the like, and the CPU executes the programs installed in the ROM to realize each of these functions.
  • the ECU 20 creates a control command to the alarm device 30 based on the information acquired from various sensors such as the radar device 11 and the vehicle speed sensor 12, and outputs the control command to perform driving support for the own vehicle. Functions as a support device.
  • the data acquisition unit 21 acquires the relative speed and direction of the object with respect to the own vehicle from the radar device 11. Further, the traveling speed of the own vehicle is acquired from the vehicle speed sensor 12.
  • the object detection unit 22 detects an object behind the vehicle from the detection information about the reflected wave received by the radar device 11.
  • the type of object is not particularly limited, and includes all of vehicles, bicycles, motorcycles, pedestrians, animals, structures, etc., and may be a moving body or a stationary body.
  • the ECU 20 includes a peripheral monitoring device other than the radar device 11 such as an image pickup device, the other peripheral monitoring device may be used together to perform object detection.
  • the object detection unit 22 recognizes an approaching object approaching the own vehicle from among the detected objects. Whether or not the object is an approaching object can be determined by using the relative speed of the object with respect to the own vehicle.
  • the ghost determination unit 40 determines that the approaching object detected by the object detection unit 22 as an object approaching the own vehicle is a ghost target that does not actually exist.
  • the ghost determination unit 40 includes a speed determination unit 41 and an azimuth determination unit 42.
  • the speed determination unit 41 executes the determination regarding the speed condition as the ghost target.
  • the speed condition is that the deviation between the detected relative speed of the approaching object and the relative speed of the approaching object theoretically calculated assuming that the approaching object is a ghost target is within a predetermined range. It is a condition.
  • the azimuth determination unit 42 determines the azimuth condition as a ghost target.
  • the azimuth condition is that the deviation between the detected azimuth of the approaching object and the azimuth of the approaching object theoretically obtained assuming that the approaching object is a ghost target is within a predetermined range.
  • the ghost determination unit 40 determines that the detected approaching object is a ghost target when the approaching object detected by the object detection unit 22 satisfies both the speed condition and the azimuth condition as the ghost target. To do.
  • FIG. 2 The process executed by the ghost determination unit 40 will be described with reference to FIG.
  • the own vehicle 50 and the following vehicle 51 are traveling on the road 60.
  • a lane 61 is provided at the center of the road 60.
  • the left side of the lane 61 is the lane 62 and the right side is the lane 63.
  • a road structure 57 exists between the own vehicle 50 and the following vehicle 51.
  • the on-road structure 57 is a structure installed on the road such as a road sign, a metal structure such as a tunnel ceiling, a signboard, and the like.
  • FIG. 2A is a view of the own vehicle 50 and the like viewed from the right side
  • FIG. 2B is a view of the own vehicle 50 viewed from above.
  • the host vehicle 50 is traveling forward in the lane 62 at the host vehicle speed Vs, which is the speed of the host vehicle 50 with respect to the road 60 (ground speed).
  • the own vehicle speed Vs is detected by the vehicle speed sensor 12 and acquired by the data acquisition unit 21.
  • the following vehicle 51 is a vehicle that travels just behind the own vehicle 50 and is an example of a succeeding object of the own vehicle 50.
  • the following vehicle 51 is traveling behind the vehicle 50 in the same direction as the vehicle 50 in the lane 62 which is the traveling lane of the vehicle 50.
  • the relative speed of the following vehicle 51 with respect to the own vehicle 50 is Vrv, is detected by the radar device 11, and is acquired by the data acquisition unit 21.
  • the exploration wave transmitted rearward from the radar device 11 installed at the rear end position P50 of the host vehicle 50 is reflected at the detection point P51 in front of the following vehicle 51 and further reflected at the road structure 57
  • the approaching object 55 is detected as a ghost target in the object detection unit 22 of the vehicle 50 by the reflected wave.
  • the approaching object 55 is detected at a position further behind the following vehicle 51.
  • the relative speed Vg0 (calculated value) of the approaching object 55 with respect to the own vehicle 50 is obtained by comparing the relative speed Vrv of the following vehicle 51 with respect to the own vehicle 50 and the own vehicle speed Vs. It can be calculated using the following formula (1).
  • Vg0 Vs+2Vrv... (1)
  • the data acquisition unit 21 acquires the relative speed Vg of the approaching object 55 with respect to the own vehicle 50 from the radar device 11.
  • the speed determination unit 41 calculates the speed difference dVg between the relative speed Vg (detection value) of the approaching object 55 with respect to the own vehicle and the calculated value Vg0 based on the following equation (2).
  • the speed determination unit 41 sets a predetermined speed difference threshold Vc1 and determines whether the speed difference dVg is less than the speed difference threshold Vc1. Then, when dVg ⁇ Vc1, it is determined that the approaching object 55 satisfies the speed condition as the ghost target. Further, when dVg ⁇ Vc1, it is determined that the approaching object 55 does not satisfy the speed condition as the ghost target.
  • Vc1 There is a trade-off relationship between the easiness of detecting a ghost target and suppressing the false determination of a true approaching object as a ghost target. If the value of Vc1 is increased, a ghost target can be detected easily, but the probability that a true approaching object (actually existing approaching object) is erroneously determined to be a ghost target increases. If the value of Vc1 is reduced, the probability that a true approaching object is erroneously determined to be a ghost target will be low, but it will be difficult to detect the ghost target.
  • the value of Vc1 may be set, for example, based on the detection accuracy of sensors mounted on the vehicle 50, such as the radar device 11 and the vehicle speed sensor 12.
  • the speed difference threshold Vc1 may be set based on an actual measurement value.
  • the speed difference threshold Vc1 may be set so that a predetermined inclusion ratio of the set of a large number of relative speeds Vg acquired by the data acquisition unit 21 from the radar device 11 is included.
  • a frequency distribution chart is created with the horizontal axis representing the variation of the relative speed Vg and the vertical axis representing the frequency.
  • the upper limit standard values Vgu and Vgu and The lower limit standard value Vgb is set.
  • the speed difference threshold Vc1 can be set so as to include the relative speed Vg of a predetermined inclusion ratio (for example, 95%). ..
  • the inclusion ratio may be changed based on the surrounding environment in which the vehicle 50 is traveling, the traveling state of the vehicle 50, and the like.
  • the direction ⁇ rv of the following vehicle 51 with respect to the own vehicle 50 and the direction ⁇ g of the approaching object 55 with respect to the own vehicle 50 are acquired from the radar device 11 by the data acquisition unit 21.
  • the azimuth ⁇ rv is detected as an angle formed by the vehicle center axis L1 that is the center axis of the vehicle 50 in the left-right direction and a line segment that connects the rear end position P50 and the detection point P51.
  • the azimuth ⁇ g is detected as an angle formed by the vehicle center axis L1 and a line segment connecting the rear end position P50 and the detection point P55.
  • the azimuth determination unit 42 calculates the azimuth difference d ⁇ g between the azimuth ⁇ rv of the following vehicle 51 with respect to the own vehicle 50 and the azimuth ⁇ g of the approaching object 55 with respect to the own vehicle 50 based on the following equation (3).
  • the azimuth determination unit 42 sets a predetermined azimuth difference threshold ⁇ c and determines whether the azimuth difference d ⁇ g is less than the azimuth difference threshold ⁇ c. Then, when d ⁇ g ⁇ c, it is determined that the approaching object 55 satisfies the azimuth condition as the ghost target. When d ⁇ g ⁇ c, it is determined that the approaching object 55 does not satisfy the speed condition as the ghost target.
  • ⁇ c may be set, for example, based on the detection accuracy of the sensors mounted on the vehicle 50, such as the radar device 11 and the vehicle speed sensor 12.
  • the azimuth determination unit 42 may change the azimuth difference threshold ⁇ c based on the vehicle speed Vs and the distance R between the vehicle 50 and the following vehicle 51. For example, as shown in FIG. 4, the azimuth determination unit 42 sets the azimuth difference threshold ⁇ c to a predetermined fixed value ⁇ c1 when the vehicle speed Vs is less than the predetermined vehicle speed threshold Vc2. Further, the azimuth determination unit 42 changes the azimuth difference threshold ⁇ c according to the distance R between the vehicle 50 and the following vehicle 51 when the vehicle speed Vs is equal to or higher than the predetermined vehicle speed threshold Vc2. More specifically, the larger the distance R between the own vehicle 50 and the following vehicle 51, the smaller the heading difference threshold ⁇ c. In FIG.
  • the magnitude relationship of the distance thresholds Rc1 to Rc3 with respect to the distance R is Rc1 ⁇ Rc2 ⁇ Rc3. Further, the magnitude relationship between the predetermined fixed values ⁇ c1 to ⁇ c5 for the azimuth difference threshold ⁇ c is ⁇ c1 ⁇ c5 ⁇ c4 ⁇ c3 ⁇ c2.
  • the distance R can be calculated from the detection information of the radar device 11, for example.
  • the search wave is transmitted at a predetermined cycle, and the reflected wave is received by the plurality of antennas.
  • the distance to the object can be calculated from the transmission time of the exploration wave and the reception time of the reflected wave.
  • the method for setting the heading difference threshold ⁇ c shown in FIG. 4 estimates the approaching object velocity Vgr that is the speed (ground speed) of the approaching object 55 with respect to the road 60 using the own vehicle speed Vs, and based on the approaching object speed Vgr,
  • the orientation difference threshold ⁇ c is set by estimating the possibility that the approaching object 55 is a ghost target. From the equation (1), the approaching object velocity Vgr can be calculated by the following equation (4).
  • the approaching object speed Vgr is calculated to be 40 km and 80 km, respectively.
  • the approaching object 55 traveling at 40 to 80 km is a vehicle.
  • the approaching object speed Vgr is calculated to be 120 km, 160 km, and 200 km, respectively.
  • the own vehicle speed threshold Vc2 set to a value of about 40 to 60 km. Then, according to FIG. 4, when Vs ⁇ Vc2, that is, when the own vehicle speed Vs is as slow as about 20 to 40 km, it is relatively likely that the detected approaching object 55 is a vehicle or the like.
  • the difference threshold value ⁇ c is set small. More specifically, the fixed value ⁇ c1 is set to a small value. As a result, priority is given to lowering the probability of erroneously determining that the approaching object 55 is a ghost target even though the approaching object 55 is a true approaching object.
  • the approaching object 55 is mistakenly regarded as a ghost target even if the approaching object 55 is a motorcycle or the like approaching the host vehicle 50 while passing through the vehicle space by reducing the orientation difference threshold ⁇ c.
  • the determination probability can be made particularly low.
  • Vs ⁇ Vc2 that is, when the own vehicle speed Vs is as high as about 60 to 100 km, it is relatively unlikely that the detected approaching object 55 is a vehicle or the like. It is set larger than ⁇ c1. As a result, priority is given to facilitating determination as a ghost target.
  • the maximum azimuth ⁇ 1 of the following vehicle 51 with respect to the own vehicle 50 is indicated by the angle A1-OB1.
  • the maximum azimuth ⁇ 2 of the following vehicle 52 with respect to the own vehicle 50 is indicated by the angle A2-OB2.
  • the distance R1 is shorter than R2 (R1 ⁇ R2), and the maximum azimuth ⁇ 1 is larger than the maximum azimuth ⁇ 2 ( ⁇ 1> ⁇ 2).
  • the ghost target is detected at the maximum azimuth ⁇ 2 or less.
  • the azimuth difference threshold ⁇ c is set large.
  • the azimuth difference threshold ⁇ c is set small, and priority is given to lowering the probability of erroneously determining that the approaching object 55 is a ghost target even though the approaching object 55 is a true approaching object.
  • the predetermined fixed values ⁇ c1 to ⁇ c5 for the distance thresholds Rc1 to Rc3 and the heading difference threshold ⁇ c may be set based on actual measurement values. For example, regarding the actual measurement value acquired by the data acquisition unit 21 from the radar device 11, as shown in FIG. 6, the horizontal axis is the distance R of the following vehicle 51, the vertical axis is the direction difference, and the distance of the following vehicle 51 is R. The measured value of the orientation difference with the ghost target detected at a certain time is plotted to create a distribution map. Based on this distribution map, the heading difference threshold value ⁇ c can be set so that a predetermined inclusion ratio (for example, 95%) is included in the entire set of heading differences between the following vehicle and the ghost target.
  • a predetermined inclusion ratio for example, 95%) is included in the entire set of heading differences between the following vehicle and the ghost target.
  • curves 71 and 72 are calculated such that all measured values are included between the curves 71 and 72. Then, according to the curves 71 and 72, the azimuth difference threshold value ⁇ c may be set such that ⁇ c decreases as R increases.
  • the rectangular lines 73 and 74 are obtained such that the measured value of a predetermined inclusion ratio (for example, 95%) is included between the step-shaped rectangular line 73 and the rectangular line 74. Then, according to the rectangular lines 73 and 74, the azimuth difference threshold value ⁇ c may be set so that ⁇ c decreases stepwise as R increases. The inclusion ratio of the actually measured values may be changed based on the surrounding environment in which the vehicle 50 is traveling, the traveling state of the vehicle 50, and the like.
  • Each of the above threshold values may be stored in the ECU 20 in the form of the threshold value itself, a calculation formula, a data table, or the like.
  • the assistance determination unit 23 excludes an approaching object that is determined to be a ghost target by the ghost determination unit 40 from an object for which driving assistance for avoiding danger of the own vehicle 50 is executed. Even if the approaching object 55 is detected by the object detection unit 22, if the approaching object 55 is determined to be a ghost target by the ghost determination unit 40, the traveling safety of the vehicle 50 is not impaired. Therefore, the assistance determination unit 23 does not perform driving assistance such as notification of the approaching object 55, collision avoidance, and damage reduction. When the approaching object 55 is detected by the object detecting unit 22 and the approaching object 55 is determined by the ghost determining unit 40 to be not a ghost target, the traveling safety of the vehicle 50 may be impaired. Therefore, the assistance determination unit 23 executes driving assistance such as notification of the approaching object 55, collision avoidance, and damage reduction. For example, it outputs a control command for issuing an alarm sound to the alarm device 30.
  • the driving support process executed by the ECU 20 will be described with reference to FIG. 7.
  • the ECU 20 repeatedly executes the driving support process shown in FIG. 7 at a predetermined cycle while the vehicle is traveling.
  • step S101 the ECU 20 acquires detection information such as the vehicle speed Vs, the relative speed and the azimuth of an object behind the vehicle with respect to the vehicle from various sensors such as the radar device 11 and the vehicle speed sensor 12. To do. Then, it progresses to step S102.
  • detection information such as the vehicle speed Vs, the relative speed and the azimuth of an object behind the vehicle with respect to the vehicle from various sensors such as the radar device 11 and the vehicle speed sensor 12. To do. Then, it progresses to step S102.
  • step S102 an object existing behind the vehicle is detected based on the detection information acquired from the radar device 11.
  • the type of object is not particularly limited, and includes all of vehicles, bicycles, motorcycles, pedestrians, animals, structures, and the like. Then, it progresses to step S103.
  • step S103 it is determined whether or not the object detected in step S102 includes an approaching object approaching the host vehicle. Specifically, for example, when the relative speed of the object with respect to the own vehicle is equal to or higher than a predetermined approach speed threshold value, it is determined that the object is an approaching object. When there is an approaching object (that is, when an approaching object is detected), the process proceeds to step S104. If there is no approaching object (that is, if no approaching object is detected), the process ends.
  • step S104 it is determined whether or not the speed condition is satisfied. Specifically, using the relative speed Vg and the relative speed Vrv acquired from the radar device 11 and the own vehicle speed Vs acquired from the vehicle speed sensor 12, it is determined whether or not the speed condition shown in the following formula (5) is satisfied. To do.
  • the speed difference threshold Vc1 is preset and stored in the ECU 20 by using the frequency distribution chart of FIG. When it is determined that the speed condition is satisfied, the process proceeds to step S105. When it is determined that the speed condition is not satisfied, the process proceeds to step S110.
  • step S105 it is determined whether or not the azimuth condition is satisfied. Specifically, based on the azimuth ⁇ rv of the following vehicle and the azimuth ⁇ g of the approaching object acquired from the radar device 11, it is determined whether or not the azimuth condition represented by the following equation (6) is satisfied.
  • the data table shown in FIG. 4 is stored in advance in the ECU 20.
  • the azimuth difference threshold ⁇ c is calculated from the data table stored in the ECU 20, using the vehicle speed Vs and the distance R between the vehicle and the following vehicle acquired in step S101.
  • step S106 the approaching object recognized in step S103 is determined to be a ghost.
  • the approaching object is determined to be a ghost.
  • the approaching object recognized in step S103 is excluded from the objects that perform driving assistance for avoiding the danger of the own vehicle, and the notification command to the alarm device 30 is not output.
  • step S110 it is determined that the approaching object to the vehicle recognized in step S103 is not a ghost.
  • the speed condition shown in step S104 and the azimuth condition shown in step S105 is not satisfied, it is determined that the approaching object is not a ghost. Then, it progresses to step S111.
  • step S111 the approaching object recognized in step S103 is recognized as an object for which driving assistance for avoiding danger of the vehicle is executed, and a determination is made as to whether or not to execute the notification.
  • the determination of whether or not to execute the notification may be, for example, a determination of whether or not an approaching object has entered the notification area set behind the vehicle. In this case, if it is determined that an approaching object has entered the notification area, it is determined to perform the notification, and the process proceeds to step S112. In step S112, a notification command is output to the alarm device 30, and the process ends. On the other hand, if it is determined in step S111 that the notification is not to be executed, the process ends as it is.
  • the approaching object is a ghost target based on both the speed condition and the bearing condition. Therefore, the actual approaching object and the ghost object can be discriminated with higher accuracy.
  • the ECU 20 includes an object detection unit 22, a data acquisition unit 21, a ghost determination unit 40, and a support determination unit 23.
  • the object detection unit 22 detects an object behind the vehicle 50 by using the reflected wave of the search wave by the radar device 11 or the like, and recognizes an object approaching the vehicle 50 as the approaching object 55.
  • the data acquisition unit 21 acquires the vehicle speed Vs and the relative speed and direction of the object detected by the object detection unit 22 with respect to the vehicle 50.
  • the ghost determination unit 40 determines that the approaching object 55 is a ghost target that does not actually exist.
  • the assistance determination unit 23 excludes the approaching object 55 determined to be a ghost target by the ghost determination unit 40 from the target object for which driving assistance for avoiding danger of the vehicle 50 is executed.
  • the ghost determination unit 40 includes a speed determination unit 41 and an azimuth determination unit 42.
  • the speed determination unit 41 determines the relative speed of the approaching object 55 with respect to the own vehicle 50 based on the own vehicle speed Vs and the relative speed Vrv of the following vehicle 51 with respect to the own vehicle 50 between the own vehicle 50 and the approaching object 55.
  • the calculated value Vg0 is calculated.
  • the speed determination unit 41 calculates the speed difference dVg between the detected value Vg of the relative speed of the approaching object 55 acquired by the data acquisition unit 21 with respect to the own vehicle 50 and the calculated value Vg0.
  • the azimuth determining unit 42 calculates the azimuth difference d ⁇ g between the following vehicle 51 and the approaching object 55 with respect to the own vehicle 50. To do. Then, the ghost determination unit 40 determines whether or not the approaching object 55 is a ghost target based on both the speed difference dVg and the heading difference d ⁇ g.
  • the detected relative velocity Vg and the orientation ⁇ g of the approaching object 55, the relative velocity Vg0 of the approaching object 55 theoretically obtained assuming that the approaching object 55 is a ghost target, and Whether or not the approaching object 55 is a ghost target can be determined based on the velocity difference dVg and the azimuth difference d ⁇ g calculated using the azimuth ⁇ rv and the azimuth ⁇ rv, respectively. Therefore, the actual approaching object and the ghost object can be discriminated with higher accuracy.
  • the ghost determination unit 40 may determine that the approaching object 55 is a ghost target when it is determined that the speed difference dVg satisfies the speed condition and the heading difference d ⁇ g satisfies the heading condition. Specifically, the speed determination unit 41 may set, as a speed condition, that the speed difference dVg is less than a predetermined speed difference threshold Vc1. Further, the azimuth determination unit 42 may set the azimuth difference d ⁇ g to be less than a predetermined azimuth difference threshold ⁇ c as the azimuth condition.
  • the approaching object 55 is a ghost target. May be determined.
  • the azimuth determination unit 42 sets the azimuth difference threshold ⁇ c to a predetermined fixed value ⁇ c1, and the vehicle speed Vs is equal to or more than the predetermined vehicle speed threshold Vc2.
  • the azimuth difference threshold ⁇ c may be changed within a range larger than a predetermined fixed value ⁇ c1, as shown in FIGS. .. Since the speed condition and the azimuth condition can be adjusted based on the estimated ground speed Vgr and the position of the approaching object 55, the ghost target can be easily detected and the true approaching object is erroneously determined as a ghost target. It is possible to favorably adjust the trade-off relationship with suppression of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

運転支援装置(20)は、探査波の反射波を用いて自車の後方の物体を検知し、自車に接近する物体を接近物として認識する物体検知部(22)と、自車の速度と物体の自車に対する相対速度および方位を取得する取得部(21)と、接近物が実際には存在しないゴースト物標であることを判定するゴースト判定部(40)と、ゴースト物標であると判定された接近物を自車の危険回避のための運転支援を実行する対象物から除外する支援判定部(23)とを備える。ゴースト判定部は、接近物の自車に対する相対速度と、自車の速度および自車と接近物との間の後続物の自車に対する相対速度に基づいて算出した接近物の自車に対する相対速度の算出値との速度差を算出し、後続物の方位と接近物の方位とに基づいて後続物と接近物との方位差を算出し、速度差と方位差とに基づいて接近物がゴースト物標であることを判定する。

Description

運転支援装置 関連出願の相互参照
 本出願は、2018年12月27日に出願された日本出願番号2018-245839号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両の後方の物体検知情報に基づいて、運転支援を実行する運転支援装置に関する。
 特許文献1に、自車の前方へ電磁波を送信し、その反射波を受信することにより自車に接近する他車を検知して報知するシステムが記載されている。高架橋下やトンネル等の閉鎖的な空間を自車が走行する際などに、他車からの反射波が路上構造物においてさらに反射することにより、実際には存在しない物体(ゴーストオブジェクト)を検知することがある。特許文献1では、反射波により検知された物体がゴーストオブジェクトであると判定した場合には、その物体を報知対象物から除外する。
特開2014-71012号公報
 特許文献1には、判定が困難なゴーストオブジェクトを確実に除外することを目的とする技術は記載されているが、実際の接近物をゴーストオブジェクトであると誤判定することを抑制する技術については記載されていない。実際の接近物をゴーストオブジェクトであると誤判定して、報知が行われないと、自車の走行安全性を確保できない。
 上記に鑑み、本開示は、実際の接近物と、ゴーストオブジェクトとを、より高精度に判別できる運転支援装置を提供することを目的とする。
 本開示は、探査波の反射波を用いて、自車の後方の物体を検知し、前記自車に接近する物体を接近物として認識する物体検知部と、前記自車の速度と、前記物体検知部が検知した物体の前記自車に対する相対速度および方位を取得する取得部と、前記接近物が、実際には存在しないゴースト物標であることを判定するゴースト判定部と、前記ゴースト判定部により前記ゴースト物標であると判定された前記接近物を、前記自車の危険回避のための運転支援を実行する対象物から除外する支援判定部と、を備える。前記ゴースト判定部は、前記接近物の前記自車に対する相対速度と、前記自車の速度および前記自車と前記接近物との間の後続物の前記自車に対する相対速度に基づいて算出した前記接近物の前記自車に対する相対速度の算出値との速度差を算出し、前記後続物の方位と、前記接近物の方位とに基づいて、前記後続物と前記接近物との方位差を算出し、前記速度差と前記方位差とに基づいて、前記接近物が前記ゴースト物標であると判定する。
 本開示によれば、運転支援装置のゴースト判定部は、接近物の自車に対する相対速度と、自車の速度および後続物の自車に対する相対速度に基づいて算出した接近物の自車に対する相対速度の算出値との速度差を算出する。また、ゴースト判定部は、後続物の方位と、接近物の方位に基づいて、自車に対する後続物と接近物との方位差を算出する。そして、ゴースト判定部は、速度差と方位差との双方に基づいて、接近物がゴースト物標であると判定する。検知された接近物の相対速度および方位と、その接近物がゴースト物標である場合を想定して理論的に求められる接近物の相対速度および方位とについて、速度差と方位差とを算出し、速度差と方位差との双方に基づいて、接近物がゴースト物標であるか否かについて判定するため、実際の接近物と、ゴーストオブジェクトとを、より高精度に判別できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態に係る運転支援システムであり、 図2は、実施形態に係るゴースト判定における速度条件と方位条件とを説明する図であり、 図3は、ゴースト物標の相対速度についての頻度分布図であり、 図4は、自車速度Vs、および、後続車と自車との距離Rに基づく方位差閾値の設定例を示す図であり、 図5は、後続車と自車との距離Rに基づく方位差閾値の設定について説明する図であり、 図6は、後続車と自車との距離Rと、後続車とゴースト物標との方位差との関係を示す図であり、 図7は、実施形態に係る運転支援処理のフローチャートである。
 (第1実施形態)
 図1に示すように、実施形態に係る運転支援システム10は、レーダ装置11と、車速センサ12と、ECU20と、警報装置30とを備えている。
 レーダ装置11は、例えば、ミリ波帯の高周波信号を送信波とする公知のミリ波レーダである。レーダ装置11は、自車に1つのみ設置されていてもよいし、複数設置されていてもよい。レーダ装置11は、例えば、自車の後端部等に設けられ、所定の検知角に入る領域を物体検知可能な検知範囲とし、検知範囲内の物体の位置を検知する。
 具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体との距離を算出することができる。
 また、物体に反射された反射波の、ドップラー効果により変化した周波数により、相対速度を算出する。加えて、複数のアンテナが受信した反射波の位相差により、物体の方位を算出することができる。なお、物体の位置および方位が算出できれば、その物体の、自車に対する相対位置を特定することができる。
 なお、レーダ装置11は、探査波を送信し、自車の周辺の物体における探査波の反射波を検知して、自車の周辺情報を取得する周辺監視装置の一例である。探査波を用いる周辺監視装置としては、レーダ装置11の他に、超音波センサ、LIDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)等を備えていてもよい。
 レーダ装置11等のミリ波レーダ、ソナー、LIDAR等の探査波を送信するセンサは、障害物によって反射された反射波を受信した場合に得られる受信信号に基づく走査結果をセンシング情報としてECU20へ逐次出力する。
 車速センサ12は、自車の走行速度を検知するセンサであり、限定されないが、例えば、車輪の回転速度を検知可能な車輪速センサを用いることができる。車速センサ12として利用される車輪速センサは、例えば、車輪のホイール部分に取り付けられており、車両の車輪速度に応じた車輪速度信号をECU20に出力する。
 運転支援システム10は、さらに、撮像装置、操舵角センサ、ヨーレートセンサ、GPS受信装置等のGNSS(Global Navigation Satellite System)受信装置等の各種センサを備えていてもよい。ECU20は、それらセンサの検知信号を取得可能であってもよい。
 警報装置30は、運転者等に報知するための装置であり、例えば自車の車室内に設置されたスピーカやブザー等の聴覚的に報知する装置、ディスプレイ等の視覚的に報知する装置等を例示できるが、これに限定されない。警報装置30は、ECU20からの制御指令に基づき警報音等を発することにより、例えば、運転者に対し、物体との衝突の危険が及んでいること等を報知する。
 ECU20は、データ取得部21と、物体検知部22と、支援判定部23と、ゴースト判定部40とを備えている。ECU20は、CPU、ROM、RAM、I/O等を備えた、CPUが、ROMにインストールされているプログラムを実行することでこれら各機能を実現する。これによって、ECU20は、レーダ装置11、車速センサ12等の各種センサから取得した情報に基づいて、警報装置30への制御指令を作成し、出力することにより、自車の運転支援を実行する運転支援装置として機能する。
 データ取得部21は、レーダ装置11から、物体の自車に対する相対速度および方位を取得する。また、車速センサ12から、自車の走行速度を取得する。
 物体検知部22は、レーダ装置11が受信する反射波についての検知情報から、自車の後方の物体を検知する。物体の種類については、特に限定されず、車両、自転車、自動二輪車、歩行者、動物、構造物等の全てを含み、移動体であってもよいし、静止体であってもよい。ECU20が撮像装置等のレーダ装置11以外の他の周辺監視装置を備えている場合には、他の周辺監視装置を併用して物体検知を行ってもよい。さらに、物体検知部22は、検知した各物体のうちから、自車に接近する接近物を認識する。接近物であるか否かは、その物体の自車に対する相対速度を用いて判定することができる。
 ゴースト判定部40は、物体検知部22が自車に接近する物体として検知した接近物が、実際には存在しないゴースト物標であることを判定する。ゴースト判定部40は、速度判定部41と、方位判定部42とを備えている。速度判定部41は、ゴースト物標としての速度条件についての判定を実行する。速度条件は、検知された接近物の相対速度と、その接近物がゴースト物標である場合を想定して理論的に求められる接近物の相対速度とのずれが所定の範囲内であることを条件とするものである。方位判定部42は、ゴースト物標としての方位条件についての判定を実行する。方位条件は、検知された接近物の方位と、その接近物がゴースト物標である場合を想定して理論的に求められる接近物の方位とのずれが所定の範囲内であることを条件とするものである。ゴースト判定部40は、物体検知部22により検知された接近物が、ゴースト物標としての速度条件と方位条件との双方を満たす場合に、その検知された接近物はゴースト物標であると判定する。
 図2を用いて、ゴースト判定部40が実行する処理について説明する。図2に示すように、道路60上を自車50および後続車51が走行している。道路60の中央には車線61が設けられており、車線61の左側が車線62であり、右側が車線63である。自車50と後続車51との間に、路上構造物57が存在している。路上構造物57は、例えば、道路標識、トンネルの天井等の金属構造物、看板、等の路上に設置された構造物である。図2(a)は自車50等を右側方視した図であり、図2(b)は、自車50に対する上方視した図である。
 自車50は、車線62において、道路60に対する自車50の速度(対地速度)である自車速度Vsで前方に走行している。自車速度Vsは、車速センサ12により検知され、データ取得部21により取得される。
 後続車51は、自車50のすぐ後ろを走行する車両であり、自車50の後続物の一例である。後続車51は、自車50の走行車線である車線62において自車50の後方を自車50と同じ方向に走行している。自車50に対する後続車51の相対速度は、Vrvであり、レーダ装置11により検知され、データ取得部21により取得される。
 自車50の後端位置P50に設置されたレーダ装置11から後方に送信された探査波が、後続車51の前方の検知点P51において反射し、さらに、路上構造物57においても反射すると、その反射波により、自車50の物体検知部22において、接近物55がゴースト物標として検知される。接近物55は、後続車51よりもさらに後方となる位置に検知される。
 接近物55がゴースト物標であると想定した場合における接近物55の自車50に対する相対速度Vg0(算出値)は、後続車51の自車50に対する相対速度Vrvと、自車速度Vsとを用いて、下記式(1)により算出することができる。
 Vg0=Vs+2Vrv … (1)
 一方、物体検知部22により検知された接近物55については、データ取得部21によって、レーダ装置11から、接近物55の自車50に対する相対速度Vgが取得される。速度判定部41は、下記式(2)に基づいて、接近物55の自車に対する相対速度Vg(検知値)と、算出値Vg0との速度差dVgを算出する。
 dVg=|Vg-Vg0|=|Vg-(Vs+2Vrv)| … (2)
 dVgが小さいほど、接近物55の自車50に対する相対速度Vgは、算出値Vg0に近い値である。速度判定部41は、所定の速度差閾値Vc1を設定し、速度差dVgが速度差閾値Vc1未満であるか否かを判定する。そして、dVg<Vc1である場合に、接近物55がゴースト物標としての速度条件を満たしていると判定する。また、dVg≧Vc1である場合に、接近物55がゴースト物標としての速度条件を満たしていないと判定する。
 ゴースト物標の検知し易さと、真の接近物をゴースト物標であると誤判定することを抑制することとは、トレードオフの関係にある。Vc1の値を大きくすれば、ゴースト物標を検知し易いが、真の接近物(実際に存在する接近物)をゴースト物標であると誤判定する確率は高くなる。Vc1の値を小さくすれば、真の接近物をゴースト物標であると誤判定する確率は低くなるが、ゴースト物標を検知しにくくなる。Vc1の値は、例えば、レーダ装置11や車速センサ12等の、自車50に搭載されたセンサ類の検知精度に基づいて、設定してもよい。
 また、速度差閾値Vc1は、実測値に基づいて設定されてもよい。例えば、レーダ装置11からデータ取得部21が取得した多数の相対速度Vgの集合について、その集合の所定の包含割合が含まれるように、速度差閾値Vc1を設定してもよい。
 より具体的には、例えば、図3に示すように、横軸を相対速度Vgのばらつきとし、縦軸をその頻度とする頻度分布図を作成する。そして、相対速度Vgの中央値(横軸が零となる位置)を中心に、相対速度Vgの集合全体に対して所定の包含割合(例えば95%)が含まれるように、上限規格値Vguおよび下限規格値Vgbを設定する。この上限規格値Vguと下限規格値Vgbとの差をVc1として設定することで、所定の包含割合(例えば95%)の相対速度Vgが含まれるように速度差閾値Vc1の設定をすることができる。包含割合は、自車50が走行する周辺環境や、自車50の走行状態等に基づいて、変更するようにしてもよい。
 図2(b)に示すように、自車50の後端位置P50に設置されたレーダ装置11からの探査波が、後続車51の右前端の検知点P51において反射する場合、ゴースト物標として検知された接近物55は、後続車51の後右側方となる検知点P55の位置に検出される。
 自車50に対する後続車51の方位θrvと、自車50に対する接近物55の方位θgは、データ取得部21によりレーダ装置11から取得される。方位θrvは、自車50の左右方向の中心軸である自車中心軸L1と、後端位置P50と検知点P51とを結ぶ線分とが成す角として検知される。方位θgは、自車中心軸L1と、後端位置P50と検知点P55とを結ぶ線分とが成す角として検知される。
 方位判定部42は、下記式(3)に基づいて、自車50に対する後続車51の方位θrvと、自車50に対する接近物55の方位θgとの方位差dθgを算出する。
 dθg=|θrv-θg| … (3)
 接近物55がゴースト物標である場合には、接近物55の検知点P55は、後端位置P50と検知点P51とを結ぶ線分上に位置するため、dθg=0となる。方位判定部42は、所定の方位差閾値θcを設定し、方位差dθgが方位差閾値θc未満であるか否かを判定する。そして、dθg<θcである場合に、接近物55がゴースト物標としての方位条件を満たしていると判定する。また、dθg≧θcである場合に、接近物55がゴースト物標としての速度条件を満たしていないと判定する。
 θcの値を大きくすれば、ゴースト物標を検知し易いが、真の接近物をゴースト物標であると誤判定する確率は高くなる。θcの値を小さくすれば、真の接近物をゴースト物標であると誤判定する確率は低くなるが、ゴースト物標を検知しにくくなる。θcの値は、例えば、レーダ装置11や車速センサ12等の、自車50に搭載されたセンサ類の検知精度に基づいて、設定してもよい。
 方位判定部42は、自車速度Vsや、自車50と後続車51との距離Rに基づいて、方位差閾値θcを変更してもよい。例えば、図4に示すように、方位判定部42は、自車速度Vsが所定の自車速閾値Vc2未満である場合に、方位差閾値θcを所定の固定値θc1に設定する。また、方位判定部42は、自車速度Vsが所定の自車速閾値Vc2以上である場合に、自車50と後続車51との距離Rに応じて方位差閾値θcを変更する。より具体的には、自車50と後続車51との距離Rが大きいほど方位差閾値θcを小さくする。図4において、距離Rに対する距離閾値Rc1~Rc3の大小関係は、Rc1<Rc2<Rc3である。また、方位差閾値θcについての所定の固定値θc1~θc5の大小関係は、θc1<θc5<θc4<θc3<θc2である。
 なお、距離Rは、例えば、レーダ装置11の検知情報から算出できる。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体との距離を算出することができる。
 図4に示す方位差閾値θcの設定手法は、自車速度Vsを用いて道路60に対する接近物55の速度(対地速度)である接近物速度Vgrを推定し、接近物速度Vgrに基づいて、接近物55がゴースト物標であるか可能性を推察し、方位差閾値θcを設定するものである。上記式(1)より、接近物速度Vgrは、下記式(4)により算出できる。
 Vgr=Vs+Vg0=2Vs+2Vrv … (4)
 簡略化のため、後続車51が自車50と同じ対地速度で車線62を走行しており、自車50に対する後続車51の相対速度Vrvが零の場合(Vrv=0)を例示して説明する。上記式(4)より、接近物速度Vgrは、自車速度Vsの2倍の値となる(Vgr=2Vs)。
 ここで、自車速度Vsが20km,40kmである場合には、接近物速度Vgrは、それぞれ、40km,80kmと算出される。Vgr=40~80km程度の速度は、一般道路を走行する車両の一般的な速度である。言い換えると、40~80kmで走行する接近物55が車両である可能性は、比較的高いと推察できる。
 これに対し、自車速度Vsが60km,80km,100kmである場合には、接近物速度Vgrは、それぞれ、120km,160km,200kmと算出される。Vgr=120~200km程度の速度は、一般道路を走行する車両の一般的な速度ではない。言い換えると、120~200kmで走行する接近物55が車両である可能性は、比較的低いと推察できる。
 上記の推察に従い、自車速閾値Vc2を40~60km程度の値に設定する。そして、図4に従い、Vs<Vc2である場合、すなわち、自車速度Vsが20~40km程度と遅い場合には、検知された接近物55が車両等である可能性が比較的高いため、方位差閾値θcを小さく設定する。より具体的には、小さい値に設定された固定値θc1に設定する。これによって、接近物55が真の接近物であるにも関わらずゴースト物標であると誤判定する確率を低くすることを優先させる。Vs<Vc2である場合、特に方位差閾値θcを小さくすることにより、接近物55が、車間をすり抜けながら自車50に接近する自動二輪車等であるにも関わらず、ゴースト物標であると誤判定する確率を特に低くすることができる。
 また、Vs≧Vc2である場合、すなわち、自車速度Vsが60~100km程度と速い場合には、検知された接近物55が車両等である可能性が比較的低いため、方位差閾値θcをθc1よりも大きく設定する。これによって、ゴースト物標であると判定し易くすることを優先させる。
 さらに、Vs≧Vc2である場合には、図4に示すように、自車50と後続車51との距離Rが長いほど方位差閾値θcを小さくし、距離Rが短いほど方位差閾値θcを大きくする。
 図5に示すように、自車50からの距離がR1である後続車51において、自車50に対する後続車51の最大方位θ1は、角A1-O-B1により示される。また、自車50からの距離がR2である後続車52において、自車50に対する後続車52の最大方位θ2は、角A2-O-B2により示される。なお、距離R1はR2より短く(R1<R2)、最大方位θ1は、最大方位θ2よりも大きい(θ1>θ2)。後続車が、自車50からの距離がR1である後続車51であるときは、最大方位θ1以下にゴースト物標が検知される。後続車が、自車50からの距離がR2である後続車52であるときは、最大方位θ2以下にゴースト物標が検知される。図5から明らかなように、距離Rが小さいほど、検出されるゴースト物標は、自車50の側方にずれた位置に検出される。
 図2を用いて説明すると、自車50と後続車51との距離Rが短い場合には、接近物55は、車線62から右方向に遠ざかり、より車線63側に検知される。このため、方位差閾値θcを大きく設定する。
 自車50と後続車51との距離Rが長い場合には、接近物55は、車線62に比較的近い位置に検知される。このため、方位差閾値θcを小さく設定し、接近物55が真の接近物であるにも関わらずゴースト物標であると誤判定する確率は低くすることを優先させる。
 図4に示す自車速閾値Vc2、距離閾値Rc1~Rc3、方位差閾値θcについての所定の固定値θc1~θc5は、車線幅、後続車51の対地速度等によって、適宜変更することができる。
 距離閾値Rc1~Rc3、方位差閾値θcについての所定の固定値θc1~θc5は、実測値に基づいて設定されてもよい。例えば、レーダ装置11からデータ取得部21が取得した実測値について、図6に示すように、横軸を後続車51の距離Rとし、縦軸を方位差として、後続車51の距離がRであるときに検知されるゴースト物標との方位差の実測値をプロットし、分布図を作成する。この分布図に基づいて、後続車とゴースト物標との方位差の集合全体に対して所定の包含割合(例えば95%)が含まれるように、方位差閾値θcを設定することができる。
 例えば、図6において、全ての実測値が曲線71と曲線72との間に含まれるような、曲線71,72を求める。そして、曲線71,72に従って、Rが大きくなるほどθcが小さくなるように方位差閾値θcを設定してもよい。または、図6において、所定の包含割合(例えば95%)の実測値がステップ状の矩形線73と矩形線74との間に含まれるように、矩形線73,74を求める。そして、矩形線73,74に従って、Rが大きくなるほどステップ状にθcが小さくなるように方位差閾値θcを設定してもよい。実測値の包含割合は、自車50が走行する周辺環境や、自車50の走行状態等に基づいて、変更するようにしてもよい。
 上記の各閾値は、閾値そのもの、もしくは、計算式、データテーブル等の形式により、ECU20に記憶されていてもよい。
 支援判定部23は、ゴースト判定部40によりゴースト物標であると判定された接近物を、自車50の危険回避のための運転支援を実行する対象物から除外する。物体検知部22により接近物55が検知されても、その接近物55がゴースト判定部40によりゴースト物標であると判定された場合には、自車50の走行安全性を阻害しない。このため、支援判定部23は、接近物55についての報知、衝突回避、損害軽減等の運転支援を実行しない。物体検知部22により接近物55が検知され、その接近物55がゴースト判定部40によりゴースト物標ではないと判定された場合には、自車50の走行安全性を阻害する可能性がある。このため、支援判定部23は、接近物55についての報知、衝突回避、損害軽減等の運転支援を実行する。例えば、警報装置30に警報音を発する制御指令を出力する。
 図7を用いて、ECU20が実行する運転支援処理を説明する。ECU20は、自車の走行中に、所定の周期で繰り返し図7に示す運転支援処理を実行する。
 まず、ステップS101に示すように、ECU20は、レーダ装置11、車速センサ12等の各種センサから、自車速度Vs、自車の後方の物体の自車に対する相対速度および方位等の検知情報を取得する。その後、ステップS102に進む。
 ステップS102では、レーダ装置11から取得した検知情報に基づいて、自車の後方に存在する物体を検知する。物体の種類については、特に限定されず、車両、自転車、自動二輪車、歩行者、動物、構造物等の全てを含む。その後、ステップS103に進む。
 ステップS103では、ステップS102において物体検知された物体のうちに、自車に接近する接近物があるか否かを判定する。具体的には、例えば、物体の自車に対する相対速度が所定の接近速度閾値以上である場合に、その物体は接近物であると判定する。接近物ありの場合(すなわち、接近物が検知された場合)には、ステップS104に進む。接近物なしの場合(すなわち、接近物が検知されなかった場合)には、処理を終了する。
 ステップS104では、速度条件を満たしているか否かについての判定を実行する。具体的には、レーダ装置11から取得した相対速度Vgおよび相対速度Vrv、車速センサ12から取得した自車速度Vsを用いて、下記式(5)に示す速度条件を満たしているか否かを判定する。なお、速度差閾値Vc1は、図3の頻度分布図を用いる等により、予め設定され、ECU20に記憶されている。速度条件を満たしていると判定した場合には、ステップS105に進む。速度条件を満たしていないと判定した場合には、ステップS110に進む。
 |Vg-(Vs+2Vrv)|<Vc1 … (5)
 ステップS105では、方位条件を満たしているか否かについての判定を実行する。具体的には、レーダ装置11から取得した後続車の方位θrvおよび接近物の方位θgに基づいて、下記式(6)に示す方位条件を満たしているか否かを判定する。なお、ECU20には、図4に示すデータテーブルが予め記憶されている。方位差閾値θcは、ステップS101において取得された自車速度Vs、自車と後続車との距離Rを用いて、ECU20に記憶されたデータテーブルから算出される。方位条件を満たしていると判定した場合には、ステップS106に進む。方位条件を満たしていないと判定した場合には、ステップS110に進む。
 |θrv-θg|<θc … (6)
 ステップS106では、ステップS103で認識された自車への接近物は、ゴーストであると判定する。ステップS104に示す速度条件と、ステップS105に示す方位条件との双方を満たす場合に、接近物は、ゴーストであると判定する。その結果、ステップS103で認識された接近物は、自車の危険回避のための運転支援を実行する対象物から除外され、警報装置30への報知指令は出力されない。
 ステップS110では、ステップS103で認識された自車への接近物は、ゴーストではないと判定する。ステップS104に示す速度条件と、ステップS105に示す方位条件との少なくともいずれか一方が満たされなかった場合に、接近物は、ゴーストではないと判定する。その後、ステップS111に進む。
 ステップS111では、ステップS103で認識された接近物は、自車の危険回避のための運転支援を実行する対象物として認識され、報知を実行するか否かの判定が実行される。報知を実行するか否かの判定は、例えば、自車の後方に設定された報知領域に、接近物が侵入したか否かを判定するものであってもよい。この場合、報知領域に接近物が侵入したと判定された場合には、報知を実行すると判定し、ステップS112に進む。ステップS112では、警報装置30に報知指令が出力され、処理を終了する。他方、ステップS111において、報知を実行しないと判定された場合には、そのまま処理を終了する。
 上記のとおり、本実施形態によれば、速度条件と、方位条件との双方に基づいて、接近物がゴースト物標であると判定する。このため、実際の接近物と、ゴーストオブジェクトとを、より高精度に判別できる。
 上記の実施形態によれば、以下の作用効果を得ることができる。
 ECU20は、物体検知部22と、データ取得部21と、ゴースト判定部40と、支援判定部23とを備えている。物体検知部22は、レーダ装置11等による探査波の反射波を用いて、自車50の後方の物体を検知し、自車50に接近する物体を接近物55として認識する。データ取得部21は、自車速度Vsと、物体検知部22が検知した物体の自車50に対する相対速度および方位を取得する。ゴースト判定部40は、接近物55が、実際には存在しないゴースト物標であることを判定する。支援判定部23は、ゴースト判定部40によりゴースト物標であると判定された接近物55を、自車50の危険回避のための運転支援を実行する対象物から除外する。
 ゴースト判定部40は、速度判定部41と、方位判定部42とを備えている。速度判定部41は、自車速度Vs、および、自車50と接近物55との間の後続車51の自車50に対する相対速度Vrvに基づいて、接近物55の自車50に対する相対速度の算出値Vg0を算出する。さらに、速度判定部41は、データ取得部21が取得した接近物55の自車50に対する相対速度の検知値Vgと、算出値Vg0との速度差dVgを算出する。方位判定部42は、データ取得部21により取得された、後続車51の方位θrvおよび接近物55の方位θgに基づいて、自車50に対する後続車51と接近物55との方位差dθgを算出する。そして、ゴースト判定部40は、速度差dVgと方位差dθgとの双方に基づいて、接近物55がゴースト物標であるか否かを判定する。ゴースト判定部40によれば、検知された接近物55の相対速度Vgおよび方位θgと、接近物55がゴースト物標である場合を想定して理論的に求められる接近物55の相対速度Vg0および方位θrvとをそれぞれ用いて算出した速度差dVgおよび方位差dθgに基づいて、接近物55がゴースト物標であるか否かについて判定できる。このため、実際の接近物と、ゴーストオブジェクトとを、より高精度に判別できる。
 ゴースト判定部40は、速度差dVgが速度条件を満たし、かつ、方位差dθgが方位条件を満たすと判定された場合に、接近物55がゴースト物標であると判定してもよい。具体的には、速度判定部41は、速度差dVgが、所定の速度差閾値Vc1未満であることを速度条件として設定するものであってもよい。また、方位判定部42は、方位差dθgが、所定の方位差閾値θc未満であることを方位条件として設定するものであってもよい。そして、ゴースト判定部40は、速度判定部41により速度条件を満たすと肯定判定され、かつ、方位判定部42により方位条件を満たすと肯定判定された場合に、接近物55がゴースト物標であると判定してもよい。自車50や周囲の状況に応じて、速度差閾値Vc1、方位差閾値θcを設定することにより、簡易に精度のよい判定を実行することができる。
 方位判定部42は、自車速度Vsが所定の自車速閾値Vc2未満である場合に、方位差閾値θcを所定の固定値θc1に設定し、自車速度Vsが所定の自車速閾値Vc2以上である場合に、自車50と後続車51との距離Rに応じて、例えば、図4,6に示すように、方位差閾値θcを所定の固定値θc1よりも大きい範囲で変更してもよい。推定された接近物55の対地速度Vgrや位置に基づいて、速度条件や方位条件を調整できるため、ゴースト物標の検知し易さと、真の接近物をゴースト物標であると誤判定することを抑制することとのトレードオフ関係を良好に調整できる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  探査波の反射波を用いて、自車の後方の物体を検知し、前記自車に接近する物体を接近物として認識する物体検知部(22)と、
     前記自車の速度と、前記物体検知部が検知した物体の前記自車に対する相対速度および方位を取得する取得部(21)と、
     前記接近物が、実際には存在しないゴースト物標であることを判定するゴースト判定部(40)と、
     前記ゴースト判定部により前記ゴースト物標であると判定された前記接近物を、前記自車の危険回避のための運転支援を実行する対象物から除外する支援判定部(23)と、を備え、
     前記ゴースト判定部は、
      前記接近物の前記自車に対する相対速度と、前記自車の速度および前記自車と前記接近物との間の後続物の前記自車に対する相対速度に基づいて算出した前記接近物の前記自車に対する相対速度の算出値との速度差を算出し、
      前記後続物の方位と、前記接近物の方位とに基づいて、前記後続物と前記接近物との方位差を算出し、
      前記速度差と前記方位差とに基づいて、前記接近物が前記ゴースト物標であることを判定する、運転支援装置(20)。
  2.  前記ゴースト判定部は、
      前記速度差が、所定の速度差閾値未満であることを判定する速度判定部(41)と、
      前記方位差が、所定の方位差閾値未満であることを判定する方位判定部(42)と、を備え、前記速度判定部により肯定判定され、かつ、前記方位判定部により肯定判定された場合に、前記接近物が前記ゴースト物標であると判定する請求項1に記載の運転支援装置。
  3.  前記方位判定部は、前記自車の速度が所定の自車速閾値未満である場合に、前記方位差閾値を所定の固定値に設定し、前記自車の速度が所定の自車速閾値以上である場合に、前記自車と前記後続物との距離に応じて前記方位差閾値を前記固定値よりも大きい範囲で変更する請求項2に記載の運転支援装置。
  4.  前記方位判定部は、前記自車の速度が所定の自車速閾値以上である場合に、前記自車と前記後続物との距離が大きいほど前記方位差閾値を小さくする請求項3に記載の運転支援装置。
PCT/JP2019/049629 2018-12-27 2019-12-18 運転支援装置 WO2020137747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019006516.5T DE112019006516T5 (de) 2018-12-27 2019-12-18 Fahrassistenzvorrichtung
CN201980086618.5A CN113228133B (zh) 2018-12-27 2019-12-18 驾驶辅助装置
US17/357,742 US11798417B2 (en) 2018-12-27 2021-06-24 Driving assistance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245839A JP7169873B2 (ja) 2018-12-27 2018-12-27 運転支援装置
JP2018-245839 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/357,742 Continuation US11798417B2 (en) 2018-12-27 2021-06-24 Driving assistance device

Publications (1)

Publication Number Publication Date
WO2020137747A1 true WO2020137747A1 (ja) 2020-07-02

Family

ID=71129705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049629 WO2020137747A1 (ja) 2018-12-27 2019-12-18 運転支援装置

Country Status (5)

Country Link
US (1) US11798417B2 (ja)
JP (1) JP7169873B2 (ja)
CN (1) CN113228133B (ja)
DE (1) DE112019006516T5 (ja)
WO (1) WO2020137747A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472879B2 (ja) * 2021-08-31 2024-04-23 株式会社デンソー 車両用レーダ装置
WO2023228668A1 (ja) * 2022-05-25 2023-11-30 株式会社デンソー 周辺監視装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147115A (ja) * 1998-11-04 2000-05-26 Toyota Motor Corp 車載用レーダ装置
JP2007148618A (ja) * 2005-11-25 2007-06-14 Fujitsu Ten Ltd 車両周辺監視システム及び方法
JP2014119285A (ja) * 2012-12-13 2014-06-30 Toyota Motor Corp 物体検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736677B2 (ja) 2005-09-29 2011-07-27 トヨタ自動車株式会社 障害物検出装置
JP2009037562A (ja) * 2007-08-03 2009-02-19 Toyota Motor Corp 走行状態判定装置
JP4837755B2 (ja) * 2009-02-24 2011-12-14 本田技研工業株式会社 物体検知装置
JP2013213761A (ja) * 2012-04-03 2013-10-17 Honda Elesys Co Ltd レーダ装置、車載レーダシステム、及びプログラム
JP2014071012A (ja) 2012-09-28 2014-04-21 Daimler Ag 制御対象検出装置及び緊急自動制動装置
JP2014110285A (ja) * 2012-11-30 2014-06-12 Oki Data Corp 表示装置
JP2014235662A (ja) * 2013-06-04 2014-12-15 日本電産エレシス株式会社 車両用障害物検出装置、及び車両用障害物検出プログラム
US9934690B2 (en) 2014-06-19 2018-04-03 Hitachi Automotive Systems, Ltd. Object recognition apparatus and vehicle travel controller using same
US10565468B2 (en) * 2016-01-19 2020-02-18 Aptiv Technologies Limited Object tracking system with radar/vision fusion for automated vehicles
JP6277531B2 (ja) * 2016-02-15 2018-02-14 パナソニックIpマネジメント株式会社 無線装置
JP6643215B2 (ja) 2016-09-29 2020-02-12 株式会社デンソー 他車線監視装置
JP6597590B2 (ja) * 2016-12-21 2019-10-30 トヨタ自動車株式会社 運転支援装置
WO2018230344A1 (ja) 2017-06-15 2018-12-20 ヴィオニア スウェーデン エービー 運転支援装置、運転支援方法及びコンピュータプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147115A (ja) * 1998-11-04 2000-05-26 Toyota Motor Corp 車載用レーダ装置
JP2007148618A (ja) * 2005-11-25 2007-06-14 Fujitsu Ten Ltd 車両周辺監視システム及び方法
JP2014119285A (ja) * 2012-12-13 2014-06-30 Toyota Motor Corp 物体検出装置

Also Published As

Publication number Publication date
CN113228133A (zh) 2021-08-06
JP7169873B2 (ja) 2022-11-11
JP2020107115A (ja) 2020-07-09
US20210327274A1 (en) 2021-10-21
DE112019006516T5 (de) 2021-11-04
US11798417B2 (en) 2023-10-24
CN113228133B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US9409574B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
CN110800031B (zh) 检测和响应警报
US9463796B2 (en) Driving assistance apparatus
US9688272B2 (en) Surroundings monitoring apparatus and drive assistance apparatus
US7797108B2 (en) Collision avoidance system and method of aiding rearward vehicular motion
US20150353078A1 (en) Driving assistance apparatus
US10302760B2 (en) Vehicle water detection system
US7978096B2 (en) Parking angle determination and cross traffic alert
US20180281793A1 (en) Vehicle travel support device
WO2017042089A1 (en) Automated detection of hazardous drifting vehicles by vehicle sensors
JP6500724B2 (ja) 危険情報報知システム、サーバ及びコンピュータプログラム
CN109367529B (zh) 毫米波雷达组合安装结构及虚拟隧道构建与障碍判断方法
US20170166218A1 (en) Apparatus and method for use in a vehicle
US20200341111A1 (en) Method and apparatus for radar detection confirmation
JP2015121959A (ja) 障害物検知装置
JP2014241115A (ja) 周辺物体検知装置
US11798417B2 (en) Driving assistance device
US9170329B2 (en) Object detection apparatus for vehicle
JP4756895B2 (ja) 走行支援装置
CN210617998U (zh) 一种用于货运和客运车辆的盲区检测设备
JP5178652B2 (ja) 車両の走行安全装置
US20240339034A1 (en) Driving assistance device
JP2015054603A (ja) 対象物検知装置
US20240326788A1 (en) Driver assistance apparatus
US20240067086A1 (en) Driving support device, driving support method, and driving support program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903730

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19903730

Country of ref document: EP

Kind code of ref document: A1