WO2020136918A1 - Construction site progress appraisal system, method, and program - Google Patents
Construction site progress appraisal system, method, and program Download PDFInfo
- Publication number
- WO2020136918A1 WO2020136918A1 PCT/JP2018/048621 JP2018048621W WO2020136918A1 WO 2020136918 A1 WO2020136918 A1 WO 2020136918A1 JP 2018048621 W JP2018048621 W JP 2018048621W WO 2020136918 A1 WO2020136918 A1 WO 2020136918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- construction site
- day
- dimensional data
- difference
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000013461 design Methods 0.000 claims abstract description 37
- 238000011156 evaluation Methods 0.000 claims description 44
- 238000012545 processing Methods 0.000 claims description 30
- 239000000284 extract Substances 0.000 claims description 9
- 238000012552 review Methods 0.000 claims description 7
- 238000012854 evaluation process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 abstract description 6
- 238000000605 extraction Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/08—Construction
Definitions
- the present invention relates to a factory site performance evaluation system, method, and program for confirming and evaluating the progress of construction, and more specifically, to a system for performing performance evaluation on each work day.
- Patent Document 1 a work group of a contractor carries a terminal device and sends/receives output information to and from a management device of a specialized contractor at any time so that the progress status can be confirmed at any time.
- a technology that saves labor by automating monthly volume calculation.
- a portable terminal, a server, and a data group such as image data representing a blueprint are read from the server to create a delivery file, which is sent to the portable terminal of the work group and registered in the portable terminal.
- the portable terminal has a slave database that stores data groups, and has a line segment different from the design drawing or an area surrounded by line segments on the screen. While displaying the construction location, it is configured to transmit the registered output information by touch operation to the output management device.
- the present invention is a construction site performance evaluation system for evaluating the performance of a construction site, comprising image acquisition means for acquiring an image of the construction site on the day of work taken by a drone, and processing for processing the image into three-dimensional data.
- Construction site output including means, first extracting means for extracting a difference between the three-dimensional data and the design drawing of the construction site, and evaluation means for evaluating the output on the day of work according to the difference.
- the present invention is a construction site performance evaluation method for evaluating the performance of a construction site, comprising the steps of acquiring an image of the construction site on the day of work taken by a drone, and processing the image into three-dimensional data. And a step of extracting a difference between the three-dimensional data and the design drawing of the construction site, and a step of evaluating a production day on the work day in accordance with the difference, thereby providing a construction site performance evaluation method. ..
- the present invention is a program for causing a computer to execute a construction site performance evaluation process for evaluating the construction site performance, and a step of acquiring an image of the construction site on the day of the work taken by a drone, A step of processing the image into three-dimensional data, a step of extracting a difference between the three-dimensional data and the design drawing of the construction site, and a step of evaluating the work volume on the work day according to the difference.
- a program to execute for causing a computer to execute a construction site performance evaluation process for evaluating the construction site performance, and a step of acquiring an image of the construction site on the day of the work taken by a drone, A step of processing the image into three-dimensional data, a step of extracting a difference between the three-dimensional data and the design drawing of the construction site, and a step of evaluating the work volume on the work day according to the difference.
- an image of a construction site on the day of aerial shooting with a drone is acquired and processed into three-dimensional data, and the difference between the three-dimensional data and the design drawing of the construction site is extracted to determine the performance on the day of the work.
- the work amount on the work day can be evaluated from the difference between the work actually performed and the design drawing not on the work month basis but on the work day basis.
- the present invention acquires an image of a construction site on the day of work taken by a drone, processes it into three-dimensional data, and extracts the difference between the three-dimensional data and the design drawing of the construction site to determine the output on the day of work.
- the evaluation not the monthly work, but the work day is evaluated on the basis of the difference between the work actually performed and the design drawing.
- the best mode for carrying out the present invention will be described in detail based on Examples.
- FIG. 1 is a conceptual diagram showing an outline of a factory site performance evaluation system according to the present embodiment.
- the server 10 acquires an image of the construction site 50 on the day of work, which is aerial photographed by the photographing means 42 (camera or the like) mounted on the drone 40 (step S1), and the obtained image is 3
- the dimension data 16B is processed (step S2).
- the three-dimensional data processing of the image is performed by a technique such as SfM (Structure from Motion).
- the server 10 extracts the difference between the three-dimensional data 16B and the design drawing 16C of the construction site 50 (step S3), and evaluates the output on the work day according to the extracted difference. If necessary, a work instruction for tomorrow or later is given to the site worker 60 according to the evaluation (step S4).
- the work instruction may be given through the terminal 62 owned by the site worker 60.
- the server 10 obtains a work record for each worker, evaluates the amount of work on the work day for each site worker from the obtained work record, and tomorrow, for each site worker, according to the evaluation. Subsequent work orders may be given.
- the work record can be acquired from the wearable terminal or camera of the site worker 60, the process chart, or the like.
- the server 10 acquires the image of the construction site every predetermined time (for example, every 30 minutes or every one hour), processes the image at each predetermined time into three-dimensional data, and processes each of the three images.
- the difference between the dimensional data and the design screen of the construction site may be extracted, and the production amount on the work day may be evaluated at predetermined time intervals according to the difference.
- the server 10 extracts the difference between the three-dimensional data on the work day and the three-dimensional data on the day before the work, and identifies and identifies the dangerous point on the construction site 50 according to the extracted difference.
- Danger information corresponding to the dangerous place may be provided to the site worker 60.
- the dangerous place is, for example, a slope in the construction site 50, the presence or absence of a dangerous substance, or a place where there is a high possibility of landslide.
- the server 10 may notify the terminal 62 of the site worker 60 of advice for interruption or review of the construction according to the danger information.
- the terminal 62 is not limited to the smartphone, and may be a wearable terminal, a notebook PC, or the like as long as it can perform data communication with the server 10 through the network.
- the server 10 includes a processor 12, a memory 14, a storage 16, and a communication unit 18, which are connected by a bus (not shown).
- the processor 12 includes, for example, a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit), and performs various processes by reading and executing various programs stored in the memory 14.
- the memory 14 stores a program to be executed by the processor 12, and is configured by, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). For example, various means shown in FIG. 3 are stored.
- the storage 16 stores a construction site image 16A, three-dimensional data 16B, a design drawing 16C, a work record 16D, a control program (not shown), and the like.
- the construction site image 16A is an image of the construction site 50 taken aerial by the imaging device 42 (camera or the like) mounted on the drone 40.
- the three-dimensional data 16B is obtained by processing the construction site image 16A into three-dimensional data.
- the three-dimensional processing is performed by a technique such as SfM (Structure from Motion).
- SfM Structure from Motion
- the design drawing 16C is a design drawing of the construction site 50 and is three-dimensional data.
- the work record 16D is a work record of each work site worker 60 on the construction site 50. Such a work record 16D is acquired from a wearable terminal, a camera, a process chart, or the like used by the site worker 60.
- the communication unit 18 is used when acquiring the construction site image 16A from the imaging means 42 of the drone 40 or giving a work instruction to the terminal 62 of the site worker 60 via the network.
- the communication unit 18 is also used when acquiring a work record from the terminal 62 or the like of the site worker 60.
- the server 10 includes an image acquisition unit 20, a work record acquisition unit 22, a processing unit 24, a first extraction unit 26, a second extraction unit 28, an evaluation unit 30, a work instruction unit 32, and a specification unit 34. And providing means 36 and advice means 38.
- the image acquisition unit 20 acquires, via the communication unit 18, an image of the construction site 50 on the day of the work, which is aerial photographed by the imaging device 42 of the drone 40.
- the acquired construction site image 16A is stored in the storage 16 of the server 10. Note that the image of the construction site 50 is not limited to be acquired once a day, but may be acquired every predetermined time (for example, every 30 minutes or every hour).
- the work record acquisition unit 22 acquires a work record for each worker, and specifically, acquires the work record from the wearable terminal of the site worker 60, the camera, the process chart, and the like.
- the acquired work record 16D is stored in the storage 16 of the server 10.
- the processing means 24 processes the construction site image 16A of the work day acquired by the image acquisition means 20 into three-dimensional data.
- the three-dimensional processing is performed by a technique such as SfM (Structure from Motion).
- SfM Structure from Motion
- the three-dimensional data 16B is stored in the storage 16 of the server 10.
- the first extraction means 26 extracts the difference between the three-dimensional data 16B and the design drawing 16C of the construction site 50.
- the second extraction means 28 extracts the difference between the three-dimensional data on the day of work and the three-dimensional data before the day before work.
- the evaluation means 30 evaluates the production amount on the work day according to the difference between the three-dimensional data based on the work site image on the work day extracted by the first extraction means 26 and the design drawing 16C of the construction site. ..
- the work instruction means 32 gives a work instruction for tomorrow or later to the site worker 60 in accordance with the evaluation by the evaluation means 30. For example, a work instruction is sent to the terminal 62 of the site worker 60 via the communication unit 18. Alternatively, when the server 62 is accessed from the terminal 62, a work instruction for tomorrow or later may be displayed on the terminal 62.
- the identifying means 34 identifies a dangerous point in the construction site 50 according to the difference between the three-dimensional data of the work day extracted by the second extracting means 28 and the three-dimensional data before the day before the work. For example, the identifying unit 34 identifies a slope, a presence or absence of a dangerous material, or a dangerous place with a high possibility of landslide in the construction site 50 according to the extracted difference.
- the providing unit 36 provides the on-site worker 60 with the dangerous information according to the dangerous place identified by the identifying unit 34.
- the hazard information may be provided to the terminal 62 of the site worker 60, or the information may be provided in another form.
- the advice means 38 gives advice on interruption or review of construction in accordance with the danger information.
- the advice may be given to the supervisor of the construction site 50, or may be given to each worker as needed.
- the advice itself may be provided to the terminals of the supervisor or the worker, or the advice may be viewed when the supervisor or the worker accesses the server 10.
- FIG. 4 is a flowchart showing an example of the basic processing of construction site performance evaluation of this embodiment.
- the server 10 uses the image acquisition unit 20 to acquire an image of the construction site 50 on the day of the work, which was taken by the imaging device 42 of the drone 40 (step S10).
- the acquired image is stored in the storage 16 as a construction site image 16A.
- the processing means 24 processes the acquired construction site image 16A into three-dimensional data (step S12).
- the processing on the three-dimensional data is performed by, for example, SfM (Structure from Motion).
- the processed three-dimensional data is stored in the storage 16 as the three-dimensional data 16B.
- the first extracting means 26 extracts the difference between the three-dimensional data 16B on the work day and the design drawing 16C on the construction site (step S14).
- the evaluation means 30 evaluates the work volume on the work day from the difference between the three-dimensional data 16B on the work day extracted by the first extraction means 26 and the design drawing 16C of the construction site 50 (step S16).
- the work instruction means 32 gives a work instruction for tomorrow to the site worker 60 according to the evaluation.
- the work instruction may be sent to the terminal 62 of the site worker 60, or may be in another form.
- the construction site image 16A taken aerial on the day of work is processed into three-dimensional data 16B, and it is decided to evaluate the output on the day of work from the difference from the design drawing 16C. There will be no significant deviation from the drawing. Further, by issuing work instructions for tomorrow or later to the site worker 60 according to the evaluation, feedback of the output evaluation is effectively performed.
- step S10 the image acquisition unit 20 acquires an image of the construction site 50 every predetermined time (for example, every 30 minutes or every hour), and in step S12, the processing unit 24 causes the predetermined time.
- Each image may be processed into three-dimensional data.
- step S14 the first extracting means 26 extracts the difference between each of the three-dimensional data and the design drawing 16C of the construction site, and in step S16, the evaluating means 30 responds to each difference. Then, the output on the work day may be evaluated every predetermined time. By performing the processing at every predetermined time in this way, it is possible to evaluate the performance on the day of the work in several times in a form close to real time.
- FIG. 5 is a flowchart showing an example of the work instruction process of this embodiment.
- the server 10 acquires the work record of each worker by the work record acquisition means 22 (step S20).
- the work record for each worker can be acquired from the wearable terminal, camera, process chart, or the like of the site worker 60.
- the acquired work record is stored in the storage 16 as a work record 16D for each worker.
- the evaluation means 30 evaluates the amount of work on the day of work for each site worker from the work record 16D (step S22). Then, the work instructing means 32 gives work instructions for tomorrow after tomorrow for each field worker in accordance with the evaluation of the work volume of each field worker on the work day (step S24). The work instruction is given through the terminal 62 of the site worker 60, for example.
- FIG. 6 is a flowchart showing an example of the dangerous place identifying process of the present embodiment.
- the second extracting means 28 extracts the difference between the three-dimensional data on the day of work and the three-dimensional data before the day before work (step S30).
- the specifying unit 34 specifies a dangerous point in the construction site 50 according to the difference extracted by the second extracting unit 28 (step S32). Then, the providing unit 36 provides the worker with the danger information corresponding to the dangerous place (step S34). In addition, the advice unit 38 gives advice on interruption or review of construction according to the danger information (step S36).
- the identifying unit 34 identifies, as the dangerous place, an inclination in the construction site 50, the presence or absence of a dangerous material, or a portion having a high possibility of a landslide according to the difference. You may The provision of the danger information to the on-site worker 60 and the advice of interruption or review of the construction may be performed through the terminal 62 of the on-site worker 60, or may be performed by other means.
- the danger point is identified from the difference between the 3D data on the day of work and the 3D data before the day before work, and the danger information according to the danger point and advice for interruption or review of construction are advised. Therefore, it is possible to proceed with the construction safely, or to suspend or review the construction if necessary.
- the server 10 acquires the image of the construction site on the day of the work, which is taken by the image capturing means 42 of the drone 40, and processes it into the three-dimensional data 16B.
- the difference between the data 16B and the design drawing 16C of the construction site 50 is extracted to evaluate the output on the day of work. For this reason, it is possible to evaluate the performance on the day of work from the difference between the work actually performed and the design drawing laboratory on a work day basis rather than on a work month basis.
- by evaluating the output on a work day basis there will be no significant deviation from the design drawings when the construction is completed.
- the present invention may be provided as a program executed by the server 10. This program may be provided in a state of being recorded in a computer-readable recording medium, or may be downloaded via a network. The present invention may also be provided as a method invention.
- an image of a construction site on the day of aerial shooting with a drone is acquired and processed into three-dimensional data, and the difference between the three-dimensional data and the design drawing of the construction site is extracted to determine the performance on the day of the work.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
[Problem] The present invention appraises progress per work day at a construction site. [Solution] A construction site progress appraisal system 100 acquires the image of a construction site 50 of the day of work aerially imaged by an imaging means 42 mounted in a drone 40 (step S1). A server 10 processes the acquired construction site image into three-dimensional data 16B. Meanwhile, a difference between the three-dimensional data 16B and a design drawing 16C of the construction site 50 is extracted (step S3), and progress of the day of work is appraised in accordance with the extracted difference. Work instructions for tomorrow and onward are given to site workers 60 in accordance with the appraisal (step S4).
Description
本発明は、工事の進捗状況を確認して評価するための工場現場出来高評価システム、方法及びプログラムに関し、更に具体的には、作業当日毎の出来高評価を行うためのシステム等に関する。
The present invention relates to a factory site performance evaluation system, method, and program for confirming and evaluating the progress of construction, and more specifically, to a system for performing performance evaluation on each work day.
近年、工事現場をIoT(Internet of Things)で効率化する技術が注目されている。例えば、下記特許文献1に示すように、工事業者の作業班が端末機を携行して、専門工事業者の管理装置に出来高情報を随時送受して、進捗状況を随時確認できるようにするとともに、月毎の出来高集計を自動化し、稼働の省力化を図る技術がある。
In recent years, technology that makes the construction site more efficient with IoT (Internet of Things) has been receiving attention. For example, as shown in Patent Document 1 below, a work group of a contractor carries a terminal device and sends/receives output information to and from a management device of a specialized contractor at any time so that the progress status can be confirmed at any time. There is a technology that saves labor by automating monthly volume calculation.
具体的には、携行端末機と、サーバと、設計図を表す画像データなどのデータ群をサーバから読み出して受渡ファイルを作成し、作業班の携行端末機に送信し、携行端末機に登録された出来高情報を集約して出来高管理を行う出来高管理装置とを備え、携行端末機は、データ群を格納するスレーブデータベースを有し、画面に、設計図と異なる線分又は線分で囲む領域により施工個所を表示する一方、タッチ操作して登録された出来高情報を出来高管理装置に送信する構成となっている。
Specifically, a portable terminal, a server, and a data group such as image data representing a blueprint are read from the server to create a delivery file, which is sent to the portable terminal of the work group and registered in the portable terminal. The portable terminal has a slave database that stores data groups, and has a line segment different from the design drawing or an area surrounded by line segments on the screen. While displaying the construction location, it is configured to transmit the registered output information by touch operation to the output management device.
しかしながら、工事現場では、実際に行った作業と設計図面とのズレが積み重なり、工事が完了する頃には、設計図面と大幅にずれてしまうということが起こり得る。そこで、作業月単位ではなく、作業日単位で、実際に行った作業と設計図面との差分から、作業当日の出来高を評価することが求められている。これに対し、特許文献1の技術では、作業月単位での出来高評価はできるものの、作業日単位で、作業日当日に実際に行った作業と設計図面との差分から、作業当日の出来高を評価することができない。
However, at the construction site, there may be a gap between the actual work and the design drawing, and by the time the work is completed, there may be a large deviation from the design drawing. Therefore, it is required to evaluate the amount of work on the work day on the basis of the difference between the work actually performed and the design drawing not on the work month basis but on the work day basis. On the other hand, with the technique of Patent Document 1, although the performance can be evaluated on a work month basis, the work day performance is evaluated on a work day basis from the difference between the work actually performed on the work day and the design drawing. Can not do it.
本発明は、以上の課題に鑑み、作業月単位ではなく、作業日単位で、作業日当日の出来高を評価することができる工事現場出来高評価システム、方法及びプログラムを提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a construction site performance evaluation system, method, and program capable of evaluating the performance on the day of work, not on the basis of work month, on a work day basis.
本発明は、工事現場の出来高を評価する工事現場出来高評価システムであって、ドローンで空撮した作業当日の工事現場の画像を取得する画像取得手段と、前記画像を3次元データに処理する処理手段と、前記3次元データと、前記工事現場の設計図面と、の差分を抽出する第1抽出手段と、前記差分に応じて、作業当日の出来高を評価する評価手段と、を備える工事現場出来高評価システムを提供する。
The present invention is a construction site performance evaluation system for evaluating the performance of a construction site, comprising image acquisition means for acquiring an image of the construction site on the day of work taken by a drone, and processing for processing the image into three-dimensional data. Construction site output including means, first extracting means for extracting a difference between the three-dimensional data and the design drawing of the construction site, and evaluation means for evaluating the output on the day of work according to the difference. Provide an evaluation system.
また、本発明は、工事現場の出来高を評価する工事現場出来高評価方法であって、ドローンで空撮した作業当日の工事現場の画像を取得するステップと、前記画像を3次元データに処理するステップと、前記3次元データと、前記工事現場の設計図面と、の差分を抽出するステップと、前記差分に応じて、作業当日の出来高を評価するステップと、を備える工事現場出来高評価方法を提供する。
Further, the present invention is a construction site performance evaluation method for evaluating the performance of a construction site, comprising the steps of acquiring an image of the construction site on the day of work taken by a drone, and processing the image into three-dimensional data. And a step of extracting a difference between the three-dimensional data and the design drawing of the construction site, and a step of evaluating a production day on the work day in accordance with the difference, thereby providing a construction site performance evaluation method. ..
更に、本発明は、コンピュータに、工事現場の出来高を評価する工事現場出来高評価処理を実行させるためのプログラムであって、ドローンで空撮した作業当日の工事現場の画像を取得するステップと、前記画像を3次元データに処理するステップと、前記3次元データと、前記工事現場の設計図面と、の差分を抽出するステップと、前記差分に応じて、作業当日の出来高を評価するステップと、を実行させるためのプログラムを提供する。
Furthermore, the present invention is a program for causing a computer to execute a construction site performance evaluation process for evaluating the construction site performance, and a step of acquiring an image of the construction site on the day of the work taken by a drone, A step of processing the image into three-dimensional data, a step of extracting a difference between the three-dimensional data and the design drawing of the construction site, and a step of evaluating the work volume on the work day according to the difference. Provide a program to execute.
本発明によれば、ドローンで空撮した作業当日の工事現場の画像を取得して3次元データに処理し、3次元データと工事現場の設計図面との差分を抽出して、作業当日の出来高を評価することで、作業月単位ではなく、作業日単位で、実際に行った作業と設計図面との差分から、作業当日の出来高を評価できる。
According to the present invention, an image of a construction site on the day of aerial shooting with a drone is acquired and processed into three-dimensional data, and the difference between the three-dimensional data and the design drawing of the construction site is extracted to determine the performance on the day of the work. By evaluating, the work amount on the work day can be evaluated from the difference between the work actually performed and the design drawing not on the work month basis but on the work day basis.
本発明は、ドローンで空撮した作業当日の工事現場の画像を取得して3次元データに処理し、3次元データと工事原現場の設計図面との差分を抽出して、作業当日の出来高を評価することで、作業月単位ではなく、作業日単位で、実際に行った作業と設計図面との差分から作業当日の出来高を評価するものである。これにより、工事現場で、実際に行った作業と設計図面とのズレが積み重なり、工事が完了する頃に、設計図面と大幅にずれてしまうという事態を防止できる。以下、本発明を実施するための最良の形態を、実施例に基づいて、詳細に説明する。
The present invention acquires an image of a construction site on the day of work taken by a drone, processes it into three-dimensional data, and extracts the difference between the three-dimensional data and the design drawing of the construction site to determine the output on the day of work. By performing the evaluation, not the monthly work, but the work day is evaluated on the basis of the difference between the work actually performed and the design drawing. As a result, it is possible to prevent the situation in which the work actually performed and the design drawing are piled up at the construction site, and the work is largely deviated from the design drawing when the work is completed. Hereinafter, the best mode for carrying out the present invention will be described in detail based on Examples.
<全体構成>・・・図1は、本実施形態に係る工場現場出来高評価システムの概要を示す概念図である。工場現場出来高評価システム100は、ドローン40に搭載した撮影手段42(カメラなど)によって空撮された作業当日の工事現場50の画像を、サーバ10が取得し(ステップS1)、取得した画像を3次元データ16Bに処理する(ステップS2)。画像の3次元データ処理は、例えば、SfM(Structure from Motion)などの技術により行う。
<Overall Configuration>... FIG. 1 is a conceptual diagram showing an outline of a factory site performance evaluation system according to the present embodiment. In the factory site performance evaluation system 100, the server 10 acquires an image of the construction site 50 on the day of work, which is aerial photographed by the photographing means 42 (camera or the like) mounted on the drone 40 (step S1), and the obtained image is 3 The dimension data 16B is processed (step S2). The three-dimensional data processing of the image is performed by a technique such as SfM (Structure from Motion).
サーバ10は、前記3次元データ16Bと、工事現場50の設計図面16Cとの差分を抽出し(ステップS3)、抽出した差分に応じて、作業当日の出来高を評価する。必要に応じ、評価に応じて、現場作業員60に、明日以降の作業指示を行う(ステップS4)。なお、作業指示は、現場作業員60が保有する端末62を通じて行うようにしてもよい。
The server 10 extracts the difference between the three-dimensional data 16B and the design drawing 16C of the construction site 50 (step S3), and evaluates the output on the work day according to the extracted difference. If necessary, a work instruction for tomorrow or later is given to the site worker 60 according to the evaluation (step S4). The work instruction may be given through the terminal 62 owned by the site worker 60.
このほか、サーバ10は、作業員毎の作業記録を取得して、取得した作業記録から、現場作業員毎の作業当日の出来高を評価し、その評価に応じて、現場作業員毎に、明日以降の担当分の作業指示を行ってもよい。作業記録は、現場作業員60のウェアラブル端末やカメラ、あるいは工程表などから取得可能である。
In addition, the server 10 obtains a work record for each worker, evaluates the amount of work on the work day for each site worker from the obtained work record, and tomorrow, for each site worker, according to the evaluation. Subsequent work orders may be given. The work record can be acquired from the wearable terminal or camera of the site worker 60, the process chart, or the like.
また、サーバ10は、前記工事現場の画像を所定時間ごと(例えば、30分毎や1時間毎など)に取得して、所定時間毎の画像を各々3次元データに処理し、当該各々の3次元データと、工事現場の設計画面との差分を各々抽出し、各々の差分に応じて、作業当日の出来高を所定時間毎に評価してもよい。
Further, the server 10 acquires the image of the construction site every predetermined time (for example, every 30 minutes or every one hour), processes the image at each predetermined time into three-dimensional data, and processes each of the three images. The difference between the dimensional data and the design screen of the construction site may be extracted, and the production amount on the work day may be evaluated at predetermined time intervals according to the difference.
更に、サーバ10は、作業当日の3次元データと、当該作業前日以前の3次元データとの差分を抽出し、抽出された差分に応じて、工事現場50における危険箇所を特定して、特定した危険箇所に応じた危険情報を、現場作業員60に提供してもよい。危険箇所とは、例えば、工事現場50における傾斜、危険物の有無または土砂崩れの可能性の高い箇所などである。
Further, the server 10 extracts the difference between the three-dimensional data on the work day and the three-dimensional data on the day before the work, and identifies and identifies the dangerous point on the construction site 50 according to the extracted difference. Danger information corresponding to the dangerous place may be provided to the site worker 60. The dangerous place is, for example, a slope in the construction site 50, the presence or absence of a dangerous substance, or a place where there is a high possibility of landslide.
また、サーバ10は、前記危険情報に応じて、工事の中断または見直しのアドバイスを、現場作業員60の端末62に通知してもよい。なお、端末62は、スマートフォンに限られるものではなく、サーバ10とネットワークを通じたデータ通信が可能なものであれば、ウェアラブル端末やノートPCなどであってもよい。
Also, the server 10 may notify the terminal 62 of the site worker 60 of advice for interruption or review of the construction according to the danger information. Note that the terminal 62 is not limited to the smartphone, and may be a wearable terminal, a notebook PC, or the like as long as it can perform data communication with the server 10 through the network.
<サーバのハードウェア構成>・・・次に、図2を参照して、サーバ10のハードウェア構成を説明する。サーバ10は、プロセッサ12、メモリ14、ストレージ16、通信部18を備え、これらは図示しないバスにより接続されている。プロセッサ12は、例えば、GPU(Graphics Processing Unit)又はCPU(Central Processing Unit)により構成され、メモリ14に記憶された各種プログラムを読み出して実行することで、各種処理を行う。前記メモリ14は、プロセッサ12により実行させるプログラムを記憶するものであり、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)により構成される。例えば、図3に示す各種手段が記憶されている。ストレージ16は、工事現場画像16A、3次元データ16B、設計図面16C、作業記録16Dや、図示しない制御プログラムなどを記憶するものである。
<Hardware Configuration of Server>... Next, the hardware configuration of the server 10 will be described with reference to FIG. The server 10 includes a processor 12, a memory 14, a storage 16, and a communication unit 18, which are connected by a bus (not shown). The processor 12 includes, for example, a GPU (Graphics Processing Unit) or a CPU (Central Processing Unit), and performs various processes by reading and executing various programs stored in the memory 14. The memory 14 stores a program to be executed by the processor 12, and is configured by, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). For example, various means shown in FIG. 3 are stored. The storage 16 stores a construction site image 16A, three-dimensional data 16B, a design drawing 16C, a work record 16D, a control program (not shown), and the like.
工事現場画像16Aは、ドローン40に搭載された撮影装置42(カメラなど)によって空撮された工事現場50の画像である。3次元データ16Bは、前記工事現場画像16Aを3次元データに処理したものである。3次元処理は、例えば、SfM(Structure from Motion)などの技術により行う。前記工事現場画像16A及び3次元データ16Bは、工事期間中のものが全てストレージ16に記憶される。
The construction site image 16A is an image of the construction site 50 taken aerial by the imaging device 42 (camera or the like) mounted on the drone 40. The three-dimensional data 16B is obtained by processing the construction site image 16A into three-dimensional data. The three-dimensional processing is performed by a technique such as SfM (Structure from Motion). The construction site image 16A and the three-dimensional data 16B are all stored in the storage 16 during the construction period.
設計図面16Cは、工事現場50の設計図で、3次元データである。作業記録16Dは、工事現場50の現場作業員60毎の作業記録を取得したものである。このような作業記録16Dは、現場作業員60の使用するウェアラブル端末、カメラや工程表などから取得される。
The design drawing 16C is a design drawing of the construction site 50 and is three-dimensional data. The work record 16D is a work record of each work site worker 60 on the construction site 50. Such a work record 16D is acquired from a wearable terminal, a camera, a process chart, or the like used by the site worker 60.
通信部18は、ネットワークを介して、ドローン40の撮影手段42から工事現場画像16Aを取得したり、現場作業員60の端末62へ作業指示を行ったりする際に使用される。また、現場作業員60の端末62等から作業記録を取得する際にも、通信部18が使用される。
The communication unit 18 is used when acquiring the construction site image 16A from the imaging means 42 of the drone 40 or giving a work instruction to the terminal 62 of the site worker 60 via the network. The communication unit 18 is also used when acquiring a work record from the terminal 62 or the like of the site worker 60.
<サーバの機能構成>・・・次に、図3を参照して、サーバ10の機能構成を説明する。サーバ10は、画像取得手段20と、作業記録取得手段22と、処理手段24と、第1抽出手段26と、第2抽出手段28と、評価手段30と、作業指示手段32と、特定手段34と、提供手段36と、アドバイス手段38を備えている。
<Functional configuration of server>... Next, the functional configuration of the server 10 will be described with reference to FIG. The server 10 includes an image acquisition unit 20, a work record acquisition unit 22, a processing unit 24, a first extraction unit 26, a second extraction unit 28, an evaluation unit 30, a work instruction unit 32, and a specification unit 34. And providing means 36 and advice means 38.
画像取得手段20は、ドローン40の撮影装置42で空撮した作業当日の工事現場50の画像を、通信部18を介して取得する。取得した工事現場画像16Aは、サーバ10のストレージ16に記憶される。なお、工事現場50の画像の取得は、1日に1回とは限らず、所定の時間毎(例えば、30分毎や1時間毎)などに行ってもよい。
The image acquisition unit 20 acquires, via the communication unit 18, an image of the construction site 50 on the day of the work, which is aerial photographed by the imaging device 42 of the drone 40. The acquired construction site image 16A is stored in the storage 16 of the server 10. Note that the image of the construction site 50 is not limited to be acquired once a day, but may be acquired every predetermined time (for example, every 30 minutes or every hour).
作業記録取得手段22は、作業員毎の作業記録を取得するもので、具体的には、現場作業員60のウェアラブル端末や、カメラ、工程表などから作業記録を取得する。取得した作業記録16Dは、サーバ10のストレージ16に記憶される。
The work record acquisition unit 22 acquires a work record for each worker, and specifically, acquires the work record from the wearable terminal of the site worker 60, the camera, the process chart, and the like. The acquired work record 16D is stored in the storage 16 of the server 10.
処理手段24は、前記画像取得手段20によって取得した作業当日の工事現場画像16Aを3次元データに処理するものである。3次元処理は、例えば、SfM(Structure from Motion)などの技術により行われる。3次元データ16Bは、サーバ10のストレージ16に記憶される。
The processing means 24 processes the construction site image 16A of the work day acquired by the image acquisition means 20 into three-dimensional data. The three-dimensional processing is performed by a technique such as SfM (Structure from Motion). The three-dimensional data 16B is stored in the storage 16 of the server 10.
第1抽出手段26は、前記3次元データ16Bと、工事現場50の設計図面16Cとの差分を抽出するものである。第2抽出手段28は、作業当日の3次元データと、作業前日以前の3次元データとの差分を抽出するものである。
The first extraction means 26 extracts the difference between the three-dimensional data 16B and the design drawing 16C of the construction site 50. The second extraction means 28 extracts the difference between the three-dimensional data on the day of work and the three-dimensional data before the day before work.
評価手段30は、前記第1抽出手段26によって抽出した作業当日の工事現場画像に基づく3次元データと、工事現場の設計図面16Cとの差分に応じて、作業当日の出来高を評価するものである。
The evaluation means 30 evaluates the production amount on the work day according to the difference between the three-dimensional data based on the work site image on the work day extracted by the first extraction means 26 and the design drawing 16C of the construction site. ..
作業指示手段32は、前記評価手段30による評価に応じて、現場作業員60に、明日以降の作業指示を行うものである。例えば、現場作業員60の端末62に、通信部18を介して作業指示を送る。あるいは、端末62からサーバ10にアクセスがあったときに、明日以降の作業指示を端末62に表示するようにしてもよい。
The work instruction means 32 gives a work instruction for tomorrow or later to the site worker 60 in accordance with the evaluation by the evaluation means 30. For example, a work instruction is sent to the terminal 62 of the site worker 60 via the communication unit 18. Alternatively, when the server 62 is accessed from the terminal 62, a work instruction for tomorrow or later may be displayed on the terminal 62.
特定手段34は、前記第2抽出手段28によって抽出された作業当日の3次元データと、作業前日以前の3次元データとの差分に応じて、工事現場50における危険箇所を特定するものである。例えば、特定手段34は、前記抽出された差分に応じて、工事現場50における傾斜、危険物の有無または土砂崩れの可能性の高い危険箇所を特定する。
The identifying means 34 identifies a dangerous point in the construction site 50 according to the difference between the three-dimensional data of the work day extracted by the second extracting means 28 and the three-dimensional data before the day before the work. For example, the identifying unit 34 identifies a slope, a presence or absence of a dangerous material, or a dangerous place with a high possibility of landslide in the construction site 50 according to the extracted difference.
提供手段36は、前記特定手段34により特定された危険箇所に応じた危険情報を、現場作業員60に提供するものである。例えば、現場作業員60の端末62に危険情報を提供するようにしてもよいし、他の形態により情報を提供してもよい。
The providing unit 36 provides the on-site worker 60 with the dangerous information according to the dangerous place identified by the identifying unit 34. For example, the hazard information may be provided to the terminal 62 of the site worker 60, or the information may be provided in another form.
アドバイス手段38は、前記危険情報に応じて、工事の中断または見直しのアドバイスを行うものである。アドバイスは、工事現場50の監督者に行うようにしてもよいし、必要に応じて作業員毎に行うようにしてもよい。アドバイス自体も、監督者や作業員の端末に提供するようにしてもよいし、監督者や作業者がサーバ10にアクセスするとアドバイスが見られるようにしてもよい。
The advice means 38 gives advice on interruption or review of construction in accordance with the danger information. The advice may be given to the supervisor of the construction site 50, or may be given to each worker as needed. The advice itself may be provided to the terminals of the supervisor or the worker, or the advice may be viewed when the supervisor or the worker accesses the server 10.
<工事現場出来高評価基本処理>・・・次に、工事現場出来高評価の基本処理について、図4を参照して説明する。図4は、本実施形態の工事現場出来高評価の基本処理の一例を示すフローチャートである。まず、サーバ10は、画像取得手段20により、ドローン40の撮影装置42で空撮した作業当日の工事現場50の画像を取得する(ステップS10)。取得した画像は、工事現場画像16Aとして、ストレージ16に記憶される。
<Basic construction site performance evaluation process>... Next, the basic construction site performance evaluation process will be described with reference to FIG. FIG. 4 is a flowchart showing an example of the basic processing of construction site performance evaluation of this embodiment. First, the server 10 uses the image acquisition unit 20 to acquire an image of the construction site 50 on the day of the work, which was taken by the imaging device 42 of the drone 40 (step S10). The acquired image is stored in the storage 16 as a construction site image 16A.
次に、処理手段24が、取得した工事現場画像16Aを3次元データに処理する(ステップS12)。3次元データへの処理は、例えば、SfM(Structure from Motion)などにより行われる。処理された3次元データは、3次元データ16Bとしてストレージ16に記憶される。そして、第1抽出手段26が、作業当日の3次元データ16Bと、工事現場の設計図面16Cとの差分を抽出する(ステップS14)。
Next, the processing means 24 processes the acquired construction site image 16A into three-dimensional data (step S12). The processing on the three-dimensional data is performed by, for example, SfM (Structure from Motion). The processed three-dimensional data is stored in the storage 16 as the three-dimensional data 16B. Then, the first extracting means 26 extracts the difference between the three-dimensional data 16B on the work day and the design drawing 16C on the construction site (step S14).
評価手段30は、第1抽出手段26によって抽出された作業当日の3次元データ16Bと、工事現場50の設計図面16Cとの差分から、作業当日の出来高を評価する(ステップS16)。
The evaluation means 30 evaluates the work volume on the work day from the difference between the three-dimensional data 16B on the work day extracted by the first extraction means 26 and the design drawing 16C of the construction site 50 (step S16).
そして、作業指示手段32が、評価に応じて、現場作業員60に明日以降の作業指示を行う。作業指示は、現場作業員60の端末62に送るようにしてもよいし、他の形態であってもよい。
Then, the work instruction means 32 gives a work instruction for tomorrow to the site worker 60 according to the evaluation. The work instruction may be sent to the terminal 62 of the site worker 60, or may be in another form.
このように、作業当日に空撮した工事現場画像16Aを3次元データ16Bに処理し、設計図面16Cとの差分から、作業当日の出来高を評価することとしたので、工事が完了する頃に設計図面と大幅にズレが生じることがない。また、評価に応じて明日以降の作業指示を現場作業員60へ行うことで、出来高評価のフィードバックが有効に行われる。
In this way, the construction site image 16A taken aerial on the day of work is processed into three-dimensional data 16B, and it is decided to evaluate the output on the day of work from the difference from the design drawing 16C. There will be no significant deviation from the drawing. Further, by issuing work instructions for tomorrow or later to the site worker 60 according to the evaluation, feedback of the output evaluation is effectively performed.
なお、上述したステップS10において、画像取得手段20が、工事現場50の画像を所定時間毎(例えば、30分毎や1時間毎)に取得し、ステップS12において、処理手段24が、前記所定時間毎の画像を各々3次元データに処理してもよい。そして、前記ステップS14において、第1抽出手段26が、前記各々の3次元データと、前記工事現場の設計図面16Cとの差分を抽出し、ステップS16において、評価手段30は、各々の差分に応じて、作業当日の出来高を所定時間毎に評価するようにしてもよい。このように所定時間毎に処理を行うことで、リアルタイムに近い形で何回かに分けて作業当日の出来高評価を行うことができる。
In step S10 described above, the image acquisition unit 20 acquires an image of the construction site 50 every predetermined time (for example, every 30 minutes or every hour), and in step S12, the processing unit 24 causes the predetermined time. Each image may be processed into three-dimensional data. Then, in step S14, the first extracting means 26 extracts the difference between each of the three-dimensional data and the design drawing 16C of the construction site, and in step S16, the evaluating means 30 responds to each difference. Then, the output on the work day may be evaluated every predetermined time. By performing the processing at every predetermined time in this way, it is possible to evaluate the performance on the day of the work in several times in a form close to real time.
<作業指示処理>・・・次に、作業指示処理の一例について、図5を参照して説明する。図5は、本実施形態の作業指示処理の一例を示すフローチャートである。まず、サーバ10は、作業記録取得手段22によって、作業員毎の作業記録を取得する(ステップS20)。作業員毎の作業記録は、現場作業員60のウェアラブル端末やカメラ、工程表などから取得可能である。取得した作業記録は、作業員毎に、作業記録16Dとしてストレージ16に記憶される。
<Work instruction processing>... Next, an example of the work instruction processing will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the work instruction process of this embodiment. First, the server 10 acquires the work record of each worker by the work record acquisition means 22 (step S20). The work record for each worker can be acquired from the wearable terminal, camera, process chart, or the like of the site worker 60. The acquired work record is stored in the storage 16 as a work record 16D for each worker.
次に、前記評価手段30が、前記作業記録16Dから、現場作業員毎の作業当日の出来高を評価する(ステップS22)。すると、前記作業指示手段32が、現場作業員毎の作業当日の出来高の評価に応じて、現場作業員毎に、明日以降の担当分の作業指示を行う(ステップS24)。作業指示は、例えば、現場作業員60の端末62を通じて行う。
Next, the evaluation means 30 evaluates the amount of work on the day of work for each site worker from the work record 16D (step S22). Then, the work instructing means 32 gives work instructions for tomorrow after tomorrow for each field worker in accordance with the evaluation of the work volume of each field worker on the work day (step S24). The work instruction is given through the terminal 62 of the site worker 60, for example.
このように、現場作業員毎に、作業当日の出来高を評価して、明日以降の担当分の作業指示を行うことで、より適切に設計図面に沿った工事が可能となる。
In this way, it is possible to more appropriately perform construction according to the design drawings by evaluating the work volume on the day of work for each site worker and giving work instructions for the person in charge after tomorrow.
<危険箇所特定処理>・・・次に、危険箇所特定処理の一例について、図6を参照して説明する。図6は、本実施形態の危険箇所特定処理の一例を示すフローチャートである。まず、前記第2抽出手段28が、作業当日の3次元データと、作業前日以前の3次元データとの差分を抽出する(ステップS30)。
<Dangerous place identification processing> Next, an example of the dangerous place identification processing will be described with reference to FIG. FIG. 6 is a flowchart showing an example of the dangerous place identifying process of the present embodiment. First, the second extracting means 28 extracts the difference between the three-dimensional data on the day of work and the three-dimensional data before the day before work (step S30).
すると、特定手段34が、第2抽出手段28によって抽出された差分に応じて、工事現場50における危険箇所を特定する(ステップS32)。そして、提供手段36が、危険箇所に応じた危険情報を、作業員に提供する(ステップS34)。また、危険情報に応じて、アドバイス手段38が、工事の中断または見直しのアドバイスを行う(ステップS36)。
Then, the specifying unit 34 specifies a dangerous point in the construction site 50 according to the difference extracted by the second extracting unit 28 (step S32). Then, the providing unit 36 provides the worker with the danger information corresponding to the dangerous place (step S34). In addition, the advice unit 38 gives advice on interruption or review of construction according to the danger information (step S36).
なお、前記特定手段34は、前記ステップS32の危険箇所の特定において、前記差分に応じて、工事現場50における傾斜、危険物の有無または土砂崩れの可能性の高い部分などを危険箇所として特定するようにしてもよい。現場作業員60への危険情報の提供や、工事の中断または見直しのアドバイスは、現場作業員60の端末62を通じて行うようにしてもよいし、それ他の手段で行うようにしてもよい。
In the identification of the dangerous place in step S32, the identifying unit 34 identifies, as the dangerous place, an inclination in the construction site 50, the presence or absence of a dangerous material, or a portion having a high possibility of a landslide according to the difference. You may The provision of the danger information to the on-site worker 60 and the advice of interruption or review of the construction may be performed through the terminal 62 of the on-site worker 60, or may be performed by other means.
このように、作業当日の3次元データと、作業前日以前の3次元データとの差分から、危険箇所を特定して、危険箇所に応じた危険情報や、工事の中断または見直しのアドバイスを行うこととしたので、安全に工事を進めることができ、あるいは、必要に応じて工事の中断や見直しを図ることができる。
In this way, the danger point is identified from the difference between the 3D data on the day of work and the 3D data before the day before work, and the danger information according to the danger point and advice for interruption or review of construction are advised. Therefore, it is possible to proceed with the construction safely, or to suspend or review the construction if necessary.
<効果>・・・以上説明した実施形態によれば、ドローン40の撮影手段42で空撮した作業当日の工事現場の画像をサーバ10で取得して3次元データ16Bに処理し、当該3次元データ16Bと工事現場50の設計図面16Cとの差分を抽出して、作業当日の出来高を評価する。このため、作業月単位ではなく、作業日単位で、実際に行った作業と設計図研との差分から、作業当日の出来高評価が可能となる。また、作業日単位で出来高評価を行うことにより、工事が完了する頃に設計図面と大きくズレるようなことがない。
<Effect>... According to the above-described embodiment, the server 10 acquires the image of the construction site on the day of the work, which is taken by the image capturing means 42 of the drone 40, and processes it into the three-dimensional data 16B. The difference between the data 16B and the design drawing 16C of the construction site 50 is extracted to evaluate the output on the day of work. For this reason, it is possible to evaluate the performance on the day of work from the difference between the work actually performed and the design drawing laboratory on a work day basis rather than on a work month basis. In addition, by evaluating the output on a work day basis, there will be no significant deviation from the design drawings when the construction is completed.
なお、上述した実施形態は一例であり、同様の効果を奏する範囲内で適宜変更が可能である。また、本発明は、サーバ10で実行されるプログラムとして提供されてもよい。このプログラムは、コンピュータが読取可能な記録媒体に記録された状態で提供されていてもよいし、ネットワークを介してダウンロードしてもよい。また、本発明は、方法の発明として提供されてもよい。
Note that the above-described embodiment is an example, and can be changed as appropriate within the range of achieving the same effect. Further, the present invention may be provided as a program executed by the server 10. This program may be provided in a state of being recorded in a computer-readable recording medium, or may be downloaded via a network. The present invention may also be provided as a method invention.
本発明によれば、ドローンで空撮した作業当日の工事現場の画像を取得して3次元データに処理し、3次元データと工事現場の設計図面との差分を抽出して、作業当日の出来高を評価することで、作業日単位で、実際に行った作業と設計図面との差分から作業当日の出来高を評価することとしたので、工事現場における作業日毎の出来高評価を行うシステムとして好適である。
According to the present invention, an image of a construction site on the day of aerial shooting with a drone is acquired and processed into three-dimensional data, and the difference between the three-dimensional data and the design drawing of the construction site is extracted to determine the performance on the day of the work. By evaluating the above, it is possible to evaluate the work volume on the work day on the basis of the difference between the work actually performed and the design drawing on a work day basis, so it is suitable as a system for performing work volume evaluation on each work day at the construction site. ..
10:サーバ
12:プロセッサ
14:メモリ
16:ストレージ
16A:工事現場画像
16B:3次元データ
16C:設計図面
16D:作業記録
18:通信部
20:画像取得手段
22:作業記録取得手段
24:処理手段
26:第1抽出手段
28:第2抽出手段
30:評価手段
32:作業指示手段
34:特定手段
36:提供手段
38:アドバイス手段
40:ドローン
42:撮影装置
50:工事現場
60:現場作業員
62:端末
100:工事現場出来高評価システム
10: server 12: processor 14: memory 16: storage 16A:construction site image 16B: three-dimensional data 16C: design drawing 16D: work record 18: communication unit 20: image acquisition unit 22: work record acquisition unit 24: processing unit 26 : First extraction means 28: Second extraction means 30: Evaluation means 32: Work instruction means 34: Identification means 36: Providing means 38: Advice means 40: Drone 42: Imaging device 50: Construction site 60: Site worker 62: Terminal 100: Construction site performance evaluation system
12:プロセッサ
14:メモリ
16:ストレージ
16A:工事現場画像
16B:3次元データ
16C:設計図面
16D:作業記録
18:通信部
20:画像取得手段
22:作業記録取得手段
24:処理手段
26:第1抽出手段
28:第2抽出手段
30:評価手段
32:作業指示手段
34:特定手段
36:提供手段
38:アドバイス手段
40:ドローン
42:撮影装置
50:工事現場
60:現場作業員
62:端末
100:工事現場出来高評価システム
10: server 12: processor 14: memory 16: storage 16A:
Claims (9)
- 工事現場の出来高を評価する工事現場出来高評価システムであって、
ドローンで空撮した作業当日の工事現場の画像を取得する画像取得手段と、
前記画像を3次元データに処理する処理手段と、
前記3次元データと、前記工事現場の設計図面と、の差分を抽出する第1抽出手段と、
前記差分に応じて、作業当日の出来高を評価する評価手段と、
を備える工事現場出来高評価システム。 It is a construction site performance evaluation system that evaluates the construction site performance,
Image acquisition means to acquire the image of the construction site on the day of work taken aerial with a drone,
Processing means for processing the image into three-dimensional data;
First extracting means for extracting a difference between the three-dimensional data and the design drawing of the construction site;
According to the difference, an evaluation means for evaluating the work volume on the work day,
A construction site performance evaluation system equipped with. - 前記評価に応じて、現場作業員に、明日以降の作業指示を行う作業指示手段と、
を備える請求項1に記載の工事現場出来高評価システム。 Depending on the evaluation, a work instruction means for giving a work instruction for tomorrow to the field worker,
The construction site performance evaluation system according to claim 1, further comprising: - 作業員毎の作業記録を取得する作業記録取得手段と、
を備え、
前記評価手段は、前記作業記録から、現場作業員毎の作業当日の出来高を評価し、
前記作業指示手段は、前記現場作業員毎の作業当日の出来高の評価に応じて、現場作業員毎に明日以降の担当分の作業指示を行う、
請求項2に記載の工事現場出来高評価システム。 Work record acquisition means for acquiring a work record for each worker,
Equipped with
From the work record, the evaluation means evaluates the performance on the day of work for each site worker,
The work instructing means gives work instructions for tomorrow after tomorrow to each site worker according to the evaluation of the work day's work volume of each site worker,
The construction site performance evaluation system according to claim 2. - 前記画像取得手段は、前記画像を所定時間ごとに取得し、
前記処理手段は、前記所定時間毎の画像を各々3次元データに処理し、
前記第1抽出手段は、前記各々の3次元データと、前記工事現場の設計画面と、の差分を各々抽出し、
前記評価手段は、前記各々の差分に応じて、作業当日の出来高を所定時間毎に評価する、
請求項1に記載の工事現場出来高評価システム。 The image acquisition means acquires the image at predetermined time intervals,
The processing means processes the images at the predetermined time intervals into three-dimensional data,
The first extracting means extracts a difference between each of the three-dimensional data and the design screen of the construction site,
The evaluation means evaluates the volume of work on the day of work at predetermined time intervals according to the respective differences.
The construction site performance evaluation system according to claim 1. - 作業当日の3次元データと、作業前日以前の3次元データと、の差分を抽出する第2抽出手段と、
前記第2抽出手段により抽出した差分に応じて、前記工事現場における危険箇所を特定する特定手段と、
前記危険箇所に応じた危険情報を、現場作業員に提供する提供手段と、
を備える請求項1に記載の工事現場出来高評価システム。 Second extracting means for extracting a difference between the three-dimensional data on the work day and the three-dimensional data on the day before the work;
Specifying means for specifying a dangerous place at the construction site according to the difference extracted by the second extracting means;
Providing means for providing the site worker with dangerous information according to the dangerous place,
The construction site performance evaluation system according to claim 1, further comprising: - 前記特定手段は、前記差分に応じて、前記工事現場における傾斜、危険物または土砂崩れの危険箇所を特定する請求項5に記載の工事現場出来高評価システム。 The construction site performance evaluation system according to claim 5, wherein the identifying means identifies a danger point such as a slope, a dangerous material, or a landslide according to the difference.
- 前記危険情報に応じて、工事の中断又は見直しのアドバイスを行うアドバイス手段と、
を備える請求項5に記載の工事現場出来高評価システム。 Advising means for giving advice on interruption or review of construction according to the danger information,
The construction site performance evaluation system according to claim 5, further comprising: - 工事現場の出来高を評価する工事現場出来高評価方法であって、
ドローンで空撮した作業当日の工事現場の画像を取得するステップと、
前記画像を3次元データに処理するステップと、
前記3次元データと、前記工事現場の設計図面と、の差分を抽出するステップと、
前記差分に応じて、作業当日の出来高を評価するステップと、
を備える工事現場出来高評価方法。 A construction site performance evaluation method that evaluates the performance of the construction site,
A step of acquiring an image of the construction site on the day of work taken aerial with a drone,
Processing the image into three-dimensional data,
Extracting a difference between the three-dimensional data and the design drawing of the construction site,
According to the difference, a step of evaluating the work volume on the work day,
A construction site performance evaluation method equipped with. - コンピュータに、工事現場の出来高を評価する工事現場出来高評価処理を実行させるためのプログラムであって、
ドローンで空撮した作業当日の工事現場の画像を取得するステップと、
前記画像を3次元データに処理するステップと、
前記3次元データと、前記工事現場の設計図面と、の差分を抽出するステップと、
前記差分に応じて、作業当日の出来高を評価するステップと、
を実行させるためのプログラム。
A program for causing a computer to execute a construction site performance evaluation process for evaluating a construction site performance,
A step of acquiring an image of the construction site on the day of work taken aerial with a drone,
Processing the image into three-dimensional data,
Extracting a difference between the three-dimensional data and the design drawing of the construction site,
According to the difference, a step of evaluating the work volume on the work day,
A program to execute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/048621 WO2020136918A1 (en) | 2018-12-28 | 2018-12-28 | Construction site progress appraisal system, method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/048621 WO2020136918A1 (en) | 2018-12-28 | 2018-12-28 | Construction site progress appraisal system, method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020136918A1 true WO2020136918A1 (en) | 2020-07-02 |
Family
ID=71127003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/048621 WO2020136918A1 (en) | 2018-12-28 | 2018-12-28 | Construction site progress appraisal system, method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020136918A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113409441A (en) * | 2021-05-07 | 2021-09-17 | 中建科技集团有限公司 | Building information display method, device, equipment and computer readable storage medium |
CN114862093A (en) * | 2022-03-17 | 2022-08-05 | 深圳市深安企业有限公司 | BIM-based engineering quality supervision method and system |
US12125262B2 (en) | 2022-03-08 | 2024-10-22 | Inventus Holdings, Llc | Unmanned aerial vehicle based system to track solar panel system construction and commissioning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112853A (en) * | 2002-09-13 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | Cable laying construction management system |
JP2017004086A (en) * | 2015-06-05 | 2017-01-05 | Kyb株式会社 | Danger prediction system |
JP2017026577A (en) * | 2015-07-28 | 2017-02-02 | 大成建設株式会社 | Creating method for three-dimensional survey photographs |
JP2018156343A (en) * | 2017-03-17 | 2018-10-04 | 前田建設工業株式会社 | Construction trading volume data acquisition system |
-
2018
- 2018-12-28 WO PCT/JP2018/048621 patent/WO2020136918A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004112853A (en) * | 2002-09-13 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | Cable laying construction management system |
JP2017004086A (en) * | 2015-06-05 | 2017-01-05 | Kyb株式会社 | Danger prediction system |
JP2017026577A (en) * | 2015-07-28 | 2017-02-02 | 大成建設株式会社 | Creating method for three-dimensional survey photographs |
JP2018156343A (en) * | 2017-03-17 | 2018-10-04 | 前田建設工業株式会社 | Construction trading volume data acquisition system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113409441A (en) * | 2021-05-07 | 2021-09-17 | 中建科技集团有限公司 | Building information display method, device, equipment and computer readable storage medium |
US12125262B2 (en) | 2022-03-08 | 2024-10-22 | Inventus Holdings, Llc | Unmanned aerial vehicle based system to track solar panel system construction and commissioning |
CN114862093A (en) * | 2022-03-17 | 2022-08-05 | 深圳市深安企业有限公司 | BIM-based engineering quality supervision method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9251582B2 (en) | Methods and systems for enhanced automated visual inspection of a physical asset | |
CN108416323B (en) | Method and device for recognizing human face | |
WO2020136918A1 (en) | Construction site progress appraisal system, method, and program | |
CN108594999B (en) | Control method and device for panoramic image display system | |
CN109902446B (en) | Method and apparatus for generating information prediction model | |
CN107392189B (en) | Method and device for determining driving behavior of unmanned vehicle | |
US20180189553A1 (en) | Facial expression image processing method and apparatus | |
WO2023124054A1 (en) | Method and apparatus for monitoring physical world on basis of digital twins, and storage medium | |
EP3355570A1 (en) | Image capture support system, device and method, and image capturing terminal | |
CN108829518B (en) | Method and device for pushing information | |
JP2021051781A (en) | Event monitoring system, event monitoring method, and program | |
CN111125808A (en) | Intelligent construction site management model construction method and device | |
CN113808267A (en) | GIS map-based three-dimensional community display method and system | |
CN109785229B (en) | Intelligent group photo method, device, equipment and medium based on block chain | |
JP2024518695A (en) | User input based distraction removal in media items - Patents.com | |
CN109821233B (en) | Data analysis method and device | |
CN112561276B (en) | Job operation risk demonstration method and device, storage medium and electronic device | |
CN111950157B (en) | Simulation output method and device and electronic equipment | |
CN109961060B (en) | Method and apparatus for generating crowd density information | |
CN116962612A (en) | Video processing method, device, equipment and storage medium applied to simulation system | |
KR102183115B1 (en) | System for overlapping object on virtualized space based on real space | |
CN110515525B (en) | Visualized data processing method, device, equipment and storage medium | |
CN110415110B (en) | Progress monitoring method, progress monitoring device and electronic equipment | |
CN114155177A (en) | Image augmentation method and device, electronic equipment and storage medium | |
CN116227010B (en) | Construction method and system of highway maintenance digital twin application system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18944378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18944378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |