[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020135621A1 - 一种参数确定方法、通信装置及存储介质 - Google Patents

一种参数确定方法、通信装置及存储介质 Download PDF

Info

Publication number
WO2020135621A1
WO2020135621A1 PCT/CN2019/128824 CN2019128824W WO2020135621A1 WO 2020135621 A1 WO2020135621 A1 WO 2020135621A1 CN 2019128824 W CN2019128824 W CN 2019128824W WO 2020135621 A1 WO2020135621 A1 WO 2020135621A1
Authority
WO
WIPO (PCT)
Prior art keywords
apn
access network
ambr
type
ambr parameter
Prior art date
Application number
PCT/CN2019/128824
Other languages
English (en)
French (fr)
Inventor
李文强
舒林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020135621A1 publication Critical patent/WO2020135621A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to a parameter determination method, a communication device, and a storage medium.
  • EPS bearers can be divided into guaranteed bit rate (guaranteed bit rate, GBR) bearers and non-guaranteed bit rate (non-guaranteed bit rate, Non-GBR) bearers: for each GBR bearer, bandwidth control is based on the maximum bit rate (maximum bit rate, MBR) This parameter.
  • GBR guaranteed bit rate
  • NBR maximum bit rate
  • AMBR aggregate maximum bit rate
  • AMBR access point name
  • UE user equipment end
  • the APN-AMBR parameter is used to identify the maximum bandwidth of all Non-GBR bearers on one or more packet data network (PDN) connections.
  • PDN packet data network
  • PGW packet data gateway
  • the home subscriber server (home subscriber server+, HSS+) stores the APN-AMBR parameters signed by the terminal.
  • the terminal accesses the EPS network, the data transmission capabilities of the core network and the base station are weak in the EPS network. Therefore, the terminal can use smaller APN-AMBR parameters in the EPS network.
  • the 5G access network there will be a mixed networking of 4G network and 5G access network.
  • the terminal switches from the 4G network to the 5G access network, because the HSS+ stores a small signed APN -AMBR parameters, although the terminal switches from a 4G network with a low data transmission capacity to a 5G access network with a high data transmission capacity, the terminal still uses the APN-AMBR parameters contracted in the 4G network, that is, the terminal’s
  • the bandwidth in the 4G network is still used in the 5G access network. Therefore, the bandwidth is still small, which cannot effectively reflect the advantages of the 5G access network.
  • the present application provides a parameter determination method, a communication device, and a storage medium, so as to realize that the APN-AMBR parameters used by the terminal match the network capabilities of the terminal access.
  • the present application provides a parameter determination method, including determining the type of the first access network currently accessed by the terminal, and the APN-AMBR parameter that will be used to control the maximum bandwidth carried by the terminal's non-guaranteed bit rate Non-GBR, It is configured as a first APN-AMBR parameter corresponding to the type of the first access network, where different APN-AMBR parameters corresponding to different types of access networks are provided.
  • the APN-AMBR parameter is configured as the first APN-AMBR parameter corresponding to the type of the first access network, so that the terminal can be made
  • the maximum bandwidth carried by the non-guaranteed bit rate Non-GBR matches the current access network capability of the terminal.
  • the type of the first access network is determined, and it is currently used to control the maximum bandwidth carried by the terminal
  • the second APN-AMBR parameter is modified to the first APN-AMBR parameter corresponding to the type of the first access network, where the second APN-AMBR parameter is the APN-AMBR parameter corresponding to the type of the second access network .
  • the APN-AMBR parameters used by the terminal can be matched with the current access network capabilities of the terminal.
  • the following provides two implementation methods for configuring the APN-AMBR parameter as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the APN-AMBR parameter of the maximum bandwidth carried by the Non-GBR is configured as the determined first APN-AMBR parameter.
  • the type of the first access network that the access network device in the first access network sends when the terminal accesses the first access network may be received.
  • the present application provides a parameter determination method, which includes determining the type of the terminal accessing the first access network, and notifying the target device of the name of the access point that will be used to control the maximum bandwidth carried by the terminal non-guaranteed bit rate Non-GBR -Aggregate the maximum bit rate APN-AMBR parameter, configured as the first APN-AMBR parameter corresponding to the type of the first access network; where the APN-AMBR parameters corresponding to different types of access network are different, the target device is based on the APN -The AMBR parameter controls the device with the maximum bandwidth carried by the terminal Non-GBR.
  • the target device when determining the type of the first access network currently accessed by the terminal, the target device is notified to configure the APN-AMBR parameter as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the maximum bandwidth carried by the non-guaranteed bit rate Non-GBR used by the terminal can be matched with the current network capability of the terminal.
  • the target device when it is determined that the terminal switches from the second access network to the first access network, the target device is notified to use the APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR from The second APN-AMBR parameter is modified to the first APN-AMBR parameter corresponding to the type of the first access network, and the second APN-AMBR is the APN-AMBR parameter corresponding to the type of the second access network.
  • the terminal By determining that the terminal switches from the second access network to the first access network, it notifies the target device to modify the current APN-AMBR parameter from the second APN-AMBR to the first APN-AMBR, and because the first APN- AMBR corresponds to the type of the first access network, and the second APN-AMBR corresponds to the type of the second access network.
  • the APN-AMBR used by the terminal can be accessed by the terminal Match the network capabilities.
  • the present application provides the following two implementation methods of informing the target device to configure the APN-AMBR parameter as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the target device Notify the target device of the type of the first access network, so that the target device determines the first access in a pre-stored association relationship between the type of the different access network and different APN-AMBR parameters according to the type of the first access network
  • the first APN-AMBR parameter corresponding to the network type.
  • the present application provides a communication device including a processor.
  • a communication device including a processor.
  • it may also include a memory and a transceiver.
  • the memory is used to store instructions;
  • the processor is used to execute instructions stored in the memory and control the transceiver to receive and send signals.
  • the processor executes the memory
  • the communication device is used to execute the above-mentioned first aspect or any one of the methods of the first aspect, the second aspect or any one of the methods of the second aspect.
  • the present application provides a communication device for implementing the above-mentioned first aspect or any one of the methods of the first aspect, the second aspect or any one of the methods of the second aspect, including corresponding Function modules are used to implement the steps in the above methods.
  • the function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a processing unit and a transceiver unit, and these units can perform the corresponding functions in the foregoing method examples.
  • a processing unit and a transceiver unit can perform the corresponding functions in the foregoing method examples.
  • the present application provides a computer storage medium that stores instructions stored in a computer storage medium, which when executed on a computer, causes the computer to execute the first aspect, the second aspect, and any possible implementation manner of the first aspect Method or any possible implementation of the second aspect.
  • the present application provides a computer program product containing instructions that, when run on a computer, cause the computer to perform the method or the second aspect of the first aspect, the second aspect, or any possible implementation manner of the first aspect Method in any possible implementation of aspects.
  • the present application provides a chip system, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes the first Aspects, the second aspect, the method in any possible implementation of the first aspect or the method in any possible implementation of the second aspect.
  • FIG. 1a is a schematic diagram of a hybrid networking system architecture of an LTE network and a NAS network provided by this application;
  • 1b is a schematic diagram of an architecture of a hybrid networking system of an LTE network and an NR network provided by this application;
  • FIG. 2a is a schematic flowchart of a parameter determination method provided by this application.
  • FIG. 2b is a schematic flowchart of another parameter determination method provided by this application.
  • FIG. 3 is a schematic flowchart of another parameter determination method provided by this application.
  • FIG. 4 is a schematic flowchart of another parameter determination method provided by this application.
  • FIG. 5 is a schematic flowchart of another parameter determination method provided by this application.
  • FIG. 6 is a schematic flowchart of another parameter determination method provided by this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by this application.
  • FIG. 1a exemplarily shows a schematic diagram of a hybrid networking system architecture of a long term evolution (LTE) network and a non-tandalone (NAS) network.
  • the system architecture includes HSS+, mobility management entity (MME), MME+, PGW, and service gateway (SGW).
  • the core network elements of the system are all core network elements in the LTE network.
  • the access network can be the evolved UMTS terrestrial radio access network (E-UTRAN) of the fourth-generation access network, or it can be a 5G radio access network 5G-RAN, and the terminal can pass the E-UTRAN
  • E-UTRAN evolved UMTS terrestrial radio access network
  • 5G-RAN 5G radio access network
  • the MME accessing the core network can also access the SGW in the core network through 5G-RAN.
  • HSS+ is mainly used to store user subscription data, such as APN-AMBR parameters, and is located in the user's subscription home network.
  • MME and MME+ are mainly used for user mobility management and EPS bearer control, such as location registration and temporary identity allocation, handover in CONNECT state, PDN connection and bearer maintenance, session management functions such as creation, modification and deletion .
  • MME+ also adds NAS functions compared to MME.
  • SGW is mainly used for user plane bearing from the terminal to the core network, data caching in the idle mode of the terminal, the function of initiating service requests on the network side, legal monitoring and packet data routing and forwarding functions.
  • SGW is a device for connecting to the radio access network (RAN) of different 3rd Generation Partnership Projects (3GPP), and it is the anchor point of the user plane within the 3GPP system (that is, users from different access networks When accessing, service data must go through SGW), a user can only have one SGW at a time.
  • the SGW is unchanged.
  • the terminal switches between different types of 3GPP radio access networks, for example, when switching between an NR network and an LTE network (Inter-RAT handover)
  • both the eNB and MME may change, but the SGW does not change.
  • PGW is used to allocate functions such as user IP address, charging function, packet filtering, and policy control. It is a mobility anchor point for 3GPP to access the network, and users can access multiple PGWs at the same time.
  • the interface between HSS+ and MME is the S6a interface.
  • the S6a interface is mainly used for user access authentication, insertion of user subscription data, authorization of user access to PDN, and user mobility management message when interconnected with non-3GPP systems. Authentication and other functions.
  • the interface between MME and E-UTRAN is the S1-MME interface, that is, the interface between the eNodeB and the MME, which is used to transmit user data and corresponding user plane control frames.
  • the interface between PGW and SGW is S5/S8 interface, which can be divided into control plane and user plane.
  • the S5 interface is the interface between SGW and PGW in the network.
  • S8 is an interface between SGW and PGW across a public land mobile network (PLMN), and should have the S5 interface function under roaming conditions.
  • the interface between SGW and 5G-RAN and the interface between SGW and E-UTRAN are both S1-U interfaces, that is, the interface between eNodeB and SGW, used to carry the path between the user plane tunnel and eNodeB during handover exchange.
  • the interface between MME and MME+ is the S10 interface, that is, the control plane interface between MMEs, which is the redistribution of MME (or MME+) and the transmission of information between MME (or MME+).
  • the interface between SGW and MME is S11 interface, which is used to transmit information such as bearer control and session control.
  • FIG. 1b exemplarily shows a schematic diagram of a network system architecture of an LTE network and an NR network.
  • the terminal accesses the MME in the core network by accessing E-UTRAN under the LTE network.
  • the terminal accesses the AMF in the core network through the 5G-RAN under the NR network.
  • the core network of the LTE network and the NR network are the same, the HSS+ entity is merged with the unified data management (unified data management (UDM) entity, called the data management entity (or called HSS+/UDM entity);
  • the policy control entity may be policy control Function (policy control function, PCF) entity and policy and charging rule function unit (policy and charging rules function, PCRF) entity merge functions, which can be collectively called policy control entity; session management function (session management function, SMF) entity Merged with PGW-C entity, collectively called session management entity; UPF entity merged with PGW-U entity, collectively called user plane entity; SGW entity can also be split into SGW-C entity and SGW-U entity.
  • policy control function policy control function
  • PCRF policy and charging rule function unit
  • N26 interface can realize the intercommunication between EPC and NG core network.
  • the network supports the N26 interface as an optional direction for interworking.
  • the N26 interface supports the functions supported by the S10 interface in FIG. 1a described above.
  • Terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, and Satellite first class).
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminals, augmented reality (augmented reality, AR) terminals, industrial control (industrial control) Wireless terminal, wireless terminal in self-driving (self-driving), wireless terminal in telemedicine (remote), wireless terminal in smart grid (smart), wireless terminal in transportation safety (transportation safety), smart Wireless terminals in smart cities, wireless terminals in smart homes, user equipment (UE), etc.
  • the terminal can access the 4G access network or 5G access network through the wireless air interface and obtain corresponding services.
  • the terminal exchanges information with the base station through the air interface, through non-access layer signaling (Non-Access-Stratum, NAS) and the core network. Mobility management entity interaction information.
  • Non-Access-Stratum NAS
  • Mobility management entity interaction information Mobility management entity interaction information.
  • the foregoing entity or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualized function instantiated on a platform (for example, a cloud platform).
  • the above functions can be divided into one or more services. Further, there may be service entities that exist independently of network functions.
  • the LTE access network is also referred to as a 4G access network or EPS network
  • the LTE access network is referred to as E-UTRAN
  • the core network of the LTE access network is referred to as an EPC network.
  • the NR access network is also called 5G access network or 5GS network
  • the NR access network is called NR-RAN or 5G-RAN.
  • FIG. 2a exemplarily shows a schematic flowchart of a parameter determination method provided by the present application. The method includes the following steps:
  • Step 201 Determine the type of the first access network currently accessed by the terminal.
  • the type of access network includes a 3G access network, a 4G access network, or a 5G access network.
  • the type of the first access network may be any one of a 3G access network, a 4G access network, and a 5G access network.
  • Step 202 Configure the name of the access point used to control the maximum bandwidth carried by the non-guaranteed bit rate Non-GBR of the terminal-aggregate maximum bit rate APN-AMBR parameter to the first APN corresponding to the type of the first access network- AMBR parameters.
  • an APN-AMBR parameter may be corresponding to each, that is, different types of access network sessions may have different APN-AMBR parameters.
  • the type of the first access network currently accessed by the terminal is determined, and the APN-AMBR parameter is configured as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the maximum bandwidth carried by the non-guaranteed bit rate Non-GBR used by the terminal can be matched with the capability of the access network currently accessed by the terminal.
  • the current APN-AMBR parameter is configured with the first APN-AMBR, so that the terminal accesses 5G access Network, you can use the 5G bandwidth APN-AMBR to establish a session, you can make full use of the advantages of 5G access network.
  • the above steps 201 and 202 may be performed by the PGW.
  • step 201 when the terminal switches from the second access network to the first access network, the access network device in the first access network determines the type of the terminal's first access network, and Send the type of the first access network to the PGW.
  • the PGW may modify the second APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR to the first APN-AMBR parameter corresponding to the type of the first access network, where
  • the second APN-AMBR parameter is an APN-AMBR parameter corresponding to the type of the second access network.
  • the access network device in the first access network is MME+. If the first access network is a 4G access network and the second access network is a 5G access network, the access network device in the first access network is MME.
  • the above steps 201 and 202 may be performed by a session management entity (SMF/PGW).
  • SMS session management entity
  • step 201 when the terminal switches from the second access network to the first access network, the access network device in the first access network determines the type of the terminal's first access network, and The type of the first access network is sent to the session management entity.
  • the access network device in the first access network is AMF. If the first access network is a 4G access network and the second access network is a 5G access network, the access network device in the first access network is MME.
  • the session management entity may modify the second APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR to the first APN-AMBR parameter corresponding to the type of the first access network , Where the second APN-AMBR parameter is an APN-AMBR parameter corresponding to the type of the second access network.
  • the type of the second access network is an LTE access network
  • the type of the first access network is an NR access network
  • the first APN-AMBR corresponds to the type of the first access network
  • the second APN-AMBR corresponds to the second The type of access network corresponds.
  • the APN-AMBR configured on the 5G access network is greater than the APN-AMBR configured on the 4G access network, that is, the first APN-AMBR is greater than the second APN-AMBR, when determining that the terminal accesses from the LTE access network to the NR access network, modify the current second APN-AMBR parameter to the first APN-AMBR, so that the terminal accesses the 5G access network and can use 5G
  • the bandwidth APN-AMBR establishes the conversation, can fully utilize the advantage of 5G access network.
  • the access network to which the terminal is connected is a 4G access network, which can provide less bandwidth, and be modified to use 4G in time Bandwidth APN-AMBR helps to prevent the core network from still sending data to the base station at the bandwidth rate used by 5G, but the terminal uses 4G APN-AMBR for communication.
  • the base station's capacity is insufficient, a large amount of downlink data will be lost The problem with the package.
  • step 202 the following two implementation methods for configuring the APN-AMBR parameter as the first APN-AMBR parameter corresponding to the type of the first access network are provided in the present application.
  • the APN-AMBR parameter of the maximum bandwidth carried by the Non-GBR is configured as the determined first APN-AMBR parameter.
  • the type of the first access network may be sent by the access network device in the first access network when the terminal accesses the type of the first access network.
  • the access network device of the first access network sends the type of the first access network to the PGW or SMF/PGW.
  • the PGW or SMF/PGW determines the first APN-AMBR parameter corresponding to the first access network type from the pre-stored association relationship between different access network types and different APN-AMBR parameters, and configures the current APN-AMBR parameter as The first APN-AMBR parameter.
  • the PGW or SMF/PGW may pre-store the association relationship between the 5G access network and the corresponding APN-AMBR parameter, and the association relationship between the 4G access network and the corresponding APN-AMBR parameter.
  • the access network device of the first access network sends the first APN-AMBR parameter to the PGW or SMF/PGW.
  • the PGW or SMF/PGW may directly configure the current APN-AMBR parameter as the first APN-AMBR parameter.
  • FIG. 2b exemplarily shows a schematic flowchart of another parameter determination method provided by the present application.
  • the method includes the following steps:
  • Step 211 Determine the type of the terminal accessing the first access network.
  • step 220 the target device is notified to configure the APN-AMBR parameter for controlling the maximum bandwidth carried by the terminal non-guaranteed bit rate Non-GBR as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the target device is a device that controls the maximum bandwidth carried by the terminal Non-GBR according to the APN-AMBR parameters.
  • the target device is PGW.
  • the target device is SMF/PGW.
  • the target device when determining the type of the first access network currently accessed by the terminal, the target device is notified to configure the APN-AMBR parameter as the first APN-AMBR parameter corresponding to the type of the first access network.
  • the maximum bandwidth carried by the non-guaranteed bit rate Non-GBR used by the terminal can be matched with the current network capability of the terminal.
  • the terminal switches from the second access network to the first access network, and notifies the target device to use the APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR from the first
  • the second APN-AMBR parameter is modified to the first APN-AMBR parameter corresponding to the type of the first access network, and the second APN-AMBR is the APN-AMBR parameter corresponding to the type of the second access network.
  • the second access network is an LTE access network
  • the first access network is an NR access network
  • the first APN-AMBR corresponds to the type of the first access network
  • the second APN- The AMBR corresponds to the type of the second access network. Since the data processing capability in the 5G access network is stronger than the data processing capability in the 4G access network, the APN-AMBR corresponding to the 5G access network is usually greater than the APN- corresponding to the 4G access network.
  • AMBR that is, the first APN-AMBR is larger than the second APN-AMBR
  • the second access network is an NR access network and the first access network is an LTE access network
  • the first APN-AMBR is smaller than the second APN-AMBR
  • the terminal switches from the NR access network to LTE
  • the access network notifies the target device to modify the current APN-AMBR parameters from the second APN-AMBR to the first APN-AMBR.
  • the access network to which the terminal is connected is a 4G access network, which can provide less bandwidth and be modified in time
  • APN-AMBR with 4G bandwidth it is helpful to avoid that the core network still sends data to the base station at the bandwidth rate used by 5G, but the terminal uses 4G APN-AMBR to communicate.
  • the base station capacity is insufficient, it will A large number of downstream data packet loss problems.
  • the present application provides the following two implementation methods of determining to notify the target device to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the target device Notify the target device of the type of the first access network, so that the target device determines the first access in a pre-stored association relationship between the type of the different access network and different APN-AMBR parameters according to the type of the first access network
  • the first APN-AMBR parameter corresponding to the network type.
  • this application takes the types of access networks including NR access network and LTE access network as examples.
  • the terminal is in a 4G and 5G hybrid networking. Due to the mobility of the terminal, the following two scenarios may occur.
  • Scenario 1 The terminal accesses the 4G access network first, and then switches from the 4G access network to the 5G access network.
  • the first access network is an NR access network
  • the second access network is an LTE access network
  • Scenario 2 The terminal accesses the 5G access network first, and then switches from the 5G access network to the 4G access network.
  • the first access network is an LTE access network
  • the second access network is an NR access network
  • the above steps 211 to 212 are performed by MME+ or AMF.
  • the HSS+ stores the association relationship between the first access network and the first APN-AMBR parameter, and the association relationship between the second access network and the second APN-AMBR parameter.
  • the access network device when the terminal accesses the second access network is MME
  • the access network device that accesses the first access network is MME+.
  • the terminal accesses the 4G access network, that is, after the terminal accesses the MME in the core network through E-UTRAN, steps 301 to 302 are performed:
  • Step 301 the MME sends a first contract data acquisition request to HSS+.
  • HSS+ receives the first contract data acquisition request from MME.
  • the type of the second access network included in the first subscription data acquisition request is the LTE access network.
  • Step 302 HSS+ sends a first contract response to the MME.
  • the first subscription response includes the second APN-AMBR parameter corresponding to LTE.
  • steps 303 to 304 are performed:
  • Step 303 MME+ sends a second contract data acquisition request to HSS+.
  • HSS+ receives the second subscription data acquisition request from MME+.
  • the type of the first access network included in the second subscription data acquisition request is the NR access network.
  • Step 304 HSS+ sends a second contract response to MME+.
  • MME+ receives the second contract response from HSS+.
  • the second subscription response includes the first APN-AMBR parameter corresponding to NR.
  • the process of the terminal switching from the 4G access network to the 5G access network includes steps 305 to 307:
  • Step 305 the MME sends the type of the second access network to MME+.
  • the type of the second access network is an LTE access network.
  • MME+ receives the type of the second access network from the MME.
  • the terminal context when the MME sends the terminal context to MME+, the terminal context includes the type of the second access network (ie, the LTE access network).
  • MME+ can obtain the terminal context from the MME through the following two implementation methods .
  • Step 306 MME+ determines that the type of the local first access network is different from the type of the second access network received from the MME, and determines that the terminal switches from the type of the second access network to the type of the first access network .
  • step 307 the MME+ notifies the PGW to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the terminal uses the APN-AMBR parameters under the 4G access network to establish a session, which can realize the APN-AMBR parameters and access used by the terminal Match the network.
  • the MME access network device that the terminal accesses before handover
  • MME+ access network device that the terminal accesses after switchover
  • MME+ When the terminal switches from the 4G access network to the 5G access network, MME+ notifies PGW Modify the APN-AMBR parameter from the second APN-AMBR parameter (before handover) to the first APN-AMBR parameter (after handover), in this way, the terminal can use the APN-AMBR parameter in the NR network to establish a session, which can be fully Use 5G bandwidth services.
  • the access network device when the terminal accesses the second access network is MME, and the access network device that accesses the first access network is AMF.
  • the HSS+ stores the association relationship between the first access network and the first APN-AMBR parameter, and the association relationship between the second access network and the second APN-AMBR parameter.
  • FIG. 4 it is a schematic flowchart of another parameter determination method provided by the present application.
  • Step 401 the AMF notifies the SMF terminal to access the first access network.
  • the terminal where the SMF receives the AMF notification accesses the first access network.
  • step 402 the SMF sends the second subscription data acquisition request of the terminal to the HSS+/UDM.
  • HSS+/UDM receives the second contract data acquisition request from SMF.
  • the type of the first access network included in the second subscription data acquisition request is the NR access network.
  • Step 403 HSS+/UDM sends a second contract response to SMF.
  • the SMF receives the second contract response from HSS+/UDM.
  • the second subscription response includes the first APN-AMBR parameter corresponding to NR.
  • steps 403 to 406 are executed:
  • Step 404 the MME sends the type of the second access network to the AMF.
  • the type of the second access network is an LTE access network.
  • the AMF receives the type of the second access network from the MME.
  • step 405 the AMF determines that the type of the local first access network is different from the type of the received second access network, and determines to switch from the type of the second access network to the type of the first access network.
  • step 401 and step 404 The above sequence of step 401 and step 404 is an example. Step 401 to step 403 may be executed first, and then step 404 may be executed; step 404 may be executed first, and then step 401 to step 403 may be executed.
  • step 406 the AMF notifies the SMF to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • step 407 the SMF modifies the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the terminal uses the APN-AMBR parameter under the LTE access network to establish a session, which can make the terminal use the APN -The AMBR parameters match the network capabilities of the access.
  • the APN-AMBR parameter can ensure that the bandwidth used by the terminal matches the current access network capability.
  • Case B the above steps 211 and 212 are performed by HSS+/UDM.
  • the HSS+/UDM stores the association relationship between the first access network and the first APN-AMBR parameter, and the association relationship between the second access network and the second APN-AMBR parameter. It can also be understood that the data management entity stores different APN-AMBR parameters corresponding to the types of the same terminal accessing different access networks.
  • the access network device when the terminal accesses the second access network is MME
  • the access network device that accesses the first access network is MME+.
  • the terminal accesses the 4G access network, that is, after the terminal accesses the MME through E-UTRAN, refer to FIG. 3 above, and perform the above steps 301 to 302.
  • the terminal switches from the 4G access network to the 5G access
  • the terminal accesses the MME+ through 5G-RAN, and can refer to steps 303 to 304 in FIG. 3 above.
  • steps may be included 501 to step 502:
  • step 501 the HSS+ determines that the type of the first access network is different from the type of the second access network, and then determines that the terminal switches from the type of the second access network to the type of the first access network.
  • the type of the first access network is carried by the MME when sending the first subscription data acquisition request to the HSS+
  • the type of the second access network is carried by the MME+ when sending the second subscription data acquisition request to the HSS+ of.
  • Step 502 HSS+ notifies PGW through MME+ to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the HSS+ may carry an instruction informing the PGW to modify the APN-AMBR parameter in the second subscription response in step 304.
  • it may be a cell in the second subscription response, which may indicate the type change of the access network.
  • step 501 in FIG. 5 may be performed between step 303 and step 304 in FIG. 3 described above, and step 502 is omitted.
  • MME+ may directly send the first APN-AMBR parameter to the PGW. In another possible implementation manner, MME+ may send the type of the first access network to the PGW.
  • the PGW modifies the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the data management entity delivers specific subscription APN-AMBR parameters according to the terminal's access network type, which can make the APN-AMBR parameters used by the terminal match the access network capabilities. Furthermore, the data management entity notifies the MME+ of the PGW to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter according to the type of the first access network and the type of the second access network, that is, the terminal After switching from the 4G access network to the 5G access network, when the terminal uses the APN-AMBR parameter corresponding to the NR network to establish a session, the 5G bandwidth service can be fully utilized.
  • the access network device when the terminal accesses the second access network is MME, and the access network device that accesses the first access network is AMF.
  • FIG. 6 it is another parameter determination method provided for this application.
  • the terminal accesses the 4G access network, that is, after the terminal accesses the MME through E-UTRAN, it can perform steps 301 to 302 in FIG. 3 above.
  • steps 601 to 604 are performed:
  • Step 601 the AMF notifies the SMF terminal to access the first access network.
  • the terminal where the SMF receives the AMF notification accesses the first access network.
  • the first access network is an NR access network.
  • Step 602 the SMF sends a second subscription data acquisition request of the terminal to HSS+/UDM.
  • HSS+/UDM receives the second contract data acquisition request from SMF.
  • the type of the first access network included in the second subscription data acquisition request is the NR access network.
  • Step 603 HSS+/UDM sends a second contract response to SMF.
  • the second subscription response includes the first APN-AMBR parameter corresponding to NR.
  • the process of the terminal switching from the 4G access network to the 5G access network includes steps 604 to 606:
  • step 604 the HSS+/UDM determines that the type of the first access network is different from the type of the second access network, and then determines that the terminal switches from the type of the second access network to the type of the first access network.
  • Step 605 HSS+/UDM notifies SMF through AMF to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • step 606 the SMF modifies the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the indication that HSS+/UDM notifies SMF to modify the APN-AMBR parameter may be carried in the second subscription response in step 603.
  • it may be a cell in the second subscription response, which may indicate the type change of the access network. It can also be understood that step 603 and step 604 are performed together, and step 605 is omitted.
  • the data management entity issues specific subscription APN-AMBR parameters according to the terminal's access network type, which can make the APN-AMBR parameters used by the terminal match the access network capabilities. Furthermore, according to the type of the first access network and the type of the second access network, the data management entity notifies the SMF through the AMF to modify the APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter, that is, the terminal After the 4G network is switched to the 5G network, when the terminal uses the APN-AMBR parameter corresponding to the NR network to establish a session, the 5G bandwidth service can be fully utilized.
  • the target device is PGW.
  • the terminal accesses the 4G access network, that is, after the terminal accesses the MME of the core network through E-UTRAN, the above steps 301 to 302 in FIG. 3 are performed, and the MME obtains the second APN-AMBR parameter corresponding to LTE.
  • the terminal accesses the MME+ of the core network through the 5G-RAN, and can perform steps 303 to 304 of FIG. 3 above.
  • the MME+ obtains the first APN-AMBR parameter corresponding to the NR .
  • the terminal accesses the 4G access network first, and then switches from the 4G access network to the 5G access network.
  • the terminal can detect that the 4G access network is switched to the 5G access network, as shown in FIG. Schematic diagram of a parameter determination method. The method includes the following steps:
  • step 701 the terminal detects that the second access network is switched to the first access network.
  • the first access network is an NR access network
  • the second access network is an LTE access network
  • the terminal determines that the access network before handover is an LTE access network and the access network after handover is an NR access network, it means that the terminal detects that the second access network is switched to access The first access network.
  • Step 702 the terminal notifies the PGW through MME+ to modify the APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the notification in this step may carry the first APN-AMBR parameter and/or the type of the first access network.
  • step 703 the PGW modifies the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the terminal proactively initiates a process of modifying the APN-AMBR parameters to realize the APN-AMBR parameters used by the terminal and the currently accessed network Ability to match.
  • the terminal accesses the 4G access network, that is, after the terminal accesses the MME of the core network through E-UTRAN, the above steps 301 to 302 in FIG. 3 are performed, and the MME obtains the second APN-AMBR parameter corresponding to LTE.
  • the AMF After switching from the 4G access network to the 5G access network, after the terminal accesses the AMF in the core network through the 5G-RAN, the AMF notifies the SMF that the terminal has accessed the core network, and can perform steps 401 to 403 of FIG. 4 above , SMF obtains the first APN-AMBR parameter corresponding to NR from HSS+/UDM.
  • the terminal accesses the 4G access network first, and then switches from the 4G access network to the 5G access network.
  • the terminal can detect that the 4G access network is switched to the 5G access network, as shown in FIG. Schematic diagram of a parameter determination method. The method includes the following steps:
  • step 801 the terminal detects that the second access network is switched to the first access network.
  • This step is implemented in the same way as the above step 701, and will not be repeated here.
  • step 802 the terminal notifies the SMF through AMF to modify the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the notification in this step may carry the first APN-AMBR parameter and/or the type of the first access network.
  • step 803 the SMF modifies the current APN-AMBR parameter from the second APN-AMBR parameter to the first APN-AMBR parameter.
  • the data management entity delivers specific subscription APN-AMBR parameters according to the terminal's access network type, and actively initiates modification of the APN-AMBR parameter after the terminal senses that the access network type has changed Process to match the APN-AMBR parameters used by the terminal with the currently accessed network.
  • the data management entity delivers specific subscription APN-AMBR parameters according to the terminal's access network type, and actively initiates modification of the APN-AMBR parameter after the terminal senses that the access network type has changed Process to match the APN-AMBR parameters used by the terminal with the currently accessed network.
  • the access network device when the terminal accesses the second access network is MME+, and the access network device that accesses the first access network is MME.
  • MME in FIG. 3 can be replaced with MME+, and MME+ is replaced with MME, which will not be repeated here.
  • the access network device when the terminal accesses the second access network is AMF
  • the access network device that accesses the first access network is MME
  • the MME in FIG. 4 can be replaced by AMF, and the AMF can be replaced by MME, which will not be repeated here.
  • the access network device when the terminal accesses the second access network is MME+, and the access network device that accesses the first access network is MME.
  • MME in FIG. 5 can be replaced with MME+, and MME+ is replaced with MME, which will not be repeated here.
  • the access network device when the terminal accesses the second access network is AMF
  • the access network device that accesses the first access network is MME
  • the MME in FIG. 6 can be replaced by AMF, and the AMF can be replaced by MME, which will not be repeated here.
  • the access network device when the terminal accesses the second access network is MME+
  • the access network device that accesses the first access network is MME.
  • MME in FIG. 7 can be replaced with MME+, and MME+ is replaced with MME, which will not be repeated here.
  • the access network device when the terminal accesses the second access network is AMF
  • the access network device that accesses the first access network is MME.
  • the MME in FIG. 8 can be replaced by AMF, and the AMF can be replaced by MME, which will not be repeated here.
  • FIG. 9 exemplarily shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 900 includes a processor 901 and a transceiver 902.
  • it further includes a memory 903; wherein, the processor 901, the transceiver 902, and the memory 903 may be connected to each other through a bus.
  • the communication device 900 in this example can execute the above-mentioned scheme to be executed in FIG. 2a.
  • the communication device 900 may be the PGW shown in FIG. 1a or the SMF/PGW shown in FIG. 1b.
  • the communication device 900 in this example may also execute the solution corresponding to any one of the communication devices in FIGS. 2b to 8 described above.
  • the communication device 900 may be any one of MME+, MME, HSS+, and UE in FIG. 1a, or may be any one of AMF, MME, HSS+/UDM, and UE in FIG. 1b.
  • the memory 903 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) ), hard disk drive (HDD) or solid-state drive (SSD); the memory 903 may also include a combination of the aforementioned types of memory.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 903 may also include a combination of the aforementioned types of memory.
  • the processor 901 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 901 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field programmable logic gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • the memory 903 may also be used to store program instructions, and the processor 901 may call the program instructions stored in the memory 903, and may perform one or more steps in the embodiment shown in the above scheme, or an optional implementation thereof In this way, the communication device 900 realizes the steps of the communication device in the above method.
  • the processor 901 is used to execute the instructions stored in the memory and control the transceiver 902 to receive and send signals.
  • the processor 901 in the communication device 900 is used to determine the current access of the terminal The type of the first access network, and the name of the access point used to control the maximum bandwidth carried by the terminal’s non-guaranteed bit rate Non-GBR-aggregated maximum bit rate APN-AMBR parameter is configured to communicate with the first The first APN-AMBR parameter corresponding to the type of network access; wherein, different APN-AMBR parameters corresponding to different types of access networks.
  • the processor 901 is specifically configured to determine the first access network according to the association relationship between the type of the first access network, different types of pre-stored access networks, and different APN-AMBR parameters.
  • a first APN-AMBR parameter corresponding to an access network type; configuring the APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR as the determined first APN-AMBR parameter.
  • the transceiver 902 is configured to receive the first APN corresponding to the type of the first access network and sent by an access network device in the first access network.
  • the processor 901 is specifically configured to configure the APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR as the received first APN-AMBR parameter.
  • the transceiver 902 is configured to receive an address sent by an access network device in the first access network when the terminal accesses the type of the first access network. Describe the type of the first access network.
  • the processor 901 is used to execute the instructions stored in the memory and control the transceiver 902 to receive and send signals.
  • the processor 901 in the communication device 900 is used to determine that the terminal accesses the first A type of access network, the transceiver 902 is used to notify the target device to use the name of the access point used to control the maximum bandwidth carried by the terminal non-guaranteed bit rate Non-GBR-aggregated maximum bit rate APN-AMBR parameter, configured as The first APN-AMBR parameter corresponding to the type of the first access network; wherein, the APN-AMBR parameters corresponding to different types of access networks are different, and the target device controls the terminal Non-GBR bearer according to the APN-AMBR parameter The device with the largest bandwidth.
  • the processor 901 is specifically configured to determine that the terminal switches from the type of the second access network to the type of the first access network; the transceiver 902, Specifically, it is used to notify the target device to modify the APN-AMBR parameter currently used to control the maximum bandwidth carried by the terminal Non-GBR from the second APN-AMBR parameter to the first APN corresponding to the type of the first access network -AMBR parameters, the second APN-AMBR is an APN-AMBR parameter corresponding to the type of the second access network.
  • the transceiver 901 is specifically configured to notify the target device of the type of the first access network, so that the target device according to the first access network Type, the first APN-AMBR parameter corresponding to the type of the first access network is determined in a pre-stored association relationship between the type of different access networks and different APN-AMBR parameters.
  • the transceiver 902 is specifically configured to notify the target device of the pre-configured first APN-AMBR parameter corresponding to the type of the first access network, so that all The target device configures the APN-AMBR parameter as the first APN-AMBR parameter.
  • FIG. 10 exemplarily shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 1000 includes a processing unit 1001 and a transceiver unit 1002.
  • the communication device 1000 in this example can execute the above-mentioned scheme to be executed in FIG. 2a.
  • the communication device 1000 may be the PGW shown in FIG. 1a or the SMF/PGW shown in FIG. 1b.
  • the communication device 1000 in this example may also implement the solution corresponding to any one of the communication devices in FIGS. 2b to 8 described above.
  • the communication device 1000 may be any one of MME+, MME, HSS+, and UE in FIG. 1a, or may be any one of AMF, MME, HSS+/UDM, and UE in FIG. 1b.
  • the processing unit 1001 is used to determine the type of the first access network currently accessed by the terminal, and the name of the access point that controls the maximum bandwidth carried by the terminal non-guaranteed bit rate Non-GBR-aggregate maximum bit rate APN-
  • the AMBR parameter is configured as a first APN-AMBR parameter corresponding to the type of the first access network; wherein, different APN-AMBR parameters corresponding to different types of access networks.
  • the processing unit 1001 is used to determine the type of the terminal accessing the first access network, and the transceiving unit 1002 is used to notify the target device that the name of the access point-aggregation maximum used to control the maximum bandwidth carried by the terminal non-guaranteed bit rate Non-GBR
  • the bit rate APN-AMBR parameter is configured as the first APN-AMBR parameter corresponding to the type of the first access network
  • the APN-AMBR parameters corresponding to different types of access networks are different, and the target device is a device that controls the maximum bandwidth carried by the terminal Non-GBR according to the APN-AMBR parameters.
  • each unit of the above communication device is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into a physical entity or may be physically separated.
  • the processing unit 1000 involved in FIG. 10 may be implemented by the processor 901 of FIG. 9 described above, and the transceiver unit 1002 may be implemented by the transceiver 902 of FIG. 9 described above. That is to say, the processing unit 1001 in this application can execute the above-mentioned solution executed by the processor 901 of FIG. 9, and the transceiver 902 can execute the above-mentioned solution executed by the transceiver 902 of FIG. 9. For the rest, refer to the above content. No longer.
  • the computer program product includes one or more instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Instructions can be stored in a computer storage medium, or transmitted from one computer storage medium to another computer storage medium, for example, the instructions can be from a website site, computer, server or data center via wire (such as coaxial cable, optical fiber, twisted pair Wire) or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer storage medium may be any medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more media integration.
  • the media may be magnetic media (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical media (eg, optical disk), or semiconductor media (eg, ROM, EPROM, EEPROM, solid state disk (SSD)) )Wait.
  • magnetic media eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical media eg, optical disk
  • semiconductor media eg, ROM, EPROM, EEPROM, solid state disk (SSD)
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by instructions. These instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing device are generated for implementation A device of a function specified in a block or blocks in a flowchart or a flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参数确定方法、通信装置及存储介质。该方法包括确定终端当前接入的第一接入网的类型;将用于控制终端非保证比特率Non-GBR承载的最大带宽的APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数;其中,不同类型的接入网对应的不同APN-AMBR参数。如此,当终端接入第一接入网时,可使用与第一接入网的类型对应的第一APN-AMBR参数进行通信,从而可使得终端使用的非保证比特率Non-GBR承载的最大带宽与终端当前接入的接入网能力相匹配。

Description

一种参数确定方法、通信装置及存储介质
相关申请的交叉引用
本申请要求在2018年12月26日提交中国专利局、申请号为201811603264.0、发明名称为“一种参数确定方法、通信装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参数确定方法、通信装置及存储介质。
背景技术
在演进的分组系统(evolved packet system,EPS)网络中,为了实现对业务的服务质量(quality of service,QoS)进行控制,提出了基于EPS承载的QoS控制机制。其中,EPS承载可分为保证比特率(guaranteed bit rate,GBR)承载和非保证比特率(non guaranteed bit rate,Non-GBR)承载:对于每个GBR承载,带宽的控制基于最大比特率(maximum bit rate,MBR)这个参数。对于Non-GBR承载,为了限制带宽,提出了聚合最大比特率(aggregate maximum bit rate,AMBR)概念,AMBR可分为接入点名称(access point name,APN)AMBR和用户设备端(user equipment,UE)AMBR。其中,APN-AMBR参数用于标识一个或多个分组数据网络(packet data network,PDN)连接上的所有Non-GBR承载的最大带宽。在下行方向,由分组数据网关(packet data gateway,PGW)来控制APN-AMBR参数。
在归属用户服务器(home subscriber server+,HSS+)存储有终端签约的APN-AMBR参数。当终端接入EPS网络后,在EPS网络中,核心网和基站的数据传输能力较弱,因此,终端在EPS网络中可以使用较小的APN-AMBR参数。随着在5G接入网发展,会出现4G网络和5G接入网混合组网的场景,当终端从4G网络切换接入至5G接入网后,由于HSS+存储有一个较小的签约的APN-AMBR参数,虽然终端从数据传输能力较低的4G网络切换到了传输数据能力较高的5G接入网,但终端仍然使用的是4G网络中签约的APN-AMBR参数,即终端在切换后的5G接入网中仍然使用4G网络中的带宽,如此,带宽仍然较小,不能有效体现5G接入网的优势。
发明内容
本申请提供一种参数确定方法、通信装置及存储介质,以实现终端所使用的APN-AMBR参数与终端接入的网络能力相匹配。
第一方面,本申请提供一种参数确定方法,包括确定终端当前接入的第一接入网的类型,将用于控制终端非保证比特率Non-GBR承载的最大带宽的APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数,其中,不同类型的接入网对应的不同APN-AMBR参数。
基于该方案,在确定出终端当前接入的第一接入网的类型后,将APN-AMBR参数配置为与第一接入网的类型对应的第一APN-AMBR参数,如此,可使得终端使用的非保证 比特率Non-GBR承载的最大带宽与终端当前接入的接入网能力相匹配。
在一种可能的实现方式中,在终端从第二接入网切换接入至第一接入网时,确定第一接入网的类型,将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与第一接入网的类型对应的第一APN-AMBR参数,其中,第二APN-AMBR参数为与第二接入网的类型对应的APN-AMBR参数。如此,通过及时触发修改APN-AMBR参数,可使终端所使用的APN-AMBR参数与终端当前接入的接入网能力相匹配。
如下提供的两种将APN-AMBR参数配置为与第一接入网的类型对应的第一APN-AMBR参数的实现方式。
实现方式一
根据第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定第一接入网的类型对应的第一APN-AMBR参数,将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的第一APN-AMBR参数。
实现方式二
接收第一接入网中的接入网设备发送的与第一接入网的类型对应的第一APN-AMBR参数,将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的第一APN-AMBR参数。
在一种可能的实现方式中,可以在接收第一接入网中的接入网设备在终端接入第一接入网时,发送的第一接入网的类型。
第二方面,本申请提供一种参数确定方法,包括确定终端接入第一接入网的类型,通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数;其中,不同类型的接入网对应的APN-AMBR参数不同,目标设备为根据APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
基于该方案,在确定终端当前接入的第一接入网的类型时,通知目标设备将APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数,如此,可使得终端使用的非保证比特率Non-GBR承载的最大带宽与终端当前接入的网络能力相匹配。
在一种可能的实现方式中,确定终端从第二接入网切换接入至第一接入网时,通知目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与第一接入网的类型对应的第一APN-AMBR参数,第二APN-AMBR为与第二接入网的类型对应的APN-AMBR参数。通过在确定终端从第二接入网切换接入至第一接入网时,通知目标设备将当前APN-AMBR参数从第二APN-AMBR修改为第一APN-AMBR,又因为第一APN-AMBR与第一接入网的类型对应,第二APN-AMBR与第二接入网的类型对应,如此,通过及时触发修改APN-AMBR参数,可使终端所使用的APN-AMBR与终端接入的网能力相匹配。
本申请提供如下两种通知目标设备将APN-AMBR参数配置为与第一接入网的类型对应的第一APN-AMBR参数的实现方式。
实现方式一
将第一接入网的类型通知给目标设备,以使目标设备根据第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定第一接入网的类型对应的第一APN-AMBR参数。
实现方式二
将预配置的与第一接入网的类型对应的第一APN-AMBR参数通知给目标设备,以使目标设备将APN-AMBR参数配置为第一APN-AMBR参数。
第三方面,本申请提供一种通信装置,该通信装置包括处理器。可选地,还可以包括存储器和收发器,当其包括存储器时,存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,通信装置用于执行上述第一方面或第一方面中任一种方法、第二方面或第二方面中任一种方法。
第四方面,本申请提供一种通信装置,该通信装置用于实现上述第一方面或第一方面中的任意一种方法、第二方面或第二方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,通信装置的结构中包括处理单元和收发单元,这些单元可以执行上述方法示例中相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请提供一种计算机存储介质,计算机存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第一方面的任意可能的实现方式中的方法或第二方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面、第二方面、第一方面的任意可能的实现方式中的方法或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供了一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片系统的通信装置执行上述第一方面、第二方面、第一方面的任意可能的实现方式中的方法或第二方面的任意可能的实现方式中的方法。
附图说明
图1a为本申请提供的一种LTE网络和NAS网络的混合组网系统架构示意图;
图1b为本申请提供的一种LTE网络和NR网络的混合组网系统架构示意图;
图2a为本申请提供的一种参数确定方法流程示意图;
图2b为本申请提供的另一种参数确定方法流程示意图;
图3为本申请提供的另一种参数确定方法流程示意图;
图4为本申请提供的又一种参数确定方法流程示意图;
图5为本申请提供的另一种参数确定方法流程示意图;
图6为本申请提供的另一种参数确定方法流程示意图;
图7为本申请提供的另一种参数确定方法流程示意图;
图8为本申请提供的另一种参数确定方法流程示意图;
图9为本申请提供的一种通信装置的结构示意图;
图10为本申请提供的一种通信装置的结构示意图。
具体实施方式
图1a示例性示出了长期演进(long term evolution,LTE)网络和非独立组网(Non-tandalone,NAS)网络的混合组网系统架构示意图。如图1a所示,该系统架构包括HSS+,移动管理实体(mobility management entity,MME)、MME+、PGW、服务网关(service gateway,SGW)。该系统的核心网网元均为LTE网络中的核心网网元。接入网可以是第四代接入网演进的UMTS陆地无线接入网(evolved UMTS terrestrial radio access network,E-UTRAN),也可以是5G无线接入网5G-RAN,终端可通过E-UTRAN接入核心网中的MME,也可以通过5G-RAN接入核心网中的SGW。
HSS+,主要用于存储用户签约数据,例如APN-AMBR参数,位于用户签约的归属网。
MME和MME+,主要用于对用户进行移动性管理和EPS承载控制等,例如位置注册和临时标识分配、CONNECT状态下的切换、PDN连接以及承载的维护,创建、修改和删除等会话管理的功能。其中,MME+相比于MME还增加了NAS功能。
SGW,主要用于终端到核心网的用户面承载、终端空闲模式下的数据缓存、网络侧发起业务请求的功能、合法监听和分组数据路由和转发功能。SGW是连接不同第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的无线接入网(radio access network,RAN)的设备,是3GPP系统内部用户面的锚点(即用户从不同接入网接入时,业务数据都要经过SGW),一个用户在一个时刻只能有一个SGW。在不同RAT之间切换(包括回退)的场景下,SGW是没有改变的。例如,终端在3GPP的不同无线接入网的类型之间切换,比如在NR网络和LTE网络之间切换(Inter-RAT切换)时,eNB和MME都可能会变化,但是SGW没有改变。
PGW,用于负责分配用户IP地址、计费功能、分组包过滤、以及策略控制等功能,是3GPP接入网络的移动性锚点,用户在同一时刻能够接入多个PGW。
其中,HSS+与MME之间的接口为S6a接口,S6a接口主要用于用户接入认证、插入用户签约数据、对用户接入PDN进行授权,与非3GPP系统互联时对用户的移动性管理消息的认证等功能。MME与E-UTRAN之间的接口为S1-MME接口,即演进型基站eNodeB和MME之间的接口,用于传送用户数据和相应的用户平面控制帧。PGW与SGW之间的接口为S5/S8接口,可以分为控制平面和用户平面。S5接口是网络内部SGW和PGW间接口。该接口应能在SGW和PGW分设情况下,提供用户移动过程中的SGW重定位的功能。S8是跨公共陆地移动网络(public land mobile network,PLMN)的SGW和PGW之间的接口,应具备漫游情况下的S5接口功能。SGW与5G-RAN之间的接口和SGW与E-UTRAN之间的接口均为S1-U接口,即是eNodeB和SGW之间的接口,用于承载用户面隧道和切换时eNodeB之间的路径交换。MME与MME+之间的接口为S10接口,即MME之间的控制面接口,为MME(或MME+)再分布和MME(或MME+)之间信息的传输。SGW与MME之前的接口为S11接口,用于传输承载控制与会话控制等信息。
图1b示例性示出了LTE网络和NR网络的组网系统架构示意图。如图1b所示,终端在LTE网络下,通过接入E-UTRAN接入到核心网中的MME。终端在NR网络下,通过5G-RAN接入到核心网中的AMF。其中,LTE网络与NR网络的核心网相同,HSS+实体与统一数据管理(unified data management,UDM)实体合并,称为数据管理实体(或称为HSS+/UDM实体);策略控制实体可以是策略控制功能(policy control function,PCF)实体和策略与计费规则功能单元(policy and charging rules function,PCRF)实体进行功能合并,可统一称为 策略控制实体;会话管理功能(session management function,SMF)实体与PGW-C实体合并,统称为会话管理实体;UPF实体与PGW-U实体合并,统称为用户面实体;SGW实体也可以拆分为SGW-C实体和SGW-U实体。
其中,MME与AMF之间的接口为N26接口,N26接口可实现EPC和NG核心网之间的互通。网络支持N26接口是互通的可选向,N26接口支持上述图1a中S10接口支持的功能。
终端,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户设备(user equipment,UE)等。可通过无线空口接入4G接入网或5G接入网,并获得对应的服务,终端通过空口和基站交互信息,通过非接入层信令(Non-Access-Stratum,NAS)和核心网的移动性管理实体交互信息。
可以理解的是,上述实体或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。上述功能可划分出一个或多个服务,进一步,还可能会出现独立于网络功能存在的服务实体。
应理解,本申请实施例中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。
需要说明的是,本申请实施例中LTE接入网也称为4G接入网或者EPS网络,LTE接入网称为E-UTRAN,LTE接入网的核心网称为EPC网络。NR接入网也称为5G接入网或者5GS网络,NR接入网称为NR-RAN或者5G-RAN。
图2a示例性示出了本申请提供的一种参数确定方法流程示意图,该方法包括以下步骤:
步骤201,确定终端当前接入的第一接入网的类型。
在一种可能的实现方式中,接入网络的类型包括3G接入网、4G接入网或5G接入网。第一接入网的类型可以是3G接入网、4G接入网和5G接入网中的任一个。
步骤202,将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数。
其中,不同类型的接入网对应的不同APN-AMBR参数。对于一个PDU会话,基于每种接入网的类型,可以分别对应一个APN-AMBR参数,即不同类型的接入网的会话可以有不同的APN-AMBR参数。
从上述步骤201至步骤202可以看出,确定终端当前接入的第一接入网的类型,将APN-AMBR参数配置为与第一接入网的类型对应的第一APN-AMBR参数。如此,可使得终端使用的非保证比特率Non-GBR承载的最大带宽与终端当前接入的接入网的能力相匹配。
结合具体的场景进一步分析说明,示例性地,在确定终端的第一接入网类型为NR接 入网时,将当前APN-AMBR参数配置第一APN-AMBR,如此,终端接入5G接入网,可使用5G带宽的APN-AMBR建立会话,即可充分利用5G接入网的优势。
结合上述图2a,以如下情形一和情形二给出的示例,进一步说明参数的确定方法。
情形一
结合上述图1a,上述步骤201和步骤202可以由PGW执行。
在上述步骤201中,可以是在终端从第二接入网切换接入至第一接入网时,第一接入网中的接入网设备确定终端的第一接入网的类型,并向PGW发送第一接入网的类型。
在上述步骤202中,可以是PGW将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与第一接入网的类型对应的第一APN-AMBR参数,其中,第二APN-AMBR参数为与第二接入网的类型对应的APN-AMBR参数。
示例性地,若第一接入网为5G接入网,第二接入网为4G接入网,则第一接入网中的接入网设备为MME+。若第一接入网为4G接入网,第二接入网为5G接入网,则第一接入网中的接入网设备为MME。
情形二
结合上述图1b,上述步骤201和步骤202可以由会话管理实体(SMF/PGW)执行。
在上述步骤201中,可以是在终端从第二接入网切换接入至第一接入网时,第一接入网中的接入网设备确定终端的第一接入网的类型,并向会话管理实体发送第一接入网的类型。
若第一接入网为5G接入网,第二接入网为4G接入网,则第一接入网中的接入网设备为AMF。若第一接入网为4G接入网,第二接入网为5G接入网,则第一接入网中的接入网设备为MME。
在上述步骤202中,可以是会话管理实体将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与第一接入网的类型对应的第一APN-AMBR参数,其中,第二APN-AMBR参数为与第二接入网的类型对应的APN-AMBR参数。
基于上述情形一和情形二,结合具体的场景进一步对上述有益效果进行说明。若第二接入网的类型为LTE接入网,第一接入网的类型为NR接入网,第一APN-AMBR与第一接入网的类型对应,第二APN-AMBR与第二接入网的类型对应。由于5G接入网中数据处理能力比4G接入网中数据处理能力强,通常5G接入网配置的APN-AMBR大于4G接入网配置的APN-AMBR,即第一APN-AMBR大于第二APN-AMBR,在确定终端从LTE接入网接入至NR接入网时,将当前第二APN-AMBR参数修改为第一APN-AMBR,如此,终端接入5G接入网,可使用5G带宽的APN-AMBR建立会话,即可充分利用5G接入网的优势。若第二接入网的类型为NR接入网,第一接入网的类型为LTE接入网,可确定第一APN-AMBR小于第二APN-AMBR,在确定终端从NR接入网切换接入至LTE接入网,将当前第二APN-AMBR参数修改为第一APN-AMBR,如此,终端连接的接入网为4G接入网,可以提供的带宽较小,及时修改为使用4G带宽的APN-AMBR,有助于避免因核心网仍以5G的使用的带宽速率下发数据给基站,但终端使用4G的APN-AMBR进行通信,当基站能力不足时,会产生大量下行数据丢包的问题。
针对上述步骤202,本申请提供的如下两种将APN-AMBR参数配置为与第一接入网的类型对应的第一APN-AMBR参数的实现方式。
实现方式一
根据第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定第一接入网的类型对应的第一APN-AMBR参数,将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的第一APN-AMBR参数。
在一种可能的实现方式中,可以在接收第一接入网中的接入网设备在终端接入第一接入网的类型时,发送的第一接入网的类型。示例性地,第一接入网的接入网设备向PGW或者SMF/PGW发送第一接入网的类型。PGW或者SMF/PGW从预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定第一接入网的类型对应的第一APN-AMBR参数,并将当前APN-AMBR参数配置为第一APN-AMBR参数。
示例性地,PGW或者SMF/PGW可以预存有5G接入网与对应的APN-AMBR参数的关联关系、以及、4G接入网与对应的APN-AMBR参数的关联关系等。
实现方式二
接收第一接入网中的接入网设备发送的与第一接入网的类型对应的第一APN-AMBR,将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的第一APN-AMBR参数。
示例性地,第一接入网的接入网设备向PGW或者SMF/PGW发送第一APN-AMBR参数。PGW或者SMF/PGW可直接将当前APN-AMBR参数配置为第一APN-AMBR参数。
图2b示例性示出了本申请提供的另一种参数确定方法流程示意图,该方法包括以下步骤:
步骤211,确定终端接入第一接入网的类型。
步骤220,通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数。
其中,不同类型的接入网对应的APN-AMBR参数不同,目标设备为根据APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
结合上述图1a,目标设备为PGW。结合上述图1b,目标设备为SMF/PGW。
基于该方案,在确定终端当前接入的第一接入网的类型时,通知目标设备将APN-AMBR参数,配置为与第一接入网的类型对应的第一APN-AMBR参数,如此,可使得终端使用的非保证比特率Non-GBR承载的最大带宽与终端当前接入的网络能力相匹配。
在一种可能的实现方式中,确定终端从第二接入网切换接入至第一接入网,通知目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与第一接入网的类型对应的第一APN-AMBR参数,第二APN-AMBR为与第二接入网的类型对应的APN-AMBR参数。
结合具体的场景进一步分析说明,若第二接入网为LTE接入网,第一接入网为NR接入网,第一APN-AMBR与第一接入网的类型对应,第二APN-AMBR与第二接入网的类型对应,由于5G接入网中数据处理能力比4G接入网中数据处理能力强,通常5G接入网对应的APN-AMBR大于4G接入网对应的APN-AMBR,即第一APN-AMBR大于第二APN-AMBR,在确定终端从LTE接入网切换接入至NR接入网,通知目标设备将当前APN-AMBR参数从第二APN-AMBR修改为第一APN-AMBR,如此,终端接入5G接入网,及时修改为使用5G带宽的APN-AMBR建立会话,可充分利用5G接入网的优势。若第二接入网为NR接入网,第一接入网为LTE接入网,可确定第一APN-AMBR小于第二APN-AMBR,在确定终端从NR接入网切换接入至LTE接入网,通知目标设备将当前 APN-AMBR参数从第二APN-AMBR修改为第一APN-AMBR,如此,终端连接的接入网为4G接入网,可以提供的带宽较小,及时修改为使用4G带宽的APN-AMBR,如此,有助于避免因核心网仍以5G的使用的带宽速率下发数据给基站,但终端使用4G的APN-AMBR进行通信,当基站能力不足时,会产生大量下行数据丢包的问题。
针对上述步骤212,本申请提供如下两种确定通知目标设备将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数的实现方式。
实现方式一
将第一接入网的类型通知给目标设备,以使目标设备根据第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定第一接入网的类型对应的第一APN-AMBR参数。
实现方式二
将预配置的与第一接入网的类型对应的第一APN-AMBR参数通知给目标设备,以使目标设备将APN-AMBR参数配置为第一APN-AMBR参数。
结合上述图2b,本申请以接入网的类型包括NR接入网和LTE接入网为例说明。终端在4G和5G混合组网中,由于终端的移动性,可能会出现如下两种场景。
场景一,终端先接入4G接入网,之后从4G接入网切换到5G接入网。
在该场景下,第一接入网为NR接入网,第二接入网为LTE接入网。
场景二,终端先接入5G接入网,之后从5G接入网切换到4G接入网。
在该场景下,第一接入网为LTE接入网,第二接入网为NR接入网。
下面结合上述两种具体的场景,分情形详细说明参数的确定方法。
针对场景一,分如下三种情形说明。
情形A,上述步骤211至步骤212由MME+或AMF执行。
其中,在HSS+中存储有第一接入网与第一APN-AMBR参数的关联关系、第二接入网与第二APN-AMBR参数的关联关系。
下面分别结合上述图1a和图1b详细说明参数确定方法。
情形A-1、结合上述图1a,上述步骤211至步骤212由MME+执行,目标设备为PGW。
在该情形中,终端在接入第二接入网时的接入网设备为MME,在接入第一接入网的接入网设备为MME+。
如图3所示,为本申请提供的另一种参数确定方法流程示意图。首先,终端接入4G接入网,即终端通过E-UTRAN接入到核心网中的MME之后,执行步骤301至步骤302:
步骤301,MME向HSS+发送第一签约数据获取请求。
相应地,HSS+接收来自MME的第一签约数据获取请求。
其中,第一签约数据获取请求中包括的第二接入网的类型,即为LTE接入网。
步骤302,HSS+向MME发送第一签约响应。
其中,第一签约响应包括LTE对应的第二APN-AMBR参数。
当终端从4G接入网切换接入至5G接入网后,终端通过5G-RAN接入到核心网中的MME+之后,执行步骤303至步骤304:
步骤303,MME+向HSS+发送第二签约数据获取请求。
相应地,HSS+接收来自MME+的第二签约数据获取请求。
其中,第二签约数据获取请求中包括的第一接入网的类型,即为NR接入网。
步骤304,HSS+向MME+发送第二签约响应。
相应地,MME+接收来自HSS+的第二签约响应。
其中,第二签约响应包括NR对应的第一APN-AMBR参数。
在终端从4G接入网切换到5G接入网(inter切换)的流程中,包括步骤305至步骤307:
步骤305,MME向MME+发送第二接入网的类型。
其中,第二接入网的类型为LTE接入网。
相应地,MME+从MME接收第二接入网的类型。
在一种可能的实现方式中,MME向MME+发送终端上下文时,终端的上下文中包括第二接入网的类型(即LTE接入网),MME+可通过如下两种实现方式从MME获取终端上下文。
实现方式一,当MME确定终端切换接入至MME+时,MME主动向MME+发送终端上下文。
实现方式二,当MME+确定终端接入时,MME+向MME发送获取终端上下文请求,MME接收到终端上下文获取请求后,向MME+发送终端上下文。
步骤306,MME+确定本地的第一接入网的类型与从MME接收到的第二接入网的类型不同,确定终端从第二接入网的类型切换接入至第一接入网的类型。
步骤307,MME+通知PGW将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
从上述步骤301至步骤307可以看出,在终端接入4G接入网后,使用的是4G接入网下的APN-AMBR参数建立会话,可实现终端所使用的APN-AMBR参数与接入的网络相匹配。而且,当终端接入的接入网发生改变后,MME(切换前终端接入的接入网设备)向MME+(终端切换后接入的接入网设备)发送终端在接入MME的接入网的类型,使得MME+根据接收到的接入网的类型和本地的接入网的类型确定是否触发修改APN-AMBR参数,当终端从4G接入网切换到5G接入网后,MME+通知PGW将APN-AMBR参数从第二APN-AMBR参数(切换前)修改为第一APN-AMBR参数(切换后),如此,可使终端使用时NR网络下的APN-AMBR参数建立会话,进而可以充分利用5G的带宽服务。
情形A-2、结合上述图1b,上述步骤211至步骤212由AMF执行,目标设备为SMF。
在该情形中,终端在接入第二接入网时的接入网设备为MME,在接入第一接入网的接入网设备为AMF。
在HSS+中存储有第一接入网与第一APN-AMBR参数的关联关系、第二接入网与第二APN-AMBR参数的关联关系。如图4所示,为本申请提供的又一种参数确定方法流程示意图。终端接入4G接入网,即终端通过E-UTRAN接入到核心网中的MME之后,可执行上述图3中的步骤301至步骤302,当终端从4G接入网切换到5G接入网后,终端通过5G-RAN接入到核心网中的AMF之后执行步骤401至步骤403:
步骤401,AMF通知SMF终端接入第一接入网。
相应地,SMF接收AMF通知的终端接入第一接入网。
步骤402,SMF向HSS+/UDM发送终端的第二签约数据获取请求。
相应地,HSS+/UDM接收来自SMF的第二签约数据获取请求。
其中,第二签约数据获取请求中包括的第一接入网的类型为NR接入网。
步骤403,HSS+/UDM向SMF发送第二签约响应。
相应地,SMF接收来自HSS+/UDM的第二签约响应。
其中,第二签约响应中包括NR对应的第一APN-AMBR参数。
在终端从4G接入网切换到5G接入网(inter切换)的流程中,执行步骤403至步骤406:
步骤404,MME向AMF发送第二接入网的类型。
此处,第二接入网的类型为LTE接入网。
相应地,AMF接收来自MME的第二接入网的类型。
步骤405,AMF确定本地的第一接入网的类型与接收到的第二接入网的类型不同,确定从第二接入网的类型切换接入至第一接入网的类型。
上述步骤401和步骤404的顺序是一种示例,可以先执行步骤401至步骤403,后执行步骤404;也可以先执行步骤404后执行步骤401至步骤403。
步骤406,AMF通知SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
步骤407,SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
从上述步骤301、步骤302和步骤401至步骤407可以看出,在终端接入4G接入网后,使用的是LTE接入网下的APN-AMBR参数建立会话,可以使得终端所使用的APN-AMBR参数与接入的网络能力相匹配。当发生Inter切换时,使用核心网中MME和AMF之间相互传递终端前一次接入网的类型,作为终端当前接入的实体是否触发APN-AMBR参数修改依据,若需要触发修改,则及时修改APN-AMBR参数可保证终端所使用的带宽与当前接入的网络能力相匹配。当从4G接入网切换接入至5G接入网时,通过及时修改APN-AMBR参数,有助于充分利用5G接入网的带宽。
情形B、上述步骤211和步骤212由HSS+/UDM执行。
其中,HSS+/UDM中存储有第一接入网与第一APN-AMBR参数的关联关系、第二接入网与第二APN-AMBR参数的关联关系。也可以理解为,数据管理实体存储有相同终端接入不同接入网的类型对应的不同APN-AMBR参数。
下面针对情形B分别结合上述图1a和图1b详细说明参数确定方法。
情形B-1、结合上述图1a,上述步骤211至步骤212由HSS+/UDM执行,目标设备为PGW。
在该情形中,终端在接入第二接入网时的接入网设备为MME,在接入第一接入网的接入网设备为MME+。
如图5所示,为本申请提供的另一种参数确定方法。首先,终端接入4G接入网,即终端通过E-UTRAN接入到MME之后,可参见上述图3,执行上述步骤301至步骤302,当终端从4G接入网切换接入至5G接入网后,终端通过5G-RAN接入到MME+之后,可参见上述图3中步骤303至步骤304,在终端从4G接入网切换到5G接入网(inter切换)的流程中,可包括步骤501至步骤502:
步骤501,HSS+确定第一接入网的类型与第二接入网的类型不同,则确定终端从第二接入网的类型切换接入至第一接入网的类型。
一种可能的实现方式中,第一接入网的类型为MME向HSS+发送第一签约数据获取请求时携带的,第二接入网的类型为MME+向HSS+发送第二签约数据获取请求时携带的。
步骤502,HSS+通过MME+通知PGW将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
在一种可能的实现方式中,HSS+可以将通知PGW修改APN-AMBR参数的指示携带在步骤304的第二签约响应中。例如,可以是第二签约响应中的一个信元,可指示出接入网的类型变更。也可以理解为,图5中的步骤501可在上述图3的步骤303和步骤304之间执行、并省去步骤502。
在一种可能的实现方式中,MME+可以向PGW直接发送第一APN-AMBR参数。在另一种可能的实现方式中,MME+可以向PGW发送第一接入网的类型。
步骤503,PGW将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
基于图5所示的方案,由数据管理实体根据终端的接入网的类型下发特定的签约APN-AMBR参数,可以使得终端所使用的APN-AMBR参数与接入的网能力相匹配。而且,数据管理实体根据第一接入网的类型和第二接入网的类型,向MME+通知PGW将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数,即终端从4G接入网切换到5G接入网后,终端使用时NR网络对应的APN-AMBR参数建立会话,如此,可以充分利用5G的带宽服务。
情形B-2、结合上述图1b,上述步骤211至步骤212由AMF执行,目标设备为SMF。
在该情形中,终端在接入第二接入网时的接入网设备为MME,在接入第一接入网的接入网设备为AMF。
如图6所示,为本申请提供的另一种参数确定方法。终端接入4G接入网,即终端通过E-UTRAN接入到MME之后,可执行上述图3中的步骤301至步骤302,当终端从4G接入网切换接入至5G接入网后,终端通过5G-RAN接入到核心网中的AMF之后执行步骤601至步骤604:
步骤601,AMF通知SMF终端接入第一接入网。
相应地,SMF接收AMF通知的终端接入第一接入网。
其中,第一接入网为NR接入网。
步骤602,SMF向HSS+/UDM发送终端的第二签约数据获取请求。
相应地,HSS+/UDM接收来自SMF的第二签约数据获取请求。
其中,第二签约数据获取请求中包括的第一接入网的类型,即为NR接入网。
步骤603,HSS+/UDM向SMF发送第二签约响应。
其中,第二签约响应包括NR对应的第一APN-AMBR参数。
在终端从4G接入网切换到5G接入网(inter切换)的流程中,包括步骤604至步骤606:
步骤604,HSS+/UDM确定第一接入网的类型与第二接入网的类型不同,则确定终端从第二接入网的类型切换接入至第一接入网的类型。
步骤605,HSS+/UDM通过AMF通知SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
步骤606,SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
在一种可能的实现方式中,HSS+/UDM通知SMF修改APN-AMBR参数的指示可携带在步骤603的第二签约响应中。例如,可以是第二签约响应中的一个信元,可指示出接入网的类型变更。也可以理解为,步骤603和步骤604一起执行,省去步骤605。
基于图6所示的方案,由数据管理实体根据终端的接入网的类型下发特定的签约 APN-AMBR参数,可以使得终端所使用的APN-AMBR参数与接入的网络能力相匹配。而且,数据管理实体根据第一接入网的类型和第二接入网的类型,通过AMF通知SMF将APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数,即终端从4G网切换到5G网后,终端使用时NR网对应的APN-AMBR参数建立会话,如此,可以充分利用5G的带宽服务。
情形C,上述步骤211和步骤212由终端执行。
下面针对情形C分别结合上述图1a和图1b详细说明参数确定方法。
情形C-1、结合上述图1a,目标设备为PGW。
终端接入4G接入网,即终端通过E-UTRAN接入到核心网的MME之后,执行上述图3中的步骤301至步骤302,MME获取到了LTE对应的第二APN-AMBR参数,当终端从4G接入网切换到5G接入网后,终端通过5G-RAN接入到核心网的MME+,可执行上述图3的步骤303至步骤304,MME+获取到了NR对应的第一APN-AMBR参数。终端先接入4G接入网,之后从4G接入网切换到5G接入网,终端可以检测到从4G接入网切换到了5G接入网,如图7所示,为本申请提供的另一种参数确定方法流程示意图。该方法包括以下步骤:
步骤701,终端检测到从第二接入网切换接入至第一接入网。
此处,第一接入网为NR接入网,第二接入网为LTE接入网。
在一种可能的实现方式中,终端确定切换之前的接入网为LTE接入网,切换后的接入网为NR接入网,则说明终端检测到从第二接入网切换接入至第一接入网。
步骤702,终端通过MME+通知PGW将APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
在一种可能的实现方式中,该步骤中的通知可以携带第一APN-AMBR参数和/或第一接入网的类型。
步骤703,PGW将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
从上述步骤701至步骤703可以看出,终端在感知到接入网的类型发生变化后,主动发起修改APN-AMBR参数的流程,以实现终端所使用的APN-AMBR参数与当前接入的网络能力相匹配。
情形C-2、结合上述图1b,目标设备为SMF。
终端接入4G接入网,即终端通过E-UTRAN接入到核心网的MME之后,执行上述图3中的步骤301至步骤302,MME获取到了LTE对应的第二APN-AMBR参数,当终端从4G接入网切换到5G接入网后,终端通过5G-RAN接入到核心网中的AMF之后,AMF通知SMF终端已接入该核心网,可执行上述图4的步骤401至步骤403,SMF从HSS+/UDM获取到了NR对应的第一APN-AMBR参数。终端先接入4G接入网,之后从4G接入网切换到5G接入网,终端可以检测到从4G接入网切换到了5G接入网,如图8所示,为本申请提供的另一种参数确定方法流程示意图。该方法包括以下步骤:
步骤801,终端检测到从第二接入网切换接入至第一接入网。
该步骤与上述步骤701的实现方式相同,此处不再赘述。
步骤802,终端通过AMF通知SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
在一种可能的实现方式中,该步骤中的通知可以携带第一APN-AMBR参数和/或第一 接入网的类型。
步骤803,SMF将当前APN-AMBR参数从第二APN-AMBR参数修改为第一APN-AMBR参数。
基于图8所示的方法,数据管理实体根据终端的接入网的类型下发特定的签约APN-AMBR参数,并在终端感知到接入网的类型发生变化后,主动发起修改APN-AMBR参数的流程,以实现终端所使用的APN-AMBR参数与当前接入的网相匹配。而且,当从4G网切换到5G网之后,通过修改APN-AMBR参数,可以充分利用5G网的优势。
针对场景二,也可以分三种情形。
情形D,上述步骤211至步骤212由MME执行,目标设备为PGW。
情形D-1、结合上述图1a,终端在接入第二接入网时的接入网设备为MME+,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图3的介绍,具体可将图3中的MME用MME+替换,MME+用MME替换,此处不再赘述。
情形D-2、结合上述图1b,上述步骤211至步骤212由AMF执行,目标设备为SMF。
在该情形中,终端在接入第二接入网时的接入网设备为AMF,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图4中的介绍,具体可将图4中的MME用AMF替换,AMF用MME替换,此处不再赘述。
情形E,上述步骤211至步骤212由HSS+/UDM执行,目标设备为PGW。
情形E-1、结合上述图1a,终端在接入第二接入网时的接入网设备为MME+,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图5的介绍,具体可将图5中的MME用MME+替换,MME+用MME替换,此处不再赘述。
情形E-2、结合上述图1b,终端在接入第二接入网时的接入网设备为AMF,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图6中的介绍,具体可将图6中的MME用AMF替换,AMF用MME替换,此处不再赘述。
情形F,上述步骤211和步骤212由终端执行,目标设备为PGW。
情形F-1、结合上述图1a,终端在接入第二接入网时的接入网设备为MME+,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图7的介绍,具体可将图7中的MME用MME+替换,MME+用MME替换,此处不再赘述。
情形F-2、结合上述图1b,终端在接入第二接入网时的接入网设备为AMF,在接入第一接入网的接入网设备为MME。
详细的参数确定过程可参见上述图8中的介绍,具体可将图8中的MME用AMF替换,AMF用MME替换,此处不再赘述。
基于上述内容和相同构思,本申请提供一种通信装置900,用于执行上述方法中的任一个方案。图9示例性示出了本申请提供的一种通信装置的结构示意图,如图9所示,通信装置900包括处理器901和收发器902。可选地,还包括存储器903;其中,处理器901、收发器902和存储器903可通过总线相互连接。该示例中的通信装置900可以执行上述图 2a应执行的方案。该通信装置900也可以上述图1a中的PGW,也可以是上述图1b中的SMF/PGW。该示例中的通信装置900也可以执行上述图2b至图8中任一个通信装置对应执行的方案。该通信装置900也可以上述图1a中的MME+、MME、HSS+和UE中的任一个,也可以是上述图1b中的AMF、MME、HSS+/UDM和UE中的任一个。
存储器903可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器903还可以包括上述种类的存储器的组合。
处理器901可以是中央处理器(central processing unit,CPU),网处理器(network processor,NP)或者CPU和NP的组合。处理器901还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
可选地,存储器903还可以用于存储程序指令,处理器901调用该存储器903中存储的程序指令,可以执行上述方案中所示实施例中的一个或多个步骤,或其中可选的实施方式,使得通信装置900实现上述方法中通信装置的步骤。
在第一种应用中
处理器901用于根据执行存储器存储的指令,并控制收发器902进行信号接收和信号发送,当处理器901执行存储器存储的指令时,通信装置900中的处理器901用于确定终端当前接入的第一接入网的类型,以及,将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;其中,不同类型的接入网对应的不同APN-AMBR参数。
一种可能的实施方式中,所述处理器901,具体用于根据所述第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定所述第一接入网的类型对应的第一APN-AMBR参数;将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的所述第一APN-AMBR参数。
一种可能的实施方式中,所述收发器902,用于接收所述第一接入网中的接入网设备发送的与所述第一接入网的类型对应的所述第一APN-AMBR。所述处理器901,具体用于将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的所述第一APN-AMBR参数。
一种可能的实施方式中,所述收发器902,用于接收所述第一接入网中的接入网设备在所述终端接入所述第一接入网的类型时,发送的所述第一接入网的类型。
在第二种应用中
处理器901用于根据执行存储器存储的指令,并控制收发器902进行信号接收和信号发送,当处理器901执行存储器存储的指令时,通信装置900中的处理器901用于确定终端接入第一接入网的类型,收发器902用于通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;其中,不同类型的接入网对应的APN-AMBR参数不同,所述目标设备为根据APN-AMBR参数控制终端Non-GBR承载的 最大带宽的设备。
在一种可能的实现方式中,所述处理器901,具体用于确定所述终端从第二接入网的类型切换接入至所述第一接入网的类型;所述收发器902,具体用于通知所述目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与所述第一接入网的类型对应的第一APN-AMBR参数,所述第二APN-AMBR为与所述第二接入网的类型对应的APN-AMBR参数。
在一种可能的实现方式中,所述收发器901,具体用于将所述第一接入网的类型通知给所述目标设备,以使所述目标设备根据所述第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定所述第一接入网的类型对应的第一APN-AMBR参数。
在一种可能的实现方式中,所述收发器902,具体用于将预配置的与所述第一接入网的类型对应的第一APN-AMBR参数通知给所述目标设备,以使所述目标设备将APN-AMBR参数配置为所述第一APN-AMBR参数。
基于上述内容和相同构思,本申请提供一种通信装置1000,用于执行上述方法中的通信装置的任一个方案。图10示例性示出了本申请提供的一种通信装置的结构示意图,如图10所示,通信装置1000包括处理单元1001和收发单元1002。该示例中的通信装置1000可以执行上述图2a应执行的方案。该通信装置1000也可以上述图1a中的PGW,也可以是上述图1b中的SMF/PGW。该示例中的通信装置1000也可以执行上述图2b至图8中任一个通信装置对应执行的方案。该通信装置1000也可以上述图1a中的MME+、MME、HSS+和UE中的任一个,也可以是上述图1b中的AMF、MME、HSS+/UDM和UE中的任一个。
在第一种应用中
处理单元1001,用于确定终端当前接入的第一接入网的类型,以及,将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;其中,不同类型的接入网对应的不同APN-AMBR参数。
在第二种应用中
处理单元1001,用于确定终端接入第一接入网的类型,收发单元1002用于通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
其中,不同类型的接入网对应的APN-AMBR参数不同,所述目标设备为根据APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
应理解,以上通信装置的各单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请中,图10涉及到的处理单元1000可以由上述图9的处理器901实现,收发单元1002可以由上述图9的收发器902实现。也就是说,本申请中处理单元1001可以执行上述图9的处理器901所执行的方案,收发器902可以执行上述图9的收发器902所执行的方案,其余内容可以参见上述内容,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件或者其组合来实现、当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个 或多个指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。指令可以存储在计算机存储介质中,或者从一个计算机存储介质向另一个计算机存储介质传输,例如,指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、双绞线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机存储介质可以是计算机能够存取的任何介质或者是包含一个或多个介质集成的服务器、数据中心等数据存储设备。介质可以是磁性介质,(例如,软盘、硬盘、磁带、磁光盘(MO)等)、光介质(例如光盘)、或者半导体介质(例如ROM、EPROM、EEPROM、固态硬盘(solid state disk,SSD))等。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

Claims (34)

  1. 一种参数确定方法,其特征在于,包括:
    确定终端当前接入的第一接入网的类型;
    将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同APN-AMBR参数。
  2. 如权利要求1所述的方法,其特征在于,所述确定终端当前接入的第一接入网的类型,包括:
    在所述终端从第二接入网切换接入至所述第一接入网时,确定所述第一接入网的类型;
    所述将用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与所述第一接入网的类型对应的第一APN-AMBR参数,其中,所述第二APN-AMBR参数为与所述第二接入网的类型对应的APN-AMBR参数。
  3. 如权利要求1或2所述的方法,其特征在于,所述将APN-AMBR参数配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    根据所述第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定所述第一接入网的类型对应的第一APN-AMBR参数;
    将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的所述第一APN-AMBR参数。
  4. 如权利要求1或2所述的方法,其特征在于,所述将APN-AMBR参数配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    接收所述第一接入网中的接入网设备发送的与所述第一接入网的类型对应的所述第一APN-AMBR;
    将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的所述第一APN-AMBR参数。
  5. 如权利要求1~4任一所述的方法,其特征在于,所述确定终端当前接入的第一接入网的类型,包括:
    接收所述第一接入网中的接入网设备在所述终端接入所述第一接入网时,发送的所述第一接入网的类型。
  6. 一种参数确定方法,其特征在于,包括:
    确定终端接入第一接入网的类型;
    通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同的APN-AMBR参数,所述目标设备为根据所述APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
  7. 如权利要求6所述的方法,其特征在于,所述确定终端接入第一接入网的类型,包括:
    确定所述终端从第二接入网切换接入至所述第一接入网;
    通知目标设备将APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    通知所述目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与所述第一接入网的类型对应的第一APN-AMBR参数,所述第二APN-AMBR为与所述第二接入网的类型对应的APN-AMBR参数。
  8. 如权利要求6或7所述的方法,其特征在于,所述通知目标设备将APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    将所述第一接入网的类型通知给所述目标设备,以使所述目标设备根据所述第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定所述第一接入网的类型对应的第一APN-AMBR参数。
  9. 如权利要求6或7所述的方法,其特征在于,所述通知目标设备将APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数,包括:
    将预配置的与所述第一接入网的类型对应的第一APN-AMBR参数通知给所述目标设备,以使所述目标设备将APN-AMBR参数配置为所述第一APN-AMBR参数。
  10. 一种通信装置,其特征在于,包括处理器和收发器;
    所述处理器,用于通过所述收发器确定终端当前接入的第一接入网的类型,以及,将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同APN-AMBR参数。
  11. 如权利要求10所述的通信装置,其特征在于,所述处理器,具体用于:
    在所述终端通过所述收发器从第二接入网切换接入至所述第一接入网时,确定所述第一接入网的类型;以及将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与所述第一接入网的类型对应的第一APN-AMBR参数,其中,所述第二APN-AMBR参数为与所述第二接入网的类型对应的APN-AMBR参数。
  12. 如权利要求10或11所述的通信装置,其特征在于,所述处理器,具体用于:
    根据所述第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定所述第一接入网的类型对应的第一APN-AMBR参数;将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的所述第一APN-AMBR参数。
  13. 如权利要求10或11所述的通信装置,其特征在于,所述收发器,还用于接收所述第一接入网中的接入网设备发送的与所述第一接入网的类型对应的所述第一APN-AMBR;
    所述处理器,具体用于将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的所述第一APN-AMBR参数。
  14. 如权利要求10~13任一所述的通信装置,其特征在于,所述收发器,还用于接收所述第一接入网中的接入网设备在所述终端接入所述第一接入网时,发送的所述第一接入网的类型。
  15. 一种通信装置,其特征在于,包括:
    处理器,用于确定终端接入第一接入网的类型;
    收发器,用于通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽 的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同的APN-AMBR参数,所述目标设备为根据所述APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
  16. 如权利要求15所述的通信装置,其特征在于,所述处理器,具体用于:
    确定所述终端从第二接入网切换接入至所述第一接入网;
    所述收发器,具体用于:
    通知所述目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与所述第一接入网的类型对应的第一APN-AMBR参数,所述第二APN-AMBR参数为与所述第二接入网的类型对应的APN-AMBR参数。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述收发器,具体用于:
    将所述第一接入网的类型通知给所述目标设备,以使所述目标设备根据所述第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定所述第一接入网的类型对应的第一APN-AMBR参数。
  18. 如权利要求15或16所述的通信装置,其特征在于,所述收发器,具体用于:
    将预配置的与所述第一接入网的类型对应的第一APN-AMBR参数通知给所述目标设备,以使所述目标设备将APN-AMBR参数配置为所述第一APN-AMBR参数。
  19. 一种通信装置,其特征在于,包括处理单元和收发单元;
    所述处理单元,用于通过所述收发单元确定终端当前接入的第一接入网的类型,以及,将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同APN-AMBR参数。
  20. 如权利要求19所述的通信装置,其特征在于,所述处理单元,具体用于:
    在所述终端通过所述收发单元从第二接入网切换接入至所述第一接入网时,确定所述第一接入网的类型;以及将当前用于控制终端Non-GBR承载的最大带宽的第二APN-AMBR参数,修改为与所述第一接入网的类型对应的第一APN-AMBR参数,其中,所述第二APN-AMBR参数为与所述第二接入网的类型对应的APN-AMBR参数。
  21. 如权利要求19或20所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据所述第一接入网的类型、预存的不同接入网的类型与不同APN-AMBR参数的关联关系,确定所述第一接入网的类型对应的第一APN-AMBR参数;将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为确定的所述第一APN-AMBR参数。
  22. 如权利要求19或20所述的通信装置,其特征在于,所述收发单元,还用于接收所述第一接入网中的接入网设备发送的与所述第一接入网的类型对应的所述第一APN-AMBR;
    所述处理单元,具体用于将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数,配置为接收到的所述第一APN-AMBR参数。
  23. 如权利要求19~22任一所述的通信装置,其特征在于,所述收发单元,还用于接收所述第一接入网中的接入网设备在所述终端接入所述第一接入网时,发送的所述第一接入网的类型。
  24. 一种通信装置,其特征在于,包括处理单元和收发单元:
    处理单元,用于确定终端接入第一接入网的类型;
    收发单元,用于通知目标设备将用于控制终端非保证比特率Non-GBR承载的最大带宽的接入点名称-聚合最大比特率APN-AMBR参数,配置为与所述第一接入网的类型对应的第一APN-AMBR参数;
    其中,不同类型的接入网对应不同的APN-AMBR参数,所述目标设备为根据所述APN-AMBR参数控制终端Non-GBR承载的最大带宽的设备。
  25. 如权利要求24所述的通信装置,其特征在于,所述处理单元,具体用于:
    确定所述终端从第二接入网切换接入至所述第一接入网;
    所述收发单元,具体用于:
    通知所述目标设备将当前用于控制终端Non-GBR承载的最大带宽的APN-AMBR参数从第二APN-AMBR参数修改为与所述第一接入网的类型对应的第一APN-AMBR参数,所述第二APN-AMBR参数为与所述第二接入网的类型对应的APN-AMBR参数。
  26. 如权利要求24或25所述的通信装置,其特征在于,所述收发单元,具体用于:
    将所述第一接入网的类型通知给所述目标设备,以使所述目标设备根据所述第一接入网的类型,在预存的不同接入网的类型与不同APN-AMBR参数的关联关系中确定所述第一接入网的类型对应的第一APN-AMBR参数。
  27. 如权利要求24或25所述的通信装置,其特征在于,所述收发单元,具体用于:
    将预配置的与所述第一接入网的类型对应的第一APN-AMBR参数通知给所述目标设备,以使所述目标设备将APN-AMBR参数配置为所述第一APN-AMBR参数。
  28. 一种确定参数的装置,其特征在于,包括收发器和至少一个处理器,所述收发器和所述至少一个处理器通过线路互联,所述收发器用于执行权利要求1到5任一项所述的方法中,在所述装置侧进行消息接收和发送的操作;
    所述至少一个处理器调用指令,执行权利要求1到5任一项所述的方法中,在所述装置侧进行的消息处理或控制操作。
  29. 一种确定参数的装置,其特征在于,包括收发器和至少一个处理器,所述收发器和所述至少一个处理器通过线路互联,所述收发器用于执行权利要求6到9任一项所述的方法中,在所述装置侧进行消息接收和发送的操作;
    所述至少一个处理器调用指令,执行权利要求6到9任一项所述的方法中,在所述装置侧进行的消息处理或控制操作。
  30. 一种确定参数的装置,用于执行1至5任一项所述的方法。
  31. 一种确定参数的装置,用于执行6至9任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行如权利要求1至9任一项所述的方法。
  33. 一种包含指令的计算机程序产品,其特征在于,当其在通信装置上运行时,使得所述通信装置执行如权利要求1至9任一项所述的方法。
  34. 一种通信系统,其特征在于,包括如权利要求10至14中任一项所述的通信装置,和,如权利要求15至18中任一项所述的通信装置。
PCT/CN2019/128824 2018-12-26 2019-12-26 一种参数确定方法、通信装置及存储介质 WO2020135621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811603264.0A CN111372267B (zh) 2018-12-26 2018-12-26 一种参数确定方法、通信装置及存储介质
CN201811603264.0 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020135621A1 true WO2020135621A1 (zh) 2020-07-02

Family

ID=71126900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128824 WO2020135621A1 (zh) 2018-12-26 2019-12-26 一种参数确定方法、通信装置及存储介质

Country Status (2)

Country Link
CN (1) CN111372267B (zh)
WO (1) WO2020135621A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124778A (zh) * 2008-06-18 2011-07-13 捷讯研究有限公司 用于第三代合作伙伴计划多个网络间服务质量连续性的机制
CN104902520A (zh) * 2014-03-07 2015-09-09 电信科学技术研究院 一种apn-ambr的控制方法和装置
US20170332421A1 (en) * 2016-05-12 2017-11-16 Convida Wireless, Llc Connecting to Virtualized Mobile Core Networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498657B2 (en) * 2017-03-10 2019-12-03 Verizon Patent And Licensing Inc. System and method for account level maximum bit rate enforcement
CN108811000B (zh) * 2017-05-05 2021-02-26 华为技术有限公司 一种参数的确定方法及通信实体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124778A (zh) * 2008-06-18 2011-07-13 捷讯研究有限公司 用于第三代合作伙伴计划多个网络间服务质量连续性的机制
CN104902520A (zh) * 2014-03-07 2015-09-09 电信科学技术研究院 一种apn-ambr的控制方法和装置
US20170332421A1 (en) * 2016-05-12 2017-11-16 Convida Wireless, Llc Connecting to Virtualized Mobile Core Networks

Also Published As

Publication number Publication date
CN111372267A (zh) 2020-07-03
CN111372267B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US12114219B2 (en) Method for moving between communications systems and apparatus
EP3641396B1 (en) Session management method, method for interworking between heterogeneous systems, and network device
US11917449B2 (en) Communication method and device and storage medium
US9813865B2 (en) Network-initiated control method and apparatus for providing proximity service
WO2017167203A1 (zh) 一种服务质量的控制方法和装置
WO2020147761A1 (zh) 一种pdu会话切换方法及其装置
US8761107B2 (en) Method and apparatus for maintaining traffic continuity
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
US10993146B2 (en) User equipment maximum bandwidth control method and device, computer storage medium
CN109673060B (zh) 一种通信方法及装置
WO2018000644A1 (zh) 多连接通信方法和设备
EP2869626A1 (en) Congestion state reporting method and access network device
WO2022110214A1 (zh) 通信方法及装置
WO2020001257A1 (zh) 一种数据传输方法及装置
US12133096B2 (en) Data transmission method, apparatus, and device
WO2013170673A1 (zh) 一种接入方法、基站、接入点和用户设备
US20230189054A1 (en) Relay communication method, and communication apparatus
US12004021B2 (en) Communications method and apparatus
EP4027691A1 (en) Service flow transmission control method, device, and system
US10701591B2 (en) Data transmission method, apparatus, and system
WO2020001256A1 (zh) 一种数据传输方法及装置
WO2022068771A1 (zh) 一种通信方法及通信装置
WO2020135621A1 (zh) 一种参数确定方法、通信装置及存储介质
WO2021088741A1 (zh) 一种通信方法及其装置
WO2014183276A1 (zh) 一种无线网络的分流方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903007

Country of ref document: EP

Kind code of ref document: A1