[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020130184A1 - 이차전지의 셀 스택 제조장치 - Google Patents

이차전지의 셀 스택 제조장치 Download PDF

Info

Publication number
WO2020130184A1
WO2020130184A1 PCT/KR2018/016255 KR2018016255W WO2020130184A1 WO 2020130184 A1 WO2020130184 A1 WO 2020130184A1 KR 2018016255 W KR2018016255 W KR 2018016255W WO 2020130184 A1 WO2020130184 A1 WO 2020130184A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell stack
separator
secondary battery
stacked
manufacturing apparatus
Prior art date
Application number
PCT/KR2018/016255
Other languages
English (en)
French (fr)
Inventor
김용성
김성철
이나라
한용훈
김경섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2018/016255 priority Critical patent/WO2020130184A1/ko
Priority to CN201880100340.8A priority patent/CN113196537B/zh
Priority to KR1020217022801A priority patent/KR102676855B1/ko
Publication of WO2020130184A1 publication Critical patent/WO2020130184A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cell stack manufacturing apparatus of a secondary battery capable of manufacturing a cell stack with high speed and high precision.
  • a secondary battery is a device that converts and stores electrical energy into chemical energy, and then generates electricity when needed. Both charging and discharging occur at one electrode, and an anode (-node) and a cathode (cathode) Silver is distinguished based on the discharge reaction.
  • the secondary battery includes a positive electrode plate and a negative electrode plate coated with an active material on a current collector, a separator separating the positive electrode plate and the negative electrode plate, an electrolyte solution that transfers ions through the separator, a case accommodating the positive electrode plate, the separator and the negative electrode plate, and a positive electrode plate. And lead tabs connected to the negative electrode plate and drawn out.
  • the cell of the secondary battery has a winding method and a folding method. And, it can be manufactured by a stacking (stacking) method.
  • a positive electrode plate and a negative electrode plate are placed on a separator and rolled to form a jelly roll.
  • the positive electrode plate and the negative electrode plate and the separator increase, defects due to misalignment may occur. Is used.
  • the stacking method is produced in the form of lamination in which a positive electrode plate or a negative electrode plate is adhered to a separator to a certain size, and then lamination is stacked to form a cell stack in which a positive electrode plate, a separator plate, a negative plate plate, and a separator are alternately inserted. .
  • the stacking method can flexibly control the number of stacked layers and increase the density of the electrode relative to the volume.
  • the stacking method has a problem of low productivity and high production cost as a process of separately laminating an electrode body of lamination type is added.
  • Korean Registered Patent No. 313119 discloses a group of electrodes of a secondary battery that is folded in a zigzag state to form a stacked structure in a state where the positive electrode, the negative electrode, and the separator are overlapped.
  • supply means for continuously supplying a sheet-shaped separator in the longitudinal direction; Fixing means positioned at a position spaced apart from the supply means along the supply direction of the separator to fix the electrode plate stack formed by alternately stacking the separator and the electrode plate; After contacting the electrode plate on one surface of the separator positioned between the supply means and the fixing means, the electrode plate is moved so that the other surface of the separator in contact with the electrode plate is in contact with the electrode plate stack fixed to the fixing means.
  • an electrode plate stacking device for a secondary battery comprising: a transfer means for additionally stacking the separator and the electrode plate on the electrode plate stack.
  • the Z-stacking method in which the negative electrode plate and the positive electrode plate are alternately stacked while folding the separator in a zigzag manner has been widely used.
  • the gap between the negative electrode plate and the positive electrode plate must be kept constant, and after the cell stack is manufactured, the stacking state is checked, and if it is defective, the entire cell stack must be discarded.
  • the moving means horizontally moves the electrode plate to contact one surface of the separator
  • the moving means rotates to move the other surface of the separator to the cell stack fixed to the side of the fixing means, periodically during the process.
  • the tension of the separator is variable. Therefore, the production efficiency may be deteriorated because the separation membrane may be torn at the time when the separation membrane is pulled tightly during the process, and the electrode plate cannot be stacked at the exact position of the separation membrane at the time when the separation membrane is loosened during the process. There is a problem difficult to guarantee.
  • the present invention has been devised to solve the above-described problems of the prior art, and an object thereof is to provide a cell stack manufacturing apparatus of a secondary battery capable of determining and responding to defects during cell stack manufacturing.
  • an object of the present invention is to provide an apparatus for manufacturing a cell stack of a secondary battery capable of uniformly maintaining the tension of a separator during cell stack manufacturing.
  • a stacking table installed to be reciprocated in the horizontal direction and the vertical direction;
  • a separator supply unit positioned on the stacked table and supplying a separator on the stacked table;
  • a first multi head that is provided on one side of the stacked table and stacks one by one by arranging the positions of the electrode plates on the separator located on the stacked table moved to one side;
  • a second multi-head that is provided on the other side of the lamination table and arranges the position of the electrode plate on the separation membrane located on the lamination table moved to the other side to stack one by one;
  • And provided between the first and second multi-heads each time the stacking table moves between the first and second multi-heads, an image of a cell stack stacked on the stacking table is photographed, and image information of the cell stack is obtained.
  • a defect inspection unit that determines whether or not the defect is based.
  • An apparatus for manufacturing a cell stack of a secondary battery includes: a stacking table installed to be reciprocated in a horizontal direction and a vertical direction; A separator supply unit positioned on the stacked table and supplying a separator on the stacked table; A first multi head that is provided on one side of the stacked table and stacks one by one by arranging the positions of the electrode plates on the separator located on the stacked table moved to one side; And a second multi-head (second multi head) is provided on the other side of the stacked table, and stacked one by one by aligning the position of the electrode plate on the separator located on the stacked table moved to the other side; , A plurality of rollers for guiding the separation membrane, and a rotating portion which is located between the rollers and the lamination table, rotates about the center, is installed at both ends of the rotation portion, and guides the separation membrane between the lamination tables from the rollers. It includes a pair of tension adjusting rollers, and the rotating portion is periodically rotated in the
  • the electrode plates are alternately stacked on the separator, and the stacking table moves between the first and second electrode plate supply units.
  • the defect inspection unit can take an image of the cell stack stacked on the stacking table.
  • the cell stack manufacturing apparatus of the secondary battery according to the present invention by rotating the rotating bar provided with a pair of tension adjusting rollers for guiding the separation membrane in the forward and reverse directions according to the distance from the stacking table, stacked during cell stack manufacturing Even if the table is moved, the tension of the separator can be maintained uniformly.
  • FIG. 1 is a front view showing a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a cell stack manufacturing process of a secondary battery according to an embodiment of the present invention briefly.
  • FIG. 3 is a schematic diagram schematically showing a main part of a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • Figure 4 is a front view showing a main portion of a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • 5 and 6 is a perspective view showing the main portion of the cell stack manufacturing apparatus of the secondary battery according to an embodiment of the present invention from a different angle.
  • FIG. 7 is a plan view showing a multi-head and a vision unit included in a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • FIG. 8 is a plan view showing a multi-head and a defect inspection unit included in a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention
  • FIG. 9 is a side view showing a defect inspection unit included in the cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram sequentially showing a process in which a separator is supplied through a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • FIG. 11 is a schematic view sequentially showing the process of stacking electrode plates through a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a front view illustrating a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram schematically showing a cell stack manufacturing process of a secondary battery according to an embodiment of the present invention.
  • the first electrode plate supply unit 10 the second electrode plate supply unit 20, the separator supply unit 30 and , A stacking unit 100, a thermocompression unit 40, a cutting unit 50, a sealing unit 60, and an unloading unit 70.
  • the first and second electrode plate supply units 10 and 20 unroll the roll wound around the electrodes and cut them into electrode plates B1 and B2 of a predetermined length, respectively, and stack the electrode plates B1 and B2 one by one into the stacking unit 100. Can supply.
  • the electrode plates B1 and B2 supplied by the first and second electrode plate supply portions 10 and 20 may be positive electrode plates or negative electrode plates, and the first and second electrode plate supply portions 10 and 20 are alternately stacked.
  • the electrode plates B1 and B2 may be supplied to the unit 100.
  • the separator supply unit 30 is provided between the first and second electrode plate supply units 10 and 20, and can release the roll wound around the separator A and supply it to the stacking unit 100 with uniform tension.
  • the separator supply unit 30 may be composed of a plurality of rollers and guide units for guiding the separator A, which will be described in detail below.
  • the stacking unit 100 is provided under the separation membrane supply unit 30, folds the separation membrane A supplied by the separation membrane supply unit 30, and the electrode plates supplied by the first and second electrode plate supply units 10 and 20 ( B1, B2) may be configured to repeat the process of laminating on the separator A.
  • the stacking unit 100 can be stacked at the correct position of the separator A by adjusting the position of the electrode plates B1 and B2 before stacking the electrode plates B1 and B2 on the separator A. , If the electrode plates (B1, B2) are stacked beyond the reference position of the separation membrane (A), it is configured to be discarded as a defect, which will be described in detail below.
  • the separator A between the electrode plates B1, B2 stacked cell stack is a gripper (not shown) City).
  • the thermocompression unit 40 is provided on one side of the stacking unit 100, and can compress the electrode plates B1 and B2 by simultaneously applying heat and pressure to the cell stack transferred by the gripper.
  • thermocompression unit 40 includes an upper/lower plate spaced apart in the vertical direction, and at least one of the upper/lower plates is installed to be raised/lowered, and the upper/lower plate is configured to generate heat Can be.
  • the cutting unit 50 is provided on one side of the thermocompression unit 40 and can cut the separation membrane A of the cell stack compressed by the thermocompression unit 40.
  • the cutting part 50 includes an upper mold and a lower mold, and the upper mold is installed to be able to move up and down by using a sub-motor and a cam, and the cell stack located between the upper and lower molds as they are engaged.
  • the separator can be cut.
  • the upper and lower molds are provided with shapes such as punches and strippers on opposite surfaces, so that the separator of the cell stack can be cut into a desired shape.
  • the sealing part 60 is provided on one side of the cutting part 50, and heat and pressure may be simultaneously applied to the separator A of the cell stack cut by the cutting part 50 to compress the separator A.
  • electrode plates B1 and B2 are stacked between the separators A folded in a zigzag manner as shown in FIG. 2, and the cell stack configured as a separator ( C) adheres and fixes the electrode plates B1 and B2 by applying heat and pressure in the up/down direction.
  • the separator A of the cell stack C is cut into a desired shape, and heat and pressure are applied in the vertical direction of the cell stack C to further compress the separator A, thereby completing the cell stack C.
  • FIG. 3 is a schematic diagram schematically showing a main part of a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention
  • FIGS. 4 to 6 are main parts of a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention
  • 7 to 8 is a plan view showing a multi-head and a vision unit and a defect inspection unit included in a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention
  • the main part of the cell stack manufacturing apparatus of a secondary battery includes a first loading part 11, a second loading part 21, a separator supply part 30, and a stacking part 100.
  • the stacking unit 100 includes a stacking table 110, first and second multi-heads 120 and 130, first and second vision units 140 and 150, and first and second defect inspection units 170 and 180. .
  • the first and second loading units 11 and 21 may be configured to transfer the electrode plates B1 and B2 supplied from the first and second electrode plate supply units 10 and 20 (shown in FIG. 1) one by one. .
  • the first loading part 11 is located on the left side, and the second loading part 21 is located on the right side and may be configured to face each other.
  • the first and second loading parts 11 and 21 have the suction plates 11a and 21a capable of adsorbing the thin electrode plates B1 and B2 on the lower side, and the suction plates 11a and 21a in the horizontal direction and the vertical direction. It may include a transfer unit (11b, 21b) that can be reciprocated, but is not limited.
  • the separator supply unit 30 is located between the first and second loading units 11 and 21 and may be configured to supply the separator A with uniform tension.
  • the separator supply unit 30 includes a driving roller 31, first and second idle rollers 32a and 32b, a tension roller 33, a guide roller 34, and a rotating unit 35. 1 and 2 tension adjusting rollers 36a and 36b and first to fourth guide parts 37a, 37b, 38a, and 38b may be included, but are not limited thereto.
  • the driving roller 31 is a portion on which the separator roll on which the separator A is wound is mounted, and is provided on the uppermost side.
  • the first and second idle rollers 32a and 32b are located on one side of the driving roller 31 and are installed at predetermined intervals.
  • the tension roller 33 is positioned below the first and second idler rollers 32a and 32b, and can be adjusted in the tension of the separator A as it is movably installed in the vertical direction.
  • the rotating part 35 is located under the guide roller 34 on one side of the second idler roller 32b, and can be rotated at a predetermined angle in the forward or reverse direction based on the center.
  • the first and second adjustment rollers 36a and 36b are provided at predetermined intervals on both sides based on the center of the rotating part 35, and the first and second tensions are adjusted as the rotating part 35 is periodically rotated in the forward/reverse direction.
  • the separator A guided by the rollers 36a and 36b can be periodically wound and released.
  • the operation of the rotating part 35 is interlocked with the movement of the lamination table 110, which will be described in detail below.
  • the first and second guide parts 37a and 37b are provided side by side at the lower side of the rotating part 35, and the third and fourth guide parts 38a and 38b are provided side by side at the first and second guide parts.
  • the separation membrane A is sandwiched between the portions 37a and 37b and the third and fourth guide portions 38a and 38b so as to be guided to the lamination table 110.
  • the first to fourth guide portions 37a, 37b, 38a, and 38b may be configured in plural, or may be variously configured in the form of rollers.
  • the stacking table 110 provides a space in which electrode plates are stacked on the separator A.
  • the stacking table 110 includes a horizontal driving unit 111 that reciprocates the stacking table 110 in the horizontal direction between the first and second multi-heads 120 and 130. , It may include a vertical drive unit 112 for reciprocating the stacking table 110 in the vertical direction to the first and second multi-head (120 130).
  • the stacking table 110 is additionally provided with a jig (J) to fold the separator (A) supplied thereon from left to right, and four jigs (J1 to J2) to hold in the left and right directions. .
  • the stacking table 110 When the electrode plate B1 is stacked on the separator A on the stacked table 110 from the left, two jigs J1 and J2 located at the front right and rear of the stacked table 110 press the separator A In the stacking table 110 may be moved in the right direction. In addition, when the electrode plate B2 is stacked on the separator A on the stacking table 110 from the right side, two jigs J3 and J4 located at the front left and right sides of the stacking table 110 press the separator A. In the quasi-state, the stacking table 110 may be moved in the left direction.
  • the first multi-head 120 is located under the first loading section 11, the electrode plate B1 received from the first loading section 11 is moved to the bottom of the first multi-head 120 stacked table ( 110) It can be fed up.
  • the first multi-head 120 includes a first adsorption plate 121 capable of vacuum-adsorbing the electrode plate B1, and four first adsorption plates 121 may be provided at upper, lower, left, and right sides.
  • the first multi-head 120 may include a drive motor (not shown) that sequentially rotates the first suction plate 121 to face the upper side, the left side, the lower side, and the right side.
  • the first multi-head 120 may correct the position of the first adsorption plate 121 according to the measurement result of the first vision unit 140 to be described below.
  • the first multi-head 120 is based on the Y-axis correction unit 122 for moving the first suction plate 121 in the front-rear direction of the stacked table 110 and the upper surface of the stacked table 110
  • a ⁇ -axis correction unit 123 for rotating the first adsorption plate 121 with a vertical rotation axis may be included, and the Y-axis correction unit 122 and the ⁇ -axis correction unit 123 may include a first adsorption plate ( 121) may be configured in the form of a sub-motor capable of moving, but is not limited.
  • the first multi-head 120 may further include an X-axis correction unit for moving the first adsorption plate 121 in the left-right direction of the stacked table 110, but the position of the stacked table 110 in the left-right direction. It is configured to correct, and the X-axis correction unit can be omitted.
  • the second multi-head 130 is located under the second loading unit 21, the electrode plate B2 received from the second loading unit 21 is moved to the bottom of the second multi-head 130 stacked table ( 110) It can be fed up.
  • the second multi-head 130 also includes a second adsorption plate 131, a driving motor (not shown), a Y-axis compensator 132, and a ⁇ -axis compensator 133, like the first multi-head 120. It is configured to include, a detailed description will be omitted. However, the second multi-head 130 is configured to sequentially rotate the second adsorption plate 131 toward the upper side, the right side, the lower side, and the left side, and may be disposed to face the first multi-head as a whole.
  • the first and second vision parts 140 and 150 are provided to be spaced apart from both sides of the first and second multi-heads 12 and 130, and the positions of the electrode plates B1 and B2 transferred by the first and second multi-heads 120 and 130 Can be aligned.
  • the first vision unit 140 is a camera installed opposite to the left first adsorption plate 121 of the first multi-head 120, and the electrode plate mounted on the left first adsorption plate 121 of the first multi-head 120.
  • the edge image of (B1) may be photographed, and the edge image of the photographed electrode plate B1 may be corrected according to a reference position.
  • the first vision unit 140 controls the operation of the Y-axis correction unit 122 and the ⁇ -axis correction unit 123 included in the first multi-head 120 to be stacked by the first multi-head 120
  • the position of the electrode plate B1 supplied to the table 110 may be aligned.
  • the second vision unit 150 is a camera installed opposite to the second second adsorption plate 131 on the right side of the second multi-head 130, and the electrode plate mounted on the second second adsorption plate 131 on the right side of the second multi-head 130.
  • the edge image of (B2) may be photographed, and the edge image of the photographed electrode plate B2 may be corrected according to a reference position.
  • the second vision unit 150 controls the operation of the Y-axis correction unit 132 and the ⁇ -axis correction unit 133 included in the second multi-head 130 to be stacked by the second multi-head 130.
  • the position of the electrode plate B2 supplied to the table 110 may be aligned.
  • the first and second defect inspection units 160 and 170 are provided side by side between the first and second multi-heads 120 and 130, and the stack of the cell stacks located in the stacked table 110 while the stacked table 110 moves in the left and right directions is defective. Can be judged.
  • the first defect inspection unit 160 photographs the top surface of the stacking table 110 moving from the first multi-head 120 to the second multi-head 130, that is, from left to right, and the first multi-head 160 It is configured to determine the defect by comparing the edge image information of the electrode plate (B1) supplied from the reference position.
  • the first defect inspection unit 160 includes a line scan camera 161 capable of continuously photographing the moving lamination table 110 and a reflector reflecting light from the line scan camera 161 toward the upper side of the lamination table 110 ( 162) and the edge image information of the uppermost electrode plate B1 of the cell stack photographed by the line scan camera 161 is compared with a reference position to determine whether it is defective, and control the transfer of the cell stack according to the defect. It may include a control unit 163.
  • the second defect inspection unit 170 photographs the top surface of the stacking table 110 that is moved from the second multi-head 130 to the first multi-head 120, that is, from right to left, and the second multi-head 130 It is configured to determine the defect by comparing the edge image information of the electrode plate B2 supplied from the reference position, similarly, may include a line scan camera 171 and the reflector 172 and the control unit 173.
  • the first and second defect inspection units 160 and 170 cumulatively photograph images of the same electrode plates B1 and B2 for each type of electrode plates B1 and B2, and determine whether the electrode plates B1 and B2 are defective by type. Can.
  • the first and second defective inspection units 160 and 170 may be provided in accordance with the types of electrode plates B1 and B2, and the types of electrode plates B1 and B2 are variously divided into cathode, anode, shape, and size. Can be.
  • FIG. 10 is a schematic diagram sequentially illustrating a process in which a separator is supplied through a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • the stacked table 110 is stacked with the electrode plate B1 on the separator A from the left, and then the stacked table 110 is moved from left to center as shown in (b).
  • the separation membrane A may be loosened, the rotating portion 35 is rotated counterclockwise, and the separation membrane A guided by the first and second tension adjusting rollers 36a and 36b is pulled, and the separation membrane A ) Can keep the tension constant.
  • the stacked table 110 is stacked with the electrode plate B2 on the separator A on the right side, and then the stacked table 110 is moved from right to center as shown in (e).
  • the separation membrane (A) can be loosened, the rotating part (35) is rotated counterclockwise, and the separation membrane (A) guided by the first and second tension control rollers (36a, 36b) is pulled and the separation membrane (A ) Can keep the tension constant.
  • the rotating part 35 may be interlocked with the stacking table 110. That is, according to the interval between the stacking table 110 and the rotating part 35, the rotating part 35 periodically rotates a predetermined angle in a clockwise or counterclockwise direction, and even if the laminated table 110 is moved in the left-right direction, the separator ( The tension of A) can be adjusted uniformly.
  • FIG. 11 is a schematic diagram sequentially showing a process in which electrode plates are stacked through a cell stack manufacturing apparatus of a secondary battery according to an embodiment of the present invention.
  • the electrode plates B1 and B2 can be adsorbed on the adsorption plates 121 and 131 located above the multi-heads 120 and 130.
  • the adsorption plates 121 and 131 on which the electrode plates B1 and B2 are adsorbed face the vision portions 140 and 150 on one side, and the vision portions 140 and 150 A photographs the edge images of the electrode plates B1 and B2 and compares them with the reference position, and then aligns the electrode plates B1 and B2 with the reference position.
  • the adsorption plates 121 and 131 on which the electrode plates B1 and B2 are adsorbed can be moved in the Y-axis direction or rotated in the ⁇ -axis direction,
  • the stacking table 110 on which the electrode plates B1 and B2 are to be stacked may be moved in the X-axis direction.
  • ⁇ J4 When the stacked table 110 is raised in a state where the separator A is folded by (shown in FIG. 5), the stacked table 110 separates the electrode plates B1 and B2 separated from the adsorbing plates 121 and 131. A) After receiving and stacking, the stacking table 110 descends as shown in (e).
  • the process of continuously supplying and aligning the electrode plates B1 and B2 can be repeated even if the multi heads 120 and 130 rotate 90°, and the cell stack Can shorten the process time.
  • the process is the same in each of the multi-heads 120 and 130 located on the left and right sides as shown in FIG. 3, and the stacked table 110 reciprocates between each of the multi-heads 120 and 130.
  • the fields B1 and B2 are laminated alternately.
  • the defect inspection units 160 and 170 photograph the edge images of the electrode plates B1 and B2 located on the top side of the stacking table 110, and reference The defect is judged according to the position and the comparison result.
  • the process of putting the electrode plates B1 and B2 into the multi-heads 120 and 130 is stopped, and the cell stack determined as defective is cut and then discarded.
  • the process of stacking the electrode plates B1 and B2 on the lamination table 110 by repeating the electrode plates B1 and B2 in the multi-heads 120 and 130 is repeated. do.
  • the stacking unit 100 repeats the process of stacking the electrode plates B1 and B2 and determining a defect as described above until the cell stack is completed.
  • the cell stack in which all of the electrode plates B1 and B2 are stacked between the separators has a thermocompression unit 40, a cutting unit 50, a sealing unit 60, as shown in FIG. It is manufactured as a finished product of the cell stack while sequentially passing through the unloading unit 70.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치는, 수평 방향과 수직 방향으로 왕복 이동 가능하게 설치된 적층 테이블; 상기 적층 테이블 상측에 위치되고, 상기 적층 테이블 위에 분리막을 공급하는 분리막 공급부; 상기 적층 테이블의 일측 상부에 각각 구비되고, 일측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제1멀티 헤드(first multi head); 상기 적층 테이블의 타측 상부에 구비되고, 타측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제2멀티 헤드(second multi head); 및 상기 제1,2멀티 헤드 사이에 구비되고, 상기 적층 테이블이 상기 제1,2멀티 헤드 사이를 이동할 때마다 상기 적층 테이블에 적층된 셀 스택의 이미지를 촬영하고, 상기 셀 스택의 이미지 정보를 기반으로 불량 여부를 판정하는 불량 검사부;를 포함한다.

Description

이차전지의 셀 스택 제조장치
본 발명은 셀 스택을 고속 및 고정도로 제조할 수 있는 이차전지의 셀 스택 제조장치에 관한 것이다.
이차전지는 전기에너지를 화학에너지로 변환하여 저장해 두었다가 필요할 때에 전기를 만들어내는 소자로서, 한 개의 전극에서 충전과 방전이 모두 일어나고, 산화전극(Anode, -극)과 환원전극(Cathode, +극)은 방전 반응을 기준으로 구별된다.
이차전지는 집전체에 활물질이 도포된 양극판 및 음극판과, 양극판과 음극판을 분리하는 분리막(separator)과, 분리막을 통하여 이온을 전달하는 전해액과, 양극판과 분리막 및 음극판을 수용하는 케이스와, 양극판과 음극판에 연결되어 밖으로 인출되는 리드탭 등을 포함한다.
최근에 이차전지의 배터리 용량을 증대시키기 위하여 전극수량을 늘리거나, 전극의 사이즈를 최대한 늘리기 위하여 공법이 요구되고 있는데, 이차전지의 셀(cell)은 와인딩(winding) 공법과, 폴딩(folding) 공법과, 스태킹(stacking) 공법으로 제조될 수 있다.
와인딩 공법은 양극판과 음극판을 분리막 상에 배치하고 이를 말아서 젤리롤(jelly roll) 형태로 제작되는데, 양극판과 음극판과 분리막이 커질수록 오정렬에 의한 불량이 발생될 수 있어 주로 소형 이차전지를 제조하는데 많이 사용된다.
폴딩 공법은 분리막의 양면에 접착제를 도포하고, 분리막의 양면에 각각 일정한 크기의 절단된 양극판과 음극판을 일정 간격으로 여러개 부착한 다음, 여러번 접어서 양극판과 음극판이 교대로 배치되도록 한다. 물론, 양극판과 음극판을 미리 절단하여 분리막에 붙여야 하는 추가 공정이 필요하다.
스태킹 공법은 일정한 크기로 분리막에 양극판 또는 음극판이 접착된 라미네이션(lamination) 형태로 제작된 다음, 라미네이션을 적층하여 양극판, 분리막, 음극판, 분리막이 교번되어 삽입된 셀 스택(cell stack) 형태로 제작한다.
와이딩 공법이나 폴딩 공법에 비해 스태킹 공법은, 적층 수량을 유동적으로 조절할 수 있고, 체적 대비 전극의 밀도를 높일 수 있다. 하지만, 스테킹 공법은, 라미네이션 형태의 전극체를 개별로 적층하는 공정이 추가됨에 따라 생산성이 낮고 생산 비용이 높아지는 문제점이 있다.
한국등록특허 제313119호(1999.01.26.출원)에는 정극과 부극 및 세퍼레이터를 겹친 상태에서 지그재그로 접어 적층 구조를 형성하는 이차전지의 전극군이 개시되어 있다.
한극등록특허 제1220981호(2010.9.3.출원)에는 시트 형상의 세퍼레이터를 길이방향으로 연속적으로 공급하는 공급수단; 상기 세퍼레이터의 공급방향을 따라 상기 공급수단으로부터 이격된 지점에 위치되어, 상기 세퍼레이터와 전극판이 교번으로 적층됨으로써 형성되는 전극판 적층체를 고정시키는 고정수단; 상기 공급수단과 상기 고정수단 사이에 위치하는 세퍼레이터의 일면에 전극판을 접촉시킨 후, 상기 전극판이 접촉된 부위의 세퍼레이터 타면이 상기 고정수단에 고정된 전극판 적층체에 접촉되도록 상기 전극판을 이동시켜 상기 세퍼레이터와 전극판을 상기 전극판 적층체에 추가 적층시키는 이송수단;을 포함하는 이차전지용 전극판 적층장치가 개시되어 있다.
상기와 같이 분리막을 지그재그로 접으면서 그 사이에 음극판과 양극판을 교대로 적층하는 Z-stacking 방식이 많이 사용되고 있다.
물론, 쇼트를 방지하기 위하여 음극판과 양극판 사이의 간격을 일정하게 유지해야 하며, 셀 스택이 제조된 후 적층 상태를 확인하여 불량인 경우 셀 스택 전체를 폐기해야 한다.
그런데, 종래 기술에 따르면, CT 등의 측정장치를 사용하여 셀 스택을 검사하더라도 분리막에 의해 전극판 위치가 정확하게 보이지 않기 때문에 셀 스택의 불량률이 높은 문제점이 있다. 그리고, 완전히 제조된 셀 스택을 검사하여 전극판 불량을 판단하고, 셀 스택 전체를 폐기해야 하기 때문에 생산성이 저하되는 문제점이 있다.
또한, 종래 기술에 따르면, 이동수단이 수평 이동하면서 전극판을 분리막의 일면에 접촉시킨 다음, 이동수단이 회전 이동하면서 분리막의 타면을 고정수단 측에 고정된 셀 스택에 접촉시키는데, 공정 중 주기적으로 분리막의 장력이 가변된다. 따라서, 공정 중 분리막이 팽팽하게 당겨지는 시점에 분리막이 찢어질 수 있으므로 생산 효율이 떨어질 수 있고, 공정 중 분리막이 느슨하게 풀어지는 시점에 전극판을 분리막의 정확한 위치에 적층할 수 없으므로 셀 스택의 품질을 보증하기 어려운 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 셀 스택 제조 중에 불량을 판별하여 대응할 수 있는 이차전지의 셀 스택 제조장치를 제공하는데 그 목적이 있다.
또한, 본 발명은 셀 스택 제조 중에 분리막의 장력을 균일하게 유지할 수 있는 이차전지의 셀 스택 제조장치를 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치는, 수평 방향과 수직 방향으로 왕복 이동 가능하게 설치된 적층 테이블; 상기 적층 테이블 상측에 위치되고, 상기 적층 테이블 위에 분리막을 공급하는 분리막 공급부; 상기 적층 테이블의 일측 상부에 각각 구비되고, 일측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제1멀티 헤드(first multi head); 상기 적층 테이블의 타측 상부에 구비되고, 타측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제2멀티 헤드(second multi head); 및 상기 제1,2멀티 헤드 사이에 구비되고, 상기 적층 테이블이 상기 제1,2멀티 헤드 사이를 이동할 때마다 상기 적층 테이블에 적층된 셀 스택의 이미지를 촬영하고, 상기 셀 스택의 이미지 정보를 기반으로 불량 여부를 판정하는 불량 검사부;를 포함한다.
본 발명의 다른 실시예에 따른 이차전지의 셀 스택 제조장치는, 수평 방향과 수직 방향으로 왕복 이동 가능하게 설치된 적층 테이블; 상기 적층 테이블 상측에 위치되고, 상기 적층 테이블 위에 분리막을 공급하는 분리막 공급부; 상기 적층 테이블의 일측 상부에 각각 구비되고, 일측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제1멀티 헤드(first multi head); 및 상기 적층 테이블의 타측 상부에 구비되고, 타측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제2멀티 헤드(second multi head);를 포함하고, 상기 분리막 공급부는, 분리막을 안내하는 복수개의 롤러와, 상기 롤러들과 적층 테이블 사이에 위치되고, 중심을 기준으로 회전되는 회전부와, 상기 회전부의 양단에 설치되고, 상기 롤러들로부터 적층 테이블 사이에서 분리막을 안내하는 한 쌍의 장력 조정 롤러를 포함하며, 상기 회전부는, 상기 적층 테이블과 상기 회전부 사이의 거리에 따라 주기적으로 정방향과 역방향으로 회전된다.
본 발명에 따른 이차전지의 셀 스택 제조장치는, 적층 테이블이 제1,2전극판 공급부 사이를 이동하면서 교대로 분리막 위에 전극판을 적층시키고, 적층 테이블이 제1,2전극판 공급부 사이를 이동할 때마다 불량 검사부가 적층 테이블에 적층된 셀 스택의 이미지를 촬영할 수 있다.
따라서, 셀 스택 제조 중 셀 스택에 적층된 전극판의 이미지 정보를 기반으로 불량 여부를 신속하고 정확하게 판정할 수 있고, 셀 스택이 완성되기 전에 불량인 셀 스택을 바로 폐기할 수 있어 생산성을 높일 수 있으며, 고속 및 고정도의 셀 스택을 생산할 수 있다.
또한, 본 발명에 따른 이차전지의 셀 스택 제조장치는, 분리막을 안내하는 한 쌍의 장력 조정 롤러가 구비된 회전바를 적층 테이블과 거리에 따라 주기적으로 정방향과 역방향으로 회전시킴으로서, 셀 스택 제조 중 적층 테이블이 이동되더라도 분리막의 장력을 균일하게 유지할 수 있다.
따라서, 분리막이 찢어지는 것을 방지하여 생산 효율을 높일 수 있고, 분리막에 전극판이 부정확하게 적층되는 것을 방지하여 고정도의 셀 스택을 생산할 수 있다.
도 1은 본 발명의 일 실시에에 따른 이차전지의 셀 스택 제조장치가 도시된 정면도.
도 2는 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조 공정이 간략하게 도시된 개략도.
도 3은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치 주요부가 간략하게 도시된 개략도.
도 4는 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치 주요부가 도시된 정면도.
도 5 및 도 6은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치 주요부가 다른 각도에서 도시된 사시도.
도 7은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치에 포함된 멀티 헤드 및 비전부가 도시된 평면도.
도 8은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치에 포함된 멀티 헤드 및 불량 검사부가 도시된 평면도
도 9는 본 발명의 일 실시에에 따른 이차전지의 셀 스택 제조장치에 포함된 불량 검사부가 도시된 측면도.
도 10은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치를 통하여 분리막이 공급되는 과정이 순차적으로 도시된 개략도.
도 11은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치를 통하여 전극판이 적층되는 과정이 순차적으로 도시된 개략도.
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다.
도 1은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치가 도시된 정면도이고, 도 2는 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조 공정이 간략하게 도시된 개략도이다.
본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치는, 도 1에 도시된 바와 같이 제1전극판 공급부(10)와, 제2전극판 공급부(20)와, 분리막 공급부(30)와, 스태킹부(100)와, 열압착부(40)와, 커팅부(50)와, 실링부(60)와, 언로딩부(70)를 포함한다.
제1,2전극판 공급부(10,20)는 전극이 감긴 롤을 풀어서 소정 길이의 전극판(B1,B2)으로 각각 자르고, 전극판들(B1,B2)을 한 장씩 스테킹부(100)에 공급할 수 있다. 물론, 제1,2전극판 공급부(10,20)에 의해 공급되는 전극판들(B1,B2)은 양극판 또는 음극판일 수 있고, 제1,2전극판 공급부(10,20)가 번갈아가면서 스태킹부(100)에 전극판들(B1,B2)을 공급할 수 있다.
분리막 공급부(30)는 제1,2전극판 공급부(10,20) 사이에 구비되고, 분리막(A)이 감긴 롤을 풀어서 균일한 장력으로 스태킹부(100)에 공급할 수 있다.
실시예에 따르면, 분리막 공급부(30)는 분리막(A)을 안내하는 복수개의 롤러 및 가이드부로 구성될 수 있으며, 하기에서 자세히 설명하기로 한다.
스태킹부(100)는 분리막 공급부(30) 하측에 구비되고, 분리막 공급부(30)가 공급하는 분리막(A)을 접고, 제1,2전극판 공급부(10,20)가 공급하는 전극판들(B1,B2)을 분리막(A) 위에 적층시키는 과정을 반복하도록 구성될 수 있다.
또한, 스태킹부(100)는 전극판들(B1,B2)을 분리막(A) 위에 적층시키기 전에 전극판들(B1,B2)의 위치를 조정하여 분리막(A)의 정확한 위치에 적층시킬 수 있고, 전극판들(B1,B2)이 분리막(A)의 기준 위치에서 벗어나 적층된 경우, 불량으로 판정하여 폐기할 수 있도록 구성되는데, 하기에서 자세히 설명하기로 한다.
한편, 스태킹부(100)와 열압착부(40)와 커팅부(50)와 실링부(60) 사이에 분리막(A) 사이에 전극판들(B1,B2)이 쌓인 셀 스택은 그리퍼(미도시)에 의해 잡힌 상태로 이송될 수 있다.
열압착부(40)는 스태킹부(100) 일측에 구비되고, 그리퍼에 의해 이송된 셀 스택에 열과 압력을 동시에 가하여 전극판들(B1,B2)을 압착시킬 수 있다.
실시예에 따르면, 열압착부(40)는 상하 방향으로 이격된 상/하부 플레이트를 포함하고, 상/하부 플레이트 중 적어도 하나는 승/하강 가능하게 설치되며, 상/하부 플레이트는 발열 가능하게 구성될 수 있다.
커팅부(50)는 열압착부(40) 일측에 구비되고, 열압착부에서 압착된 셀 스택의 분리막(A)을 커팅할 수 있다.
실시예에 따르면, 커팅부(50)는 상부 금형과 하부 금형을 포함하고, 상부 금형이 서브 모터와 캠을 활용하여 승/하강 가능하게 설치되며, 상/하부 금형이 맞물리면서 그 사이에 위치한 셀 스택의 분리막이 커팅될 수 있다.
이때, 상/하부 금형은 서로 대향되는 면에 펀치, 스트리퍼 등의 형상을 구비함으로서, 셀 스택의 분리막을 원하는 형태로 커팅할 수 있다.
실링부(60)는 커팅부(50) 일측에 구비되고, 커팅부(50)에서 커팅된 셀 스택의 분리막(A)에 열과 압력을 동시에 가하여 분리막(A)을 압착시킬 수 있다.
상기와 같이 구성된 이차전지의 셀 스택장치를 이용하면, 도 2에 도시된 바와 같이 지그재그로 접힌 분리막(A) 사이에 전극판들(B1,B2)을 적층시키고, 분리막이와 같이 구성된 셀 스택(C)의 상/하 방향에서 열과 압력을 가해서 전극판들(B1,B2)을 접착 및 고정시킨다.
다음, 셀 스택(C)의 분리막(A)을 원하는 형태로 잘라내고, 셀 스택(C)의 상하 방향에서 열과 압력을 가해서 분리막(A)을 더욱 압착시키면, 셀 스택(C)이 완성된다.
도 3은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치 주요부가 간략하게 도시된 개략도이고, 도 4 내지 도 6은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치 주요부가 도시된 정면도 및 사시도이며, 도 7 내지 도 8은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치에 포함된 멀티 헤드 및 비전부와 불량 검사부가 도시된 평면도이고, 도 9는 본 발명의 일 실시에에 따른 이차전지의 셀 스택 제조장치에 포함된 불량 검사부가 도시된 측면도이다.
본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치의 주요부는, 제1로딩부(11)와, 제2로딩부(21)와, 분리막 공급부(30)와, 스태킹부(100)를 포함하는데, 스태킹부(100)는 적층 테이블(110)과, 제1,2멀티 헤드(120,130)와, 제1,2비전부(140,150)와, 제1,2불량 검사부(170,180)를 포함한다.
제1,2로딩부(11,21)는 제1,2전극판 공급부(10,20 : 도 1에 도시)에서 공급되는 전극판들(B1,B2)을 하나씩 이송시킬 수 있도록 구성될 수 있다. 제1로딩부(11)는 좌측에 위치되고, 제2로딩부(21)는 우측에 위치되며, 서로 대향되도록 구성될 수 있다.
제1,2로딩부(11,21)는, 얇은 전극판들(B1,B2)을 하측에 흡착시킬 수 있는 흡착판(11a,21a)과, 흡착판(11a,21a)을 수평 방향과 수직 방향으로 왕복 이동시킬 수 있는 이송부(11b,21b)를 포함할 수 있으나, 한정되지 아니한다.
분리막 공급부(30)는 제1,2로딩부(11,21) 사이에 위치되고, 분리막(A)을 균일한 장력으로 공급하도록 구성될 수 있다.
상세하게, 분리막 공급부(30)는, 구동 롤러(31)와, 제1,2아이들 롤러(32a,32b)와, 장력 롤러(33)와, 가이드 롤러(34), 회전부(35)와, 제1,2장력 조정 롤러(36a,36b)와, 제1 내지 제4가이드부(37a,37b,38a,38b)를 포함할 수 있으나, 한정되지 아니한다.
구동 롤러(31)는 분리막(A)이 감겨진 분리막 롤이 장착되는 부분으로서, 최상측에 구비된다. 제1,2아이들 롤러(32a,32b)는 구동 롤러(31) 일측에 위치되고, 소정 간격을 두고 설치된다. 장력 롤러(33)는 제1,2아이들 롤러(32a,32b) 사이의 하측에 위치되는데, 상하 방향으로 이동 가능하게 설치됨에 따라 분리막(A)의 장력을 조절할 수 있다.
회전부(35)는 제2아이들 롤러(32b) 일측의 가이드 롤러(34) 하부에 위치되는데, 중심을 기준으로 정방향 또는 역방향으로 소정 각도 회전될 수 있다. 제1,2조정 롤러(36a,36b)는 회전부(35)의 중심을 기준으로 양측에 소정 간격을 두고 구비되는데, 회전부(35)가 주기적으로 정/역방향으로 회전됨에 따라 제1,2장력 조정 롤러(36a,36b)에 의해 안내되는 분리막(A)을 주기적으로 감았다 풀어줄 수 있다. 물론, 회전부(35)의 동작은 적층 테이블(110)의 이동과 연동하게 되는데, 하기에서 자세히 설명하기로 한다.
제1,2가이드부(37a,37b)는 회전부(35) 하측에 나란히 구비되고, 제3,4가이드부(38a,38b)는 1,2가이드부 하측에 나란히 구비되며, 제1,2가이부(37a,37b)와 제3,4가이드부(38a,38b) 사이에 분리막(A)이 끼워져서 적층 테이블(110)로 안내될 수 있도록 한다. 제1 내지 제4가이드부(37a,37b,38a,38b)가 복수개로 구성되거나, 롤러 형태 등으로 다양하게 구성될 수 있다.
적층 테이블(110)은 분리막(A) 위에 전극판들이 적층되는 공간을 제공하는데, 적층 테이블(110)을 제1,2멀티 헤드(120,130) 사이에 수평 방향으로 왕복 이동시키는 수평 구동부(111)와, 적층 테이블(110)을 제1,2멀티 헤드(120,130)까지 수직 방향으로 왕복 이동시키는 수직 구동부(112)를 포함할 수 있다.
적층 테이블(110)은 그 위로 공급되는 분리막(A)을 좌우에서 접어줄 수 있도록 지그(J)가 추가로 구비되는데, 좌우 전후 방향에서 잡아주는 네 개의 지그(J1~J2)가 구비될 수 있다.
좌측에서 적층 테이블(110) 위의 분리막(A)에 전극판(B1)이 적층되면, 적층 테이블(110)의 우측 전후에 위치한 두 개의 지그(J1,J2)가 분리막(A)을 눌러준 상태에서 적층 테이블(110)이 우측 방향으로 이동될 수 있다. 그리고, 우측에서 적층 테이블(110) 위의 분리막(A)에 전극판(B2)이 적층되면, 적층 테이블(110)의 좌측 전후에 위치한 두 개의 지그(J3,J4)가 분리막(A)을 눌러준 상태에서 적층 테이블(110)이 좌측 방향으로 이동될 수 있다.
상기의 과정을 반복하면, 분리막(A)을 좌우에서 반대 방향으로 접고, 접힌 분리막(A) 사이에 전극판들(B1,B2)을 적층시킨 셀 스택을 만들 수 있다.
제1멀티 헤드(120)는 제1로딩부(11) 하측에 위치되고, 제1로딩부(11)로부터 전달받은 전극판(B1)을 제1멀티 헤드(120) 하측으로 이동된 적층 테이블(110) 위로 공급할 수 있다.
제1멀티 헤드(120)는 전극판(B1)을 진공 흡착시킬 수 있는 제1흡착판(121)을 포함하는데, 제1흡착판(121)은 상하좌우에 네 개가 구비될 수 있다. 그리고, 제1멀티 헤드(120)는 제1흡착판(121)을 순차적으로 상측과 좌측과 하측과 우측을 향하도록 회전시키는 구동 모터(미도시)를 포함할 수 있다.
제1멀티 헤드(120)는 하기에서 설명될 제1비전부(140)의 측정 결과에 따라 제1흡착판(121)의 위치를 보정할 수 있다.
실시예에 따르면, 제1멀티 헤드(120)는 적층 테이블(110)의 전후 방향으로 제1흡착판(121)을 이동시키는 Y-축 보정부(122)와, 적층 테이블(110)의 상면을 기준으로 수직한 회전축으로 제1흡착판(121)을 회전시키는 θ-축 보정부(123)를 포함할 수 있고, Y-축 보정부(122)와 θ-축 보정부(123)는 제1흡착판(121)을 이동시킬 수 있는 서브 모터 형태로 구성될 수 있으나, 한정되지 아니한다.
물론, 제1멀티 헤드(120)는 적층 테이블(110)의 좌우 방향으로 제1흡착판(121)을 이동시키는 X-축 보정부를 더 포함할 수 있지만, 적층 테이블(110)의 위치를 좌우 방향으로 보정하도록 구성하고, X-축 보정부를 생략할 수 있다.
제2멀티 헤드(130)는 제2로딩부(21) 하측에 위치되고, 제2로딩부(21)로부터 전달받은 전극판(B2)을 제2멀티 헤드(130) 하측으로 이동된 적층 테이블(110) 위로 공급할 수 있다.
제2멀티 헤드(130) 역시 제1멀티 헤드(120)와 동일하게 제2흡착판(131)을 비롯하여 구동 모터(미도시)와 Y-축 보정부(132)와 θ-축 보정부(133)를 포함하도록 구성되며, 자세한 설명은 생략하기로 한다. 다만, 제2멀티 헤드(130)는 제2흡착판(131)을 순차적으로 상측과 우측과 하측과 좌측을 향하도록 회전시키도록 구성되며, 전체적으로 제1멀티 헤드와 대향되게 배치될 수 있다.
제1,2비전부(140,150)는 제1,2멀티 헤드(12,130)의 양측에 이격되도록 구비되고, 제1,2멀티 헤드(120,130)에 의해 이송되는 전극판들(B1,B2)의 위치를 얼라인시킬 수 있다.
제1비전부(140)는 제1멀티 헤드(120)의 좌측 제1흡착판(121)과 대향되게 설치된 카메라로서, 제1멀티 헤드(120)의 좌측 제1흡착판(121)에 장착된 전극판(B1)의 에지 이미지를 촬영하고, 촬영된 전극판(B1)의 에지 이미지를 기준 위치에 맞추어 보정할 수 있다.
제1비전부(140)는 제1멀티 헤드(120)에 포함된 Y-축 보정부(122)와 θ-축 보정부(123)의 작동을 제어하여 제1멀티 헤드(120)에 의해 적층 테이블(110)로 공급되는 전극판(B1)의 위치를 얼라인시킬 수 있다.
제2비전부(150)는 제2멀티 헤드(130)의 우측 제2흡착판(131)과 대향되게 설치된 카메라로서, 제2멀티 헤드(130)의 우측 제2흡착판(131)에 장착된 전극판(B2)의 에지 이미지를 촬영하고, 촬영된 전극판(B2)의 에지 이미지를 기준 위치에 맞추어 보정할 수 있다.
제2비전부(150)는 제2멀티 헤드(130)에 포함된 Y-축 보정부(132)와 θ-축 보정부(133)의 작동을 제어하여 제2멀티 헤드(130)에 의해 적층 테이블(110)로 공급되는 전극판(B2)의 위치를 얼라인시킬 수 있다.
제1,2불량 검사부(160,170)는 제1,2멀티 헤드(120,130) 사이의 하부에 나란히 구비되고, 적층 테이블(110)이 좌우 방향으로 이동하는 중에 적층 테이블(110)에 위치한 셀 스택의 불량을 판정할 수 있다.
제1불량 검사부(160)는 제1멀티 헤드(120)에서 제2멀티 헤드(130)로 즉, 좌측에서 우측으로 이동하는 적층 테이블(110)의 상면을 촬영하고, 제1멀티 헤드(160)에서 공급된 전극판(B1)의 에지 이미지 정보를 기준 위치와 비교하여 불량 판정하도록 구성된다.
제1불량 검사부(160)는 이동 중인 적층 테이블(110)을 연속 촬영할 수 있는 라인 스캔 카메라(161)와, 라인 스캔 카메라(161)의 빛을 적층 테이블(110)의 상측으로 반사시켜 주는 반사판(162)과, 라인 스캔 카메라(161)에 의해 촬영된 셀 스택의 최상측 전극판(B1)의 에지 이미지 정보를 기준 위치와 비교하여 불량 여부를 판정하고, 불량 여부에 따라 셀 스택의 이송을 제어하는 제어부(163)를 포함할 수 있다.
제2불량 검사부(170)는 제2멀티 헤드(130)에서 제1멀티 헤드(120)로 즉, 우측에서 좌측으로 이동되는 적층 테이블(110)의 상면을 촬영하고, 제2멀티 헤드(130)에서 공급된 전극판(B2)의 에지 이미지 정보를 기준 위치와 비교하여 불량 판정하도록 구성되는데, 마찬가지로 라인 스캔 카메라(171)와 반사판(172) 및 제어부(173)를 포함할 수 있다.
제1,2불량 검사부(160,170)는 전극판(B1,B2)의 종류별로 동일한 전극판(B1,B2)의 이미지를 누적 촬영하고, 종류별로 전극판(B1,B2)의 불량 여부를 판정할 수 있다. 제1,2불량 검사부(160,170)는 전극판(B1,B2)의 종류에 따라 여러 개가 구비될 수 있고, 전극판(B1,B2)의 종류는 음극, 양극, 형상, 크기 등으로 다양하게 구분될 수 있다.
도 10은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치를 통하여 분리막이 공급되는 과정이 순차적으로 도시된 개략도이다.
(a)에 도시된 바와 같이 적층 테이블(110)이 좌측에서 분리막(A) 위에 전극판(B1)이 적층된 다음, (b)에 도시된 바와 같이 적층 테이블(110)이 좌측에서 중심으로 이동되면, 분리막(A)이 느슨해질 수 있는데, 회전부(35)가 반시계 방향으로 회전되고, 제1,2장력 조정 롤러(36a,36b)에 의해 안내되는 분리막(A)이 당겨지면서 분리막(A)의 장력을 일정하게 유지할 수 있다.
(c)에 도시된 바와 같이 적층 테이블(110)이 중심에서 우측으로 이동되면, 분리막(A)이 당겨질 수 있는데, 회전부(35)가 시계 방향으로 회전되고, 제1,2장력 조정 롤러(36a,36b)에 의해 안내되는 분리막(A)이 풀어지면서 분리막(A)의 장력을 일정하게 유지할 수 있다.
(d)에 도시된 바와 같이 적층 테이블(110)이 우측에서 분리막(A) 위에 전극판(B2)이 적층된 다음, (e)에 도시된 바와 같이 적층 테이블(110)이 우측에서 중심으로 이동되면, 분리막(A)이 느슨해질 수 있는데, 회전부(35)가 반시계 방향으로 회전되고, 제1,2장력 조절 롤러(36a,36b)에 의해 안내되는 분리막(A)이 당겨지면서 분리막(A)의 장력을 일정하게 유지할 수 있다.
(f)에 도시된 바와 같이 적층 테이블(110)이 중심에서 좌측으로 이동되면, 분리막(A)이 당겨질 수 있는데, 회전부(35)가 시계 방향으로 회전되고, 제1,2장력 조정 롤러(36a,36b)에 의해 안내되는 분리막(A)이 풀어지면서 분리막(A)의 장력을 일정하게 유지할 수 있다.
상기와 같이, 회전부(35)는 적층 테이블(110)과 연동될 수 있다. 즉, 적층 테이블(110)과 회전부(35) 사이의 간격에 따라 회전부(35)가 주기적으로 시계 방향 또는 반시계 방향으로 소정 각도 회전하게 되고, 적층 테이블(110)이 좌우 방향으로 이동되더라도 분리막(A)의 장력을 균일하게 조정할 수 있다.
따라서, 분리막(A)이 찢어지는 것을 방지하여 생산 효율을 높일 수 있고, 분리막(A)에 전극판(B1,B2)이 부정확하게 적층되는 것을 방지하여 고정도의 셀 스택을 생산할 수 있다.
도 11은 본 발명의 일 실시예에 따른 이차전지의 셀 스택 제조장치를 통하여 전극판이 적층되는 과정이 순차적으로 도시된 개략도이다.
(a)에 도시된 바와 같이 로딩부(11,21)의 하측에 한 장의 전극판(B1,B2)이 흡착되고, 로딩부(11,21)가 멀티 헤드(120,130)의 상측으로 하강하면, (b)에 도시된 바와 같이 멀티 헤드(120,130)의 상측에 위치한 흡착판(121,131)에 전극판(B1,B2)을 흡착시킬 수 있다.
멀티 헤드(120,130)가 90°회전되면, (c)에 도시된 바와 같이 전극판(B1,B2)이 흡착된 흡착판(121,131)이 일측의 비전부(140,150)를 향하게 되고, 비전부(140,150)가 전극판(B1,B2)의 에지 이미지를 촬영하여 기준 위치와 비교한 다음, 전극판(B1,B2)을 기준 위치에 얼라인시킨다.
전극판(B1,B2)을 기준 위치에 얼라인시키기 위하여, 전극판(B1,B2)이 흡착된 흡착판(121,131)을 Y-축 방향으로 이동시키거나, θ-축 방향으로 회전시킬 수 있으며, 전극판(B1,B2)이 적층될 적층 테이블(110)을 X-축 방향으로 이동시킬 수 있다.
멀티 헤드(120,130)가 90°회전되면, (d)에 도시된 바와 같이 기준 위치로 얼라인된 흡착판(121,131)이 하측의 적층 테이블(110)을 향하게 되고, 적층 테이블(110) 위에 지그(J1~J4 : 도 5에 도시)에 의해 분리막(A)이 접혀진 상태로 적층 테이블(110)이 상승하면, 적층 테이블(110)이 흡착판(121,131)에서 분리된 전극판(B1,B2)을 분리막(A) 위에 받아서 적층시킨 다음, (e)에 도시된 바와 같이 적층 테이블(110)이 하강한다.
멀티 헤드(120,130)는 네 개의 흡착판(121,131)을 구비하기 때문에 멀티 헤드(120,130)가 90°회전하더라도 연속적으로 전극판(B1,B2)을 공급 및 얼라인시키는 과정을 반복할 수 있고, 셀 스택의 공정 시간을 단축시킬 수 있다.
상기와 같은 과정은, 도 3에 도시된 바와 같이 좌측과 우측에 위치한 각각의 멀티 헤드(120,130)에서 동일하게 진행되고, 적층 테이블(110)이 각각의 멀티 헤드(120,130) 사이를 왕복하면서 전극판들(B1,B2)을 교대로 적층시킨다.
적층 테이블(110)이 각각의 멀티 헤드(120,130) 사이를 왕복할 때, 불량 검사부(160,170)가 적층 테이블(110) 위에 최상측에 위치한 전극판(B1,B2)의 에지 이미지를 촬영하고, 기준 위치와 비교 결과에 따라 불량을 판정한다.
불량 검사부(160,170)에서 셀 스택이 불량 판정되면, 멀티 헤드(120,130)에 전극판(B1,B2)을 투입하는 과정을 중단하고, 불량 판정된 셀 스택은 분리막을 절단한 다음, 폐기시킨다.
반면, 불량 검사부(160,170)에서 셀 스택이 양품 판정되면, 멀티 헤드(120,130)에 전극판(B1,B2)을 투입하여 적층 테이블(110)에 전극판(B1,B2)을 적층하는 과정을 반복한다.
물론, 셀 스택이 완성될 때까지 상기와 같이 전극판(B1,B2)을 적층하고 불량을 판정하는 과정을 스태킹부(100 : 도 1에 도시)에서 반복한다.
이와 같이, 분리막 사이에 전극판들(B1,B2)이 모두 적층된 셀 스택은 도 1에 도시된 바와 같이 열압착부(40)와, 커팅부(50)와, 실링부(60)와, 언로딩부(70)를 순차적으로 지나면서 셀 스택의 완제품으로 제조된다.
따라서, 셀 스택 제조 중 셀 스택의 최상측에 적층된 전극판의 이미지 정보를 기반으로 셀 스택의 불량 여부를 신속하고 정확하게 판정할 수 있고, 셀 스택이 완성되기 전에 불량인 셀 스택을 바로 폐기할 수 있어 생산성을 높일 수 있으며, 고속 및 고정도의 셀 스택을 생산할 수 있다.

Claims (17)

  1. 수평 방향과 수직 방향으로 왕복 이동 가능하게 설치된 적층 테이블;
    상기 적층 테이블 상측에 위치되고, 상기 적층 테이블 위에 분리막을 공급하는 분리막 공급부;
    상기 적층 테이블의 일측 상부에 각각 구비되고, 일측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제1멀티 헤드(first multi head);
    상기 적층 테이블의 타측 상부에 구비되고, 타측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제2멀티 헤드(second multi head); 및
    상기 제1,2멀티 헤드 사이에 구비되고, 상기 적층 테이블이 상기 제1,2멀티 헤드 사이를 이동할 때마다 상기 적층 테이블에 적층된 셀 스택의 이미지를 촬영하고, 상기 셀 스택의 이미지 정보를 기반으로 불량 여부를 판정하는 불량 검사부;를 포함하는 이차전지의 셀 스택 제조장치.
  2. 제1항에 있어서,
    상기 제1멀티 헤드 상측에 구비되고, 상기 제1멀티 헤드에 전극판을 한 장씩 공급하는 제1로딩부; 및
    상기 제2멀티 헤드 상측에 구비되고, 상기 제2멀티 헤드에 전극판을 한 장씩 공급하는 제2로딩부;를 더 포함하는 이차전체의 셀 스택 제조장치.
  3. 제1항에 있어서,
    상기 분리막 공급부는,
    분리막이 감겨진 분리막 롤이 장착되는 구동 롤러와,
    상기 구동 롤러 일측에 위치되고, 상기 구동 롤러로부터 풀리는 분리막을 안내하는 한 쌍의 아이들 롤러(idle roller)와,
    상기 아이들 롤러들 사이에 이동 가능하게 설치되고, 상기 아이들 롤러들 사이에서 분리막을 안내하는 장력 롤러와,
    상기 아이들 롤러 하부 일측에 위치되고, 중심을 기준으로 회전되는 회전부와,
    상기 회전부의 양단에 설치되고, 상기 아이들 롤러들로부터 풀리는 분리막을 안내하는 한 쌍의 장력 조정 롤러와,
    상기 장력 조정 롤러들 하측에 위치되고, 상기 장력 조정 롤러들로부터 풀리는 분리막이 그 사이에 끼워져 상기 적층 테이블로 안내하는 한 쌍의 가이드부를 포함하는 이차전지의 셀 스택 제조장치.
  4. 제3항에 있어서,
    상기 회전부는,
    상기 적층 테이블과 상기 가이드부 사이의 간격에 따라 주기적으로 정방향과 역방향으로 회전되는 이차전지의 셀 스택 제조장치.
  5. 제4항에 있어서,
    상기 회전부는,
    상기 적층 테이블이 상기 가이드부들과 가까워지는 방향으로 이동될 때 분리막을 당겨주는 방향으로 소정 각도 회전되고,
    상기 적층 테이블이 상기 가이드부들로부터 멀어지는 방향으로 이동될 때 분리막을 풀어주는 방향으로 소정 각도 회전되는 이차전지의 셀 스택 제조장치.
  6. 제1항에 있어서,
    상기 제1,2멀티 헤드는,
    전극판을 고정시키는 흡착판을 상측과 일측과 하측과 타측을 향하도록 회전시키는 헤드를 포함하는 이차전지의 셀 스택 제조장치.
  7. 제6항에 있어서,
    상기 헤드는,
    상측과 일측과 하측과 타측에 네 개의 흡착판이 구비되는 이차전지의 셀 스택 제조장치.
  8. 제6항에 있어서,
    상기 제1멀티 헤드 외측에 구비되고, 상기 흡착판이 일측을 향할 때 상기 흡착판에 고정된 전극판의 에지 이미지를 촬영하는 제1비전부(first vision unit); 및
    상기 제2멀티 헤드 외측에 구비되고, 상기 흡착판이 일측을 향할 때 상기 흡착판에 고정된 전극판의 에지 이미지를 촬영하는 제2비전부(second vision unit);를 포함하고,
    상기 제1,2멀티 헤드는,
    상기 제1,2비전부에서 측정된 전극판의 에지 이미지 정보를 기반으로 상기 전극판을 적층하기 위한 기준 위치와 비교하여 오차값만큼 상기 흡착판의 위치를 보정하는 이차전지의 셀 스택 제조장치.
  9. 제8항에 있어서,
    상기 제1,2멀티 헤드는,
    상기 적층 테이블의 상면을 기준으로 상기 적층 테이블이 이동되는 방향(X-축)에 대해 직교하는 방향(Y-축)으로 오차값만큼 상기 흡착판을 수평 이동시키는 Y축 보정부와,
    상기 XY 평면에 수직한 회전축 방향(θ-축)으로 오차값만큼 상기 흡착판을 회전시키는 θ축 보정부를 포함하는 이차전지의 셀 스택 제조장치.
  10. 제9항에 있어서,
    상기 적층 테이블은,
    상기 X-축 방향으로 오차값만큼 이동되는 이차전지의 셀 스택 제조장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 불량 검사부는,
    상기 적층 테이블이 이동되는 동안 상기 적층 테이블에 적층된 셀 스택의 최상측 전극판의 에지 이미지를 연속 촬영하는 라인 스캔 카메라(line scan camera)와,
    상기 라인 스캔 카메라와 적층 테이블이 이동되는 경로 사이에 구비되고, 상기 라인 스캔 카메라에 상기 적층 테이블의 상면을 비춰주는 반사판을 포함하는 이차전치의 셀 스택 제조장치.
  12. 제11항에 있어서,
    상기 불량 검사부는,
    상기 라인 스캔 카메라에 의해 촬영된 셀 스택의 최상측 전극판의 에지 이미지 정보를 상기 전극판을 적층하기 위한 기준 위치와 비교하여 불량 여부를 판정하고, 불량 여부에 따라 셀 스택의 이송을 제어하는 제어부를 포함하는 이차전지의 셀 스택 제조장치.
  13. 제11항에 있어서,
    상기 제어부는,
    상기 전극판을 적층하기 위한 기준 위치를 상기 적층 테이블에 구비된 복수개의 기준 마크 좌표로 입력 받는 이차전지의 셀 스택 제조장치.
  14. 제11항에 있어서,
    상기 불량 검사부는,
    상기 제1,2멀티 헤드에 의해 공급되는 전극판의 종류 개수만큼 복수개가 구비되고,
    하나의 불량 검사부는 한 종류의 전극판 이미지를 누적 촬영하는 이차전지의 셀 스택 제조장치.
  15. 수평 방향과 수직 방향으로 왕복 이동 가능하게 설치된 적층 테이블;
    상기 적층 테이블 상측에 위치되고, 상기 적층 테이블 위에 분리막을 공급하는 분리막 공급부;
    상기 적층 테이블의 일측 상부에 각각 구비되고, 일측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제1멀티 헤드(first multi head); 및
    상기 적층 테이블의 타측 상부에 구비되고, 타측으로 이동된 적층 테이블 위에 위치한 분리막에 전극판의 위치를 정렬하여 한 장씩 적층시키는 제2멀티 헤드(second multi head);를 포함하고,
    상기 분리막 공급부는,
    분리막을 안내하는 복수개의 롤러와,
    상기 롤러들과 적층 테이블 사이에 위치되고, 중심을 기준으로 회전되는 회전부와,
    상기 회전부의 양단에 설치되고, 상기 롤러들로부터 적층 테이블 사이에서 분리막을 안내하는 한 쌍의 장력 조정 롤러를 포함하며,
    상기 회전부는,
    상기 적층 테이블과 상기 회전부 사이의 간격에 따라 주기적으로 정방향과 역방향으로 회전되는 이차전지의 셀 스택 제조장치.
  16. 제15항에 있어서,
    상기 회전부는,
    상기 적층 테이블이 상기 회전부와 가까워지는 방향으로 이동될 때 분리막을 당겨주는 방향으로 소정 각도 회전되고,
    상기 적층 테이블이 상기 회전부와 멀어지는 방향으로 이동될 때 분리막을 풀어주는 방향으로 소정 각도 회전되는 이차전지의 셀 스택 제조장치.
  17. 제15항에 있어서,
    상기 분리막 공급부는,
    분리막이 감겨진 분리막 롤이 장착되는 구동 롤러와,
    상기 구동 롤러 일측에 위치되고, 상기 구동 롤러로부터 풀리는 분리막을 안내하는 한 쌍의 아이들 롤러(idle roller)와,
    상기 아이들 롤러들 사이에 이동 가능하게 설치되고, 상기 아이들 롤러들 사이에서 분리막을 안내하는 장력 롤러와,
    상기 아이들 롤러들과 장력 롤러 하측에 위치되고, 분리막이 그 사이에 끼워져서 상기 적층 테이블로 안내하는 한 쌍의 가이드부를 포함하고,
    상기 회전부는,
    상기 아이들 롤러와 가이드부들 사이에 위치되는 이차전지의 셀 스택 제조장치.
PCT/KR2018/016255 2018-12-19 2018-12-19 이차전지의 셀 스택 제조장치 WO2020130184A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2018/016255 WO2020130184A1 (ko) 2018-12-19 2018-12-19 이차전지의 셀 스택 제조장치
CN201880100340.8A CN113196537B (zh) 2018-12-19 2018-12-19 二次电池的电池堆制造装置
KR1020217022801A KR102676855B1 (ko) 2018-12-19 2018-12-19 이차전지의 셀 스택 제조장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016255 WO2020130184A1 (ko) 2018-12-19 2018-12-19 이차전지의 셀 스택 제조장치

Publications (1)

Publication Number Publication Date
WO2020130184A1 true WO2020130184A1 (ko) 2020-06-25

Family

ID=71102121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016255 WO2020130184A1 (ko) 2018-12-19 2018-12-19 이차전지의 셀 스택 제조장치

Country Status (3)

Country Link
KR (1) KR102676855B1 (ko)
CN (1) CN113196537B (ko)
WO (1) WO2020130184A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4027424A1 (en) * 2021-01-07 2022-07-13 SK On Co., Ltd. Apparatus for inspecting stacking of electrodes of secondary battery and inspection method thereof
KR102489375B1 (ko) * 2021-08-09 2023-01-18 국민대학교산학협력단 배터리 검사 장치 및 그의 동작 방법
WO2023241892A1 (de) 2022-06-17 2023-12-21 Mb Atech Gmbh Vorrichtung zur herstellung von modulen oder vorstufen von modulen
DE102022124788B3 (de) 2022-09-27 2024-01-18 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
DE102022124777A1 (de) 2022-09-27 2024-03-28 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
DE102022124784A1 (de) 2022-09-27 2024-03-28 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
EP4113696A4 (en) * 2021-02-17 2024-08-07 Lg Energy Solution Ltd ELECTRODE TAB DEFECT DETECTION SYSTEM AND ELECTRODE TAB DEFECT DETECTION METHOD USING SAME
WO2024223857A1 (de) * 2023-04-28 2024-10-31 Körber Technologies Gmbh Vorrichtung und verfahren für die energiezellen produzierende industrie zum bilden eines stapels, der eine vielzahl von segmenten sowie eine materialbahn umfasst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031060A (ko) * 2021-08-26 2023-03-07 주식회사 엘지에너지솔루션 단위셀 검사장치, 그를 포함하는 전극조립체 제조설비 및 제조방법
KR102709878B1 (ko) * 2021-12-23 2024-09-26 한화모멘텀 주식회사 이차전지의 셀 제조용 분리막 적층장치
KR102708756B1 (ko) * 2021-12-23 2024-09-24 한화모멘텀 주식회사 이차전지의 셀 제조용 분리막 적층장치
WO2023158218A1 (ko) * 2022-02-16 2023-08-24 주식회사 엘지에너지솔루션 단위셀 검사장치
WO2023224206A1 (ko) * 2022-05-16 2023-11-23 엘지전자 주식회사 이차전지의 셀 스택 제조장치
KR20230171902A (ko) * 2022-06-14 2023-12-21 주식회사 엘지에너지솔루션 스택형 전극체의 사이드 실링 장치, 스택형 전극체를 갖는 이차전지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438368B2 (ko) * 1972-08-22 1979-11-20
JPS586693B2 (ja) * 1979-05-16 1983-02-05 三菱瓦斯化学株式会社 鉄ペンタカルボニルの製法
KR101140447B1 (ko) * 2007-09-19 2012-04-30 에스케이이노베이션 주식회사 이차전지용 스택 제조장치
KR20150021069A (ko) * 2012-05-24 2015-02-27 소베마 에스.피.에이. 전기 저장 배터리용 셀을 획득하기 위한 기계와 공정 및 전기 저장 배터리용 셀
KR101730469B1 (ko) * 2015-12-21 2017-04-27 주식회사 디에이테크놀로지 이차전지의 고속 셀 스택 제조장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438368B2 (ja) * 2009-04-28 2014-03-12 Ckd株式会社 積層電池の製造過程に用いられる検査装置
KR101553542B1 (ko) * 2012-09-14 2015-09-16 에스케이이노베이션 주식회사 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
KR101531234B1 (ko) * 2012-11-15 2015-06-24 에스케이이노베이션 주식회사 이차 전지용 고속 스태킹 장치 및 방법
JP5806693B2 (ja) * 2013-02-26 2015-11-10 株式会社日立パワーソリューションズ 積層型電池製造方法及びその装置
CN205752337U (zh) * 2016-06-30 2016-11-30 界首市天鸿新材料股份有限公司 锂电池隔膜的延展装置
CN108461797B (zh) * 2017-02-17 2021-01-22 Da技术有限公司 二次电池的高速电池堆制造装置
CN107381163A (zh) * 2017-07-28 2017-11-24 无锡先导智能装备股份有限公司 一种高速卷绕机用基材收紧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438368B2 (ko) * 1972-08-22 1979-11-20
JPS586693B2 (ja) * 1979-05-16 1983-02-05 三菱瓦斯化学株式会社 鉄ペンタカルボニルの製法
KR101140447B1 (ko) * 2007-09-19 2012-04-30 에스케이이노베이션 주식회사 이차전지용 스택 제조장치
KR20150021069A (ko) * 2012-05-24 2015-02-27 소베마 에스.피.에이. 전기 저장 배터리용 셀을 획득하기 위한 기계와 공정 및 전기 저장 배터리용 셀
KR101730469B1 (ko) * 2015-12-21 2017-04-27 주식회사 디에이테크놀로지 이차전지의 고속 셀 스택 제조장치

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4027424A1 (en) * 2021-01-07 2022-07-13 SK On Co., Ltd. Apparatus for inspecting stacking of electrodes of secondary battery and inspection method thereof
EP4113696A4 (en) * 2021-02-17 2024-08-07 Lg Energy Solution Ltd ELECTRODE TAB DEFECT DETECTION SYSTEM AND ELECTRODE TAB DEFECT DETECTION METHOD USING SAME
KR102489375B1 (ko) * 2021-08-09 2023-01-18 국민대학교산학협력단 배터리 검사 장치 및 그의 동작 방법
US12026911B2 (en) 2021-08-09 2024-07-02 Kookmin University Industry Academy Cooperation Foundation Apparatus for checking battery position and operating method thereof
WO2023241892A1 (de) 2022-06-17 2023-12-21 Mb Atech Gmbh Vorrichtung zur herstellung von modulen oder vorstufen von modulen
DE102022124788B3 (de) 2022-09-27 2024-01-18 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
DE102022124777A1 (de) 2022-09-27 2024-03-28 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
DE102022124784A1 (de) 2022-09-27 2024-03-28 Mb Atech Gmbh Inspektion bei der Herstellung von Modulen oder Vorstufen von Modulen
EP4345958A2 (de) 2022-09-27 2024-04-03 MB Automation GmbH & Co. KG Inspektion bei der herstellung von modulen oder vorstufen von modulen
WO2024068707A1 (de) 2022-09-27 2024-04-04 Mb Automation Gmbh & Co. Kg Inspektion bei der herstellung von modulen oder vorstufen von modulen
WO2024068499A1 (de) 2022-09-27 2024-04-04 Mb Automation Gmbh & Co. Kg Inspektion bei der herstellung von modulen oder vorstufen von modulen
WO2024223857A1 (de) * 2023-04-28 2024-10-31 Körber Technologies Gmbh Vorrichtung und verfahren für die energiezellen produzierende industrie zum bilden eines stapels, der eine vielzahl von segmenten sowie eine materialbahn umfasst

Also Published As

Publication number Publication date
KR20210098538A (ko) 2021-08-10
CN113196537A (zh) 2021-07-30
KR102676855B1 (ko) 2024-06-24
CN113196537B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
KR102256378B1 (ko) 이차전지의 셀 스택 제조 시스템 및 방법
CN110364766B (zh) 模切叠片系统及方法
CN109698373B (zh) 二次电池的电池组制造装置
WO2020045772A1 (ko) 2차 전지용 전극 생산 시스템
CN112585793A (zh) 二次电池制造设备和使用该设备的二次电池制造方法
WO2020085835A1 (ko) 버큠 벨트 컨베이어를 이용한 각형 이차전지의 극판 적층 장치 및 자체 정렬 기능을 구비한 버큠 벨트 컨베이어
WO2020184835A1 (ko) 이차전지용 라미네이션장치 및 방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2018182129A1 (ko) 전극적층방법 및 이를 수행하는 전극적층장치
WO2021080101A1 (ko) 각형 이차전지 셀 제조 장비에서 분리막의 접힘성을 향상시키기 위한 장치 및 방법
WO2022169237A1 (ko) 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
WO2021033932A1 (ko) 연료전지용 분리판의 제조 설비 및 제조 방법
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
KR102370758B1 (ko) 이차전지용 셀스택 제조장치의 분리막 공급시스템
KR102606920B1 (ko) 이차전지용 전지 셀 스택킹 시스템
WO2021096068A1 (ko) 이차 전지 제조용 전극 자동공급 장치 및 이를 이용한 전극 자동공급 방법
WO2021015575A1 (ko) 연료전지용 분리판의 제조 설비 및 제조 방법
WO2023277327A1 (ko) 이차전지 전극조립체의 단면 전극 스택용 분리막 핸들링장치 및 이를 이용한 이차전지 전극조립체 제조 방법
WO2021054605A1 (ko) 저전압 불량 파우치형 이차전지 셀을 검출하기 위한 가압 단락 검사장치
WO2024162702A1 (ko) 극판의 정렬 검사를 위한 스택 비전 방법 및 장치
WO2022260245A1 (ko) 전극판 또는 단위셀 적층 검사 장치
WO2022255651A1 (ko) 이차전지의 전극 노칭 및 셀 스택 시스템
KR20220032670A (ko) 이차전지 제조 장치
WO2022164209A1 (ko) 전극 커팅 장치 및 이를 포함하는 전극 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217022801

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18944033

Country of ref document: EP

Kind code of ref document: A1