[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020130090A1 - Light irradiation device for light exposure device - Google Patents

Light irradiation device for light exposure device Download PDF

Info

Publication number
WO2020130090A1
WO2020130090A1 PCT/JP2019/049905 JP2019049905W WO2020130090A1 WO 2020130090 A1 WO2020130090 A1 WO 2020130090A1 JP 2019049905 W JP2019049905 W JP 2019049905W WO 2020130090 A1 WO2020130090 A1 WO 2020130090A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
temperature
light
support
light irradiation
Prior art date
Application number
PCT/JP2019/049905
Other languages
French (fr)
Japanese (ja)
Inventor
芳幸 吉本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020130090A1 publication Critical patent/WO2020130090A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Definitions

  • the present invention relates to a light irradiation device for an exposure device, and more particularly to a light irradiation device for an exposure device having a cooling mechanism that cools a light source unit.
  • the light irradiation device tends to reach a high temperature due to heat generation of the lamp, and in order to maintain the lamp performance, each lamp is properly It is necessary to control the temperature.
  • the temperature of the lamp is determined by the balance between the amount of heat generated by the lamp itself and the cooling performance of the lamp cooling mechanism. Also, Since the lamp is a consumable item, in order to maintain the illuminance of the lamp, it is necessary to increase the amount of power supplied to the lamp according to the usage time.
  • the amount of heat generated by the lamp itself is approximately proportional to the amount of power supplied to the lamp. Therefore, in order to maintain the temperature of the lamp within a certain range, the cooling performance of the cooling mechanism is also controlled approximately in proportion to the amount of power. There is a need to.
  • a conventional air-cooling type cooling mechanism 100 draws in air on the upstream side of a lamp 102 by a blower 101, passes the air inside the lamp 102 to cool the lamp 102, and then exhausts it to the outside. There is.
  • the air volume used for cooling is indirectly obtained from the air velocity detected by the Pitot tube 103, and the air volume of the blower 101 is controlled by a control device (not shown).
  • Patent Document 1 discloses a light irradiation device for an exposure apparatus in which a plurality of heat radiation fins are arranged along the outer peripheral edge on the front surface side of a cassette to which a plurality of light source units can be attached, and the light source unit is cooled by heat radiation from the heat radiation fins. It is disclosed.
  • Patent Document 2 a predetermined number of light source units are attached to a cassette to form a unit, the cassette is further attached to a support body including a forced exhaust unit (blower), and the lamp is cooled by cooling air from the forced exhaust unit.
  • a light irradiation apparatus for an exposure apparatus which shortens the lamp replacement time and the apparatus downtime.
  • the temperature of the lamp 102 may not be appropriately managed unless the temperature and the amount of the cooling air that actually passes through the lamp 102 are constantly monitored. ..
  • the wind speed of the exhaust gas is detected by the Pitot tube 103 arranged on the outlet side of the cooling mechanism 100, unexpected air flow (gap between the lamp 102 and the Pitot tube 103) occurs. If there is wind, the amount of cooling air that has actually passed through the lamp 102 is not detected, and the temperature of the lamp 102 cannot be controlled appropriately. Further, even when the temperature of the air taken into the cooling mechanism 100 is different from the assumed temperature, it acts as a disturbance factor that makes the temperature of the lamp 102 unstable.
  • the present invention has been made in view of the above-described problems, and an object thereof is an exposure apparatus capable of controlling the temperature of a light source unit within an appropriate range by a simple mechanism to suppress performance deterioration and damage of the light source unit. It is to provide a light irradiation device for use.
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
  • a plurality of cassettes having a plurality of light source support parts capable of mounting a predetermined number of the light source parts, A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
  • a light irradiation apparatus for an exposure apparatus comprising: A temperature sensor for acquiring the temperature of the light source unit, A light irradiation device for an exposure apparatus, which controls the output of the cooling mechanism so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
  • a dummy light source unit including the reflective optical system, a heating element arranged inside the reflective optical system, and a thermocouple for measuring the temperature of the heating element;
  • a plurality of cassettes having a plurality of light source support portions to which a predetermined number of the light source portions and the dummy light source portions can be attached respectively, A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
  • a light irradiation device for an exposure apparatus comprising:
  • the output of the cooling mechanism is controlled so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
  • a dummy light source unit including a heating element and a thermocouple inside the reflective optical system, it is possible to separately process the cassette and the support. It is possible to manage the temperatures of a plurality of light source units.
  • FIG. 3 is a front view of the exposure apparatus according to the first embodiment of the present invention. It is a figure which shows the structure of the illumination optical system shown in FIG.
  • FIG. 3 is a front view of the light irradiation device shown in FIG. 2.
  • It is a perspective view of the cassette which comprises a light irradiation apparatus. It is sectional drawing of a light source part. It is sectional drawing of a dummy light source part. It is sectional drawing which shows the structure of a cooling mechanism. It is a front view of the light irradiation device which concerns on 2nd Embodiment of this invention. It is a block diagram which shows the structure of the conventional cooling mechanism.
  • the proximity exposure apparatus PE uses a mask M smaller than a work W as a material to be exposed, holds the mask M on a mask stage (mask support portion) 1, and holds the work W on a work stage (workpiece).
  • the illumination optical system 3 irradiates the mask M with light for pattern exposure.
  • the pattern of the mask M is exposed and transferred onto the work W.
  • the work stage 2 is moved stepwise in the biaxial directions of the X-axis direction and the Y-axis direction with respect to the mask M, and the exposure transfer is performed for each step.
  • an X-axis stage feed mechanism 5 that moves the X-axis feed table 5a in the X-axis step is installed on the device base 4.
  • a Y-axis stage feed mechanism 6 for step-moving the Y-axis feed table 6a in order to move the work stage 2 in the Y-axis direction is installed.
  • the work stage 2 is installed on the Y-axis feed table 6 a of the Y-axis stage feed mechanism 6.
  • the work W is held on the upper surface of the work stage 2 in a state of being vacuum-sucked by a work chuck or the like.
  • a substrate side displacement sensor 15 for measuring the height of the lower surface of the mask M is arranged on the side of the work stage 2. Therefore, the substrate side displacement sensor 15 is movable in the X and Y axis directions together with the work stage 2.
  • a plurality of (four in the illustrated embodiment) X-axis linear guide guide rails 31 are arranged on the device base 4 in the X-axis direction, and each guide rail 31 has a lower surface of the X-axis feed table 5a.
  • a slider 32 fixed to the bridge is straddled.
  • the X-axis feed table 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5 and can reciprocate in the X-axis direction along the guide rail 31.
  • a plurality of guide rails 33 of Y-axis linear guides are arranged in the Y-axis direction on the X-axis feed table 5a, and sliders 34 fixed to the lower surface of the Y-axis feed table 6a are provided on the respective guide rails 33. Is straddled.
  • the Y-axis feed table 6a is It is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6 and can reciprocate in the Y-axis direction along the guide rail 33.
  • a vertical fine movement device 8 is provided which can perform positioning with a higher resolution than the device 7 and finely moves the work stage 2 up and down to finely adjust the gap between the facing surfaces of the mask M and the work W to a predetermined amount. ..
  • the vertical coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6b by an appropriate drive mechanism provided on the fine movement stage 6b described later.
  • the stage coarse movement shafts 14 fixed at four positions on the bottom surface of the work stage 2 are engaged with the linear motion bearings 14a fixed to the fine movement stage 6b, and are guided in the vertical direction with respect to the fine movement stage 6b.
  • the vertical coarse movement device 7 preferably has high repetitive positioning accuracy even if the resolution is low.
  • the vertical fine movement device 8 is provided with a fixed base 9 fixed to the Y-axis feed base 6a, and a guide rail 10 of a linear guide attached to the fixed base 9 with its inner end side inclined obliquely downward.
  • a nut (not shown) of a ball screw is connected to a slide body 12 that reciprocates along the guide rail 10 via a slider 11 that is bridged over the guide rail 10, and an upper end surface of the slide body 12 is Is slidably in contact with a flange 12a fixed to the fine movement stage 6b in the horizontal direction.
  • the vertical fine movement device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
  • the vertical fine movement device 8 is installed at one end side (left end side in FIG. 1) in the Y-axis direction of the Z-axis feed table 6a, and two at the other end side, a total of three units, each of which is independently driven and controlled. It has become so. As a result, the vertical fine movement device 8 independently finely adjusts the heights of the flanges 12a at the three positions based on the measurement results of the gap amounts between the mask M and the work W at the plurality of positions by the gap sensor 27, and the work stage 2 Finely adjust the height and inclination of. If the height of the work stage 2 can be sufficiently adjusted by the fine vertical movement device 8, the vertical coarse movement device 7 may be omitted.
  • a bar mirror (both not shown) facing the interferometer is installed.
  • the bar mirror 19 facing the Y-axis laser interferometer 18 is arranged along the X-axis direction on one side of the Y-axis feed base 6a, and the bar mirror facing the X-axis laser interferometer is of the Y-axis feed base 6a. It is arranged along the Y-axis direction at one end side.
  • the Y-axis laser interferometer 18 and the X-axis laser interferometer are always arranged so as to face the corresponding bar mirrors and supported by the device base 4.
  • Two Y-axis laser interferometers 18 are installed apart from each other in the X-axis direction.
  • the two Y-axis laser interferometers 18 detect the Y-axis position and the yawing error of the Y-axis feed table 6a and by extension, the work stage 2 via the bar mirror 19.
  • the X-axis laser interferometer detects the position in the X-axis direction of the X-axis feed table 5a and eventually the work stage 2 via the facing bar mirror.
  • the mask stage 1 is inserted into a mask base frame 24 formed of a substantially rectangular frame body and a central opening of the mask base frame 24 through a gap, and is inserted in the X, Y, and ⁇ directions (in the X, Y plane).
  • the mask base frame 24 is movably supported, and the mask base frame 24 is held at a fixed position above the work stage 2 by a column 4a protruding from the apparatus base 4.
  • a frame-shaped mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, a plurality of mask holder suction grooves connected to a vacuum suction device (not shown) are provided on the lower surface of the mask frame 25, and the mask holder 26 sucks the mask frame 25 through the plurality of mask holder suction grooves. Retained.
  • a plurality of mask suction grooves for sucking the peripheral portion of the mask M on which the mask pattern is not drawn are formed, and the mask M passes through the mask suction grooves. It is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
  • the X-axis stage feed mechanism 5, the Y-axis stage feed mechanism 6, the vertical coarse movement device 7, and the vertical fine movement device 8 are driven under the control of the control unit 90.
  • the illumination optical system 3 of the exposure apparatus PE of the present embodiment is arranged on the light irradiation device 50, a plane mirror 81 for changing the direction of the optical path EL, and on the downstream side of the plane mirror 81.
  • An optical filter 82 including a plurality of cells, an exposure control shutter unit 83 that controls opening and closing of an irradiation light path, and a fly including a plurality of lens elements arranged on the downstream side of the exposure control shutter unit 83 and arranged in a matrix.
  • An eye lens 84 An eye lens 84, a plane mirror 85 for changing the direction of the optical path EL emitted from the fly-eye lens 84, a collimation mirror 86 for irradiating the light from the light irradiation device 50 as parallel light, and a mask M for the parallel light. And a plane mirror 87 that irradiates the light toward the.
  • the exposure control shutter unit 83 when the exposure control shutter unit 83 is controlled to be opened during exposure, the light emitted from the light irradiation device 50 is reflected by the plane mirror 81, and the fly-eye lens 84 is passed through the optical filter 82. Is incident on the incident surface of.
  • the fly-eye lens 84 is used to make the incident light a illuminance distribution as uniform as possible on the irradiation surface. Then, the light emitted from the exit surface of the fly-eye lens 84 is changed in its traveling direction by the plane mirror 85, the collimation mirror 86, and the plane mirror 87, and is converted into parallel light.
  • the parallel light is irradiated as light for pattern exposure substantially perpendicularly to the surface of the mask M held by the mask stage 1 and further the surface of the work W held by the work stage 2, and the pattern of the mask M is changed. It is exposed and transferred onto the work W.
  • a plurality of light source units 51 and a predetermined number of the light source units 51 among the plurality of light source units 51 are attached to each light source support unit 54.
  • a support cover 57 that covers the rear portion of each cassette 55 and forms a closed space S on the back side of each cassette 55 is fixed to the support 58.
  • the number of light source units 51 that the light irradiation device 50 should have depends on the type (generation) of the flat panel to be manufactured.
  • the cassette 55 has a total of 20 light source support portions 54 in five rows in the ⁇ direction and four rows in the ⁇ direction, and the support body 58 has three rows. It has a total of nine cassette support portions 56 of ⁇ 3 stages. Therefore, in the present embodiment, the light irradiation device 50 is capable of arranging a total of 180 light source units 51, and the light emitted from each light source unit 51 is arranged in a substantially spherical shape so as to gather at the fly-eye lens 84. Has been done.
  • the four light source support portions 54 arranged at the four corners of the support body 58 have an apparent appearance.
  • a dummy light source unit 71 which will be described later, is formed to have substantially the same shape as the other light source units 51.
  • An exhaust device 76 which is a cooling mechanism, is connected to the support cover 57 to exhaust the air in the closed space S to the outside.
  • the light source unit 51 includes a light emitting unit 52 for irradiating ultraviolet rays, such as a high pressure mercury lamp, and a reflecting mirror as a reflection optical system that emits light generated from the light emitting unit 52 with directivity. 53 and an insulator 59 to which the light emitting unit 52 and the reflecting mirror 53 are attached.
  • a light emitting unit 52 for irradiating ultraviolet rays such as a high pressure mercury lamp
  • a reflecting mirror as a reflection optical system that emits light generated from the light emitting unit 52 with directivity.
  • 53 and an insulator 59 to which the light emitting unit 52 and the reflecting mirror 53 are attached.
  • the light emitting unit 52 is connected to both ends of the arc tube 62, which is an ellipsoidal arc tube 62 in which an anode (anode) 60 and a cathode (cathode) 61, which are a pair of electrodes, face each other. , And a pair of side tube portions 63 and 64 extending along the longitudinal axis of the pair of electrodes 60 and 61.
  • a halogen gas, mercury, starting argon, and the like are enclosed in the internal space of the arc tube portion 62, and the pair of side tube portions 63 and 64 seal the internal space of the arc tube portion 62.
  • the side tube portion 64 is inserted into the insertion hole 65 provided in the reflecting mirror 53 with a gap g, and one end thereof is fixed to the insulator 59.
  • the air in the closed space S of the support body cover 57 that covers the rear portion of each cassette 55 is exhausted to the outside by the exhaust device 76 that is a cooling mechanism. Air is taken in from the side and flows through the gap g between the side tube portion 64 and the insertion hole 65 of the reflecting mirror 53 to cool each light source portion 51.
  • the four dummy light source parts 71 arranged at the four corners of the light irradiation device 50 are provided with a dummy arc tube part 72 having the same shape as the light source part 51, a reflecting mirror 53, and an insulator 59.
  • a heating element 74 such as an electric resistance is arranged inside the dummy arc tube portion 72 in place of the anode (anode) 60 and the cathode (cathode) 61. That is, the dummy light source unit 71 does not emit the light for UV irradiation.
  • a temperature sensor 75 such as a thermocouple is attached to the dummy light emitting tube portion 72 of the dummy light source portion 71 so that the temperature of the dummy light emitting tube portion 72 can be measured.
  • the temperatures of the light source unit 51 and the dummy light source unit 71 depending on the supplied power are measured in advance when the light irradiation device 50 is shipped. Thereby, for example, when a predetermined power is supplied, the temperature of the light emitting tube portion 62 of the light emitting portion 52 is 800° C., the temperature of the heating element 74 of the dummy light source portion 71 is 100° C., and so on. Is given. Further, this correlation is stored in the storage unit or the like in the control unit 90.
  • the accuracy of the correlation between the temperatures of the light source section 51 and the dummy light source section 71 is improved.
  • the control unit 90 controls the rotation speed of the exhaust device 76, that is, the exhaust amount, so that the temperature of the light source unit 51 falls within a predetermined range. To control.
  • the dummy light source units 71 are arranged in the four cassettes 55. For this reason, in the closed space S, when the flow volume can be adjusted by changing the size of the flow path depending on the position, even if the air volume passing through the light source unit 51 in the region where the temperature is high is increased. Good. That is, a partition whose size can be adjusted may be provided behind each cassette 55 to adjust the size of the flow path at each position. That is, in the present embodiment, the exhaust amount of the exhaust device 76 may be controlled on the basis of the average temperature of the four dummy light source units 71, but the flow passage of the flow path is changed according to each temperature of the four dummy light source units 71.
  • the size may be adjusted to control the temperatures of the plurality of light source units 51 to be uniform. Further, in the present embodiment, in addition to the above-described control based on the average temperature, at least one of the upper limit temperature and the lower limit temperature of the four dummy light source units 71 is set, and the temperature of any one dummy light source unit 71 becomes the upper limit temperature. When it reaches, the cooling is strengthened to lower the overall temperature, and when the temperature of any one of the dummy light source units 71 reaches the lower limit temperature, the cooling is weakened to raise the overall temperature. Good.
  • the temperature of the light source unit 51 is indirectly obtained from the temperature measured by the temperature sensor 75 installed in the dummy light source unit 71, and the temperature of the light source unit 51 falls within a predetermined range. Since the air volume of the cooling air is controlled so that it is inside, it is possible to suppress the performance deterioration and the damage due to the temperature rise of the light source unit 51. Further, the dummy light source unit 71 includes a heating element 74 and a temperature sensor 75, and is detachably attached to the light source support unit 54 of the cassette 55 that detachably supports the light source unit 51.
  • the dummy light source unit 71 can be used as it is even when the plurality of light source units 51 are replaced, and can be easily replaced with another cassette 55. That is, by using the dummy light source unit 71, workability can be improved as compared with the case where the temperature sensor 75 is attached to the light source unit 51.
  • FIG. 8 is a front view of the light irradiation device according to the second embodiment of the present invention.
  • openings are formed at four corners 80a of the outer frame part 80 around the plurality of cassette support parts 56 of the support 58, and the openings are formed.
  • a temperature sensor unit 79 in which the heating element 74 of the first embodiment and a temperature sensor 75 such as a thermocouple are unitized is arranged.
  • the temperature sensor unit 79 may be the dummy light source unit 71 of the first embodiment.
  • the temperature of the light emitting tube portion 62 of the light emitting portion 52 and the temperature of the heating element 74 of the temperature sensor unit 79 are measured in advance when a predetermined power is applied, and the correlation between the temperatures is grasped. I'll do it. Accordingly, the temperatures of the plurality of light source units 51 can be managed without reducing the number of light source units 51.
  • Other parts are the same as those of the light irradiation device 50 for the exposure apparatus of the first embodiment of the present invention.
  • only the temperature sensors may be provided at the four corners 80a of the support 58.
  • the present invention is not limited to the above-described respective embodiments, and modifications, improvements, etc. can be appropriately made.
  • the number of temperature sensors is not limited to four, and at least one may be provided in the light irradiation device 50, and it is arbitrary as long as a good correlation with the temperature of the light source unit can be secured.
  • the dummy light source unit is arranged in the cassette, the dummy light source unit is arranged at a position where the influence on the exposure is as small as possible (for example, the corner of the irradiation area formed by the plurality of light source units 51 as in the present embodiment). Is preferred.
  • the closed space S exhausted by the exhaust device 76 is not limited to the space formed by the support body 58 and the support body cover 57 of the above-described embodiment, but is, for example, a space formed by a housing that surrounds the illumination optical system 3. May be
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
  • a plurality of cassettes having a plurality of light source support parts capable of mounting a predetermined number of the light source parts, A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
  • a light irradiation apparatus for an exposure apparatus comprising: A temperature sensor for acquiring the temperature of the light source unit, A light irradiation device for an exposure apparatus, which controls the output of the cooling mechanism so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
  • the output of the cooling mechanism is controlled so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor, so that performance deterioration and damage of the light source unit are suppressed. be able to.
  • the reflection optical system On the light source supporting portion of the cassette, the reflection optical system, a heating element arranged inside the reflection optical system, and a thermocouple constituting the temperature sensor for measuring the temperature of the heating element.
  • a plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
  • a dummy light source unit including the reflective optical system, a heating element arranged inside the reflective optical system, and a thermocouple for measuring the temperature of the heating element;
  • a plurality of cassettes having a plurality of light source support portions to which a predetermined number of the light source portions and the dummy light source portions can be attached, respectively.
  • a support having a plurality of cassette support parts to which the plurality of cassettes can be attached; And a light irradiation device for an exposure device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention comprises: a support body (58) comprising a plurality of cassettes (55) that have light source units (51) attached to light source support units (54), said plurality of cassettes (55) being attached to cassette support units (56); and an exhaust device (76) that cools the plurality of light source units (51). The output of the exhaust device (76) is controlled on the basis of the temperature detected by a temperature sensor (75) for a dummy light source unit (71), such that the temperature of the light source units (51) is within a prescribed temperature range. As a result, the temperature of light source units can be controlled within an appropriate range and deterioration in performance of or damage to the light source units can be suppressed, using a simple mechanism.

Description

露光装置用光照射装置Light irradiation device for exposure equipment
 本発明は、露光装置用光照射装置に関し、特に、光源部を冷却する冷却機構を有する露光装置用光照射装置に関する。 The present invention relates to a light irradiation device for an exposure device, and more particularly to a light irradiation device for an exposure device having a cooling mechanism that cools a light source unit.
 露光装置に用いられる、複数のランプを搭載するマルチランプ方式の光照射装置においては、ランプの発熱によって光照射装置が高温になる傾向があり、ランプ性能を維持するため、それぞれのランプを適切な温度に管理する必要がある。ランプの温度は、ランプ自身からの発熱量と、ランプ冷却機構の冷却性能とのバランスによって決定される。また、
ランプは、消耗品であるため、ランプの照度を維持するためには、使用時間に応じてランプに供給される電力量を増加する必要がある。ランプ自身の発熱量は、ランプに供給される電力量に略比例するため、ランプの温度を一定の範囲内に維持するためには、冷却機構による冷却性能も該電力量に略比例して制御する必要がある。
In a multi-lamp type light irradiation device equipped with a plurality of lamps used in an exposure device, the light irradiation device tends to reach a high temperature due to heat generation of the lamp, and in order to maintain the lamp performance, each lamp is properly It is necessary to control the temperature. The temperature of the lamp is determined by the balance between the amount of heat generated by the lamp itself and the cooling performance of the lamp cooling mechanism. Also,
Since the lamp is a consumable item, in order to maintain the illuminance of the lamp, it is necessary to increase the amount of power supplied to the lamp according to the usage time. The amount of heat generated by the lamp itself is approximately proportional to the amount of power supplied to the lamp. Therefore, in order to maintain the temperature of the lamp within a certain range, the cooling performance of the cooling mechanism is also controlled approximately in proportion to the amount of power. There is a need to.
 従来の風冷方式の冷却機構100は、図9に示すように、送風機101によってランプ102の上流側の空気を吸い込み、ランプ102内を通過させてランプ102を冷却した後、外部に排気している。ランプ102の温度は、冷却に使用される風量を、ピトー管103で検出した風速から間接的に求め、不図示の制御装置により送風機101の風量を制御していた。 As shown in FIG. 9, a conventional air-cooling type cooling mechanism 100 draws in air on the upstream side of a lamp 102 by a blower 101, passes the air inside the lamp 102 to cool the lamp 102, and then exhausts it to the outside. There is. For the temperature of the lamp 102, the air volume used for cooling is indirectly obtained from the air velocity detected by the Pitot tube 103, and the air volume of the blower 101 is controlled by a control device (not shown).
 また、冷却機構を備える各種の露光装置用光照射装置も開示されている(例えば、特許文献1,2参照)。特許文献1には、複数の光源部が取り付け可能なカセットの前面側外周縁に沿って複数の放熱フィンを配置し、該放熱フィンからの放熱によって光源部を冷却する露光装置用光照射装置が開示されている。特許文献2には、所定数の光源部をカセットに取り付けてユニット化し、該カセットをさらに強制排気手段(ブロア)を備える支持体に取り付けて、強制排気手段からの冷却風によりランプの冷却を図ると共に、ランプ交換時間や装置のダウンタイムの短縮を図った露光装置用光照射装置が開示されている。 Also, various light irradiation devices for exposure apparatuses equipped with a cooling mechanism are disclosed (for example, refer to Patent Documents 1 and 2). Patent Document 1 discloses a light irradiation device for an exposure apparatus in which a plurality of heat radiation fins are arranged along the outer peripheral edge on the front surface side of a cassette to which a plurality of light source units can be attached, and the light source unit is cooled by heat radiation from the heat radiation fins. It is disclosed. In Patent Document 2, a predetermined number of light source units are attached to a cassette to form a unit, the cassette is further attached to a support body including a forced exhaust unit (blower), and the lamp is cooled by cooling air from the forced exhaust unit. At the same time, there is disclosed a light irradiation apparatus for an exposure apparatus, which shortens the lamp replacement time and the apparatus downtime.
日本国特開2012-177799号公報Japanese Patent Laid-Open No. 2012-177799 日本国特開2015-172775号公報Japanese Patent Laid-Open No. 2015-172775
 しかしながら、冷却風によってランプ102を冷却する冷却機構100の場合、実際にランプ102を通過する冷却風の温度や風量を常時監視しない限り、ランプ102の温度を適切に管理することができない虞がある。例えば、図9に示すように、冷却機構100の出口側に配置したピトー管103により排気の風速を検出する構成とした場合、ランプ102とピトー管103の間で想定外の空気の出入り(隙間風など)があると、ランプ102を実際に通過した冷却風の風量を検知したことにはならず、ランプ102の温度を適切に制御できなくなる。また、冷却機構100に取り込む空気の温度が、想定温度と異なる場合も、ランプ102の温度を不安定にさせる外乱要因として作用する。 However, in the case of the cooling mechanism 100 that cools the lamp 102 with the cooling air, the temperature of the lamp 102 may not be appropriately managed unless the temperature and the amount of the cooling air that actually passes through the lamp 102 are constantly monitored. .. For example, as shown in FIG. 9, when the wind speed of the exhaust gas is detected by the Pitot tube 103 arranged on the outlet side of the cooling mechanism 100, unexpected air flow (gap between the lamp 102 and the Pitot tube 103) occurs. If there is wind, the amount of cooling air that has actually passed through the lamp 102 is not detected, and the temperature of the lamp 102 cannot be controlled appropriately. Further, even when the temperature of the air taken into the cooling mechanism 100 is different from the assumed temperature, it acts as a disturbance factor that makes the temperature of the lamp 102 unstable.
 また、特許文献1及び特許文献2では、ランプ冷却を放熱フィンからの放熱や強制排気手段で行っているが、ランプの温度を適切に管理することには言及されていない。 Also, in Patent Document 1 and Patent Document 2, although lamp cooling is performed by heat radiation from the radiation fins or forced exhaustion means, there is no mention of properly managing the temperature of the lamp.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、簡単な機構により、光源部の温度を適切な範囲内に制御して光源部の性能劣化や破損を抑制できる露光装置用光照射装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object thereof is an exposure apparatus capable of controlling the temperature of a light source unit within an appropriate range by a simple mechanism to suppress performance deterioration and damage of the light source unit. It is to provide a light irradiation device for use.
 本発明の上記目的は、下記の構成により達成される。
(1) 発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
 所定数の前記光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
 前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
 前記複数の光源部を冷却する冷却機構と、
を備える露光装置用光照射装置であって、
 前記光源部の温度を取得する温度センサと、
 前記温度センサによって検出された温度に基づいて、前記光源部の温度が所定の温度範囲内になるように前記冷却機構の出力を制御する露光装置用光照射装置。
(2) 発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
 前記反射光学系と、該反射光学系の内部に配置される発熱体と、該発熱体の温度を測定する熱電対と、を備えるダミー光源部と、
 所定数の前記光源部及び前記ダミー光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
 前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
を備える露光装置用光照射装置。
The above object of the present invention is achieved by the following configurations.
(1) A plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
A plurality of cassettes having a plurality of light source support parts capable of mounting a predetermined number of the light source parts,
A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
A cooling mechanism for cooling the plurality of light source units,
A light irradiation apparatus for an exposure apparatus, comprising:
A temperature sensor for acquiring the temperature of the light source unit,
A light irradiation device for an exposure apparatus, which controls the output of the cooling mechanism so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
(2) A plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
A dummy light source unit including the reflective optical system, a heating element arranged inside the reflective optical system, and a thermocouple for measuring the temperature of the heating element;
A plurality of cassettes having a plurality of light source support portions to which a predetermined number of the light source portions and the dummy light source portions can be attached respectively,
A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
A light irradiation device for an exposure apparatus, comprising:
 本発明の露光装置用光照射装置によれば、温度センサによって検出された温度に基づいて、光源部の温度が所定の温度範囲内になるように冷却機構の出力を制御するので、光源部の温度を適切な範囲内に制御して、光源部の性能劣化や破損を抑制できる。 According to the light irradiation device for an exposure apparatus of the present invention, the output of the cooling mechanism is controlled so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor. By controlling the temperature within an appropriate range, it is possible to suppress performance deterioration and damage of the light source unit.
 また、本発明の他の露光装置用光照射装置によれば、反射光学系の内部に、発熱体、及び熱電対を備えるダミー光源部を設けることで、カセットや支持体を別途加工することなく、複数の光源部の温度を管理することができる。 Further, according to another light irradiation apparatus for an exposure apparatus of the present invention, by providing a dummy light source unit including a heating element and a thermocouple inside the reflective optical system, it is possible to separately process the cassette and the support. It is possible to manage the temperatures of a plurality of light source units.
本発明の第1実施形態に係る露光装置の正面図である。FIG. 3 is a front view of the exposure apparatus according to the first embodiment of the present invention. 図1に示す照明光学系の構成を示す図である。It is a figure which shows the structure of the illumination optical system shown in FIG. 図2に示す光照射装置の正面図である。FIG. 3 is a front view of the light irradiation device shown in FIG. 2. 光照射装置を構成するカセットの斜視図である。It is a perspective view of the cassette which comprises a light irradiation apparatus. 光源部の断面図である。It is sectional drawing of a light source part. ダミー光源部の断面図である。It is sectional drawing of a dummy light source part. 冷却機構の構成を示す断面図である。It is sectional drawing which shows the structure of a cooling mechanism. 本発明の第2実施形態に係る光照射装置の正面図である。It is a front view of the light irradiation device which concerns on 2nd Embodiment of this invention. 従来の冷却機構の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional cooling mechanism.
 以下、本発明に係る露光装置用光照射装置の各実施形態を図面に基づいて詳細に説明する。 Hereinafter, each embodiment of the light irradiation apparatus for an exposure apparatus according to the present invention will be described in detail with reference to the drawings.
(第1実施形態)
 図1に示すように、近接露光装置PEは、被露光材としてのワークWより小さいマスクMを用い、マスクMをマスクステージ(マスク支持部)1で保持すると共に、ワークWをワークステージ(ワーク支持部)2で保持し、マスクMとワークWとを近接させて所定の露光ギャップで対向配置した状態で、照明光学系3からパターン露光用の光をマスクMに向けて照射することにより、マスクMのパターンをワークW上に露光転写する。また、ワークステージ2をマスクMに対してX軸方向とY軸方向の二軸方向にステップ移動させて、ステップ毎に露光転写が行われる。
(First embodiment)
As shown in FIG. 1, the proximity exposure apparatus PE uses a mask M smaller than a work W as a material to be exposed, holds the mask M on a mask stage (mask support portion) 1, and holds the work W on a work stage (workpiece). By holding the mask M and the work W in close proximity to each other with a predetermined exposure gap, the illumination optical system 3 irradiates the mask M with light for pattern exposure. The pattern of the mask M is exposed and transferred onto the work W. Further, the work stage 2 is moved stepwise in the biaxial directions of the X-axis direction and the Y-axis direction with respect to the mask M, and the exposure transfer is performed for each step.
 ワークステージ2をX軸方向にステップ移動させるため、装置ベース4上には、X軸送り台5aをX軸方向にステップ移動させるX軸ステージ送り機構5が設置されている。X軸ステージ送り機構5のX軸送り台5a上には、ワークステージ2をY軸方向にステップ移動させるため、Y軸送り台6aをY軸方向にステップ移動させるY軸ステージ送り機構6が設置されている。Y軸ステージ送り機構6のY軸送り台6a上には、ワークステージ2が設置されている。ワークステージ2の上面には、ワークWがワークチャック等で真空吸引された状態で保持される。また、ワークステージ2の側部には、マスクMの下面高さを測定するための基板側変位センサ15が配設されている。従って、基板側変位センサ15は、ワークステージ2と共にX、Y軸方向に移動可能である。 In order to move the work stage 2 stepwise in the X-axis direction, an X-axis stage feed mechanism 5 that moves the X-axis feed table 5a in the X-axis step is installed on the device base 4. On the X-axis feed table 5a of the X-axis stage feed mechanism 5, a Y-axis stage feed mechanism 6 for step-moving the Y-axis feed table 6a in order to move the work stage 2 in the Y-axis direction is installed. Has been done. The work stage 2 is installed on the Y-axis feed table 6 a of the Y-axis stage feed mechanism 6. The work W is held on the upper surface of the work stage 2 in a state of being vacuum-sucked by a work chuck or the like. A substrate side displacement sensor 15 for measuring the height of the lower surface of the mask M is arranged on the side of the work stage 2. Therefore, the substrate side displacement sensor 15 is movable in the X and Y axis directions together with the work stage 2.
 装置ベース4上には、複数(図に示す実施形態では4本)のX軸リニアガイドのガイドレール31がX軸方向に配置され、それぞれのガイドレール31には、X軸送り台5aの下面に固定されたスライダ32が跨架されている。これにより、X軸送り台5aは、X軸ステージ送り機構5の第1リニアモータ20で駆動され、ガイドレール31に沿ってX軸方向に往復移動可能である。また、X軸送り台5a上には、複数のY軸リニアガイドのガイドレール33がY軸方向に配置され、それぞれのガイドレール33には、Y軸送り台6aの下面に固定されたスライダ34が跨架されている。これにより、Y軸送り台6aは、
Y軸ステージ送り機構6の第2リニアモータ21で駆動され、ガイドレール33に沿ってY軸方向に往復移動可能である。
A plurality of (four in the illustrated embodiment) X-axis linear guide guide rails 31 are arranged on the device base 4 in the X-axis direction, and each guide rail 31 has a lower surface of the X-axis feed table 5a. A slider 32 fixed to the bridge is straddled. As a result, the X-axis feed table 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5 and can reciprocate in the X-axis direction along the guide rail 31. A plurality of guide rails 33 of Y-axis linear guides are arranged in the Y-axis direction on the X-axis feed table 5a, and sliders 34 fixed to the lower surface of the Y-axis feed table 6a are provided on the respective guide rails 33. Is straddled. As a result, the Y-axis feed table 6a is
It is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6 and can reciprocate in the Y-axis direction along the guide rail 33.
 Y軸ステージ送り機構6とワークステージ2の間には、ワークステージ2を上下方向に移動させるため、比較的位置決め分解能は粗いが移動ストローク及び移動速度が大きな上下粗動装置7と、上下粗動装置7と比べて高分解能での位置決めが可能でワークステージ2を上下に微動させてマスクMとワークWとの対向面間のギャップを所定量に微調整する上下微動装置8が設置されている。 Between the Y-axis stage feed mechanism 6 and the work stage 2, since the work stage 2 is moved in the vertical direction, the vertical coarse movement device 7 and the vertical coarse movement device 7 having relatively large positioning resolution but large movement stroke and movement speed, and the vertical coarse movement. A vertical fine movement device 8 is provided which can perform positioning with a higher resolution than the device 7 and finely moves the work stage 2 up and down to finely adjust the gap between the facing surfaces of the mask M and the work W to a predetermined amount. ..
 上下粗動装置7は後述の微動ステージ6bに設けられた適宜の駆動機構によりワークステージ2を微動ステージ6bに対して上下動させる。ワークステージ2の底面の4箇所に固定されたステージ粗動軸14は、微動ステージ6bに固定された直動ベアリング14aに係合し、微動ステージ6bに対し上下方向に案内される。なお、上下粗動装置7は、分解能が低くても、繰り返し位置決め精度が高いことが望ましい。 The vertical coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6b by an appropriate drive mechanism provided on the fine movement stage 6b described later. The stage coarse movement shafts 14 fixed at four positions on the bottom surface of the work stage 2 are engaged with the linear motion bearings 14a fixed to the fine movement stage 6b, and are guided in the vertical direction with respect to the fine movement stage 6b. It should be noted that the vertical coarse movement device 7 preferably has high repetitive positioning accuracy even if the resolution is low.
 上下微動装置8は、Y軸送り台6aに固定された固定台9と、固定台9にその内端側を斜め下方に傾斜させた状態で取り付けられたリニアガイドの案内レール10とを備えており、該案内レール10に跨架されたスライダ11を介して案内レール10に沿って往復移動するスライド体12にボールねじのナット(図示せず)が連結されると共に、スライド体12の上端面は微動ステージ6bに固定されたフランジ12aに対して水平方向に摺動自在に接している。 The vertical fine movement device 8 is provided with a fixed base 9 fixed to the Y-axis feed base 6a, and a guide rail 10 of a linear guide attached to the fixed base 9 with its inner end side inclined obliquely downward. A nut (not shown) of a ball screw is connected to a slide body 12 that reciprocates along the guide rail 10 via a slider 11 that is bridged over the guide rail 10, and an upper end surface of the slide body 12 is Is slidably in contact with a flange 12a fixed to the fine movement stage 6b in the horizontal direction.
 そして、固定台9に取り付けられたモータ17によってボールねじのねじ軸を回転駆動させると、ナット、スライダ11及びスライド体12が一体となって案内レール10に沿って斜め方向に移動し、これにより、フランジ12aが上下微動する。
 なお、上下微動装置8は、モータ17とボールねじによってスライド体12を駆動する代わりに、リニアモータによってスライド体12を駆動するようにしてもよい。
Then, when the screw shaft of the ball screw is rotationally driven by the motor 17 attached to the fixed base 9, the nut, the slider 11 and the slide body 12 are integrally moved in an oblique direction along the guide rail 10, and thereby, The flange 12a slightly moves up and down.
The vertical fine movement device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
 この上下微動装置8は、Z軸送り台6aのY軸方向の一端側(図1の左端側)に1台、他端側に2台、合計3台設置されてそれぞれが独立に駆動制御されるようになっている。これにより、上下微動装置8は、ギャップセンサ27による複数箇所でのマスクMとワークWとのギャップ量の計測結果に基づき、3箇所のフランジ12aの高さを独立に微調整してワークステージ2の高さ及び傾きを微調整する。
 なお、上下微動装置8によってワークステージ2の高さを十分に調整できる場合には、上下粗動装置7を省略してもよい。
The vertical fine movement device 8 is installed at one end side (left end side in FIG. 1) in the Y-axis direction of the Z-axis feed table 6a, and two at the other end side, a total of three units, each of which is independently driven and controlled. It has become so. As a result, the vertical fine movement device 8 independently finely adjusts the heights of the flanges 12a at the three positions based on the measurement results of the gap amounts between the mask M and the work W at the plurality of positions by the gap sensor 27, and the work stage 2 Finely adjust the height and inclination of.
If the height of the work stage 2 can be sufficiently adjusted by the fine vertical movement device 8, the vertical coarse movement device 7 may be omitted.
 また、Y軸送り台6a上には、ワークステージ2のY方向の位置を検出するY軸レーザ干渉計18に対向するバーミラー19と、ワークステージ2のX軸方向の位置を検出するX軸レーザ干渉計に対向するバーミラー(共に図示せず)とが設置されている。Y軸レーザ干渉計18に対向するバーミラー19は、Y軸送り台6aの一側でX軸方向に沿って配置されており、X軸レーザ干渉計に対向するバーミラーは、Y軸送り台6aの一端側でY軸方向に沿って配置されている。 Further, on the Y-axis feed table 6a, a bar mirror 19 that faces the Y-axis laser interferometer 18 that detects the position of the work stage 2 in the Y direction, and an X-axis laser that detects the position of the work stage 2 in the X-axis direction. A bar mirror (both not shown) facing the interferometer is installed. The bar mirror 19 facing the Y-axis laser interferometer 18 is arranged along the X-axis direction on one side of the Y-axis feed base 6a, and the bar mirror facing the X-axis laser interferometer is of the Y-axis feed base 6a. It is arranged along the Y-axis direction at one end side.
 Y軸レーザ干渉計18及びX軸レーザ干渉計は、それぞれ常に対応するバーミラーに対向するように配置されて装置ベース4に支持されている。なお、Y軸レーザ干渉計18は、X軸方向に離間して2台設置されている。2台のY軸レーザ干渉計18により、バーミラー19を介してY軸送り台6a、ひいてはワークステージ2のY軸方向の位置及びヨーイング誤差を検出する。また、X軸レーザ干渉計により、対向するバーミラーを介してX軸送り台5a、ひいてはワークステージ2のX軸方向の位置を検出する。 The Y-axis laser interferometer 18 and the X-axis laser interferometer are always arranged so as to face the corresponding bar mirrors and supported by the device base 4. Two Y-axis laser interferometers 18 are installed apart from each other in the X-axis direction. The two Y-axis laser interferometers 18 detect the Y-axis position and the yawing error of the Y-axis feed table 6a and by extension, the work stage 2 via the bar mirror 19. Further, the X-axis laser interferometer detects the position in the X-axis direction of the X-axis feed table 5a and eventually the work stage 2 via the facing bar mirror.
 マスクステージ1は、略長方形状の枠体からなるマスク基枠24と、該マスク基枠24の中央部開口にギャップを介して挿入されてX,Y,θ方向(X,Y平面内)に移動可能に支持されたマスクフレーム25とを備えており、マスク基枠24は装置ベース4から突設された支柱4aによってワークステージ2の上方の定位置に保持されている。 The mask stage 1 is inserted into a mask base frame 24 formed of a substantially rectangular frame body and a central opening of the mask base frame 24 through a gap, and is inserted in the X, Y, and θ directions (in the X, Y plane). The mask base frame 24 is movably supported, and the mask base frame 24 is held at a fixed position above the work stage 2 by a column 4a protruding from the apparatus base 4.
 マスクフレーム25の中央部開口の下面には、枠状のマスクホルダ26が設けられている。即ち、マスクフレーム25の下面には、図示しない真空式吸着装置に接続される複数のマスクホルダ吸着溝が設けられており、マスクホルダ26が複数のマスクホルダ吸着溝を介してマスクフレーム25に吸着保持される。 A frame-shaped mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, a plurality of mask holder suction grooves connected to a vacuum suction device (not shown) are provided on the lower surface of the mask frame 25, and the mask holder 26 sucks the mask frame 25 through the plurality of mask holder suction grooves. Retained.
 マスクホルダ26の下面には、マスクMのマスクパターンが描かれていない周縁部を吸着するための複数のマスク吸着溝(図示せず)が開設されており、マスクMは、マスク吸着溝を介して図示しない真空式吸着装置によりマスクホルダ26の下面に着脱自在に保持される。
 なお、X軸ステージ送り機構5、Y軸ステージ送り機構6、上下粗動装置7、及び上下微動装置8の各駆動機構は、制御部90によって制御されて駆動する。
On the lower surface of the mask holder 26, a plurality of mask suction grooves (not shown) for sucking the peripheral portion of the mask M on which the mask pattern is not drawn are formed, and the mask M passes through the mask suction grooves. It is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
The X-axis stage feed mechanism 5, the Y-axis stage feed mechanism 6, the vertical coarse movement device 7, and the vertical fine movement device 8 are driven under the control of the control unit 90.
 図2に示すように、本実施形態の露光装置PEの照明光学系3は、光照射装置50と、光路ELの向きを変えるための平面ミラー81と、平面ミラー81の下流側に配置され、複数のセルを備える光学フィルタ82と、照射光路を開閉制御する露光制御用シャッターユニット83と、露光制御用シャッターユニット83の下流側に配置され、マトリックス状に配列された複数のレンズ素子を備えるフライアイレンズ84と、フライアイレンズ84から出射された光路ELの向きを変えるための平面ミラー85と、光照射装置50からの光を平行光として照射するコリメーションミラー86と、該平行光をマスクMに向けて照射する平面ミラー87と、を備える。 As shown in FIG. 2, the illumination optical system 3 of the exposure apparatus PE of the present embodiment is arranged on the light irradiation device 50, a plane mirror 81 for changing the direction of the optical path EL, and on the downstream side of the plane mirror 81. An optical filter 82 including a plurality of cells, an exposure control shutter unit 83 that controls opening and closing of an irradiation light path, and a fly including a plurality of lens elements arranged on the downstream side of the exposure control shutter unit 83 and arranged in a matrix. An eye lens 84, a plane mirror 85 for changing the direction of the optical path EL emitted from the fly-eye lens 84, a collimation mirror 86 for irradiating the light from the light irradiation device 50 as parallel light, and a mask M for the parallel light. And a plane mirror 87 that irradiates the light toward the.
 照明光学系3では、露光時に露光制御用シャッターユニット83が開制御されると、光照射装置50から照射された光が、平面ミラー81で反射されて、光学フィルタ82を介してフライアイレンズ84の入射面に入射される。フライアイレンズ84は、入射した光を照射面においてできるだけ均一な照度分布とするために使用される。そして、フライアイレンズ84の出射面から発せられた光は、平面ミラー85、コリメーションミラー86、及び平面ミラー87によってその進行方向が変えられるとともに平行光に変換される。
そして、この平行光は、マスクステージ1に保持されるマスクM、さらにはワークステージ2に保持されるワークWの表面に対して略垂直にパターン露光用の光として照射され、マスクMのパターンがワークW上に露光転写される。
In the illumination optical system 3, when the exposure control shutter unit 83 is controlled to be opened during exposure, the light emitted from the light irradiation device 50 is reflected by the plane mirror 81, and the fly-eye lens 84 is passed through the optical filter 82. Is incident on the incident surface of. The fly-eye lens 84 is used to make the incident light a illuminance distribution as uniform as possible on the irradiation surface. Then, the light emitted from the exit surface of the fly-eye lens 84 is changed in its traveling direction by the plane mirror 85, the collimation mirror 86, and the plane mirror 87, and is converted into parallel light.
Then, the parallel light is irradiated as light for pattern exposure substantially perpendicularly to the surface of the mask M held by the mask stage 1 and further the surface of the work W held by the work stage 2, and the pattern of the mask M is changed. It is exposed and transferred onto the work W.
 図3、図4及び図7に示すように、光照射装置50は、複数の光源部51と、複数の光源部51のうち、所定数の光源部51が各光源支持部54にそれぞれ取り付けられた複数のカセット55と、該複数のカセット55が各カセット支持部56にそれぞれ取り付けられた支持体58と、を備える。支持体58には、各カセット55の後部を覆い、各カセット55の裏面側に閉鎖空間Sを形成する支持体カバー57が固定されている。 As shown in FIGS. 3, 4 and 7, in the light irradiation device 50, a plurality of light source units 51 and a predetermined number of the light source units 51 among the plurality of light source units 51 are attached to each light source support unit 54. A plurality of cassettes 55, and a plurality of cassettes 55, and a support member 58 attached to each cassette support portion 56. A support cover 57 that covers the rear portion of each cassette 55 and forms a closed space S on the back side of each cassette 55 is fixed to the support 58.
 光照射装置50が備えるべき光源部51の数は、製造されるフラットパネルのタイプ(世代)によって異なる。ここでは、図3及び図4に示すように、カセット55は、α方向に5列、β方向に4段の計20個の光源支持部54を有し、また、支持体58は、3列×3段の計9個のカセット支持部56を有する。したがって、本実施形態では、光照射装置50は、合計180個の光源部51を配置可能であり、各光源部51から照射される光が、フライアイレンズ84に集まるように略球面状に配置されている。ただし、本実施形態では、図3に示す支持体58に取り付けられたカセット55の180個の光源支持部54の内、支持体58の四隅に配置される4つの光源支持部54に、外見上、他の光源部51と略同じ形状に形成される、後述のダミー光源部71が配置される。 The number of light source units 51 that the light irradiation device 50 should have depends on the type (generation) of the flat panel to be manufactured. Here, as shown in FIGS. 3 and 4, the cassette 55 has a total of 20 light source support portions 54 in five rows in the α direction and four rows in the β direction, and the support body 58 has three rows. It has a total of nine cassette support portions 56 of ×3 stages. Therefore, in the present embodiment, the light irradiation device 50 is capable of arranging a total of 180 light source units 51, and the light emitted from each light source unit 51 is arranged in a substantially spherical shape so as to gather at the fly-eye lens 84. Has been done. However, in the present embodiment, among the 180 light source support portions 54 of the cassette 55 attached to the support body 58 shown in FIG. 3, the four light source support portions 54 arranged at the four corners of the support body 58 have an apparent appearance. A dummy light source unit 71, which will be described later, is formed to have substantially the same shape as the other light source units 51.
 図7に示すように、支持体カバー57の閉鎖空間S内では、光源部51の反射鏡53以外には該閉鎖空間S内の空気の流れを遮るものがなく、良好な空気の流動性が与えられる。また、支持体カバー57には、冷却機構である排気装置76が接続されて、閉鎖空間S内の空気を外部に排気する。 As shown in FIG. 7, in the closed space S of the support cover 57, there is nothing that blocks the flow of air in the closed space S other than the reflection mirror 53 of the light source unit 51, and good air flowability is obtained. Given. An exhaust device 76, which is a cooling mechanism, is connected to the support cover 57 to exhaust the air in the closed space S to the outside.
 図5に示すように、光源部51は、高圧水銀ランプなどの紫外線照射用の発光部52と、この発光部52から発生された光に指向性をもたせて射出する反射光学系としての反射鏡53と、発光部52及び反射鏡53が取り付けられる碍子59とを主に備える。 As shown in FIG. 5, the light source unit 51 includes a light emitting unit 52 for irradiating ultraviolet rays, such as a high pressure mercury lamp, and a reflecting mirror as a reflection optical system that emits light generated from the light emitting unit 52 with directivity. 53 and an insulator 59 to which the light emitting unit 52 and the reflecting mirror 53 are attached.
 発光部52は、一対の電極であるアノード(陽極)60、及びカソード(陰極)61が対向して配置される楕円体状の発光管部62と、該発光管部62の両端部に連接され、一対の電極60、61の長手軸線に沿って延びる一対の側管部63、64と、を有する。発光管部62の内部空間内には、ハロゲンガス、水銀、始動用アルゴン等が封入されており、一対の側管部63、64は、発光管部62の内部空間を封止する。 The light emitting unit 52 is connected to both ends of the arc tube 62, which is an ellipsoidal arc tube 62 in which an anode (anode) 60 and a cathode (cathode) 61, which are a pair of electrodes, face each other. , And a pair of side tube portions 63 and 64 extending along the longitudinal axis of the pair of electrodes 60 and 61. A halogen gas, mercury, starting argon, and the like are enclosed in the internal space of the arc tube portion 62, and the pair of side tube portions 63 and 64 seal the internal space of the arc tube portion 62.
 側管部64は、反射鏡53に設けられた挿入孔65に隙間gを持って挿入され、その一端が碍子59に固定されている。側管部64と反射鏡53の挿入孔65との隙間gは、碍子59に設けられた切欠き部66を介して外部と連通している。 The side tube portion 64 is inserted into the insertion hole 65 provided in the reflecting mirror 53 with a gap g, and one end thereof is fixed to the insulator 59. A gap g between the side tube portion 64 and the insertion hole 65 of the reflecting mirror 53 communicates with the outside through a notch portion 66 provided in the insulator 59.
 そして、図7に示すように、冷却機構である排気装置76により、各カセット55の後部を覆う支持体カバー57の閉鎖空間S内の空気を外部に排気することで、各光源部51の前面側からエアが取り込まれ、側管部64と反射鏡53の挿入孔65との隙間gを通過して流れることで各光源部51が冷却される。 Then, as shown in FIG. 7, the air in the closed space S of the support body cover 57 that covers the rear portion of each cassette 55 is exhausted to the outside by the exhaust device 76 that is a cooling mechanism. Air is taken in from the side and flows through the gap g between the side tube portion 64 and the insertion hole 65 of the reflecting mirror 53 to cool each light source portion 51.
 図6に示すように、光照射装置50の四隅に配置された4つのダミー光源部71は、光源部51と同様の形状を有するダミー発光管部72と反射鏡53と碍子59とを備える。ダミー発光管部72内には、アノード(陽極)60、及びカソード(陰極)61に代えて電気抵抗などの発熱体74が配設されている。即ち、ダミー光源部71は、紫外線照射用の光を出射しない。 As shown in FIG. 6, the four dummy light source parts 71 arranged at the four corners of the light irradiation device 50 are provided with a dummy arc tube part 72 having the same shape as the light source part 51, a reflecting mirror 53, and an insulator 59. Inside the dummy arc tube portion 72, a heating element 74 such as an electric resistance is arranged in place of the anode (anode) 60 and the cathode (cathode) 61. That is, the dummy light source unit 71 does not emit the light for UV irradiation.
 また、ダミー光源部71のダミー発光管部72には、熱電対などの温度センサ75が取り付けられて、ダミー発光管部72の温度を測定可能である。供給される電力に応じた光源部51及びダミー光源部71の温度は、光照射装置50の出荷時などに予め測定されている。これにより、例えば、所定の電力を供給した際に、発光部52の発光管部62の温度が800℃のとき、ダミー光源部71の発熱体74の温度が100℃であるなど、互いの温度の相関関係が与えられる。また、この相関関係は、制御部90内の記憶部などに記憶されている。 Further, a temperature sensor 75 such as a thermocouple is attached to the dummy light emitting tube portion 72 of the dummy light source portion 71 so that the temperature of the dummy light emitting tube portion 72 can be measured. The temperatures of the light source unit 51 and the dummy light source unit 71 depending on the supplied power are measured in advance when the light irradiation device 50 is shipped. Thereby, for example, when a predetermined power is supplied, the temperature of the light emitting tube portion 62 of the light emitting portion 52 is 800° C., the temperature of the heating element 74 of the dummy light source portion 71 is 100° C., and so on. Is given. Further, this correlation is stored in the storage unit or the like in the control unit 90.
 ダミー光源部71の形状は、光源部51の形状に近似させることで、光源部51とダミー光源部71の温度の相関関係の精度を向上させている。 By approximating the shape of the dummy light source section 71 to the shape of the light source section 51, the accuracy of the correlation between the temperatures of the light source section 51 and the dummy light source section 71 is improved.
 このように、温度センサ75によってダミー光源部71の温度を測定することで、光源部51の温度を間接的に取得することができる。そして、温度センサ75で測定されたダミー光源部71の温度に基づいて、排気装置76の回転速度、即ち排気量を制御部90により制御して、光源部51の温度が所定の範囲内になるように制御する。 In this way, by measuring the temperature of the dummy light source unit 71 by the temperature sensor 75, the temperature of the light source unit 51 can be indirectly obtained. Then, based on the temperature of the dummy light source unit 71 measured by the temperature sensor 75, the control unit 90 controls the rotation speed of the exhaust device 76, that is, the exhaust amount, so that the temperature of the light source unit 51 falls within a predetermined range. To control.
 なお、本実施形態では、4箇所のカセット55にダミー光源部71が配置されている。このため、閉鎖空間S内で、位置によって流路の大きさを変えて、風量を調整できるような場合には、温度が高くなる領域の光源部51を通過する風量が多くなるようにしてもよい。即ち、各カセット55の後方に、サイズを調整可能な仕切り等を設けて、各位置での流路の大きさを調整してもよい。
 即ち、本実施形態では、4つのダミー光源部71の平均温度に基づいて、排気装置76の排気量を制御してもよいが、4つのダミー光源部71の各温度に応じて、流路の大きさを調整して、複数の光源部51全体の温度が均一化するように制御してもよい。
 また、本実施形態では、平均温度に基づく上記制御の他、4つのダミー光源部71の上限温度と下限温度の少なくとも一つを設定し、いずれか1つのダミー光源部71の温度が上限温度に達した場合には、冷却を強めて全体的な温度を下げ、いずれか1つのダミー光源部71の温度が下限温度に達した場合には、冷却を弱めて全体的な温度を上げるようにしてもよい。
In this embodiment, the dummy light source units 71 are arranged in the four cassettes 55. For this reason, in the closed space S, when the flow volume can be adjusted by changing the size of the flow path depending on the position, even if the air volume passing through the light source unit 51 in the region where the temperature is high is increased. Good. That is, a partition whose size can be adjusted may be provided behind each cassette 55 to adjust the size of the flow path at each position.
That is, in the present embodiment, the exhaust amount of the exhaust device 76 may be controlled on the basis of the average temperature of the four dummy light source units 71, but the flow passage of the flow path is changed according to each temperature of the four dummy light source units 71. The size may be adjusted to control the temperatures of the plurality of light source units 51 to be uniform.
Further, in the present embodiment, in addition to the above-described control based on the average temperature, at least one of the upper limit temperature and the lower limit temperature of the four dummy light source units 71 is set, and the temperature of any one dummy light source unit 71 becomes the upper limit temperature. When it reaches, the cooling is strengthened to lower the overall temperature, and when the temperature of any one of the dummy light source units 71 reaches the lower limit temperature, the cooling is weakened to raise the overall temperature. Good.
 各発光部52に温度センサを取り付け、該温度センサの測定値に基づいて、排気装置76の回転速度を制御することで光源部51の温度を所定の範囲内に制御することは可能である。しかし、温度センサと一体になった発光部52の交換には、交換後に温度センサの調整が必要となり、専用の調整装置を備えない現場での交換は難しい。また、交換作業に多くの工数を要し、その間、光照射装置50を停止せざるを得ず、生産性が低下するので好ましくない。 It is possible to control the temperature of the light source unit 51 within a predetermined range by attaching a temperature sensor to each light emitting unit 52 and controlling the rotation speed of the exhaust device 76 based on the measured value of the temperature sensor. However, replacement of the light emitting unit 52 integrated with the temperature sensor requires adjustment of the temperature sensor after replacement, and replacement on site without a dedicated adjusting device is difficult. Further, the replacement work requires a large number of man-hours, and the light irradiation device 50 must be stopped during that time, which is not preferable because the productivity is reduced.
 このように、本実施形態の光照射装置50では、ダミー光源部71に設置された温度センサ75で測定した温度により光源部51の温度を間接的に求め、光源部51の温度が所定の範囲内になるように冷却風の風量を制御するので、光源部51の温度上昇に伴う性能劣化や破損を抑制することができる。
 また、ダミー光源部71は、発熱体74及び温度センサ75を備え、光源部51を着脱可能に支持するカセット55の光源支持部54に着脱可能に取り付けられる。このため、ダミー光源部71は、複数の光源部51が交換になった際にも、そのまま利用することができ、また、他のカセット55にも容易に付け替えすることができる。即ち、ダミー光源部71を利用することで、光源部51に温度センサ75を取り付ける場合に比べて、作業性を向上できる。
As described above, in the light irradiation device 50 of the present embodiment, the temperature of the light source unit 51 is indirectly obtained from the temperature measured by the temperature sensor 75 installed in the dummy light source unit 71, and the temperature of the light source unit 51 falls within a predetermined range. Since the air volume of the cooling air is controlled so that it is inside, it is possible to suppress the performance deterioration and the damage due to the temperature rise of the light source unit 51.
Further, the dummy light source unit 71 includes a heating element 74 and a temperature sensor 75, and is detachably attached to the light source support unit 54 of the cassette 55 that detachably supports the light source unit 51. Therefore, the dummy light source unit 71 can be used as it is even when the plurality of light source units 51 are replaced, and can be easily replaced with another cassette 55. That is, by using the dummy light source unit 71, workability can be improved as compared with the case where the temperature sensor 75 is attached to the light source unit 51.
(第2実施形態)
 次に、第2実施形態の露光装置用光照射装置について図8を参照して説明する。図8は本発明の第2実施形態である光照射装置の正面図である。
(Second embodiment)
Next, the light irradiation device for an exposure apparatus of the second embodiment will be described with reference to FIG. FIG. 8 is a front view of the light irradiation device according to the second embodiment of the present invention.
 図8に示すように、本実施形態の光照射装置50Aは、支持体58の複数のカセット支持部56の周囲の外枠部80の4か所の隅部80aに開口を形成し、該開口に第1実施形態の発熱体74、及び熱電対などの温度センサ75がユニットとなった温度センサユニット79が配置されている。なお、温度センサユニット79は、第1実施形態のダミー光源部71であってもよい。この場合も、所定の電力を印加した際の、発光部52の発光管部62の温度と、温度センサユニット79の発熱体74の温度とを予め測定して、互いの温度の相関関係を把握しておく。
 これにより、光源部51の数を減少させることなく、複数の光源部51の温度を管理することができる。
 その他の部分については、本発明の第1実施形態の露光装置用光照射装置50と同様である。
As shown in FIG. 8, in the light irradiation device 50A of the present embodiment, openings are formed at four corners 80a of the outer frame part 80 around the plurality of cassette support parts 56 of the support 58, and the openings are formed. In addition, a temperature sensor unit 79 in which the heating element 74 of the first embodiment and a temperature sensor 75 such as a thermocouple are unitized is arranged. The temperature sensor unit 79 may be the dummy light source unit 71 of the first embodiment. Also in this case, the temperature of the light emitting tube portion 62 of the light emitting portion 52 and the temperature of the heating element 74 of the temperature sensor unit 79 are measured in advance when a predetermined power is applied, and the correlation between the temperatures is grasped. I'll do it.
Accordingly, the temperatures of the plurality of light source units 51 can be managed without reducing the number of light source units 51.
Other parts are the same as those of the light irradiation device 50 for the exposure apparatus of the first embodiment of the present invention.
 なお、本実施形態の変形例として、支持体58の4か所の隅部80aに温度センサのみが設けられてもよい。ただし、この場合には、温度センサの温度と、所定の光源部51の温度との相関関係を予め把握しておく必要がある。例えば、温度が高くなりやすい中央の光源部51の温度と、温度センサの温度との相関関係を把握しておくことで、温度が高くなりやすい光源部51の冷却を確実に行うことができる。 As a modified example of the present embodiment, only the temperature sensors may be provided at the four corners 80a of the support 58. However, in this case, it is necessary to grasp the correlation between the temperature of the temperature sensor and the temperature of the predetermined light source unit 51 in advance. For example, by grasping the correlation between the temperature of the central light source 51, which tends to rise in temperature, and the temperature of the temperature sensor, the light source 51, which tends to rise in temperature, can be reliably cooled.
 尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、温度センサの数は4つに限定されず、光照射装置50に少なくとも1つあればよく、光源部の温度と良好な相関関係が確保可能であれば任意である。なお、カセットにダミー光源部を配置する場合は、露光への影響ができるだけ少ない位置(例えば、本実施形態のような、複数の光源部51によって形成される照射領域の隅部)に配置されるのが好ましい。
It should be noted that the present invention is not limited to the above-described respective embodiments, and modifications, improvements, etc. can be appropriately made.
For example, the number of temperature sensors is not limited to four, and at least one may be provided in the light irradiation device 50, and it is arbitrary as long as a good correlation with the temperature of the light source unit can be secured. When the dummy light source unit is arranged in the cassette, the dummy light source unit is arranged at a position where the influence on the exposure is as small as possible (for example, the corner of the irradiation area formed by the plurality of light source units 51 as in the present embodiment). Is preferred.
 また、排気装置76によって排気される閉鎖空間Sは、上記実施形態の支持体58と支持体カバー57によって形成される空間に限らず、例えば、照明光学系3を囲う筐体によって構成される空間であってもよい。 Further, the closed space S exhausted by the exhaust device 76 is not limited to the space formed by the support body 58 and the support body cover 57 of the above-described embodiment, but is, for example, a space formed by a housing that surrounds the illumination optical system 3. May be
 以上の通り、本明細書には次の事項が開示されている。
(1) 発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
 所定数の前記光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
 前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
 前記複数の光源部を冷却する冷却機構と、
を備える露光装置用光照射装置であって、
 前記光源部の温度を取得する温度センサと、
 前記温度センサによって検出された温度に基づいて、前記光源部の温度が所定の温度範囲内になるように前記冷却機構の出力を制御する露光装置用光照射装置。
 この構成によれば、温度センサによって検出された温度に基づいて、光源部の温度が所定の温度範囲内になるように冷却機構の出力を制御するので、光源部の性能劣化や破損を抑制することができる。
As described above, the following items are disclosed in this specification.
(1) A plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
A plurality of cassettes having a plurality of light source support parts capable of mounting a predetermined number of the light source parts,
A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
A cooling mechanism for cooling the plurality of light source units,
A light irradiation apparatus for an exposure apparatus, comprising:
A temperature sensor for acquiring the temperature of the light source unit,
A light irradiation device for an exposure apparatus, which controls the output of the cooling mechanism so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
According to this configuration, the output of the cooling mechanism is controlled so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor, so that performance deterioration and damage of the light source unit are suppressed. be able to.
(2) 前記カセットの光源支持部には、前記反射光学系と、該反射光学系の内部に配置される発熱体と、該発熱体の温度を測定する、前記温度センサを構成する熱電対と、を備えるダミー光源部が取り付けられる、(1)に記載の露光装置用光照射装置。
 この構成によれば、カセットや支持体を別途加工することなく、複数の光源部の温度を管理することができる。
(2) On the light source supporting portion of the cassette, the reflection optical system, a heating element arranged inside the reflection optical system, and a thermocouple constituting the temperature sensor for measuring the temperature of the heating element. The light irradiation device for an exposure apparatus according to (1), to which a dummy light source unit including is attached.
According to this configuration, the temperatures of the plurality of light source units can be managed without separately processing the cassette or the support.
(3) 前記温度センサは、前記支持体に取り付けられている、(1)に記載の露光装置用光照射装置。
 この構成によれば、光源部の数を減少させることなく、複数の光源部の温度を管理することができる。
(3) The light irradiation device for an exposure apparatus according to (1), wherein the temperature sensor is attached to the support.
According to this configuration, the temperatures of the plurality of light source units can be managed without reducing the number of light source units.
(4) 前記支持体には、前記温度センサによって温度を測定される発熱体が設けられている、(3)に記載の露光装置用光照射装置。
 この構成によれば、支持体に設けられた発熱体の温度によって、複数の光源部の温度を管理することができる。
(4) The light irradiation device for an exposure apparatus according to (3), wherein the support is provided with a heating element whose temperature is measured by the temperature sensor.
With this configuration, the temperatures of the plurality of light source units can be controlled by the temperature of the heat generating element provided on the support.
(5) 前記温度センサの温度と、前記光源部の温度とは、相関関係が与えられている、(1)~(4)のいずれかに記載の露光装置用光照射装置。
 この構成によれば、光源部の温度を精度良く把握することができる。
(5) The light irradiation device for an exposure apparatus according to any one of (1) to (4), wherein the temperature of the temperature sensor and the temperature of the light source section are correlated with each other.
According to this configuration, the temperature of the light source unit can be accurately grasped.
(6) 発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
 前記反射光学系と、該反射光学系の内部に配置される発熱体と、該発熱体の温度を測定する熱電対と、を備えるダミー光源部と、
 所定数の前記光源部及び前記ダミー光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
 前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
を備える露光装置用光照射装置。
 この構成によれば、カセットや支持体を別途加工することなく、複数の光源部の温度を管理することができる。
(6) A plurality of light source units each including a light emitting unit and a reflective optical system that emits light emitted from the light emitting unit with directivity.
A dummy light source unit including the reflective optical system, a heating element arranged inside the reflective optical system, and a thermocouple for measuring the temperature of the heating element;
A plurality of cassettes having a plurality of light source support portions to which a predetermined number of the light source portions and the dummy light source portions can be attached, respectively.
A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
And a light irradiation device for an exposure device.
With this configuration, it is possible to manage the temperatures of the plurality of light source units without separately processing the cassette or the support.
(7) 前記発熱体の温度と、前記光源部の温度とは、相関関係が与えられている、(6)に記載の露光装置用光照射装置。
 この構成によれば、光源部の温度を精度良く把握することができる。
(7) The light irradiation device for an exposure apparatus according to (6), wherein the temperature of the heating element and the temperature of the light source section are correlated with each other.
According to this configuration, the temperature of the light source unit can be accurately grasped.
 なお、本出願は、2018年12月21日出願の日本特許出願(特願2018-239345)に基づくものであり、その内容は本出願の中に参照として援用される。 The present application is based on the Japanese patent application (Japanese Patent Application No. 2018-239345) filed on December 21, 2018, the contents of which are incorporated by reference in the present application.
50,50A    露光装置用光照射装置
51  光源部
52  発光部
53  反射鏡(反射光学系)
54  光源支持部
55  カセット
56  カセット支持部
58  支持体
71  ダミー光源部
74  発熱体
75  温度センサ(熱電対)
76  排気装置(冷却機構)
50, 50A Exposure apparatus light irradiation device 51 Light source unit 52 Light emitting unit 53 Reflecting mirror (reflection optical system)
54 light source support 55 cassette 56 cassette support 58 support 71 dummy light source 74 heat generator 75 temperature sensor (thermocouple)
76 Exhaust device (cooling mechanism)

Claims (7)

  1.  発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
     所定数の前記光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
     前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
     前記複数の光源部を冷却する冷却機構と、
    を備える露光装置用光照射装置であって、
     前記光源部の温度を取得する温度センサと、
     前記温度センサによって検出された温度に基づいて、前記光源部の温度が所定の温度範囲内になるように前記冷却機構の出力を制御する露光装置用光照射装置。
    A light emitting unit, and a plurality of light source units each including a reflective optical system that emits light emitted from the light emitting unit with directivity,
    A plurality of cassettes having a plurality of light source support parts capable of mounting a predetermined number of the light source parts,
    A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
    A cooling mechanism for cooling the plurality of light source units,
    A light irradiation apparatus for an exposure apparatus, comprising:
    A temperature sensor for acquiring the temperature of the light source unit,
    A light irradiation device for an exposure apparatus, which controls the output of the cooling mechanism so that the temperature of the light source unit falls within a predetermined temperature range based on the temperature detected by the temperature sensor.
  2.  前記カセットの光源支持部には、前記反射光学系と、該反射光学系の内部に配置される発熱体と、該発熱体の温度を測定する、前記温度センサを構成する熱電対と、を備えるダミー光源部が取り付けられる、請求項1に記載の露光装置用光照射装置。 The light source support portion of the cassette includes the reflective optical system, a heating element disposed inside the reflective optical system, and a thermocouple that constitutes the temperature sensor and measures the temperature of the heating element. The light irradiation device for an exposure apparatus according to claim 1, wherein a dummy light source unit is attached.
  3.  前記温度センサは、前記支持体に取り付けられている、請求項1に記載の露光装置用光照射装置。 The light irradiation device for an exposure apparatus according to claim 1, wherein the temperature sensor is attached to the support.
  4.  前記支持体には、前記温度センサによって温度を測定される発熱体が設けられている、請求項3に記載の露光装置用光照射装置。 The light irradiation device for an exposure apparatus according to claim 3, wherein a heating element whose temperature is measured by the temperature sensor is provided on the support.
  5.  前記温度センサの温度と、前記光源部の温度とは、相関関係が与えられている、請求項1~4のいずれか1項に記載の露光装置用光照射装置。 The light irradiation apparatus for an exposure apparatus according to any one of claims 1 to 4, wherein the temperature of the temperature sensor and the temperature of the light source section are correlated with each other.
  6.  発光部と、前記発光部から発光された光に指向性を持たせて射出する反射光学系をそれぞれ含む複数の光源部と、
     前記反射光学系と、該反射光学系の内部に配置される発熱体と、該発熱体の温度を測定する熱電対と、を備えるダミー光源部と、
     所定数の前記光源部及び前記ダミー光源部をそれぞれ取り付け可能な複数の光源支持部を有する複数のカセットと、
     前記複数のカセットを取り付け可能な複数のカセット支持部を有する支持体と、
    を備える露光装置用光照射装置。
    A light emitting unit, and a plurality of light source units each including a reflective optical system that emits light emitted from the light emitting unit with directivity,
    A dummy light source unit including the reflective optical system, a heating element arranged inside the reflective optical system, and a thermocouple for measuring the temperature of the heating element;
    A plurality of cassettes having a plurality of light source support portions to which a predetermined number of the light source portions and the dummy light source portions can be attached, respectively.
    A support having a plurality of cassette support parts to which the plurality of cassettes can be attached;
    And a light irradiation device for an exposure device.
  7.  前記発熱体の温度と、前記光源部の温度とは、相関関係が与えられている、請求項6に記載の露光装置用光照射装置。 The light irradiation apparatus for an exposure apparatus according to claim 6, wherein the temperature of the heating element and the temperature of the light source section are correlated with each other.
PCT/JP2019/049905 2018-12-21 2019-12-19 Light irradiation device for light exposure device WO2020130090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239345 2018-12-21
JP2018-239345 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130090A1 true WO2020130090A1 (en) 2020-06-25

Family

ID=71100894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049905 WO2020130090A1 (en) 2018-12-21 2019-12-19 Light irradiation device for light exposure device

Country Status (2)

Country Link
TW (1) TW202032285A (en)
WO (1) WO2020130090A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217511A (en) * 2021-12-29 2022-03-22 江苏微影半导体有限公司 Short-distance stepping illumination structure in photoetching machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267879A (en) * 1992-04-16 1994-09-22 Texas Instr Inc <Ti> Multizone illuminator
JP2000127490A (en) * 1998-10-22 2000-05-09 Canon Inc Light emission device, exposure device and image forming device
JP2004241622A (en) * 2003-02-06 2004-08-26 Nikon Corp Light source apparatus and aligner
JP2017037336A (en) * 2010-02-05 2017-02-16 株式会社ブイ・テクノロジー Light irradiation device for exposure device and lighting control method
WO2018143300A1 (en) * 2017-02-02 2018-08-09 株式会社ブイ・テクノロジー High-pressure discharge lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267879A (en) * 1992-04-16 1994-09-22 Texas Instr Inc <Ti> Multizone illuminator
JP2000127490A (en) * 1998-10-22 2000-05-09 Canon Inc Light emission device, exposure device and image forming device
JP2004241622A (en) * 2003-02-06 2004-08-26 Nikon Corp Light source apparatus and aligner
JP2017037336A (en) * 2010-02-05 2017-02-16 株式会社ブイ・テクノロジー Light irradiation device for exposure device and lighting control method
WO2018143300A1 (en) * 2017-02-02 2018-08-09 株式会社ブイ・テクノロジー High-pressure discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217511A (en) * 2021-12-29 2022-03-22 江苏微影半导体有限公司 Short-distance stepping illumination structure in photoetching machine
CN114217511B (en) * 2021-12-29 2022-12-13 杭州芯微影半导体有限公司 Short-distance stepping illumination structure in photoetching machine

Also Published As

Publication number Publication date
TW202032285A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6608978B2 (en) Patterning device support, lithographic apparatus, and temperature control method for patterning device
KR100885970B1 (en) Lithographic apparatus and device manufacturing method
JP4200120B2 (en) Lithographic apparatus
US6191843B1 (en) Exposure device, method of making and using same, and objects exposed by the exposure device
TW201300964A (en) Lithographic apparatus and device manufacturing method
JP5648733B1 (en) Light irradiation device
JP2000036449A (en) Aligner
WO2002054460A1 (en) Exposure device
WO2020130090A1 (en) Light irradiation device for light exposure device
KR100906437B1 (en) Lithographic apparatus and method for manufacturing a device
JP2006308996A (en) Exposure device
KR20080005382A (en) Exposure apparatus
JP4288411B2 (en) Reflector holding device for light source, light source device and exposure device
JP5717045B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2011249620A (en) Exposure device
JP5935827B2 (en) Maintenance method
JP2006332518A (en) Electrostatic chuck and exposure apparatus
JP2012177799A (en) Photoirradiation device for exposure device
JP5287204B2 (en) Light source apparatus, exposure apparatus, and device manufacturing method
JP6323492B2 (en) Light source device
JP6021854B2 (en) Optical alignment device
JP2010021549A (en) Stage apparatus, aligner, and device manufacturing method
JP2008129047A (en) Proximity exposure apparatus and proximity exposure method
JP2013219045A (en) Light source device, exposure device and manufacturing method of device
JP2016218381A (en) Illumination device for proximity exposure, proximity exposure apparatus and proximity exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP