[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020129153A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020129153A1
WO2020129153A1 PCT/JP2018/046542 JP2018046542W WO2020129153A1 WO 2020129153 A1 WO2020129153 A1 WO 2020129153A1 JP 2018046542 W JP2018046542 W JP 2018046542W WO 2020129153 A1 WO2020129153 A1 WO 2020129153A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat medium
heat
control device
heating
Prior art date
Application number
PCT/JP2018/046542
Other languages
English (en)
French (fr)
Inventor
亮 築山
悟 梁池
野本 宗
拓也 松田
直毅 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020560678A priority Critical patent/JP7097989B2/ja
Priority to PCT/JP2018/046542 priority patent/WO2020129153A1/ja
Priority to CN201880099733.1A priority patent/CN113167492B/zh
Priority to US17/281,008 priority patent/US11940192B2/en
Priority to EP18944079.5A priority patent/EP3901531A4/en
Publication of WO2020129153A1 publication Critical patent/WO2020129153A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to an air conditioner.
  • the heat storage type air conditioner disclosed in Japanese Unexamined Patent Publication No. 8-28932 has a compressor, a first four-way valve, an outdoor heat exchanger, a second expansion valve, a heat storage device during nighttime operation in winter.
  • the second expansion valve controls the water as the heat storage material into hot water through the primary-side heat exchange section in the heat storage tank. Perform heat storage operation.
  • the primary side heat exchange section in the heat storage tank in the primary side refrigerant circuit is the evaporator, and the outdoor heat exchanger is the condenser in the refrigeration cycle.
  • the bypass valve is opened and the heat storage tank flow valve is fully closed, so that the secondary heat exchanger of the heat storage tank and the secondary heat of the refrigerant-refrigerant heat exchanger are Continue the heating operation with the exchangers in series.
  • the heat storage type air conditioner disclosed in Patent Document 1 needs to include a heat storage tank as a heat source for maintaining heating even during defrosting operation.
  • a heat storage tank cannot be installed, heat cannot be stored before the defrosting operation.
  • hot water in the pipes and heat exchanger can be considered as a heat source without providing a heat storage tank, but since the amount of hot water is small, heating cannot be maintained during the defrosting time.
  • an object of the present invention is to provide an air conditioner that can maintain heating even during defrosting operation without providing a heat storage tank.
  • the air conditioner according to the present disclosure includes a refrigerant circuit, a heat medium circuit, and a control device.
  • the refrigerant circuit is configured such that the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger are connected by the first pipe so that the refrigerant flows, and the refrigerant discharged from the compressor is used as the second heat. It is configured to be able to perform the defrosting operation introduced into the exchanger.
  • the pump, the first heat exchanger, and the third heat exchanger are connected by the second pipe, and the heat medium flows.
  • the controller is configured to control the compressor and pump.
  • the control device performs the defrosting operation while maintaining the heating in a state where the heating capacity of the third heat exchanger during the defrosting operation is set to the capacity determined based on the heat storage amount of the heat medium in the heat medium circuit. Is configured as follows. When the heat storage amount of the heat medium is less than the threshold value, the control device is configured to reduce the heating capacity of the third heat exchanger when shifting from the heating operation to the defrosting operation.
  • the heating capacity is set based on the heat storage amount of the heat medium in the heat medium circuit, and the heating during the defrosting operation is maintained with the set heating capacity. Therefore, it is possible to prevent the cold air from being blown out due to the heat medium being completely cooled during the defrosting operation.
  • FIG. 6 is a diagram showing flows of a refrigerant and a heat medium in the air conditioner 1000.
  • FIG. It is a conceptual diagram which shows the state which cannot maintain heating before the completion of defrosting. It is a conceptual diagram which shows the relationship between the amount of heat media and the maximum amount of heat storage. It is a conceptual diagram which shows the state which maintained heating in the defrosting operation in the air conditioning apparatus of this Embodiment.
  • 5 is a diagram schematically showing a temporal change of a temperature TA of a heat medium at an outlet on a secondary side of the cascade heat exchanger 3 and a temperature TB of a heat medium at an inlet of the indoor heat exchanger 11 at the beginning of heating operation. It is a figure which shows the structure of the control apparatus which controls an air conditioning apparatus, and the remote control which controls a control apparatus by remote control. 6 is a flowchart showing a procedure for identifying the amount MW of heat medium existing between the outlet of the cascade heat exchanger 3 and the indoor heat exchanger 11. 5 is a flowchart for explaining control executed by the control device during heating operation in the present embodiment. It is a flowchart shown in order to demonstrate the detail of the defrosting process performed by step S105.
  • FIG. 6 is a diagram summarizing the adjustment of the amount of water by the flow rate adjustment valve during the defrosting operation.
  • FIG. 1 is a diagram showing a configuration of an air conditioner 1000 according to the present embodiment.
  • the air conditioner 1000 includes an outdoor unit and an indoor unit.
  • the outdoor unit includes a refrigerant circuit 100 and a blower 6 that sends air to the outdoor heat exchanger 5.
  • the indoor unit includes indoor heat exchangers 11a and 11b connected in parallel, flow rate adjusting valves 14a and 14b, a pump 12, and a heat medium circuit 200 in which the cascade heat exchanger 3 is connected by a second pipe 23,
  • the indoor heat exchangers 11a, 11b are provided with blowers 13a, 13b for sending air and temperature sensors 32, 33, 34, respectively.
  • the indoor heat exchangers 11a and 11b are collectively referred to as the indoor heat exchanger 11, the blowers 13a and 13b are collectively referred to as the blower 13, and the flow rate adjusting valves 14a and 14b are collectively referred to as the flow rate adjusting valve. It may be called 14.
  • the indoor unit may be divided into two units each including the indoor heat exchangers 11a and 11b.
  • the cascade heat exchanger 3 and the pump 12 may be arranged in a repeater separated from the indoor unit.
  • the control device 31 may be provided in either the outdoor unit or the indoor unit, or may be provided in a place other than the outdoor unit and the indoor unit.
  • the primary-side refrigerant circuit 100 has a compressor 1, a switching valve 2, a cascade heat exchanger 3, an expansion valve 4, and an outdoor heat exchanger 5 connected by a first pipe 21.
  • the refrigerant circuit 100 further includes a bypass pipe 22.
  • the bypass pipe 22 connects the branch point between the expansion valve 4 and the outdoor heat exchanger 5 in the first pipe 21 and the switching valve 2.
  • the refrigerant flows through the refrigerant circuit 100.
  • the “refrigerant” is used in a refrigeration cycle apparatus, is compressed by a compressor in a gas state, is condensed from a gas state to a liquid state in a condenser, and is evaporated from a liquid state to a gas state in an evaporator.
  • a refrigerant such as fluorocarbon.
  • the air conditioner 1000 switches between heating operation, defrosting operation, and preheating operation after heating operation and before defrosting operation.
  • the preheat operation is an operation performed before the defrosting operation.
  • the heat used in the defrosting operation is stored in the preheating operation.
  • the heat medium circuit 200 on the secondary side includes the pump 12, the cascade heat exchanger 3, and the indoor heat exchanger 11, which are connected by the second pipe 23.
  • the heat medium flows through the heat medium circuit 200.
  • the “heat medium” is a medium which circulates mainly in the heat medium circuit 200 on the secondary side in a liquid state, and is, for example, antifreeze liquid (brine), water, or a mixed liquid of antifreeze liquid and water. ..
  • the compressor 1 sucks in low-pressure refrigerant, compresses it, and discharges it as high-pressure refrigerant.
  • the compressor 1 is, for example, an inverter compressor.
  • the switching valve 2 switches the flow path of the refrigerant.
  • the switching valve 2 allows the refrigerant discharged from the compressor 1 to flow to the cascade heat exchanger 3 by connecting the discharge side of the compressor 1 to the inlet side of the cascade heat exchanger 3 during the heating operation and the preheat operation.
  • a first flow path is formed.
  • the switching valve 2 connects the discharge side of the compressor 1 to the inlet of the outdoor heat exchanger 5 via the bypass pipe 22 during the defrosting operation, thereby exchanging the refrigerant discharged from the compressor 1 with the outdoor heat.
  • a second flow path to flow to the container 5 is formed.
  • the switching valve 2 switches the flow path according to an instruction signal from the control device 31.
  • the cascade heat exchanger 3 exchanges heat between the refrigerant compressed by the compressor 1 and the heat medium discharged from the pump 12.
  • the cascade heat exchanger 3 is, for example, a plate heat exchanger.
  • the expansion valve 4 decompresses and expands the refrigerant discharged from the cascade heat exchanger 3.
  • the outdoor heat exchanger 5 exchanges heat between the refrigerant decompressed by the expansion valve 4 and the outdoor air during the heating operation and the preheating operation. Air from the blower 6 promotes heat exchange in the outdoor heat exchanger 5.
  • the blower 6 includes a fan and a motor that rotates the fan. During the defrosting operation, the outdoor heat exchanger 5 heat-exchanges the high-temperature high-pressure gas refrigerant discharged from the compressor 1 and directly sent with the outdoor air and the frost adhering to the fins and the like to melt the frost. ..
  • the pump 12 supplies the heat medium discharged from the indoor heat exchanger 11 to the cascade heat exchanger 3.
  • the indoor heat exchanger 11 exchanges heat with the indoor air. Air from the blower 13 promotes heat exchange in the indoor heat exchanger 11.
  • the blower 13 includes a fan and a motor that rotates the fan.
  • FIG. 2 is a diagram showing flows of the refrigerant and the heat medium in the air conditioner 1000.
  • the flow path of the refrigerant differs between the heating operation and the preheating operation and the defrosting operation.
  • the refrigerant compressed by the compressor 1 passes through the switching valve 2, then passes through the cascade heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5 and returns to the compressor 1.
  • the refrigerant compressed by the compressor 1 passes through the switching valve 2, then the bypass pipe 22, the outdoor heat exchanger 5, and returns to the compressor 1.
  • the heat medium discharged from the pump 12 is sent to the cascade heat exchanger 3, and then passes through the indoor heat exchanger 11 and returns to the pump 12.
  • the temperature sensor 32 is arranged near the heat medium inlet of the indoor heat exchanger 11.
  • the temperature sensor 32 detects the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11.
  • the temperature sensor 33 is arranged near the heat medium outlet of the cascade heat exchanger 3.
  • the temperature sensor 33 detects the temperature TA of the heat medium at the outlet on the secondary side of the cascade heat exchanger 3.
  • the temperature sensor 34 is arranged near the heat medium outlet of the indoor heat exchanger 11.
  • the temperature sensor 34 detects the temperature TC of the heat medium at the outlet of the indoor heat exchanger 11.
  • the control device 31 acquires the temperature TB output from the temperature sensor 32, the temperature TA output from the temperature sensor 33, and the temperature TC output from the temperature sensor 34.
  • the control device 31 controls the compressor 1, the switching valve 2, the expansion valve 4, the blower 6, the pump 12, the blower 13, and the flow rate adjustment valve 14.
  • the control device 31 increases the frequency of the compressor 1 during the preheating operation to increase the temperature of the heat medium and the rotation of the pump 12 as compared with the frequency of the compressor 1 during the heating operation and the rotation speed of the pump 12. It is configured to prevent excessive heating capacity by reducing the speed.
  • the controller 31 increases the frequency of the compressor 1 during the preheat operation as compared with the frequency of the compressor 1 during the heating operation, and then increases the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11.
  • the pump 12 may be configured to reduce the rotation speed.
  • the control device 31 is configured to switch the refrigerant circuit 100 to the defrosting operation when the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 reaches the target temperature (threshold temperature) during the preheating operation.
  • the control device 31 is configured to switch the refrigerant circuit 100 to the heating operation during the defrosting operation when a certain time Tdf has elapsed from the start of the defrosting operation and the defrosting is completed.
  • the control device 31 is based on the amount of heat medium existing between the outlet on the secondary side of the cascade heat exchanger 3 and the inlet of the indoor heat exchanger 11, and the amount of heat accumulated in the heat medium during the preheating operation.
  • the target temperature TM of the heat medium is set. If the amount of the heat medium existing between the outlet on the secondary side of the cascade heat exchanger 3 which is the outward route and the inlet of the indoor heat exchanger 11 is known, it is considered that the amount of the heat medium on the return route is also the same. You can The amount of heat accumulated in the heat medium during the preheating operation can be set to be equal to or more than the amount of heat required to melt the expected maximum amount of frost that frosts on the outdoor heat exchanger 5.
  • the air conditioning apparatus 1000 shown in FIG. 1 and FIG. 2 increases the water temperature in the water circuit in order to eliminate the heat storage tank and performs a preheat operation for ensuring the amount of heat necessary for defrosting before the defrosting operation. Prevent room temperature drop during defrosting operation. At this time, if the water temperature is simply raised, the indoor heating capacity may become excessive, and the room temperature may rise above the target value before defrosting. In order to prevent this, the frequency of the water transfer pump during the preheating operation and the defrosting operation is lowered to maintain heating while keeping the heating capacity constant.
  • the heat medium temperature due to the restrictions caused by the device (or the restrictions caused by the physical properties of the heat medium).
  • the heat-resistant temperature of the device is an example of the constraint due to the device, and when water is used as the heat medium, the boiling point of water is 100°C. If the water circuit is short, the amount of heat storage will be insufficient, and if the defrosting operation is insufficient due to insufficient heat storage, the heating capacity will be insufficient in the middle, and the blowing temperature of the indoor unit during heating will drop sharply, causing discomfort to the user. Is possible.
  • FIG. 3 is a conceptual diagram showing a state where heating cannot be maintained before defrosting is completed.
  • FIG. 4 is a conceptual diagram showing the relationship between the amount of heat medium and the maximum heat storage amount.
  • FIG. 5: is a conceptual diagram which shows the state which maintained heating in the defrosting operation in the air conditioning apparatus of this Embodiment. 3 and 5, the vertical axis represents the heating capacity of the indoor unit, and the horizontal axis represents the elapsed time from the start of defrosting. Further, in FIG. 4, the horizontal axis represents the amount of enclosed heat medium circulating in the heat medium circuit 200 on the secondary side (water amount: Kg), and the vertical axis represents the heat storage accumulated in the heat medium in the heat medium circuit 200. The amount (KJ) is shown.
  • FIG. 3 shows that the heat storage amount Q(KJ) of the heat medium is used up for heating before the defrosting time Td elapses, and heating cannot be maintained during the defrosting operation.
  • the maximum heat storage amount Qsmax is lower than the heat storage amount Qs required for heating during defrosting, and such shortage of heat storage occurs. Therefore, in the present embodiment, as shown in FIG. 5, when the amount of stored heat is insufficient, the heating capacity during the defrosting operation is suppressed in advance at the start of defrosting as compared with the capacity during the normal heating operation. The heating operation is maintained until the defrosting ends with the capacity. As a result, it is possible to prevent the indoor unit blowout temperature from rapidly decreasing due to insufficient heat storage, and to prevent the user from feeling uncomfortable.
  • the air conditioner 1000 includes the refrigerant circuit 100, the heat medium circuit 200, and the control device 31.
  • the refrigerant circuit 100 is a first pipe 21 through which the refrigerant flows, to which the compressor 1, the switching valve 2, the cascade heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5 are connected, and the refrigerant discharged from the compressor 1 Is configured to be able to perform a defrosting operation of introducing the above into the outdoor heat exchanger 5.
  • the heat medium circuit 200 is connected to the pump 12, the cascade heat exchanger 3, and the indoor heat exchanger 11 via the second pipe 23 through which the heat medium flows.
  • the cascade heat exchanger 3 corresponds to a "first heat exchanger”
  • the outdoor heat exchanger 5 corresponds to a "second heat exchanger”
  • the indoor heat exchanger 11 corresponds to a "third heat exchanger”.
  • the control device 31 is configured to control the compressor 1 and the pump 12.
  • the control device 31 maintains the heating in a state where the heating capacity of the indoor heat exchanger 11 during the defrosting operation is set to the capacity determined based on the heat storage amount of the heat medium in the heat medium circuit 200, while performing the defrosting operation. Is configured to do. When the heat storage amount of the heat medium is less than the maximum heat storage amount Qsmax, which is the threshold value, the control device 31 reduces the heating capacity of the indoor heat exchanger 11 when the heating operation shifts to the defrosting operation. Is configured as follows.
  • the heat medium circuit 200 is provided with a flow rate adjusting valve 14 that adjusts the flow rate of the heat medium flowing to the indoor heat exchanger 11.
  • the control device 31 opens the flow rate adjusting valve 14 so that the heating capacity of the indoor heat exchanger 11 becomes the capacity determined based on the heat storage amount of the heat medium in the heat medium circuit 200. Change the degree.
  • the opening degree of the flow rate adjusting valve 14 may be adjusted according to the temperature of the heat medium being lowered during the defrosting operation to keep the heating capacity of the indoor heat exchanger 11 constant.
  • the amount of heat medium in the heat medium circuit 200 changes depending on the length of the pipe 23.
  • the pipe length of the heat medium circuit 200 varies depending on the construction site. Therefore, in order to perform such control, the control device 31 needs to know in advance the amount of heat medium circulating in the heat medium circuit 200. is there. Although the operator or the user may register the amount of heat medium or the pipe length in the control device 31 at the time of completion of construction, a method in which the control device 31 automatically detects the amount of heat medium will be described here.
  • FIG. 6 is a diagram schematically showing changes over time in the temperature TA of the heat medium at the outlet on the secondary side of the cascade heat exchanger 3 and the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 during the heating operation. is there.
  • the temperature TA and the temperature TB increase with time.
  • the time when the temperature TA reaches the temperature T0 is t1
  • the time when the temperature TB reaches the temperature T0 is t2.
  • the difference ⁇ t between t2 and t1 reflects the amount MW of the heat medium existing between the outlet on the secondary side of the cascade heat exchanger 3 and the indoor heat exchanger 11. That is, the amount MW of the heat medium existing between the outlet on the secondary side of the cascade heat exchanger 3 and the indoor heat exchanger 11 is obtained by multiplying ⁇ t by the heat medium flow rate of the pump 12.
  • the water circuit normally passes through the same route on the outbound path and the inbound path, and This is because if the amount of heat medium is known, the amount of heat medium in the return path can be considered to be about the same.
  • the control device 31 is configured to increase the frequency of the compressor 1 during the test operation as compared with that during the heating operation and maintain the flow rate of the pump 12 constant.
  • the control device 31 determines the time t1 when the temperature TA of the heat medium at the outlet on the secondary side of the cascade heat exchanger 3 reaches a predetermined temperature T0 and the temperature of the heat medium at the inlet of the indoor heat exchanger 11 in advance. By multiplying the difference from the time t2 when the temperature reaches the predetermined temperature T0 by the flow rate Gw of the pump 12, between the outlet on the secondary side of the cascade heat exchanger 3 and the inlet of the indoor heat exchanger 11. It is configured to calculate the amount of heat medium present.
  • FIG. 7 is a diagram showing a configuration of a control device that controls the air conditioner and a remote controller that remotely controls the control device.
  • remote controller 400 includes an input device 401, a processor 402, and a transmission device 403.
  • the input device 401 includes a push button for a user to switch ON/OFF of the indoor unit, a button for inputting a set temperature, and the like.
  • the transmission device 403 is for communicating with the control device 31.
  • the processor 402 controls the transmitting device 403 according to the input signal given from the input device 401.
  • the control device 31 includes a receiving device 301, a processor 302, and a memory 303.
  • the memory 303 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the flash memory stores an operating system, application programs, various data, and the like.
  • the processor 302 controls the overall operation of the air conditioner 1000.
  • the control device 31 shown in FIG. 1 is realized by the processor 302 executing the operating system and application programs stored in the memory 303. When executing the application program, various data stored in the memory 303 are referred to.
  • the memory 103 stores information regarding the amount of heat medium in the heat medium circuit 200.
  • the processor 102 determines the opening degree of the flow rate adjusting valve 14 during the defrosting operation based on the information stored in the memory.
  • the receiving device 301 is for communicating with the remote controller 400.
  • the receiving device 301 may be provided in each of the plurality of indoor units.
  • control device 31 may be divided into a plurality of control units.
  • each of the plurality of control units includes a processor.
  • a plurality of processors cooperate to perform overall control of the air conditioner 1000.
  • control device 31 executes the trial run to automatically detect the amount MW of the heat medium.
  • FIG. 8 is a flowchart showing a procedure for specifying the amount MW of the heat medium existing between the outlet of the cascade heat exchanger 3 and the indoor heat exchanger 11.
  • the control device 31 is configured to previously calculate the amount of the heat medium in the heat medium circuit 200 based on the temperature change of the heat medium.
  • the calculation of the amount of the heat medium may be performed before the defrosting operation, and is preferably performed, for example, when the test operation is performed at the completion of the installation work of the air conditioner.
  • step S1 the control device 31 sets the air conditioner 1000 in the trial operation mode. Subsequently, in step S2, the control device 31 sets the flow path of the switching valve 2 so that the discharge port of the compressor 1 and the primary side refrigerant inlet of the cascade heat exchanger 3 communicate with each other.
  • the controller 31 sets the frequency of the compressor 1 to f2.
  • the controller 31 sets the rotation speed of the pump 12 to R1.
  • step S3 the control device 31 waits until the temperature TA of the heat medium at the outlet on the secondary side of the cascade heat exchanger 3 detected by the temperature sensor 33 reaches a predetermined temperature T0.
  • the control device 31 performs the process. Proceed to step S4.
  • step S4 the control device 31 records the time t1 when the temperature TA reaches the temperature T0.
  • step S5 if the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 detected by the temperature sensor 32 reaches the predetermined temperature T0, the process proceeds to step S6.
  • step S6 the control device 31 records the time t2 when the temperature TB reaches the temperature T0.
  • step S7 the control device 31 calculates the heat medium amount MW according to the following equation (1).
  • Gw is a heat medium flow rate corresponding to the rotation speed R1 of the pump 12.
  • FIG. 9 is a flowchart for explaining the control executed by the control device during the heating operation in the present embodiment.
  • step S101 When the heating operation instruction is input in step S101, the control device 31 advances the process to step S102.
  • step S102 the control device 31 sets the air conditioner 1000 to the heating operation mode.
  • step S103 the control device 31 sets the flow path of the switching valve 2 so that the discharge port of the compressor 1 and the primary side refrigerant inlet of the cascade heat exchanger 3 communicate with each other.
  • the control device 31 sets the frequency of the compressor 1 to f1.
  • the controller 31 sets the rotation speed of the pump 12 to R1. As the frequency f1 and the rotation speed R1, values designed so that the operation efficiency during the heating operation is optimized are used.
  • step S104 after starting the heating operation, the control device 31 waits for a certain period of time to elapse. When the fixed time has elapsed (YES in S104), control device 31 advances the process to step S105. In step S105, the defrosting process is executed, and then the processes in and after S103 are executed again, and heating and defrosting are repeated.
  • FIG. 10 is a flowchart shown for explaining the details of the defrosting process executed in step S105.
  • step S111 the control device 31 calculates the normal heating capacity in the current heating setting.
  • the normal heating capacity is a heat exchange amount in the indoor heat exchanger 11, and is represented by the following equation (2).
  • qs Gw ⁇ Cp ⁇ (TB-TC) (2)
  • Gw is the heat medium flow rate of the pump 12
  • Cp is the constant pressure specific heat of the heat medium
  • TB is the temperature of the heat medium at the inlet of the indoor heat exchanger 11
  • TC is the indoor temperature. It represents the temperature of the heat medium at the outlet of the heat exchanger 11.
  • This normal heating capacity is also a value determined by the set temperature of the remote controller and the room temperature.
  • step S112 the control device 31 calculates the heat quantity Qs required to maintain the normal heating capacity during the defrosting time Td.
  • the heat quantity Qs is expressed by the following equation (3).
  • Qs qs ⁇ Td (3)
  • Qs represents a required amount of heat
  • qs represents a normal heating capacity
  • Td represents a defrosting time
  • step S113 the control device 31 determines whether the heat storage amount is insufficient.
  • Qs is the required amount of heat calculated by the equation (3)
  • Qsmax is the maximum amount of heat storage shown in FIG.
  • the maximum heat storage amount Qsmax is calculated by the following equation (4) using the water amount Mw calculated in advance during the test operation shown in the flowchart of FIG. 8.
  • Qsmax Mw ⁇ Cp ⁇ (TBmax-TB) (4)
  • the horizontal axis of FIG. 4 may be the amount of water on the outward path instead of the total amount of water, and may have a map in advance about what the maximum heat storage amount Qsmax will be, and the maximum heat storage amount Qsmax may be obtained by referring to the map.
  • Cp is a constant pressure specific heat (a physical property value of the secondary cycle)
  • TBmax is an indoor unit maximum inlet temperature
  • TB is an indoor unit inlet temperature measured by the temperature sensor 32.
  • the control device 31 sets the target heat storage amount Qm to the maximum heat storage amount Qsmax in step S116.
  • step S117 the control device 31 calculates the suppressed target heating capacity qsm during defrosting by the following equation (5).
  • the control device 31 sets a heat amount Qx or more required for defrosting as the target heat storage amount Qm to be stored in the heat medium during the preheating operation.
  • the target heat storage amount Qm is specifically determined by the target temperature TM of the heat medium. Therefore, the control device 31 calculates the target temperature TM.
  • control device 31 sets the target heating capacity qsm to the standard value in step S115.
  • the target heating capacity qsm is determined by a relational expression proportional to the difference between the indoor temperature and the outside air temperature.
  • control device 31 executes heat storage by preheat operation in step S118, executes defrosting operation in step S119, and continues heating by heat storage.
  • FIG. 11 is a flowchart for explaining the storage heat treatment by the preheat operation in step S118 of FIG.
  • the control device 31 increases the frequency of the compressor 1 from the heating operation and decreases the rotation speed of the pump 12 in the preheating operation performed before the heating operation is switched to the defrosting operation. Configured to let.
  • the control device 31 sets the air conditioner 1000 to the preheat operation mode.
  • step S121 the control device 31 increases the frequency of the compressor 1 to f2.
  • f2 is a frequency higher than the frequency f1 set in step S103 of FIG. This raises the water temperature on the secondary side of the cascade heat exchanger 3.
  • the temperature TB rises.
  • step S122 the controller 31 waits until the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 detected by the temperature sensor 32 rises, and when the temperature TB rises (YES in S122), the control device 31 proceeds to step S123. Is processed.
  • step S123 the control device 31 reduces the rotation speed of the pump 12 by a fixed amount.
  • step S124 it is determined whether the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 detected by the temperature sensor 32 is equal to or higher than a predetermined target temperature TM.
  • a predetermined target temperature TM When the temperature TB of the heat medium at the inlet of the indoor heat exchanger 11 is lower than the predetermined target temperature TM (NO in S124), the process returns to step S122.
  • the temperature TB becomes equal to or higher than the target temperature TM (YES in S124) the process returns to the flowchart of FIG. 10 and the process of step S119 is continuously performed.
  • the rotation speed of the pump 12 is adjusted so that the indoor unit heating capacity becomes the same as before the water temperature rises.
  • the temperature of the heat medium can be set to the target temperature TM while keeping the heating capacity constant.
  • FIG. 12 is a flowchart for explaining heating during the defrosting operation in step S119 of FIG. While the process of this flowchart is being executed, the control device 31 sets the air conditioner 1000 to the defrosting operation mode.
  • step S131 the control device 31 sets the flow path of the switching valve 2 so that the bypass pipe 22 and the discharge side of the compressor 1 communicate with each other.
  • the control device 31 initially maintains the frequency of the compressor 1 and the rotation speed of the pump 12 without changing from the end of the preheating operation.
  • step S132 the control device 31 calculates the current heating capacity qs by the above-mentioned equation (2), and determines whether the heating capacity qs is lower than the target heating capacity qsm.
  • the control device 31 When qs ⁇ qsm (YES in S132), the control device 31 increases the opening of the flow rate adjusting valves 14a and 14b of the indoor unit to increase the heating capacity. On the other hand, when qs ⁇ qsm (NO in S132), the control device 31 reduces the opening degree of the flow rate adjusting valves 14a and 14b of the indoor unit and reduces the heating capacity.
  • step S135 the control device 31 returns the process to step S132 until the defrosting time Td elapses from the start of defrosting, and continues adjusting the heating capacity.
  • step S135 when the defrosting time Td has elapsed from the start of defrosting, the control device 31 advances the processing to step S136, and switches the discharge side of the compressor 1 to communicate with the primary side inlet of the cascade heat exchanger 3. The flow path of the valve 2 is set, and the defrosting operation is finished.
  • FIG. 13 is a diagram summarizing the adjustment of the amount of water by the flow rate adjusting valve during the defrosting operation.
  • the control device 31 increases the opening of the flow rate adjusting valves 14a and 14b to circulate the amount of water to be circulated. To increase.
  • control device 31 reduces the openings of the flow rate adjusting valves 14a and 14b and reduces the amount of water to be circulated.
  • the heating capacity during the defrosting operation is adjusted by the flow rate adjusting valve, but the heating capacity may be adjusted by another method.
  • the water flow rate of the pump 12 may be changed, or the air flow rates of the blowers 13a and 13b may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置(1000)は、冷媒が流れる第1の配管(21)で、圧縮機(1)、切替弁(2)、カスケード熱交換器(3)、膨張弁(4)、室外熱交換器(5)が接続され、圧縮機(1)から吐出された冷媒を室外熱交換器(5)に導入する除霜運転を行なうことが可能に構成された冷媒回路(100)と、熱媒体が流れる第2の配管(23)で、ポンプ(12)、カスケード熱交換器(3)、室内熱交換器(11)が接続された熱媒体回路(200)と、圧縮機(1)およびポンプ(12)を制御するように構成される制御装置(31)とを備える。熱媒体の蓄熱量がしきい値よりも少ない場合には、制御装置(31)は、暖房運転から除霜運転に移行するときに、室内熱交換器(11)の暖房能力を低下させるように構成される。

Description

空気調和装置
 本発明は、空気調和装置に関する。
 従来、除霜運転中に暖房能力が低下しないようにするため、除霜運転前に蓄熱槽に熱を蓄積し、除霜運転中に蓄熱槽に蓄積された熱を使用する装置が知られている。
 たとえば、特開平8-28932号公報(特許文献1)に開示された蓄熱式空気調和機は、冬季の夜間運転において、圧縮機、第1四方弁、室外熱交換器、第2膨張弁、蓄熱槽内の1次側熱交換部とが連通した1次側の冷媒回路において、第2膨張弁の制御により、蓄熱槽内の1次側熱交換部を介して蓄熱材である水を温水にする蓄熱運転を行なう。
 上記の蓄熱式空気調和機は、低外気温時の暖房運転において、1次側の冷媒回路において蓄熱槽内の1次側熱交換部を蒸発器とし、室外熱交換器を凝縮器として冷凍サイクルを構成するとともに、2次側の熱媒体回路では、バイパス弁を開、蓄熱槽用流量弁を全閉として、蓄熱槽の2次側熱交換器と冷媒対冷媒熱交換器の2次側熱交換器を直列として暖房運転を継続する。
特開平8-28932号公報
 特許文献1に開示された蓄熱式空気調和機は、除霜運転時にも暖房を維持するための熱源として蓄熱槽を備える必要がある。しかしながら、蓄熱槽を設置できないような環境では、除霜運転前に熱を蓄積することができない。たとえば、蓄熱槽を設けずに配管および熱交換器内にある温水を熱源と考えることもできるが、温水の量が少ないので、除霜時間の間暖房を維持させることができない。
 それゆえに、本発明の目的は、蓄熱槽を設けることなく、除霜運転中においても暖房を維持することができる空気調和装置を提供することである。
 本開示に係る空気調和装置は、冷媒回路と、熱媒体回路と、制御装置とを備える。冷媒回路は、圧縮機、第1熱交換器、膨張弁、第2熱交換器が第1の配管で接続され冷媒が流れるように構成されるとともに、圧縮機から吐出された冷媒を第2熱交換器に導入する除霜運転を行なうことが可能に構成される。熱媒体回路は、ポンプ、第1熱交換器、第3熱交換器が第2の配管で接続され熱媒体が流れる。制御装置は、圧縮機およびポンプを制御するように構成される。制御装置は、除霜運転中の第3熱交換器の暖房能力を熱媒体回路中の熱媒体の蓄熱量に基づいて定められる能力に設定した状態で暖房を維持しつつ、除霜運転を行なうように構成される。熱媒体の蓄熱量がしきい値よりも少ない場合には、制御装置は、暖房運転から除霜運転に移行するときに、第3熱交換器の暖房能力を低下させるように構成される。
 本発明によれば、熱媒体回路中の熱媒体の蓄熱量に基づいて暖房能力が設定され、設定された暖房能力で除霜運転中の暖房が維持される。したがって、除霜運転中に熱媒体が冷え切ってしまうことによる冷風の吹き出しが防止される。
本実施の形態に係る空気調和装置1000の構成を示す図である。 空気調和装置1000における冷媒および熱媒体の流れを表わす図である。 除霜終了前に暖房が維持できなくなった状態を示す概念図である。 熱媒体の量と最大蓄熱量との関係を示す概念図である。 本実施の形態の空気調和装置において、除霜運転時に暖房を維持させた状態を示す概念図である。 暖房運転時初期のカスケード熱交換器3の2次側の出口の熱媒体の温度TA、および室内熱交換器11の入口の熱媒体の温度TBの時間変化の概略を表わす図である。 空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。 カスケード熱交換器3の出口と、室内熱交換器11との間に存在する熱媒体の量MWを特定する手順を表わすフローチャートである。 本実施の形態において暖房運転時に制御装置が実行する制御を説明するためのフローチャートである。 ステップS105で実行される除霜処理の詳細を説明するための示すフローチャートである。 図10のステップS118のプレヒート運転による蓄熱処理を説明するためのフローチャートである。 図10のステップS119の除霜運転時の暖房を説明するためのフローチャートである。 除霜運転中の流量調整弁による水量の調整についてまとめた図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 図1は、本実施の形態に係る空気調和装置1000の構成を示す図である。図1を参照して、空気調和装置1000は、室外ユニットと、室内ユニットとを備える。
 室外ユニットは、冷媒回路100と、室外熱交換器5に風を送る送風機6とを備える。
 室内ユニットは、並列接続された室内熱交換器11a,11bと、流量調整弁14a,14bと、ポンプ12と、カスケード熱交換器3が第2の配管23で接続された熱媒体回路200と、室内熱交換器11a,11bそれぞれに風を送る送風機13a,13bと、温度センサ32,33,34とを備える。
 以下では、室内熱交換器11a,11bを総称して、室内熱交換器11と呼び、送風機13a,13bを総称して、送風機13と呼び、流量調整弁14a,14bを総称して流量調整弁14と呼ぶ場合がある。また、室内ユニットは、室内熱交換器11a,11bをそれぞれ含む2つのユニットに分割配置されていても良い。また、カスケード熱交換器3およびポンプ12は、室内ユニットと分離された中継器に配置されていても良い。なお、制御装置31は室外ユニット、室内ユニットのいずれに備えられていても良く、室外ユニットおよび室内ユニット以外の場所に備えられていても良い。
 1次側の冷媒回路100は、第1の配管21で接続された圧縮機1と、切替弁2と、カスケード熱交換器3と、膨張弁4と、室外熱交換器5とを有する。冷媒回路100は、さらにバイパス配管22を有する。バイパス配管22は、第1の配管21における膨張弁4と室外熱交換器5との間の分岐箇所と切替弁2とを接続する。冷媒回路100には、冷媒が流れる。なお、本明細書では、「冷媒」は、冷凍サイクル装置で用いられ、ガス状態で圧縮機によって圧縮され、凝縮器でガス状態から液状態に凝縮され、蒸発器で液状態からガス状態に蒸発する、たとえばフルオロカーボンなどの冷媒を指す。
 空気調和装置1000は、暖房運転と、除霜運転と、暖房運転の後かつ除霜運転の前のプレヒート運転とを切り替えて実行する。プレヒート運転とは除霜運転の前に行なわれる運転である。除霜運転で使用する熱は、プレヒート運転において蓄熱される。
 2次側の熱媒体回路200は、第2の配管23で接続されたポンプ12と、カスケード熱交換器3と、室内熱交換器11とを有する。熱媒体回路200には、熱媒体が流れる。本明細書では、「熱媒体」は、2次側の熱媒体回路200を主として液状態で循環する媒体であって、たとえば、不凍液(ブライン)、水、または不凍液と水との混合液である。
 圧縮機1は、低圧冷媒を吸入して圧縮し、高圧冷媒として吐出する。圧縮機1は、たとえばインバータ圧縮機である。
 切替弁2は、冷媒の流路を切り替える。切替弁2は、暖房運転時およびプレヒート運転時には、圧縮機1の吐出側をカスケード熱交換器3の入口側に接続することによって、圧縮機1から吐出された冷媒をカスケード熱交換器3に流す第1流路を形成する。切替弁2は、除霜運転時には、圧縮機1の吐出側をバイパス配管22を経由して、室外熱交換器5の入口に接続することによって、圧縮機1から吐出された冷媒を室外熱交換器5に流す第2流路を形成する。切替弁2は、制御装置31からの指示信号に従って、流路を切り替える。
 カスケード熱交換器3は、圧縮機1で圧縮された冷媒と、ポンプ12から吐出された熱媒体とを熱交換させる。カスケード熱交換器3は、たとえばプレート式熱交換器である。
 膨張弁4は、カスケード熱交換器3から吐出された冷媒を減圧して膨張させる。
 室外熱交換器5は、暖房運転時およびプレヒート運転時には膨張弁4で減圧された冷媒を、室外の空気と熱交換させる。送風機6からの空気によって室外熱交換器5における熱交換が促進される。送風機6は、ファンと、ファンを回転させるモータとを含む。室外熱交換器5は、除霜運転時には、圧縮機1から吐出されて直接送られてくる高温高圧のガス冷媒を、室外の空気およびフィン等に付着した霜と熱交換させ、霜を融解させる。
 ポンプ12は、室内熱交換器11から吐出された熱媒体をカスケード熱交換器3に供給する。
 室内熱交換器11は、熱媒体を室内の空気と熱交換させる。送風機13からの空気によって室内熱交換器11における熱交換が促進される。送風機13は、ファンと、ファンを回転させるモータとを含む。
 図2は、空気調和装置1000における冷媒および熱媒体の流れを表わす図である。
 冷媒回路において、冷媒が流れる流路は、暖房運転時およびプレヒート運転時と、除霜運転時とで異なる。
 暖房運転時およびプレヒート運転時には、圧縮機1で圧縮された冷媒は、切替弁2を通ってから、カスケード熱交換器3、膨張弁4、室外熱交換器5を通り、圧縮機1へ戻る。除霜運転時には、圧縮機1で圧縮された冷媒は、切替弁2を通ってから、バイパス配管22を経由して、室外熱交換器5を通り、圧縮機1へ戻る。
 熱媒体回路において、ポンプ12から吐出された熱媒体は、カスケード熱交換器3へ送られて、その後、室内熱交換器11を通って、ポンプ12に戻る。
 温度センサ32は、室内熱交換器11の熱媒体入口付近に配置される。温度センサ32は、室内熱交換器11の入口の熱媒体の温度TBを検出する。
 温度センサ33は、カスケード熱交換器3の熱媒体出口付近に配置される。温度センサ33は、カスケード熱交換器3の2次側の出口の熱媒体の温度TAを検出する。
 温度センサ34は、室内熱交換器11の熱媒体出口付近に配置される。温度センサ34は、室内熱交換器11の出口の熱媒体の温度TCを検出する。
 制御装置31は、温度センサ32から出力される温度TB、温度センサ33から出力される温度TA、温度センサ34から出力される温度TCを取得する。制御装置31は、圧縮機1、切替弁2、膨張弁4、送風機6、ポンプ12、送風機13、および流量調整弁14を制御する。
 制御装置31は、暖房運転時の圧縮機1の周波数およびポンプ12の回転速度に比べて、プレヒート運転時の圧縮機1の周波数を増加させ、熱媒体の温度を上昇させるとともに、ポンプ12の回転速度を低下させることによって、暖房能力が過剰になることを防ぐように構成される。制御装置31は、プレヒート運転時に、圧縮機1の周波数を暖房運転時の圧縮機1の周波数に比べて増加させた後、室内熱交換器11の入口の熱媒体の温度TBの増加に応じて、ポンプ12の回転速度を低下させるように構成されてもよい。
 制御装置31は、プレヒート運転時に、室内熱交換器11の入口の熱媒体の温度TBが目標温度(閾値温度)に達すると、冷媒回路100を除霜運転に切り替えるように構成される。
 制御装置31は、除霜運転時に、除霜運転開始から一定時間Tdfが経過し除霜が完了したときに、冷媒回路100を暖房運転に切り替えるよう構成される。
 制御装置31は、カスケード熱交換器3の2次側の出口と、室内熱交換器11の入口との間に存在する熱媒体の量と、プレヒート運転時に熱媒体に蓄積する熱量とに基づいて、熱媒体の目標温度TMを設定するように構成される。往路であるカスケード熱交換器3の2次側の出口と、室内熱交換器11の入口との間に存在する熱媒体の量がわかれば、復路の熱媒体の量も同じであると考えることができる。プレヒート運転時に熱媒体に蓄積する熱量は、室外熱交換器5に着霜する予想最大量の霜を溶かすのに要する熱量以上の熱量とすることができる。
 図1、図2に示した空気調和装置1000は、蓄熱タンクをなくすため水回路内の水温を上げて除霜に必要な熱量を確保するプレヒート運転を除霜運転の前に実行することによって、除霜運転中の室温低下を防止する。このとき単純に水温を上げると室内側の暖房能力が過剰になり、除霜前に室温が目標値よりも上昇してしまう場合がある。これを防ぐためにプレヒート運転中および除霜運転中の水搬送ポンプの周波数を低下させ、暖房能力一定に保ちつつ暖房を維持する。
 しかしながら、熱媒体の回路は、設置個所によって配管長が異なるので、熱媒体回路内に封入された熱媒体の量も変化する。また、機器に起因する制約(または熱媒体物性に起因する制約)により熱媒体温度にも上限がある。たとえば、機器の耐熱温度が機器に起因する制約の例であり、熱媒体に水を使用した場合には、水の沸点100℃が制約となる熱媒体物性の例である。水回路が短いと、蓄熱量が不足し、蓄熱不足で除霜運転すると途中で暖房能力が不足して暖房中の室内機の吹き出し温度が急激に低下し、使用者に不快感を与えるという問題が考えられる。
 図3は、除霜終了前に暖房が維持できなくなった状態を示す概念図である。図4は、熱媒体の量と最大蓄熱量との関係を示す概念図である。図5は、本実施の形態の空気調和装置において、除霜運転時に暖房を維持させた状態を示す概念図である。なお、図3、図5において、縦軸は室内機の暖房能力を示し、横軸は除霜開始からの経過時間を示す。また、図4において、横軸は2次側の熱媒体回路200を循環する熱媒体の封入量(水量:Kg)を示し、縦軸は熱媒体回路200中の熱媒体に蓄積されている蓄熱量(KJ)を示す。
 図3においては、除霜時間Tdが経過する前に熱媒体の蓄熱量Q(KJ)を暖房に使い切ってしまい、除霜運転途中で暖房が維持できなくなったことが示される。図4に示すように熱媒体回路200の配管長さが短く水量が少ない場合に、除霜中の暖房に必要な熱量Qsよりも最大蓄熱量Qsmaxが下回り、このような蓄熱不足が生じる。そこで、本実施の形態では、図5に示すように、蓄熱量不足の場合、除霜開始時に予め除霜運転中の暖房能力を通常時の暖房運転時の能力と比べて抑制し、抑制した能力で除霜終了まで暖房運転を維持する。これにより、蓄熱不足による室内機吹出温度の急低下が防止され、使用者に不快感を与えないようにすることができる。
 このような暖房能力の調整を行なうために、空気調和装置は以下のように構成される。すなわち、空気調和装置1000は、冷媒回路100と、熱媒体回路200と、制御装置31とを備える。冷媒回路100は、冷媒が流れる第1の配管21で、圧縮機1、切替弁2、カスケード熱交換器3、膨張弁4、室外熱交換器5が接続され、圧縮機1から吐出された冷媒を室外熱交換器5に導入する除霜運転を行なうことが可能に構成される。熱媒体回路200は、熱媒体が流れる第2の配管23で、ポンプ12、カスケード熱交換器3、室内熱交換器11が接続される。カスケード熱交換器3は「第1熱交換器」に相当し、室外熱交換器5は「第2熱交換器」に相当し、室内熱交換器11は、「第3熱交換器」に相当する。制御装置31は、圧縮機1およびポンプ12を制御するように構成される。
 制御装置31は、除霜運転中の室内熱交換器11の暖房能力を熱媒体回路200中の熱媒体の蓄熱量に基づいて定められる能力に設定した状態で暖房を維持しつつ、除霜運転を行なうように構成される。熱媒体の蓄熱量がしきい値である最大蓄熱量Qsmaxよりも少ない場合には、制御装置31は、暖房運転から除霜運転に移行するときに、室内熱交換器11の暖房能力を低下させるように構成される。
 好ましくは、熱媒体回路200には、室内熱交換器11に流れる熱媒体の流量を調整する流量調整弁14が設けられる。制御装置31は、除霜運転の開始に応じて、室内熱交換器11の暖房能力が熱媒体回路200中の熱媒体の蓄熱量に基づいて定められる能力になるように流量調整弁14の開度を変更する。なお、除霜運転中に熱媒体の温度が低下していくことに応じて流量調整弁14の開度を調整し、室内熱交換器11の暖房能力を一定に保つようにしても良い。
 熱媒体回路200中の熱媒体の量は、配管23の長さによって変化する。熱媒体回路200の配管長さは施工場所ごとに異なるので、このような制御を行なうためには、制御装置31は、熱媒体回路200を循環する熱媒体の量を予め把握しておく必要がある。施工完了時に、作業者またはユーザーが熱媒体の量または配管長を制御装置31に登録しても良いが、ここでは、制御装置31が自動的に熱媒体の量を検出する方法について説明する。
 図6は、暖房運転時初期のカスケード熱交換器3の2次側の出口の熱媒体の温度TA、および室内熱交換器11の入口の熱媒体の温度TBの時間変化の概略を表わす図である。
 暖房運転時初期において、温度TAおよび温度TBは、時間とともに増加する。温度TAが、温度T0に達した時刻をt1とし、温度TBが、温度T0に達した時刻をt2とする。t2とt1の差Δtは、カスケード熱交換器3の2次側の出口と、室内熱交換器11との間に存在する熱媒体の量MWを反映する。すなわち、Δtと、ポンプ12の熱媒体流量とを乗算することによって、カスケード熱交換器3の2次側の出口と、室内熱交換器11との間に存在する熱媒体の量MWを求めることができる。カスケード熱交換器3の2次側の出口と、室内熱交換器11との間に存在する熱媒体の量MWを求めるのは、水回路は、往路と復路で通常同じ経路を通り、往路の熱媒体の量が分かれば復路の熱媒体の量も同程度であると考えてよいからである。
 制御装置31は、試運転時において、圧縮機1の周波数を暖房運転時よりも増加させるとともに、ポンプ12の流量を一定に維持させるように構成される。制御装置31は、カスケード熱交換器3の2次側の出口の熱媒体の温度TAが予め定められた温度T0に達した時刻t1と、室内熱交換器11の入口の熱媒体の温度が予め定められた温度T0に達した時刻t2との差と、ポンプ12の流量Gwとを乗ずることによって、カスケード熱交換器3の2次側の出口と、室内熱交換器11の入口との間に存在する熱媒体の量を算出するように構成される。
 図7は、空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。図7を参照して、リモコン400は、入力装置401と、プロセッサ402と、送信装置403とを含む。入力装置401は、ユーザーが室内機のON/OFFを切り替える押しボタン、設定温度を入力するボタン等を含む。送信装置403は、制御装置31と通信を行なうためのものである。プロセッサ402は、入力装置401から与えられた入力信号に従って、送信装置403を制御する。
 制御装置31は、受信装置301と、プロセッサ302と、メモリ303とを含む。
 メモリ303は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータ等が記憶される。
 プロセッサ302は、空気調和装置1000の全体の動作を制御する。なお、図1に示した制御装置31は、プロセッサ302がメモリ303に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ303に記憶されている各種のデータが参照される。
 上記の構成において、メモリ103は、熱媒体回路200中の熱媒体の量に関する情報を記憶する。プロセッサ102は、メモリが記憶している情報に基づいて除霜運転中の流量調整弁14の開度を決定する。
 受信装置301は、リモコン400との通信を行なうためのものである。室内機が複数の室内ユニットに分かれている場合には、受信装置301は複数の室内ユニットの各々に設けられても良い。
 なお、制御装置31が複数の制御部に分割されていても良い。この場合には、複数の制御部の各々にプロセッサが含まれる。このような場合には、複数のプロセッサが連携して空気調和装置1000の全体制御を行なう。
 以下に、制御装置31が試運転を実行して、熱媒体の量MWを自動検出する制御について説明する。
 図8は、カスケード熱交換器3の出口と、室内熱交換器11との間に存在する熱媒体の量MWを特定する手順を表わすフローチャートである。図8に示すように、制御装置31は、熱媒体の温度変化に基づいて熱媒体回路200中の熱媒体の量を予め算出するように構成される。この熱媒体の量の算出は、除霜運転に先立って行なわれていれば良く、たとえば、空気調和装置の設置工事完了時に試運転した際に行なうことが好ましい。
 ステップS1において、制御装置31は、空気調和装置1000を試運転モードに設定する。続いて、ステップS2において、制御装置31は、圧縮機1の吐出口とカスケード熱交換器3の1次側冷媒入口とが連通するように切替弁2の流路を設定する。制御装置31は、圧縮機1の周波数をf2に設定する。制御装置31は、ポンプ12の回転速度をR1に設定する。
 ステップS3において、制御装置31は、温度センサ33によって検出されるカスケード熱交換器3の2次側の出口の熱媒体の温度TAが予め定められた温度T0に達するまで待つ。制御装置31は、温度センサ33によって検出されるカスケード熱交換器3の2次側の出口の熱媒体の温度TAが予め定められた温度T0に達した場合(S3でYES)には、処理をステップS4に進める。
 ステップS4において、制御装置31は、温度TAが温度T0に達した時刻t1を記録する。
 ステップS5において、温度センサ32によって検出される室内熱交換器11の入口の熱媒体の温度TBが予め定められた温度T0に達した場合には、処理がステップS6に進む。
 ステップS6において、制御装置31は、温度TBが温度T0に達した時刻t2を記録する。
 ステップS7において、制御装置31は、次式(1)に従って、熱媒体の量MWを算出する。ただし、Gwは、ポンプ12の回転速度R1に対応する熱媒体流量である。
 MW=Gw×(t2-t1)…(1)
 図9は、本実施の形態において暖房運転時に制御装置が実行する制御を説明するためのフローチャートである。
 ステップS101において、暖房運転の指示が入力されると、制御装置31は、処理をステップS102に進める。
 ステップS102において、制御装置31は、空気調和装置1000を暖房運転モードに設定する。
 ステップS103において、制御装置31は、圧縮機1の吐出口とカスケード熱交換器3の1次側冷媒入口とが連通するように切替弁2の流路を設定する。制御装置31は、圧縮機1の周波数をf1に設定する。制御装置31は、ポンプ12の回転速度をR1に設定する。周波数f1および回転速度R1は、暖房運転時の運転効率が最適となるように設計された値が用いられる。
 ステップS104において、暖房運転の開始後、制御装置31は、一定時間が経過するのを待つ。一定時間が経過すると(S104でYES)、制御装置31はステップS105に処理を進める。ステップS105では、除霜処理が実行され、その後再びS103以降の処理が実行され暖房と除霜が繰返される。
 図10は、ステップS105で実行される除霜処理の詳細を説明するための示すフローチャートである。
 まずステップS111において、制御装置31は、現在の暖房設定における通常暖房能力を算出する。通常暖房能力は、室内熱交換器11における熱交換量であり、次式(2)で示される。
 qs=Gw×Cp×(TB-TC) … (2)
 ここで、qsは室内熱交換器11の通常暖房能力、Gwはポンプ12の熱媒体流量、Cpは熱媒体の定圧比熱、TBは室内熱交換器11の入口の熱媒体の温度、TCは室内熱交換器11の出口の熱媒体の温度を表わす。この通常暖房能力は、リモコン等の設定温度と室温によって定まる値でもある。
 続いて、ステップS112において、制御装置31は、除霜時間Tdの間、上記の通常暖房能力を維持するのに必要な熱量Qsを算出する。熱量Qsは、次式(3)で示される。
 Qs=qs×Td … (3)
 ここで、Qsは必要な熱量、qsは通常暖房能力、Tdは除霜時間を表わす。
 次に、ステップS113において、制御装置31は、蓄熱量不足の判定を行なう。ここでは、Qs>Qsmaxであれば蓄熱量不足と判定される。ここで、Qsは、式(3)で求めた必要な熱量であり、Qsmaxは、図4で示した最大蓄熱量である。
 最大蓄熱量Qsmaxは、図8のフローチャートで示される試運転時に予め算出された水量Mwを用いて、以下の式(4)で算出される。
Qsmax=Mw×Cp×(TBmax-TB) … (4)
 なお、図4の横軸を合計水量ではなくて往路の水量とし、予め最大蓄熱量Qsmaxがどのようになるかマップを持っていて、マップを参照して最大蓄熱量Qsmaxを求めても良い。
 ここで、Cpは、定圧比熱(2次側サイクルの流体物性値)、TBmaxは、室内機最大入口温度を示し、TBは、温度センサ32で測定した室内機入口温度を表わす。
 蓄熱量が不足すると判断された場合(S113でYES)、目標蓄熱量および除霜中の蓄熱による暖房能力の抑制値を算出する必要がある。したがって、制御装置31は、ステップS116において目標蓄熱量Qmを最大蓄熱量Qsmaxに設定する。
 続いて、制御装置31は、ステップS117において、除霜中の抑制した目標暖房能力qsmを次式(5)によって算出する。
qsm=Qsmax/Td … (5)
 蓄熱量が不足しないと判断された場合(S113でNO)、目標蓄熱量および除霜中の蓄熱による暖房能力は、現在の暖房能力を維持するように設定される。したがって、制御装置31は、ステップS114において目標蓄熱量Qmを標準値に定める。制御装置31は、除霜に必要な熱量Qx以上の熱量をプレヒート運転時に熱媒体に蓄積する目標蓄熱量Qmとして設定する。目標蓄熱量Qmは、具体的には熱媒体の目標温度TMで定まる。したがって、制御装置31は、目標温度TMを算出する。
 制御装置31は、カスケード熱交換器3の2次側の出口と、室内熱交換器11の入口との間に存在する熱媒体の量をMW、プレヒート運転時に熱媒体に蓄積する熱量をQy(=Qm)、室内熱交換器11の入口の熱媒体のプレヒート開始時の温度TB、熱媒体の定圧比熱をCpとしたときに、次式(6)で目標温度TMを算出するように構成される。
 TM={Qy/(MW×Cp)}+TB…(6)
 そして、制御装置31は、ステップS115において目標暖房能力qsmを標準値に設定する。目標暖房能力qsmは、室内温度と外気温度の差に比例する関係式などで決まる。
 そして、制御装置31は、ステップS118においてプレヒート運転によって蓄熱を実行し、ステップS119において除霜運転を実行するとともに蓄熱によって暖房を継続する。
 このように、蓄熱量が不足するときには、予め抑制した暖房能力で除霜運転時の暖房を開始するため、本実施の形態の空調装置によれば、蓄熱不足による室内機吹出温度の急低下が防止され、使用者に不快感を与えない。
 図11は、図10のステップS118のプレヒート運転による蓄熱処理を説明するためのフローチャートである。図11に示すように、制御装置31は、暖房運転から除霜運転に移行する前に実行するプレヒート運転において、圧縮機1の周波数を暖房運転時から増加させるとともに、ポンプ12の回転速度を低下させるように構成される。
 このフローチャートの処理を実行中は、制御装置31は、空気調和装置1000をプレヒート運転モードに設定する。まずステップS121において、制御装置31は、圧縮機1の周波数をf2に増加させる。ただし、f2は、図9のステップS103で設定された周波数f1よりも高い周波数である。これにより、カスケード熱交換器3の2次側の水温を上昇させる。カスケード熱交換器の二次側で温度上昇した水が搬送されて室内熱交換器11の入口に到達すると、温度TBが上昇する。
 ステップS122において、温度センサ32によって検出される室内熱交換器11の入口の熱媒体の温度TBが上昇するまで待ち、温度TBが上昇した場合に(S122でYES)、制御装置31は、ステップS123の処理を行なう。
 ステップS123において、制御装置31は、ポンプ12の回転速度を一定量だけ減少させる。
 ステップS124において、温度センサ32によって検出される室内熱交換器11の入口の熱媒体の温度TBが予め定められた目標温度TM以上であるか否かが判断される。室内熱交換器11の入口の熱媒体の温度TBが予め定められた目標温度TM未満の場合には(S124でNO)、処理がステップS122に戻る。温度TBが目標温度TM以上となった場合には(S124でYES)、図10のフローチャートに戻り、引き続きステップS119の処理が行なわれる。
 ステップS122~S124の処理によって、室内機暖房能力が水温上昇前と同一になるようポンプ12の回転速度が調整される。
 ポンプ12の回転速度を低下させると水流量が低下し、カスケード熱交換器3の出口の熱媒体の温度TAが上昇し、熱媒体の移動に伴い追って温度TBも上昇する。以後、温度TBが目標温度TMに到達するまでステップS122からS124の処理が繰返される。
 以上説明したプレヒート運転によって、暖房能力を一定にしながら熱媒体の温度を目標温度TMとすることができる。
 図12は、図10のステップS119の除霜運転時の暖房を説明するためのフローチャートである。このフローチャートの処理を実行中は、制御装置31は、空気調和装置1000を除霜運転モードに設定する。
 ステップS131において、制御装置31は、切替弁2の流路をバイパス配管22と圧縮機1の吐出側とが連通するように設定する。制御装置31は、当初はプレヒート運転終了時から圧縮機1の周波数およびポンプ12の回転速度を変化させずに、維持させる。
 ステップS132において、制御装置31は、既出の式(2)で現在の暖房能力qsを算出し、暖房能力qsが目標暖房能力qsmに比べて低いか否かを判断する。
 qs<qsmである場合(S132でYES)、制御装置31は、室内機の流量調整弁14a,14bの開度を増加させ、暖房能力を増加させる。一方、qs≧qsmである場合(S132でNO)、制御装置31は、室内機の流量調整弁14a,14bの開度を減少させ、暖房能力を低下させる。
 そして、ステップS135において、制御装置31は、除霜開始から除霜時間Tdが経過するまでステップS132に処理を戻し、暖房能力の調整を継続する。
 ステップS135において、除霜開始から除霜時間Tdが経過した場合、制御装置31は、ステップS136に処理を進め、圧縮機1の吐出側がカスケード熱交換器3の一次側入り口に連通するように切替弁2の流路を設定し、除霜運転を終了する。
 図13は、除霜運転中の流量調整弁による水量の調整についてまとめた図である。除霜運転中において、現在室内熱交換器が発揮している暖房能力qsが目標暖房能力qsmよりも低い場合、制御装置31は、流量調整弁14a,14bの開度を増加させ、循環させる水量を増加させる。
 一方、水量が増加した結果、qs>qsmとなると、制御装置31は、流量調整弁14a,14bの開度を減少させ、循環させる水量を減少させる。
 このように流量調整弁を制御することによって、図5に示したような抑制された暖房能力で除霜運転中の暖房が実行される。
 なお、本実施の形態では、除霜運転中の暖房能力の調整を流量調整弁で行なうこととしたが、他の方法で暖房能力の調整を行なっても良い。たとえば、ポンプ12の送水量を変化させても良いし、送風機13a,13bの風量を変化させても良い。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 切替弁、3 カスケード熱交換器、4 膨張弁、5 室外熱交換器、6,13,13a,13b 送風機、11,11a,11b 室内熱交換器、12 ポンプ、14,14a,14b 流量調整弁、21 第1の配管、22 バイパス配管、23 第2の配管、31 制御装置、32,33,34 温度センサ、100 冷媒回路、102,302,402 プロセッサ、103,303 メモリ、200 熱媒体回路、301 受信装置、400 リモコン、401 入力装置、403 送信装置、1000 空気調和装置。

Claims (5)

  1.  冷媒が流れる第1の配管で、圧縮機、第1熱交換器、膨張弁、第2熱交換器が接続され、前記圧縮機から吐出された前記冷媒を前記第2熱交換器に導入する除霜運転を行なうことが可能に構成された冷媒回路と、
     熱媒体が流れる第2の配管で、ポンプ、前記第1熱交換器、第3熱交換器が接続された熱媒体回路と、
     前記圧縮機および前記ポンプを制御するように構成される制御装置とを備え、
     前記制御装置は、前記除霜運転中の前記第3熱交換器の暖房能力を前記熱媒体回路中の前記熱媒体の蓄熱量に基づいて定められる能力に設定した状態で暖房を維持しつつ、前記除霜運転を行なうように構成され、
     前記熱媒体の蓄熱量がしきい値よりも少ない場合には、前記制御装置は、暖房運転から前記除霜運転に移行するときに、前記第3熱交換器の暖房能力を低下させるように構成される、空気調和装置。
  2.  前記熱媒体回路には、前記第3熱交換器に流れる前記熱媒体の流量を調整する流量調整弁が設けられ、
     前記制御装置は、前記除霜運転の開始に応じて、前記第3熱交換器の暖房能力が前記熱媒体回路中の前記熱媒体の蓄熱量に基づいて定められる能力になるように前記流量調整弁の開度を変更する、請求項1に記載の空気調和装置。
  3.  前記制御装置は、
     前記熱媒体回路中の前記熱媒体の量に関する情報を記憶するメモリと、
     前記情報に基づいて前記除霜運転中の前記流量調整弁の開度を決定するプロセッサとを含む、請求項2に記載の空気調和装置。
  4.  前記制御装置は、前記熱媒体の温度変化に基づいて前記熱媒体回路中の前記熱媒体の量を予め算出するように構成される、請求項1に記載の空気調和装置。
  5.  前記制御装置は、前記暖房運転から前記除霜運転に移行する前に実行するプレヒート運転において、前記圧縮機の周波数を前記暖房運転時から増加させるとともに、前記ポンプの回転速度を低下させるように構成される、請求項1~4のいずれか1項に記載の空気調和装置。
PCT/JP2018/046542 2018-12-18 2018-12-18 空気調和装置 WO2020129153A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020560678A JP7097989B2 (ja) 2018-12-18 2018-12-18 空気調和装置
PCT/JP2018/046542 WO2020129153A1 (ja) 2018-12-18 2018-12-18 空気調和装置
CN201880099733.1A CN113167492B (zh) 2018-12-18 2018-12-18 空气调节装置
US17/281,008 US11940192B2 (en) 2018-12-18 2018-12-18 Air conditioning device
EP18944079.5A EP3901531A4 (en) 2018-12-18 2018-12-18 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046542 WO2020129153A1 (ja) 2018-12-18 2018-12-18 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020129153A1 true WO2020129153A1 (ja) 2020-06-25

Family

ID=71102283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046542 WO2020129153A1 (ja) 2018-12-18 2018-12-18 空気調和装置

Country Status (5)

Country Link
US (1) US11940192B2 (ja)
EP (1) EP3901531A4 (ja)
JP (1) JP7097989B2 (ja)
CN (1) CN113167492B (ja)
WO (1) WO2020129153A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074438A (zh) * 2021-02-26 2021-07-06 青岛海信日立空调系统有限公司 一种多联式空调及空调除霜控制方法
CN114251745A (zh) * 2021-12-10 2022-03-29 广东美的制冷设备有限公司 一种空调系统及空调控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828932A (ja) 1994-07-13 1996-02-02 Tokyo Electric Power Co Inc:The 蓄熱式空気調和機
JP2014228261A (ja) * 2013-05-27 2014-12-08 リンナイ株式会社 暖房システム
JP2015148362A (ja) * 2014-02-05 2015-08-20 株式会社コロナ 複合熱源ヒートポンプ装置
WO2017085859A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 空気調和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
JP5071434B2 (ja) * 2009-05-08 2012-11-14 三菱電機株式会社 ヒートポンプ式給湯機
CN102422091B (zh) * 2009-05-08 2014-07-02 三菱电机株式会社 空气调节装置
FR2946419B1 (fr) * 2009-06-05 2014-02-14 Valeo Systemes Thermiques Dispositif d'echange thermique et systeme de gestion thermique
JP5851703B2 (ja) * 2011-02-25 2016-02-03 サンデンホールディングス株式会社 車両用空気調和装置
JP2013104606A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 冷凍サイクル装置及び温水生成装置
CN202648134U (zh) * 2012-05-31 2013-01-02 上海理工大学 一种热气旁通除霜式热泵热水器
CN103471210B (zh) * 2012-06-06 2016-08-10 苏州三星电子有限公司 水系统空调、空调系统的防冻系统及方法
US9664425B2 (en) * 2014-03-04 2017-05-30 Haier Us Appliance Solutions, Inc. Heat pump water heater appliance and a method for operating the same
CN104566835B (zh) 2015-01-27 2018-04-17 珠海格力电器股份有限公司 冷冻水式空调防凝露的控制方法和系统
US20170027409A1 (en) * 2015-07-31 2017-02-02 Illinois Tool Works Inc. Warewasher with heat recovery system
CN105299843B (zh) * 2015-11-17 2017-10-27 广东美的制冷设备有限公司 控制空调器进入除霜模式的方法和空调器
WO2017159455A1 (ja) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 空調装置
JP6852984B2 (ja) * 2016-04-28 2021-03-31 ダイキン工業株式会社 ヒートポンプシステム及びこれを備えた電力制限システム
CN106225358A (zh) * 2016-08-26 2016-12-14 赵向辉 蓄冷式热气除霜制冷系统及蓄热式热气除霜热泵系统
JP6796014B2 (ja) * 2017-03-28 2020-12-02 株式会社ヴァレオジャパン 車室内の熱管理システム
CN107575998A (zh) * 2017-09-08 2018-01-12 青岛海尔空调器有限总公司 空调及其室外机的除霜控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828932A (ja) 1994-07-13 1996-02-02 Tokyo Electric Power Co Inc:The 蓄熱式空気調和機
JP2014228261A (ja) * 2013-05-27 2014-12-08 リンナイ株式会社 暖房システム
JP2015148362A (ja) * 2014-02-05 2015-08-20 株式会社コロナ 複合熱源ヒートポンプ装置
WO2017085859A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901531A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074438A (zh) * 2021-02-26 2021-07-06 青岛海信日立空调系统有限公司 一种多联式空调及空调除霜控制方法
CN113074438B (zh) * 2021-02-26 2023-08-04 青岛海信日立空调系统有限公司 一种多联式空调及空调除霜控制方法
CN114251745A (zh) * 2021-12-10 2022-03-29 广东美的制冷设备有限公司 一种空调系统及空调控制方法
CN114251745B (zh) * 2021-12-10 2023-03-07 广东美的制冷设备有限公司 一种空调系统及空调控制方法

Also Published As

Publication number Publication date
US20210341193A1 (en) 2021-11-04
EP3901531A1 (en) 2021-10-27
EP3901531A4 (en) 2021-12-29
US11940192B2 (en) 2024-03-26
CN113167492A (zh) 2021-07-23
CN113167492B (zh) 2023-03-10
JPWO2020129153A1 (ja) 2021-09-27
JP7097989B2 (ja) 2022-07-08

Similar Documents

Publication Publication Date Title
JP6501878B2 (ja) 空気調和装置及び運転制御装置
JP6636048B2 (ja) 空気調和装置
JP2012141113A (ja) 空気調和温水機器システム
CN113383197B (zh) 空调装置的控制装置、室外机、中继机、热源机以及空调装置
JP6950191B2 (ja) 空気調和機
JP7209816B2 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
WO2020129153A1 (ja) 空気調和装置
WO2020065984A1 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機および空気調和装置
JP7295779B2 (ja) ヒートポンプ式温水暖房システム
JP6945741B2 (ja) 空気調和装置の制御装置、室外機、中継機、熱源機および空気調和装置
EP3995763B1 (en) Refrigeration cycle device
US11913694B2 (en) Heat pump system
JP6804648B2 (ja) 冷凍サイクル装置
WO2017212571A1 (ja) 空調システム及び中継機
JP7258230B2 (ja) 冷凍サイクル装置
JP2021001718A (ja) ヒートポンプ式温水暖房システム
JP7233568B2 (ja) 空気調和システムおよびその制御方法
JP7399321B2 (ja) チラーシステム及びチラーシステムを有する空気調和装置
JP2020020540A (ja) 温水暖房装置
JPWO2020208751A1 (ja) 空気調和装置
JPH0618075A (ja) 空気調和機における運転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944079

Country of ref document: EP

Effective date: 20210719