[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020127790A1 - Flexible pipe for transporting a hydrocarbon fluid within a body of water, and associated method - Google Patents

Flexible pipe for transporting a hydrocarbon fluid within a body of water, and associated method Download PDF

Info

Publication number
WO2020127790A1
WO2020127790A1 PCT/EP2019/086387 EP2019086387W WO2020127790A1 WO 2020127790 A1 WO2020127790 A1 WO 2020127790A1 EP 2019086387 W EP2019086387 W EP 2019086387W WO 2020127790 A1 WO2020127790 A1 WO 2020127790A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible pipe
corrosion barrier
internal
intended
melting temperature
Prior art date
Application number
PCT/EP2019/086387
Other languages
French (fr)
Inventor
Anh-Tuan DO
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of WO2020127790A1 publication Critical patent/WO2020127790A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers

Definitions

  • the invention relates to the technical field of flexible pipes intended for the transport, within a body of water, of a hydrocarbon fluid.
  • the flexible pipes according to the invention are used in the exploitation and production of hydrocarbons in an underwater environment.
  • the body of water can be a lake, sea or ocean.
  • the depth of the extent is generally between 200 m and 5000 m, more generally between 1000 m and 2500 m.
  • the subsea installation to which a first flexible pipe end can be directly or indirectly connected is, for example, a wellhead intended to control the production of hydrocarbon fluid leaving the well or a collector intended to collect and / or distribute the fluid from one or more wellheads, for example to one or more additional or surface subsea installations.
  • the surface installation to which a second flexible pipe end is generally connected directly or indirectly and to which the fluid in raw or pretreated form is routed is for example a floating platform such as a Floating Production Unit, of Storage and Unloading (FPSO for Floating, Production, Storage and Offloading in English) or a tensioned cable platform (TLP for Tension Leg Platform in English).
  • FPSO Floating Production Unit
  • TLP Tension Leg Platform
  • the hydrocarbon fluid is a multiphase mixture comprising at least one liquid phase formed of linear and / or cyclic carbon compounds, saturated and / or unsaturated, of variable density and / or a liquid phase formed of water, at least one gas phase formed by example of methane (CH 4 ), carbon dioxide (CO2), hydrogen sulfide (HS), and optionally at least one solid phase comprising sand for example.
  • the temperature of the hydrocarbon fluid is between 25 ° C and 130 ° C. In general, the temperature of the hydrocarbon fluid decreases during transport.
  • a flexible pipe generally comprises several sections of pipes connected to each other by connection end pieces.
  • the flexible pipe extends along a longitudinal axis and includes an internal passage for circulation of the hydrocarbon fluid.
  • the passage is for example delimited by an internal tubular sheath.
  • the internal sheath generally comprises a polymeric material chosen from polyolefins such as a polyethylene, a polyamide such as a polyamide 11 or a fluorinated polymer such as a polyvinylidene fluoride.
  • the material of the internal sheath is chosen according to the conditions of pressure, temperature and the nature of the fluid transported.
  • the flexible pipe comprises at least one metallic reinforcing layer arranged coaxially around the internal sheath and intended to reinforce the flexible pipe against axial forces and / or internal radial forces exerted on the flexible pipe.
  • the reinforcing layer comprises an anti-bursting sheet, called a pressure vault, intended to reinforce the flexible pipe against the internal radial forces exerted on the flexible pipe.
  • the anti-burst sheet is formed by a helical winding of metal wires of cross-section, for example in the form of Z, T, U, K or I.
  • the metal wires of the anti-burst sheet are wound in a short pitch. By short pitch, it is understood an absolute helix angle between 75 ° and 90 °, typically 90 °.
  • the metallic reinforcing layer also comprises a superposition of at least two plies of tensile armor arranged around the anti-burst ply and intended to reinforce the flexible pipe against the axial forces exerted on the flexible pipe.
  • the tensile armor plies are generally formed by a helical winding of metallic wires of rectangular section for example.
  • the metallic wires of the tensile armor plies are wound in a long pitch. By long pitch is meant an absolute helix angle between 20 ° and 55 °.
  • the wires of a first layer of tensile armor are wound at an angle opposite to the winding angle of the wires of a second layer of tensile armor. For example, when the first layer of tensile armor is wound at an angle of + 25 °, the second layer of tensile armor is wound at an angle of -25 °.
  • the flexible pipe comprises a tubular external sheath arranged coaxially around the reinforcing layer intended to limit the penetration of water into the flexible pipe.
  • the outer sheath comprises a polymeric material chosen for example from polyolefins such as polyethylene, polypropylene or polyamide.
  • annular space is located between the outer sheath and the inner sheath.
  • the annular space is defined as the volume between the outer sheath and the inner sheath.
  • the reinforcing layer is generally arranged within the annular space.
  • the reinforcing layer is configured to move longitudinally relative to the layers of the flexible pipe during bending of the flexible pipe.
  • the flexible pipe is called "unbound" in the technical field of the invention. This guarantees the flexibility of the flexible pipe.
  • the document WO20081 13362 describes a flexible pipe of the aforementioned type further comprising an anti-corrosion barrier making it possible to limit the passage of gas particles towards the annular space.
  • This corrosion barrier includes a formed polymer matrix of a first material having a melting temperature Tfi and fillers formed of a second material having a melting temperature Tf greater than Tfi.
  • the fillers are cationic clay silicates.
  • the mechanical properties of clay silicates and matrix polymers are far apart.
  • the presence of charges of cationic clay silicates increases the stiffness of a polymeric sheath with constant thickness.
  • adding 30% of cationic clay silicate fillers to polypropylene increases the elastic modulus of polypropylene by six. This creates difficulties in installing and using the flexible pipe, especially during dynamic applications for which considerable flexibility is required.
  • the elongation at break of these fillers is lower than the elongation at break of the polymer matrix. This variation in mechanical properties leads to concentrations of local stresses in the charges of clay silicates within the anti-corrosion barrier where cracks can arise and propagate through said anti-corrosion barrier.
  • the anti-corrosion barrier thus cracked no longer fulfills its role of barrier with respect to gas particles which can diffuse and concentrate within the annular space thus weakening the reinforcing layer.
  • the charges of cationic clay silicates tend to agglomerate and not to distribute themselves homogeneously within the polymer matrix. Additional manufacturing steps for treating the charges must be carried out to ensure a uniform distribution of the charges within the polymer matrix, which makes the manufacture of the anti-corrosion barrier complex.
  • the present invention relates to a flexible pipe of central axis A intended for the transport, within a body of water, of a hydrocarbon fluid comprising gas particles, said flexible pipe comprising:
  • a tubular anti-corrosion barrier intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe, said anti-corrosion barrier comprising a polymer matrix formed from a first material having a melting temperature Tfi and solid state fillers arranged within the polymer matrix, comprising a second material having a melting temperature Tf higher than the melting temperature Tfi,
  • the second filler material is chosen from polymers semi-crystalline thermoplastics.
  • Semi-crystalline thermoplastic polymers have an elongation at break of at least 10% as measured at 23 ° C. This minimizes stress concentrations within the corrosion barrier and thus preserves its integrity for 20 years or more.
  • semi-crystalline thermoplastic polymers have a tensile modulus between 0.7 and 4 GPa as measured at 23 ° C which keeps the stiffness of the anti-corrosion barrier at a level compatible with the use of flexible pipe.
  • the flexible pipe can be rolled up, unwound for storage and installation and used in dynamic applications.
  • semi-crystalline thermoplastics are easily distributed within the polymer matrix of the anti-corrosion barrier without any specific implementation process for the presence of fillers, which makes the manufacture of the anti-corrosion barrier simpler.
  • the charges are generally dispersed within the polymer matrix.
  • the melting temperature Tf2 of the second material of the fillers is greater than or equal to 250 ° C and preferably between 300 ° C and 400 ° C.
  • the melting point corresponds to the temperature from which the crystalline phase of semi-crystalline thermoplastics changes from a crystalline state to a viscous state.
  • This charge melting temperature makes it possible to maintain the charges in the solid state during the manufacture of the anti-corrosion barrier which notably involves the melting of the first material forming the polymer matrix.
  • the solid charges thus make it possible to increase the diffusion path of the transported gases such as carbon dioxide and / or hydrogen sulfide within the polymer matrix of the anti-corrosion barrier to limit the diffusion coefficient of the transported gases. such as carbon dioxide and / or hydrogen sulfide within the matrix of the anti-corrosion barrier.
  • the second filler material is chosen from a polyaryletherketone such as a polyetherketone or a polyetheretherketone or a polyetherketone ketone or a polyetheretherketone ketone, or a polyetherketoneetherketoneketone.
  • Polyaryletherketones represent a family of semi-crystalline thermoplastic polymers whose crystalline phase, composed of ether and ketone units, confers good barrier properties with respect to gases such as carbon dioxide and / or hydrogen sulfide. . This family of materials thus makes it possible to improve the sealing of the anti-corrosion barrier with respect to gases such as carbon dioxide and / or hydrogen sulfide.
  • the fillers are in the form of powder particles.
  • “powder particles” is meant particles for which the length ratio is preferably less than 3.
  • the length ratio (“aspect ratio” in English) corresponds to the ratio of the longest diameter of the particle to the diameter the shortest, the longest diameter and the shortest diameter being measured in directions perpendicular to each other.
  • the diameters of the particles are measured by dynamic light scattering (DLS) according to ISO 22412 of 2017.
  • the powder particles have a volume diameter d v 50 of less than 1 mm.
  • the powder particles can be implemented by a conventional extrusion process which facilitates the manufacturing process of the anti-corrosion barrier.
  • the fillers are in the form of fibers, preferably having an average length of less than 1 mm.
  • a fiber generally has a length ratio (length / diameter ratio of the fiber) greater than 5, in particular greater than 10.
  • the length and the diameter of the fibers can be measured by image analysis, for example by using the Zéphyr LDA device, averaging on at least 50 fibers.
  • the fibers make it possible to increase the diffusion path within the anti-corrosion barrier, which makes it possible to reduce more significantly the diffusion coefficient of gases such as carbon dioxide and / or hydrogen sulfide within the matrix of the anti-corrosion barrier.
  • such an average length of fibers allows a better distribution of the charges within the matrix.
  • the volume concentration of the charges within the anti-corrosion barrier is at least 30% and even more advantageously between 30% and 50% and preferably between 30% and 40%.
  • the volume concentration can for example be measured by scanning electron microscopy (SEM). This concentration makes it possible to improve the barrier properties of the anti-corrosion barrier with respect to gases such as carbon dioxide and / or hydrogen sulfide while preserving the mechanical properties of the polymer matrix.
  • the charges comprise a metallic external coating.
  • This metallic external coating can partially or totally coat the surface of the second material.
  • the permeability of metallic materials is lower than polymeric materials.
  • the external metallic coating of the charges makes it possible to reduce the diffusion of gases within the charges.
  • the thickness of the metal coating is of the order of a micrometer so as not to affect the stiffness of the anti-corrosion barrier and that the hardness of the metal does not cause concentration of stress within the anti-corrosion barrier.
  • the melting temperatures Tf 1 and Tf2 are measured by differential scanning calorimetry (DSC) according to ISO standard 1 1357-3 of 2018, typically at atmospheric pressure.
  • the first material forms the polymer matrix of the corrosion barrier. It is therefore a polymer.
  • This first material has a melting temperature Tf1. It is therefore a semi-crystalline polymer.
  • the first material which forms the polymeric matrix of the anti-corrosion barrier may comprise a single semi-crystalline polymer.
  • the first material which forms the polymeric matrix of the anti-corrosion barrier can comprise a mixture of semi-crystalline polymers. In this case, the melting temperature Tf1 i of each of these is lower than the temperature Tf2 of the second material of the fillers.
  • the melting temperature of the second material of the fillers is higher than the melting temperature Tf 1 of the first material which forms the polymer matrix.
  • Tf2 and Tf 1 is greater than 10 ° C, in particular greater than 20 ° C, typically greater than 50 ° C, for example greater than 100 ° C.
  • the first material of the polymer matrix is chosen from polyolefins such as polypropylene or polyethylene.
  • the polyolefins have a melting temperature below 200 ° C. which makes them extrudable at temperatures below the melting point of the fillers.
  • the polyolefins have a flexural elasticity module, a chemical resistance as well as a mechanical resistance compatible with the use of the flexible pipes according to the invention.
  • the flexible pipe comprises an internal tubular sheath arranged inside or around the anti-corrosion barrier.
  • the internal sheath makes it possible to create a sealed space with respect to the liquid phase of the fluid transported at least.
  • the internal sheath thus makes it possible to reduce the physical-chemical attacks and the mechanical stresses within the anti-corrosion barrier, in particular when the internal tubular sheath is arranged inside the anti-corrosion barrier.
  • the anti-corrosion barrier and the internal sheath are linked.
  • the anti-corrosion barrier and the internal sheath are bonded or bonded.
  • the diffusion coefficient of gases such as carbon dioxide and / or hydrogen sulfide within the anti-corrosion barrier is lower than the diffusion coefficient of these gases within the internal sheath. Bonding therefore keeps the anti-corrosion barrier and the internal sheath intimately linked in order to prevent the accumulation of gases at the interface and to avoid damage within the flexible pipe.
  • the flexible pipe includes an internal reinforcement structure making it possible to limit the crushing of the flexible pipe under the effect of external radial forces exerted on the flexible pipe.
  • the external reinforcement layer of the flexible pipe comprises an anti-bursting sheet intended to reinforce the flexible pipe against the radial forces.
  • an anti-bursting sheet intended to reinforce the flexible pipe against the radial forces.
  • the external reinforcing layer is configured to move longitudinally relative to any of the layers of the flexible pipe when the flexible pipe is bent. This increases the flexibility of the flexible pipe which can be wound on smaller radii of curvature during installation and storage of the flexible pipe.
  • the invention also relates to a method for manufacturing a flexible pipe with a central axis intended for transporting, within a body of water, a hydrocarbon fluid comprising gas particles, said flexible pipe comprising a passage internal circulation of the hydrocarbon fluid, the method comprising the following steps:
  • said anti-corrosion barrier comprising a polymer matrix formed from a first material having a melting temperature Tfi and fillers in the solid state arranged within the polymer matrix comprising a second material having a melting temperature Tf higher than the melting temperature Tfi,
  • the second filler material is chosen from semi-crystalline thermoplastic polymers.
  • the process of the invention is simplified compared to the process of document WO20081 13362 in that the semi-crystalline thermoplastic materials of the fillers can be extruded and dispersed easily within the polymer matrix of the anti-corrosion barrier without aggregation of the fillers.
  • the flexible pipe manufacturing process comprising the anti-corrosion barrier therefore does not require any additional or specific material in order to add the charges within the anti-corrosion barrier.
  • FIG. 1 is a perspective view of a central section of a flexible pipe according to the invention.
  • FIG. 2 is a schematic view of a matrix comprising fillers according to an embodiment of the invention.
  • FIG. 3 is a view similar to Figure 2 illustrating an alternative embodiment of the charges.
  • FIG. 1 shows an example of a flexible pipe (10) according to the invention.
  • the flexible pipe (10) is intended for the transport of a hydrocarbon fluid within a body of water. Generally, the transport is carried out from an underwater installation to a surface installation across the body of water.
  • the body of water can be a lake, sea or ocean.
  • the depth of the body of water is generally between 200 m and 5000 m, more generally between 1000 m and 2500 m.
  • the subsea installation to which a first end of the flexible pipe (10) can be directly or indirectly connected is, for example, a well head intended to control the production of hydrocarbon fluid at the well exit.
  • the underwater installation is a collector intended to collect and / or distribute the fluid from one or more well heads, for example to one or more additional underwater or surface installations.
  • the surface installation to which a second end of the flexible pipe (10) is generally connected directly or indirectly and to which the fluid, in raw or pretreated form, is routed is for example a platform floating such as a Floating Production, Storage and Unloading Unit (FPSO for Floating, Production, Storage and Offloading in English) or a tensioned cable platform (TLP for Tension Leg Platform in English).
  • FPSO Floating Production, Storage and Unloading Unit
  • TLP Tension Leg Platform in English
  • the hydrocarbon fluid is a multiphase mixture comprising at least one liquid phase formed of linear and / or cyclic carbon compounds, saturated and / or unsaturated, of variable density and / or a liquid phase formed of water, at least one gas phase formed by example of methane, carbon dioxide, hydrogen sulfide and optionally at least one solid phase comprising sand for example.
  • the temperature of the hydrocarbon fluid is between 25 ° C and 130 ° C. In general, the temperature of the hydrocarbon fluid decreases during transport.
  • the flexible pipe (10) extends along a central axis (A) and includes an internal passage for circulation of the hydrocarbon fluid.
  • the flexible pipe (10) comprises a tubular anti-corrosion barrier (16) intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe (10).
  • the corrosion barrier (16) includes a polymer matrix (24) and fillers (26).
  • the polymer matrix (24) is formed from a first material.
  • the first material is chosen from polyolefins such as polypropylene or polyethylene. Polyolefins have the advantage of being able to be shaped by conventional manufacturing means such as extrusion.
  • the first material is chosen from polyamides or fluorinated polymers such as a polyvinylidene fluoride (PVDF).
  • the first material has a melting temperature Tfi. The latter is between 100 ° C and 200 ° C.
  • the volume concentration of the first material within the anti-corrosion barrier (16) is preferably greater than or equal to 50% and generally between 50% and 70%.
  • the anti-corrosion barrier (16) further comprises fillers (26) in the solid state arranged within the polymer matrix (24).
  • the fillers (26) comprise a second material whose melting temperature Tf 2 is higher than the melting temperature Tfi of the first material of the polymer matrix (24).
  • the difference between the melting temperature Tf 2 of the second material and the melting temperature Tfi of the first material is at least 50 ° C.
  • the melting temperature Tf 2 is higher or equal to 250 ° C and preferably between 300 ° C and 400 ° C.
  • the melting temperature Th of the second filler material (26) is higher than the melting temperature Tfi of the first material of the polymer matrix (24) which allows, by choosing an intermediate temperature for manufacturing the anti-corrosion barrier ( 16), to carry out the extrusion of the anti-corrosion barrier (16) while maintaining the charges (26) in the solid state.
  • the result is an anti-corrosion barrier (16) with barrier properties superior to an anti-corrosion barrier (16) in which the charges would have been fused during manufacture.
  • the second material forming the fillers (26) is chosen from semi-crystalline thermoplastic polymers. Semi-crystalline thermoplastic polymers have an elongation at break of at least 10% as measured at 23 ° C according to ISO standard 527-1 2012.
  • fillers (26) therefore make it possible to limit the stress concentrations at the level of the anti-corrosion barrier (16) and thus preserve its integrity during the service of the flexible pipe (10).
  • semi-crystalline thermoplastic polymers have a tensile elasticity modulus of between 0.7 GPa and 4 GPa as measured at 23 ° C according to ISO standard 527-1 2012, which makes it possible to provide the anti-corrosion barrier ( 16) with a stiffness compatible with the use of the flexible pipe (10).
  • the semi-crystalline thermoplastics are easily distributed within the matrix (24) without an implementation process specific to the presence of fillers (26), which simplifies the manufacture of the anti-corrosion barrier (16).
  • the fillers (26) are chosen from polyaryletherketone such as a polyetherketone or a polyetheretherketone or a polyetherketone ketone or a polyetheretherketoneketone, or a polyetherketoneetherketoneketone.
  • the polyaryletherketone family have good barrier properties with respect to gas particles such as carbon dioxide and / or hydrogen sulfide, which makes it possible to effectively limit the diffusion of gas particles through the anti-barrier. -corrosion (16), and consequently, to reduce the corrosion of the external reinforcing layer (18, 20).
  • the fillers (26) are for example in the form of powder particles (28).
  • the powder particles (28) have a diameter D v 50 of less than 1 mm, for example between 50 ⁇ m and 600 ⁇ m.
  • the particle size of the powder particles (28) is between 20 ⁇ m and 500 ⁇ m.
  • the powder particles (28) make it easier to manufacture the anti-corrosion barrier (16).
  • Another exemplary embodiment is shown in FIG. 3.
  • the fillers (26) are for example in the form of fibers (30) having an average length of less than 1 mm.
  • the fibers (30) make it possible to increase the diffusion path of gases such as carbon dioxide and / or hydrogen sulfide within the anti-corrosion barrier (16) compared to an anti-corrosion barrier comprising fillers in powder form.
  • the fillers (26) are in the form of entangled structures as shown in FIG. 3 which further increase the path of diffusion of the gases at the within the anti-corrosion barrier (16) with respect to straight structures such as glass fibers for example.
  • the entanglement of the fibers may be in the form of islands or spider webs for example.
  • the average diameter of the fibers is for example between 0.05 mm and 3 mm.
  • the volume concentration of the charges (26) within the anti-corrosion barrier (16) is at least 30%, advantageously between 30% and 50% and preferably between 30% and 40%.
  • Such a concentration in volume of the charges (26) within the anti-corrosion barrier (16) makes it possible to effectively reduce the diffusion path of gases such as carbon dioxide and / or hydrogen sulfide within the barrier anti-corrosion (16).
  • the charges (26) comprise an external metallic coating.
  • the metal is, for example, chosen from aluminum, nickel, copper or any other suitable metallic material.
  • the metallic external coating makes it possible to reinforce the tightness of the anti-corrosion barrier (16) with respect to gas molecules such as carbon dioxide and / or hydrogen sulfide.
  • the metallic coating is applied by electrostatic deposition.
  • the corrosion barrier (16) may include additives such as anti-UV agents.
  • the mass concentration of additives within the anti-corrosion barrier (16) is less than 10%, advantageously less than 5%.
  • the mass concentration of first material (or mixture of first materials) within the anti-corrosion barrier is generally greater than 50%, in particular 75%, preferably greater than 80% by weight.
  • the mass concentration of fillers (26) within the anti-corrosion barrier is generally from 1 to 50%, in particular 5
  • the anti-corrosion barrier (16) can comprise, or even consist of: - from 50 to 99% by weight, in particular from 75 to 90% by weight of the first material (or of a mixture of first materials),
  • the anti-corrosion barrier (16) is for example formed by a superposition of strips wound in a tubular structure.
  • the turns of a lower strip and the turns of an upper strip are welded to each other to seal the anti-corrosion barrier (16) with respect to the gases transported such as dioxide carbon and / or hydrogen sulfide.
  • the anti-corrosion barrier (16) is formed by extrusion of a continuous tube which makes it possible to reduce the assembly steps of the anti-corrosion barrier (16) during manufacture.
  • the flexible pipe (10) comprises at least one metallic external reinforcement layer (18, 20) intended to reinforce the flexible pipe (10) against axial forces and / or internal radial forces exerted on said flexible pipe (10).
  • the external reinforcing layer (18, 20) comprises an anti-bursting sheet (18) intended to reinforce the flexible pipe (10) against the internal radial forces .
  • the bursting sheet (18), also called pressure vault in the technical field of the invention, comprises a helical winding of metal wires.
  • the metal is, for example, chosen from carbon steel, stainless steel.
  • the section of the son of the anti-bursting sheet (18) is for example in the form of Z, T, U, K or I.
  • the son of the anti-bursting sheet (18) are wound in a short pitch. By short pitch, it is understood an absolute helix angle between 75 ° and 90 °.
  • the external reinforcing layer (18, 20) also comprises a superposition of at least two plies of tensile armor (20) wound around the anti-burst ply (18) and intended to reinforce the flexible pipe (10 ) against the axial forces exerted on said flexible pipe (10).
  • the tensile armor plies (20) include a first tensile armor ply (20a) and a second tensile armor ply (20b).
  • the tensile armor plies (20) are generally formed by a helical winding of metal wires. The turns of the tensile armor plies (20) are contiguous.
  • the metal is, for example, chosen from carbon steel, stainless steel.
  • the section of the wires of the tensile armor plies (20) are rectangular, circular or of any geometry suitable for the present application.
  • the metallic wires of the tensile armor plies are wound in a long pitch.
  • long pitch is meant an absolute helix angle between 20 ° and 55 °.
  • the wires of the first tensile armor ply (20a) are wound at an angle opposite to the winding angle of the wires of the second tensile armor ply (20b).
  • the axial forces exerted on the flexible pipe (10) are the forces exerted along the central axis (A) during the installation of the flexible pipe (10) and / or during the service of the pipe. flexible (10).
  • the axial forces generally result from the weight of the flexible pipe (10).
  • the internal radial forces exerted on the flexible pipe (10) are the forces which are exerted radially with respect to the central axis (A) from the inside to the outside of the flexible pipe (10), generally during the flexible pipe service (10).
  • the internal radial forces result for example from the internal pressure of the transported hydrocarbon fluid exerted on the internal surface of the flexible pipe (10).
  • the flexible pipe (10) comprises a tubular external sheath (22) arranged coaxially around the external reinforcing layer (18, 20) intended to limit the penetration of water into the flexible pipe (10).
  • the outer sheath (22) includes a polymeric material.
  • the polymeric material is for example chosen from polyolefins such as polyethylene, polypropylene or polyamide or a mixture of these materials.
  • the outer sheath (22) has a thickness of between 0.5 mm and 10 mm.
  • the outer sheath (22) is watertight from the body of water.
  • the outer sheath (22) is also intended to protect the reinforcing structure (18, 20) from friction with the seabed when the flexible pipe (10) extends over the seabed and / or with laying equipment used during installing the flexible pipe (10) such as clamps.
  • the flexible pipe (10) comprises an annular space delimited by the external sheath (22) and the anti-corrosion barrier (16), the reinforcing layer (18, 20) being arranged within said annular space.
  • the annular space is the volume between the internal face of the external sheath (22) and the external face of anti-corrosion barrier (16).
  • internal face is meant the face of the sheath oriented towards the inside of the flexible pipe (10), that is to say as close as radially to the axis (A).
  • external face it is understood the face of the sheath oriented towards the outside of the flexible pipe (10), that is to say the face of the sheath most radially distant from the axis (A).
  • the annular space can comprise several annular sub-spaces.
  • the flexible pipe (10) comprises an additional tubular sheath arranged between the anti-corrosion barrier (16) and the external sheath (22)
  • the annular space comprises a first annular sub-space included between the anti-corrosion barrier (16) and the additional tubular sheath and a second annular sub-space between the additional tubular sheath and the outer sheath (22).
  • the flexible pipe (10) comprises an inner tubular sheath (14).
  • the internal sheath (14) is arranged inside the anti-corrosion barrier (16).
  • the internal sheath (14) is arranged around the anti-corrosion barrier (16).
  • the internal sheath (14) extends along the central axis (A).
  • the internal sheath (14) comprises a polymeric material.
  • the polymeric material is chosen from polyolefins such as a polyethylene, a polyamide such as a polyamide 11 or a fluorinated polymer such as a polyvinylidene fluoride.
  • the polymeric material can be reinforced with long fibers. Long fibers are defined here as fibers of average length greater than 10 mm. For example, long fibers are carbon fibers embedded in the polymeric material.
  • the internal sheath (14) has a thickness of between 0.5 mm and 5 mm.
  • the nature of the material and the thickness of the internal sheath (14) are chosen as a function of the pressure, temperature and nature of the fluid transported conditions.
  • the internal sheath (14) can be formed by extruding a tube, or extruding strips which are then wound up to form a tube which is leaktight towards at least the liquid phase of the transported hydrocarbon fluid.
  • the internal sheath (14) and the anti-corrosion barrier (16) are linked. This is particularly advantageous when the anti-corrosion barrier (16) is located around the internal sheath (14).
  • the speed of diffusion of gas particles such as carbon dioxide and / or hydrogen sulfide being higher within the internal sheath (14) than within the anti-diffusion barrier (16)
  • gases can accumulate within the space between these two layers, and the pressure at the interface of these two layers can increase and damage the flexible pipe (10).
  • the connection thus reduces the risk of damage since the gases can no longer accumulate at the interface.
  • the anti-corrosion barrier (16) and the internal sheath (14) are bonded or bonded.
  • the first material of the polymer matrix of the anti-corrosion barrier (16) and the second material of the internal sheath (14) are of the same nature.
  • the mixing of the materials after melting form a single phase. This makes it possible to improve the bonding force between the internal sheath (14) and the anti-corrosion barrier (16).
  • the flexible pipe (10) comprises an internal reinforcement structure (12) making it possible to limit the collapse of the flexible pipe (10) under the effect of external radial forces exerted on the flexible pipe (10).
  • the external radial forces exerted on the flexible pipe (10) are the forces which are exerted radially with respect to the axis (A) from the outside towards the inside of the flexible pipe (10), during the installation and / or service of the flexible pipe (10).
  • the external radial forces are for example the forces resulting from the hydrostatic pressure exerted on the external surface of the flexible pipe (10) and / or resulting from the tightening efforts during the installation of the flexible pipe (10).
  • the internal reinforcement structure (12), also called internal carcass in the field of the present invention, comprises a helical winding of self-stapled metal profiles.
  • self-stapled it is understood that the profile of a turn is mechanically linked to the profile of an adjacent turn to allow a limited relative movement of the turns of the internal reinforcement structure (12) during a bending of the pipe.
  • flexible (10) for example.
  • the metal is for example chosen from stainless steels such as Duplex 2205 or steel 316L.
  • the profile section is S or T shaped.
  • the profiles of the internal reinforcement structure (12) are wound in a short pitch. By short pitch is meant an absolute helix angle between 75 ° and 90 °.
  • the external reinforcing layer (18, 20) is configured to move longitudinally relative to any one of the layers of the flexible pipe (10) during bending of said flexible pipe (10).
  • the external reinforcing layer (18, 20) is free to move longitudinally relative to the external sheath (22), to the anti-corrosion barrier (16) and relative to the internal sheath (14) when that -This is present, in particular during a bending of the flexible pipe (10).
  • MRR Minimum Bend Radius in English
  • the latter can be wound on storage coils according to smaller diameters than a pipe where the elements of the reinforcing layer are fixed, for example, embedded in a layer of elastomer.
  • the internal sheath (14), the bursting ply (18), the tensile armor plies (20), the external sheath (22) are produced and arranged according to the normative documents API 17J, 4 th edition, published in May 2014 by G American Petroleum Institute and API 17B, 5 th edition, published in March 2014 by the American Petroleum Institute.
  • the flexible pipe (10) according to the invention may comprise additional polymeric or metallic layers depending on the applications.
  • the flexible pipe may comprise a pair of additional tensile armor plies wrapped around the pair of tensile armor plies (20) or even anti-wear layers of polyamide, for example arranged between the anti-ply burst (18) and each of the tensile armor plies (20).
  • an internal reinforcement structure (12) is formed.
  • the metal profiles are wound in a helix at a short pitch as defined in the present invention.
  • a first polymeric material is prepared in the form of granules for example, having a melting temperature Tfi and intended to form the polymer matrix (24) of the anti-corrosion barrier (16).
  • a second material is also prepared having a melting temperature Tf 2 chosen from semi-crystalline thermoplastic polymers intended to form the charges (26) of the anti-corrosion barrier (16).
  • the melting temperature Tfi of the first material is lower than the melting temperature Tf 2 of the second material.
  • the first material and the second material are then mixed. The mixing can be carried out during the shaping of the anti-corrosion barrier (16) for example within the extruder or upstream of the shaping for example within a hopper.
  • the mixture is then extruded in the form of a tube or strips to form the anti-corrosion barrier (16) at a melting temperature equal to or higher than the melting temperature Tfi of the first material and lower than the melting temperature Tf 2 of the second material.
  • the charges (26) are thus maintained in the solid state.
  • an additional step of winding said strips is carried out according to a tubular structure forming the anti-corrosion barrier (16).
  • a plurality of metal wires are wound in a short pitch as defined in the present invention to form an anti-burst sheet (18).
  • a pair of tensile armor plies (20) is then arranged around the anti-burst sheet (18).
  • a plurality of metallic wires are helically wound in a long pitch as defined in the present invention to form a first layer of armor (20a), then a plurality of additional metallic wires are wound in a long pitch such that defined in the present invention around the first armor ply (20a) to form a second armor ply (20b), it being understood that the value of the helix angle of the first armor ply (20a) is opposite to the value of the helix angle of the second armor ply (20b).
  • an external sheath (22) is arranged intended to limit the penetration of water within the flexible pipe (10) coaxially around the external reinforcing layer (18, 20).
  • the outer sheath (22) is extruded around the reinforcing layer (18, 20).
  • an internal tubular sheath (14) is formed.
  • the internal sheath (14) is for example formed by extrusion of a tube or extrusion of strips which are then wound and welded to form a tube which is at least vis-à-vis the liquid phase of the transported fluid.
  • the internal sheath (14) is formed around the anti-corrosion barrier (16) after the step according to which the anti-corrosion barrier (16) is arranged and before placing the reinforcing layer (18 , 20).
  • the internal sheath (14) is inside the anti-corrosion barrier (16). According to this example, the internal sheath (14) is formed before the step by which the anti-corrosion barrier (16) is arranged.
  • a step of connecting the internal sheath (14) is carried out when the latter is present with the anti-corrosion barrier (16).
  • a step of bonding the internal sheath (14) with the anti-corrosion barrier (16) is carried out.
  • the external surface of the anti-corrosion barrier (16) or of the internal sheath (14) is coated with an adhesive. then the anti-corrosion barrier (16) is formed around the internal sheath (14) or vice versa.
  • the internal sheath (14) is coextruded with the anti-corrosion barrier (16) to bond them by fusion.
  • the polyetheretherketone forming the fillers (26) is for example the grade Ketaspire® PEEK XT produced by Solvay.
  • the Ketaspire® XT 920 P grade produced by Solvay is chosen to form the fillers (26) in the form of powder particles (28).
  • the Ketaspire® XT 920 NT grade produced by Solvay is for example chosen to form the fillers (26) in the form of fibers (30).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A flexible pipe (10) with a central axis (A) intended for transporting, within a body of water, a hydrocarbon fluid comprising gas particles, the flexible pipe (10) comprising a tubular anti-corrosion barrier (16) intended to prevent the gas particles from passing from the internal passage to outside the flexible pipe (10), the anti-corrosion barrier (16) comprising a polymer matrix (24) formed by a first material having a melting temperature (Tf1) and fillers (26) in the solid state arranged within the polymer matrix, comprising a second material having a melting temperature (Tf2) higher than the melting temperature (Tf1), wherein the second material of the fillers (26) is chosen from semi-crystalline thermoplastic polymer materials.

Description

DESCRIPTION DESCRIPTION
CONDUITE FLEXIBLE DESTINEE AU TRANSPORT, AU SEIN D’UNE ETENDUE D’EAU, D’UN FLUIDE HYDROCARBONE ET PROCEDE ASSOCIE FLEXIBLE PIPE FOR TRANSPORTATION, WITHIN A BODY OF WATER, OF A HYDROCARBON FLUID AND ASSOCIATED METHOD
Domaine technique de l’invention Technical field of the invention
L’invention s’inscrit dans le domaine technique des conduites flexibles destinées au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné. The invention relates to the technical field of flexible pipes intended for the transport, within a body of water, of a hydrocarbon fluid.
Plus particulièrement, les conduites flexibles selon l’invention sont utilisées dans l’exploitation et la production des hydrocarbures en milieu sous-marin. More particularly, the flexible pipes according to the invention are used in the exploitation and production of hydrocarbons in an underwater environment.
Etat de la technique State of the art
Dans le cadre de l’exploitation et la production des hydrocarbures en milieu sous-marin, les conduites flexibles sont déployées au sein d’une étendue d’eau afin d’acheminer un fluide hydrocarboné à partir d’une installation sous-marine vers une installation de surface à travers une étendue d’eau. In the context of the exploitation and production of hydrocarbons in an underwater environment, flexible pipes are deployed within a body of water in order to convey a hydrocarbon fluid from an underwater installation to a surface installation across a body of water.
L’étendue d’eau peut être un lac, une mer ou un océan. La profondeur de l’étendue est généralement comprise entre 200 m et 5000 m, plus généralement comprise entre 1000 m et 2500 m. The body of water can be a lake, sea or ocean. The depth of the extent is generally between 200 m and 5000 m, more generally between 1000 m and 2500 m.
L’installation sous-marine à laquelle peut être directement ou indirectement reliée une première extrémité de conduite flexible est par exemple une tête de puits destinée à contrôler la production de fluide hydrocarboné en sortie de puits ou un collecteur destiné à récolter et/ou à distribuer le fluide à partir d’une ou plusieurs têtes de puits par exemple vers une ou plusieurs installations sous-marines supplémentaires ou de surface. L’installation de surface à laquelle est généralement raccordée directement ou indirectement une seconde extrémité de conduite flexible et vers laquelle est acheminée le fluide sous forme brute ou prétraitée, est par exemple une plate-forme flottante telle qu’une Unité Flottante de Production, de Stockage et de Déchargement (FPSO pour Floating, Production, Storage and Offloading en langue anglaise) ou une plate-forme à câbles tendus (TLP pour Tension Leg Platform en langue anglaise). Le fluide hydrocarboné est un mélange polyphasique comprenant au moins une phase liquide formée de composés carbonés linéaires et/ou cycliques, saturés et/ou insaturés, de densité variable et/ou une phase liquide formée d’eau, au moins une phase gazeuse formée par exemple de méthane (CH4), de dioxyde de carbone (CO2), de sulfure d’hydrogène (H S), et éventuellement au moins une phase solide comprenant du sable par exemple. Selon les caractéristiques du réservoir, en sortie de puits, la température du fluide hydrocarboné est comprise entre 25°C et 130°C. En général, la température du fluide hydrocarboné décroit durant le transport. The subsea installation to which a first flexible pipe end can be directly or indirectly connected is, for example, a wellhead intended to control the production of hydrocarbon fluid leaving the well or a collector intended to collect and / or distribute the fluid from one or more wellheads, for example to one or more additional or surface subsea installations. The surface installation to which a second flexible pipe end is generally connected directly or indirectly and to which the fluid in raw or pretreated form is routed, is for example a floating platform such as a Floating Production Unit, of Storage and Unloading (FPSO for Floating, Production, Storage and Offloading in English) or a tensioned cable platform (TLP for Tension Leg Platform in English). The hydrocarbon fluid is a multiphase mixture comprising at least one liquid phase formed of linear and / or cyclic carbon compounds, saturated and / or unsaturated, of variable density and / or a liquid phase formed of water, at least one gas phase formed by example of methane (CH 4 ), carbon dioxide (CO2), hydrogen sulfide (HS), and optionally at least one solid phase comprising sand for example. Depending on the characteristics of the reservoir, at the outlet of the well, the temperature of the hydrocarbon fluid is between 25 ° C and 130 ° C. In general, the temperature of the hydrocarbon fluid decreases during transport.
Les conduites flexibles dans le domaine technique de l’invention sont par exemple décrites dans les documents normatifs API 17J (4ième édition, Mai 2014) et API 17B (5ième édition, Mars 2014) publiés par l’American Petroleum Institute. Flexible pipes in the technical field of the invention are for example described in the normative documents API 17J (4 th edition, May 2014) and API 17B (5 th edition, March 2014) published by the American Petroleum Institute.
Une conduite flexible comprend généralement plusieurs tronçons de conduites reliés les uns aux autres par des embouts de connexion. A flexible pipe generally comprises several sections of pipes connected to each other by connection end pieces.
Par ailleurs, la conduite flexible s’étend selon un axe longitudinal et comprend un passage interne de circulation du fluide hydrocarboné. Le passage est par exemple délimité par une gaine interne tubulaire. La gaine interne comprend généralement un matériau polymérique choisi parmi les polyoléfines telles qu’un polyéthylène, un polyamide tel qu’un polyamide 1 1 ou un polymère fluoré tel qu’un polyfluorure de vinylidène. Le matériau de la gaine interne est choisi en fonction des conditions de pression, de température et de la nature du fluide transporté. Furthermore, the flexible pipe extends along a longitudinal axis and includes an internal passage for circulation of the hydrocarbon fluid. The passage is for example delimited by an internal tubular sheath. The internal sheath generally comprises a polymeric material chosen from polyolefins such as a polyethylene, a polyamide such as a polyamide 11 or a fluorinated polymer such as a polyvinylidene fluoride. The material of the internal sheath is chosen according to the conditions of pressure, temperature and the nature of the fluid transported.
En outre, la conduite flexible comprend au moins une couche de renfort métallique disposée coaxialement autour de la gaine interne et destinée à renforcer la conduite flexible contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur la conduite flexible. La couche de renfort comprend une nappe anti-éclatement, dite voûte de pression, destinée à renforcer la conduite flexible contre les efforts radiaux internes s’exerçant sur la conduite flexible. La nappe anti-éclatement est formée d’un enroulement en hélice de fils métalliques de section par exemple en forme de Z, T, U, K ou de I. Les fils métalliques de la nappe anti éclatement sont enroulés selon un pas court. Par pas court, il est entendu un angle d’hélice de valeur absolue compris entre 75° et 90°, typiquement de 90°. La couche de renfort métallique comprend également une superposition d’au moins deux nappes d’armures de traction agencées autour de la nappe anti-éclatement et destinées à renforcer la conduite flexible contre les efforts axiaux s’exerçant sur la conduite flexible. Les nappes d’armures de traction sont généralement formées d’un enroulement en hélice de fils métalliques de section rectangulaire par exemple. Les fils métalliques des nappes d’armures de traction sont enroulés selon un pas long. Par pas long, il est entendu un angle d’hélice de valeur absolue comprise entre 20° et 55°. Typiquement, les fils d’une première nappe d’armures de traction sont enroulés selon un angle opposé à l’angle d’enroulement des fils d’une deuxième nappe d’armures de traction. Par exemple, lorsque la première nappe d’armures de traction est enroulée avec un angle de +25°, la deuxième nappe d’armures de traction est enroulée avec un angle de -25°. In addition, the flexible pipe comprises at least one metallic reinforcing layer arranged coaxially around the internal sheath and intended to reinforce the flexible pipe against axial forces and / or internal radial forces exerted on the flexible pipe. The reinforcing layer comprises an anti-bursting sheet, called a pressure vault, intended to reinforce the flexible pipe against the internal radial forces exerted on the flexible pipe. The anti-burst sheet is formed by a helical winding of metal wires of cross-section, for example in the form of Z, T, U, K or I. The metal wires of the anti-burst sheet are wound in a short pitch. By short pitch, it is understood an absolute helix angle between 75 ° and 90 °, typically 90 °. The metallic reinforcing layer also comprises a superposition of at least two plies of tensile armor arranged around the anti-burst ply and intended to reinforce the flexible pipe against the axial forces exerted on the flexible pipe. The tensile armor plies are generally formed by a helical winding of metallic wires of rectangular section for example. The metallic wires of the tensile armor plies are wound in a long pitch. By long pitch is meant an absolute helix angle between 20 ° and 55 °. Typically, the wires of a first layer of tensile armor are wound at an angle opposite to the winding angle of the wires of a second layer of tensile armor. For example, when the first layer of tensile armor is wound at an angle of + 25 °, the second layer of tensile armor is wound at an angle of -25 °.
En outre, la conduite flexible comprend une gaine externe tubulaire agencée coaxialement autour de la couche de renfort destinée à limiter la pénétration d’eau au sein de la conduite flexible. La gaine externe comprend un matériau polymérique choisi par exemple parmi les polyoléfines telle qu’un polyéthylène, un polypropylène ou un polyamide. In addition, the flexible pipe comprises a tubular external sheath arranged coaxially around the reinforcing layer intended to limit the penetration of water into the flexible pipe. The outer sheath comprises a polymeric material chosen for example from polyolefins such as polyethylene, polypropylene or polyamide.
En outre, un espace annulaire est situé entre la gaine externe et la gaine interne. L’espace annulaire est défini comme le volume compris entre la gaine externe et la gaine interne. La couche de renfort est généralement agencée au sein de l’espace annulaire. In addition, an annular space is located between the outer sheath and the inner sheath. The annular space is defined as the volume between the outer sheath and the inner sheath. The reinforcing layer is generally arranged within the annular space.
Par ailleurs, dans le domaine technique de l’invention, la couche de renfort est configurée pour se déplacer longitudinalement par rapport aux couches de la conduite flexible lors d’une flexion de la conduite flexible. La conduite flexible est appelée « non liée » dans le domaine technique de l’invention. Ceci permet de garantir la flexibilité de la conduite flexible. Furthermore, in the technical field of the invention, the reinforcing layer is configured to move longitudinally relative to the layers of the flexible pipe during bending of the flexible pipe. The flexible pipe is called "unbound" in the technical field of the invention. This guarantees the flexibility of the flexible pipe.
Bien que la gaine interne soit imperméable aux liquides, dans des conditions de pression et de température spécifiques, certaines molécules de gaz telles que les molécules de sulfure d’hydrogène, de dioxyde de carbone peuvent migrer à travers la gaine interne et s’accumuler au sein de l’espace annulaire. Ces molécules de gaz, combinées à la présence d’eau au sein de l’espace annulaire sont des facteurs favorisant divers types de corrosion de la couche de renfort comme par exemple la corrosion uniforme, la corrosion sous contrainte (SSC pour Stress Corrosion Cracking en langue anglaise) ou encore la fissuration par l’hydrogène (HIC pour Hydrogen Induced Cracking en langue anglaise). L’intégrité de la couche de renfort est alors affectée ce qui réduit la durée de vie de la conduite flexible. Although the internal sheath is impermeable to liquids, under specific pressure and temperature conditions, certain gas molecules such as hydrogen sulfide, carbon dioxide molecules can migrate through the internal sheath and accumulate on within the annular space. These gas molecules, combined with the presence of water within the annular space are factors favoring various types of corrosion of the reinforcing layer such as for example uniform corrosion, stress corrosion (SSC for Stress Corrosion Cracking in English) or hydrogen cracking (HIC for Hydrogen Induced Cracking in English). The integrity of the reinforcing layer is then affected, which reduces the service life of the flexible pipe.
Le document W020081 13362 décrit une conduite flexible de type précitée comprenant en outre une barrière anti-corrosion permettant de limiter le passage des particules de gaz vers l’espace annulaire. Cette barrière anti-corrosion comprend une matrice polymérique formée d’un premier matériau présentant une température de fusion Tfi et des charges formées d’un second matériau présentant une température de fusion Tf supérieure à Tfi . En particulier, selon le document W020081 13362 les charges sont des silicates d’argile cationique. The document WO20081 13362 describes a flexible pipe of the aforementioned type further comprising an anti-corrosion barrier making it possible to limit the passage of gas particles towards the annular space. This corrosion barrier includes a formed polymer matrix of a first material having a melting temperature Tfi and fillers formed of a second material having a melting temperature Tf greater than Tfi. In particular, according to document WO20081 13362, the fillers are cationic clay silicates.
Les propriétés mécaniques des silicates d’argile et des polymères de la matrice sont éloignées. En particulier, la présence des charges de silicates d’argile cationique augmente la raideur d’une gaine polymérique à épaisseur constante. Par exemple, l’ajout de 30% de charges de silicates d’argile cationique dans un polypropylène multiplie par six le module d’élasticité dudit polypropylène. Ceci engendre des difficultés d’installation et d’utilisation de la conduite flexible, notamment lors des applications dynamiques pour lesquelles une importante flexibilité est requise. De plus, l’allongement à la rupture de ces charges est plus faible que l’allongement à la rupture de la matrice polymérique. Cette variation de propriétés mécaniques conduit à des concentrations de contraintes locales au niveau des charges de silicates d’argile au sein de la barrière anti-corrosion où des fissures peuvent prendre naissance et se propager à travers ladite barrière anti-corrosion. La barrière anti-corrosion ainsi fissurée n’assure plus son rôle de barrière vis à vis des particules de gaz qui peuvent diffuser et se concentrer au sein de l’espace annulaire fragilisant donc la couche de renfort. De plus, lors des processus de fabrication, les charges de silicates d’argile cationique ont tendance à s’agglomérer et à ne pas se répartir de manière homogène au sein de la matrice polymérique. Des étapes de fabrication supplémentaires de traitement des charges doivent être réalisées pour assurer une répartition homogène des charges au sein de la matrice polymérique ce qui rend la fabrication de la barrière anti-corrosion complexe. The mechanical properties of clay silicates and matrix polymers are far apart. In particular, the presence of charges of cationic clay silicates increases the stiffness of a polymeric sheath with constant thickness. For example, adding 30% of cationic clay silicate fillers to polypropylene increases the elastic modulus of polypropylene by six. This creates difficulties in installing and using the flexible pipe, especially during dynamic applications for which considerable flexibility is required. In addition, the elongation at break of these fillers is lower than the elongation at break of the polymer matrix. This variation in mechanical properties leads to concentrations of local stresses in the charges of clay silicates within the anti-corrosion barrier where cracks can arise and propagate through said anti-corrosion barrier. The anti-corrosion barrier thus cracked no longer fulfills its role of barrier with respect to gas particles which can diffuse and concentrate within the annular space thus weakening the reinforcing layer. In addition, during manufacturing processes, the charges of cationic clay silicates tend to agglomerate and not to distribute themselves homogeneously within the polymer matrix. Additional manufacturing steps for treating the charges must be carried out to ensure a uniform distribution of the charges within the polymer matrix, which makes the manufacture of the anti-corrosion barrier complex.
Il existe alors un besoin de fournir une conduite flexible destinée au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné comprenant une barrière anti-corrosion présentant des propriétés compatibles avec des applications dynamiques et dont la fabrication est simplifiée. There is then a need to provide a flexible pipe intended for the transport, within a body of water, of a hydrocarbon fluid comprising an anti-corrosion barrier having properties compatible with dynamic applications and the manufacture of which is simplified.
Divulgation de l’invention Disclosure of invention
La présente invention concerne une conduite flexible d’axe central A destinée au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné comprenant des particules de gaz, ladite conduite flexible comprenant : The present invention relates to a flexible pipe of central axis A intended for the transport, within a body of water, of a hydrocarbon fluid comprising gas particles, said flexible pipe comprising:
- un passage interne de circulation du fluide hydrocarboné, - une barrière anti-corrosion tubulaire destinée à limiter le passage des particules de gaz du passage interne vers l’extérieur de la conduite flexible, ladite barrière anti-corrosion comprenant une matrice polymérique formée d’un premier matériau présentant une température de fusion Tfi et des charges à l’état solide agencées au sein de la matrice polymérique, comprenant un second matériau présentant une température de fusion Tf supérieure à la température de fusion Tfi, - an internal passage for circulation of the hydrocarbon fluid, a tubular anti-corrosion barrier intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe, said anti-corrosion barrier comprising a polymer matrix formed from a first material having a melting temperature Tfi and solid state fillers arranged within the polymer matrix, comprising a second material having a melting temperature Tf higher than the melting temperature Tfi,
- au moins une couche de renfort externe métallique agencée autour de la barrière anti corrosion et destinée à renforcer la conduite flexible contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur la conduite flexible, - at least one metallic external reinforcement layer arranged around the anti-corrosion barrier and intended to reinforce the flexible pipe against axial forces and / or internal radial forces exerted on the flexible pipe,
- une gaine externe tubulaire agencée coaxialement autour de la couche de renfort externe permettant de limiter la pénétration d’eau de l’étendue d’eau au sein de la conduite flexible, caractérisée en ce que le second matériau des charges est choisi parmi les polymères thermoplastiques semi-cristallins. - a tubular external sheath arranged coaxially around the external reinforcing layer making it possible to limit the penetration of water from the body of water within the flexible pipe, characterized in that the second filler material is chosen from polymers semi-crystalline thermoplastics.
Les polymères thermoplastiques semi-cristallins présentent un allongement à la rupture d’au moins 10% tel que mesuré à 23°C. Ceci permet de minimiser les concentrations de contraintes au sein de la barrière anti-corrosion et ainsi d’en préserver l’intégrité durant 20 ans voire plus. En outre, les polymères thermoplastiques semi-cristallins présentent un module d’élasticité en traction compris entre 0,7 et 4 GPa tel que mesuré à 23°C ce qui permet de maintenir la raideur de la barrière anti-corrosion à un niveau compatible avec l’utilisation de la conduite flexible. Ainsi, la conduite flexible peut être enroulée, déroulée à des fins de stockage et d’installation et être utilisée dans des applications dynamiques. Aussi, les thermoplastiques semi-cristallins sont facilement répartis au sein de la matrice polymérique de la barrière anti corrosion sans procédé de mise en œuvre spécifique à la présence de charges ce qui rend la fabrication de la barrière anti-corrosion plus simple. Les charges sont généralement dispersées au sein de la matrice polymérique. Semi-crystalline thermoplastic polymers have an elongation at break of at least 10% as measured at 23 ° C. This minimizes stress concentrations within the corrosion barrier and thus preserves its integrity for 20 years or more. In addition, semi-crystalline thermoplastic polymers have a tensile modulus between 0.7 and 4 GPa as measured at 23 ° C which keeps the stiffness of the anti-corrosion barrier at a level compatible with the use of flexible pipe. Thus, the flexible pipe can be rolled up, unwound for storage and installation and used in dynamic applications. Also, semi-crystalline thermoplastics are easily distributed within the polymer matrix of the anti-corrosion barrier without any specific implementation process for the presence of fillers, which makes the manufacture of the anti-corrosion barrier simpler. The charges are generally dispersed within the polymer matrix.
Avantageusement, la température de fusion Tf2 du second matériau des charges est supérieure ou égale à 250°C et préférentiellement comprise entre 300°C et 400°C. La température de fusion correspond à la température à partir de laquelle la phase cristalline des thermoplastiques semi-cristallins passe d’un état cristallin à un état visqueux. Cette température de fusion des charges permet de maintenir les charges à l’état solide pendant la fabrication de la barrière anti-corrosion qui implique notamment la fusion du premier matériau formant la matrice polymérique. Les charges solides permettent ainsi d’augmenter le chemin de diffusion des gaz transportés tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la matrice polymérique de la barrière anti-corrosion pour limiter le coefficient de diffusion des gaz transportés tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la matrice de la barrière anti-corrosion. Advantageously, the melting temperature Tf2 of the second material of the fillers is greater than or equal to 250 ° C and preferably between 300 ° C and 400 ° C. The melting point corresponds to the temperature from which the crystalline phase of semi-crystalline thermoplastics changes from a crystalline state to a viscous state. This charge melting temperature makes it possible to maintain the charges in the solid state during the manufacture of the anti-corrosion barrier which notably involves the melting of the first material forming the polymer matrix. The solid charges thus make it possible to increase the diffusion path of the transported gases such as carbon dioxide and / or hydrogen sulfide within the polymer matrix of the anti-corrosion barrier to limit the diffusion coefficient of the transported gases. such as carbon dioxide and / or hydrogen sulfide within the matrix of the anti-corrosion barrier.
Avantageusement le second matériau des charges est choisi parmi un polyaryléthercétone tel qu’un polyéthercétone ou un polyétheréthercétone ou un polyéthercétonecétone ou un polyétheréthercétonecétone, ou un polyéthercétoneéthercétonecétone. Les polyaryléthercétones représentent une famille de polymères thermoplastiques semi-cristallins dont la phase cristalline, composée de motifs éther et cétone, confère de bonnes propriétés de barrière vis-à-vis des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène. Cette famille de matériaux permet ainsi d’améliorer l’étanchéité de la barrière anti-corrosion vis-à-vis des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène. Advantageously, the second filler material is chosen from a polyaryletherketone such as a polyetherketone or a polyetheretherketone or a polyetherketone ketone or a polyetheretherketone ketone, or a polyetherketoneetherketoneketone. Polyaryletherketones represent a family of semi-crystalline thermoplastic polymers whose crystalline phase, composed of ether and ketone units, confers good barrier properties with respect to gases such as carbon dioxide and / or hydrogen sulfide. . This family of materials thus makes it possible to improve the sealing of the anti-corrosion barrier with respect to gases such as carbon dioxide and / or hydrogen sulfide.
Avantageusement les charges se présentent sous la forme de particules de poudre. Par « particules de poudre », on entend des particules pour lesquelles le rapport de longueur est de préférence inférieur à 3. Le rapport de longueur (« aspect ratio » en anglais) correspond au ratio du diamètre le plus long de la particule sur le diamètre le plus court, le diamètre le plus long et le diamètre le plus court étant mesurés dans des directions perpendiculaires l’une de l’autre. Advantageously, the fillers are in the form of powder particles. By “powder particles” is meant particles for which the length ratio is preferably less than 3. The length ratio (“aspect ratio” in English) corresponds to the ratio of the longest diameter of the particle to the diameter the shortest, the longest diameter and the shortest diameter being measured in directions perpendicular to each other.
Au sens de la demande, les diamètres des particules sont mesurés par diffusion dynamique de la lumière (DLS) selon la norme ISO 22412 de 2017. In the sense of demand, the diameters of the particles are measured by dynamic light scattering (DLS) according to ISO 22412 of 2017.
Préférentiellement, les particules de poudre présentent un diamètre en volume dv50 inférieur à 1 mm. Les particules de poudre peuvent être mises en œuvre par un procédé d’extrusion conventionnel ce qui permet de faciliter le procédé de fabrication de la barrière anti corrosion. Preferably, the powder particles have a volume diameter d v 50 of less than 1 mm. The powder particles can be implemented by a conventional extrusion process which facilitates the manufacturing process of the anti-corrosion barrier.
Alternativement, les charges se présentent sous la forme de fibres, présentant de préférence une longueur moyenne inférieure à 1 mm. Une fibre a généralement un rapport de longueur (ratio longueur / diamètre de la fibre) supérieur à 5, notamment supérieur à 10. La longueur et le diamètre des fibres peuvent être mesurés par analyse d’image, par exemple en utilisant l’appareil Zéphyr LDA, en réalisant une moyenne sur au moins 50 fibres. Les fibres permettent d’augmenter le chemin de diffusion au sein de la barrière anti-corrosion ce qui permet de réduire de manière plus importante le coefficient de diffusion des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la matrice de la barrière anti- corrosion. De plus, une telle longueur moyenne de fibres permet une meilleure répartition des charges au sein de la matrice. Alternatively, the fillers are in the form of fibers, preferably having an average length of less than 1 mm. A fiber generally has a length ratio (length / diameter ratio of the fiber) greater than 5, in particular greater than 10. The length and the diameter of the fibers can be measured by image analysis, for example by using the Zéphyr LDA device, averaging on at least 50 fibers. The fibers make it possible to increase the diffusion path within the anti-corrosion barrier, which makes it possible to reduce more significantly the diffusion coefficient of gases such as carbon dioxide and / or hydrogen sulfide within the matrix of the anti-corrosion barrier. In addition, such an average length of fibers allows a better distribution of the charges within the matrix.
Avantageusement, la concentration volumique des charges au sein de la barrière anti corrosion est d’au moins 30% et encore plus avantageusement comprise entre 30% et 50% et préférentiellement comprise entre 30% et 40%. La concentration volumique peut par exemple être mesurée par microscopie électronique à balayage (MEB). Cette concentration permet d’améliorer les propriétés barrière de la barrière anti-corrosion vis-à-vis des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène tout en préservant les propriétés mécaniques de la matrice polymérique. Advantageously, the volume concentration of the charges within the anti-corrosion barrier is at least 30% and even more advantageously between 30% and 50% and preferably between 30% and 40%. The volume concentration can for example be measured by scanning electron microscopy (SEM). This concentration makes it possible to improve the barrier properties of the anti-corrosion barrier with respect to gases such as carbon dioxide and / or hydrogen sulfide while preserving the mechanical properties of the polymer matrix.
Avantageusement les charges comprennent un revêtement externe métallique. Ce revêtement externe métallique peut revêtir partiellement ou totalement la surface du second matériau. La perméabilité des matériaux métalliques est plus faible que les matériaux polymériques. Ainsi, le revêtement externe métallique des charges permet de réduire la diffusion des gaz au sein des charges. De plus, l’épaisseur du revêtement métallique est de l’ordre du micromètre afin de ne pas affecter la raideur de la barrière anti-corrosion et que la dureté du métal ne provoque pas de concentration de contrainte au sein de la barrière anti corrosion. Advantageously, the charges comprise a metallic external coating. This metallic external coating can partially or totally coat the surface of the second material. The permeability of metallic materials is lower than polymeric materials. Thus, the external metallic coating of the charges makes it possible to reduce the diffusion of gases within the charges. In addition, the thickness of the metal coating is of the order of a micrometer so as not to affect the stiffness of the anti-corrosion barrier and that the hardness of the metal does not cause concentration of stress within the anti-corrosion barrier.
Selon la présente invention, les températures de fusion Tf 1 et Tf2 sont mesurées par calorimétrie différentielle à balayage (DSC) selon la norme ISO 1 1357-3 de 2018, typiquement à pression atmosphérique. Le premier matériau forme la matrice polymérique de la barrière anticorrosion. Il s’agit donc d’un polymère. Ce premier matériau présente une température de fusion Tf1 . Il s’agit donc d’un polymère semi-cristallin. According to the present invention, the melting temperatures Tf 1 and Tf2 are measured by differential scanning calorimetry (DSC) according to ISO standard 1 1357-3 of 2018, typically at atmospheric pressure. The first material forms the polymer matrix of the corrosion barrier. It is therefore a polymer. This first material has a melting temperature Tf1. It is therefore a semi-crystalline polymer.
Le premier matériau qui forme la matrice polymérique de la barrière anticorrosion peut comprendre un unique polymère semi-cristallin. Le premier matériau qui forme la matrice polymérique de la barrière anticorrosion peut comprendre un mélange de polymères semi-cristallins. Dans ce cas, la température de fusion Tf1 i de chacun de ceux-ci est inférieure à la température Tf2 du second matériau des charges. The first material which forms the polymeric matrix of the anti-corrosion barrier may comprise a single semi-crystalline polymer. The first material which forms the polymeric matrix of the anti-corrosion barrier can comprise a mixture of semi-crystalline polymers. In this case, the melting temperature Tf1 i of each of these is lower than the temperature Tf2 of the second material of the fillers.
La température de fusion du second matériau des charges est supérieure à la température de fusion Tf 1 du premier matériau qui forme la matrice polymérique. Généralement, la différence entre Tf2 et Tf 1 est supérieure à 10°C, notamment supérieure à 20°C, typiquement supérieure à 50°C, par exemple supérieure à 100°C. The melting temperature of the second material of the fillers is higher than the melting temperature Tf 1 of the first material which forms the polymer matrix. Generally, the difference between Tf2 and Tf 1 is greater than 10 ° C, in particular greater than 20 ° C, typically greater than 50 ° C, for example greater than 100 ° C.
Avantageusement, le premier matériau de la matrice polymérique est choisi parmi les polyoléfines telles qu’un polypropylène ou un polyéthylène. Les polyoléfines présentent une température de fusion inférieure à 200°C ce qui les rend extrudables à des températures inférieures à la température de fusion des charges. Par ailleurs, les polyoléfines présentent un module d’élasticité en flexion, une résistance chimique ainsi qu’une résistance mécanique compatibles avec l’utilisation des conduites flexibles selon l’invention. Advantageously, the first material of the polymer matrix is chosen from polyolefins such as polypropylene or polyethylene. The polyolefins have a melting temperature below 200 ° C. which makes them extrudable at temperatures below the melting point of the fillers. Furthermore, the polyolefins have a flexural elasticity module, a chemical resistance as well as a mechanical resistance compatible with the use of the flexible pipes according to the invention.
Avantageusement, la conduite flexible comprend une gaine interne tubulaire agencée à l’intérieur ou autour de la barrière anti-corrosion. La gaine interne permet de créer un espace étanche vis-à-vis de la phase liquide du fluide transporté au moins. La gaine interne permet ainsi de réduire les attaques physico-chimiques et les contraintes mécaniques au sein de la barrière anti-corrosion en particulier lorsque la gaine interne tubulaire est agencée à l’intérieur de la barrière anti-corrosion. Advantageously, the flexible pipe comprises an internal tubular sheath arranged inside or around the anti-corrosion barrier. The internal sheath makes it possible to create a sealed space with respect to the liquid phase of the fluid transported at least. The internal sheath thus makes it possible to reduce the physical-chemical attacks and the mechanical stresses within the anti-corrosion barrier, in particular when the internal tubular sheath is arranged inside the anti-corrosion barrier.
Avantageusement, la barrière anti-corrosion et la gaine interne sont liées. De préférence, la barrière anti-corrosion et la gaine interne sont liées par collage ou par fusion. Le coefficient de diffusion des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la barrière anti-corrosion est inférieure au coefficient de diffusion de ces gaz au sein de la gaine interne. Le collage permet donc de maintenir la barrière anti-corrosion et la gaine interne intimement liées afin de prévenir l’accumulation de gaz à l’interface et d’éviter des dommages au sein de la conduite flexible. Advantageously, the anti-corrosion barrier and the internal sheath are linked. Preferably, the anti-corrosion barrier and the internal sheath are bonded or bonded. The diffusion coefficient of gases such as carbon dioxide and / or hydrogen sulfide within the anti-corrosion barrier is lower than the diffusion coefficient of these gases within the internal sheath. Bonding therefore keeps the anti-corrosion barrier and the internal sheath intimately linked in order to prevent the accumulation of gases at the interface and to avoid damage within the flexible pipe.
Optionnellement, la conduite flexible comprend une structure de renfort interne permettant de limiter l’écrasement de la conduite flexible sous l’effet d’efforts radiaux externes s’exerçant sur la conduite flexible. Optionally, the flexible pipe includes an internal reinforcement structure making it possible to limit the crushing of the flexible pipe under the effect of external radial forces exerted on the flexible pipe.
Optionnellement, la couche de renfort externe de la conduite flexible comprend une nappe anti-éclatement destinée à renforcer la conduite flexible contre les efforts radiaux internes autour de laquelle est enroulée une superposition d’au moins deux nappes d’armures de traction destinées à renforcer la conduite flexible contre les efforts axiaux s’exerçant sur la conduite flexible. Optionally, the external reinforcement layer of the flexible pipe comprises an anti-bursting sheet intended to reinforce the flexible pipe against the radial forces. internal around which is wound a superposition of at least two plies of tensile armor intended to reinforce the flexible pipe against the axial forces exerted on the flexible pipe.
Avantageusement, la couche de renfort externe est configurée pour se déplacer longitudinalement par rapport à l’une quelconque des couches de la conduite flexible lors d’une flexion de la conduite flexible. Ceci permet d’augmenter la flexibilité de la conduite flexible qui peut être enroulée sur des rayons de courbure plus faibles durant l’installation et le stockage de la conduite flexible. Advantageously, the external reinforcing layer is configured to move longitudinally relative to any of the layers of the flexible pipe when the flexible pipe is bent. This increases the flexibility of the flexible pipe which can be wound on smaller radii of curvature during installation and storage of the flexible pipe.
L’invention concerne également un procédé pour la fabrication d’une conduite flexible d’axe central destinée au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné comprenant des particules de gaz, ladite conduite flexible comprenant un passage interne de circulation du fluide hydrocarboné, le procédé comprenant les étapes suivantes : The invention also relates to a method for manufacturing a flexible pipe with a central axis intended for transporting, within a body of water, a hydrocarbon fluid comprising gas particles, said flexible pipe comprising a passage internal circulation of the hydrocarbon fluid, the method comprising the following steps:
- former une barrière anti-corrosion tubulaire destinée à limiter le passage des particules de gaz du passage interne vers l’extérieur de la conduite flexible, ladite barrière anti-corrosion comprenant une matrice polymérique formée d’un premier matériau présentant une température de fusion Tfi et des charges à l’état solide agencées au sein de la matrice polymérique comprenant un second matériau présentant une température de fusion Tf supérieure à la température de fusion Tfi, forming a tubular anti-corrosion barrier intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe, said anti-corrosion barrier comprising a polymer matrix formed from a first material having a melting temperature Tfi and fillers in the solid state arranged within the polymer matrix comprising a second material having a melting temperature Tf higher than the melting temperature Tfi,
- disposer autour de la barrière anti-corrosion une couche de renfort externe métallique destinée à renforcer la conduite flexible contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur la conduite flexible, - have a layer of metallic external reinforcement around the anti-corrosion barrier intended to reinforce the flexible pipe against axial forces and / or internal radial forces exerted on the flexible pipe,
- agencer coaxialement autour de la couche de renfort externe une gaine externe tubulaire destinée à limiter la pénétration d’eau au sein de la conduite flexible, caractérisé en ce que le second matériau des charges est choisi parmi les polymères thermoplastiques semi-cristallins. - arrange coaxially around the outer reinforcing layer a tubular outer sheath intended to limit the penetration of water within the flexible pipe, characterized in that the second filler material is chosen from semi-crystalline thermoplastic polymers.
Le procédé de l’invention est simplifié par rapport au procédé du document W020081 13362 en ce que les matériaux thermoplastiques semi-cristallins des charges peuvent être extrudés et dispersés facilement au sein de la matrice polymérique de la barrière anti-corrosion sans agrégation des charges. Le procédé de fabrication de la conduite flexible comprenant la barrière anti-corrosion ne nécessite donc pas de matériel additionnel ou spécifique afin d’ajouter les charges au sein de la barrière anti-corrosion. The process of the invention is simplified compared to the process of document WO20081 13362 in that the semi-crystalline thermoplastic materials of the fillers can be extruded and dispersed easily within the polymer matrix of the anti-corrosion barrier without aggregation of the fillers. The flexible pipe manufacturing process comprising the anti-corrosion barrier therefore does not require any additional or specific material in order to add the charges within the anti-corrosion barrier.
Description des figures Description of the figures
D’autres particularités et avantages de l’invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l’invention, donnés à titre indicatif mais non limitatif, en référence aux figures, sur lesquelles : Other features and advantages of the invention will emerge on reading the description given below of particular embodiments of the invention, given by way of indication but not limitation, with reference to the figures, in which:
- La figure 1 est une vue en perspective d’un tronçon central d’une conduite flexible selon l’invention ; - Figure 1 is a perspective view of a central section of a flexible pipe according to the invention;
- La figure 2 est une vue schématique d’une matrice comprenant des charges selon un mode de réalisation de l’invention et - Figure 2 is a schematic view of a matrix comprising fillers according to an embodiment of the invention and
- La figure 3 est une vue analogue à la figure 2 illustrant une variante de réalisation des charges. - Figure 3 is a view similar to Figure 2 illustrating an alternative embodiment of the charges.
Description détaillée de modes de réalisation de l’invention Detailed description of embodiments of the invention
La figure 1 représente un exemple d’une conduite flexible (10) selon l’invention. La conduite flexible (10) est destinée au transport d’un fluide hydrocarboné au sein d’une étendue d’eau. Généralement, le transport est réalisé à partir d’une installation sous-marine vers une installation de surface à travers l’étendue d’eau. Figure 1 shows an example of a flexible pipe (10) according to the invention. The flexible pipe (10) is intended for the transport of a hydrocarbon fluid within a body of water. Generally, the transport is carried out from an underwater installation to a surface installation across the body of water.
L’étendue d’eau peut être un lac, une mer ou un océan. La profondeur de l’étendue d’eau est généralement comprise entre 200 m et 5000 m, plus généralement comprise entre 1000 m et 2500 m. The body of water can be a lake, sea or ocean. The depth of the body of water is generally between 200 m and 5000 m, more generally between 1000 m and 2500 m.
L’installation sous-marine à laquelle peut être directement ou indirectement reliée une première extrémité de la conduite flexible (10) est par exemple une tête de puits destinée à contrôler la production de fluide hydrocarboné en sortie de puits. Selon un autre exemple, l’installation sous-marine est un collecteur destiné à récolter et/ou à distribuer le fluide à partir d’une ou plusieurs têtes de puits par exemple vers une ou plusieurs installations sous-marines supplémentaires ou de surface. L’installation de surface à laquelle est généralement raccordée directement ou indirectement une seconde extrémité de la conduite flexible (10) et vers laquelle est acheminée le fluide, sous forme brute ou prétraitée, est par exemple une plate-forme flottante telle qu’une Unité Flottante de Production, de Stockage et de Déchargement (FPSO pour Floating, Production, Storage and Offloading en langue anglaise) ou une plate-forme à câbles tendus (TLP pour Tension Leg Platform en langue anglaise). The subsea installation to which a first end of the flexible pipe (10) can be directly or indirectly connected is, for example, a well head intended to control the production of hydrocarbon fluid at the well exit. According to another example, the underwater installation is a collector intended to collect and / or distribute the fluid from one or more well heads, for example to one or more additional underwater or surface installations. The surface installation to which a second end of the flexible pipe (10) is generally connected directly or indirectly and to which the fluid, in raw or pretreated form, is routed, is for example a platform floating such as a Floating Production, Storage and Unloading Unit (FPSO for Floating, Production, Storage and Offloading in English) or a tensioned cable platform (TLP for Tension Leg Platform in English).
Le fluide hydrocarboné est un mélange polyphasique comprenant au moins une phase liquide formée de composés carbonés linéaires et/ou cycliques, saturés et/ou insaturés, de densité variable et/ou une phase liquide formée d’eau, au moins une phase gazeuse formée par exemple de méthane, de dioxyde de carbone, de sulfure d’hydrogène et éventuellement au moins une phase solide comprenant du sable par exemple. Selon les caractéristiques du réservoir, en sortie de puits, la température du fluide hydrocarboné est comprise entre 25°C et 130°C. En général, la température du fluide hydrocarboné décroit durant le transport. The hydrocarbon fluid is a multiphase mixture comprising at least one liquid phase formed of linear and / or cyclic carbon compounds, saturated and / or unsaturated, of variable density and / or a liquid phase formed of water, at least one gas phase formed by example of methane, carbon dioxide, hydrogen sulfide and optionally at least one solid phase comprising sand for example. Depending on the characteristics of the reservoir, at the outlet of the well, the temperature of the hydrocarbon fluid is between 25 ° C and 130 ° C. In general, the temperature of the hydrocarbon fluid decreases during transport.
La conduite flexible (10) s’étend le long d’un axe central (A) et comprend un passage interne de circulation du fluide hydrocarboné. The flexible pipe (10) extends along a central axis (A) and includes an internal passage for circulation of the hydrocarbon fluid.
Selon l’invention, la conduite flexible (10) comprend une barrière anti-corrosion (16) tubulaire destinée à limiter le passage des particules de gaz du passage interne vers l’extérieur de la conduite flexible (10). According to the invention, the flexible pipe (10) comprises a tubular anti-corrosion barrier (16) intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe (10).
Comme représenté sur les exemples des figures 2 et 3, la barrière anti-corrosion (16) comprend une matrice polymérique (24) et des charges (26). La matrice polymérique (24) est formée d’un premier matériau. Le premier matériau est choisi parmi les polyoléfines tel qu’un polypropylène ou un polyéthylène. Les polyoléfines ont l’avantage de pouvoir être mis en forme par des moyens conventionnels de fabrication tels que l’extrusion. Alternativement, le premier matériau est choisi parmi les polyamides ou les polymères fluorés tels qu’un polyvinylidene fluoride (PVDF). Le premier matériau présente une température de fusion Tfi . Cette dernière est comprise entre 100°C et 200°C. La concentration volumique du premier matériau au sein de la barrière anti-corrosion (16) est préférentiellement supérieure ou égale à 50% et généralement comprise entre 50% et 70%. As shown in the examples of Figures 2 and 3, the corrosion barrier (16) includes a polymer matrix (24) and fillers (26). The polymer matrix (24) is formed from a first material. The first material is chosen from polyolefins such as polypropylene or polyethylene. Polyolefins have the advantage of being able to be shaped by conventional manufacturing means such as extrusion. Alternatively, the first material is chosen from polyamides or fluorinated polymers such as a polyvinylidene fluoride (PVDF). The first material has a melting temperature Tfi. The latter is between 100 ° C and 200 ° C. The volume concentration of the first material within the anti-corrosion barrier (16) is preferably greater than or equal to 50% and generally between 50% and 70%.
La barrière anti-corrosion (16) comprend en outre des charges (26) à l’état solide agencées au sein de la matrice polymérique (24). Les charges (26) comprennent un second matériau dont la température de fusion Tf2 est supérieure à la température de fusion Tfi du premier matériau de la matrice polymérique (24). Préférentiellement, la différence entre la température de fusion Tf2 du second matériau et la température de fusion Tfi du premier matériau est au moins de 50°C. Par exemple, la température de fusion Tf2 est supérieure ou égale à 250°C et préférentiellement comprise entre 300°C et 400°C. La température de fusion Th du second matériau des charges (26) est plus élevée que la température de fusion Tfi du premier matériau de la matrice polymérique (24) ce qui permet, en choisissant une température intermédiaire de fabrication de la barrière anti-corrosion (16), de réaliser l’extrusion de la barrière anti-corrosion (16) en maintenant les charges (26) à l’état solide. En résulte une barrière anti-corrosion (16) avec des propriétés de barrière supérieures à une barrière anti corrosion (16) dans lesquelles les charges auraient été fusionnées lors de la fabrication. En outre, le second matériau formant les charges (26) est choisi parmi les polymères thermoplastiques semi-cristallins. Les polymères thermoplastiques semi-cristallins présentent un allongement à la rupture d’au moins 10 % tel que mesuré à 23°C selon la norme ISO 527- 1 2012. Ces charges (26) permettent donc de limiter les concentrations de contraintes au niveau de la barrière anti-corrosion (16) et ainsi d’en préserver l’intégrité durant le service de la conduite flexible (10). En outre, les polymères thermoplastiques semi-cristallins présentent un module d’élasticité en traction compris entre 0.7 GPa et 4 GPa tel que mesuré à 23°C selon la norme ISO 527-1 2012 ce qui permet de fournir la barrière anti-corrosion (16) avec une raideur compatible avec l’utilisation de la conduite flexible (10). Aussi, les thermoplastiques semi-cristallins sont facilement distribués au sein de la matrice (24) sans procédé de mise en œuvre spécifique à la présence de charges (26), ce qui simplifie la fabrication de la barrière anti-corrosion (16). Selon un exemple avantageux de réalisation de l’invention, les charges (26) sont choisies parmi les polyarylethercétone tel qu’un polyethercétone ou un polyétheréthercétone ou un polyéthercétonecétone ou un polyétheréthercétonecétone, ou un polyéthercétoneéthercétonecétone. La famille des polyarylethercétone présentent de bonnes propriétés de barrière vis-à-vis des particules de gaz telles que le dioxyde de carbone et/ou le sulfure d’hydrogène ce qui permet de limiter efficacement la diffusion des particules de gaz à travers la barrière anti-corrosion (16), et par suite, de réduire la corrosion de la couche de renfort externe (18, 20). The anti-corrosion barrier (16) further comprises fillers (26) in the solid state arranged within the polymer matrix (24). The fillers (26) comprise a second material whose melting temperature Tf 2 is higher than the melting temperature Tfi of the first material of the polymer matrix (24). Preferably, the difference between the melting temperature Tf 2 of the second material and the melting temperature Tfi of the first material is at least 50 ° C. For example, the melting temperature Tf 2 is higher or equal to 250 ° C and preferably between 300 ° C and 400 ° C. The melting temperature Th of the second filler material (26) is higher than the melting temperature Tfi of the first material of the polymer matrix (24) which allows, by choosing an intermediate temperature for manufacturing the anti-corrosion barrier ( 16), to carry out the extrusion of the anti-corrosion barrier (16) while maintaining the charges (26) in the solid state. The result is an anti-corrosion barrier (16) with barrier properties superior to an anti-corrosion barrier (16) in which the charges would have been fused during manufacture. In addition, the second material forming the fillers (26) is chosen from semi-crystalline thermoplastic polymers. Semi-crystalline thermoplastic polymers have an elongation at break of at least 10% as measured at 23 ° C according to ISO standard 527-1 2012. These fillers (26) therefore make it possible to limit the stress concentrations at the level of the anti-corrosion barrier (16) and thus preserve its integrity during the service of the flexible pipe (10). In addition, semi-crystalline thermoplastic polymers have a tensile elasticity modulus of between 0.7 GPa and 4 GPa as measured at 23 ° C according to ISO standard 527-1 2012, which makes it possible to provide the anti-corrosion barrier ( 16) with a stiffness compatible with the use of the flexible pipe (10). Also, the semi-crystalline thermoplastics are easily distributed within the matrix (24) without an implementation process specific to the presence of fillers (26), which simplifies the manufacture of the anti-corrosion barrier (16). According to an advantageous embodiment of the invention, the fillers (26) are chosen from polyaryletherketone such as a polyetherketone or a polyetheretherketone or a polyetherketone ketone or a polyetheretherketoneketone, or a polyetherketoneetherketoneketone. The polyaryletherketone family have good barrier properties with respect to gas particles such as carbon dioxide and / or hydrogen sulfide, which makes it possible to effectively limit the diffusion of gas particles through the anti-barrier. -corrosion (16), and consequently, to reduce the corrosion of the external reinforcing layer (18, 20).
Comme représenté sur l’exemple de la figure 2, les charges (26) sont par exemple sous forme de particules de poudre (28). Les particules de poudre (28) présentent un diamètre Dv50 inférieur à 1 mm, par exemple compris entre 50 pm et 600 pm. La granulométrie des particules de poudre (28) est comprise entre 20 pm et 500 pm. Plus la concentration volumique en charges (26) au sein de la barrière anti-corrosion (16) est grande, plus une granulométrie faible sera préférée afin de garantir les propriétés mécaniques de la barrière anti-corrosion (16). Les particules de poudre (28) permettent de faciliter la fabrication de la barrière anti-corrosion (16). Un autre exemple de réalisation est représenté sur la figure 3. Les charges (26) sont par exemple sous forme de fibres (30) présentant une longueur moyenne inférieure à 1 mm. Les fibres (30) permettent d’augmenter le chemin de diffusion des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la barrière anti-corrosion (16) par rapport à une barrière anti-corrosion comprenant des charges sous forme de poudre. En outre, compte tenu de la flexibilité des fibres (30), après l’extrusion, les charges (26) se présentent sous la forme de structures enchevêtrées comme représenté sur la figure 3 qui augmentent d’avantage le chemin de diffusion des gaz au sein de la barrière anti-corrosion (16) par rapport à des structures droites telles que les fibres de verre par exemple. L’enchevêtrement des fibres peut se présenter sous la forme d’îlots ou de toile d’araignées par exemple. Le diamètre moyen des fibres est par exemple compris entre 0.05 mm et 3 mm. As shown in the example in FIG. 2, the fillers (26) are for example in the form of powder particles (28). The powder particles (28) have a diameter D v 50 of less than 1 mm, for example between 50 μm and 600 μm. The particle size of the powder particles (28) is between 20 μm and 500 μm. The higher the volume concentration of fillers (26) within the anti-corrosion barrier (16), the smaller the particle size will be preferred in order to guarantee the mechanical properties of the anti-corrosion barrier (16). The powder particles (28) make it easier to manufacture the anti-corrosion barrier (16). Another exemplary embodiment is shown in FIG. 3. The fillers (26) are for example in the form of fibers (30) having an average length of less than 1 mm. The fibers (30) make it possible to increase the diffusion path of gases such as carbon dioxide and / or hydrogen sulfide within the anti-corrosion barrier (16) compared to an anti-corrosion barrier comprising fillers in powder form. In addition, taking into account the flexibility of the fibers (30), after the extrusion, the fillers (26) are in the form of entangled structures as shown in FIG. 3 which further increase the path of diffusion of the gases at the within the anti-corrosion barrier (16) with respect to straight structures such as glass fibers for example. The entanglement of the fibers may be in the form of islands or spider webs for example. The average diameter of the fibers is for example between 0.05 mm and 3 mm.
Par ailleurs, la concentration volumique des charges (26) au sein de la barrière anti corrosion (16) est d’au moins 30%, avantageusement comprise entre 30% et 50% et préférentiellement comprise entre 30% et 40%. Une telle concentration en volume des charges (26) au sein de la barrière anti-corrosion (16) permet de réduire efficacement le chemin de diffusion des gaz tels que le dioxyde de carbone et/ou le sulfure d’hydrogène au sein de la barrière anti-corrosion (16). Furthermore, the volume concentration of the charges (26) within the anti-corrosion barrier (16) is at least 30%, advantageously between 30% and 50% and preferably between 30% and 40%. Such a concentration in volume of the charges (26) within the anti-corrosion barrier (16) makes it possible to effectively reduce the diffusion path of gases such as carbon dioxide and / or hydrogen sulfide within the barrier anti-corrosion (16).
Selon encore un exemple de réalisation de l’invention, les charges (26) comprennent un revêtement externe métallique. Le métal est par exemple choisi parmi l’aluminium, le nickel, le cuivre ou tout autre matériau métallique adapté. Le revêtement externe métallique permet de renforcer l’étanchéité de la barrière anti-corrosion (16) vis-à-vis des molécules de gaz telles que le dioxyde de carbone et/ou le sulfure d’hydrogène. Généralement, le revêtement métallique est appliqué par dépôt électrostatique. According to yet another embodiment of the invention, the charges (26) comprise an external metallic coating. The metal is, for example, chosen from aluminum, nickel, copper or any other suitable metallic material. The metallic external coating makes it possible to reinforce the tightness of the anti-corrosion barrier (16) with respect to gas molecules such as carbon dioxide and / or hydrogen sulfide. Generally, the metallic coating is applied by electrostatic deposition.
La barrière anti-corrosion (16) peut comprendre des additifs tels que des agents anti- UV. La concentration massique en additifs au sein de la barrière anti-corrosion (16) est inférieure à 10%, avantageusement inférieure à 5%. La concentration massique en premier matériau (ou en mélange de premiers matériaux) au sein de la barrière anti-corrosion est généralement supérieure à 50 %, notamment à 75 %, de préférence supérieure à 80% en poids. La concentration massique en premier matériau (ou en mélange de premiers matériaux) au sein de la barrière anti-corrosion. La concentration massique en charges (26) au sein de la barrière anti-corrosion est généralement de 1 à 50%, notamment de 5 The corrosion barrier (16) may include additives such as anti-UV agents. The mass concentration of additives within the anti-corrosion barrier (16) is less than 10%, advantageously less than 5%. The mass concentration of first material (or mixture of first materials) within the anti-corrosion barrier is generally greater than 50%, in particular 75%, preferably greater than 80% by weight. The mass concentration of the first material (or mixture of first materials) within the anti-corrosion barrier. The mass concentration of fillers (26) within the anti-corrosion barrier is generally from 1 to 50%, in particular 5
Par exemple, la barrière anti-corrosion (16) peut comprendre, voire être constituée de : - de 50 à 99% en poids, notamment de 75 à 90% en poids de premier matériau (ou d’un mélange de premiers matériaux), For example, the anti-corrosion barrier (16) can comprise, or even consist of: - from 50 to 99% by weight, in particular from 75 to 90% by weight of the first material (or of a mixture of first materials),
- de 1 à 50% en poids, notamment de 10 à 25% de charges (26), - from 1 to 50% by weight, in particular from 10 to 25% of fillers (26),
- de 0 à 10% en poids d’additifs. - from 0 to 10% by weight of additives.
La barrière anti-corrosion (16) est par exemple formée d’une superposition de bandes enroulées selon une structure tubulaire. Avantageusement, les spires d’une bande inférieure et les spires d’une bande supérieure sont soudées les unes aux autres pour assurer l’étanchéité de la barrière anti-corrosion (16) vis-à-vis des gaz transportés tels que le dioxyde de carbone et/ou le sulfure d’hydrogène. Selon un autre exemple, la barrière anti-corrosion (16) est formée par extrusion d’un tube continu ce qui permet de réduire les étapes d’assemblage de la barrière anti-corrosion (16) durant la fabrication. The anti-corrosion barrier (16) is for example formed by a superposition of strips wound in a tubular structure. Advantageously, the turns of a lower strip and the turns of an upper strip are welded to each other to seal the anti-corrosion barrier (16) with respect to the gases transported such as dioxide carbon and / or hydrogen sulfide. According to another example, the anti-corrosion barrier (16) is formed by extrusion of a continuous tube which makes it possible to reduce the assembly steps of the anti-corrosion barrier (16) during manufacture.
Selon l’invention, autour de la barrière anti-corrosion (16), la conduite flexible (10) comprend au moins une couche de renfort externe (18, 20) métallique destinée à renforcer la conduite flexible (10) contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur ladite conduite flexible (10). According to the invention, around the anti-corrosion barrier (16), the flexible pipe (10) comprises at least one metallic external reinforcement layer (18, 20) intended to reinforce the flexible pipe (10) against axial forces and / or internal radial forces exerted on said flexible pipe (10).
Comme représenté sur l’exemple de réalisation de l’invention de la figure 1 , la couche de renfort externe (18, 20) comprend une nappe anti-éclatement (18) destinée à renforcer la conduite flexible (10) contre les efforts radiaux internes. La nappe anti-éclatement (18), également appelée voûte de pression dans le domaine technique de l’invention, comprend un enroulement en hélice de fils métalliques. Le métal est par exemple choisi parmi un acier au carbone, un acier inoxydable. La section des fils de la nappe anti-éclatement (18) est par exemple en forme de Z, T, U, K ou de I. Les fils de la nappe anti-éclatement (18) sont enroulés selon un pas court. Par pas court, il est entendu un angle d’hélice de valeur absolue compris entre 75° et 90°. Avantageusement, la couche de renfort externe (18, 20) comprend également une superposition d’au moins deux nappes d’armures de traction (20) enroulées autour de la nappe anti-éclatement (18) et destinées à renforcer la conduite flexible (10) contre les efforts axiaux s’exerçant sur ladite conduite flexible (10). Les nappes d’armures de traction (20) comprennent une première nappe d’armures de traction (20a) et une deuxième nappe d’armure de traction (20b). Les nappes d’armures de traction (20) sont généralement formées d’un enroulement en hélice de fils métalliques. Les spires des nappes d’armures de traction (20) sont jointives. Le métal est par exemple choisi parmi un acier au carbone, un acier inoxydable. La section des fils des nappes d’armures de traction (20) sont rectangulaires, circulaires ou de toute géométrie convenant à la présente application. Les fils métalliques des nappes d’armures de traction sont enroulés selon un pas long. Par pas long, il est entendu un angle d’hélice de valeur absolue comprise entre 20° et 55°. Typiquement, les fils de la première nappe d’armures de traction (20a) sont enroulés selon un angle opposé à l’angle d’enroulement des fils de la deuxième nappe d’armures de traction (20b). As shown in the embodiment of the invention of FIG. 1, the external reinforcing layer (18, 20) comprises an anti-bursting sheet (18) intended to reinforce the flexible pipe (10) against the internal radial forces . The bursting sheet (18), also called pressure vault in the technical field of the invention, comprises a helical winding of metal wires. The metal is, for example, chosen from carbon steel, stainless steel. The section of the son of the anti-bursting sheet (18) is for example in the form of Z, T, U, K or I. The son of the anti-bursting sheet (18) are wound in a short pitch. By short pitch, it is understood an absolute helix angle between 75 ° and 90 °. Advantageously, the external reinforcing layer (18, 20) also comprises a superposition of at least two plies of tensile armor (20) wound around the anti-burst ply (18) and intended to reinforce the flexible pipe (10 ) against the axial forces exerted on said flexible pipe (10). The tensile armor plies (20) include a first tensile armor ply (20a) and a second tensile armor ply (20b). The tensile armor plies (20) are generally formed by a helical winding of metal wires. The turns of the tensile armor plies (20) are contiguous. The metal is, for example, chosen from carbon steel, stainless steel. The section of the wires of the tensile armor plies (20) are rectangular, circular or of any geometry suitable for the present application. The metallic wires of the tensile armor plies are wound in a long pitch. By long pitch is meant an absolute helix angle between 20 ° and 55 °. Typically, the wires of the first tensile armor ply (20a) are wound at an angle opposite to the winding angle of the wires of the second tensile armor ply (20b).
Les efforts axiaux s’exerçant sur la conduite flexible (10) sont les efforts qui s’exercent le long de l’axe central (A) pendant l’installation de la conduite flexible (10) et/ou pendant le service de la conduite flexible (10). Les efforts axiaux résultent généralement du poids de la conduite flexible (10). Les efforts radiaux internes s’exerçant sur la conduite flexible (10) sont les efforts qui s’exercent radialement par rapport à l’axe central (A) de l’intérieur vers l’extérieur de la conduite flexible (10), généralement pendant le service de la conduite flexible (10). Les efforts radiaux internes résultent par exemple de la pression interne du fluide hydrocarboné transporté s’exerçant sur la surface interne de la conduite flexible (10). The axial forces exerted on the flexible pipe (10) are the forces exerted along the central axis (A) during the installation of the flexible pipe (10) and / or during the service of the pipe. flexible (10). The axial forces generally result from the weight of the flexible pipe (10). The internal radial forces exerted on the flexible pipe (10) are the forces which are exerted radially with respect to the central axis (A) from the inside to the outside of the flexible pipe (10), generally during the flexible pipe service (10). The internal radial forces result for example from the internal pressure of the transported hydrocarbon fluid exerted on the internal surface of the flexible pipe (10).
En outre, la conduite flexible (10) comprend une gaine externe (22) tubulaire agencée coaxialement autour de la couche de renfort externe (18, 20) destinée à limiter la pénétration d’eau au sein de la conduite flexible (10). La gaine externe (22) comprend un matériau polymérique. Le matériau polymérique est par exemple choisi parmi les polyoléfines telles qu’un polyéthylène, un polypropylène ou un polyamide ou un mélange de ces matériaux. La gaine externe (22) présente une épaisseur comprise entre 0.5 mm et 10 mm. La gaine externe (22) est étanche à l’eau de l’étendue d’eau. La gaine externe (22) est également destinée à protéger la structure de renfort (18, 20) des frottements avec le fond marin lorsque la conduite flexible (10) s’étend sur le fond marin et/ou avec des équipements de pose utilisés pendant l’installation de la conduite flexible (10) tels que des organes de serrage. In addition, the flexible pipe (10) comprises a tubular external sheath (22) arranged coaxially around the external reinforcing layer (18, 20) intended to limit the penetration of water into the flexible pipe (10). The outer sheath (22) includes a polymeric material. The polymeric material is for example chosen from polyolefins such as polyethylene, polypropylene or polyamide or a mixture of these materials. The outer sheath (22) has a thickness of between 0.5 mm and 10 mm. The outer sheath (22) is watertight from the body of water. The outer sheath (22) is also intended to protect the reinforcing structure (18, 20) from friction with the seabed when the flexible pipe (10) extends over the seabed and / or with laying equipment used during installing the flexible pipe (10) such as clamps.
Typiquement, la conduite flexible (10) selon l’invention comprend un espace annulaire délimité par la gaine externe (22) et la barrière anti-corrosion (16), la couche de renfort (18, 20) étant agencée au sein dudit espace annulaire. En particulier, l’espace annulaire est le volume compris entre la face interne de la gaine externe (22) et la face externe de barrière anti corrosion (16). Par face interne, il est entendu la face de la gaine orientée vers l’intérieur de la conduite flexible (10), c’est-à-dire au plus proche radialement de l’axe (A). Par face externe, il est entendu la face de la gaine orientée vers l’extérieur de la conduite flexible (10), c’est-à-dire la face de la gaine la plus éloignée radialement de l’axe (A). Selon la présente invention, l’espace annulaire peut comprendre plusieurs sous espaces annulaires. Par exemple, lorsque la conduite flexible (10) comprend une gaine tubulaire supplémentaire agencée entre la barrière anti-corrosion (16) et la gaine externe (22), l’espace annulaire comprend un premier sous espace annulaire compris entre la barrière anti-corrosion (16) et la gaine tubulaire supplémentaire et un second sous espace annulaire compris entre la gaine tubulaire supplémentaire et la gaine externe (22). Typically, the flexible pipe (10) according to the invention comprises an annular space delimited by the external sheath (22) and the anti-corrosion barrier (16), the reinforcing layer (18, 20) being arranged within said annular space. . In particular, the annular space is the volume between the internal face of the external sheath (22) and the external face of anti-corrosion barrier (16). By internal face is meant the face of the sheath oriented towards the inside of the flexible pipe (10), that is to say as close as radially to the axis (A). By external face, it is understood the face of the sheath oriented towards the outside of the flexible pipe (10), that is to say the face of the sheath most radially distant from the axis (A). According to the present invention, the annular space can comprise several annular sub-spaces. For example, when the flexible pipe (10) comprises an additional tubular sheath arranged between the anti-corrosion barrier (16) and the external sheath (22), the annular space comprises a first annular sub-space included between the anti-corrosion barrier (16) and the additional tubular sheath and a second annular sub-space between the additional tubular sheath and the outer sheath (22).
Par ailleurs, selon l’exemple de réalisation de la figure 1 , la conduite flexible (10) comprend une gaine interne (14) tubulaire. Selon cet exemple, la gaine interne (14) est agencée à l’intérieur de la barrière anti-corrosion (16). Selon un autre exemple de réalisation non représenté, la gaine interne (14) est agencée autour de la barrière anti-corrosion (16). Furthermore, according to the embodiment of Figure 1, the flexible pipe (10) comprises an inner tubular sheath (14). According to this example, the internal sheath (14) is arranged inside the anti-corrosion barrier (16). According to another embodiment not shown, the internal sheath (14) is arranged around the anti-corrosion barrier (16).
La gaine interne (14) s’étend le long de l’axe central (A). La gaine interne (14) comprend un matériau polymérique. Le matériau polymérique est choisi parmi les polyoléfines telles qu’un polyéthylène, un polyamide tel qu’un polyamide 1 1 ou un polymère fluoré tel qu’un polyfluorure de vinylidène. Optionnellement, le matériau polymérique peut être renforcé par des fibres longues. Les fibres longues sont ici définies comme des fibres de longueur moyenne supérieure à 10 mm. Par exemple, les fibres longues sont des fibres de carbone noyées dans le matériau polymérique. La gaine interne (14) présente une épaisseur comprise entre 0.5 mm et 5 mm. La nature du matériau et l’épaisseur de la gaine interne (14) sont choisies en fonction des conditions de pression, de température et de nature du fluide transporté. La gaine interne (14) peut être formée par extrusion d’un tube, ou extrusion de bandes qui sont ensuite enroulées pour former un tube étanche vis-à-vis au moins de la phase liquide du fluide hydrocarboné transporté. The internal sheath (14) extends along the central axis (A). The internal sheath (14) comprises a polymeric material. The polymeric material is chosen from polyolefins such as a polyethylene, a polyamide such as a polyamide 11 or a fluorinated polymer such as a polyvinylidene fluoride. Optionally, the polymeric material can be reinforced with long fibers. Long fibers are defined here as fibers of average length greater than 10 mm. For example, long fibers are carbon fibers embedded in the polymeric material. The internal sheath (14) has a thickness of between 0.5 mm and 5 mm. The nature of the material and the thickness of the internal sheath (14) are chosen as a function of the pressure, temperature and nature of the fluid transported conditions. The internal sheath (14) can be formed by extruding a tube, or extruding strips which are then wound up to form a tube which is leaktight towards at least the liquid phase of the transported hydrocarbon fluid.
Selon un exemple de réalisation, la gaine interne (14) et la barrière anti-corrosion (16) sont liées. Ceci est particulièrement avantageux lorsque la barrière anti-corrosion (16) est située autour de la gaine interne (14). En effet, la vitesse de diffusion des particules de gaz comme le dioxyde de carbone et/ou le sulfure d’hydrogène étant plus élevée au sein de la gaine interne (14) qu’au sein de la barrière anti-diffusion (16), les gaz peuvent s’accumuler au sein de l’espace situé entre ces deux couches, et la pression à l’interface de ces deux couches peut augmenter et endommager la conduite flexible (10). La liaison permet ainsi de réduire les risques de dommage puisque les gaz ne peuvent plus s’accumuler à l’interface. Par exemple, la barrière anti-corrosion (16) et la gaine interne (14) sont liées par collage ou par fusion. Préférentiellement, le premier matériau de la matrice polymérique de la barrière anti-corrosion (16) et le second matériau de la gaine interne (14) sont de même nature. Par même nature, il est entendu que le mélange des matériaux après fusion, forment une seule phase. Ceci permet d’améliorer la force de liaison entre la gaine interne (14) et la barrière anti-corrosion (16). According to an exemplary embodiment, the internal sheath (14) and the anti-corrosion barrier (16) are linked. This is particularly advantageous when the anti-corrosion barrier (16) is located around the internal sheath (14). In fact, the speed of diffusion of gas particles such as carbon dioxide and / or hydrogen sulfide being higher within the internal sheath (14) than within the anti-diffusion barrier (16), gases can accumulate within the space between these two layers, and the pressure at the interface of these two layers can increase and damage the flexible pipe (10). The connection thus reduces the risk of damage since the gases can no longer accumulate at the interface. For example, the anti-corrosion barrier (16) and the internal sheath (14) are bonded or bonded. Preferably, the first material of the polymer matrix of the anti-corrosion barrier (16) and the second material of the internal sheath (14) are of the same nature. By the same nature, it it is understood that the mixing of the materials after melting, form a single phase. This makes it possible to improve the bonding force between the internal sheath (14) and the anti-corrosion barrier (16).
Avantageusement, la conduite flexible (10) comprend une structure de renfort interne (12) permettant de limiter l’effondrement de la conduite flexible (10) sous l’effet d’efforts radiaux externes s’exerçant sur la conduite flexible (10). Les efforts radiaux externes s’exerçant sur la conduite flexible (10) sont les efforts qui s’exercent radialement par rapport à l’axe (A) de l’extérieur vers l’intérieur de la conduite flexible (10), pendant l’installation et/ou le service de la conduite flexible (10). Les efforts radiaux externes sont par exemple les efforts résultant de la pression hydrostatique s’exerçant sur la surface externe de la conduite flexible (10) et/ou résultant des efforts de serrages pendant l’installation de la conduite flexible (10). La structure de renfort interne (12), également appelée carcasse interne dans le domaine de la présente invention, comprend un enroulement en hélice de profils métalliques auto-agrafés. Par auto- agrafés, il est entendu que le profil d’une spire est mécaniquement lié au profil d’une spire adjacente pour autoriser un déplacement relatif limité des spires de la structure de renfort interne (12) lors d’une flexion de la conduite flexible (10) par exemple. Le métal est par exemple choisi parmi les aciers inoxydables tels que le Duplex 2205 ou l’acier 316L. La section du profil est en forme de S ou de T. Les profils de la structure de renfort interne (12) sont enroulés selon un pas court. Par pas court, il est entendu un angle d’hélice de valeur absolue comprise entre 75° et 90°. Lorsque la conduite flexible (10) comprend la structure de renfort interne (12), elle est dite à passage rugueux dans le domaine technique de la présente invention. Lorsque la conduite flexible (10) est dépourvue de structure de renfort interne, elle est dite à passage lisse. Advantageously, the flexible pipe (10) comprises an internal reinforcement structure (12) making it possible to limit the collapse of the flexible pipe (10) under the effect of external radial forces exerted on the flexible pipe (10). The external radial forces exerted on the flexible pipe (10) are the forces which are exerted radially with respect to the axis (A) from the outside towards the inside of the flexible pipe (10), during the installation and / or service of the flexible pipe (10). The external radial forces are for example the forces resulting from the hydrostatic pressure exerted on the external surface of the flexible pipe (10) and / or resulting from the tightening efforts during the installation of the flexible pipe (10). The internal reinforcement structure (12), also called internal carcass in the field of the present invention, comprises a helical winding of self-stapled metal profiles. By self-stapled, it is understood that the profile of a turn is mechanically linked to the profile of an adjacent turn to allow a limited relative movement of the turns of the internal reinforcement structure (12) during a bending of the pipe. flexible (10) for example. The metal is for example chosen from stainless steels such as Duplex 2205 or steel 316L. The profile section is S or T shaped. The profiles of the internal reinforcement structure (12) are wound in a short pitch. By short pitch is meant an absolute helix angle between 75 ° and 90 °. When the flexible pipe (10) comprises the internal reinforcement structure (12), it is said to have a rough passage in the technical field of the present invention. When the flexible pipe (10) does not have an internal reinforcement structure, it is said to have a smooth passage.
Avantageusement, la couche de renfort externe (18, 20) est configurée pour se déplacer longitudinalement par rapport à l’une quelconque des couches de la conduite flexible (10) lors d’une flexion de ladite conduite flexible (10). Par exemple, la couche de renfort externe (18, 20) est libre de se déplacer longitudinalement par rapport à la gaine externe (22), à la barrière anti-corrosion (16) et par rapport à la gaine interne (14) lorsque celle-ci est présente, en particulier lors d’une flexion de la conduite flexible (10). Ceci permet d’augmenter le rayon de courbure minimum (MBR pour Minimum Bend Radius en langue anglaise) de la conduite flexible (10). Cette dernière peut être enroulée sur des bobines de stockage selon des diamètres plus faibles qu’une conduite où les éléments de la couche de renfort sont fixes, par exemple, noyés dans une couche d’élastomère. Généralement, la gaine interne (14), la nappe anti-éclatement (18), les nappes d’armures de traction (20), la gaine externe (22) sont réalisés et agencés selon les documents normatifs API 17J, 4ième édition, publié en Mai 2014 par G American Petroleum Institute et API 17B, 5ième édition, publié en Mars 2014 par l’American Petroleum Institute. Advantageously, the external reinforcing layer (18, 20) is configured to move longitudinally relative to any one of the layers of the flexible pipe (10) during bending of said flexible pipe (10). For example, the external reinforcing layer (18, 20) is free to move longitudinally relative to the external sheath (22), to the anti-corrosion barrier (16) and relative to the internal sheath (14) when that -This is present, in particular during a bending of the flexible pipe (10). This makes it possible to increase the minimum radius of curvature (MBR for Minimum Bend Radius in English) of the flexible pipe (10). The latter can be wound on storage coils according to smaller diameters than a pipe where the elements of the reinforcing layer are fixed, for example, embedded in a layer of elastomer. Generally, the internal sheath (14), the bursting ply (18), the tensile armor plies (20), the external sheath (22) are produced and arranged according to the normative documents API 17J, 4 th edition, published in May 2014 by G American Petroleum Institute and API 17B, 5 th edition, published in March 2014 by the American Petroleum Institute.
La conduite flexible (10) selon l’invention peut comprendre des couches polymériques ou métalliques supplémentaires en fonction des applications. Par exemple, la conduite flexible peut comprendre une paire de nappes d’armures de tractions supplémentaires enroulée autour de la paire de nappes d’armures de traction (20) ou encore des couches anti-usure en polyamide par exemple agencées entre la nappe anti-éclatement (18) et chacune des nappes d’armures de traction (20). The flexible pipe (10) according to the invention may comprise additional polymeric or metallic layers depending on the applications. For example, the flexible pipe may comprise a pair of additional tensile armor plies wrapped around the pair of tensile armor plies (20) or even anti-wear layers of polyamide, for example arranged between the anti-ply burst (18) and each of the tensile armor plies (20).
Un procédé pour la fabrication de la conduite flexible (10) décrite ci-dessus va maintenant être décrit. A method for manufacturing the flexible pipe (10) described above will now be described.
Optionnellement, on forme une structure de renfort interne (12). Par exemple, on enroule en hélice les profils métalliques selon un pas court tel que défini dans la présente invention. Optionally, an internal reinforcement structure (12) is formed. For example, the metal profiles are wound in a helix at a short pitch as defined in the present invention.
On prépare un premier matériau polymérique sous forme de granulés par exemple, présentant une température de fusion Tfi et destiné à former la matrice (24) polymérique de la barrière anti-corrosion (16). On prépare également un second matériau présentant une température de fusion Tf2 choisi parmi les polymères thermoplastiques semi-cristallins destiné à former les charges (26) de la barrière anti-corrosion (16). La température de fusion Tfi du premier matériau est inférieure à la température de fusion Tf2 du second matériau. Le premier matériau et le second matériau sont ensuite mélangés. Le mélange peut être réalisé lors de la mise en forme de la barrière anti-corrosion (16) par exemple au sein de l’extrudeuse ou en amont de la mise en forme par exemple au sein d’une trémie. Le mélange est ensuite extrudé sous forme de tube ou de bandes pour former la barrière anti-corrosion (16) à une température de fusion égale ou supérieure à la température de fusion Tfi du premier matériau et inférieure à la température de fusion Tf2 du second matériau. Pendant l’extrusion, les charges (26) sont ainsi maintenues l’état solide. Lorsque des bandes sont extrudées, on réalise une étape supplémentaire d’enroulement desdites bandes selon une structure tubulaire formant la barrière anti-corrosion (16). Par la suite, on dispose coaxialement autour de la barrière anti-corrosion (16) une couche de renfort externe (18, 20) métallique destinée à renforcer la conduite flexible (10) contre les efforts axiaux et/ou les efforts radiaux internes s’exerçant sur la conduite flexible (10). Par exemple, on enroule une pluralité de fils métalliques selon un pas court tel que défini dans la présente invention pour former une nappe anti-éclatement (18). On agence ensuite autour de la nappe anti-éclatement (18) une paire de nappes d’armures de traction (20). Par exemple, on enroule en hélice une pluralité de fils métalliques selon un pas long tel que défini dans la présente invention pour former une première nappe d’armures (20a) puis, on enroule une pluralité de fils métalliques supplémentaires selon un pas long tel que défini dans la présente invention autour de la première nappe d’armures (20a) pour former une deuxième nappe d’armures (20b), étant entendu que la valeur de l’angle d’hélice de la première nappe d’armures (20a) est opposée à la valeur de l’angle d’hélice de la deuxième nappe d’armures (20b). A first polymeric material is prepared in the form of granules for example, having a melting temperature Tfi and intended to form the polymer matrix (24) of the anti-corrosion barrier (16). A second material is also prepared having a melting temperature Tf 2 chosen from semi-crystalline thermoplastic polymers intended to form the charges (26) of the anti-corrosion barrier (16). The melting temperature Tfi of the first material is lower than the melting temperature Tf 2 of the second material. The first material and the second material are then mixed. The mixing can be carried out during the shaping of the anti-corrosion barrier (16) for example within the extruder or upstream of the shaping for example within a hopper. The mixture is then extruded in the form of a tube or strips to form the anti-corrosion barrier (16) at a melting temperature equal to or higher than the melting temperature Tfi of the first material and lower than the melting temperature Tf 2 of the second material. During the extrusion, the charges (26) are thus maintained in the solid state. When strips are extruded, an additional step of winding said strips is carried out according to a tubular structure forming the anti-corrosion barrier (16). Thereafter, there is arranged coaxially around the anti-corrosion barrier (16) an external reinforcing layer (18, 20) metallic intended to reinforce the flexible pipe (10) against the axial forces and / or the internal radial forces s' acting on the flexible pipe (10). For example, a plurality of metal wires are wound in a short pitch as defined in the present invention to form an anti-burst sheet (18). A pair of tensile armor plies (20) is then arranged around the anti-burst sheet (18). For example, a plurality of metallic wires are helically wound in a long pitch as defined in the present invention to form a first layer of armor (20a), then a plurality of additional metallic wires are wound in a long pitch such that defined in the present invention around the first armor ply (20a) to form a second armor ply (20b), it being understood that the value of the helix angle of the first armor ply (20a) is opposite to the value of the helix angle of the second armor ply (20b).
Puis on agence une gaine externe (22) destinée à limiter la pénétration d’eau au sein de la conduite flexible (10) coaxialement autour de la couche de renfort externe (18, 20). Avantageusement, on extrude la gaine externe (22) autour de la couche de renfort (18, 20). Then an external sheath (22) is arranged intended to limit the penetration of water within the flexible pipe (10) coaxially around the external reinforcing layer (18, 20). Advantageously, the outer sheath (22) is extruded around the reinforcing layer (18, 20).
Optionnellement, on forme une gaine interne (14) tubulaire. La gaine interne (14) est par exemple formée par extrusion d’un tube ou extrusion de bandes qui sont ensuite enroulées et soudées pour former un tube étanche au moins vis-à-vis de la phase liquide du fluide transporté. Optionally, an internal tubular sheath (14) is formed. The internal sheath (14) is for example formed by extrusion of a tube or extrusion of strips which are then wound and welded to form a tube which is at least vis-à-vis the liquid phase of the transported fluid.
Selon un exemple de réalisation, la gaine interne (14) est formée autour de la barrière anti-corrosion (16) après l’étape selon laquelle on agence la barrière anti-corrosion (16) et avant de disposer la couche de renfort (18, 20). According to an exemplary embodiment, the internal sheath (14) is formed around the anti-corrosion barrier (16) after the step according to which the anti-corrosion barrier (16) is arranged and before placing the reinforcing layer (18 , 20).
Selon un autre exemple de réalisation, la gaine interne (14) est à l’intérieur de la barrière anti-corrosion (16). Selon cet exemple, la gaine interne (14) est formée avant l’étape selon laquelle on agence la barrière anti-corrosion (16). According to another exemplary embodiment, the internal sheath (14) is inside the anti-corrosion barrier (16). According to this example, the internal sheath (14) is formed before the step by which the anti-corrosion barrier (16) is arranged.
Selon encore un exemple de réalisation, on réalise une étape de liaison de la gaine interne (14) lorsque celle-ci est présente avec la barrière anti-corrosion (16). Par exemple, on réalise une étape de collage de la gaine interne (14) avec la barrière anti-corrosion (16). Pour cela, après la formation de la barrière anti-corrosion (16) ou de la gaine interne (14), on revête la surface externe de la barrière anti-corrosion (16) ou de la gaine interne (14) avec une colle puis on forme la barrière anti-corrosion (16) autour de la gaine interne (14) ou inversement. Alternativement, on coextrude la gaine interne (14) avec la barrière anti-corrosion (16) pour les lier par fusion. According to yet another exemplary embodiment, a step of connecting the internal sheath (14) is carried out when the latter is present with the anti-corrosion barrier (16). For example, a step of bonding the internal sheath (14) with the anti-corrosion barrier (16) is carried out. For this, after the formation of the anti-corrosion barrier (16) or of the internal sheath (14), the external surface of the anti-corrosion barrier (16) or of the internal sheath (14) is coated with an adhesive. then the anti-corrosion barrier (16) is formed around the internal sheath (14) or vice versa. Alternatively, the internal sheath (14) is coextruded with the anti-corrosion barrier (16) to bond them by fusion.
Le polyétheréthercétone formant les charges (26) est par exemple le grade Ketaspire® PEEK XT produit par Solvay. Selon un autre exemple, le grade Ketaspire® XT 920 P produit par Solvay est choisi pour former les charges (26) sous forme de particules de poudre (28). Selon encore un autre exemple, le grade Ketaspire® XT 920 NT produit par Solvay est par exemple choisi pour former les charges (26) sous forme de fibres (30). The polyetheretherketone forming the fillers (26) is for example the grade Ketaspire® PEEK XT produced by Solvay. According to another example, the Ketaspire® XT 920 P grade produced by Solvay is chosen to form the fillers (26) in the form of powder particles (28). According to yet another example, the Ketaspire® XT 920 NT grade produced by Solvay is for example chosen to form the fillers (26) in the form of fibers (30).

Claims

REVENDICATIONS
1 . Conduite flexible (10) d’axe central (A) destinée au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné comprenant des particules de gaz, ladite conduite flexible (10) comprenant : 1. Flexible pipe (10) with central axis (A) intended for the transport, within a body of water, of a hydrocarbon fluid comprising gas particles, said flexible pipe (10) comprising:
- un passage interne de circulation du fluide hydrocarboné, - an internal passage for circulation of the hydrocarbon fluid,
- une barrière anti-corrosion (16) tubulaire destinée à limiter le passage des particules de gaz du passage interne vers l’extérieur de la conduite flexible (10), ladite barrière anti corrosion (16) comprenant une matrice polymérique (24) formée d’un premier matériau présentant une température de fusion Tf 1 et des charges (26) à l’état solide agencées au sein de la matrice polymérique, comprenant un second matériau présentant une température de fusion Tf2 supérieure à la température de fusion Tf 1 , - A tubular anti-corrosion barrier (16) intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe (10), said anti-corrosion barrier (16) comprising a polymer matrix (24) formed of a first material having a melting temperature Tf 1 and fillers (26) in the solid state arranged within the polymer matrix, comprising a second material having a melting temperature Tf2 higher than the melting temperature Tf 1,
- au moins une couche de renfort externe (18, 20) métallique agencée autour de la barrière anti-corrosion (16) et destinée à renforcer la conduite flexible (10) contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur la conduite flexible (10), - at least one external reinforcing layer (18, 20) of metal arranged around the anti-corrosion barrier (16) and intended to reinforce the flexible pipe (10) against axial forces and / or internal radial forces exerted on the flexible pipe (10),
- une gaine externe (22) tubulaire agencée coaxialement autour de la couche de renfort externe (18, 20) permettant de limiter la pénétration d’eau de l’étendue d’eau au sein de la conduite flexible (10), caractérisée en ce que le second matériau des charges (26) est choisi parmi les matériaux polymères thermoplastiques semi-cristallins. - a tubular external sheath (22) arranged coaxially around the external reinforcing layer (18, 20) making it possible to limit the penetration of water from the body of water within the flexible pipe (10), characterized in that that the second material of the fillers (26) is chosen from semi-crystalline thermoplastic polymer materials.
2. Conduite flexible selon la revendication 1 caractérisée en ce que la température de fusion Tf2 du second matériau des charges (26) est supérieure ou égale à 300°C et préférentiellement comprise entre 300°C et 400°C. 2. Flexible pipe according to claim 1 characterized in that the melting temperature Tf2 of the second filler material (26) is greater than or equal to 300 ° C and preferably between 300 ° C and 400 ° C.
3. Conduite flexible selon la revendication 1 ou 2 caractérisée en ce que le second matériau des charges (26) est choisi parmi un polyaryléthercétone tel qu’un polyéthercétone ou un polyétheréthercétone ou un polyéthercétonecétone ou un polyétheréthercétonecétone, ou un polyéthercétoneéthercétonecétone. 3. Flexible pipe according to claim 1 or 2 characterized in that the second filler material (26) is chosen from a polyaryletherketone such as a polyetherketone or a polyetheretherketone or a polyetherketoneketone or a polyetheretherketoneketone, or a polyetherketoneetherketoneketone.
4. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que les charges (26) se présentent sous la forme de particules de poudre (28). 4. Flexible pipe according to any one of the preceding claims, characterized in that the fillers (26) are in the form of powder particles (28).
5. Conduite flexible selon la revendication 4 caractérisée en ce que les particules de poudre (28) présentent un diamètre Dv50 inférieur à 1 mm. 5. Flexible pipe according to claim 4 characterized in that the powder particles (28) have a diameter D v 50 less than 1 mm.
6. Conduite flexible selon l’une des revendications 1 à 3 caractérisée en ce que les charges (26) se présentent sous la forme de fibres (30) présentant une longueur moyenne inférieure à 1 mm. 6. Flexible pipe according to one of claims 1 to 3 characterized in that the fillers (26) are in the form of fibers (30) having an average length of less than 1 mm.
7. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que la concentration volumique des charges (26) au sein de la barrière anti-corrosion (16) est d’au moins 30%, avantageusement comprise entre 30% et 70% et préférentiellement comprise entre 30% et 50%. 7. Flexible pipe according to any one of the preceding claims, characterized in that the volume concentration of the charges (26) within the anti-corrosion barrier (16) is at least 30%, advantageously between 30% and 70 % and preferably between 30% and 50%.
8. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que les charges (26) comprennent un revêtement externe métallique. 8. Flexible pipe according to any one of the preceding claims, characterized in that the loads (26) comprise an external metallic coating.
9. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que le premier matériau de la matrice polymérique (24) est choisi parmi les polyoléfines telles qu’un polypropylène ou un polyéthylène. 9. Flexible pipe according to any one of the preceding claims, characterized in that the first material of the polymer matrix (24) is chosen from polyolefins such as polypropylene or polyethylene.
10. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce qu’elle comprend une gaine interne (14) tubulaire agencée à l’intérieur ou autour de la barrière anti-corrosion (16). 10. Flexible pipe according to any one of the preceding claims, characterized in that it comprises an internal tubular sheath (14) arranged inside or around the anti-corrosion barrier (16).
1 1 . Conduite flexible selon la revendication 10 caractérisée en ce que la barrière anti-corrosion (16) et la gaine interne (14) sont liées. 1 1. Flexible pipe according to claim 10 characterized in that the anti-corrosion barrier (16) and the internal sheath (14) are linked.
12. Conduite flexible selon la revendication 1 1 caractérisée en ce que la barrière anti-corrosion (16) et la gaine interne (14) sont liées par collage ou par fusion. 12. Flexible pipe according to claim 1 1 characterized in that the anti-corrosion barrier (16) and the internal sheath (14) are bonded or bonded.
13. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce qu’elle comprend une structure de renfort interne (12) permettant de limiter l’écrasement de la conduite flexible (10) sous l’effet d’efforts radiaux externes s’exerçant sur la conduite flexible (10). 13. Flexible pipe according to any one of the preceding claims, characterized in that it comprises an internal reinforcement structure (12) making it possible to limit the crushing of the flexible pipe (10) under the effect of external radial forces s '' acting on the flexible pipe (10).
14. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que la couche de renfort externe (18, 20) comprend une nappe anti-éclatement (18) destinée à renforcer la conduite flexible (10) contre les efforts radiaux internes autour de laquelle est enroulée une superposition d’au moins deux nappes d’armures de traction (20) destinées à renforcer la conduite flexible (10) contre les efforts axiaux s’exerçant sur la conduite flexible (10). 14. Flexible pipe according to any one of the preceding claims, characterized in that the external reinforcing layer (18, 20) comprises an anti-burst sheet (18) intended to reinforce the flexible pipe (10) against the internal radial forces around from which is wound a superposition of at least two plies of tensile armor (20) intended to reinforce the flexible pipe (10) against the axial forces exerted on the flexible pipe (10).
15. Conduite flexible selon l’une quelconque des revendications précédentes caractérisée en ce que la couche de renfort externe (18, 20) est configurée pour se déplacer longitudinalement par rapport à l’une quelconque des couches de la conduite flexible (10) lors d’une flexion de la conduite flexible. 15. Flexible pipe according to any one of the preceding claims, characterized in that the external reinforcing layer (18, 20) is configured to move longitudinally relative to any one of the layers of the flexible pipe (10) during bending of the flexible pipe.
16. Procédé pour la fabrication d’une conduite flexible (10) d’axe central (A) destinée au transport, au sein d’une étendue d’eau, d’un fluide hydrocarboné comprenant des particules de gaz, ladite conduite flexible (10) comprenant un passage interne de circulation du fluide hydrocarboné, le procédé comprenant les étapes suivantes : - former une barrière anti-corrosion (16) tubulaire destinée à limiter le passage des particules de gaz du passage interne vers l’extérieur de la conduite flexible (10), ladite barrière anti-corrosion (16) comprenant une matrice polymérique (24) formée d’un premier matériau présentant une température de fusion Tfi et des charges (26) à l’état solide agencées au sein de la matrice polymérique (24) comprenant un second matériau présentant une température de fusion Tf supérieure à la température de fusion Tfi, 16. Method for manufacturing a flexible pipe (10) with a central axis (A) intended for transporting, within a body of water, a hydrocarbon fluid comprising gas particles, said flexible pipe ( 10) comprising an internal passage for circulation of the hydrocarbon fluid, the method comprising the following steps: forming a tubular anti-corrosion barrier (16) intended to limit the passage of gas particles from the internal passage towards the outside of the flexible pipe (10), said anti-corrosion barrier (16) comprising a polymer matrix (24) formed of a first material having a melting temperature Tfi and fillers (26) in the solid state arranged within the polymer matrix (24) comprising a second material having a melting temperature Tf higher than the melting temperature Tfi ,
- disposer autour de la barrière anti-corrosion (16) une couche de renfort externe (18, 20) métallique destinée à renforcer la conduite flexible (10) contre des efforts axiaux et/ou des efforts radiaux internes s’exerçant sur la conduite flexible (10), - agencer coaxialement autour de la couche de renfort externe (18, 20) une gaine externe (22) tubulaire destinée à limiter la pénétration d’eau au sein de la conduite flexible (10), caractérisé en ce que le second matériau des charges (26) est choisi parmi les polymères thermoplastiques semi-cristallins. - have around the anti-corrosion barrier (16) an external reinforcing layer (18, 20) of metal intended to reinforce the flexible pipe (10) against axial forces and / or internal radial forces exerted on the flexible pipe (10), - arranging coaxially around the external reinforcing layer (18, 20) an external tubular sheath (22) intended to limit the penetration of water within the flexible pipe (10), characterized in that the second filler material (26) is chosen from semi-crystalline thermoplastic polymers.
PCT/EP2019/086387 2018-12-21 2019-12-19 Flexible pipe for transporting a hydrocarbon fluid within a body of water, and associated method WO2020127790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873983A FR3090799B1 (en) 2018-12-21 2018-12-21 FLEXIBLE PIPE INTENDED FOR THE TRANSPORT, WITHIN A BODY OF WATER, OF A HYDROCARBON FLUID AND ASSOCIATED METHOD
FR1873983 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020127790A1 true WO2020127790A1 (en) 2020-06-25

Family

ID=66676777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/086387 WO2020127790A1 (en) 2018-12-21 2019-12-19 Flexible pipe for transporting a hydrocarbon fluid within a body of water, and associated method

Country Status (2)

Country Link
FR (1) FR3090799B1 (en)
WO (1) WO2020127790A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120320A1 (en) * 2005-05-11 2006-11-16 Technip France Flexible tubular conduit with an anti-wear jacket
WO2008113362A1 (en) 2007-03-16 2008-09-25 Nkt Flexibles I/S A flexible pipe
WO2017174660A1 (en) * 2016-04-06 2017-10-12 Technip France Submarine pipe comprising a sheath comprising a polypropylene homopolymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050004B1 (en) * 2016-04-06 2018-05-04 Technip France SUBMARINE CONDUIT COMPRISING A SHEATH COMPRISING A BLOCK COPOLYMER OF POLYPROPYLENE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120320A1 (en) * 2005-05-11 2006-11-16 Technip France Flexible tubular conduit with an anti-wear jacket
WO2008113362A1 (en) 2007-03-16 2008-09-25 Nkt Flexibles I/S A flexible pipe
WO2017174660A1 (en) * 2016-04-06 2017-10-12 Technip France Submarine pipe comprising a sheath comprising a polypropylene homopolymer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"API 17B", March 2014, AMERICAN PETROLEUM INSTITUTE
"API 17J", May 2014, AMERICAN PETROLEUM INSTITUTE

Also Published As

Publication number Publication date
FR3090799A1 (en) 2020-06-26
FR3090799B1 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
EP3439871B1 (en) Submarine pipe comprising a sheath comprising a polypropylene homopolymer
EP3601862B1 (en) Flexible pipe with layers of metal armour and layers of composite armour
EP3824212A1 (en) Flexible pipe for transporting a gas and/or petroleum fluid and intended to be submerged within a body of water
WO2018114418A1 (en) Petroleum fluid-conveying flexible pipe comprising a barrier against diffusion
FR2971829A1 (en) FLEXIBLE TUBULAR CONDUIT FOR TRANSPORTING A PETROLEUM FLUID SUCH AS POLYPHASE FLUID OR GAS.
WO2015097422A1 (en) Highly resistant flexible tubular conduit and production method
FR3071899A1 (en) FLEXIBLE CONDUIT FASTENING TIP, FLEXIBLE DRIVING AND METHOD THEREOF
WO2020127790A1 (en) Flexible pipe for transporting a hydrocarbon fluid within a body of water, and associated method
EP3439870B1 (en) Submarine pipe comprising a sheath comprising a polypropylene block copolymer
WO2022096748A1 (en) Flexible fluid transport pipe and associated methods
WO2020120700A1 (en) Method for manufacturing a flexible pipe, and associated pipe
FR3044737A1 (en) CONNECTION TIP FOR A FLEXIBLE CONDUIT AND ASSOCIATED MOUNTING METHOD
FR2964173A1 (en) Flexible tubular structure for transporting fluids e.g. crude oil and petrol for offshore and onshore oil exploitations, comprises reinforcing layers, a layer of fluorinated polymeric compound, and a metallic frame
EP3899339B1 (en) Flexible pipe for conveying a fluid in a submarine environment, and associated method
FR3019257A1 (en) FLEXIBLE FLUID TRANSPORT DRIVE, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR DETERMINING THE SAME
FR3086364A1 (en) FLEXIBLE FLUID TRANSPORT PIPE WITH ANTI-CORROSIVE FLUID AND METHOD OF MANUFACTURING SAME
EP3810967B1 (en) Flexible pipe intended to be immersed into a body of water, method for the manufacture and use thereof
FR3104667A1 (en) Flexible underwater pipe comprising a layer comprising polymethylpentene
WO2022243424A1 (en) Flexible underwater pipe comprising a wear-resistant polypropylene homopolymer layer
FR3067090A1 (en) CONNECTION TIP FOR A FLEXIBLE CONDUIT AND ASSOCIATED MOUNTING METHOD
FR3086365A1 (en) FLEXIBLE PIPE, INTENDED TO BE UNDERWATER IN A BODY OF WATER, AND MANUFACTURING METHOD THEREOF
WO2020128001A1 (en) Flexible pipe for transporting a fluid in an underwater environment and associated method
WO2022269024A1 (en) Thermoplastic composite hose for transporting fluid and flexible pipe comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19832368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19832368

Country of ref document: EP

Kind code of ref document: A1