[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020124511A1 - 指纹识别方法、指纹识别装置和电子设备 - Google Patents

指纹识别方法、指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020124511A1
WO2020124511A1 PCT/CN2018/122476 CN2018122476W WO2020124511A1 WO 2020124511 A1 WO2020124511 A1 WO 2020124511A1 CN 2018122476 W CN2018122476 W CN 2018122476W WO 2020124511 A1 WO2020124511 A1 WO 2020124511A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
light
living
image
optical
Prior art date
Application number
PCT/CN2018/122476
Other languages
English (en)
French (fr)
Inventor
青小刚
李顺展
顾钦
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880003000.3A priority Critical patent/CN109716353A/zh
Priority to PCT/CN2018/122476 priority patent/WO2020124511A1/zh
Publication of WO2020124511A1 publication Critical patent/WO2020124511A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present application relates to the field of information technology, and more specifically, to a fingerprint identification method, fingerprint identification device, and electronic equipment.
  • fingerprint recognition technology has been widely used in various fields such as mobile terminals and smart homes.
  • the biological features are irradiated with visible light of a certain wavelength, and the reflected light signal carrying biological feature information is transmitted to the sensor for collection using the principle of visible light reflection imaging. Compare to confirm the legitimacy of the user's identity.
  • the embodiments of the present application provide a fingerprint identification method, a fingerprint identification device, and an electronic device, which can distinguish whether a detected fingerprint is a living fingerprint or a non-living fingerprint, thereby improving the security of fingerprint identification.
  • a method for fingerprint identification includes: imaging multiple light signals of light reflected from objects above the fingerprint collection area when light of multiple wavelengths respectively illuminates the fingerprint collection area to obtain multiple images; The multiple images determine whether the object is a living fingerprint or a non-living fingerprint.
  • the imaging of the optical signal reflected from the object above the fingerprint collection area when the light according to the multiple wavelengths respectively illuminates the fingerprint collection area includes: When the fingerprint collection area is sequentially illuminated at different times, the optical signal reflected from the object is imaged.
  • the imaging of the optical signal reflected from the object above the fingerprint collection area when the light according to the multiple wavelengths respectively illuminates the fingerprint collection area includes: When the multiple sub-regions in the fingerprint collection area are irradiated at the same time, the optical signal reflected from the object is imaged.
  • the plurality of sub-regions are distributed from the center of the fingerprint collection region to the surroundings.
  • the judging whether the object is a living fingerprint or a non-living fingerprint based on the multiple images includes: calculating the first parameter according to the image data of each of the multiple images; According to the first parameter, it is determined whether the object is a living fingerprint or a non-living fingerprint.
  • the judging whether the object is a living fingerprint or a non-living fingerprint based on the multiple images includes: performing image fusion on the multiple images to obtain a fusion image; and according to the fusion image It is determined whether the object is a living fingerprint or a non-living fingerprint.
  • the method further includes: matching fingerprint images according to the first image of the plurality of images; if the matching is successful and the object is determined to be a living fingerprint, it is determined that the fingerprint recognition is successful.
  • the first image is an image obtained by imaging an optical signal reflected from the object when the object is illuminated with light of a default wavelength among the plurality of wavelengths.
  • the light of the plurality of wavelengths includes at least two of red light, green light, and blue light.
  • the light of the multiple wavelengths comes from at least part of the OLED light source in the organic light emitting diode display OLED.
  • a fingerprint recognition device comprising: an optical fingerprint sensor for imaging an optical signal reflected from an object above the fingerprint collection area when light of multiple wavelengths respectively illuminates the fingerprint collection area, and obtains many Images, wherein the multiple images are used to determine whether the object is a living fingerprint or a non-living fingerprint.
  • the optical fingerprint sensor is specifically used for imaging according to the optical signal reflected from the object when the light of the multiple wavelengths sequentially illuminates the fingerprint collection area at different times.
  • the optical fingerprint sensor is specifically used for: according to the optical signal reflected from the object when the multiple wavelengths of light respectively illuminate multiple sub-regions in the fingerprint collection region at the same time Perform imaging.
  • the plurality of sub-regions are distributed from the center of the fingerprint collection region to the surroundings.
  • the fingerprint identification device further includes: a processor, configured to determine whether the object is a living fingerprint or a non-living fingerprint based on multiple images obtained by imaging.
  • the processor is specifically configured to: perform image fusion on the multiple images obtained by imaging to obtain a fusion image; determine whether the object is a living fingerprint or a non-living fingerprint according to the fusion image .
  • the processor is specifically configured to: calculate a first parameter according to the image data of each of the multiple images; and according to the first parameter, determine that the object is a living fingerprint It is still a non-living fingerprint.
  • the processor is further configured to: perform fingerprint image matching according to the first image of the multiple images; if the matching is successful and the object is determined to be a living fingerprint, determine fingerprint identification success.
  • the first image is an image obtained by imaging an optical signal reflected from the object when the object is illuminated with light of a default wavelength among the plurality of wavelengths.
  • the light of the plurality of wavelengths includes at least two of red light, green light, and blue light.
  • the light of the multiple wavelengths comes from at least part of the OLED light source in the organic light emitting diode display OLED.
  • an electronic device for fingerprint identification including the fingerprint identification device in the second aspect or any possible implementation manner of the second aspect.
  • the color information of the fingerprint can be obtained to distinguish Whether the fingerprint is a living fingerprint from a human finger or a fake non-living fingerprint improves the security of fingerprint recognition.
  • FIG. 1 is a schematic plan view of an electronic device to which this application can be applied.
  • Fig. 2 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 along A-A'.
  • 3(a), 3(b) and 3(c) are schematic diagrams of common fake fingerprints.
  • FIG. 4 is a schematic diagram of a living fingerprint and a non-living fingerprint that is simulated by the living fingerprint.
  • FIG. 5 is a schematic diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the wavelength of the OLED display screen according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a light spot in a time-sharing acquisition mode according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a light spot in a partitioned collection mode according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of fingerprint images of living fingerprints and non-living fingerprints obtained based on the method of the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a fingerprint identification method according to an embodiment of the present application.
  • FIG. 11 is an example flowchart of a fingerprint recognition method according to an embodiment of the present application.
  • the optical fingerprint system provided by the embodiments of the present application can be applied to smartphones, tablet computers, and other mobile terminals or other terminal devices with display screens; more specifically, in the above terminal devices, fingerprint recognition
  • the device may specifically be an optical fingerprint identification device, which may be disposed in a partial area or all areas below the display screen, thereby forming an under-display (Under-display or Under-screen) optical fingerprint system.
  • FIG. 1 and 2 show a schematic diagram of an electronic device 100 to which the fingerprint identification device according to an embodiment of the present application can be applied, wherein FIG. 1 is a schematic front view of the electronic device 100, and FIG. 2 is along the electronic device 100 shown in FIG. AA' partial cross-sectional structure diagram.
  • the electronic device 100 includes a display screen 120 and an optical fingerprint recognition device (hereinafter also simply referred to as a fingerprint recognition device) 130, wherein the optical fingerprint recognition device 130 has one or more sensors Array, the sensing array is at least disposed in a partial area below the display screen 120, so that the fingerprint collection area (or sensing area) 103 of the optical fingerprint recognition device 130 is at least partially located in the display area 102 of the display screen 120 .
  • a fingerprint recognition device 130 has one or more sensors Array, the sensing array is at least disposed in a partial area below the display screen 120, so that the fingerprint collection area (or sensing area) 103 of the optical fingerprint recognition device 130 is at least partially located in the display area 102 of the display screen 120 .
  • the area of the fingerprint collection area 103 may be different from the area of the sensing array of the optical fingerprint recognition device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light gathering or reflection ,
  • the area of the fingerprint collection area 103 of the optical fingerprint identification device 130 may be larger than the area of the sensing array of the optical fingerprint identification device 130.
  • the fingerprint collection area 103 of the optical fingerprint identification device 130 may also be designed to be consistent with the area of the sensing array of the optical fingerprint identification device 130.
  • the fingerprint collection area 103 is located in the display area 102 of the display screen 120. Therefore, when the user needs to unlock the electronic device or other fingerprint verification, he only needs to press his finger In the fingerprint collection area 103 located in the display screen 120, fingerprint input can be realized. Since fingerprint detection can be implemented in the screen, the electronic device 100 adopting the above structure does not require a special reserved space on the front to set the fingerprint keys (such as the Home key), so that a full screen solution can be adopted, that is, the display area of the display screen 120 102 can be basically extended to the front of the entire electronic device 100.
  • the display screen 120 may be a self-luminous display screen, which uses a self-luminous display unit as a display pixel, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro -LED) display screen.
  • a self-luminous display unit such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro -LED) display screen.
  • OLED Organic Light-Emitting Diode
  • Micro -LED micro light-emitting diode
  • the optical fingerprint recognition device 130 may use the OLED display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint recognition area 103 as an excitation light source for optical fingerprint detection.
  • the optical fingerprint recognition device 130 may also use an internal light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint recognition device 130 may be applied to a non-self-luminous display screen, such as a liquid crystal display (Liquid Crystal) (LCD) or other passive light-emitting display screens.
  • a non-self-luminous display screen such as a liquid crystal display (Liquid Crystal) (LCD) or other passive light-emitting display screens.
  • LCD liquid crystal display
  • the optical fingerprint system of the electronic device 100 may further include an excitation light source for optical fingerprint detection.
  • the excitation light source may be specifically an infrared light source or a light source of a non-visible light of a specific wavelength, which may be provided under the backlight module of the liquid crystal display or the edge area under the protective cover of the electronic device 100, and the The optical fingerprint recognition device 130 may be disposed under the edge area of the liquid crystal panel or the protective cover and guided by the optical path so that the fingerprint detection light can reach the optical fingerprint recognition device 130; or, the optical fingerprint recognition device 130 may also be disposed at the The backlight module is below, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical through openings or other optical design of the film layers such as the diffusion sheet, the brightness enhancement sheet, the reflection sheet, etc. Fingerprint recognition device 130.
  • the sensing array of the optical fingerprint identification device 130 is specifically a photodetector (Photodetector) array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above.
  • a finger touches, presses, or approaches for ease of description, this application is collectively referred to as touch
  • the light emitted by the display unit of the fingerprint recognition area 103 reflects on the fingerprint on the finger surface and forms reflected light
  • the reflected light of the ridges and valleys of the finger fingerprint is different.
  • the reflected light is received from the display screen 120 and received by the photodetector array and converted into a corresponding electrical signal, that is, a fingerprint detection signal. Based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing an optical fingerprint recognition function in the electronic device 100.
  • the electronic device 100 further includes a transparent protective cover 110, and the cover 110 may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located on the display screen 120 above and covering the front of the electronic device 100. Therefore, in the embodiment of the present application, the so-called finger touch, pressing or approaching on the display screen 120 actually refers to the finger touching, pressing or approaching the cover plate 110 above the display screen 120 or covering the cover plate 110 Surface of the protective layer.
  • the electronic device 100 may further include a touch sensor, and the touch sensor may be specifically a touch panel, which may be provided on the surface of the display screen 120, or may be partially or wholly integrated into the display screen 120, namely The display screen 120 is specifically a touch display screen.
  • the touch sensor may be specifically a touch panel, which may be provided on the surface of the display screen 120, or may be partially or wholly integrated into the display screen 120, namely The display screen 120 is specifically a touch display screen.
  • the optical fingerprint recognition device 130 includes an optical detection unit 134 and an optical component 132, and the optical detection unit 134 includes the sensing array and the sensor array.
  • the reading circuit and other auxiliary circuits that are sexually connected can be fabricated on a chip through a semiconductor process; that is, the optical detection unit 134 can be fabricated on an optical imaging chip or an image sensor chip (hereinafter also referred to as an optical fingerprint) Sensor or optical fingerprint sensor chip).
  • the optical component 132 may be disposed above the sensing array of the optical detection unit 134, which may specifically include an optical filter (or filter, filter), an optical path guiding structure, and other optical elements.
  • the filter can be used to filter out ambient light penetrating the finger, and the light path guiding structure is mainly used to guide the light path such as collimating, modulating or converging the downward propagating light to realize the reflection from the finger surface
  • the light is guided to the sensing array for optical detection.
  • the optical component 132 may be packaged with the optical detection unit 134 in the same optical fingerprint chip, or the optical component 132 may be disposed outside the chip where the optical detection unit 134 is located, such as The optical component 132 is attached to the chip, or a part of the components of the optical component 132 is integrated in the chip.
  • the optical path guiding structure of the optical component 132 has various implementation schemes, for example, it may be specifically an optical path modulator or an optical path collimator made of a semiconductor silicon wafer or other substrate, which has multiple optical path modulation units or A collimating unit, the optical path modulation unit or the collimating unit may be specifically a micro-hole array.
  • the light guide layer may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses (hereinafter also referred to as a lens group).
  • the sensing array can detect the fingerprint image of the finger .
  • a circuit board 140 such as a flexible printed circuit (FPC) may also be provided under the optical fingerprint recognition device 130, and the optical fingerprint recognition device 130 may be soldered to the circuit board 140 through pads, for example.
  • the circuit board 140 realizes electrical interconnection and signal transmission with other peripheral circuits or other elements of the electronic device 100.
  • the optical fingerprint recognition device 130 may receive the control signal of the processing unit of the electronic device 100 through the circuit board 140, and may also output the fingerprint detection signal to the electronic device through the circuit board 140 100 processing unit or control unit.
  • Such fake fingerprints are easy to obtain, simple to produce, low cost, and have a high success rate of image matching;
  • 2D extraction fake fingerprints The fingerprint information remaining on the mobile phone screen, glass, etc. can be extracted by professional means, scanned and printed to make a fake fingerprint. This kind of fake fingerprint is easy to obtain, but it is difficult to produce and the success rate of image matching is low;
  • 3D fake fingerprint press the fingerprint onto the shaped grinding tool, and press the conductive black glue, white glue, wood glue, silicone rubber, etc. to the grinding tool to generate a 3D fake fingerprint.
  • This kind of fake fingerprint is not easy to obtain, the difficulty of making is medium, and the cost is low ,
  • the success rate of image matching is high, but it requires real registered users to cooperate with the collection.
  • FIG. 4 is a fingerprint image of the true and false fingerprints collected using optical fingerprint recognition technology.
  • an object touches, presses, or approaches (for ease of description, collectively referred to as pressing in this application) the fingerprint collection area
  • the visible light emitted by the visible light source is reflected by the object in contact with the fingerprint collection area to form an optical signal containing fingerprint characteristic information
  • the optical fingerprint sensor receives the reflected light and uses the principle of light reflection imaging to perform fingerprint identification.
  • the embodiments of the present application provide a technical solution for fingerprint recognition based on multi-wavelength detection, On the basis of matching the fingerprint image, it can also determine whether the fingerprint image comes from a living fingerprint or a non-living fingerprint.
  • the real fingerprint is also called a living fingerprint
  • the fake fingerprint is also called a non-living fingerprint
  • FIG. 5 shows a schematic diagram of a fingerprint identification device according to an embodiment of the present application.
  • the fingerprint recognition device 500 may include an optical fingerprint sensor 510.
  • the optical fingerprint sensor 510 is used for imaging according to light signals reflected from objects above the fingerprint collection area when multiple wavelengths of light irradiate the fingerprint collection area, respectively, to obtain multiple images.
  • the multiple images obtained by imaging with the optical fingerprint sensor 510 are used to determine whether the object is a living fingerprint or a non-living fingerprint.
  • the plurality of wavelengths includes at least two different wavelengths.
  • the optical fingerprint sensor 510 performs imaging according to the optical signals of different wavelengths reflected from the object. Due to the difference in the material characteristics of the living fingerprint and the non-living fingerprint, the absorption of the optical signals of different wavelengths by the living and non-living fingerprints And feedback are different. Based on this difference, the multiple images obtained by imaging can be processed to obtain information on the color dimension of the fingerprint, thereby distinguishing whether the object is a living fingerprint from a human finger or a fake non-living fingerprint.
  • the light of the plurality of wavelengths may include, for example, red light, green light, blue light, or light of other colors formed based on Red Green Blue (RGB).
  • RGB Red Green Blue
  • At least two different wavelengths of light need to be used to illuminate the object, and the optical fingerprint sensor 510 obtains at least two different wavelengths of optical signals reflected by the object, thereby forming at least two fingerprint images for determining the authenticity of the fingerprint.
  • the at least two different wavelengths may include at least two of red light wavelength, green light wavelength, blue light wavelength, and other mixed color wavelengths formed based on RGB.
  • the light emitting unit of the self-luminous display screen can provide light of different wavelength bands, for example, the light emitting unit of the OLED display screen can provide light of three different wavelength bands of red, green and blue.
  • the OLED display screen When the OLED display screen is used as the excitation light source for fingerprint detection, the OLED display screen emits light of different wavelengths to illuminate objects above the fingerprint collection area, and the optical signals of different wavelengths reflected by the object pass through the display screen to reach the fingerprint recognition below the display screen
  • the device is imaged by the optical fingerprint sensor in the fingerprint recognition device, respectively, to form multiple images corresponding to multiple wavelengths, respectively.
  • Figure 6 shows the wavelength distribution of an OLED display, where the OLED display can provide light in three different wavelength bands of red, green and blue, and the light intensity of the red, green and blue bands is shown in Figure 6 As shown.
  • the fingerprint identification device can also use a built-in light source or an external light source to provide light of different wavelengths, and these light sources are used as excitation light sources for fingerprint detection.
  • the fingerprint identification device can be applied to a non-self-luminous display, such as a liquid crystal display.
  • a non-self-luminous display such as a liquid crystal display.
  • the relative positional relationship between the light source and the optical fingerprint sensor is not limited here.
  • the light source and the optical fingerprint sensor can be placed side by side under the display screen, or placed in other ways, as long as the fingerprint image of the object can be collected.
  • Embodiments of the present application provide two fingerprint image collection methods, that is, a time-sharing collection method and a partition-based collection method.
  • the optical fingerprint sensor 510 may use any method to image multiple optical signals according to multiple wavelengths reflected by an object to obtain multiple images. The two methods are described below with reference to FIGS. 7 and 8, respectively.
  • the optical fingerprint sensor performs imaging according to the optical signal reflected from the object when the light of multiple wavelengths sequentially illuminates the fingerprint collection area at different times, to obtain the multiple images.
  • the background light of a certain wavelength band is emitted first, for example, green light with a center wavelength of 525 nm.
  • the green light illuminates the object above the fingerprint collection area, and triggers the optical fingerprint recognition device to collect the light signal reflected by the object to obtain the first image.
  • the optical fingerprint recognition device After collecting the green light signal, immediately switch to another band of background light, such as red light with a center wavelength of 625 nm.
  • the red light illuminates the object above the fingerprint collection area, and the optical fingerprint recognition device collects the light signal reflected by the object to obtain the second image.
  • the optical fingerprint recognition device After collecting the red light signal, immediately switch to another band of background light, such as blue light with a center wavelength of 450 nm.
  • the blue light illuminates the object above the fingerprint collection area, and the optical fingerprint recognition device collects the light signal reflected by the object to obtain a third image.
  • FIG. 7 is a schematic diagram of the complementary light spots of different colors irradiated on the fingerprint collection area at time T1, time T2, and time T3, respectively.
  • the light irradiated on the fingerprint collection area is green light
  • the light irradiated on the fingerprint collection area is red light
  • the light irradiated on the fingerprint collection area is blue light.
  • the optical fingerprint sensor obtains a fingerprint image according to the light signal reflected by the object above the fingerprint recognition area. According to the obtained three images, it can be judged whether the object is a living fingerprint or a non-living fingerprint.
  • the optical fingerprint sensor performs imaging according to the optical signal reflected from the object when multiple wavelengths of light irradiate multiple sub-regions in the fingerprint collection area at the same time, respectively, to obtain the multiple images.
  • Each image is obtained based on light of a wavelength, and the image carries fingerprint information in the sub-region corresponding to the wavelength.
  • the embodiments of the present application do not make any limitation on the positional relationship and size between the sub-regions irradiated with light of different wavelengths.
  • the plurality of sub-regions may be distributed from the center of the fingerprint collection region to the surroundings, or may be distributed in other ways.
  • the sub-region corresponding to each wavelength may be continuous or discrete.
  • the fingerprint collection area includes three sub-areas corresponding to green light, red light and blue light, respectively, which are denoted as green light area, red light area and blue light area.
  • the green light area is a circular area in the center of the fingerprint collection area
  • the red light area is a circular area surrounding the green light area
  • the blue light area is a circular area surrounding the red light area.
  • the optical fingerprint sensor collects the light signal reflected by the object, and obtains the first image based on the light signal of the green light reflected by the object, and obtains the second image based on the light signal of the red light reflected by the object, based on the blue light reflected by the object
  • the optical signal gets the third image.
  • the first image carries fingerprint information located in the green light area
  • the second image carries fingerprint information located in the red light area
  • the third image carries fingerprint information located in the blue light area. According to the obtained three images, it can be judged whether the object is a living fingerprint or a non-living fingerprint. It is considered here that the color of the object to be measured is uniform.
  • lights of different wavelengths may illuminate their corresponding sub-regions at the same time or at different times in sequence.
  • the sub-regions irradiated with light of different wavelengths should not overlap, for example, the three sub-regions shown in FIG. 8 do not overlap.
  • each image includes a complete fingerprint image in the fingerprint collection area. Therefore, in addition to determining the true and false fingerprints, one of the images can be used for fingerprint recognition conveniently; in the above method 2 Since multiple wavelengths of light illuminate their respective sub-regions at the same time, it is possible to more efficiently obtain color information of the object to be measured and use it to determine the true and false fingerprints. In a specific implementation, you can choose an appropriate method to determine the true and false fingerprints according to your needs.
  • the fingerprint identification device further includes a processor 520, and the processor 520 is configured to determine whether the object is a living fingerprint or a non-living fingerprint according to the plurality of images obtained by imaging.
  • the processor may be a processor of an electronic device, or may be a separately provided processor for fingerprint identification, which is not limited in this embodiment of the present application.
  • the embodiments of the present application provide two ways to determine whether the object is a living fingerprint or a non-living fingerprint based on the above multiple images, which will be described separately below.
  • the processor 520 is specifically used for: performing image fusion on the plurality of images obtained by imaging to obtain a fusion image; and judging whether the object is a living fingerprint or a non-living fingerprint according to the fusion image.
  • the fusion image obtained by the processor after the image fusion of the multiple images can be sent to a deep learning network such as a convolutional neural network, and the deep learning network determines whether the object is a living fingerprint or a non-living fingerprint and outputs the result .
  • a deep learning network such as a convolutional neural network
  • the deep learning network can be obtained through training. For example, collect various types of living and non-living fingerprints as training samples, and input the training samples into the deep learning network. According to the difference between the output of the deep learning network and the actual expected results, the deep learning network Adjustments are made so that the deep learning network can effectively distinguish the authenticity of fingerprint images through a large amount of training and learning.
  • image fusion is not limited here.
  • a simple combined image fusion method, a logical filter method, and other spatial domain fusion methods, or a high-pass filter method, a wavelet transform method, and other transform domain fusion methods may be used.
  • the left side is a fusion image of living fingerprints
  • the right side is a fusion image of non-living fingerprints.
  • the fusion image includes the information of the color dimension.
  • the color of the fusion image of the living fingerprint is basically the same as the color of the fingerprint of the human finger, which is close to the flesh color.
  • the color of the fusion image of the non-living fingerprint is closer to the color of the material of the non-living fingerprint.
  • the low-resolution color fusion image is sent to the deep learning network to judge the authenticity of the fingerprint, and the judgment result can be quickly output in real time.
  • the processor 520 is specifically configured to: calculate a first parameter according to the image data of each of the plurality of images; according to the first parameter, determine whether the object is a living fingerprint or a non-living fingerprint.
  • the processor 520 may determine whether the object is a living fingerprint or a non-living fingerprint according to whether the value of the first parameter is within a preset numerical range; or, the processor 520 may determine whether the object is a living fingerprint or a non-living fingerprint; The size relationship between the preset thresholds determines whether the object is a living fingerprint or a non-living fingerprint.
  • the image data of each image may be, for example, light intensity information corresponding to the image for imaging.
  • the image data of each image corresponding to the living fingerprints and non-living fingerprints is also different.
  • the value of the first parameter obtained from the image data of multiple images is also different.
  • the optical fingerprint sensor images the light signal of the green light reflected by the object to obtain an image
  • the image data of the image includes the light intensity information of each pixel of the image (assuming that it includes N pixels)
  • the light intensity of the i-th pixel is recorded as R i .
  • the optical fingerprint sensor images the light signal of the red light reflected by the object to obtain another image.
  • the image data of the image includes the light intensity of each pixel of the image (assuming M pixels) Information, where the light intensity of the j-th pixel is recorded as R j .
  • M N or M ⁇ N.
  • the first parameter K can be set as:
  • the first parameter K can be set as:
  • Base is a preset value, for example, it can be equal to the background light intensity.
  • r 1 is the fusion coefficient of green light
  • r 2 is the fusion coefficient of red light.
  • the object By calculating the value of K, when K is greater than a preset threshold, the object is determined to be a living fingerprint, and when the first parameter K is less than the threshold, the object is determined to be a non-living fingerprint.
  • the processor 520 is further configured to: perform fingerprint image matching according to the first image in the plurality of images; if the matching is successful and the object is determined to be a living fingerprint, the fingerprint is determined Identified successfully.
  • the first image may be, for example, an image obtained by imaging an optical signal reflected from the object when the object is irradiated with light of a default wavelength among the plurality of wavelengths.
  • the default wavelength may be, for example, the wavelength corresponding to the highest quality image when the finger approaches the display screen in the most customary manner, such as the wavelength of the green light band.
  • the fingerprint identification in the embodiments of the present application includes not only matching of fingerprint images, but also judging the authenticity of fingerprints.
  • the first image of the multiple images obtained by the optical fingerprint sensor can be used for image matching. If the first image matches the fingerprint image in the fingerprint library successfully, it indicates that the first image is the fingerprint image of the authorized user. If the first image is also determined to be the image of the living fingerprint by the foregoing method, the fingerprint recognition is considered successful; if When there is no fingerprint image matching the first image in the fingerprint library, that is, the first image is not the fingerprint image of an authorized user, or when the first image is judged to be an image of a non-living fingerprint, fingerprint recognition is considered to have failed.
  • the default wavelength may be the wavelength of the first light of the plurality of wavelengths that illuminates the object.
  • the light of the default wavelength may be green light irradiating the object for the first time
  • the first image is an image obtained by imaging the light signal reflected from the object when the green light illuminates the object.
  • the light of the default wavelength may be used as the wavelength with the largest area of the corresponding sub-region among the multiple wavelengths.
  • the light of the default wavelength may be green light illuminating a circular large-area area in the center of the fingerprint collection area
  • the first image is an image obtained by imaging according to the optical signal of the green light reflected by the object.
  • the first image is the image carrying the most fingerprint information among the three images.
  • the fingerprint recognition device may first perform fingerprint image matching, and then determine whether the fingerprint image is a living fingerprint or a non-living fingerprint fingerprint image when the fingerprint image matching is successful; or, the fingerprint recognition device may also first determine the object to be tested Whether it is a living fingerprint or a non-living fingerprint, and when it is determined that the object is a living fingerprint, the fingerprint image of the living fingerprint is matched. This embodiment of the present application does not limit this.
  • FIG. 10 shows a schematic flowchart of a fingerprint identification method according to an embodiment of the present application.
  • the fingerprint identification method shown in FIG. 10 may be executed by the fingerprint identification device in the foregoing embodiment of the present application.
  • details are not described here.
  • the fingerprint identification method 1000 may include the following steps.
  • the plurality of wavelengths includes at least two different wavelengths.
  • the absorption and feedback of optical signals of different wavelengths by living and non-living fingerprints are also different. Based on this difference, the multiple images obtained by imaging can be processed To obtain information on the color dimension of the fingerprint to distinguish whether the object is a living fingerprint from a human finger or a fake non-living fingerprint.
  • imaging an optical signal reflected from the object when the objects on the fingerprint collection area are irradiated with light of multiple wavelengths respectively includes: according to light of the multiple wavelengths When the fingerprint collection area is sequentially illuminated at different times, the optical signal reflected from the object is imaged.
  • imaging an optical signal reflected from the object when the objects on the fingerprint collection area are irradiated with light of multiple wavelengths respectively includes: according to the light of the multiple wavelengths When the sub-regions in the fingerprint collection area are irradiated at the same time, the optical signal reflected from the object is imaged.
  • the embodiments of the present application do not make any limitation on the positional relationship and size between the sub-regions irradiated with light of different wavelengths.
  • the plurality of sub-regions may be distributed from the center of the fingerprint collection region to the surroundings.
  • a certain sub-region of the plurality of sub-regions has a suitable area, and the optical signal of the corresponding wavelength from the sub-region can carry information of the fingerprint image of a sufficient area to be used for matching of the fingerprint image at the same time.
  • determining whether the object is a living fingerprint or a non-living fingerprint based on multiple images obtained by imaging includes: calculating the first parameter based on the image data of each image in the multiple images; based on the first Parameters to determine whether the object is a living fingerprint or a non-living fingerprint.
  • the image data of each image may be, for example, light intensity information corresponding to the image for imaging.
  • judging whether the object is a living fingerprint or a non-living fingerprint based on multiple images obtained by imaging includes: performing image fusion on the multiple images obtained by imaging to obtain a fusion image; and judging the object based on the fusion image Whether the object is a living fingerprint or a non-living fingerprint.
  • the fusion image obtained after image fusion of the multiple images can be sent to a deep learning network, and the deep learning network determines whether the object is a living fingerprint or a non-living fingerprint and outputs the result.
  • the method further includes: performing fingerprint image matching according to the first image of the plurality of images; if the matching is successful and the object is determined to be a living fingerprint, it is determined that the fingerprint recognition is successful.
  • the first image may be, for example, an image obtained by imaging an optical signal reflected from the object when the object is irradiated with light of a default wavelength among the plurality of wavelengths.
  • the default wavelength may be, for example, the wavelength corresponding to the highest quality image when the finger approaches the display screen in the most customary manner, such as the wavelength of the green light band.
  • the embodiment of the present application does not make any limitation on the sequence of performing fingerprint image matching and fingerprint authenticity determination.
  • FIG. 11 shows an example flowchart of a fingerprint identification method according to an embodiment of the present application. Taking two wavelengths ⁇ 1 and ⁇ 2 as an example in FIG. 11, in actual application, more than two wavelengths may be selected for fingerprint recognition according to actual application scenarios.
  • step 1110 the object presses the fingerprint collection area.
  • step 1120 controls the light source emits light having a wavelength of ⁇ 1, and the imaging optical signal reflected from the object, to obtain the first image.
  • step 1130 the handover source emits light having a wavelength of ⁇ 2, and the imaging optical signal reflected from the object to obtain a second image.
  • step 1140 the first image is matched.
  • step 1150 is performed; if the matching fails, the fingerprint recognition fails.
  • step 1150 the first parameter is calculated based on the image data of the first image and the second image.
  • step 1160 the magnitude relationship between the value of the first parameter and the threshold is compared to determine whether the object is a living fingerprint or a non-living fingerprint.
  • the object is determined to be a living fingerprint; if the value of the first parameter is less than or equal to the threshold, the object is determined to be a non-living fingerprint.
  • fingerprint recognition is successful; if the object is judged to be a non-living fingerprint, fingerprint recognition fails.
  • step 1120 and step 1130 may also be replaced by step 1170.
  • the light source is controlled to emit light of wavelength ⁇ 1 and light of wavelength ⁇ 2 simultaneously.
  • the light with the wavelength ⁇ 1 illuminates the first sub-region in the fingerprint recognition area, and the optical signal reflected by the first sub-region is imaged to obtain the first image.
  • the light with the wavelength ⁇ 2 illuminates the second sub-region in the fingerprint recognition region, and images the light signal reflected by the second sub-region to obtain a second image.
  • step 1150 and step 1160 can also be replaced by step 1180 and step 1190, respectively.
  • step 1180 image fusion is performed on the first image and the second image to obtain a fused image.
  • step 1190 the fused image is sent to a deep learning network, and the deep learning network determines whether the object is a living fingerprint or a non-living fingerprint.
  • step 1140 may also be performed after step 1160. If it is determined in step 1160 that the object is a living fingerprint, then next step 1140 is performed to determine whether the living fingerprint is an authorized user's finger fingerprint. Alternatively, step 1140 and step 1150 are performed simultaneously.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a display screen and the fingerprint identification devices in the various embodiments of the present application described above.
  • the display screen may use the display screen described above, such as an LCD display screen or an OLED display screen.
  • the display screen is an OLED display screen
  • the light-emitting layer of the display screen includes a plurality of organic light-emitting diode light sources, wherein the fingerprint identification device uses at least part of the organic light-emitting diode light sources as the excitation light source for fingerprint identification.
  • the electronic device may be a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, an in-vehicle electronic device, or a wearable smart device.
  • the wearable smart device includes full functions, large size, and Rely on smartphones to achieve complete or partial functions, such as smart watches or smart glasses, and only focus on a certain type of application functions, which need to be used in conjunction with other devices such as smart phones, such as various smart bracelets for sign monitoring, Smart jewelry and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本申请实施例提供了一种指纹识别方法、指纹识别装置和电子设备,能够在指纹识别过程中区分所检测的指纹为活体指纹还是非活体指纹,提高了指纹识别的安全性。该指纹识别方法包括:根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像;根据所述多幅图像判断所述物体为活体指纹还是非活体指纹。

Description

指纹识别方法、指纹识别装置和电子设备 技术领域
本申请涉及信息技术领域,并且更具体地,涉及一种指纹识别方法、指纹识别装置和电子设备。
背景技术
随着科学技术的快速发展,指纹识别技术已经广泛应用到移动终端、智能家居等各个领域。目前,在指纹识别时,采用一定波长的可见光照射生物特征,利用可见光的反射成像原理,将携带生物特征信息的反射光信号传送给传感器进行采集,根据采集的信息与事先注册存储的生物特征进行对比来确认用户身份的合法性。
但是日常生活中,人们不可避免地会在很多场景下会遗留个人指纹,他人一旦获取这些个人指纹并进行仿造,就可以用来解锁电子设备并盗取个人敏感信息,使用假指纹进行支付时还会导致严重的财产损失。
因此,如何区分真假指纹成为一个亟待解决的问题。
发明内容
本申请实施例提供了一种指纹识别方法、指纹识别装置和电子设备,能够区分所检测的指纹为活体指纹还是非活体指纹,提高了指纹识别的安全性。
第一方面,提供了一种指纹识别的方法,包括:根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像;根据所述多幅图像判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,包括:根据所述多个波长的光在不同时刻依次照射所述指纹采集区域时从所述物体反射的光信号进行成像。
在一种可能的实现方式中,所述根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,包括:根据所述多个波长的光在同一时刻分别照射所述指纹采集区域内的多个子区域时 从所述物体反射的光信号进行成像。
在一种可能的实现方式中,所述多个子区域由所述指纹采集区域的中心向四周分布。
在一种可能的实现方式中,所述根据所述多幅图像判断所述物体为活体指纹还是非活体指纹,包括:根据所述多幅图像中各幅图像的图像数据,计算第一参数;根据所述第一参数,判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述根据所述多幅图像判断所述物体为活体指纹还是非活体指纹,包括:对所述多幅图像进行图像融合,得到融合图像;根据所述融合图像判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述方法还包括:根据所述多幅图像中的第一图像进行指纹图像的匹配;若匹配成功且判断所述物体为活体指纹,则确定指纹识别成功。
在一种可能的实现方式中,所述第一图像为根据所述多个波长中的默认波长的光照射所述物体时从所述物体反射的光信号进行成像得到的图像。
在一种可能的实现方式中,所述多个波长的光包括红光、绿光和蓝光中的至少两种。
在一种可能的实现方式中,所述多个波长的光来自有机发光二极管显示屏OLED中的至少部分OLED光源。
第二方面,提供了一种指纹识别装置,包括:光学指纹传感器,用于根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像,其中,所述多幅图像用于判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述光学指纹传感器具体用于:根据所述多个波长的光在不同时刻依次照射所述指纹采集区域时从所述物体反射的光信号进行成像。
在一种可能的实现方式中,所述光学指纹传感器具体用于:根据所述多个波长的光在同一时刻分别照射所述指纹采集区域内的多个子区域时从所述物体反射的光信号进行成像。
在一种可能的实现方式中,所述多个子区域由所述指纹采集区域的中心向四周分布。
在一种可能的实现方式中,所述指纹识别装置还包括:处理器,用于根 据成像得到的多幅图像判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述处理器具体用于:对成像得到的所述多幅图像进行图像融合,得到融合图像;根据所述融合图像判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述处理器具体用于:根据所述多幅图像中各幅图像的图像数据,计算第一参数;根据所述第一参数,判断所述物体为活体指纹还是非活体指纹。
在一种可能的实现方式中,所述处理器还用于:根据所述多幅图像中的第一图像进行指纹图像的匹配;若匹配成功且判断所述物体为活体指纹,则确定指纹识别成功。
在一种可能的实现方式中,所述第一图像为根据所述多个波长中的默认波长的光照射所述物体时从所述物体反射的光信号进行成像得到的图像。
在一种可能的实现方式中,所述多个波长的光包括红光、绿光和蓝光中的至少两种。
在一种可能的实现方式中,所述多个波长的光来自有机发光二极管显示屏OLED中的至少部分OLED光源。
第三方面,提供了指纹识别的电子设备,包括第二方面或第二方面的任意可能的实现方式中的指纹识别装置。
基于上述技术方案,基于活体指纹和非活体指纹对不同波长的光信号的吸收和反馈的不同,通过对不同波长的光信号成像得到的多幅图像进行处理,可以获得指纹的颜色信息,从而分辨出该指纹是来自人类手指的活体指纹还是伪造的非活体指纹,提升了指纹识别的安全性。
附图说明
图1是本申请可以适用的电子设备的平面示意图。
图2是图1所示的电子设备沿A-A’的部分剖面示意图。
图3(a)、图3(b)和图3(c)是常见的假指纹示意图。
图4是活体指纹和模拟活体指纹仿造的非活体指纹的示意图。
图5是本申请实施例的指纹识别装置的示意图。
图6是本申请实施例的OLED显示屏的波长示意图。
图7是本申请实施例的分时采集方式的光斑示意图。
图8是本申请实施例的分区采集方式的光斑示意图。
图9是基于本申请实施例的方法得到的活体指纹和非活体指纹的指纹图像的示意图。
图10是本申请实施例的指纹识别方法的示意性流程图。
图11是本申请实施例的指纹识别方法的示例流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种电子设备,例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹识别装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display或者Under-screen)光学指纹系统。
图1和图2示出了本申请实施例的指纹识别装置可以适用的一种电子设备100的示意图,其中图1为电子设备100的正面示意图,图2为图1所示的电子设备100沿A-A’的部分剖面结构示意图。
如图1所示和图2所示,该电子设备100包括显示屏120和光学指纹识别装置(后面也简称为指纹识别装置)130,其中,所述光学指纹识别装置130具有一个或多个感应阵列,所述感应阵列至少设置在所述显示屏120下方的局部区域,从而使得所述光学指纹识别装置130的指纹采集区域(或感应区域)103至少部分位于所述显示屏120的显示区域102。
应当理解,所述指纹采集区域103的面积可以与所述光学指纹识别装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹识别装置130的指纹采集区域103的面积大于所述光学指纹识别装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹识别装置130的指纹采集区域103也可以设计成与所 述光学指纹识别装置130的感应阵列的面积相一致。
如图1所示,所述指纹采集区域103位于所述显示屏120的显示区域102之中,因此,使用者在需要对所述电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹采集区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备100无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域102可以基本扩展到整个电子设备100的正面。
作为一种实施例中,所述显示屏120可以为自发光显示屏,其采用自发光显示单元作为显示像素,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹识别装置130可以利用所述OLED显示屏120位于所述指纹识别区域103的OLED显示单元(即OLED光源)作为光学指纹检测的激励光源。
在其他实施例中,所述光学指纹识别装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹识别装置130可以适用于非自发光显示屏,比如液晶显示屏(Liquid Crystal Display,LCD)或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述电子设备100的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述电子设备100的保护盖板下方的边缘区域,而所述光学指纹识别装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹识别装置130;或者,所述光学指纹识别装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹识别装置130。
并且,所述光学指纹识别装置130的感应阵列具体为光探测器(Photodetector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。当手指触摸、按压或者接近(为便于 描述,本申请统称为触摸)在所述指纹识别区域103时,所述指纹识别区域103的显示单元发出的光线在手指表面的指纹发生反射并形成反射光,其中所述手指指纹的纹脊和纹谷的反射光是不同的,反射光从所述显示屏120并被所述光探测器阵列所接收并转换为相应的电信号,即指纹检测信号。基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述电子设备100实现光学指纹识别功能。
应当理解的是,在具体实现上,所述电子设备100还包括透明保护盖板110,所述盖板110可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备100的正面。因此,本申请实施例中,所谓的手指触摸、按压或者接近在所述显示屏120实际上是指手指触摸、按压或者接近在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。另外,所述电子设备100还可以包括触摸传感器,所述触摸传感器可以具体为触控面板,其可以设置在所述显示屏120表面,也可以部分或者整体集成到所述显示屏120内部,即所述显示屏120具体为触控显示屏。
作为一种可选的实现方式,如图2所示,所述光学指纹识别装置130包括光学检测单元134和光学组件132,所述光学检测单元134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die);即所述光学检测单元134可以制作在光学成像芯片或者图像传感芯片(后面也称为光学指纹传感器或光学指纹传感器芯片)。所述光学组件132可以设置在所述光学检测单元134的感应阵列的上方,其可以具体包括光学滤波器(或者滤波片、滤光片(Filter))、光路引导结构以及其他光学元件,所述滤光片可以用于滤除穿透手指的环境光,而所述光路引导结构主要用于对向下传播的光线进行准直、调制或者汇聚等光路引导以实现将从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光学检测单元134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光学检测单元134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。其中,所述光学组件132的光路引导结构有多种实现方案,比如可以具体为在半导体硅片或者其 他基材制作而成的光路调制器或者光路准直器,其具有多个光路调制单元或者准直单元,所述光路调制单元或者准直单元可以具体为微孔阵列。或者,所述导光层也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组(下面也称为镜头组)。从手指反射回来的反射光经所述微孔阵列或者所述透镜单元进行光路准直或者汇聚之后,并被其下方的光学感应单元接收,据此,所述感应阵列可以检测出手指的指纹图像。
所述光学指纹识别装置130的下方还可以设置有电路板140,比如软性电路板(Flexible Printed Circuit,FPC),所述光学指纹识别装置130例如可以通过焊盘焊接到所述电路板140,并通过所述电路板140实现与其他外围电路或者所述电子设备100的其他元件的电性互连和信号传输。比如,所述光学指纹识别装置130可以通过所述电路板140接收所述电子设备100的处理单元的控制信号,并且还可以通过所述电路板140将所述指纹检测信号输出给所述电子设备100的处理单元或者控制单元等。
对于传统的指纹识别方法来说,指纹识别过程中需要获取手指的指纹图像,并将该指纹图像与指纹库中的指纹进行匹配,若匹配成功则执行解锁操作。但是,只要通过特殊材料制作与该手指的指纹图像相同的假指纹层,就能轻易地破解指纹密码。如图3(a)至图3(c)所示,市面上常见的可以用来制作假指纹层的方法包括三种:(a)2D复印类假指纹:对日常生活常会遗留个人印泥指纹例如合同、借条、协议书上的指纹等,进行镜像复印/打印从而制作假指纹,此类假指纹易于获取,制作简单,成本低廉,且图像匹配成功率高;(b)2D提取类假指纹:在手机屏幕、玻璃杯等物品上残留的指纹信息,可通过专业手段进行提取,扫描并打印制作成假指纹,此类假指纹易于获取,但制作难度高,图像匹配成功率低;(c)3D类假指纹:将指纹按压到塑形磨具上,通过导电黑胶、白胶、木胶、硅胶等按压到磨具生成3D假指纹,此类假指纹不易获取,制作难度中等,成本低廉,图像匹配成功率高,但需要真实注册用户配合采集。
图4是使用光学指纹识别技术所采集到的真假指纹的指纹图像。当物体触摸、按压或者接近(为便于描述,在本申请中统称为按压)指纹采集区域时,可见光源发射的可见光经过与指纹采集区域接触的物体的反射,形成包含指纹特征信息的光信号,光学指纹传感器接收该反射光线,利用光的反射 成像原理进行指纹识别。
但是,从图4可以看出,使用通常的光学指纹识别技术获得的指纹图像中,真指纹和假指纹的指纹图像的相似度极高,很难进行区分。
在进行指纹识别的过程中,不仅需要对指纹图像进行匹配,还需要分辨出指纹图像的来自活体指纹还是非活体指纹,本申请实施例提供了一种基于多波长检测的指纹识别的技术方案,在对指纹图像进行匹配的基础上,还能够判断该指纹图像来自活体指纹还是非活体指纹。
本申请实施例中,将真指纹也称为活体指纹,相应地,将假指纹也称为非活体指纹。
图5示出了本申请实施例的指纹识别装置的示意图。如图5所示,该指纹识别装置500可以包括光学指纹传感器510。
该光学指纹传感器510用于根据多个波长的光分别照射指纹采集区域时从该指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像。
其中,光学指纹传感器510成像得到的该多幅图像用于判断该物体为活体指纹还是非活体指纹。
该多个波长包括至少两个不同波长。
该实施例中,光学指纹传感器510根据从物体反射的不同波长的光信号进行成像,由于活体指纹和非活体指纹的材料特性的差异,导致活体指纹和非活体指纹对不同波长的光信号的吸收和反馈也不相同。基于这种差异,可以对成像得到的该多幅图像进行处理,以获得指纹在色彩维度上的信息,从而分辨出该物体是来自人类手指的活体指纹还是伪造的非活体指纹。
该多个波长的光例如可以包括红光、绿光、蓝光、或者基于红绿蓝(RedGreenBlue,RGB)形成的其他颜色的光。需要使用至少两种不同波长的光照射物体,光学指纹传感器510获得该物体反射的至少两种不同波长的光信号,从而形成至少两幅指纹图像用来判断指纹真伪。该至少两种不同波长可以包括红光波长、绿光波长、蓝光波长、以及其他基于RGB形成的混合颜色的波长中的至少两种。
自发光显示屏的发光单元可以提供不同波段的光,例如OLED显示屏的发光单元可以提供红、绿、蓝三种不同波段的光。当OLED显示屏作为指纹检测的激励光源时,OLED显示屏发出不同波长的光分别照射指纹采集区域上方的物体,由该物体反射的不同波长的光信号穿过显示屏到达显示屏下方 的指纹识别装置,分别被该指纹识别装置中的光学指纹传感器成像,形成与多个波长分别对应的多幅图像。对于其他电子设备例如光学指纹门锁、光学指纹打卡机等设备中的光学指纹系统来说,还可以提供其他不同颜色的补光。图6所示为一种OLED显示屏的波长分布,其中该OLED显示屏可以提供红色、绿色和蓝色三种不同波段的光,其中的红光、绿光和蓝光波段的光强如图6所示。
当然,该指纹识别装置也可以采用内置光源或者外置光源来提供不同波长的光,这些光源就作为指纹检测的激励光源。这时,该指纹识别装置可以适用于非自发光显示屏,例如液晶显示屏。这里对光源和光学指纹传感器的相对位置关系并不做限定,光源和光学指纹传感器可以并排放置于显示屏下方,或者按照其他方式放置,只要能够实现对物体的指纹图像的采集即可。
本申请实施例提供两种指纹图像的采集方式,即分时采集方式和分区采集方式。光学指纹传感器510可以使用任一种方式,根据物体反射的多个波长的光信号进行成像以得到多幅图像。下面结合图7和图8分别对这两种方式进行说明。
方式1分时采集方式
该方式中,该光学指纹传感器根据多个波长的光在不同时刻依次照射该指纹采集区域时从该物体反射的光信号进行成像,得到该多幅图像。
以图7为例,假设采用绿光、红光和蓝光进行指纹信息的采集。当触发指纹采集时,先打出某个波段的背景光,例如中心波长为525nm的绿光。该绿光照射指纹采集区域上方的物体,并触发光学指纹识别装置采集该物体反射的光信号得到第一幅图像。
对绿光的光信号采集完毕后,立即切换至另一波段的背景光,例如中心波长为625nm的红光。该红光照射指纹采集区域上方的物体,光学指纹识别装置采集该物体反射的光信号得到第二幅图像。
对红光的光信号采集完毕后,立即切换至另一波段的背景光,例如中心波长为450nm的蓝光。该蓝光照射指纹采集区域上方的物体,光学指纹识别装置采集该物体反射的光信号得到第三幅图像。
图7所示分别为在时刻T1、时刻T2和时刻T3时,照射在指纹采集区域内的不同颜色的补光光斑的示意图。在T1时刻,照射在指纹采集区域上的光为绿光;在T2时刻,照射在指纹采集区域上的光为红光;在T3时刻, 照射在指纹采集区域上的光为蓝光。每种颜色的补光光斑照射在指纹识别区域时,光学指纹传感器根据指纹识别区域上方的物体反射的光信号获得一幅指纹图像。根据得到的三幅图像可以判断该物体是活体指纹还是非活体指纹。
方式2分区采集方式
该方式中,该光学指纹传感器根据多个波长的光在同一时刻分别照射该指纹采集区域内的多个子区域时从该物体反射的光信号进行成像,得到该多幅图像。
其中,每幅图像基于一种波长的光得到,且该幅图像携带该波长对应的子区域内的指纹信息。
本申请实施例对不同波长的光所照射的子区域之间的位置关系和大小不做任何限定。例如,该多个子区域可以由该指纹采集区域的中心向四周分布,或者也可以按照其他分布方式。其中,每个波长对应的子区域可以是连续的或者也可以是离散的。
以图8为例,仍假设采用绿光、红光和蓝光进行指纹图像的采集。指纹采集区域包括与绿光、红光和蓝光分别对应的三个子区域,分别记为绿光区域、红光区域和蓝光区域。其中,绿光区域为指纹采集区域中心的一块圆形区域,红光区域为包围绿光区域的一块环形区域,蓝光区域为包围红光区域的一块环形区域。
当触发指纹识别时,同时打出绿光、红光和蓝光,该绿光照射指纹采集区域内的绿光区域,该红光照射指纹采集区域内的红光区域,该蓝光照射指纹采集区域内的蓝光区域。光学指纹传感器采集该物体反射的光信号,并根据该物体反射的绿光的光信号得到第一幅图像,根据该物体反射的红光的光信号得到第二幅图像,根据该物体反射的蓝光的光信号得到第三幅图像。其中,第一幅图像携带位于绿光区域内的指纹信息,第二幅图像携带位于红光区域内的指纹信息,第三幅图像携带位于蓝光区域内的指纹信息。根据得到的这三幅图像可以判断该物体是活体指纹还是非活体指纹。这里认为待测物体的颜色是均匀的。
应注意,不同波长的光可以在同一时刻也可以在不同时刻依次照射其对应的子区域。但是,不同波长的光所照射的子区域之间应当不重叠,例如图8所示的三个子区域之间不重叠。
在上述方式1中,每幅图像包括指纹采集区域内的完整的指纹图像,因 此,除判断真假指纹外,还可以方便地使用其中的某幅图像来进行指纹识别;在上述的方式2中,由于多个波长的光是在同一时刻照射各自对应的子区域,因此可以更高效地获取待测物体的颜色信息用来判断真假指纹。在具体实现中,可以根据需求选择合适的方式判断真假指纹。
可选地,在本申请一个实施例中,该指纹识别装置还包括处理器520,该处理器520用于:根据成像得到的该多幅图像判断该物体为活体指纹还是非活体指纹。
该处理器可以是电子设备的处理器,也可以是单独设置的用于指纹识别的处理器,本申请实施例对此并不限定。
本申请实施例提供两种根据上述多幅图像判断该物体为活体指纹还是非活体指纹的方式,下面分别进行描述。
方式1
该处理器520具体用于:对成像得到的该多幅图像进行图像融合,得到融合图像;并根据该融合图像判断该物体为活体指纹还是非活体指纹。
例如,处理器对这多幅图像进行图像融合后得到的融合图像,可以被送入深度学习网络例如卷积神经网络,并由该深度学习网络判断该物体为活体指纹还是非活体指纹并输出结果。
其中,该深度学习网络可以通过训练得到。例如,采集各种类型的活体指纹和非活体指纹作为训练样本,并将训练样本输入深度学习网络,根据该深度学习网络输出的结果与实际期望得到的结果之间的差异,对该深度学习网络进行调整,通过大量的训练学习使该深度学习网络能够有效地分辨指纹图像的真伪。
这里对图像融合的具体方式不做限定,例如可以采用简单组合式图像融合方法、逻辑滤波器法等空间域融合方法,也可以采用高通滤波法、小波变换法等变换域融合方法。
例如图9所示,其左侧为活体指纹的融合图像,右侧为非活体指纹的融合图像。该融合图像包括了色彩维度的信息,其中活体指纹的融合图像显示的颜色与人手指的指纹颜色基本一致,接近于肉色。而非活体指纹的融合图像显示的颜色更接近于非活体指纹的制作材料的颜色。将低分辨率彩色的融合图像送入深度学习网络进行指纹真伪的判断,可以实时快速地输出判断结果。
方式2
该处理器520具体用于:根据该多幅图像中各幅图像的图像数据,计算第一参数;根据该第一参数,判断该物体为活体指纹还是非活体指纹。
可选地,处理器520可以根据该第一参数的值是否位于预设的数值范围内,来判断该物体为活体指纹还是非活体指纹;或者,处理器520可以根据该第一参数的值与预设阈值之间的大小关系,判断该物体为活体指纹还是非活体指纹。
其中,每幅图像的图像数据例如可以是该幅图像对应的用于成像的光强信息。
由于非活体指纹对不同颜色的光的吸收和反射性能,与活体指纹对不同颜色的光的吸收和反射性能不同,因此,活体指纹和非活体指纹各自对应的每幅图像的图像数据也不同,根据多幅图像的图像数据得到的该第一参数的值也不同。
举例来说,假设采用绿光和红光进行指纹真伪的判断。绿光照射物体时光学指纹传感器对该物体反射的绿光的光信号成像得到一幅图像,该幅图像的图像数据包括该幅图像各个像素点(假设包括N个像素点)的光强信息,其中第i个像素点的光强记作R i。红光照射该物体时光学指纹传感器对该物体反射的红光的光信号成像得到另一幅图像,该幅图像的图像数据包括该幅图像各个像素点(假设包括M个像素点)的光强信息,其中第j个像素点的光强记作R j。M=N或者M≠N。
例如,采用分区采集方式,M≠N,可以设定该第一参数K为:
Figure PCTCN2018122476-appb-000001
又例如,采用分时采集方式,M=N,可以设定该第一参数K为:
Figure PCTCN2018122476-appb-000002
其中,Base为预设值,例如可以等于背景光强。
其中,r 1为绿光的融合系数,r 2为红光的融合系数。例如,参考图6,OLED屏发出的绿光强度与OLED屏发出的红光强度之比约为5:4,那么可以设置r 1=0.45,r 2=0.55。
通过计算K的值,当K大于预设的阈值时,判断该物体为活体指纹,当该第一参数K小于该阈值时,判断该物体为非活体指纹。
可选地,在本申请一个实施例中,该处理器520还用于:根据该多幅图像中的第一图像进行指纹图像的匹配;若匹配成功且判断该物体为活体指纹,则确定指纹识别成功。
其中,该第一图像例如可以为根据该多个波长中的默认波长的光照射该物体时从该物体反射的光信号进行成像得到的图像。该默认波长例如可以是手指以最习惯的方式接近显示屏时,能够获取最高质量的图像所对应的波长,比如绿光波段的波长。
本申请实施例中的指纹识别不仅包括对指纹图像的匹配,还包括对指纹真伪的判断。光学指纹传感器成像得到的多幅图像中的第一图像可以用来进行图像匹配。如果该第一图像与指纹库中的指纹图像匹配成功,表明该第一图像为授权用户的指纹图像,如果通过前述方法还判断该第一图像为活体指纹的图像,则认为指纹识别成功;如果指纹库中没有与该第一图像匹配的指纹图像,即该第一图像并非授权用户的指纹图像,或者判断该第一图像为非活体指纹的图像时,均认为指纹识别失败。
例如,当采用分时采集方式时,该默认波长可以为该多个波长中第一个照射该物体的光的波长。例如,在图7中,该默认波长的光可以为第一次照射该物体的绿光,该第一图像为根据该绿光照射该物体时从该物体反射的光信号进行成像得到的图像。
又例如,当采用分区采集方式时,该默认波长的光可以作为该多个波长中对应子区域面积最大的波长。例如,在图8中,该默认波长的光可以为照射指纹采集区域中心的圆形大面积区域的绿光,该第一图像为根据该物体反射的绿光的光信号进行成像得到的图像。这时,该第一图像为三幅图像中携带指纹信息最多的图像。
本申请实施例的指纹识别装置可以先进行指纹图像的匹配,并在指纹图像匹配成功时再判断其为活体指纹还是非活体指纹的指纹图像;或者,该指纹识别装置也可以先判断待测物体为活体指纹还是非活体指纹,并在确定该物体为活体指纹时,再对该活体指纹的指纹图像进行匹配。本申请实施例对此不做限定。
图10示出了本申请一个实施例的指纹识别方法的示意性流程图。图10所示的指纹识别方法可以由前述本申请实施例中的指纹识别装置执行,相关描述可以参考前述实施例,为了简洁,这里不再赘述。
如图10所示,该指纹识别方法1000可以包括如下步骤。
在1010中,根据多个波长的光分别照射指纹采集区域时从该指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像。
在1020中,根据该多幅图像判断该物体为活体指纹还是非活体指纹。
该多个波长包括至少两个不同波长。
由于活体指纹和非活体指纹的材料特性的差异,导致活体指纹和非活体指纹对不同波长的光信号的吸收和反馈也不相同,基于这种差异,可以对成像得到的该多幅图像进行处理,以获得指纹在色彩维度上的信息,从而分辨出该物体是来自人类手指的活体指纹还是伪造的非活体指纹。
在进行指纹图像的采集时,可以采用分时采集方式和分区采集方式。
可选地,当采用分时采集方式时,在1010中,根据多个波长的光分别照射指纹采集区域上的物体时从该物体反射的光信号进行成像,包括:根据该多个波长的光在不同时刻依次照射该指纹采集区域时从该物体反射的光信号进行成像。
可选地,当采用分区采集方式时,在1010中,根据多个波长的光分别照射指纹采集区域上的物体时从该物体反射的光信号进行成像,包括:根据该多个波长的光在同一时刻分别照射该指纹采集区域内的多个子区域时从该物体反射的光信号进行成像。
本申请实施例对不同波长的光所照射的子区域之间的位置关系和大小不做任何限定。例如,该多个子区域可以由该指纹采集区域的中心向四周分布。优选地,该多个子区域中的某个子区域具有合适的面积,来自该子区域的对应波长的光信号能够携带足够面积的指纹图像的信息以同时用于指纹图像的匹配。
可选地,在1020中,根据成像得到的多幅图像判断该物体为活体指纹还是非活体指纹,包括:根据该多幅图像中各幅图像的图像数据,计算第一参数;根据该第一参数,判断该物体为活体指纹还是非活体指纹。
其中,每幅图像的图像数据例如可以是该幅图像对应的用于成像的光强信息。
可选地,在1020中,根据成像得到的多幅图像判断该物体为活体指纹还是非活体指纹,包括:对成像得到的该多幅图像进行图像融合,得到融合图像;根据该融合图像判断该物体为活体指纹还是非活体指纹。
例如,对这多幅图像进行图像融合后得到的融合图像,可以被送入深度学习网络,并由该深度学习网络判断该物体为活体指纹还是非活体指纹并输出结果。
可选地,该方法还包括:根据该多幅图像中的第一图像进行指纹图像的匹配;若匹配成功且判断该物体为活体指纹,则确定指纹识别成功。
其中,该第一图像例如可以为根据该多个波长中的默认波长的光照射该物体时从该物体反射的光信号进行成像得到的图像。该默认波长例如可以是手指以最习惯的方式接近显示屏时,能够获取最高质量的图像所对应的波长,比如绿光波段的波长。
本申请实施例对执行指纹图像的匹配和指纹真伪的判断的先后顺序不做任何限定。
图11示出了本申请一个实施例的指纹识别方法的示例流程图。图11中以两个波长λ 1和λ 2为例,实际应用中可根据实际应用场景的选择多于两个波长用来进行指纹识别。
在步骤1110中,物体按压指纹采集区域。
在步骤1120中,控制光源发出波长λ 1的光,并根据该物体反射的光信号进行成像,得到第一幅图像。
在步骤1130中,切换光源发出波长λ 2的光,并根据该物体反射的光信号进行成像,得到第二幅图像。
在步骤1140中,对第一幅图像进行匹配。
若与指纹库中录入的指纹图像匹配成功,则执行步骤1150;若匹配失败,则指纹识别失败。
在步骤1150中,根据第一幅图像和第二幅图像的图像数据,计算第一参数。
在步骤1160中,比较第一参数的值与阈值之间的大小关系,判断该物体为活体指纹还是非活体指纹。
例如,如果第一参数的值大于该阈值,则判断该物体为活体指纹;如果该第一参数的值小于或等于该阈值,则判断该物体为非活体指纹。
进一步地,若判断该物体为活体指纹,则指纹识别成功;若判断该物体为非活体指纹,则指纹识别失败。
可选地,步骤1120和步骤1130也可以由步骤1170代替。在步骤1170 中,控制光源同时发出波长λ 1的光和波长λ 2的光。其中,波长λ 1的光照射指纹识别区域中的第一子区域,对第一子区域反射的光信号成像得到第一幅图像。波长λ 2的光照射指纹识别区域中的第二子区域,对第二子区域反射的光信号成像得到第二幅图像。
可选地,步骤1150和步骤1160也可以分别由步骤1180和步骤1190代替。其中,在步骤1180中,对第一幅图像和第二幅图像进行图像融合,得到融合图像。在步骤1190中,将该融合图像送入深度学习网络,由深度学习网络判断该物体为活体指纹还是非活体指纹。
应理解,图11中的各个步骤的顺序并不是固定的,也可以按照其他的顺序来执行,并且可能并非执行图11中的全部操作。例如,步骤1140也可以在步骤1160之后执行。若在步骤1160中判断该物体为活体指纹,则接下来执行1140来判断该活体指纹是否为授权用户的手指指纹。或者,步骤1140与步骤1150同时执行。
本申请实施例还提供了一种电子设备,该电子设备包括显示屏以及上述本申请各种实施例中的指纹识别装置。
可选地,该显示屏可以采用以上描述中的显示屏,例如LCD显示屏或者OLED显示屏。该显示屏为OLED显示屏时,该显示屏的发光层包括多个有机发光二极管光源,其中该指纹识别装置采用至少部分有机发光二极管光源作为指纹识别的激励光源。
作为示例而非限定,所述电子设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、车载电子设备或穿戴式智能设备等,该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护 范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种指纹识别方法,其特征在于,包括:
    根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像;
    根据所述多幅图像判断所述物体为活体指纹还是非活体指纹。
  2. 根据权利要求1所述的方法,其特征在于,所述根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,包括:
    根据所述多个波长的光在不同时刻依次照射所述指纹采集区域时从所述物体反射的光信号进行成像。
  3. 根据权利要求1所述的方法,其特征在于,所述根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,包括:
    根据所述多个波长的光在同一时刻分别照射所述指纹采集区域内的多个子区域时从所述物体反射的光信号进行成像。
  4. 根据权利要求3所述的方法,其特征在于,所述多个子区域由所述指纹采集区域的中心向四周分布。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述多幅图像判断所述物体为活体指纹还是非活体指纹,包括:
    根据所述多幅图像中各幅图像的图像数据,计算第一参数;
    根据所述第一参数,判断所述物体为活体指纹还是非活体指纹。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述多幅图像判断所述物体为活体指纹还是非活体指纹,包括:
    对所述多幅图像进行图像融合,得到融合图像;
    根据所述融合图像判断所述物体为活体指纹还是非活体指纹。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述多幅图像中的第一图像进行指纹图像的匹配;
    若匹配成功且判断所述物体为活体指纹,则确定指纹识别成功。
  8. 根据权利要求7所述的方法,其特征在于,所述第一图像为根据所述多个波长中的默认波长的光照射所述物体时从所述物体反射的光信号进 行成像得到的图像。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述多个波长的光包括红光、绿光和蓝光中的至少两种。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述多个波长的光来自有机发光二极管显示屏OLED中的至少部分OLED光源。
  11. 一种指纹识别装置,其特征在于,包括:
    光学指纹传感器,用于根据多个波长的光分别照射指纹采集区域时从所述指纹采集区域上方的物体反射的光信号进行成像,得到多幅图像,其中,所述多幅图像用于判断所述物体为活体指纹还是非活体指纹。
  12. 根据权利要求11所述的指纹识别装置,其特征在于,所述光学指纹传感器具体用于:
    根据所述多个波长的光在不同时刻依次照射所述指纹采集区域时从所述物体反射的光信号进行成像。
  13. 根据权利要求11所述的指纹识别装置,其特征在于,所述光学指纹传感器具体用于:
    根据所述多个波长的光在同一时刻分别照射所述指纹采集区域内的多个子区域时从所述物体反射的光信号进行成像。
  14. 根据权利要求13所述的指纹识别装置,其特征在于,所述多个子区域由所述指纹采集区域的中心向四周分布。
  15. 根据权利要求11至14中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    处理器,用于根据所述多幅图像判断所述物体为活体指纹还是非活体指纹。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述处理器具体用于:
    对所述多幅图像进行图像融合,得到融合图像;
    根据所述融合图像判断所述物体为活体指纹还是非活体指纹。
  17. 根据权利要求16所述的指纹识别装置,其特征在于,所述处理器具体用于:
    根据所述多幅图像中各幅图像的图像数据,计算第一参数;
    根据所述第一参数,判断所述物体为活体指纹还是非活体指纹。
  18. 根据权利要求15至17中任一项所述的指纹识别装置,其特征在于,所述处理器还用于:
    根据所述多幅图像中的第一图像进行指纹图像的匹配;
    若匹配成功且判断所述物体为活体指纹,则确定指纹识别成功。
  19. 根据权利要求18所述的指纹识别装置,其特征在于,所述第一图像为根据所述多个波长中的默认波长的光照射所述物体时从所述物体反射的光信号进行成像得到的图像。
  20. 根据权利要求11至19中任一项所述的指纹识别装置,其特征在于,所述多个波长的光包括红光、绿光和蓝光中的至少两种。
  21. 根据权利要求11至20中任一项所述的指纹识别装置,其特征在于,所述多个波长的光来自有机发光二极管显示屏OLED中的至少部分OLED光源。
  22. 一种电子设备,其特征在于,包括:根据权利要求11至20中任一项所述的指纹识别装置。
PCT/CN2018/122476 2018-12-20 2018-12-20 指纹识别方法、指纹识别装置和电子设备 WO2020124511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880003000.3A CN109716353A (zh) 2018-12-20 2018-12-20 指纹识别方法、指纹识别装置和电子设备
PCT/CN2018/122476 WO2020124511A1 (zh) 2018-12-20 2018-12-20 指纹识别方法、指纹识别装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122476 WO2020124511A1 (zh) 2018-12-20 2018-12-20 指纹识别方法、指纹识别装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020124511A1 true WO2020124511A1 (zh) 2020-06-25

Family

ID=66261422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122476 WO2020124511A1 (zh) 2018-12-20 2018-12-20 指纹识别方法、指纹识别装置和电子设备

Country Status (2)

Country Link
CN (1) CN109716353A (zh)
WO (1) WO2020124511A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800956A (zh) * 2021-01-27 2021-05-14 杭州海康威视数字技术股份有限公司 一种指纹活体检测系统、方法及装置
CN113762179A (zh) * 2021-09-13 2021-12-07 支付宝(杭州)信息技术有限公司 活体检测方法和装置
US11514723B2 (en) * 2019-08-26 2022-11-29 Samsung Electronics Co., Ltd. Method and apparatus for determining liveness

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109934137B (zh) * 2019-02-28 2021-01-08 维沃移动通信有限公司 一种光电指纹识别装置、终端及指纹识别方法
CN112580388A (zh) * 2019-09-27 2021-03-30 上海耕岩智能科技有限公司 指纹识别模组及其扫描方法、存储介质、电子设备
WO2020227937A1 (zh) * 2019-05-14 2020-11-19 深圳市汇顶科技股份有限公司 用于指纹识别的方法、指纹识别装置和终端设备
WO2020232680A1 (zh) * 2019-05-22 2020-11-26 深圳市汇顶科技股份有限公司 用于生物识别的方法、指纹识别装置和电子设备
CN110287861B (zh) * 2019-06-21 2022-01-07 Oppo广东移动通信有限公司 指纹识别方法、装置、存储介质及电子设备
CN110348361B (zh) * 2019-07-04 2022-05-03 杭州景联文科技有限公司 皮肤纹理图像验证方法、电子设备及记录介质
CN112307819A (zh) * 2019-07-29 2021-02-02 北京小米移动软件有限公司 电子设备及图像处理方法
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备
EP3809315B1 (en) 2019-08-23 2022-12-07 Shenzhen Goodix Technology Co., Ltd. Fingerprint detection method
CN112633046A (zh) * 2019-10-09 2021-04-09 北京小米移动软件有限公司 信息处理方法及装置、电子设备、存储介质
CN113169245B (zh) * 2019-11-18 2023-10-10 京东方科技集团股份有限公司 指纹识别传感器、显示基板、显示装置及指纹识别方法
CN112825126A (zh) * 2019-11-20 2021-05-21 上海箩箕技术有限公司 指纹识别装置及其检测方法
CN111291719A (zh) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 指纹识别装置、显示面板、设备及指纹识别方法
CN115298701A (zh) * 2020-03-18 2022-11-04 上海思立微电子科技有限公司 屏下光学指纹识别装置及指纹识别方法
CN111985382A (zh) * 2020-08-14 2020-11-24 北京集创北方科技股份有限公司 一种生物特征识别方法、装置、电子设备以及存储介质
CN112215194A (zh) * 2020-10-23 2021-01-12 敦泰电子(深圳)有限公司 光学指纹识别模组及其识别方法和显示装置
CN114419680B (zh) * 2021-08-11 2023-12-29 深圳阜时科技有限公司 指纹识别装置及方法、以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949248A (zh) * 2005-10-14 2007-04-18 北京海鑫科金高科技股份有限公司 一种活体指掌纹采集方法及装置
CN102073860A (zh) * 2010-12-06 2011-05-25 清华大学 一种光学指纹采集装置、光学指纹识别系统及方法
CN202018664U (zh) * 2010-12-06 2011-10-26 清华大学 一种光学指纹采集装置、光学指纹识别系统
CN205405544U (zh) * 2016-02-27 2016-07-27 南京福瑞林生物科技有限公司 活体指纹识别装置
CN105824480A (zh) * 2015-01-26 2016-08-03 金佶科技股份有限公司 指纹辨识方法及其装置
CN106778459A (zh) * 2015-12-31 2017-05-31 深圳市汇顶科技股份有限公司 指纹识别的方法及其指纹识别装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065466A2 (en) * 2000-02-29 2001-09-07 Digital Persona, Inc. Method and apparatus for detecting a color change of a live finger
CN106295555A (zh) * 2016-08-08 2017-01-04 深圳芯启航科技有限公司 一种活体指纹图像的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949248A (zh) * 2005-10-14 2007-04-18 北京海鑫科金高科技股份有限公司 一种活体指掌纹采集方法及装置
CN102073860A (zh) * 2010-12-06 2011-05-25 清华大学 一种光学指纹采集装置、光学指纹识别系统及方法
CN202018664U (zh) * 2010-12-06 2011-10-26 清华大学 一种光学指纹采集装置、光学指纹识别系统
CN105824480A (zh) * 2015-01-26 2016-08-03 金佶科技股份有限公司 指纹辨识方法及其装置
CN106778459A (zh) * 2015-12-31 2017-05-31 深圳市汇顶科技股份有限公司 指纹识别的方法及其指纹识别装置
CN205405544U (zh) * 2016-02-27 2016-07-27 南京福瑞林生物科技有限公司 活体指纹识别装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11514723B2 (en) * 2019-08-26 2022-11-29 Samsung Electronics Co., Ltd. Method and apparatus for determining liveness
CN112800956A (zh) * 2021-01-27 2021-05-14 杭州海康威视数字技术股份有限公司 一种指纹活体检测系统、方法及装置
CN113762179A (zh) * 2021-09-13 2021-12-07 支付宝(杭州)信息技术有限公司 活体检测方法和装置
CN113762179B (zh) * 2021-09-13 2024-03-29 支付宝(杭州)信息技术有限公司 活体检测方法和装置

Also Published As

Publication number Publication date
CN109716353A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020124511A1 (zh) 指纹识别方法、指纹识别装置和电子设备
CN109643379B (zh) 指纹识别方法、装置和电子设备
US10747984B2 (en) Method and apparatus of fingerprint identification and terminal device
WO2020077506A1 (zh) 指纹识别方法、装置及具有指纹识别功能的终端设备
US20200097699A1 (en) Fingerprint identification apparatus and electronic device
CN109791599B (zh) 用于屏幕上指纹感应的屏幕下光学传感器模块
CN110647862B (zh) 指纹检测装置、方法和电子设备
CN111801684B (zh) 指纹检测的装置和电子设备
CN109074475A (zh) 包括在光学图像传感器上方且与光源横向相邻的针孔阵列掩膜的电子设备和相关方法
CN107004130A (zh) 用于屏幕上指纹感应的屏幕下光学传感器模块
US10955603B2 (en) Method and system for optical imaging using point source illumination
CN107430681A (zh) 包括光学图像传感器上方的针孔阵列掩膜的电子设备及相关方法
CN110705517B (zh) 用于指纹识别的方法及电子设备
JP3231956U (ja) 実指を判断するための統合型スペクトルセンシング装置
WO2021138776A1 (zh) 指纹防伪的方法、指纹识别装置和电子设备
CN109564623A (zh) 复合透镜结构、指纹识别装置和电子设备
US20210117644A1 (en) Optical sensing systems and devices including apertures supplanting photodiodes for increased light throughput
WO2020186415A1 (zh) 指纹识别的装置、方法和电子设备
CN215867958U (zh) 生物特征感测装置
CN211319244U (zh) 指纹检测的装置和电子设备
CN211529170U (zh) 指纹识别装置和电子设备
CN110214328B (zh) 指纹识别的方法、装置和电子设备
CN210534801U (zh) 指纹识别装置和电子设备
CN110226171B (zh) 引导用户注册指纹的方法和电子设备
KR20210040897A (ko) 모바일 장치용 광학식 지문센서, 광학식 지문센서를 구비한 모바일 장치 및 그 지문센서의 지문 이미지 획득방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943663

Country of ref document: EP

Kind code of ref document: A1