[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020122692A1 - 휠 베어링 조립체 - Google Patents

휠 베어링 조립체 Download PDF

Info

Publication number
WO2020122692A1
WO2020122692A1 PCT/KR2019/017839 KR2019017839W WO2020122692A1 WO 2020122692 A1 WO2020122692 A1 WO 2020122692A1 KR 2019017839 W KR2019017839 W KR 2019017839W WO 2020122692 A1 WO2020122692 A1 WO 2020122692A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
slinger
sealing
bearing assembly
wheel bearing
Prior art date
Application number
PCT/KR2019/017839
Other languages
English (en)
French (fr)
Inventor
윤효중
진성규
서덕화
강인준
Original Assignee
주식회사 일진글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 일진글로벌 filed Critical 주식회사 일진글로벌
Priority to DE112019006191.7T priority Critical patent/DE112019006191B4/de
Publication of WO2020122692A1 publication Critical patent/WO2020122692A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0073Hubs characterised by sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7896Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members with two or more discrete sealings arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • F16C33/805Labyrinth sealings in addition to other sealings, e.g. dirt guards to protect sealings with sealing lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/20Avoidance of
    • B60B2900/211Soiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/511Sealing
    • B60B2900/5112Sealing against dust or dirt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/511Sealing
    • B60B2900/5114Sealing against humidity or water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present disclosure relates to a wheel bearing assembly.
  • the wheel bearing assembly is a device that is mounted between the rotating and non-rotating elements relative to the vehicle body to facilitate rotation of the rotating elements.
  • the wheel bearing assembly of the vehicle provides a function of allowing the vehicle to move by connecting the wheel to the vehicle body to be rotatable.
  • Such a wheel bearing assembly may be divided into a wheel bearing assembly for a driving wheel that transmits power generated in an engine and a wheel bearing assembly for a driven wheel that does not transmit driving force.
  • the wheel bearing assembly for a drive wheel includes a rotating element and a non-rotating element.
  • the rotating element is configured to rotate with the drive shaft by torque generated by the engine and passing through the transmission.
  • the non-rotating element is fixed to the vehicle body, and a transmission device is interposed between the rotating element and the non-rotating element.
  • the wheel bearing assembly for the driven wheel includes a configuration similar to the wheel bearing assembly for the drive wheel, but differs in that the rotating element is not connected to the drive shaft.
  • a sealing device may be interposed between the rotating and non-rotating elements that rotate relative to each other in the wheel bearing assembly.
  • the conventional wheel bearing assembly is difficult to support a relatively large weight body. Therefore, in order for the wheel bearing assembly to support a vehicle body having a large weight, it is necessary to set a large separation distance along the axial direction between rolling elements. However, when the separation distance along the axial direction between the rolling elements is set large, the installation space of the sealing device interposed between the rotating element and the non-rotating element may be insufficient.
  • the present disclosure is for solving the above-described conventional problems, and provides a wheel bearing assembly having a structure in which a part of the sealing device is disposed inside the hub flange.
  • a wheel bearing assembly includes: an outer ring mounted on a vehicle body side member; An inner ring that rotates relative to the outer ring about an axis; A wheel hub including a cylindrical portion to which an inner ring is coupled, and a hub flange extending in an outer radial direction from the cylindrical portion and having an inner flange surface and an outer flange surface; A plurality of rolling elements disposed between the outer ring and the cylindrical portion and between the outer ring and the inner ring; And a sealing device disposed between the outer ring and the hub flange.
  • the hub flange is formed with a recess recessed in the outer axial direction from the inner flange surface.
  • the sealing device includes a frame attached to the outer ring; A sealing portion coupled to the frame and all or part of which is located in the recess of the hub flange; And a slinger mounted in the recess of the hub flange.
  • the recess comprises: a first recess opposite the outer axial end of the outer ring; And a second recess formed more concave in the outer radial direction than the first recess in the inner radial direction of the first recess and mounted with a slinger.
  • the slinger includes: a first slinger portion press-fitted inside the second recess; A second slinger portion extending radially outward from an outer axial end of the first slinger portion; And a third slinger portion extending in the inner axial direction from the outer radial end of the second slinger portion.
  • the sealing portion the first sealing portion located in the first recess and spaced apart from the first recess; A second sealing portion positioned in the second recess and parallel to the third slinger portion and spaced apart from the second recess; And a third sealing portion disposed in the space formed by the first slinger portion, the second slinger portion, and the third slinger portion in the second recess.
  • the third sealing portion at least one first sealing lip extending in the outer axial direction and contacting the second slinger portion; And a second sealing lip extending from the inner radial direction of the first sealing lip to the inner axial direction and contacting the first slinger portion.
  • the axial length D from the second slinger to the maximum depth point of the second recess may be set greater than 1 mm.
  • the axial length D from the second slinger to the maximum depth point of the second recess along the outer axial direction may be set to satisfy Equation 1 below.
  • A1 is the thickness from the inner flange surface to the outer flange surface
  • B1 is the axial length from the inner flange surface to the maximum depth point of the second recess along the outer axial direction.
  • the first sealing portion may be formed asymmetrically up and down with respect to a horizontal plane passing through the axis and parallel to the ground.
  • the angle at which the first sealing portion is formed may be set in a range of ⁇ 30° to ⁇ 160° based on a vertical surface that passes through the axis and is perpendicular to the horizontal surface.
  • the hub flange may include a step extending radially outward from the recess surface of the second recess parallel to the cylindrical portion of the wheel hub.
  • the radial length F from the recess surface of the second recess to the step portion may be set shorter than the axial length E from the step portion to the maximum depth point of the second recess. have.
  • the hub flange may include a protrusion projecting in the outer axial direction from the outer flange surface.
  • a wheel bearing assembly includes an outer ring mounted on a vehicle body side member; An inner ring that rotates relative to the outer ring about an axis; A wheel hub including a cylindrical portion to which an inner ring is coupled, and a hub flange extending in an outer radial direction from the cylindrical portion and having an inner flange surface and an outer flange surface; A plurality of rolling elements disposed between the outer ring and the cylindrical portion and between the outer ring and the inner ring; And a sealing device disposed between the outer ring and the hub flange.
  • the hub flange includes a protrusion projecting in the outer axial direction from the outer flange surface.
  • the hub flange is formed with a recess recessed in the outer axial direction and in the outer radial direction from the inner flange surface.
  • the sealing device includes a frame attached to the outer ring; A sealing portion coupled to the frame and all or part of which is located in the recess of the hub flange; And a slinger mounted in contact with three or more recess faces within the recess of the hub flange.
  • the recess comprises: a first recess opposite the outer axial end of the outer ring; And a second recess formed more concave in the outer radial direction than the first recess in the inner radial direction of the first recess and mounted with a slinger.
  • the hub flange may include a locking jaw extending in the inner radial direction from the recess surface located in the outer radial direction of the second recess.
  • the outer diameter of the slinger in a state in which the slinger is mounted on the second recess, may be set larger than the inner diameter of the locking jaw.
  • the slinger includes: a first slinger portion press-fitted into a recess surface located in an inner radial direction of the second recess; A second slinger portion extending from the first slinger portion and contacting a recess surface positioned in an outer axial direction of the second recess; And a third slinger portion extending from the second slinger portion and having an outer radial end engaged with the locking jaw.
  • the sealing portion located in the first recess and spaced apart from the first recess; And a second sealing portion located in the second recess and contacting the slinger.
  • the first sealing portion includes: a first sealing lip extending radially outward from the frame; And a second sealing lip extending from an inner radial direction to an outer axial direction of the first sealing lip.
  • the second sealing portion at least one first sealing lip contacting the second slinger portion; And a second sealing lip extending from the inner radial direction of the first sealing lip to the inner axial direction and contacting the first slinger portion.
  • the hub flange may include a protrusion projecting in the outer axial direction from the outer flange surface.
  • the installation space of the sealing device interposed between the rotating element and the non-rotating element can be secured as well as the sealing device
  • the sealing performance of can be improved.
  • the installation space of the sealing device overlaps at least partially in the recess and the axial direction, a sufficient separation distance along the axial direction between the rolling elements of the wheel bearing assembly can be secured.
  • FIG. 1 is a cross-sectional view of a wheel bearing assembly according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view showing an enlarged portion A shown in FIG. 1.
  • FIG. 3 is a partially cut-away perspective view showing the sealing device shown in FIG. 1.
  • FIG. 4 is a cross-sectional view showing the main dimensions in the wheel bearing assembly shown in FIG.
  • FIG. 5 is a partially cut-away perspective view showing a portion of the sealing portion shown in FIG. 1.
  • FIG. 6 is a cross-sectional view of a wheel bearing assembly according to another embodiment of the present disclosure.
  • FIG. 7 is an enlarged sectional view showing an enlarged portion B shown in FIG. 6 and displaying main dimensions thereof.
  • FIG. 8 is a cross-sectional view of a wheel bearing assembly according to another embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view showing an enlarged portion C shown in FIG. 8.
  • FIG. 10 is a partially cut-away perspective view of the sealing device shown in FIG. 8.
  • axial direction may be defined to mean a direction parallel to the rotational axis (RA) of the wheel bearing assembly, and the “radial direction” is perpendicular to the axial direction and away from the axis of rotation or the axis of rotation. It may be defined as meaning a direction closer to, and “circumferential direction” may be defined as meaning a direction surrounding the axial direction around the axial direction.
  • axis direction the direction of the axis of rotation of the wheel bearing assembly may be simply referred to as the "axis direction”.
  • the arrow “OA” is the direction along the axis RA of the wheel bearing assembly, pointing to the outboard on which the wheel is positioned relative to the wheel hub, and the arrow “IA” as the opposite direction to “OA” Points to the inner inboard where the knuckle is placed relative to the wheel hub.
  • the arrow “OR” indicates the outer radial direction away from the rotation axis in the radial direction with respect to the rotation axis of the wheel bearing assembly, and the arrow “IR” indicates the inner radial direction opposite to the "OR”.
  • the arrow “CD” points in the circumferential direction.
  • pre-load may refer to the amount of clearance change of the wheel bearing assembly. That is, the preload may mean a size in which a part of the components constituting the wheel bearing assembly is compressed and elastically deformed during assembly.
  • the preload can have a length unit, and can be measured, for example, in a size in ⁇ m.
  • the preload can be formed by rolling elements or orbital forming parts of the rolling device.
  • FIG. 1 is a cross-sectional view of a wheel bearing assembly according to an embodiment of the present disclosure.
  • the wheel bearing assembly 1000 includes an outer ring 1100; Inner ring 1200; Wheel hub 1300; A plurality of rolling elements 1400; And a sealing device 1500.
  • the wheel bearing assembly 1000 is disposed between a vehicle body side member (eg, a suspension) and a wheel and is configured to rotatably support the wheel relative to the vehicle body side member.
  • the body-side member (eg, suspension) to which the outer ring 1100 is coupled may be disposed in the inner axial direction IA of the wheel bearing assembly 1000, and the wheel may be in the outer axial direction OA of the wheel bearing assembly 1000. ).
  • the outer ring 1100 has a hollow cylindrical shape as a whole and is arranged concentrically with the shaft RA.
  • the outer ring 1100 is coupled to a vehicle body side member (eg, a suspension device) so as not to rotate.
  • a vehicle body side member eg, a suspension device
  • the outer ring 1100 may be coupled to a knuckle or the like constituting a suspension device, but the body-side part to which the outer ring 1100 is coupled is not limited thereto.
  • the inner ring 1200 is configured to rotate relative to the outer ring 1100 about the axis RA.
  • the inner ring 1200 is spaced apart from the outer ring 1100 in the inner radial direction IR.
  • the inner ring 1200 may be press-fit into the cylindrical portion 1310 of the wheel hub 1300 and be coupled.
  • the inner ring 1200 may be coupled to the wheel hub 1300 by orbital forming the inner axial end (IA) of the cylindrical portion 1310.
  • Orbital forming is preformed to the inner ring 1200 by plastic deformation of the inner axial end (IA) of the wheel hub 1300 in the outer radial direction (OR) while the inner ring 1200 is pressed into the wheel hub 1300. While it means the process of fixing the inner ring 1200 to the wheel hub (1300).
  • the wheel hub 1300 includes a cylindrical portion 1310 and a hub flange 1320.
  • the inner ring 1200 is coupled to the outer circumferential surface of the cylindrical portion 1310, and a constant velocity joint or an axle is coupled to the inner circumferential surface.
  • the hub flange 1320 extends from the cylindrical portion 1310 in the outer radial direction OR in the outer axial direction OA of the inner ring 1200.
  • the hub flange 1320 includes an inner flange face 1320a located in the inner axial direction IA and an outer flange face 1320b located in the outer axial direction OA.
  • the hub flange 1320 is formed with a plurality of bolt holes 1321 at equal intervals in the circumferential direction around the axis RA. The hub bolt is engaged with the nut through the bolt hole 1321 of the wheel and the hub flange 1320, so that the wheel is coupled to the wheel hub 1300.
  • the hub flange 1320 includes a protrusion 1322 protruding from the outer flange surface 1320b in the outer axial direction OA.
  • the hub flange 1320 is formed with a recess 1330 that is concave from the inner flange surface 1320a to the outer axial direction OA. Even when the recess 1330 is formed on the inner flange surface 1320a of the hub flange 1320, the protrusion 1322 reinforces the thickness of the hub flange 1320 to secure the rigidity required of the hub flange 1320. It is possible to do.
  • FIG. 2 is an enlarged cross-sectional view showing an enlarged portion A shown in FIG. 1.
  • the recess 1330 includes a first recess 1331 and a second recess 1332 formed in order along the inner radial direction IR.
  • the recess 1330 may be formed by grinding or turning.
  • the first recess 1331 opposes the outer axial (OA) end of the outer ring 1100.
  • the second recess 1332 is formed to be more concave in the outer axial direction OA than the first recess 1331 in the inner radial direction IR of the first recess 1331, and the second recess 1332 ), the slinger 1530 of the sealing device 1500 is mounted.
  • the maximum depth point of the second recess 1332 is located in the outer axial direction OA than the maximum depth point of the first recess 1331.
  • the recess 1330 ie, the first recess 1331 and the second recess 1332
  • the recess 1330 is concave from the inner flange surface 1320a of the hub flange 1320 in the outer axial direction OA. Since it is formed and a part of the sealing device 1500 is disposed in the recess 1330, a flow path of a labyrinth structure is formed between the recess 1330 and a part of the sealing device 1500. Therefore, due to this labyrinth structure, it is possible to suppress or prevent foreign matter from flowing between the outer ring 1100 and the wheel hub 1300.
  • the second recess 1332 includes a first recess surface 1332a connected to a concave curved surface from the first recess 1331 and a second recess surface connected to a flat plane from the first recess surface 1332a ( 1332b) is formed.
  • the second recess surface 1332b is parallel to the cylindrical portion 1310 of the wheel hub 1300 and is located outside the cylindrical portion 1310 in the radial direction OR.
  • the first recess does not have a polygonal shape and is made of a curved surface, and the first recess is curved up to the first recess surface 1332a of the second recess 1332 It may lead to. That is, the recess may be composed of a single recess concave from the inner flange surface 1320a to the outer axial direction OR.
  • the plurality of rolling elements 1400 are disposed between the outer ring 1100 and the cylindrical portion 1310 of the wheel hub 1300 and between the outer ring 1100 and the inner ring 1200.
  • the plurality of rolling elements 1400 is composed of two rows, but in another embodiment, the rolling elements may be composed of three or more rows.
  • the rolling element 1400 is composed of a ball, but in another embodiment, the rolling element may be composed of a roller or a taper roller.
  • the plurality of rolling elements 1400 is configured to maintain a constant distance along the circumferential direction CD of the shaft RA by the retainer 1410.
  • the plurality of rolling elements may be disposed between the outer ring and one inner ring disposed in the outer axial direction and between the outer ring and another inner ring disposed in the inner axial direction.
  • FIG. 3 is a partially cut-away perspective view showing the sealing device shown in FIG. 1.
  • the sealing device 1500 is disposed between the outer ring 1100 and the hub flange 1320.
  • the sealing device 1500 seals between the outer ring 1100 and the hub flange 1320 of the wheel hub 1300 at the outer axial (OA) end of the outer ring 1100, through which foreign matter such as water or dust flows in. Suppress or prevent it.
  • an inner sealing device 1120 for sealing between the outer ring 1100 and the inner ring 1200 at the inner axial (IA) end of the outer ring 1100 is further installed.
  • the sealing device 1500 includes a frame 1510 mounted on the outer ring 1100 (eg, the outer circumferential surface 1110 of the outer ring); A sealing portion 1520 coupled to the frame 1510 and partially or partially located within the recess 1330 of the hub flange 1320; And a slinger 1530 mounted in the recess 1330 of the hub flange 1320. Since a portion of the sealing device 1500 (ie, the sealing portion 1520 and the slinger 1530) is disposed within the recess 1330 of the hub flange 1320, the inner space of the wheel bearing assembly 1000 may be expanded. have. When the inner space of the wheel bearing assembly 1000 is expanded, an axial separation distance between the rolling elements 1400 may be largely set.
  • the wheel bearing assembly 1000 can support a vehicle body having a larger weight. That is, since the inner space of the wheel bearing assembly 1000 is expanded and the axial separation distance between the rolling elements 1400 is set large, the wheel bearing assembly 1000 is used even when the wheel bearing assembly 1000 supports a vehicle body having a large weight. It is possible to prevent the (1000) from being deformed or damaged. As a result, the life of the wheel bearing assembly 1000 may be increased.
  • a recess 1330 is formed on the inner flange surface 1320a of the hub flange 1320, and a part of the sealing device 1500 (ie, the sealing portion 1520 and the slinger 1530) is disposed in the recess 1330 Therefore, a labyrinth structure is formed between the sealing device 1500 and the hub flange 1320. Therefore, it is possible to prevent or prevent foreign substances from entering the inside of the wheel bearing assembly 1000. As a result, sealing performance of the wheel bearing assembly 1000 may be improved.
  • the frame 1510 is made of a metal plate or tube material, and may be manufactured through press processing.
  • the frame 1510 is mounted on the outer circumferential surface 1110 of the outer ring 1100 and the like, and a hollow cylindrical outer ring mounting portion 1511 and a flange portion extending inward in the radial direction (IR) from the outer ring mounting portion 1511 (1512).
  • the flange portion 1512 is located in the outer axial direction (OA) than the first flange portion (1512a) and the first flange portion (1512a) abutting the outer axial (OA) end of the outer ring (1100)
  • a second flange portion 1512b parallel to the first flange portion 1512a may be included. That is, the second flange portion 1512b is spaced apart from the outer axial direction OA end of the outer ring 1100 in the outer axial direction OA.
  • the sealing portion 1520 may be made of a rubber material, and may have a predetermined shape through vulcanization (or vulcanization) using the frame 1510 as an insert.
  • the sealing portion 1520 may include a sub sealing portion 1520a extending in an inner axial direction from an inner axial end portion IA of the outer ring mounting portion 1511.
  • the sub-sealing portion 1520a is configured to contact the outer circumferential surface 1110 of the outer ring 1100, thereby preventing foreign matter from penetrating between the outer circumferential surface 1110 of the outer ring 1100 and the outer ring mounting portion 1511 of the frame 1510. Or prevent it.
  • the slinger 1530 is mounted within the recess 1330 of the hub flange 1320 and is spaced apart from the frame 1510.
  • the slinger 1530 is made of a metal plate or tube material, and may be manufactured through press processing.
  • the slinger 1530 includes: a first slinger portion 1531 that is press-fitted inside the second recess 1332; A second slinger portion 1532 extending in an outer radial direction OR from an outer axial end (OA) of the first slinger portion 1531; And a third slinger portion 1533 extending from the outer radial (OR) end of the second slinger portion 1532 in the inner axial direction IA.
  • the first slinger portion 1531 is pressed into the second recessed surface 1332b of the second recess 1332.
  • the second slinger portion 1532 is vertically disposed with respect to the first slinger portion 1531, and the third slinger portion 1533 is perpendicular to the second slinger portion 1532 and with respect to the first slinger portion 1531. They are placed parallel.
  • the sealing portion 1520 a first sealing portion 1521 located in the first recess 1331 and spaced apart from the first recess 1331; A second sealing portion 1522 positioned in the second recess 1332 and parallel to the third slinger portion 1533 and spaced apart from the second recess 1332; And a third sealing portion 1523 disposed in a space formed by the first slinger portion 1531, the second slinger portion 1532, and the third slinger portion 1533 within the second recess 1332. can do.
  • the first sealing portion 1521 extends in the outer radial direction (OR) from an edge where the outer ring mounting portion 1511 and the flange portion 1512 (ie, the first flange portion 1512a) of the frame 1510 meet. It is spaced apart from the recess 1331 in the inner radial direction IR.
  • the first sealing portion 1521 is disposed in the outer axial direction OA than the inner flange surface 1320a.
  • the first sealing portion 1521 serves to primarily block foreign substances flowing between the outer ring 1100 and the hub flange 1320.
  • the second sealing portion 1522 extends from the flange portion 1512 of the frame 1510 (eg, a portion where the first flange portion 1512a meets the second flange portion 1512b) and the first sealing portion 1521 It is located in the inner radial direction (IR).
  • the second sealing portion 1522 is disposed away from the first recessed surface 1332a of the second recess 1332.
  • the second sealing portion 1522 extends in a different direction from the first sealing portion 1522 and serves to form a labyrinth structure together with the first sealing portion 1521.
  • the first sealing portion 1521 extends in the outer radial direction (OR) in the first recess 1331 and the second sealing portion 1522 is in the outer axial direction (OA) in the second recess 1332 ), between the first sealing portion 1521 and the first recess 1331 and between the first sealing surface 1332a of the second sealing portion 1522 and the second recess 1332
  • a labyrinth structure flow path is formed. Therefore, due to such a labyrinth structure, foreign substances introduced between the first sealing portion 1521 and the first recess 1331 can be prevented or prevented from flowing between the outer ring 1100 and the wheel hub 1300. As a result, sealing performance of the wheel bearing assembly 1000 may be improved.
  • the third sealing portion 1523 extends from the flange portion 1512 of the frame 1510 (ie, the second flange portion 1512b) and the inner radius of the first sealing portion 1521 and the second sealing portion 1522 It is located in the direction IR.
  • the third sealing portion 1523 extends in the outer axial direction (OA) and at least one first sealing lip 1523a and the first sealing lip 1523a contacting the second slinger portion 1532 It may include a second sealing lip (1523b) extending from the inner radial direction (IR) of the inner axial direction (IA) and in contact with the first slinger (1531). As illustrated in FIG. 1, two first sealing lips 1523a may be formed.
  • the number of the first sealing lip 1523a is within a space formed by the first slinger portion 1531, the second slinger portion 1532, and the third slinger portion 1533. It may be configured as a non-contact slinger (1530). That is, the third sealing portion 1523 may be disposed spaced apart from the first slinger portion 1531 or the second slinger portion 1532.
  • the second sealing lip 1523b extends in a direction opposite to the first sealing lip 1523a based on the flange portion 1512 of the frame 1510 (ie, the second flange portion 1512b), and the first slinging portion (1531).
  • the second sealing lip 1523b may be configured to be non-contact to the slinger 1530.
  • the second sealing lip 2523b prevents or prevents foreign matter from penetrating between the outer ring 1100 and the hub flange 1320, or prevents the lubricant filled between the outer ring 1100 and the wheel hub 1300 from leaking to the outside. can do.
  • FIG. 4 is a cross-sectional view showing the main dimensions in the wheel bearing assembly shown in FIG. 1.
  • the axial length D from the second slinger 1532 to the maximum depth point of the second recess 1332 along the outer axial direction OA is It can be set larger than 1mm. That is, since the gap of the axial length (D) is formed between the second slinger 1532 and the first recess surface 1332a of the second recess 1332, a path through which foreign matter can flow is formed. It can be lengthened by the gap. Accordingly, the labyrinth effect between the recess 1330 and the sealing device 1500 may be maximized. As a result, sealing performance between the outer ring 1100 and the hub flange 1320 may be improved.
  • the axial length D from the second slinger portion 1532 to the maximum depth point of the second recess 1332 along the outer axial direction OA satisfies Equation 1 below. Can be set. Therefore, when the wheel of the vehicle is operated on a harsh road surface, it is possible to suppress or prevent the occurrence of cracks in the hub flange 1320 as the hub flange 1320 is deformed.
  • A1 is the thickness from the inner flange surface 1320a to the outer flange surface 1320b.
  • B1 is the length from the inner flange surface 1320a to the maximum depth point of the second recess 1332 along the outer axial direction OA.
  • Equation 1 may be expressed as Equation 2 below.
  • C1 passes the point where the straight line L1 connecting the first recess 1331 and the second recess 1332 meets the outer flange surface 1320b and the protrusion 1322 and is parallel to the straight line L1. It is the distance between the straight lines L2.
  • C1 may be set to satisfy Equation 3 below.
  • FIG. 5 is a partially cut-away perspective view showing a portion of the sealing portion shown in FIG. 1.
  • the frame 1510, the first sealing portion 1521, the second sealing portion 1522, and the third sealing portion 1523 are illustrated by cutting with respect to the plane P2.
  • the first sealing portion 1521 may be formed asymmetrically up and down based on a horizontal plane P1 that passes through the axis RA and is parallel to the ground.
  • the first sealing portion 1521 may be partially formed on the upper side based on the horizontal plane P1, and may not be formed on the lower side based on the horizontal plane P1.
  • the first sealing portion 1521 is formed on the upper side with respect to the horizontal plane P1, and may be partially formed on the lower side with respect to the horizontal plane P1. Foreign matter that has penetrated between the first sealing portion 1521 and the hub flange 1320 does not flow between the outer ring 1100 and the wheel hub 1300 by the second sealing portion 1522 and the third sealing portion 1523. 1 Sealing portion 1521 may be discharged through the lower side is not formed.
  • the angle ⁇ at which the first sealing portion 1521 is formed is in the range of ⁇ 30° to ⁇ 160° based on the vertical surface P2 passing through the axis RA and perpendicular to the horizontal surface P1.
  • the angle ⁇ exceeds ⁇ 160°, the portion where the first sealing portion 1521 is formed becomes too large.
  • the range of the angle ⁇ is shown in FIG. 5 as -30° and -160° in the counterclockwise direction, the range of the angle ⁇ may be understood as +30° and +160° in the clockwise direction.
  • FIG. 6 is a cross-sectional view of a wheel bearing assembly according to another embodiment of the present disclosure.
  • the wheel bearing assembly 2000 according to another embodiment of the present disclosure includes an outer ring 1100; Inner ring 1200; Wheel hub 2300; A plurality of rolling elements 1400; And a sealing device 1500.
  • the wheel hub 2300 includes a cylindrical portion 2310 and a hub flange 2320.
  • the hub flange 2320 includes a protrusion 2322 protruding from the outer flange surface 2320b in the outer axial direction OA.
  • the hub flange 2320 is formed with a recess 2330 that is concave from the inner flange surface 2320a to the outer axial direction OA.
  • the recess 2330 includes a first recess 2331 and a second recess 2332.
  • the second recess 2332 includes a first recessed surface 2332a made of a curved surface concave from the first recess 2331 and a second recessed surface 2332b made of a flat plane from the first recessed surface 2332a. It is formed.
  • FIG. 7 is an enlarged sectional view showing an enlarged portion B shown in FIG. 6 and displaying main dimensions thereof.
  • the hub flange 2320 has a recess surface (ie, a second recess) of the second recess 2332 parallel to the cylindrical portion 2310 of the wheel hub 2300. It includes a step portion 2340 extending in the outer radial direction (OR) from the surface (2332b)).
  • the slinger 1530 is mounted in the recess 2330 (ie, the second recess 2332)
  • the sealing portion 1520 eg, the third sealing portion 1523
  • the sealing portion 1520 eg, the third sealing portion 1523 may be installed to have a predetermined frictional resistance.
  • the stepped portion 2340 is in contact with the second slinger portion 1532 of the slinger 1530 to prevent the slinger 1530 from moving in the outer axial direction OA.
  • the slinger 1530 and the sealing portion 1520 may maintain a predetermined frictional resistance when the vehicle is running.
  • the radial length F from the recessed surface of the second recess 2332 (ie, the second recessed surface 2332b) to the stepped portion 2340 is from the stepped portion 2340 It may be set to be shorter than the axial length E to the maximum depth point of the second recess 2332 along the outer axial direction OA.
  • the radial length F is formed longer than the axial length E, the space formed between the second recess 2332 and the slinger 1530 may be reduced. Therefore, the path through which foreign substances can be introduced is shortened, and the labyrinth effect between the recess 2330 and the sealing device 1500 may be reduced.
  • FIG. 8 is a cross-sectional view of a wheel bearing assembly according to another embodiment of the present disclosure.
  • the wheel bearing assembly 3000 includes an outer ring 1100; Inner ring 1200; Wheel hub 3300; A plurality of rolling elements 1400; And a sealing device 3500.
  • the outer ring 1100 according to this embodiment; Inner ring 1200; And a plurality of rolling elements 1400 includes outer wheels 1100 of wheel bearing assemblies 1000 and 2000 according to the embodiments shown in FIGS. 1 to 7; Inner ring 1200; And the same or similar to the plurality of rolling elements 1400, the wheel hub 3300 and the sealing device 3500 will be described in detail below.
  • FIG. 9 is an enlarged cross-sectional view showing an enlarged portion C of FIG. 8 and displaying main dimensions thereof.
  • the wheel hub 3300 includes a cylindrical portion 3310 and a hub flange 3320.
  • the hub flange 3310 includes a protrusion 3322 protruding from the outer flange surface 3320b in the outer axial direction OA.
  • the hub flange 3320 is formed with a recess 3330 concave from the inner flange surface 3320a in the outer axial direction OA and the outer radial direction OR.
  • the recess 3330 includes a first recess 3331 facing the outer axial (OA) end of the outer ring 1100; And a second recess 3332 in which the inner radial direction IR of the first recess 3331 is more concavely formed in the outer axial direction OA than the first recess 3331, and the slinger 3530 is mounted. It may include.
  • the second recess 3332 includes a first recess surface 3332a located in the outer radial direction OR; A second recessed surface 3332b located in the inner radial direction IR; And a third recessed surface 3332c positioned between the first recessed surface 3332a and the second recessed surface 3332b.
  • the hub flange 3320 is an inner radial direction IR from a recess surface (ie, the first recess surface 3332a) located in the outer radial direction OR of the second recess 3332 ) It may include a locking jaw (3340) extending.
  • the locking jaw 3340 may suppress or prevent the slinger 3530 from being separated from the second recess 3332 after the slinger 3530 is mounted on the second recess 3332.
  • the outer diameter R1 of the slinger 3530 may be set larger than the inner diameter R2 of the locking jaw 3340 while the slinger 3530 is mounted on the second recess 3332. Therefore, it is possible to more reliably suppress or prevent the slinger 3530 from being separated from the second recess 3332.
  • FIG. 10 is a partially cut-away perspective view of the sealing device shown in FIG. 8.
  • the sealing device 3500 includes a frame 3510 mounted on the outer ring 1100 (eg, the outer peripheral surface 1110 of the outer ring); A sealing portion 3520 coupled to the frame 3510 and located within the recess 3330 of the hub flange 3310; And a slinger 3530 mounted in contact with three or more recess surfaces within the recess 3330 of the hub flange 3310.
  • the frame 3510 is made of a metal plate or tube material, and may be manufactured through press processing.
  • the frame 3510 is mounted on the outer circumferential surface 1110 of the outer ring 1100 and the like, and a hollow cylindrical outer ring mounting portion 3511 and a flange portion extending from the outer ring mounting portion 3511 in the inner radial direction (IR) (3512).
  • the flange portion 3512 is located in the outer axial direction (OA) than the first flange portion (3512a) and the first flange portion (3512a) abutting the outer axial (OA) end of the outer ring (1100)
  • a second flange portion 3512b parallel to the first flange portion 3512a may be included.
  • the second flange portion 3512b is spaced apart from the outer axial direction OA end of the outer ring 1100 in the outer axial direction OA. Since the second flange portion 3512b protrudes toward the slinger 3530 and the third slinger portion 3533 of the slinger 3530 is inclined, the labyrinth between the second flange portion 3512b and the slinger 3530 Form the flow path of the structure. Therefore, due to the labyrinth structure, foreign substances introduced between the first sealing portion 3351 and the first recess 3331 can be prevented or prevented from flowing between the outer ring 1100 and the wheel hub 3300. As a result, sealing performance of the wheel bearing assembly 3000 may be improved.
  • the sealing portion 3520 may be made of a rubber material and may have a predetermined shape through vulcanization (or vulcanization) using the frame 3510 as an insert.
  • the sealing portion 3520 may include a sub-sealing portion 3520a extending in an inner axial direction from an inner axial end portion IA of the outer ring mounting portion 3511.
  • the sub-sealing portion 3520a is configured to contact the outer circumferential surface 1110 of the outer ring 1100, so that water or foreign substances penetrate between the outer circumferential surface 1110 of the outer ring 1100 and the outer ring mounting portion 3511 of the frame 3510. It can be suppressed or prevented.
  • the slinger 3530 is mounted within the recess 3330 of the hub flange 3310 and arranged to be spaced apart from the frame 3510.
  • the slinger 3530 is made of a metal plate or tube material and may be manufactured through press processing.
  • the slinger 3530 is a first slinger portion pressed into the recess surface (ie, the second recess surface 3332b) located in the inner radial direction IR of the second recess 3332. (3531); A second slinger portion extending from the first slinger portion 3531 and contacting a recess surface (ie, the third recess surface 3332c) located in the outer axial direction OA of the second recess 3332 3532); And a third slinger portion 3533 that extends from the second slinger portion 3532 and has an outer radial end portion 3533a that engages the locking jaw 3340.
  • the second slinger portion 3532 extends obliquely in the outer radial direction (OR) and the outer axial direction (OA) from the outer axial (OA) end of the first slinger portion (3531) to the third recess surface (3332c). It may include a vertical portion 3532b extending from the inclined portion 3532a and the inclined portion 3532a in the outer radial direction OR and contacting the third recessed surface 3332c.
  • the third slinger portion 3533 extends obliquely from the vertical portion 3532b of the second slinger portion 3532 in the outer radial direction OR and the inner axial direction IA. Since the third slinger portion 3533 is formed to be inclined and is engaged with the locking jaw 3340, the separation of the slinger 3530 from the second recess 3332 can be reliably suppressed or prevented.
  • the sealing portion 3520 is located in the first sealing portion 3351 and the second recess 3332 located in the first recess 3331 and spaced apart from the first recess 3331 A second sealing portion 3522 may be in contact with the slinger 3530.
  • the first sealing portion 3521 extends from the frame 3510 in an outer radial direction OR to a first sealing lip 3351a and an inner radial direction IR of the first sealing lip 3351a.
  • the first sealing lip 3351a extends in the outer radial direction (OR) from an edge where the outer ring mounting portion 3511 and the flange portion 3512 (that is, the first flange portion 3512a) of the frame 3510 meet. It is spaced from the recess 3331 in the inner radial direction IR.
  • the first sealing lip 3351a serves to primarily block foreign substances flowing between the outer ring 1100 and the hub flange 1320.
  • the second sealing lip 3351b extends obliquely from the flange portion 3512 (that is, the first flange portion 3512a) in the outer axial direction OA to the inner axial direction IA from the first recess 3331. Spaced apart.
  • the second sealing lip 3351b extends in a different direction from the first sealing lip 3351a and serves to form a labyrinth structure together with the first sealing lip 3351a.
  • the first sealing lip 3351a extends in the outer radial direction OR in the first recess 3331 and the second sealing lip 3351b is in the outer axial direction OA in the first recess 3332 ), the first sealing lip 3351a and the first recess 3331 and the second sealing lip 3351b and the first recess 3331 form a flow path of a labyrinth structure. . Therefore, due to this labyrinth structure, foreign matter introduced between the first sealing lip 3351a and the first recess 3331 can be prevented or prevented from flowing between the outer ring 1100 and the wheel hub 3300. As a result, durability of the wheel bearing assembly 3000 may be improved.
  • the second sealing portion 3522 is inward in the inner radial direction (IR) of the one or more first sealing lips 3522a and the first sealing lips 3522a contacting the second slinger portion 3532 It may include a second sealing lip (3522b) extending in the axial direction (IA) and contacting the first slinger portion (3531). 9 and 10, two first sealing lips 3522a may be formed. One of the two first sealing lips 3522a contacts the vertical portion 3532b of the second slinger portion 3532, and the other of the two first sealing lips 3522a of the second slinger portion 3532 is It may contact the inclined portion 3532a.
  • the number of the first sealing lips 3522a When the number of the first sealing lips 3522a is too large, the frictional resistance between the first sealing lips 3522a and the slinger 3530 becomes large, so that the overall rotational resistance of the wheel hub 3300 against the outer ring 1100 increases. do. Conversely, when the number of the first sealing lips 3522a is too small, sealing performance between the outer ring 1100 and the hub flange 3310 may be deteriorated. Therefore, the number of the first sealing lips 3522a may be appropriately selected in consideration of the rolling resistance and sealing performance required by the vehicle manufacturer.
  • the second sealing lip 3522b extends in a direction opposite to the first sealing lip 3522a based on the flange portion 3512 of the frame 3510 (that is, the second flange portion 3512b), and the first slinging portion It is configured to contact (3531).
  • the second sealing lip 3522b may be configured to be non-contact to the slinger 3530.
  • the second sealing lip 3522b prevents or prevents foreign matter from penetrating between the outer ring 1100 and the hub flange 3310 or prevents the lubricant filled between the outer ring 1100 and the wheel hub 3300 from leaking to the outside. can do.
  • the first sealing portion 3521 passes through the axis RA and is based on a horizontal plane P1 parallel to the ground. It can be formed in up and down asymmetry.
  • the first sealing portion 3521 may be partially formed on the upper side based on the horizontal plane P1, and may not be formed on the lower side based on the horizontal plane P1.
  • the first sealing portion 3521 may be all formed on the upper side based on the horizontal plane P1, and partially formed on the lower side based on the horizontal plane P1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

본 개시의 일 측면에 따른 실시예들은 휠 베어링 조립체에 관련된다. 예시적 실시예에 따른 휠 베어링 조립체는, 차량의 차체측 부재에 장착되는 외륜; 축을 중심으로 외륜에 대하여 상대 회전하는 내륜; 내륜이 결합되는 원통부, 및 원통부로부터 외측 반경방향으로 연장하고 내측 플랜지면과 외측 플랜지면을 가지는 허브 플랜지를 포함하는 휠 허브; 외륜과 원통부 사이 및 외륜과 내륜 사이에 배치되는 복수의 전동체; 및 외륜과 허브 플랜지 사이에 배치되는 실링 장치를 포함한다. 허브 플랜지에는 내측 플랜지면으로부터 외측 축방향으로 오목한 리세스가 형성된다. 실링 장치는, 외륜에 장착되는 프레임; 프레임에 결합되고 전부 또는 일부가 허브 플랜지의 리세스 내에 위치하는 실링부; 및 허브 플랜지의 리세스 내에 장착되는 슬링거를 포함한다.

Description

휠 베어링 조립체
본 개시는 휠 베어링 조립체에 관한 것이다.
휠 베어링 조립체는 차체에 대해 회전하는 요소와 회전하지 않는 요소 사이에 장착되어 회전하는 요소의 회전을 원활하게 하는 장치이다. 차량의 휠 베어링 조립체는 차체에 휠을 회전 가능하도록 연결시킴으로써, 차량이 움직일 수 있도록 하는 기능을 제공한다. 이러한 휠 베어링 조립체는 엔진에서 발생하는 동력을 전달하는 구동륜용 휠 베어링 조립체와 구동력을 전달하지 않는 종동륜용 휠 베어링 조립체로 구별될 수 있다.
구동륜용 휠 베어링 조립체는 회전 요소와 비회전 요소를 포함한다. 회전 요소는 엔진에서 발생하여 변속기를 통과한 토크에 의하여 구동축과 함께 회전하도록 구성된다. 한편, 비회전 요소는 차체에 고정되어 있으며, 회전 요소와 비회전 요소 사이에는 전동 장치가 개재된다. 종동륜용 휠 베어링 조립체는 구동륜용 휠 베어링 조립체와 유사한 구성을 포함하나, 회전 요소가 구동축에 연결되어 있지 않다는 점에서 차이가 있다.
휠 베어링 조립체는 지면과 가까이에 배치되므로, 주변 환경이 대체로 가혹하다. 휠 베어링 조립체의 내부로 이물질이 유입되는 경우, 휠 베어링 조립체의 내구성에 문제가 생기거나 휠 베어링 조립체가 원활하게 작동되지 않을 수 있다. 이에 따라, 휠 베어링 조립체의 내부로 유입되는 물이나 먼지와 같은 이물질을 차단하기 위한 연구가 활발히 진행되고 있다. 예를 들어, 휠 베어링 조립체에서 서로 상대적으로 회전하는 회전 요소와 비회전 요소 사이에는 실링 장치가 개재될 수 있다.
하지만, 종래의 휠 베어링 조립체는 비교적 큰 중량의 차체를 지지하기 어렵다. 따라서, 휠 베어링 조립체가 큰 중량의 차체를 지지하기 위해서는 전동체 사이의 축방향을 따른 이격 거리를 크게 설정할 필요가 있다. 하지만, 전동체 사이의 축방향을 따른 이격 거리를 크게 설정하는 경우에는, 회전 요소와 비회전 요소 사이에 개재되는 실링 장치의 설치 공간이 부족해질 수 있다.
본 개시는, 상술한 종래의 문제점을 해소하기 위한 것으로, 실링 장치의 일부가 허브 플랜지의 내부에 배치되는 구조의 휠 베어링 조립체를 제공한다.
본 개시의 일 측면에 따른 실시예들은 휠 베어링 조립체에 관련된다. 예시적 실시예에 따른 휠 베어링 조립체는, 차량의 차체측 부재에 장착되는 외륜; 축을 중심으로 외륜에 대하여 상대 회전하는 내륜; 내륜이 결합되는 원통부, 및 원통부로부터 외측 반경방향으로 연장하고 내측 플랜지면과 외측 플랜지면을 가지는 허브 플랜지를 포함하는 휠 허브; 외륜과 원통부 사이 및 외륜과 내륜 사이에 배치되는 복수의 전동체; 및 외륜과 허브 플랜지 사이에 배치되는 실링 장치를 포함한다. 허브 플랜지에는 내측 플랜지면으로부터 외측 축방향으로 오목한 리세스가 형성된다. 실링 장치는, 외륜에 장착되는 프레임; 프레임에 결합되고 전부 또는 일부가 허브 플랜지의 리세스 내에 위치하는 실링부; 및 허브 플랜지의 리세스 내에 장착되는 슬링거를 포함한다.
일 실시예에 있어서, 리세스는, 외륜의 외측 축방향 단부에 대향하는 제1 리세스; 및 제1 리세스의 내측 반경방향에서 제1 리세스보다 외측 축방향으로 더 오목하게 형성되고 슬링거가 장착되는 제2 리세스를 포함할 수 있다.
일 실시예에 있어서, 슬링거는, 제2 리세스의 내측에 압입되는 제1 슬링거부; 제1 슬링거부의 외측 축방향 단부로부터 외측 반경방향으로 연장하는 제2 슬링거부; 및 제2 슬링거부의 외측 반경방향 단부로부터 내측 축방향으로 연장하는 제3 슬링거부를 포함할 수 있다.
일 실시예에 있어서, 실링부는, 제1 리세스 내에 위치하고 제1 리세스로부터 이격되어 위치하는 제1 실링부; 제2 리세스 내에 위치하며 제3 슬링거부에 평행하고 제2 리세스로부터 이격되어 위치하는 제2 실링부; 및 제2 리세스 내에서 제1 슬링거부, 제2 슬링거부, 제3 슬링거부에 의해 형성되는 공간 내에 배치되는 제3 실링부를 포함할 수 있다.
일 실시예에 있어서, 제3 실링부는, 외측 축방향으로 연장하고 제2 슬링거부에 접촉하는 하나 이상의 제1 실링 립; 및 제1 실링 립의 내측 반경방향에서 내측 축방향으로 연장하고 제1 슬링거부에 접촉하는 제2 실링 립을 포함할 수 있다.
일 실시예에 있어서, 제2 슬링거부로부터 제2 리세스의 최대 깊이 지점까지의 축방향 길이(D)는 1mm보다 크게 설정될 수 있다.
일 실시예에 있어서, 제2 슬링거부로부터 외측 축방향을 따른 제2 리세스의 최대 깊이 지점까지의 축방향 길이(D)는 하기의 수학식 1을 만족하도록 설정될 수 있다.
[수학식 1]
D > A1 - 2.2×B1
여기서, A1은 내측 플랜지면으로부터 외측 플랜지면까지의 두께이고, B1은 내측 플랜지면으로부터 외측 축방향을 따른 제2 리세스의 최대 깊이 지점까지의 축방향 길이이다.
일 실시예에 있어서, 제1 실링부는 축을 지나고 지면에 평행한 수평면을 기준으로 상하 비대칭으로 형성될 수 있다.
일 실시예에 있어서, 제1 실링부가 형성되는 각도는 축을 지나고 수평면에 수직인 수직면을 기준으로 ±30° 내지 ±160°의 범위로 설정될 수 있다.
일 실시예에 있어서, 허브 플랜지는 휠 허브의 원통부에 평행한 제2 리세스의 리세스면으로부터 외측 반경방향으로 연장하는 단차부를 포함할 수 있다.
일 실시예에 있어서, 제2 리세스의 리세스면으로부터 단차부까지의 반경방향 길이(F)는 단차부로부터 제2 리세스의 최대 깊이 지점까지의 축방향 길이(E)보다 짧게 설정될 수 있다.
일 실시예에 있어서, 허브 플랜지는 외측 플랜지면으로부터 외측 축방향으로 돌출하는 돌출부를 포함할 수 있다.
다른 실시예에 따른 휠 베어링 조립체는, 차량의 차체측 부재에 장착되는 외륜; 축을 중심으로 외륜에 대하여 상대 회전하는 내륜; 내륜이 결합되는 원통부, 및 원통부로부터 외측 반경방향으로 연장하고 내측 플랜지면과 외측 플랜지면을 가지는 허브 플랜지를 포함하는 휠 허브; 외륜과 원통부 사이 및 외륜과 내륜 사이에 배치되는 복수의 전동체; 및 외륜과 허브 플랜지 사이에 배치되는 실링 장치를 포함한다. 허브 플랜지는 외측 플랜지면으로부터 외측 축방향으로 돌출하는 돌출부를 포함한다. 허브 플랜지에는 내측 플랜지면으로부터 외측 축방향 및 외측 반경방향으로 오목한 리세스가 형성된다. 실링 장치는, 외륜에 장착되는 프레임; 프레임에 결합되고 전부 또는 일부가 허브 플랜지의 리세스 내에 위치하는 실링부; 및 허브 플랜지의 리세스 내에서 3개 이상의 리세스면과 접촉하여 장착되는 슬링거를 포함한다.
일 실시예에 있어서, 리세스는, 외륜의 외측 축방향 단부에 대향하는 제1 리세스; 및 제1 리세스의 내측 반경방향에서 제1 리세스보다 외측 축방향으로 더 오목하게 형성되고 슬링거가 장착되는 제2 리세스를 포함할 수 있다.
일 실시예에 있어서, 허브 플랜지는 제2 리세스의 외측 반경방향에 위치하는 리세스면으로부터 내측 반경방향으로 연장하는 걸림턱을 포함할 수 있다.
일 실시예에 있어서, 슬링거가 제2 리세스에 장착된 상태에서 슬링거의 외경은 걸림턱의 내경보다 크게 설정될 수 있다.
일 실시예에 있어서, 슬링거는, 제2 리세스의 내측 반경방향에 위치하는 리세스면에 압입되는 제1 슬링거부; 제1 슬링거부로부터 연장하고 제2 리세스의 외측 축방향에 위치하는 리세스면에 접촉하는 제2 슬링거부; 및 제2 슬링거부로부터 연장하고 걸림턱에 걸리는 외측 반경방향 단부를 가지는 제3 슬링거부를 포함할 수 있다.
일 실시예에 있어서, 실링부는, 제1 리세스 내에 위치하고 제1 리세스로부터 이격되어 위치하는 제1 실링부; 및 제2 리세스 내에 위치하고 슬링거에 접촉하는 제2 실링부를 포함할 수 있다.
일 실시예에 있어서, 제1 실링부는, 프레임으로부터 외측 반경방향으로 연장하는 제1 실링 립; 및 제1 실링 립의 내측 반경방향에서 외측 축방향으로 연장하는 제2 실링 립을 포함할 수 있다.
일 실시예에 있어서, 제2 실링부는, 제2 슬링거부에 접촉하는 하나 이상의 제1 실링 립; 및 제1 실링 립의 내측 반경방향에서 내측 축방향으로 연장하고 제1 슬링거부에 접촉하는 제2 실링 립을 포함할 수 있다.
일 실시예에 있어서, 허브 플랜지는 외측 플랜지면으로부터 외측 축방향으로 돌출하는 돌출부를 포함할 수 있다.
일 실시예에 따른 휠 베어링 조립체에 의하면, 실링 장치의 일부가 허브 플랜지의 리세스 내에 배치되므로, 회전 요소와 비회전 요소 사이에 개재되는 실링 장치의 설치 공간이 충분히 확보될 수 있을 뿐만 아니라 실링 장치의 실링 성능이 향상될 수 있다. 이처럼, 실링 장치의 설치 공간이 리세스와 축방향에 있어서 적어도 부분적으로 중첩되므로, 휠 베어링 조립체의 전동체 사이의 축방향을 따른 충분한 이격 거리가 확보될 수 있다. 따라서, 휠 베어링 조립체가 지지할 수 있는 차체의 중량이 증가될 수 있을 뿐만 아니라 휠 베어링 조립체의 수명이 증가될 수 있다.
도 1은 본 개시의 일 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 2는 도 1에 도시된 A부분을 확대하여 도시하는 확대 단면도이다.
도 3은 도 1에 도시된 실링 장치를 보인 부분 절단 사시도이다.
도 4는 도 1에 도시된 휠 베어링 조립체에서 주요 치수를 표시한 단면도이다.
도 5는 도 1에 도시된 실링부의 일부를 보인 부분 절단 사시도이다.
도 6은 본 개시의 다른 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 7은 도 6에 도시된 B부분을 확대하고 주요 치수를 표시한 확대 단면도이다.
도 8은 본 개시의 또 다른 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 9는 도 8에 도시된 C부분을 확대하여 도시하는 확대 단면도이다.
도 10은 도 8에 도시된 실링 장치를 보인 부분 절단 사시도이다.
<부호의 설명>
1000, 2000, 3000: 휠 베어링 조립체, 1100: 외륜, 1110: 외주면, 1120: 내측 실링 장치, 1200: 내륜, 1300: 휠 허브, 1310: 원통부, 1320: 허브 플랜지, 1320a: 내측 플랜지면, 1320b: 외측 플랜지면, 1321: 볼트 홀, 1322: 돌출부, 1330: 리세스, 1331: 제1 리세스, 1332: 제2 리세스, 1332a: 제1 리세스면, 1332b: 제2 리세스면, 1400: 복수의 전동체, 1410: 리테이너, 1500: 실링 장치, 1510: 프레임, 1511: 외륜 장착부, 1512: 플랜지부, 1512a: 제1 플랜지부, 1512b: 제2 플랜지부, 1520: 실링부, 1520a: 서브 실링부, 1521: 제1 실링부, 1522: 제2 실링부, 1523: 제3 실링부, 1523a: 제1 실링 립, 1523b: 제2 실링 립, 1530: 슬링거, 1531: 제1 슬링거부, 1532: 제2 슬링거부, 1533: 제3 슬링거부, 2300: 휠 허브, 2310: 원통부, 2320: 허브 플랜지, 2320a: 내측 플랜지면, 2320b: 외측 플랜지면, 2322: 돌출부, 2330: 리세스, 2331: 제1 리세스, 2332: 제2 리세스, 2332a: 제1 리세스면, 2332b: 제2 리세스면, 2340: 단차부, 3300: 휠 허브, 3310: 원통부, 3320: 허브 플랜지, 3320a: 내측 플랜지면, 3320b: 외측 플랜지면, 3330: 리세스, 3331: 제1 리세스, 3332: 제2 리세스, 3332a: 제1 리세스면, 3332b: 제2 리세스면, 3332c: 제3 리세스면, 3340: 걸림턱, 3322: 돌출부, 3500: 실링 장치, 3510: 프레임, 3511: 외륜 장착부, 3512: 플랜지부, 3512a: 제1 플랜지부, 3512b: 제2 플랜지부, 3520: 실링부, 3520a: 서브 실링부, 3521: 제1 실링부, 3521a: 제1 실링 립, 3521b: 제2 실링 립, 3522: 제2 실링부, 3522a: 제1 실링 립, 3522b: 제2 실링 립, 3530: 슬링거, 3531: 제1 슬링거부, 3532: 제2 슬링거부, 3532a: 경사부, 3532b: 수직부, 3533: 제3 슬링거부, 3533a: 단부
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서, "축 방향"은 휠 베어링 조립체의 회전축(RA)(rotational axis)과 평행한 방향을 의미하는 것으로 정의될 수 있고, "반경 방향"은 축 방향에 수직하며 회전 축으로부터 멀어지거나 회전축에 가까워지는 방향을 의미하는 것으로 정의될 수 있고, "원주 방향"은 축 방향을 중심으로 축 방향을 감싸는 방향을 의미하는 것으로 정의될 수 있다. 이하에서, 휠 베어링 조립체의 회전축 방향은 간단히 "축 방향"이라고 지칭될 수 있다.
본 개시에서, 화살표 "OA"는 휠 베어링 조립체의 축(RA)을 따르는 방향으로서 휠 허브에 대해 차륜이 배치되는 외측 축방향(outboard)을 가리키고, 화살표 "IA"는 "OA"의 반대 방향으로서 휠 허브에 대해 너클이 배치되는 내측 축방향(inboard)을 가리킨다. 또한, 화살표 "OR"은 휠 베어링 조립체의 회전축에 대한 방사상 방향(radial direction) 중 회전축으로부터 멀어지는 외측 반경방향을 가리키고, 화살표 "IR"는 "OR"의 반대 방향인 내측 반경방향을 가리킨다. 화살표 "CD"는 원주방향을 가리킨다.
본 개시에서, "예압(pre-load)"은 휠 베어링 조립체의 틈새 변화량을 의미할 수 있다. 즉, 예압은 휠 베어링 조립체를 구성하는 부품의 일부가 조립 과정에서 압축되어 소성 또는 탄성 변형되는 크기를 의미할 수 있다. 예압은 길이 단위를 가질 수 있고, 예를 들어 μm 단위의 크기로 측정될 수 있다. 예압은 구름 장치의 전동체 또는 오비탈 포밍부에 의해 형성될 수 있다.
이하, 첨부한 도면들을 참조하여, 본 개시의 실시예들을 설명한다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
도 1은 본 개시의 일 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 1에 도시된 바와 같이, 본 개시의 일 실시예에 따른 휠 베어링 조립체(1000)는 외륜(1100); 내륜(1200); 휠 허브(1300); 복수의 전동체(1400); 및 실링 장치(1500)를 포함한다. 휠 베어링 조립체(1000)는 차량의 차체측 부재(예컨대, 현가장치)와 휠 사이에 배치되어 휠을 차체측 부재에 대해 회전가능하게 지지하도록 구성된다. 외륜(1100)이 결합되는 차체측 부재(예컨대, 현가장치)는 휠 베어링 조립체(1000)의 내측 축방향(IA)에 배치될 수 있고, 휠은 휠 베어링 조립체(1000)의 외측 축방향(OA)에 배치될 수 있다.
외륜(1100)은 전체적으로 중공의 원통 형상을 가지며 축(RA)과 동심으로 배치된다. 외륜(1100)은 회전하지 않도록 차량의 차체측 부재(예컨대, 현가장치)에 결합된다. 예를 들어, 외륜(1100)은 현가장치를 구성하는 너클 등에 결합될 수 있지만, 외륜(1100)이 결합되는 차체측 부품은 이에 한정되지 않는다.
내륜(1200)은 축(RA)을 중심으로 외륜(1100)에 대하여 상대 회전하도록 구성된다. 내륜(1200)은 외륜(1100)으로부터 내측 반경방향(IR)으로 이격되어 있다. 일 실시예에 있어서, 내륜(1200)은 휠 허브(1300)의 원통부(1310)에 압입되어 결합될 수 있다. 일 실시예에 있어서, 내륜(1200)은 원통부(1310)의 내측 축방향(IA) 단부를 오비탈 포밍(orbital forming)하여 휠 허브(1300)에 결합될 수 있다. 오비탈 포밍은 내륜(1200)이 휠 허브(1300)에 압입된 상태에서 휠 허브(1300)의 내측 축방향(IA) 단부를 외측 반경방향(OR)으로 소성 변형시켜 내륜(1200)에 예압을 가하면서 내륜(1200)을 휠 허브(1300)에 고정하는 공정을 의미한다.
휠 허브(1300)는 원통부(1310)와 허브 플랜지(1320)를 포함한다. 원통부(1310)의 외주면에는 내륜(1200)이 결합되고, 그 내주면에는 등속 조인트 또는 차축이 결합된다. 허브 플랜지(1320)는 내륜(1200)의 외측 축방향(OA)에서 원통부(1310)로부터 외측 반경방향(OR)으로 연장한다. 허브 플랜지(1320)는 내측 축방향(IA)에 위치하는 내측 플랜지면(1320a) 및 외측 축방향(OA)에 위치하는 외측 플랜지면(1320b)을 포함한다. 허브 플랜지(1320)에는 축(RA)을 중심으로 원주방향으로 동일한 간격으로 복수의 볼트 홀(1321)이 형성된다. 허브 볼트가 휠과 허브 플랜지(1320)의 볼트 홀(1321)을 관통하여 너트와 체결됨으로써, 휠이 휠 허브(1300)에 결합된다.
허브 플랜지(1320)는 외측 플랜지면(1320b)으로부터 외측 축방향(OA)으로 돌출하는 돌출부(1322)를 포함한다. 허브 플랜지(1320)에는 내측 플랜지면(1320a)으로부터 외측 축방향(OA)으로 오목한 리세스(1330)가 형성된다. 허브 플랜지(1320)의 내측 플랜지면(1320a)에 리세스(1330)가 형성되는 경우에도, 돌출부(1322)가 허브 플랜지(1320)의 두께를 보강함으로써 허브 플랜지(1320)에 요구되는 강성을 확보하는 것이 가능하다.
도 2는 도 1에 도시된 A부분을 확대하여 도시하는 확대 단면도이다.
도 2에 도시된 바와 같이, 일 실시예에 있어서, 리세스(1330)는 내측 반경방향(IR)을 따라 순서대로 형성되는 제1 리세스(1331) 및 제2 리세스(1332)를 포함할 수 있다. 리세스(1330)는 연삭 가공 또는 선삭 가공에 의해 형성될 수 있다. 제1 리세스(1331)는 외륜(1100)의 외측 축방향(OA) 단부에 대향한다. 제2 리세스(1332)는 제1 리세스(1331)의 내측 반경방향(IR)에서 제1 리세스(1331)보다 외측 축방향(OA)으로 더 오목하게 형성되고, 제2 리세스(1332)에는 실링 장치(1500)의 슬링거(1530)가 장착된다. 즉, 제2 리세스(1332)의 최대 깊이 지점은 제1 리세스(1331)의 최대 깊이 지점보다 외측 축방향(OA)에 위치한다. 이와 같이, 리세스(1330)(즉, 제1 리세스(1331) 및 제2 리세스(1332))가 허브 플랜지(1320)의 내측 플랜지면(1320a)으로부터 외측 축방향(OA)으로 오목하게 형성되고 실링 장치(1500)의 일부가 리세스(1330) 내에 배치되므로, 리세스(1330)와 실링 장치(1500)의 일부 사이는 래비린스(labyrinth) 구조의 유로를 형성한다. 따라서, 이러한 래비린스 구조로 인해, 이물질이 외륜(1100)과 휠 허브(1300) 사이로 유입되는 것을 억제하거나 방지할 수 있다. 따라서, 외륜(1100)과 허브 플랜지(1320) 사이의 밀봉 성능이 향상될 수 있다. 제2 리세스(1332)에는 제1 리세스(1331)로부터 오목한 곡면으로 연결되는 제1 리세스면(1332a) 및 제1 리세스면(1332a)으로부터 편평한 평면으로 연결되는 제2 리세스면(1332b)이 형성된다. 제2 리세스면(1332b)은 휠 허브(1300)의 원통부(1310)와 평행하고 원통부(1310)보다 외측 반경방향(OR)에 위치한다.
다른 예로서, 도 2에 도시된 바와 다르게, 제1 리세스가 다각형 형상을 가지지 않고 곡면으로 이루어지고, 제1 리세스가 제2 리세스(1332)의 제1 리세스면(1332a)까지 곡면으로 이어질 수도 있다. 즉, 리세스는 내측 플랜지면(1320a)으로부터 외측 축방향(OR)으로 오목한 단일의 리세스로 구성될 수도 있다.
복수의 전동체(1400)는 외륜(1100)과 휠 허브(1300)의 원통부(1310) 사이 및 외륜(1100)과 내륜(1200) 사이에 배치된다. 도 1에 도시된 예에서, 복수의 전동체(1400)는 2열로 구성되어 있지만, 다른 실시예로서 전동체는 3열 이상의 복수열로 구성될 수도 있다. 도 1에 도시된 예에서, 전동체(1400)는 볼로 구성되어 있지만, 다른 실시예로서 전동체는 롤러 또는 테이퍼 롤러로 구성될 수 있다. 복수의 전동체(1400)는 리테이너(1410)에 의해 축(RA)의 원주방향(CD)을 따라 일정한 간격을 유지하도록 구성된다. 다른 실시예로서, 복수의 전동체는 외륜과 외측 축방향에 배치되는 하나의 내륜 사이 및 외륜과 내측 축방향에 배치되는 다른 하나의 내륜 사이에 배치될 수도 있다.
도 3은 도 1에 도시된 실링 장치를 보인 부분 절단 사시도이다.
실링 장치(1500)는 외륜(1100)과 허브 플랜지(1320) 사이에 배치된다. 실링 장치(1500)는 외륜(1100)의 외측 축방향(OA) 단부에서 외륜(1100)과 휠 허브(1300)의 허브 플랜지(1320) 사이를 실링하여 그 사이로 물이나 먼지와 같은 이물질이 유입되는 것을 억제 또는 방지한다. 또한, 외륜(1100)의 내측 축방향(IA) 단부에서 외륜(1100)과 내륜(1200)의 사이를 실링하기 위한 내측 실링 장치(1120)가 더 설치된다.
도 3에 도시된 바와 같이, 실링 장치(1500)는 외륜(1100)(예컨대, 외륜의 외주면(1110))에 장착되는 프레임(1510); 프레임(1510)에 결합되고 전부 또는 일부가 허브 플랜지(1320)의 리세스(1330) 내에 위치하는 실링부(1520); 및 허브 플랜지(1320)의 리세스(1330) 내에 장착되는 슬링거(1530)를 포함할 수 있다. 실링 장치(1500)의 일부(즉, 실링부(1520) 및 슬링거(1530))가 허브 플랜지(1320)의 리세스(1330) 내에 배치되므로, 휠 베어링 조립체(1000)의 내부 공간이 확장될 수 있다. 휠 베어링 조립체(1000)의 내부 공간이 확장되면, 전동체(1400) 사이의 축방향 이격 거리가 크게 설정될 수 있다. 따라서, 휠 베어링 조립체(1000)는 보다 큰 중량을 가지는 차체를 지지할 수 있다. 즉, 휠 베어링 조립체(1000)의 내부 공간이 확장되고 전동체(1400) 사이의 축방향 이격 거리가 크게 설정되므로, 휠 베어링 조립체(1000)가 큰 중량을 가지는 차체를 지지하는 경우에도 휠 베어링 조립체(1000)가 변형되거나 파손되는 것을 방지할 수 있다. 그 결과, 휠 베어링 조립체(1000)의 수명이 증가될 수 있다. 허브 플랜지(1320)의 내측 플랜지면(1320a)에 리세스(1330)가 형성되고 실링 장치(1500)의 일부(즉, 실링부(1520) 및 슬링거(1530))가 리세스(1330) 내에 배치되므로, 실링 장치(1500)와 허브 플랜지(1320) 사이에는 래비린스 구조가 형성된다. 따라서, 이물질이 휠 베어링 조립체(1000)의 내부로 유입되는 것을 억제하거나 방지할 수 있다. 그 결과, 휠 베어링 조립체(1000)의 밀봉 성능이 향상될 수 있다.
프레임(1510)은 금속 재질의 판재 또는 관재로 이루어지고 프레스 가공을 통해 제작될 수 있다. 일 실시예에 있어서, 프레임(1510)은 외륜(1100)의 외주면(1110) 등에 장착되고 중공의 원통형상인 외륜 장착부(1511) 및 외륜 장착부(1511)로부터 내측 반경방향(IR)으로 연장하는 플랜지부(1512)를 포함할 수 있다. 일 실시예에 있어, 플랜지부(1512)는 외륜(1100)의 외측 축방향(OA) 단부에 맞닿는 제1 플랜지부(1512a) 및 제1 플랜지부(1512a) 보다 외측 축방향(OA)에 위치하고 제1 플랜지부(1512a)에 평행한 제2 플랜지부(1512b)를 포함할 수 있다. 즉, 제2 플랜지부(1512b)는 외륜(1100)의 외측 축방향(OA) 단부로부터 외측 축방향(OA)으로 이격되어 있다.
실링부(1520)는 고무 재질로 이루어지고 프레임(1510)을 인서트로 하여 가류 성형(또는 가황 성형)을 통해 미리 결정된 형상을 가지도록 제작될 수 있다. 실링부(1520)는 외륜 장착부(1511)의 내측 축방향(IA) 단부로부터 내측 축방향으로 연장하는 서브 실링부(1520a)를 포함할 수 있다. 서브 실링부(1520a)는 외륜(1100)의 외주면(1110)에 접촉하도록 구성되어, 외륜(1100)의 외주면(1110)과 프레임(1510)의 외륜 장착부(1511) 사이에 이물질이 침투하는 것을 억제하거나 방지할 수 있다.
슬링거(1530)는 허브 플랜지(1320)의 리세스(1330) 내에 장착되고 프레임(1510)과는 이격되도록 배치된다. 슬링거(1530)는 금속 재질의 판재 또는 관재로 이루어지고 프레스 가공을 통해 제작될 수 있다.
일 실시예에 있어서, 슬링거(1530)는, 제2 리세스(1332)의 내측에 압입되는 제1 슬링거부(1531); 제1 슬링거부(1531)의 외측 축방향(OA) 단부로부터 외측 반경방향(OR)으로 연장하는 제2 슬링거부(1532); 및 제2 슬링거부(1532)의 외측 반경방향(OR) 단부로부터 내측 축방향(IA)으로 연장하는 제3 슬링거부(1533)를 포함할 수 있다. 제1 슬링거부(1531)는 제2 리세스(1332)의 제2 리세스면(1332b)에 압입된다. 제2 슬링거부(1532)는 제1 슬링거부(1531)에 대하여 수직으로 배치되고, 제3 슬링거부(1533)는 제2 슬링거부(1532)에 대하여 수직이며 제1 슬링거부(1531)에 대하여 평행하게 배치된다.
일 실시예에 있어서, 실링부(1520)는, 제1 리세스(1331) 내에 위치하고 제1 리세스(1331)로부터 이격되어 위치하는 제1 실링부(1521); 제2 리세스(1332) 내에 위치하고 제3 슬링거부(1533)에 평행하고 제2 리세스(1332)로부터 이격되어 위치하는 제2 실링부(1522); 및 제2 리세스(1332) 내에서 제1 슬링거부(1531), 제2 슬링거부(1532) 및 제3 슬링거부(1533)에 의해 형성되는 공간 내에 배치되는 제3 실링부(1523)를 포함할 수 있다.
제1 실링부(1521)는 프레임(1510)의 외륜 장착부(1511)와 플랜지부(1512)(즉, 제1 플랜지부(1512a))가 만나는 모서리로부터 외측 반경방향(OR)으로 연장하고 제1 리세스(1331)로부터 내측 반경방향(IR)으로 이격되어 배치된다. 제1 실링부(1521)는 내측 플랜지면(1320a)보다 외측 축방향(OA)에 배치된다. 제1 실링부(1521)는 외륜(1100)과 허브 플랜지(1320) 사이로 유입되는 이물질을 1차적으로 차단하는 역할을 한다.
제2 실링부(1522)는 프레임(1510)의 플랜지부(1512)(예컨대, 제1 플랜지부(1512a)와 제2 플랜지부(1512b)가 만나는 부분)로부터 연장하고 제1 실링부(1521)의 내측 반경방향(IR)에 위치한다. 제2 실링부(1522)는 제2 리세스(1332)의 제1 리세스면(1332a)으로부터 이격되어 배치된다. 제2 실링부(1522)는 제1 실링부(1522)와 다른 방향으로 연장하여 제1 실링부(1521)와 함께 래비린스 구조를 형성하는 역할을 한다. 즉, 제1 실링부(1521)가 제1 리세스(1331) 내에서 외측 반경방향(OR)으로 연장하고 제2 실링부(1522)가 제2 리세스(1332) 내에서 외측 축방향(OA)으로 연장하도록 구성되므로, 제1 실링부(1521)와 제1 리세스(1331) 사이 및 제2 실링부(1522)와 제2 리세스(1332)의 제1 리세스면(1332a) 사이는 래비린스 구조의 유로를 형성한다. 따라서, 이러한 래비린스 구조로 인해, 제1 실링부(1521)와 제1 리세스(1331) 사이로 유입된 이물질이 외륜(1100)과 휠 허브(1300) 사이로 유입되는 것을 억제하거나 방지할 수 있다. 그 결과, 휠 베어링 조립체(1000)의 밀봉 성능이 향상될 수 있다.
제3 실링부(1523)는 프레임(1510)의 플랜지부(1512)(즉, 제2 플랜지부(1512b))로부터 연장하고 제1 실링부(1521) 및 제2 실링부(1522)의 내측 반경방향(IR)에 위치한다. 일 실시예에 있어서, 제3 실링부(1523)는 외측 축방향(OA)으로 연장하고 제2 슬링거부(1532)에 접촉하는 하나 이상의 제1 실링 립(1523a) 및 제1 실링 립(1523a)의 내측 반경방향(IR)에서 내측 축방향(IA)으로 연장하고 제1 슬링거부(1531)에 접촉하는 제2 실링 립(1523b)을 포함할 수 있다. 도 1에 도시된 바와 같이, 2개의 제1 실링 립(1523a)이 형성될 수 있다. 제1 실링 립(1523a)의 개수가 너무 많은 경우에는, 제1 실링 립(1523a)과 슬링거(1530)의 마찰 저항이 커져서 외륜(1100)에 대한 휠 허브(1300)의 전체 회전 저항이 커지게 된다. 반대로, 제1 실링 립(1523a)의 개수가 너무 적은 경우에는, 외륜(1100)과 허브 플랜지(1320) 사이의 밀봉 성능이 저하될 수 있다. 따라서, 제1 실링 립(1523a)의 개수는 차량의 제조사에서 요구하는 회전 저항 및 실링 성능을 고려하여 적절하게 선택될 수 있다. 다른 예로서, 도 2에 도시된 바와 다르게, 제3 실링부(1523)는 제1 슬링거부(1531), 제2 슬링거부(1532) 및 제3 슬링거부(1533)에 의해 형성되는 공간 내에서 슬링거(1530)와 비접촉식으로 구성될 수 있다. 즉, 제3 실링부(1523)는 제1 슬링거부(1531) 또는 제2 슬링거부(1532)로부터 이격되어 배치될 수 있다.
제2 실링 립(1523b)은 프레임(1510)의 플랜지부(1512)(즉, 제2 플랜지부(1512b))를 기준으로 제1 실링 립(1523a)과는 반대방향으로 연장하여 제1 슬링거부(1531)와 접촉하도록 구성된다. 다른 예로서, 제2 실링 립(1523b)은 슬링거(1530)에 비접촉식으로 구성될 수 있다. 제2 실링 립(2523b)은 이물질이 외륜(1100)과 허브 플랜지(1320) 사이로 침투하는 것을 억제 또는 방지하거나 외륜(1100)과 휠 허브(1300) 사이에 충진된 윤활제가 외부로 누출되는 것을 방지할 수 있다.
도 4는 도 1에 도시된 휠 베어링 조립체에서 주요 치수를 표시하여 도시하는 단면도이다.
도 4에 도시된 바와 같이, 일 실시예에 있어서, 제2 슬링거부(1532)로부터 외측 축방향(OA)을 따른 제2 리세스(1332)의 최대 깊이 지점까지의 축방향 길이(D)는 1mm보다 크게 설정될 수 있다. 즉, 제2 슬링거부(1532)와 제2 리세스(1332)의 제1 리세스면(1332a) 사이에는 축방향 길이(D)만큼의 갭이 형성되므로, 이물질이 유입될 수 있는 경로가 이러한 갭에 의해 길어질 수 있다. 따라서, 리세스(1330)와 실링 장치(1500) 사이의 래비린스 효과가 극대화될 수 있다. 그 결과, 외륜(1100)과 허브 플랜지(1320) 사이의 밀봉 성능이 향상될 수 있다.
일 실시예에 있어서, 제2 슬링거부(1532)로부터 외측 축방향(OA)을 따른 제2 리세스(1332)의 최대 깊이 지점까지의 축방향 길이(D)는 하기의 수학식 1을 만족하도록 설정될 수 있다. 따라서, 차량의 휠이 가혹한 노면에서 운행될 때, 허브 플랜지(1320)가 변형됨에 따라 허브 플랜지(1320)에 크랙이 발생하는 것을 억제하거나 방지할 수 있다.
[수학식 1]
D > A1 - 2.2×B1
여기서, A1은 내측 플랜지면(1320a)으로부터 외측 플랜지면(1320b)까지의 두께이다. B1은 내측 플랜지면(1320a)으로부터 외측 축방향(OA)을 따른 제2 리세스(1332)의 최대 깊이 지점까지의 길이이다.
이와 같이, 축방향 길이(D)가 수학식 1을 만족하도록 설정되는 경우에는, 이물질이 유입될 수 있는 경로가 길게 형성될 수 있다. 따라서, 리세스(1330)와 실링 장치(1500) 사이의 래비린스 효과가 극대화될 수 있다. 그 결과, 외륜(1100)과 허브 플랜지(1320) 사이의 밀봉 성능이 향상될 수 있다.
수학식 1은 아래의 수학식 2와 같이 표현될 수도 있다.
[수학식 2]
D > A1 - C1 - B1
여기서, C1은 제1 리세스(1331)와 제2 리세스(1332)를 연결하는 직선(L1)과 외측 플랜지면(1320b)과 돌출부(1322)가 만나는 지점을 지나며 직선(L1)에 평행한 직선(L2) 사이의 거리이다.
일 실시예에 있어서, C1은 아래의 수학식 3을 만족하도록 설정될 수 있다.
[수학식 3]
C1 > 0.6×A1
도 5는 도 1에 도시된 실링부의 일부를 보인 부분 절단 사시도이다. 도 5에 있어서, 프레임(1510), 제1 실링부(1521), 제2 실링부(1522), 제3 실링부(1523)는 평면(P2)를 기준으로 절단하여 도시되어 있다.
도 5에 도시된 바와 같이, 일 실시예에 있어서, 제1 실링부(1521)는 축(RA)을 지나고 지면에 평행한 수평면(P1)을 기준으로 상하 비대칭으로 형성될 수 있다. 예를 들어, 제1 실링부(1521)는, 수평면(P1)을 기준으로 상측에는 부분적으로 형성되고, 수평면(P1)을 기준으로 하측에는 형성되지 않을 수 있다. 또한, 제1 실링부(1521)는, 수평면(P1)을 기준으로 상측에는 모두 형성되고, 수평면(P1)을 기준으로 하측에는 부분적으로 형성될 수 있다. 제1 실링부(1521)와 허브 플랜지(1320) 사이로 침투한 이물질은 제2 실링부(1522) 및 제3 실링부(1523)에 의해 외륜(1100)과 휠 허브(1300) 사이로 유입되지 않고 제1 실링부(1521)가 형성되지 않은 하측을 통해 배출될 수 있다.
일 실시예에 있어서, 제1 실링부(1521)가 형성되는 각도(α)는 축(RA)을 지나고 수평면(P1)에 수직인 수직면(P2)을 기준으로 ±30° 내지 ±160°의 범위로 설정될 수 있다. 각도(α)가 ±30°미만인 경우에는, 제1 실링부(1521)가 형성되는 부분이 너무 작아진다. 따라서, 수평면(P1)을 기준으로 상측에서 이물질이 제1 실링부(1521)와 허브 플랜지(1320) 사이로 유입되는 것을 효과적으로 방지할 수 없다. 그 결과, 실링 장치(1500)의 밀봉 성능이 저하될 수 있다. 한편, 각도(α)가 ±160°를 초과하는 경우에는, 제1 실링부(1521)가 형성되는 부분이 너무 커진다. 따라서, 수평면(P1)을 기준으로 하측에서 이물질이 원활하게 배출되지 않는다. 배출되지 않는 이물질이 실링부(1520)를 마모시키거나 손상시킬 수 있어, 실링 장치(1500)의 내구성이 저하될 수 있다. 도 5에는 각도(α)의 범위가 반시계 방향으로 -30° 및 -160°로 도시되어 있지만, 각도(α)의 범위는 시계 방향으로 +30° 및 +160°로 이해될 수 있다.
도 6은 본 개시의 다른 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 6에 도시된 바와 같이, 본 개시의 다른 실시예에 따른 휠 베어링 조립체(2000)는 외륜(1100); 내륜(1200); 휠 허브(2300); 복수의 전동체(1400); 및 실링 장치(1500)를 포함한다. 이 실시예에 따른 외륜(1100); 내륜(1200); 복수의 전동체(1400); 및 실링 장치(1500)는 도 1 내지 도 5에 도시된 실시예에 따른 휠 베어링 조립체(1000)의 외륜(1100); 내륜(1200); 복수의 전동체(1400); 및 실링 장치(1500)와 동일 또는 유사하므로, 이하에서는 휠 허브(2300)에 대해서 상세하게 설명한다.
휠 허브(2300)는 원통부(2310) 및 허브 플랜지(2320)를 포함한다. 허브 플랜지(2320)는 외측 플랜지면(2320b)으로부터 외측 축방향(OA)으로 돌출하는 돌출부(2322)를 포함한다. 허브 플랜지(2320)에는 내측 플랜지면(2320a)으로부터 외측 축방향(OA)으로 오목한 리세스(2330)가 형성된다. 리세스(2330)는 제1 리세스(2331) 및 제2 리세스(2332)를 포함한다. 제2 리세스(2332)에는 제1 리세스(2331)로부터 오목한 곡면으로 이루어지는 제1 리세스면(2332a) 및 제1 리세스면(2332a)으로부터 편평한 평면으로 이루어지는 제2 리세스면(2332b)이 형성된다.
도 7은 도 6에 도시된 B부분을 확대하고 주요 치수를 표시한 확대 단면도이다.
도 7을 참조하면, 일 실시예에 있어서, 허브 플랜지(2320)는 휠 허브(2300)의 원통부(2310)에 평행한 제2 리세스(2332)의 리세스면(즉, 제2 리세스면(2332b))으로부터 외측 반경방향(OR)으로 연장하는 단차부(2340)를 포함한다. 슬링거(1530)가 리세스(2330)(즉, 제2 리세스(2332)) 내에 장착될 때, 단차부(2340)로 인하여, 슬링거(1530)가 제2 리세스(2332) 내에 용이하고 정확하게 배치될 수 있다. 따라서, 슬링거(1530)와 실링부(1520)(예컨대, 제3 실링부(1523))는 미리 결정된 마찰 저항을 가지도록 설치될 수 있다. 또한, 단차부(2340)는 슬링거(1530)의 제2 슬링거부(1532)와 맞닿아 슬링거(1530)가 외측 축방향(OA)으로 이동하는 것을 방지한다. 슬링거(1530)와 실링부(1520)(예컨대, 제3 실링부(1523))는 차량의 운행시 미리 결정된 마찰 저항을 유지할 수 있다.
일 실시예에 있어서, 제2 리세스(2332)의 리세스면(즉, 제2 리세스면(2332b))으로부터 단차부(2340)까지의 반경방향 길이(F)는 단차부(2340)로부터 외측 축방향(OA)을 따른 제2 리세스(2332)의 최대 깊이 지점까지의 축방향 길이(E)보다 짧게 설정될 수 있다. 반경방향 길이(F)가 축방향 길이(E)보다 길게 형성되는 경우에는, 제2 리세스(2332)와 슬링거(1530) 사이에 형성되는 공간이 감소될 수 있다. 따라서, 이물질이 유입될 수 있는 경로가 짧아지게 되어, 리세스(2330)와 실링 장치(1500) 사이의 래비린스 효과가 저하될 수 있다.
도 8은 본 개시의 또 다른 실시예에 따른 휠 베어링 조립체를 절단하여 도시하는 단면도이다.
도 8에 도시된 바와 같이, 본 개시의 다른 실시예에 따른 휠 베어링 조립체(3000)는 외륜(1100); 내륜(1200); 휠 허브(3300); 복수의 전동체(1400); 및 실링 장치(3500)를 포함한다. 이 실시예에 따른 외륜(1100); 내륜(1200); 및 복수의 전동체(1400)는 도 1 내지 도 7에 도시된 실시예에 따른 휠 베어링 조립체(1000, 2000)의 외륜(1100); 내륜(1200); 및 복수의 전동체(1400) 와 동일 또는 유사하므로, 이하에서는 휠 허브(3300) 및 실링 장치(3500)에 대해서 상세하게 설명한다.
도 9는 도 8에 도시된 C부분을 확대하고 주요 치수를 표시한 확대 단면도이다.
휠 허브(3300)는 원통부(3310)와 허브 플랜지(3320)를 포함한다. 허브 플랜지(3310)는 외측 플랜지면(3320b)으로부터 외측 축방향(OA)으로 돌출하는 돌출부(3322)를 포함한다. 허브 플랜지(3320)에는 내측 플랜지면(3320a)으로부터 외측 축방향(OA) 및 외측 반경방향(OR)으로 오목한 리세스(3330)가 형성된다.
도 9에 도시된 바와 같이, 일 실시예에 있어서, 리세스(3330)는 외륜(1100)의 외측 축방향(OA) 단부에 대향하는 제1 리세스(3331); 및 제1 리세스(3331)의 내측 반경방향(IR)에서 제1 리세스(3331)보다 외측 축방향(OA)으로 더 오목하게 형성되고 슬링거(3530)가 장착되는 제2 리세스(3332)를 포함할 수 있다. 제2 리세스(3332)는 외측 반경방향(OR)에 위치하는 제1 리세스면(3332a); 내측 반경방향(IR)에 위치하는 제2 리세스면(3332b); 및 제1 리세스면(3332a)과 제2 리세스면(3332b) 사이에 위치하는 제3 리세스면(3332c)을 포함할 수 있다.
일 실시예에 있어서, 허브 플랜지(3320)는 제2 리세스(3332)의 외측 반경방향(OR)에 위치하는 리세스면(즉, 제1 리세스면(3332a))으로부터 내측 반경방향(IR)으로 연장하는 걸림턱(3340)을 포함할 수 있다. 걸림턱(3340)은 슬링거(3530)가 제2 리세스(3332)에 장착된 이후에, 슬링거(3530)가 제2 리세스(3332)로부터 분리되는 것을 억제하거나 방지할 수 있다.
일 실시예에 있어서, 슬링거(3530)가 제2 리세스(3332)에 장착된 상태에서 슬링거(3530)의 외경(R1)은 걸림턱(3340)의 내경(R2)보다 크게 설정될 수 있다. 따라서, 슬링거(3530)가 제2 리세스(3332)로부터 분리되는 것을 더욱 확실하게 억제하거나 방지할 수 있다.
도 10은 도 8에 도시된 실링 장치를 보인 부분 절단 사시도이다.
도 10에 도시된 바와 같이, 실링 장치(3500)는 외륜(1100)[예컨대, 외륜의 외주면(1110)]에 장착되는 프레임(3510); 프레임(3510)에 결합되고 허브 플랜지(3310)의 리세스(3330) 내에 위치하는 실링부(3520); 및 허브 플랜지(3310)의 리세스(3330) 내에서 3개 이상의 리세스면과 접촉하여 장착되는 슬링거(3530)를 포함한다.
프레임(3510)은 금속 재질의 판재 또는 관재로 이루어지고 프레스 가공을 통해 제작될 수 있다. 일 실시예에 있어서, 프레임(3510)은 외륜(1100)의 외주면(1110) 등에 장착되고 중공의 원통형상인 외륜 장착부(3511) 및 외륜 장착부(3511)로부터 내측 반경방향(IR)으로 연장하는 플랜지부(3512)를 포함할 수 있다. 일 실시예에 있어, 플랜지부(3512)는 외륜(1100)의 외측 축방향(OA) 단부에 맞닿는 제1 플랜지부(3512a) 및 제1 플랜지부(3512a) 보다 외측 축방향(OA)에 위치하고 제1 플랜지부(3512a)에 평행한 제2 플랜지부(3512b)를 포함할 수 있다. 즉, 제2 플랜지부(3512b)는 외륜(1100)의 외측 축방향(OA) 단부로부터 외측 축방향(OA)으로 이격되어 있다. 제2 플랜지부(3512b)가 슬링거(3530)를 향해 돌출하고 슬링거(3530)의 제3 슬링거부(3533)가 경사지도록 구성되므로, 제2 플랜지부(3512b)와 슬링거(3530) 사이는 래비린스 구조의 유로를 형성한다. 따라서, 이러한 래비린스 구조로 인해, 제1 실링부(3521)와 제1 리세스(3331) 사이로 유입된 이물질이 외륜(1100)과 휠 허브(3300) 사이로 유입되는 것을 억제하거나 방지할 수 있다. 그 결과, 휠 베어링 조립체(3000)의 밀봉 성능이 향상될 수 있다.
실링부(3520)는 고무 재질로 이루어지고 프레임(3510)을 인서트로 하여 가류 성형(또는 가황 성형)을 통해 미리 결정된 형상을 가지도록 제작될 수 있다. 실링부(3520)는 외륜 장착부(3511)의 내측 축방향(IA) 단부로부터 내측 축방향으로 연장하는 서브 실링부(3520a)를 포함할 수 있다. 서브 실링부(3520a)는 외륜(1100)의 외주면(1110)에 접촉하도록 구성되어, 외륜(1100)의 외주면(1110)과 프레임(3510)의 외륜 장착부(3511) 사이에 물이나 이물질이 침투하는 것을 억제하거나 방지할 수 있다.
슬링거(3530)는 허브 플랜지(3310)의 리세스(3330) 내에 장착되고 프레임(3510)과는 이격되도록 배치된다. 슬링거(3530)는 금속 재질의 판재 또는 관재로 이루어지고 프레스 가공을 통해 제작될 수 있다.
일 실시예에 있어서, 슬링거(3530)는 제2 리세스(3332)의 내측 반경방향(IR)에 위치하는 리세스면(즉, 제2 리세스면(3332b))에 압입되는 제1 슬링거부(3531); 제1 슬링거부(3531)로부터 연장하고 제2 리세스(3332)의 외측 축방향(OA)에 위치하는 리세스면(즉, 제3 리세스면(3332c))에 접촉하는 제2 슬링거부(3532); 및 제2 슬링거부(3532)로부터 연장하고 걸림턱(3340)에 걸리는 외측 반경방향 단부(3533a)를 가지는 제3 슬링거부(3533)를 포함할 수 있다. 제2 슬링거부(3532)는 제1 슬링거부(3531)의 외측 축방향(OA) 단부로부터 제3 리세스면(3332c)까지 외측 반경방향(OR) 및 외측 축방향(OA)으로 경사지게 연장하는 경사부(3532a)와 경사부(3532a)로부터 외측 반경방향(OR)으로 연장하고 제3 리세스면(3332c)과 접촉하는 수직부(3532b)를 포함할 수 있다. 제3 슬링거부(3533)는 제2 슬링거부(3532)의 수직부(3532b)로부터 외측 반경방향(OR) 및 내측 축방향(IA)으로 경사지게 연장한다. 제3 슬링거부(3533)가 경사지게 형성되어 걸림턱(3340)에 걸리도록 구성되므로, 슬링거(3530)가 제2 리세스(3332)로부터 분리되는 것이 확실하게 억제되거나 방지될 수 있다.
일 실시예에 있어서, 실링부(3520)는 제1 리세스(3331) 내에 위치하고 제1 리세스(3331)로부터 이격되어 위치하는 제1 실링부(3521) 및 제2 리세스(3332) 내에 위치하고 슬링거(3530)에 접촉하는 제2 실링부(3522)를 포함할 수 있다.
일 실시예에 있어서, 제1 실링부(3521)는 프레임(3510)으로부터 외측 반경방향(OR)으로 연장하는 제1 실링 립(3521a) 및 제1 실링 립(3521a)의 내측 반경방향(IR)에서 외측 축방향(OA)으로 연장하는 제2 실링 립(3521b)을 포함할 수 있다. 제1 실링 립(3521a)은 프레임(3510)의 외륜 장착부(3511)와 플랜지부(3512)(즉, 제1 플랜지부(3512a))가 만나는 모서리로부터 외측 반경방향(OR)으로 연장하고 제1 리세스(3331)로부터 내측 반경방향(IR)으로 이격되어 배치된다. 제1 실링 립(3521a)은 외륜(1100)과 허브 플랜지(1320) 사이로 유입되는 이물질을 1차적으로 차단하는 역할을 한다. 제2 실링 립(3521b)은 플랜지부(3512)(즉, 제1 플랜지부(3512a))로부터 외측 축방향(OA)으로 경사지게 연장하여 제1 리세스(3331)로부터 내측 축방향(IA)으로 이격되어 배치된다. 제2 실링 립(3521b)은 제1 실링 립(3521a)과 다른 방향으로 연장하여 제1 실링 립(3521a)과 함께 래비린스 구조를 형성하는 역할을 한다. 즉, 제1 실링 립(3521a)이 제1 리세스(3331) 내에서 외측 반경방향(OR)으로 연장하고 제2 실링 립(3521b)이 제1 리세스(3332) 내에서 외측 축방향(OA)으로 경사지게 연장하도록 구성되므로, 제1 실링 립(3521a)과 제1 리세스(3331) 사이 및 제2 실링 립(3521b)과 제1 리세스(3331) 사이는 래비린스 구조의 유로를 형성한다. 따라서, 이러한 래비린스 구조로 인해, 제1 실링 립(3521a)과 제1 리세스(3331) 사이로 유입된 이물질이 외륜(1100)과 휠 허브(3300) 사이로 유입되는 것을 억제하거나 방지할 수 있다. 그 결과, 휠 베어링 조립체(3000)의 내구성이 향상될 수 있다.
일 실시예에 있어서, 제2 실링부(3522)는 제2 슬링거부(3532)에 접촉하는 하나 이상의 제1 실링 립(3522a) 및 제1 실링 립(3522a)의 내측 반경방향(IR)에서 내측 축방향(IA)으로 연장하고 제1 슬링거부(3531)에 접촉하는 제2 실링 립(3522b)을 포함할 수 있다. 도 9 및 도 10에 도시된 바와 같이, 2개의 제1 실링 립(3522a)이 형성될 수 있다. 2개의 제1 실링 립(3522a) 중 하나는 제2 슬링거부(3532)의 수직부(3532b)에 접촉하고, 2개의 제1 실링 립(3522a) 중 나머지 하나는 제2 슬링거부(3532)의 경사부(3532a)에 접촉할 수 있다. 제1 실링 립(3522a)의 개수가 너무 많은 경우에는, 제1 실링 립(3522a)과 슬링거(3530)의 마찰 저항이 커져서 외륜(1100)에 대한 휠 허브(3300)의 전체 회전 저항이 커지게 된다. 반대로, 제1 실링 립(3522a)의 개수가 너무 적은 경우에는, 외륜(1100)과 허브 플랜지(3310) 사이의 밀봉 성능이 저하될 수 있다. 따라서, 제1 실링 립(3522a)의 개수는 차량의 제조사에서 요구하는 회전 저항 및 실링 성능을 고려하여 적절하게 선택될 수 있다.
제2 실링 립(3522b)은 프레임(3510)의 플랜지부(3512)(즉, 제2 플랜지부(3512b))를 기준으로 제1 실링 립(3522a)과는 반대방향으로 연장하여 제1 슬링거부(3531)와 접촉하도록 구성된다. 다른 예로서, 제2 실링 립(3522b)은 슬링거(3530)에 비접촉식으로 구성될 수 있다. 제2 실링 립(3522b)은 이물질이 외륜(1100)과 허브 플랜지(3310) 사이로 침투하는 것을 억제 또는 방지하거나 외륜(1100)과 휠 허브(3300) 사이에 충진된 윤활제가 외부로 누출되는 것을 방지할 수 있다.
일 실시예에 있어서, 제1 실링부(3521)(즉, 제1 실링 립(3521a) 및 제2 실링 립(3521b))는 축(RA)을 지나고 지면에 평행한 수평면(P1)을 기준으로 상하 비대칭으로 형성될 수 있다. 예를 들어, 제1 실링부(3521)는, 수평면(P1)을 기준으로 상측에는 부분적으로 형성되고, 수평면(P1)을 기준으로 하측에는 형성되지 않을 수 있다. 또한, 제1 실링부(3521)는, 수평면(P1)을 기준으로 상측에는 모두 형성되고, 수평면(P1)을 기준으로 하측에는 부분적으로 형성될 수 있다. 제1 실링부(3521)와 허브 플랜지(3310) 사이로 침투한 이물질은 제2 실링부(3522)에 의해 외륜(1100)과 휠 허브(3300) 사이로 유입되지 않고 제1 실링부(3521)가 형성되지 않은 하측을 통해 이물질이 배출될 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시된 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (21)

  1. 차량의 차체측 부재에 장착되는 외륜;
    축을 중심으로 상기 외륜에 대하여 상대 회전하는 내륜;
    상기 내륜이 결합되는 원통부, 및 상기 원통부로부터 외측 반경방향으로 연장하고 내측 플랜지면과 외측 플랜지면을 가지는 허브 플랜지를 포함하는 휠 허브;
    상기 외륜과 상기 원통부 사이 및 상기 외륜과 상기 내륜 사이에 배치되는 복수의 전동체; 및
    상기 외륜과 상기 허브 플랜지 사이에 배치되는 실링 장치
    를 포함하고,
    상기 허브 플랜지에는 상기 내측 플랜지면으로부터 외측 축방향으로 오목한 리세스가 형성되고,
    상기 실링 장치는,
    상기 외륜에 장착되는 프레임;
    상기 프레임에 결합되고 전부 또는 일부가 상기 허브 플랜지의 리세스 내에 위치하는 실링부; 및
    상기 허브 플랜지의 리세스 내에 장착되는 슬링거
    를 포함하는, 휠 베어링 조립체.
  2. 제1항에 있어서,
    상기 리세스는,
    상기 외륜의 외측 축방향 단부에 대향하는 제1 리세스; 및
    상기 제1 리세스의 내측 반경방향에서 상기 제1 리세스보다 외측 축방향으로 더 오목하게 형성되고 상기 슬링거가 장착되는 제2 리세스
    를 포함하는, 휠 베어링 조립체.
  3. 제2항에 있어서,
    상기 슬링거는,
    상기 제2 리세스의 내측에 압입되는 제1 슬링거부;
    상기 제1 슬링거부의 외측 축방향 단부로부터 외측 반경방향으로 연장하는 제2 슬링거부; 및
    상기 제2 슬링거부의 외측 반경방향 단부로부터 내측 축방향으로 연장하는 제3 슬링거부
    를 포함하는 휠 베어링 조립체.
  4. 제3항에 있어서,
    상기 실링부는,
    상기 제1 리세스 내에 위치하고 상기 제1 리세스로부터 이격되어 위치하는 제1 실링부;
    상기 제2 리세스 내에 위치하며 상기 제3 슬링거부에 평행하고 상기 제2 리세스로부터 이격되어 위치하는 제2 실링부; 및
    상기 제2 리세스 내에서 상기 제1 슬링거부, 상기 제2 슬링거부, 및 제3 슬링거부에 의해 형성되는 공간 내에 배치되는 제3 실링부
    를 포함하는, 휠 베어링 조립체.
  5. 제4항에 있어서,
    상기 제3 실링부는,
    외측 축방향으로 연장하고 상기 제2 슬링거부에 접촉하는 하나 이상의 제1 실링 립; 및
    상기 제1 실링 립의 내측 반경방향에서 내측 축방향으로 연장하고 상기 제1 슬링거부에 접촉하는 제2 실링 립
    을 포함하는, 휠 베어링 조립체.
  6. 제3항에 있어서,
    상기 제2 슬링거부로부터 상기 제2 리세스의 최대 깊이 지점까지의 축방향 길이(D)는 1mm보다 크게 설정되는, 휠 베어링 조립체.
  7. 제3항에 있어서,
    상기 제2 슬링거부로부터 외측 축방향을 따른 상기 제2 리세스의 최대 깊이 지점까지의 축방향 길이(D)는 하기의 수학식 1을 만족하도록 설정되고,
    [수학식 1]
    D > A1 - 2.2×B1,
    여기서, 상기 A1은 상기 내측 플랜지면으로부터 상기 외측 플랜지면까지의 두께이고, 상기 B1은 내측 플랜지면으로부터 외측 축방향을 따른 상기 제2 리세스의 최대 깊이 지점까지의 축방향 길이인, 휠 베어링 조립체.
  8. 제4항에 있어서,
    상기 제1 실링부는 상기 축을 지나고 지면에 평행한 수평면을 기준으로 상하 비대칭으로 형성되는, 휠 베어링 조립체.
  9. 제8항에 있어서,
    상기 제1 실링부가 형성되는 각도는 상기 축을 지나고 상기 수평면에 수직인 수직면을 기준으로 ±30° 내지 ±160°의 범위로 설정되는, 휠 베어링 조립체.
  10. 제2항에 있어서,
    상기 허브 플랜지는 상기 휠 허브의 상기 원통부에 평행한 상기 제2 리세스의 리세스면으로부터 외측 반경방향으로 연장하는 단차부를 포함하는, 휠 베어링 조립체.
  11. 제10항에 있어서,
    상기 제2 리세스의 리세스면으로부터 상기 단차부까지의 반경방향 길이(F)는 상기 단차부로부터 상기 제2 리세스의 최대 깊이 지점까지의 축방향 길이(E)보다 짧게 설정되는, 휠 베어링 조립체.
  12. 제1항에 있어서,
    상기 허브 플랜지는 상기 외측 플랜지면으로부터 외측 축방향으로 돌출하는 돌출부를 포함하는, 휠 베어링 조립체.
  13. 차량의 차체측 부재에 장착되는 외륜;
    축을 중심으로 상기 외륜에 대하여 상대 회전하는 내륜;
    상기 내륜이 결합되는 원통부, 및 상기 원통부로부터 외측 반경방향으로 연장하고 내측 플랜지면과 외측 플랜지면을 가지는 허브 플랜지를 포함하는 휠 허브;
    상기 외륜과 상기 원통부 사이 및 상기 외륜과 상기 내륜 사이에 배치되는 복수의 전동체; 및
    상기 외륜과 상기 허브 플랜지 사이에 배치되는 실링 장치
    를 포함하고,
    상기 허브 플랜지에는 상기 내측 플랜지면으로부터 외측 축방향 및 외측 반경방향으로 오목한 리세스가 형성되고,
    상기 실링 장치는,
    상기 외륜에 장착되는 프레임;
    상기 프레임에 결합되고 전부 또는 일부가 상기 허브 플랜지의 리세스 내에 위치하는 실링부; 및
    상기 허브 플랜지의 리세스 내에서 3개 이상의 리세스면과 접촉하여 장착되는 슬링거
    를 포함하는, 휠 베어링 조립체.
  14. 제13항에 있어서,
    상기 리세스는,
    상기 외륜의 외측 축방향 단부에 대향하는 제1 리세스; 및
    상기 제1 리세스의 내측 반경방향에서 상기 제1 리세스보다 외측 축방향으로 더 오목하게 형성되고 상기 슬링거가 장착되는 제2 리세스
    를 포함하는, 휠 베어링 조립체.
  15. 제14항에 있어서,
    상기 허브 플랜지는 제2 리세스의 외측 반경방향에 위치하는 리세스면으로부터 내측 반경방향으로 연장하는 걸림턱을 포함하는, 휠 베어링 조립체.
  16. 제15항에 있어서,
    상기 슬링거가 상기 제2 리세스에 장착된 상태에서 상기 슬링거의 외경은 상기 걸림턱의 내경보다 크게 설정되는, 휠 베어링 조립체.
  17. 제16항에 있어서,
    상기 슬링거는,
    상기 제2 리세스의 내측 반경방향에 위치하는 리세스면에 압입되는 제1 슬링거부;
    상기 제1 슬링거부로부터 연장하고 상기 제2 리세스의 외측 축방향에 위치하는 리세스면에 접촉하는 제2 슬링거부; 및
    제2 슬링거부로부터 연장하고 상기 걸림턱에 걸리는 외측 반경방향 단부를 가지는 제3 슬링거부
    를 포함하는, 휠 베어링 조립체.
  18. 제17항에 있어서,
    상기 실링부는,
    상기 제1 리세스 내에 위치하고 상기 제1 리세스로부터 이격되어 위치하는 제1 실링부; 및
    상기 제2 리세스 내에 위치하고 상기 슬링거에 접촉하는 제2 실링부
    를 포함하는, 휠 베어링 조립체.
  19. 제18항에 있어서,
    상기 제1 실링부는,
    상기 프레임으로부터 외측 반경방향으로 연장하는 제1 실링 립; 및
    상기 제1 실링 립의 내측 반경방향에서 외측 축방향으로 연장하는 제2 실링 립
    을 포함하는, 휠 베어링 조립체.
  20. 제19항에 있어서,
    상기 제2 실링부는,
    상기 제2 슬링거부에 접촉하는 하나 이상의 제1 실링 립; 및
    상기 제1 실링 립의 내측 반경방향에서 내측 축방향으로 연장하고 상기 제1 슬링거부에 접촉하는 제2 실링 립
    을 포함하는, 휠 베어링 조립체.
  21. 제13항에 있어서,
    상기 허브 플랜지는 상기 외측 플랜지면으로부터 외측 축방향으로 돌출하는 돌출부를 포함하는, 휠 베어링 조립체.
PCT/KR2019/017839 2018-12-14 2019-12-16 휠 베어링 조립체 WO2020122692A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019006191.7T DE112019006191B4 (de) 2018-12-14 2019-12-16 Radlageranordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0162401 2018-12-14
KR1020180162401A KR102525228B1 (ko) 2018-12-14 2018-12-14 휠 베어링 조립체

Publications (1)

Publication Number Publication Date
WO2020122692A1 true WO2020122692A1 (ko) 2020-06-18

Family

ID=71075530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017839 WO2020122692A1 (ko) 2018-12-14 2019-12-16 휠 베어링 조립체

Country Status (3)

Country Link
KR (1) KR102525228B1 (ko)
DE (1) DE112019006191B4 (ko)
WO (1) WO2020122692A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113700736B (zh) * 2021-09-07 2023-02-07 浙江鸿宁轴承科技有限公司 一种高耐磨多层密封式汽车轮毂轴承

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160114624A1 (en) * 2014-10-23 2016-04-28 Aktiebolaget Skf Hub-bearing unit with a sealing device
JP2017048809A (ja) * 2015-08-31 2017-03-09 Ntn株式会社 車輪用軸受装置
KR20170043918A (ko) * 2015-10-14 2017-04-24 주식회사 일진글로벌 휠 베어링
KR20170084959A (ko) * 2016-01-13 2017-07-21 주식회사 일진글로벌 휠 베어링 및 휠 베어링과 구동축의 체결구조
KR20170103571A (ko) * 2016-03-04 2017-09-13 주식회사 일진글로벌 휠 베어링 및 휠 베어링의 씰링장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160114624A1 (en) * 2014-10-23 2016-04-28 Aktiebolaget Skf Hub-bearing unit with a sealing device
JP2017048809A (ja) * 2015-08-31 2017-03-09 Ntn株式会社 車輪用軸受装置
KR20170043918A (ko) * 2015-10-14 2017-04-24 주식회사 일진글로벌 휠 베어링
KR20170084959A (ko) * 2016-01-13 2017-07-21 주식회사 일진글로벌 휠 베어링 및 휠 베어링과 구동축의 체결구조
KR20170103571A (ko) * 2016-03-04 2017-09-13 주식회사 일진글로벌 휠 베어링 및 휠 베어링의 씰링장치

Also Published As

Publication number Publication date
KR102525228B1 (ko) 2023-04-25
KR20200073808A (ko) 2020-06-24
DE112019006191T5 (de) 2021-10-14
DE112019006191B4 (de) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2019194548A1 (ko) 차량용 휠 베어링
EP1242751B1 (en) Hub assembly for automotive vehicles
WO2012015176A2 (ko) 컨베이어용 롤러
WO2017069303A1 (ko) 휠 베어링 조립체
US7618191B2 (en) Wheel bearing arrangement comprising an encoder and a sensor
WO2020122692A1 (ko) 휠 베어링 조립체
WO2021010733A1 (ko) 허브 일체형 등속조인트 장치
WO2020246833A1 (ko) 휠베어링 조립체
WO2019194553A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링 조립체
CN115614393A (zh) 具有径向迷宫的用于卡车轮毂的密封组件
JP2002327769A (ja) 駆動車輪用軸受装置
WO2012015175A2 (ko) 하우징 일체형 다중 베어링 유닛
WO2018199422A1 (ko) 휠 베어링 어셈블리 및 휠 베어링
WO2024162748A1 (ko) 휠베어링과 너클 사이의 씰링성이 개선된 차량용 휠베어링
WO2019221552A1 (ko) 휠 베어링 조립체
WO2020149680A1 (ko) 차량용 휠베어링
WO2021167148A1 (ko) 휠베어링 조립체
WO2024172498A1 (ko) 개선된 구조의 씰링부재를 구비하는 차량용 휠베어링
WO2023244057A1 (ko) 휠베어링 조립체
WO2019182419A1 (ko) 휠 허브 및 이를 포함하는 휠 베어링
WO2024043577A1 (ko) 비동축 씰링립을 갖는 씰링부재를 구비하는 차량용 휠베어링
JP2022157357A (ja) ハブユニット軸受
WO2018066794A1 (ko) 너클 및 휠 베어링 조립체
WO2020213907A1 (ko) 휠베어링 조립체
WO2024158066A1 (ko) 외륜부 구조가 개선된 휠베어링 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897035

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19897035

Country of ref document: EP

Kind code of ref document: A1