WO2020122534A1 - Asymmetric sirna for inhibiting expression of snai1 - Google Patents
Asymmetric sirna for inhibiting expression of snai1 Download PDFInfo
- Publication number
- WO2020122534A1 WO2020122534A1 PCT/KR2019/017332 KR2019017332W WO2020122534A1 WO 2020122534 A1 WO2020122534 A1 WO 2020122534A1 KR 2019017332 W KR2019017332 W KR 2019017332W WO 2020122534 A1 WO2020122534 A1 WO 2020122534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sirna
- antisense strand
- group
- fibrosis
- snai1
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
Definitions
- the present invention relates to an asymmetric siRNA that inhibits the expression of SNAI1 (Snail1) and uses thereof, and more specifically, an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1, and a complementary bond with the antisense strand It relates to an asymmetric siRNA comprising the sense strand and a pharmaceutical composition for preventing or treating fibrosis or cancer comprising the asymmetric siRNA.
- Fibrosis refers to a phenomenon that a normal tissue is wounded and hardened as a function decreases, and examples include lung fibrosis, subretinal fibrosis, and liver fibrosis.
- PF pulmonary fibrosis
- Idiopathic pulmonary fibrosis IPF is a very fatal disease with a life expectancy of 2-6 years after diagnosis due to the progression of PF as a cause of unknownness.
- IPF Idiopathic pulmonary fibrosis
- EMT epithelial-mesenchymal transition
- E-cadherin E-cadherin
- N-cadherin N-cadherin.
- E-cadherin is a membranous glycoprotein, and the extracellular region binds with the E-cadherin molecule of adjacent cells to maintain adhesion between cells, and the intracellular region binds ⁇ -, ⁇ -, and p120 catenin to polarize epithelial cells and cells. It forms a skeleton.
- E-cadherin When E-cadherin is lost by EMT, the tight junction between epithelial cells is loosened, and the cytoskeleton is restructured, resulting in changes in actin and actin stress fibers, resulting in loss of cellular polarity, and decomposition of extracellular matrix by matrix metalloprotease (MMP).
- MMP matrix metalloprotease
- Epithelial cells migrate to the epilepsy.
- the transcription factor Snail1 (SNAI1) is recognized as a key factor of EMT by functioning to suppress the expression of E-cadherin.
- the present inventors selected SNAI1 target asymmetric siRNA capable of inhibiting the expression of SNAI1, delivered to the cell without the help of a transporter, and as a result of earnest research efforts to develop a highly resistant to nucleic acid hydrolase, SNAI1 as a target SiRNAs were designed, siRNAs that most effectively inhibit SNAI1 were selected through screening, and it was confirmed that the intracellular delivery problem could be overcome through modification, and the present invention was completed.
- An object of the present invention is to provide an asymmetric shorter duplex siRNA (asiRNA) that specifically inhibits the expression of SNAI1 (Snail1).
- siRNA asymmetric shorter duplex siRNA
- Another object of the present invention is to provide a pharmaceutical composition for preventing or treating fibrosis containing the asymmetric siRNA, or a method for preventing or treating fibrosis.
- Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, or a method for preventing or treating cancer, including the asymmetric siRNA.
- Another object of the present invention is to provide the use of the asymmetric siRNA for the prevention or treatment of fibrosis or cancer.
- Another object of the present invention is to provide the use of the asymmetric siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis or cancer.
- the present invention comprises an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1 (Snail1), a sense strand forming a complementary bond with the antisense strand, and 5 of the antisense strand.
- The'terminal and 3'end of the sense strand provides an siRNA characterized by forming a blunt end.
- the present invention also provides a pharmaceutical composition for preventing or treating fibrosis comprising the siRNA.
- the present invention also provides a pharmaceutical composition for the prevention or treatment of cancer comprising the siRNA.
- the present invention also provides a method of preventing or treating fibrosis comprising administering the siRNA to an individual.
- the present invention also provides a method of preventing or treating cancer comprising administering the siRNA to an individual.
- the present invention also provides the use of the asymmetric siRNA for the prevention or treatment of fibrosis or cancer.
- the present invention also provides the use of the asymmetric siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis or cancer.
- Figure 1 shows the gene inhibition efficiency of asiRNA for 43 sequences targeting SNAI1, SNAI1 using qRT-PCR after 24 hours after transfection of 0.3nM asiRNA targeting each nucleotide sequence to A549 cells The expression level of mRNA was measured.
- 1A and 1B are independent experimental data, respectively.
- Figure 2 shows the gene suppression efficiency of asiRNA for four sequences targeting SNAI1, #41 was used as a negative control.
- the expression level of SNAI1 protein was measured by western blot 48 hours after 10nM transfection of asiRNA targeting each nucleotide sequence in Panc-1 cells and A549 cells.
- 2A is western blot data
- FIG. 2B is a graph showing the amount of expression of SNAI1 protein relative to a normal sample after normalizing the expression amount of SNAI1 protein to vinculin, a housekeeping gene, using ImageJ for western blot data of FIG. 2A. .
- Figure 3 shows the efficiency of inhibiting protein expression of the SNAI1 target asiRNA length variant, measuring the expression level of SNAI1 protein using western blot 48 hours after 5nM transfection of asiRNA targeting each nucleotide sequence to Panc-1 cells.
- Did. 3A and 3B are western blot data
- FIG. 3C is a graph showing the relative amount of SNAI1 expression for a non-treated sample after normalizing the western blot data of FIGS. 3A and 3B to housekeeping gene vinculin using ImageJ. .
- Figure 4 shows the gene inhibition efficiency of 32 cp-asiRNAs with various chemical modifications targeting SNAI1, qRT after 24 hours after 1 ⁇ M incubation of cp-asiRNAs targeting each base sequence in A549 cells. -PCR was used to measure the expression level of SNAI1 mRNA. The graph shows the mean and SD of 2 replicates.
- Figure 5 shows the gene inhibition efficiency of cp-asiRNA targeting SNAI1, after 48 hours of incubation of 1 ⁇ M-3 ⁇ M cp-asiRNA targeting each nucleotide sequence in A549 cells, Western blot of SNAI1 protein was performed after 48 hours. The expression level was measured.
- Figure 6 shows a schematic diagram and conditions of animal experiments for confirming the SNAI1 protein inhibitory effect of cp-asiRNA targeting SNAI1.
- RNAi RNA interference
- dsRNA double-stranded RNA
- RNA small interfering RNA
- dsRNA short double-stranded RNA
- a “antisense strand” is a polynucleotide that is substantially or 100% complementary to a target nucleic acid of interest, eg, mRNA (messenger RNA), RNA sequence other than mRNA (eg, microRNA, piwiRNA) , tRNA, rRNA and hnRNA) or coding or non-coding DNA sequences, in whole or in part.
- mRNA messenger RNA
- RNA sequence other than mRNA eg, microRNA, piwiRNA
- tRNA, rRNA and hnRNA coding or non-coding DNA sequences, in whole or in part.
- a “sense strand” is a polynucleotide having a nucleic acid sequence identical to a target nucleic acid, and is an mRNA (messenger RNA), an RNA sequence other than mRNA (eg, microRNA, piwiRNA, tRNA, rRNA and hnRNA) or coding or noncoding. Refers to a polynucleotide as a whole or part of a DNA sequence.
- mRNA messenger RNA
- RNA sequence other than mRNA eg, microRNA, piwiRNA, tRNA, rRNA and hnRNA
- Gene should be considered in the broadest sense and can encode a structural or regulatory protein.
- the regulatory protein includes a transcription factor, a heat shock protein or a protein involved in DNA/RNA replication, transcription and/or translation.
- the target gene targeted for suppression of expression is inherent in the viral genome, and may be integrated into an animal gene or exist as an extrachromosomal component.
- the target gene can be a gene on the HIV genome.
- siRNA molecules are useful for inactivating the translation of HIV genes in mammalian cells.
- epithelial-mesenchymal transition of the present invention means that epithelial cells lose cell polarity and cell-cell adhesion and acquire metastatic and invasive properties. It refers to the process of mesenchymal cellization, a multipotent stromal cell that can differentiate into various types of cells.
- the EMT is essential for many developmental processes, including mesoderm formation and neural tube formation. EMT is also known to be involved in the initiation of metastasis in wound healing, tissue fibrosis and cancer progression.
- EMT E-cadherin
- Many transcription factors TFs
- TFs transcription factors
- SNAI1/Snail 1, SNAI2/Snail 2, ZEB1, ZEB2, E47 and KLF8 bind to the E-cadherin promoter to inhibit its transcription, while Twist, Goosecoid, E2.2 (aka TCF4), homeobox protein SIX1 And FOXC2 indirectly inhibits E-cadherin.
- TCF4 homeobox protein SIX1 And FOXC2 indirectly inhibits E-cadherin.
- other signaling pathways inducing EMT include those involved in TGF- ⁇ , FGF, EGF, HGF, Wnt/beta-catenin and notch.
- an asiRNA targeting the transcription factor SNAI1 capable of suppressing the expression of E-cadherin was designed and asiRNA having the best knockdown efficiency was selected.
- sequence length of the selected asiRNA was optimized, and by modifying, asiRNA was modified to have cell penetrating ability and resistance to nucleic acid hydrolase, cp-asiRNA capable of efficiently suppressing SNAI1 expression was selected. .
- the present invention includes an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1 (Snail1), a sense strand forming a complementary bond with the antisense strand, and 5'of the antisense strand.
- the 3'end of the terminal and sense strands relates to siRNA, characterized in that it forms a blunt end.
- RNAi is an intracellular gene regulation method first discovered in Caenorhabditis elegans by the Fire Research Group in 1998.
- the mechanism of action is that the antisense strand of RNA double strands injected into the cell complementarily binds to the mRNA of the target gene to induce target gene degradation. It is said that.
- synthetic RNA interference is one of the methods to suppress gene expression in " in vitro ".
- the 19-21bp siRNA is a technology that can be developed as a therapeutic agent for various gene-related diseases, such as cancer, rare diseases, fibrosis, and viral infection, in theory because it can selectively inhibit almost all genes.
- the first attempt to treat in vivo with siRNA in mammals was in mid 2002. Since then, more than 90 papers have been reported on in vivo treatment with many attempts at applied research.
- siRNA is an effective method to directly regulate the expression of a target gene, these problems have made it difficult to develop a therapeutic agent.
- the applicant of the present invention has developed an asymmetric shorter duplex siRNA (asiRNA) structure-related technology (WO 2009/078685).
- asiRNA is an asymmetric RNAi-inducing structure with a short double helix length compared to the 19+2 structure.
- the present invention presents an asymmetric siRNA comprising a sense strand and an antisense strand complementary to the sense strand, and the siRNA according to the present invention has an off-target effect, saturation of RNAi mechanism, immune response by TLR3, etc. It is possible to effectively suppress the expression of the SNAI1 target gene to a desired degree while stably maintaining high delivery efficiency without causing a problem.
- the siRNA may be characterized in that the sense strand has a length of 15-17nt, and the antisense strand has a length of 16nt or more.
- the antisense strand may be characterized as having a length of 16-31nt, and preferably may have a length of 19-26nt. More preferably, the length of the sense strand is 16nt, and the length of the complementary antisense strand is 19nt, 24nt or 26nt, but is not limited thereto.
- the 3'end of the sense strand and the 5'end of the antisense strand form a blunt end.
- the 3'end of the antisense strand may include, for example, an overhang of 1-15nt.
- 43 asiRNAs were designed to suppress the expression of SNAI1, and inhibition of mRNA levels and protein levels was confirmed.
- the sense strand is SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39 , 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 and 85 It can be characterized by being selected.
- siRNA comprising a sense strand selected from the group consisting of SEQ ID NOs: 35, 47, 49, and 51, and an antisense strand complementary to the sense strand, has the best SNAI1 expression inhibitory effect.
- the antisense strand is SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 , 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 91, 92 , 93, 94, 95, 96, 97, 98, 99, 100, 101, and 102.
- the antisense strand is selected from the group consisting of SEQ ID NO: 36, 48, 50, 52, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 and 102 can do.
- the sense strand is SEQ ID NO: 35 or 51
- the antisense strand may be characterized by being SEQ ID NO: 92, 100 or 101, but is not limited thereto. More preferably, the sense strand is SEQ ID NO: 51, the antisense strand may be characterized in that SEQ ID NO: 100 or 101.
- the sense strand or the antisense strand of the siRNA may be characterized by including one or more chemical modifications (chemical modification).
- siRNA cannot pass through the cell membrane due to high negative charge and high molecular weight due to the phosphate backbone structure, and it is difficult to deliver sufficient amounts for RNAi induction to actual target sites due to rapid decomposition and removal in blood.
- many high-efficiency delivery methods using cationic lipids and cationic polymers have been developed, but in vivo , it is difficult to deliver siRNA with inefficiencies as high as in vitro , and various proteins present in vivo. There is a problem in that siRNA delivery efficiency is reduced by interaction.
- the present inventors have developed an asiRNA construct (cp-asiRNA) having an autotransfer capability capable of effectively and intracellular delivery without a separate carrier by introducing a chemical modification into an asymmetric siRNA structure.
- the chemical modification in the sense strand or the antisense strand may include one or more selected from the group consisting of: -OH group at the 2'carbon position of the sugar structure in the nucleotide -CH3 (methyl), -OCH3 (methoxy), -NH2, -F(fluorine), -O-2-methoxyethyl -O-propyl, -O-2-methylthioethyl, -O-3-aminopropyl,- Substituted with O-3-dimethylaminopropyl; Oxygen in the sugar structure in the nucleotide is substituted with sulfur; Nucleotide bonds are modified with phosphorothioate, boranophosphate, or methyl phosphonate; Modification to peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; And phosphate groups, lipophilic compounds, or cell-penetrating peptide nucleic
- the lipophilic compound may be selected from the group consisting of cholesterol, tocopherol, and long-chain fatty acids having 10 or more carbon atoms. Preferably it can be characterized as being cholesterol, but is not limited thereto.
- the chemical modification is a modification in which the -OH group is substituted with -OCH3 (methoxy) or -F (fluorine) at the 2'carbon position of the sugar structure in two or more nucleotides of the sense strand or the antisense strand; 10% or more nucleotide bonds in the sense or antisense strand are modified with phosphorothioate; Cholesterol binding to the 3'end of the sense strand; Alternatively, a phosphate group may be attached to the 5'end of the antisense strand. Through this, it is possible to improve the stability of siRNA in vivo.
- the -OH group is -OCH3 at the 2'carbon position of the sugar structure in the nucleotide located at the 5'end of the sense strand (methoxy).
- a 2'-O-methyl nucleoside in which the -OH group is substituted with -OCH3 (methoxy) at the 2'carbon position of the sugar structure from the 5'end to the 3'end of the sense strand. May be included continuously or discontinuously.
- a 2'-O-methylated nucleoside may be alternately included with an unmodified nucleoside.
- 2, 3, 4, 5, 6, 7, 8 consecutive 2′-O-methyl nucleosides may be alternately included with the unmodified nucleoside in the sense strand.
- 2′-O-methyl nucleosides in the sense strand for example 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 2-8 or Eight can exist.
- 2'-O-methylated nucleosides may be continuously or discontinuously included in the 5'end to 3'end direction of the antisense strand.
- a 2'-O-methylated nucleoside may be alternately included with an unmodified nucleoside.
- 2, 3, 4, 5, 6, 7 and 8 consecutive 2′-O-methyl nucleosides may be alternately included with the unmodified nucleoside.
- 2′-O-methyl nucleosides in the antisense strand for example, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 2-7 Can be.
- the sense strand is any one selected from the group consisting of (a) to (i) in the following table
- the antisense strand is any one selected from the group consisting of (j) to (s) in the following table.
- * is a phosphorothioate bond
- m is 2'-O-methyl (Methyl)
- 2'-F- is 2'-Fluoro
- /chol/ is cholesterol
- P- is 5'-Phosphate group.
- the sense strand is (e), (g) or (i) of the table
- the antisense strand may be characterized in that (o), (p), (r) or (s) of the table. have.
- the siRNA of the present invention may be characterized by being selected from the group consisting of the following sense strands and antisense strands, but is not limited to: sense strands (e) and antisense strands (p) ); (G) of the sense strand above and (o) of the antisense strand above; (E) of the sense strand above and (r) of the antisense strand above; And sense strand (i) in the above table and antisense strand (s) in the above table.
- one to three phosphate groups may be attached to the 5'end of the antisense strand, but is not limited thereto.
- the present invention relates to a pharmaceutical composition for preventing or treating fibrosis comprising the siRNA.
- the fibrosis may be characterized by subretinal fibrosis, lung fibrosis, liver fibrosis, myocardial fibrosis or renal fibrosis, but is not limited thereto, and is a composition for preventing or treating fibrosis known to be involved in EMT Can be used without restrictions.
- the present invention relates to a pharmaceutical composition for the prevention or treatment of cancer comprising the siRNA.
- the cancer may be characterized as lung cancer, breast cancer, colon cancer or prostate cancer, but is not limited thereto, and can be used without limitation as a composition for preventing or treating cancer known to be involved in EMT.
- the pharmaceutical composition may be prepared by including one or more pharmaceutically acceptable carriers in addition to siRNA as an active ingredient.
- the pharmaceutically acceptable carrier should be compatible with the active ingredient of the present invention, and may include saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these ingredients. It can be used in combination, and if necessary, other conventional additives such as antioxidants, buffers, bacteriostatic agents can be added.
- diluents, dispersants, surfactants, binders, and lubricants can be added in addition to formulated into injectable formulations such as aqueous solutions, suspensions, and emulsions.
- a formulation in a lyophilized form it is preferable to provide a formulation in a lyophilized form.
- a method commonly known in the art to which the present invention pertains may be used, and a stabilizer for lyophilization may be added.
- the method of administration of the pharmaceutical composition can be determined by a person skilled in the art based on the symptoms and severity of the disease in a typical patient.
- powders, tablets, capsules, liquids, injections, ointments, syrups, etc. can be formulated in various forms and can be provided in unit-dose or multi-dose containers, for example, sealed ampoules and bottles. .
- the pharmaceutical composition of the present invention can be administered orally or parenterally.
- the route of administration of the composition according to the present invention is not limited to these, for example, oral cavity, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal, sublingual Or topical administration is possible.
- the dosage amount of the composition according to the present invention varies in its range according to the patient's weight, age, sex, health condition, diet, administration time, method, excretion rate, or severity of disease, and is easy for a person skilled in the art. Can decide.
- the compositions of the present invention can be formulated into suitable formulations using known techniques for clinical administration.
- the present invention relates to a method for preventing or treating fibrosis, comprising administering a therapeutically effective amount of the siRNA to a patient in need of treatment.
- the present invention relates to a method for preventing or treating cancer, comprising administering a therapeutically effective amount of the siRNA to a patient in need of treatment.
- the present invention relates to the use of said siRNA for the prevention or treatment of fibrosis.
- the invention relates to the use of said siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis.
- the present invention relates to the use of said siRNA for the prevention or treatment of cancer.
- the present invention relates to the use of said siRNA for the manufacture of a medicament for the prevention or treatment of cancer.
- Example 1 Screening of 43 RNAi-derived double-stranded nucleic acid molecules targeting SNAI1
- RNAi interference targeting SNAI1 To secure double-stranded nucleic acid molecules that induce high-efficiency RNAi interference targeting SNAI1, asiRNA was designed after target sequencing for the SNAI1 gene.
- the asiRNA structure has a different secondary structure, GC contents (%), 5'end stability difference compared to the commonly known siRNA, so it is optimized asiRNA design when designing the base sequence of asiRNA using a general siRNA design program. This can be rather difficult. Therefore, the asiRNA of this study was conducted as follows. SNAI1 gene information was obtained through NCBI database search (mRNA accession number: NM_005985).
- Example 2 Screening of RNAi-induced double-stranded nucleic acid molecule targeting SNAI1
- the expression level of SNAI1 mRNA was measured by performing qRT-PCR after transfection to the A549 cell line using 43 selected asiRNAs at a concentration of 0.3 nM.
- the A549 cell line was cultured in F-12K Nutrient Mixture (Gibco), 10% fetal bovine serum (FBS, Gibco), 100 units/ml Penicillin 100 ⁇ g/ml Streptomycin.
- A549 cells are seeded in a 24-well plate at 3x10 4 cells/well, and asviRNA (0.3nM, OliX Inc.) and RNAiMax (2 ⁇ l/ml, Invitrogen Inc.) are used to provide Invitrogen in a total volume of 500 ⁇ l Opti-MEM. According to the transfection was performed. After 24 hours, total RNA was extracted using Tri-RNA reagent (FAVORGEN), and cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems). (Applied Biosystems) and using the Primer of Table 2 was confirmed the degree of SNAI1 gene expression.
- the Panc-1 cell line was cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco), 10% fetal bovine serum (FBS, Gibco), 100 units/ml Penicillin 100 ⁇ g/ml Streptomycin.
- DMEM Dulbecco's Modified Eagle Medium
- FBS 10% fetal bovine serum
- Penicillin 100 ⁇ g/ml Streptomycin 100 units/ml Penicillin 100 ⁇ g/ml Streptomycin.
- A549 and Panc-1 cells were seeded in a 6-well plate at 9x10 4 cells/well, using asiRNA (10 nM, OliX Inc.) and RNAiMax (2 ⁇ l/ml, Invitrogen Inc.) in a total volume of 2 ml Opti-MEM. Transfection was performed according to the protocol provided by Invitrogen. After 48 hours, cell lysis was performed using RIPA buffer (Sigma), and proteins were quantified using a BCA protein assay kit (Invitrogen). After 15% SDS-PAGE was used to separate 20 ⁇ g protein from each sample for 30 minutes at 60 V and 1 hour at 110 V, it was transferred to a PVDF membrane (Bio-rad) at 300 mA for 2 hours.
- Example 3 Optimization of nucleotide sequence length through 16 design of RNAi-induced double-stranded nucleic acid molecule targeting SNAI1
- the length of the antisense sequence was set to 24 mer, the length used for screening, 19 and 26 mer, the possible lengths, and the predicted 21 mer, which is expected to show the maximum efficiency. 16 base sequences were designed.
- Example 5 Screening of 32 cp-asiRNAs with cell-penetrating ability targeting the SNAI1 gene
- cp-asiRNA with 16 modification patterns is selected according to the position and number of 2'OMe, 2'F (Fluoro), and PS (phosphothioate bond). After design, it was synthesized by Dharmacon Inc. (USA). cp-asiRNA enhances endocytosis efficiency and stability, and can suppress the expression of target genes by penetrating the cell membrane with high efficiency without the aid of a delivery vehicle.
- the synthesized cp-asiRNA was annealed after incubation at 95°C for 5 minutes and 37°C for 25 minutes, followed by QC through ChemiDoc UV transilluminator (BioRad) after 12% Polyacrylamide Gel Electrophoresis (PAGE).
- Example 6 Screening of cp-asiRNA with cell penetrating ability targeting SNAI1 gene
- the expression level of SNAI1 was measured by performing incubation (free uptake) at a concentration of 1 ⁇ M in the A549 cell line using the above 32 cp-asiRNAs and performing qRT-PCR.
- A549 cells were seeded in a 24-well plate at 3x10 4 cells/well, and 32 cp-asiRNAs were incubated for 24 hours at 1 ⁇ M in Opti-MEM media, and total RNA was extracted using Tri-RNA reagent (FAVORGEN).
- FAVORGEN Tri-RNA reagent
- cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems), and the level of SNAI1 expression was confirmed using a power SYBR green PCR master Mix (Applied Biosystems) and primers in Table 2 with a StepOne real-time PCR system machine. ( Figure 4).
- candidates of the top 12 (#1, 5, 8, 9, 13, 19, 21, 24, 25, 26, 27, 28) with high efficacy were selected.
- Example 7 Confirmation of SNAI1 inhibitory effect of cp-asiRNA with cell penetrating ability targeting SNAI1 gene
- Example 6 considering that the effect of inhibiting SNAI1 expression of cp-asiRNA by introducing chemical modification into asiSNAI1 26 (26 mer) is high, asiSNAI1 26 (19 mer) (sense sequence and sequence of SEQ ID NO: 51 of Table 4) It was also expected that the effect of cp-asiRNA, which introduced a chemical modification to the antisense sequence of No. 101), would be high. Accordingly, asiSNAI1 26 (19 mer) was introduced by chemical modification in the same manner as in Example 5 to further synthesize OLX201D-026-33 and OLX201D-026-34, cp-asiRNAs having cell penetrating ability (Table 7). .
- OLX201D-026-33 and OLX201D-026-34 of Table 7 and OLX201D-026-26 selected in Example 6 were evaluated for target protein inhibitory effect in mouse skin tissue.
- the target animals were purified for 1 week in C57BL/6 (6 week old, male, OrientBio) mice in the experimental animal room of the Orix Research Institute, and 7 week old animals were used for the test.
- Each candidate substance was prepared as a 10 mg/ml stock solution using 0.5x PBS as a vehicle solvent, diluted to three concentrations of 0.3, 1.0 and 2.0 mg/100 ⁇ l and administered once in 100 ⁇ l to the mouse skin. Inter-site spacing was maintained at a minimum of 3 cm.
- the mice were sacrificed on the third day of administration, and skin tissue at the administration site was collected using an 8-mm biopsy punch (BP-80F, Kai medical) (FIG. 6 and Table 8).
- the membrane was blocked for 1 hour in 5% skim-milk, reacted with SNAI1 antibody (Cell Signaling) 1:1000 for 12 hours at 4°C, and reacted for 1 hour with anti-rabbit Goat antibody-HRP (Santacruz) 1:5000. Then, the level of SNAI1 protein expression was confirmed using ChemiDoc (BioRad).
- an asymmetric siRNA that regulates the transcription factor SNAI1 (Snail1) which is a key factor of EMT, which is closely related to tissue regeneration and fibrosis, cancer development and metastasis by functioning to suppress the expression of E-cadherin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to asymmetric siRNA for inhibiting the expression of SNAI1 (Snail1), and a use thereof and, more specifically, to: asymmetric siRNA, which comprises an antisense strand comprising a sequence complementary to mRNA encoding SNAI1, and a sense strand forming a complementary bond with the antisense strand; and a pharmaceutical composition for preventing or treating fibrosis or cancer, containing the asymmetric siRNA. The present invention allows the selection of asymmetric siRNA which modulates transcription factor SNAI1 (Snail1), a key factor of EMT closely related to tissue regeneration and fibrosis and cancer occurrence and metastasis, by functioning to inhibit the expression of E-cadherin, and allows chemical modification so that cytotoxicity caused by a carrier is removed and more efficient inhibition of gene expression in vivo is enabled, thereby being effectively usable as an agent for preventing or treating fibrosis or cancer.
Description
본 발명은 SNAI1(Snail1)의 발현을 억제하는 비대칭 siRNA 및 이의 용도에 관한 것으로, 더욱 상세하게는 SNAI1을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하는 비대칭 siRNA 및 상기 비대칭 siRNA를 포함하는 섬유화 또는 암의 예방 또는 치료용 약학 조성물에 관한 것이다.The present invention relates to an asymmetric siRNA that inhibits the expression of SNAI1 (Snail1) and uses thereof, and more specifically, an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1, and a complementary bond with the antisense strand It relates to an asymmetric siRNA comprising the sense strand and a pharmaceutical composition for preventing or treating fibrosis or cancer comprising the asymmetric siRNA.
섬유화(fibrosis)는 정상 조직에 상처가 생겨 기능이 저하되면서 딱딱하게 굳는 현상을 말하며 폐섬유화, 망막하섬유화, 간섬유화 등을 예로 들 수 있다. 대표적으로 폐섬유화증(PF, pulmonary fibrosis)은 폐 조직에 염증이 생겨 이로 인해 폐 조직이 굳어가면서 호흡 장애가 발생하는 호흡기 질환이다. 섬유화가 심해지면 폐의 산소 교환 기능이 저하되고, 증상이 진행될수록 폐포가 파괴되면서 폐가 정상 기능을 하지 못한다. 특발성 폐섬유화(IPF, Idiopathic pulmonary fibrosis)는 특히 불명의 원인으로 PF가 진행되어, 진단 후 2-6년의 기대수명을 가지는 매우 치명적인 질병으로 현재 이에 대한 실질적인 치료방법은 폐 이식 수술이 유일하여 unmet medical needs가 매우 높다.Fibrosis (fibrosis) refers to a phenomenon that a normal tissue is wounded and hardened as a function decreases, and examples include lung fibrosis, subretinal fibrosis, and liver fibrosis. Typically, pulmonary fibrosis (PF) is a respiratory disease in which lung tissue becomes inflamed, which causes the lung tissue to harden and cause respiratory failure. When the fibrosis becomes severe, the oxygen exchange function of the lungs decreases, and as the symptoms progress, the alveoli are destroyed and the lungs do not function normally. Idiopathic pulmonary fibrosis (IPF) is a very fatal disease with a life expectancy of 2-6 years after diagnosis due to the progression of PF as a cause of unknownness. Currently, the only practical treatment for this is unmet due to lung transplant surgery. Medical needs are very high.
상피세포가 전이능력과 침윤능력을 가지는 세포로 변환하는 과정을 상피-중간엽 전이(epithelial-mesenchymal transition; EMT)라고 한다. EMT는 상피세포가 간엽세포로 바뀌는 것으로, 한 종류의 세포가 다른 종류의 세포로 분화하는 세포 형성성(cell plasticity)의 한 가지 형태이다(Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009;119:1429-1437). 이러한 EMT는 척추동물과 무척추동물 모두에서의 배아발생 동안에 조직과 기관의 발생을 포함하는 형태학적 발생의 기본적인 현상으로 간주된다. 이와 유사한 현상은 성인의 상처 치유 과정에서도 발견되며, 최근에 EMT가 태생기의 조직 형성과 분화 외에도 조직의 재생과 섬유화, 암의 발생과 전이 과정에 다양한 역할을 한다는 사실이 밝혀지고 있다.The process of transforming epithelial cells into cells with metastatic and infiltrating capacity is called epithelial-mesenchymal transition (EMT). EMT is a form of cell plasticity in which epithelial cells are transformed into mesenchymal cells, and one cell differentiates into another cell (Zeisberg M, Neilson EG.Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119:1429-1437). This EMT is considered a basic phenomenon of morphological development, including the development of tissues and organs during embryogenesis in both vertebrates and invertebrates. Similar phenomena are found in the wound healing process in adults, and recently, it has been revealed that EMT plays a variety of roles in tissue regeneration and fibrosis, as well as cancer development and metastasis, in addition to the formation and differentiation of tissues in the early stages.
암의 진행과정에서는 종양세포의 국소적 침습(local invasion)과 전이가 일어나는데, 이 과정에서 상피성 종양세포의 EMT가 동반된다. 이 과정에서 간엽성 표현형을 나타내기 위해 특정 유전자의 전사 프로그램이 변화하며, 세포의 이동성이 증가하고, 세포-세포 사이, 혹은 세포-세포외기질 사이 상호작용이 변화한다고 알려져 있다.In the process of cancer, local invasion and metastasis of tumor cells occur, which is accompanied by EMT of epithelial tumor cells. It is known that in this process, the transcription program of a specific gene changes to exhibit the mesenchymal phenotype, the mobility of cells increases, and the interaction between cells-cells or cells-extracellular matrix changes.
EMT에서 가장 초기에 일어나고 중요한 과정은 E-cadherin(E-카데린)에서 N-cadherin으로 전환하는 cadherin switch이다. E-cadherin은 막성 당단백질로 세포 외 영역은 인접 세포의 E-cadherin 분자와 결합하여 세포 간의 부착을 유지하고, 세포 내 영역은 α-, β- 및 p120 catenin과 결합하여 상피세포의 극성과 세포골격을 형성한다. EMT로 E-cadherin이 소실되면 상피세포 간의 tight junction이 느슨해지고, 세포골격이 재구성되어 액틴과 액틴 스트레스 섬유의 변화가 일어나서 세포극성이 소실되고, matrix metalloprotease(MMP)에 의해 세포 외 기질이 분해되어 상피세포가 간질로 이동한다. 전사인자 Snail1(SNAI1)은 이러한 E-cadherin의 발현을 억제하는 기능을 함으로써, EMT의 핵심인자로 인식되고 있다.The earliest and most important process in EMT is the cadherin switch that converts E-cadherin (E-cadherin) to N-cadherin. E-cadherin is a membranous glycoprotein, and the extracellular region binds with the E-cadherin molecule of adjacent cells to maintain adhesion between cells, and the intracellular region binds α-, β-, and p120 catenin to polarize epithelial cells and cells. It forms a skeleton. When E-cadherin is lost by EMT, the tight junction between epithelial cells is loosened, and the cytoskeleton is restructured, resulting in changes in actin and actin stress fibers, resulting in loss of cellular polarity, and decomposition of extracellular matrix by matrix metalloprotease (MMP). Epithelial cells migrate to the epilepsy. The transcription factor Snail1 (SNAI1) is recognized as a key factor of EMT by functioning to suppress the expression of E-cadherin.
이에 본 발명자들은 SNAI1의 발현을 억제시킬 수 있는 SNAI1 표적 비대칭 siRNA를 선별하고, 전달체의 도움 없이 세포 내로 전달되며 핵산가수분해효소에 대한 저항성이 높은 siRNA를 개발하고자 예의 연구 노력한 결과, SNAI1을 타겟으로 하는 siRNA들을 디자인하였으며, 스크리닝을 통해 가장 효율적으로 SNAI1을 억제시키는 siRNA를 선별하고, modification을 통해 세포 내 전달 문제를 극복할 수 있음을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors selected SNAI1 target asymmetric siRNA capable of inhibiting the expression of SNAI1, delivered to the cell without the help of a transporter, and as a result of earnest research efforts to develop a highly resistant to nucleic acid hydrolase, SNAI1 as a target SiRNAs were designed, siRNAs that most effectively inhibit SNAI1 were selected through screening, and it was confirmed that the intracellular delivery problem could be overcome through modification, and the present invention was completed.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in the background section is only for improving the understanding of the background of the present invention, and therefore does not include information forming prior art already known to those of ordinary skill in the art. It may not.
발명의 요약Summary of the invention
본 발명의 목적은 SNAI1(Snail1)의 발현을 특이적으로 억제하는 비대칭 siRNA(asymmetric shorter duplex siRNA, asiRNA)를 제공하는 데 있다.An object of the present invention is to provide an asymmetric shorter duplex siRNA (asiRNA) that specifically inhibits the expression of SNAI1 (Snail1).
본 발명의 다른 목적은 상기 비대칭 siRNA를 포함하는 섬유화의 예방 또는 치료용 약학 조성물, 또는 섬유화의 예방 또는 치료방법을 제공하는 데 있다.Another object of the present invention is to provide a pharmaceutical composition for preventing or treating fibrosis containing the asymmetric siRNA, or a method for preventing or treating fibrosis.
본 발명의 또 다른 목적은 상기 비대칭 siRNA를 포함하는 암의 예방 또는 치료용 약학 조성물, 또는 암의 예방 또는 치료방법을 제공하는 데 있다.Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, or a method for preventing or treating cancer, including the asymmetric siRNA.
본 발명의 또 다른 목적은 섬유화 또는 암의 예방 또는 치료를 위한 상기 비대칭 siRNA의 용도를 제공하는 데 있다.Another object of the present invention is to provide the use of the asymmetric siRNA for the prevention or treatment of fibrosis or cancer.
본 발명의 또 다른 목적은 섬유화 또는 암의 예방 또는 치료용 약제 제조를 위한 상기 비대칭 siRNA의 사용을 제공하는 데 있다.Another object of the present invention is to provide the use of the asymmetric siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis or cancer.
상기 목적을 달성하기 위하여, 본 발명은 SNAI1(Snail1)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA를 제공한다.In order to achieve the above object, the present invention comprises an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1 (Snail1), a sense strand forming a complementary bond with the antisense strand, and 5 of the antisense strand. The'terminal and 3'end of the sense strand provides an siRNA characterized by forming a blunt end.
본 발명은 또한, 상기 siRNA를 포함하는 섬유화의 예방 또는 치료용 약학 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating fibrosis comprising the siRNA.
본 발명은 또한, 상기 siRNA를 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다.The present invention also provides a pharmaceutical composition for the prevention or treatment of cancer comprising the siRNA.
본 발명은 또한, 상기 siRNA를 개체에 투여하는 단계를 포함하는 섬유화의 예방 또는 치료방법을 제공한다.The present invention also provides a method of preventing or treating fibrosis comprising administering the siRNA to an individual.
본 발명은 또한, 상기 siRNA를 개체에 투여하는 단계를 포함하는 암의 예방 또는 치료방법을 제공한다.The present invention also provides a method of preventing or treating cancer comprising administering the siRNA to an individual.
본 발명은 또한, 섬유화 또는 암의 예방 또는 치료를 위한 상기 비대칭 siRNA의 용도를 제공한다.The present invention also provides the use of the asymmetric siRNA for the prevention or treatment of fibrosis or cancer.
본 발명은 또한, 섬유화 또는 암의 예방 또는 치료용 약제 제조를 위한 상기 비대칭 siRNA의 사용을 제공한다.The present invention also provides the use of the asymmetric siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis or cancer.
도 1은 SNAI1을 표적으로 하는 43종의 서열에 대한 asiRNA의 유전자억제 효율을 나타낸 것으로, A549 cells에 각 염기 서열을 표적으로 하는 asiRNA를 0.3nM transfection 한 뒤 24시간 후에 qRT-PCR을 이용하여 SNAI1 mRNA의 발현 정도를 측정하였다. 도 1A와 도 1B는 각각 독립적인 실험 데이터이다.Figure 1 shows the gene inhibition efficiency of asiRNA for 43 sequences targeting SNAI1, SNAI1 using qRT-PCR after 24 hours after transfection of 0.3nM asiRNA targeting each nucleotide sequence to A549 cells The expression level of mRNA was measured. 1A and 1B are independent experimental data, respectively.
도 2는 SNAI1을 표적으로 하는 4종의 서열에 대한 asiRNA의 유전자억제 효율을 나타낸 것으로, #41은 negative control로 사용되었다. Panc-1 cells 와 A549 cells에 각 염기 서열을 표적으로 하는 asiRNA를 10nM transfection 한 뒤 48시간 후에 western blot을 이용하여 SNAI1 단백질의 발현 정도를 측정하였다. 도 2A는 western blot 데이터이고, 도 2B는 도 2A의 western blot 데이터를 ImageJ를 이용하여 SNAI1 단백질의 발현양을 housekeeping gene인 vinculin으로 normalization 한 뒤 normal sample에 대한 상대적인 SNAI1 단백질의 발현양을 나타낸 그래프이다.Figure 2 shows the gene suppression efficiency of asiRNA for four sequences targeting SNAI1, #41 was used as a negative control. The expression level of SNAI1 protein was measured by western blot 48 hours after 10nM transfection of asiRNA targeting each nucleotide sequence in Panc-1 cells and A549 cells. 2A is western blot data, and FIG. 2B is a graph showing the amount of expression of SNAI1 protein relative to a normal sample after normalizing the expression amount of SNAI1 protein to vinculin, a housekeeping gene, using ImageJ for western blot data of FIG. 2A. .
도 3은 SNAI1 표적 asiRNA 길이 변형체의 단백질 발현 억제 효율을 나타낸 것으로, Panc-1 cells에 각 염기 서열을 표적으로 하는 asiRNA를 5nM transfection 한 뒤 48시간 후에 western blot을 이용하여 SNAI1 단백질의 발현 정도를 측정하였다. 도 3A 및 도 3B는 western blot 데이터이고, 도 3C는 도 3A와 도 3B의 western blot 데이터를 ImageJ를 이용하여 housekeeping gene인 vinculin으로 normalization 한 뒤 non-treated sample에 대한 상대적인 SNAI1 발현양을 나타낸 그래프이다.Figure 3 shows the efficiency of inhibiting protein expression of the SNAI1 target asiRNA length variant, measuring the expression level of SNAI1 protein using western blot 48 hours after 5nM transfection of asiRNA targeting each nucleotide sequence to Panc-1 cells. Did. 3A and 3B are western blot data, and FIG. 3C is a graph showing the relative amount of SNAI1 expression for a non-treated sample after normalizing the western blot data of FIGS. 3A and 3B to housekeeping gene vinculin using ImageJ. .
도 4는 SNAI1을 표적으로 하는 다양한 chemical modification이 추가된 32종의 cp-asiRNA의 유전자억제 효율을 나타낸 것으로, A549 cells에 각 염기 서열을 표적으로 하는 cp-asiRNA를 1μM incubation 한 뒤 24시간 후에 qRT-PCR을 이용하여 SNAI1 mRNA의 발현 정도를 측정하였다. 그래프는 2회 반복 실험의 평균과 SD를 나타낸다.Figure 4 shows the gene inhibition efficiency of 32 cp-asiRNAs with various chemical modifications targeting SNAI1, qRT after 24 hours after 1 μM incubation of cp-asiRNAs targeting each base sequence in A549 cells. -PCR was used to measure the expression level of SNAI1 mRNA. The graph shows the mean and SD of 2 replicates.
도 5는 SNAI1을 표적으로 하는 cp-asiRNA의 유전자억제 효율을 나타낸 것으로, A549 cells에 각 염기 서열을 표적으로 하는 cp-asiRNA를 1μM-3μM incubation 한 뒤 48시간 후에 Western blot을 이용하여 SNAI1 단백질의 발현 정도를 측정하였다.Figure 5 shows the gene inhibition efficiency of cp-asiRNA targeting SNAI1, after 48 hours of incubation of 1μM-3μM cp-asiRNA targeting each nucleotide sequence in A549 cells, Western blot of SNAI1 protein was performed after 48 hours. The expression level was measured.
도 6은 SNAI1를 표적하는 cp-asiRNA의 SNAI1 단백질 억제 효과 확인을 위한 동물 실험 모식도 및 조건을 나타낸 것이다.Figure 6 shows a schematic diagram and conditions of animal experiments for confirming the SNAI1 protein inhibitory effect of cp-asiRNA targeting SNAI1.
도 7은 SNAI1를 표적하는 cp-asiRNA의 SNAI1 단백질 발현 억제 효과를 나타낸 것이다.7 shows the effect of inhibiting SNAI1 protein expression of cp-asiRNA targeting SNAI1.
발명의 상세한 설명 및 바람직한 구현예Detailed description of the invention and preferred embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known in the art and is commonly used.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.Definitions of key terms used in the detailed description of the present invention are as follows.
"RNAi(RNA interference; RNA 간섭)"란, 목적 유전자의 mRNA와 상동인 서열을 가지는 가닥과 이것과 상보적인 서열을 가지는 가닥으로 구성되는 이중가닥 RNA(dsRNA)를 세포 등에 도입하여 목적 유전자 mRNA의 분해를 유도함으로써 목적 유전자의 발현을 억제하는 메카니즘을 의미한다.“RNAi (RNA interference)” refers to a double-stranded RNA (dsRNA) composed of a strand having a sequence homologous to the mRNA of a target gene and a strand having a sequence complementary to that of a target gene, and is introduced into a cell or the like of the target gene mRNA. It means a mechanism that suppresses the expression of the target gene by inducing degradation.
"siRNA(small interfering RNA; 짧은 간섭 RNA)"란, 서열 특이적으로 효율적인 유전자 발현 억제(gene silencing)를 매개하는 짧은 이중 가닥의 RNA(dsRNA)를 의미한다.“SmRNA (small interfering RNA)” refers to short double-stranded RNA (dsRNA) that mediates sequence-specific efficient gene silencing.
"안티센스 가닥(antisense strand)"이란 관심 있는 목적 핵산(target nucleic acid)에 실질적으로 또는 100% 상보적인 폴리뉴클레오티드로서, 예를 들어 mRNA(messenger RNA), mRNA가 아닌 RNA 서열(e.g.,microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 상보적일 수 있다.A “antisense strand” is a polynucleotide that is substantially or 100% complementary to a target nucleic acid of interest, eg, mRNA (messenger RNA), RNA sequence other than mRNA (eg, microRNA, piwiRNA) , tRNA, rRNA and hnRNA) or coding or non-coding DNA sequences, in whole or in part.
"센스 가닥(sense strand)"이란 목적 핵산과 동일한 핵산 서열을 갖는 폴리뉴클레오티드로서, mRNA(messenger RNA), mRNA가 아닌 RNA 서열(e.g., microRNA, piwiRNA, tRNA, rRNA 및 hnRNA) 또는 코딩 또는 비코딩 DNA 서열과 전체로서 또는 일부로서 동일한 폴리뉴클레오티드를 말한다.A “sense strand” is a polynucleotide having a nucleic acid sequence identical to a target nucleic acid, and is an mRNA (messenger RNA), an RNA sequence other than mRNA (eg, microRNA, piwiRNA, tRNA, rRNA and hnRNA) or coding or noncoding. Refers to a polynucleotide as a whole or part of a DNA sequence.
"유전자"란 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 목적 유전자는 바이러스 게놈에 내재된 것으로, 동물 유전자로 통합되거나 염색체 외 구성요소로서 존재할 수 있다. 예컨대, 목적 유전자는 HIV 게놈상의 유전자일 수 있다. 이 경우, siRNA 분자는 포유동물 세포 내 HIV 유전자의 번역을 불활성화시키는데 유용하다."Gene" should be considered in the broadest sense and can encode a structural or regulatory protein. At this time, the regulatory protein includes a transcription factor, a heat shock protein or a protein involved in DNA/RNA replication, transcription and/or translation. In the present invention, the target gene targeted for suppression of expression is inherent in the viral genome, and may be integrated into an animal gene or exist as an extrachromosomal component. For example, the target gene can be a gene on the HIV genome. In this case, siRNA molecules are useful for inactivating the translation of HIV genes in mammalian cells.
본 발명의 용어 "상피-중간엽 전이(epithelial-mesenchymal transition; EMT)"란, 상피세포가 세포극성(cell polarity) 및 세포-세포 부착성(cell-cell adhesion)을 잃고 전이성 및 침윤성을 획득하여 다양한 형태의 세포로 분화할 수 있는 다분화능 간질세포(multipotent stromal cell)인 중간엽세포화하는 과정을 의미한다. 상기 EMT는 중배엽 형성(mesoderm formation) 및 신경관형성(neural tube formation)을 포함한 많은 발달과정에 필수적이다. 또한 EMT는 상처 치유(wound healing), 조직의 섬유화(organ fibrosis) 및 암진행(cancer progression)에 있어서 전이(metastasis)의 개시(initiation)에 관여하는 것으로 알려져 있다.The term "epithelial-mesenchymal transition (EMT)" of the present invention means that epithelial cells lose cell polarity and cell-cell adhesion and acquire metastatic and invasive properties. It refers to the process of mesenchymal cellization, a multipotent stromal cell that can differentiate into various types of cells. The EMT is essential for many developmental processes, including mesoderm formation and neural tube formation. EMT is also known to be involved in the initiation of metastasis in wound healing, tissue fibrosis and cancer progression.
EMT에서 나타나는 중요한 현상 중 하나는 E-카데린(E-cadherin)의 손실이다. 상기 E-카데린을 직접 또는 간접적으로 억제할 수 있는 많은 전사인자(transcription factors; TFs)가 알려져 있다. SNAI1/Snail 1, SNAI2/Snail 2, ZEB1, ZEB2, E47 및 KLF8은 E-카데린 프로모터에 결합하여 이의 전사를 억제하는 한편, Twist, Goosecoid, E2.2(a.k.a. TCF4), 호메오박스 단백질 SIX1 및 FOXC2는 간접적으로 E-카데린을 억제한다. 이외에 EMT를 유도하는 다른 신호전달경로로는 TGF-β, FGF, EGF, HGF, Wnt/베타-카테닌 및 노치(notch)가 관여하는 것들이 있다.One of the important phenomena in EMT is the loss of E-cadherin. Many transcription factors (TFs) are known that can directly or indirectly inhibit the E-cadherin. SNAI1/Snail 1, SNAI2/Snail 2, ZEB1, ZEB2, E47 and KLF8 bind to the E-cadherin promoter to inhibit its transcription, while Twist, Goosecoid, E2.2 (aka TCF4), homeobox protein SIX1 And FOXC2 indirectly inhibits E-cadherin. In addition, other signaling pathways inducing EMT include those involved in TGF-β, FGF, EGF, HGF, Wnt/beta-catenin and notch.
본 발명의 일 실시예에서, E-카데린의 발현을 억제할 수 있는 전사인자 SNAI1을 타겟으로 하는 asiRNA를 디자인하고 가장 knockdown efficiency가 좋은 asiRNA를 선별하였다. 또한 선별된 asiRNA의 염기서열 길이를 최적화 하였으며, modification을 도입하여 asiRNA가 세포 관통능을 가지고 핵산가수분해효소에 저항성을 가지도록 변형시켜, SNAI1 발현을 효율적으로 억제할 수 있는 cp-asiRNA를 선별하였다.In one embodiment of the present invention, an asiRNA targeting the transcription factor SNAI1 capable of suppressing the expression of E-cadherin was designed and asiRNA having the best knockdown efficiency was selected. In addition, the sequence length of the selected asiRNA was optimized, and by modifying, asiRNA was modified to have cell penetrating ability and resistance to nucleic acid hydrolase, cp-asiRNA capable of efficiently suppressing SNAI1 expression was selected. .
따라서, 본 발명은 일 관점에서, SNAI1(Snail1)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA에 관한 것이다.Accordingly, in one aspect, the present invention includes an antisense strand comprising a sequence complementary to an mRNA encoding SNAI1 (Snail1), a sense strand forming a complementary bond with the antisense strand, and 5'of the antisense strand. The 3'end of the terminal and sense strands relates to siRNA, characterized in that it forms a blunt end.
본 발명에서의 siRNA는 일반적인 RNAi(RNA interference) 작용을 가지는 모든 물질을 포함하는 개념이다. RNAi는 1998년 Fire 연구그룹에 의해 Caenorhabditis elegans에서 최초로 발견된 세포 내 유전자 조절 방식으로, 작용 기전은 세포 내로 투입된 RNA 이중 가닥 중 안티센스 가닥이 표적 유전자의 mRNA에 상보적으로 결합함으로써 표적 유전자 분해를 유도한다고 알려져 있다. 그 중 synthetic RNA interference(siRNA)는 "in vitro"에서 유전자의 발현을 억제하는 방법 중에 하나이다. 19-21bp의 siRNA는 이론적으로는 거의 모든 유전자에 대한 선택적 억제가 가능하여 암, 희귀질환, 섬유화, 바이러스성 감염 등의 다양한 유전자 관련 질환 치료제로서 개발 가능한 기술이다. 포유동물에서 siRNA를 사용한 생체 내 치료를 첫 시도한 경우는 2002년 중반이었으며, 그 이후로 응용 연구에 대한 많은 시도로 생체 내 치료에 관한 논문은 90개 이상 보고되었다.The siRNA in the present invention is a concept including all substances having a general RNAi (RNA interference) action. RNAi is an intracellular gene regulation method first discovered in Caenorhabditis elegans by the Fire Research Group in 1998. The mechanism of action is that the antisense strand of RNA double strands injected into the cell complementarily binds to the mRNA of the target gene to induce target gene degradation. It is said that. Among them, synthetic RNA interference (siRNA) is one of the methods to suppress gene expression in " in vitro ". The 19-21bp siRNA is a technology that can be developed as a therapeutic agent for various gene-related diseases, such as cancer, rare diseases, fibrosis, and viral infection, in theory because it can selectively inhibit almost all genes. The first attempt to treat in vivo with siRNA in mammals was in mid 2002. Since then, more than 90 papers have been reported on in vivo treatment with many attempts at applied research.
그러나 가능성과 반대로 최근 siRNA 기법의 부작용 및 단점이 계속적으로 보고되어 있으며 RNAi 기반으로 치료제의 개발이 이루어지기 위해서는 1) 효과적인 전달시스템의 부재 2) 오프-타겟 효과 3) 면역반응 유도 4) 세포 내 RNAi 기구 포화와 같은 장벽을 극복해야 할 필요성이 있다. siRNA가 표적 유전자의 발현을 직접적으로 조절할 수 있는 효과적인 방법임에도 불구하고 이와 같은 문제들로 인해 치료제 개발에 어려움을 겪고 있다. 이와 관련하여, 본 발명의 출원인은 비대칭 siRNA(asymmetric shorter duplex siRNA, asiRNA) 구조 관련 기술을 개발한 바 있다(WO 2009/078685). asiRNA는 19+2 구조에 비해 짧은 이중나선 길이를 갖는 비대칭 RNAi 유도 구조이다. 기존에 siRNA가 갖는 오프-타겟 효과, RNAi 기작의 포화, TLR3에 의한 면역반응 등의 문제점들을 극복한 기술이며, 이에 따라 RNAi 신약 개발에 유력한 플랫폼이 될 수 있다. 또한, 화학적, 구조적 변형(chemical, structural modification)이 더해져서 별도의 전달 시스템 없이 세포 내로 자가 전달이 가능하여 기존에 siRNA 전달을 하는 시스템이 갖는 문제점들을 극복함으로써 효과적인 차세대 치료제로 개발이 가능하다.Contrary to the possibility, however, the side effects and disadvantages of siRNA techniques have been reported continuously, and in order to develop a therapeutic agent based on RNAi, 1) absence of an effective delivery system 2) off-target effect 3) induction of immune response 4) intracellular RNAi There is a need to overcome barriers such as instrument saturation. Although siRNA is an effective method to directly regulate the expression of a target gene, these problems have made it difficult to develop a therapeutic agent. In this regard, the applicant of the present invention has developed an asymmetric shorter duplex siRNA (asiRNA) structure-related technology (WO 2009/078685). asiRNA is an asymmetric RNAi-inducing structure with a short double helix length compared to the 19+2 structure. It is a technology that overcomes problems such as the off-target effect of siRNA, saturation of RNAi mechanism, and immune response by TLR3, and can be a promising platform for developing new RNAi drugs. In addition, chemical and structural modifications (chemical, structural modification) is added, so it is possible to develop as an effective next-generation treatment by overcoming the problems of the existing siRNA delivery system by enabling self-transmission into cells without a separate delivery system.
이를 바탕으로, 본 발명에서는 센스 가닥 및 상기 센스 가닥과 상보적인 안티센스 가닥을 포함하는 비대칭 siRNA를 제시하며, 본 발명에 따른 siRNA는 오프-타겟 효과, RNAi 기작의 포화, TLR3에 의한 면역반응 등의 문제를 일으키지 않아 안정적으로 높은 전달 효율을 유지하면서, 목적하는 정도로 유효하게 SNAI1 표적 유전자에 대한 발현을 억제할 수 있다.Based on this, the present invention presents an asymmetric siRNA comprising a sense strand and an antisense strand complementary to the sense strand, and the siRNA according to the present invention has an off-target effect, saturation of RNAi mechanism, immune response by TLR3, etc. It is possible to effectively suppress the expression of the SNAI1 target gene to a desired degree while stably maintaining high delivery efficiency without causing a problem.
본 발명에 있어서, 상기 siRNA는 상기 센스 가닥은 15-17nt의 길이를 가지고, 상기 안티센스 가닥은 16nt 이상의 길이를 가지는 것을 특징으로 할 수 있다. 이에 제한되는 것은 아니나, 상기 안티센스 가닥은 16-31nt의 길이를 가지는 것을 특징으로 할 수 있으며, 바람직하게는 19-26nt의 길이를 가지는 것을 특징으로 할 수 있다. 더욱 바람직하게는, 상기 센스 가닥의 길이는 16nt, 이와 상보적인 안티센스 가닥의 길이는 19nt, 24nt 또는 26nt인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the siRNA may be characterized in that the sense strand has a length of 15-17nt, and the antisense strand has a length of 16nt or more. Without being limited thereto, the antisense strand may be characterized as having a length of 16-31nt, and preferably may have a length of 19-26nt. More preferably, the length of the sense strand is 16nt, and the length of the complementary antisense strand is 19nt, 24nt or 26nt, but is not limited thereto.
상기 센스 가닥의 3' 말단 및 안티센스 가닥의 5' 말단은 블런트 말단(blunt end)을 형성한다. 안티센스 가닥의 3' 말단은 예를 들어 1-15nt의 오버행(overhang)을 포함할 수 있다.The 3'end of the sense strand and the 5'end of the antisense strand form a blunt end. The 3'end of the antisense strand may include, for example, an overhang of 1-15nt.
본 발명의 일 실시예에서, SNAI1의 발현을 억제시키기 위하여 43개의 asiRNA를 디자인하였고, mRNA level과 protein level의 억제를 확인하였다.In one embodiment of the present invention, 43 asiRNAs were designed to suppress the expression of SNAI1, and inhibition of mRNA levels and protein levels was confirmed.
본 발명에 있어서, 상기 센스 가닥은 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 및 85로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the sense strand is SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39 , 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 and 85 It can be characterized by being selected.
구체적으로, 서열번호 35, 47, 49 및 51로 구성된 군에서 선택되는 센스 가닥 및 상기 센스 가닥과 상보적인 안티센스 가닥을 포함하는 siRNA가 SNAI1 발현 억제 효과가 가장 좋은 것을 확인하였다.Specifically, it was confirmed that a siRNA comprising a sense strand selected from the group consisting of SEQ ID NOs: 35, 47, 49, and 51, and an antisense strand complementary to the sense strand, has the best SNAI1 expression inhibitory effect.
본 발명에 있어서, 상기 안티센스 가닥은 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 및 102로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 구체적으로는, 상기 안티센스 가닥은 서열번호 36, 48, 50, 52, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 및 102로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.In the present invention, the antisense strand is SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 , 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 91, 92 , 93, 94, 95, 96, 97, 98, 99, 100, 101, and 102. Specifically, the antisense strand is selected from the group consisting of SEQ ID NO: 36, 48, 50, 52, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 and 102 can do.
더욱 구체적으로, 상기 센스 가닥은 서열번호 35 또는 51이고, 상기 안티센스 가닥은 서열번호 92, 100 또는 101인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다. 더욱 바람직하게는, 상기 센스 가닥은 서열번호 51이고, 상기 안티센스 가닥은 서열번호 100 또는 101인 것을 특징으로 할 수 있다.More specifically, the sense strand is SEQ ID NO: 35 or 51, and the antisense strand may be characterized by being SEQ ID NO: 92, 100 or 101, but is not limited thereto. More preferably, the sense strand is SEQ ID NO: 51, the antisense strand may be characterized in that SEQ ID NO: 100 or 101.
본 발명에 있어서, 상기 siRNA의 센스 가닥 또는 안티센스 가닥은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 할 수 있다.In the present invention, the sense strand or the antisense strand of the siRNA may be characterized by including one or more chemical modifications (chemical modification).
일반적인 siRNA는 포스페이트 백본 구조에 의한 높은 음전하 및 높은 분자량 등의 이유로 세포막을 통과할 수 없고 혈액에서의 빠른 분해 및 제거되어 실제 표적 부위에 RNAi 유도를 위한 충분한 양을 전달하는데 어려움이 있다. 현재 in vitro 전달의 경우 cationic lipids와 cationic polymers들을 이용한 높은 효율의 delivery 방법이 많이 개발되어 있지만, in vivo의 경우에는 in vitro만큼의 높은 효율로 siRNA를 전달하기 어렵고, 생체 내에 존재하는 다양한 단백질들과 상호작용에 의하여 siRNA 전달 효율이 감소하는 문제점이 있다.In general, siRNA cannot pass through the cell membrane due to high negative charge and high molecular weight due to the phosphate backbone structure, and it is difficult to deliver sufficient amounts for RNAi induction to actual target sites due to rapid decomposition and removal in blood. Currently, in the case of in vitro delivery, many high-efficiency delivery methods using cationic lipids and cationic polymers have been developed, but in vivo , it is difficult to deliver siRNA with inefficiencies as high as in vitro , and various proteins present in vivo. There is a problem in that siRNA delivery efficiency is reduced by interaction.
이에, 본 발명자들은 비대칭 siRNA 구조에 화학적 변형을 도입하여 별도의 전달체 없이 효과적이고 세포 내 전달을 할 수 있는 자가 전달능을 가진 asiRNA 구조체(cp-asiRNA)를 개발하였다.Accordingly, the present inventors have developed an asiRNA construct (cp-asiRNA) having an autotransfer capability capable of effectively and intracellular delivery without a separate carrier by introducing a chemical modification into an asymmetric siRNA structure.
본 발명에 있어서, 상기 센스 가닥 또는 안티센스 가닥에서 화학적 변형은 다음으로 구성된 군에서 선택된 하나 이상을 포함할 수 있다: 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환; 뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환; 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate), 보라노포페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형; PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형; 및 인산기(phosphate group), 친유성 화합물(lipophilic compound) 또는 세포 침투 펩타이드 결합.In the present invention, the chemical modification in the sense strand or the antisense strand may include one or more selected from the group consisting of: -OH group at the 2'carbon position of the sugar structure in the nucleotide -CH3 (methyl), -OCH3 (methoxy), -NH2, -F(fluorine), -O-2-methoxyethyl -O-propyl, -O-2-methylthioethyl, -O-3-aminopropyl,- Substituted with O-3-dimethylaminopropyl; Oxygen in the sugar structure in the nucleotide is substituted with sulfur; Nucleotide bonds are modified with phosphorothioate, boranophosphate, or methyl phosphonate; Modification to peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; And phosphate groups, lipophilic compounds, or cell-penetrating peptides.
본 발명에 있어서, 상기 친유성 화합물(lipophilic compound)은 콜레스테롤, 토코페롤 및 탄소수 10개 이상의 장쇄지방산으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 바람직하게는 콜레스테롤인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the lipophilic compound may be selected from the group consisting of cholesterol, tocopherol, and long-chain fatty acids having 10 or more carbon atoms. Preferably it can be characterized as being cholesterol, but is not limited thereto.
본 발명의 실시예에서, 상기 화학적 변형은 센스 가닥 또는 안티센스 가닥 중 2개 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy) 또는 -F(불소)로 치환되는 변형; 센스 또는 안티센스 가닥에서 10% 이상의 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate)로 변형; 센스 가닥의 3' 말단에 콜레스테롤 결합; 또는 안티센스 가닥의 5' 말단에 인산기(phosphate group) 결합일 수 있다. 이를 통해 siRNA의 생체 내 안정성을 향상시킬 수 있다. 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy)로 치환되거나 뉴클레오티드 결합이 포스포로티오에이트로 변형되면, 핵산분해효소에 대한 저항성을 높일 수 있고, 콜레스테롤 결합을 통해 세포막과 결합하게 됨으로써 세포 내로 siRNA의 전달을 용이하게 할 수 있다.In an embodiment of the present invention, the chemical modification is a modification in which the -OH group is substituted with -OCH3 (methoxy) or -F (fluorine) at the 2'carbon position of the sugar structure in two or more nucleotides of the sense strand or the antisense strand; 10% or more nucleotide bonds in the sense or antisense strand are modified with phosphorothioate; Cholesterol binding to the 3'end of the sense strand; Alternatively, a phosphate group may be attached to the 5'end of the antisense strand. Through this, it is possible to improve the stability of siRNA in vivo. When the -OH group is replaced with -OCH3 (methoxy) at the 2'carbon position of the sugar structure or the nucleotide bond is modified with phosphorothioate, resistance to the nuclease can be increased, and by binding to the cell membrane through cholesterol binding SiRNA delivery into cells can be facilitated.
구체적으로, 센스 가닥 또는 안티센스 가닥 중 2개 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy) 또는 -F(불소)로 치환되는 변형; 센스 또는 안티센스 가닥에서 10% 이상의 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate)로 변형; 및 센스 가닥의 3' 말단에 콜레스테롤 결합;으로 구성된 군에서 선택된 하나 이상의 변형을 포함할 수 있다.Specifically, a modification in which the -OH group is substituted with -OCH3 (methoxy) or -F (fluorine) at the 2'carbon position of the sugar structure in two or more nucleotides of the sense strand or antisense strand; 10% or more nucleotide bonds in the sense or antisense strand are modified with phosphorothioate; And a cholesterol bond at the 3'end of the sense strand; and one or more modifications selected from the group consisting of.
뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy)로 치환되는 변형과 관련하여, 센스 가닥의 5' 말단에 위치하는 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy)로 치환될 수 있다. 또한, 센스 가닥의 5'말단에서 3' 말단 방향으로 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy)로 치환된 2′-O-메틸 뉴클레오시드(2′-O-methylated nucleoside)가 연속적 또는 비연속적으로 포함될 수 있다. 상기 센스 가닥에서 2′-O-메틸 뉴클레오시드(2′-O-methylated nucleoside)가 비변형 뉴클레오시드와 교대로 포함될 수 있다. 상기 센스 가닥에서 2개, 3개, 4개, 5개, 6개, 7개, 8개 연속적 2′-O-메틸 뉴클레오시드가 비변형 뉴클레오시드와 교대로 포함될 수 있다. 상기 센스 가닥에서 2′-O-메틸 뉴클레오시드가 예를 들어 2개 이상, 3개 이상, 4개 이상, 5개 이상, 6개 이상, 7개 이상, 8개 이상, 2-8개 또는 8개 존재할 수 있다.In relation to the modification in which the -OH group is replaced with -OCH3 (methoxy) at the 2'carbon position of the sugar structure in the nucleotide, the -OH group is -OCH3 at the 2'carbon position of the sugar structure in the nucleotide located at the 5'end of the sense strand (methoxy). In addition, a 2'-O-methyl nucleoside in which the -OH group is substituted with -OCH3 (methoxy) at the 2'carbon position of the sugar structure from the 5'end to the 3'end of the sense strand. ) May be included continuously or discontinuously. In the sense strand, a 2'-O-methylated nucleoside may be alternately included with an unmodified nucleoside. 2, 3, 4, 5, 6, 7, 8 consecutive 2′-O-methyl nucleosides may be alternately included with the unmodified nucleoside in the sense strand. 2′-O-methyl nucleosides in the sense strand, for example 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 2-8 or Eight can exist.
상기 안티센스 가닥의 5' 말단에서 3' 말단 방향으로 2′-O-메틸 뉴클레오시드(2′-O-methylated nucleoside)가 연속적 또는 비연속적으로 포함될 수 있다. 상기 안티센스 가닥에서 2′-O-메틸 뉴클레오시드(2′-O-methylated nucleoside)가 비변형 뉴클레오시드와 교대로 포함될 수 있다. 상기 안티센스 가닥에서 2개, 3개, 4개, 5개, 6개, 7개, 8개 연속적 2′-O-메틸 뉴클레오시드가 비변형 뉴클레오시드와 교대로 포함될 수 있다. 상기 안티센스 가닥에서 2′-O-메틸 뉴클레오시드가 예를 들어 2개 이상, 3개 이상, 4개 이상, 5개 이상, 6개 이상, 7개 이상, 8개 이상, 2-7개 존재할 수 있다.2'-O-methylated nucleosides may be continuously or discontinuously included in the 5'end to 3'end direction of the antisense strand. In the antisense strand, a 2'-O-methylated nucleoside may be alternately included with an unmodified nucleoside. In the antisense strand, 2, 3, 4, 5, 6, 7 and 8 consecutive 2′-O-methyl nucleosides may be alternately included with the unmodified nucleoside. 2′-O-methyl nucleosides in the antisense strand, for example, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 2-7 Can be.
뉴클레오티드 결합이 포스포로티오에이트로의 변형과 관련하여, 센스 가닥에서 라이보뉴클레오티드 사이의 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% 또는 95% 이상이 포스포로티오에이트로 변형될 수 있다. 경우에 따라서, 센스 가닥에서 라이보뉴클레오티드 사이의 결합 전부(100%)가 포스포로티오에이트로 변형될 수 있다.10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55 between the nucleotide strand and the ribonucleotide in relation to the modification of the nucleotide bond to phosphorothioate %, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% or more can be modified with phosphorothioate. In some cases, all (100%) of the bonds between the ribonucleotides in the sense strand can be modified with phosphorothioates.
상기 안티센스 가닥에서 라이보뉴클레오티드 사이의 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% 또는 95% 이상이 포스포로티오에이트로 변형될 수 있다. 경우에 따라서, 안티센스 가닥에서 라이보뉴클레오티드 사이의 결합 전부(100%)가 포스포로티오에이트로 변형될 수 있다.10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% between ribonucleotides in the antisense strand , 80%, 85%, 90% or 95% or more can be modified with phosphorothioates. In some cases, all of the binding (100%) between the antisense strand and the ribonucleotide can be modified with phosphorothioate.
바람직하게는, 상기 센스 가닥은 하기 표의 (a) 내지 (i)로 구성된 군에서 선택된 어느 하나이고, 안티센스 가닥은 하기 표의 (j) 내지 (s)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 할 수 있다.Preferably, the sense strand is any one selected from the group consisting of (a) to (i) in the following table, and the antisense strand is any one selected from the group consisting of (j) to (s) in the following table. Can be.
상기 서열에서 *는 포스포로티오에이트 결합(phosphorothioated bond), m은 2'-O-메틸(Methyl), 2'-F-는 2'-플루오르(Fluoro), /chol/은 콜레스테롤, P-는 5'-인산기(Phosphate group)를 의미한다.In the above sequence, * is a phosphorothioate bond, m is 2'-O-methyl (Methyl), 2'-F- is 2'-Fluoro, /chol/ is cholesterol, and P- is 5'-Phosphate group.
더욱 바람직하게는, 상기 센스 가닥은 상기 표의 (e), (g) 또는 (i)이며, 안티센스 가닥은 상기 표의 (o), (p), (r) 또는 (s)인 것을 특징으로 할 수 있다.More preferably, the sense strand is (e), (g) or (i) of the table, and the antisense strand may be characterized in that (o), (p), (r) or (s) of the table. have.
가장 바람직하게는, 본 발명의 siRNA는 하기의 센스 가닥 및 안티센스 가닥으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다: 센스 가닥 상기 표의 (e) 및 안티센스 가닥 상기 표의 (p); 센스 가닥 상기 표의 (g) 및 안티센스 가닥 상기 표의 (o); 센스 가닥 상기 표의 (e) 및 안티센스 가닥 상기 표의 (r); 및 센스 가닥 상기 표의 (i) 및 안티센스 가닥 상기 표의 (s).Most preferably, the siRNA of the present invention may be characterized by being selected from the group consisting of the following sense strands and antisense strands, but is not limited to: sense strands (e) and antisense strands (p) ); (G) of the sense strand above and (o) of the antisense strand above; (E) of the sense strand above and (r) of the antisense strand above; And sense strand (i) in the above table and antisense strand (s) in the above table.
본 발명에 있어서, 상기 안티센스 가닥의 5' 말단에 인산기가 한 개 내지 세 개 결합될 수 있으나, 이에 제한되는 것은 아니다.In the present invention, one to three phosphate groups may be attached to the 5'end of the antisense strand, but is not limited thereto.
본 발명은 다른 관점에서, 상기 siRNA를 포함하는 섬유화의 예방 또는 치료용 약학 조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for preventing or treating fibrosis comprising the siRNA.
본 발명에 있어서, 상기 섬유화는 망막하섬유화, 폐섬유화, 간섬유화, 심근섬유화 또는 신장섬유화인 것을 특징으로 할 수 있으나, 이에 제한되지 않으며, EMT가 관여하는 것으로 알려진 섬유화의 예방 또는 치료용 조성물로 제한없이 사용할 수 있다.In the present invention, the fibrosis may be characterized by subretinal fibrosis, lung fibrosis, liver fibrosis, myocardial fibrosis or renal fibrosis, but is not limited thereto, and is a composition for preventing or treating fibrosis known to be involved in EMT Can be used without restrictions.
본 발명은 또 다른 관점에서, 상기 siRNA를 포함하는 암의 예방 또는 치료용 약학 조성물에 관한 것이다.In another aspect, the present invention relates to a pharmaceutical composition for the prevention or treatment of cancer comprising the siRNA.
본 발명에 있어서, 상기 암은 폐암, 유방암, 결장암 또는 전립선암인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, EMT가 관여하는 것으로 알려진 암의 예방 또는 치료용 조성물로 제한없이 사용할 수 있다.In the present invention, the cancer may be characterized as lung cancer, breast cancer, colon cancer or prostate cancer, but is not limited thereto, and can be used without limitation as a composition for preventing or treating cancer known to be involved in EMT.
상기 약학 조성물은 유효성분인 siRNA 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 담체는 본 발명의 유효성분과 양립 가능하여야 하며, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 한 성분 또는 둘 이상의 성분을 혼합하여 사용할 수 있고, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형으로 제제화 할 수 있다. 특히, 동결건조(lyophilized)된 형태의 제형으로 제제화하여 제공하는 것이 바람직하다. 동결건조 제형 제조를 위해서 본 발명이 속하는 기술분야에서 통상적으로 알려져 있는 방법이 사용될 수 있으며, 동결건조를 위한 안정화제가 추가될 수도 있다.The pharmaceutical composition may be prepared by including one or more pharmaceutically acceptable carriers in addition to siRNA as an active ingredient. The pharmaceutically acceptable carrier should be compatible with the active ingredient of the present invention, and may include saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these ingredients. It can be used in combination, and if necessary, other conventional additives such as antioxidants, buffers, bacteriostatic agents can be added. In addition, diluents, dispersants, surfactants, binders, and lubricants can be added in addition to formulated into injectable formulations such as aqueous solutions, suspensions, and emulsions. In particular, it is preferable to provide a formulation in a lyophilized form. For the preparation of a lyophilized formulation, a method commonly known in the art to which the present invention pertains may be used, and a stabilizer for lyophilization may be added.
상기 약학 조성물의 투여방법은 통상의 환자의 증후와 질병의 심각도에 기초하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 또한, 산제, 정제, 캡슐제, 액제, 주사제, 연고제, 시럽제 등의 다양한 형태로 제제화 할 수 있으며 단위-투여량 또는 다-투여량 용기, 예를 들면 밀봉된 앰플 및 병 등으로 제공될 수도 있다.The method of administration of the pharmaceutical composition can be determined by a person skilled in the art based on the symptoms and severity of the disease in a typical patient. In addition, powders, tablets, capsules, liquids, injections, ointments, syrups, etc. can be formulated in various forms and can be provided in unit-dose or multi-dose containers, for example, sealed ampoules and bottles. .
본 발명의 약학 조성물은 경구 또는 비경구 투여가 가능하다. 본 발명에 따른 조성물의 투여경로는 이들로 한정되는 것은 아니지만, 예를 들면, 구강, 정맥 내, 근육 내, 동맥 내, 골수 내, 경막 내, 심장 내, 경피, 피하, 복강 내, 장관, 설하 또는 국소 투여가 가능하다. 본 발명에 따른 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 방법, 배설율 또는 질병의 중증도 등에 따라 그 범위가 다양하며, 본 기술분야의 통상의 전문가가 용이하게 결정할 수 있다. 또한, 임상 투여를 위해 공지의 기술을 이용하여 본 발명의 조성물을 적합한 제형으로 제제화할 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally. The route of administration of the composition according to the present invention is not limited to these, for example, oral cavity, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intestinal, sublingual Or topical administration is possible. The dosage amount of the composition according to the present invention varies in its range according to the patient's weight, age, sex, health condition, diet, administration time, method, excretion rate, or severity of disease, and is easy for a person skilled in the art. Can decide. In addition, the compositions of the present invention can be formulated into suitable formulations using known techniques for clinical administration.
본 발명은 또 다른 관점에서, 상기 siRNA의 치료적 유효량을 치료를 필요로 하는 환자에게 투여하는 단계를 포함하는 섬유화의 예방 또는 치료방법에 관한 것이다.In another aspect, the present invention relates to a method for preventing or treating fibrosis, comprising administering a therapeutically effective amount of the siRNA to a patient in need of treatment.
또한, 본 발명은 또 다른 관점에서, 상기 siRNA의 치료적 유효량을 치료를 필요로 하는 환자에게 투여하는 단계를 포함하는 암의 예방 또는 치료방법에 관한 것이다.In another aspect, the present invention relates to a method for preventing or treating cancer, comprising administering a therapeutically effective amount of the siRNA to a patient in need of treatment.
본 발명은 또 다른 관점에서, 섬유화의 예방 또는 치료를 위한 상기 siRNA의 용도에 관한 것이다.In another aspect, the present invention relates to the use of said siRNA for the prevention or treatment of fibrosis.
본 발명은 또 다른 관점에서, 섬유화 예방 또는 치료용 약제 제조를 위한 상기 siRNA의 사용에 관한 것이다.In another aspect, the invention relates to the use of said siRNA for the manufacture of a medicament for the prevention or treatment of fibrosis.
본 발명은 또 다른 관점에서, 암의 예방 또는 치료를 위한 상기 siRNA의 용도에 관한 것이다.In another aspect, the present invention relates to the use of said siRNA for the prevention or treatment of cancer.
본 발명은 또 다른 관점에서, 암 예방 또는 치료용 약제 제조를 위한 상기 siRNA의 사용에 관한 것이다.In another aspect, the present invention relates to the use of said siRNA for the manufacture of a medicament for the prevention or treatment of cancer.
본 발명에 따른 예방 또는 치료방법, 용도 및 사용에 포함되는 구성은 앞서 설명한 발명에 포함되는 구성과 동일하므로, 위 설명은 예방 또는 치료방법, 용도 및 사용에도 동일하게 적용될 수 있다.Since the configuration included in the prevention or treatment method, use and use according to the present invention is the same as the configuration included in the above-described invention, the above description may be equally applied to the prevention or treatment method, use and use.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: SNAI1을 표적으로 하는 RNAi 유도 이중 가닥 핵산 분자 43종 스크리닝Example 1: Screening of 43 RNAi-derived double-stranded nucleic acid molecules targeting SNAI1
SNAI1을 표적으로 하는 고 효율의 RNAi 간섭을 유도하는 이중 가닥의 핵산 분자를 확보하기 위해 SNAI1 유전자에 대한 표적서열선정 후 asiRNA를 디자인하였다. asiRNA 구조는 일반적으로 알려진 siRNA와 비교하여 서로 다른 secondary structure, GC contents(%), 5' end stability difference 등을 가지고 있어 일반적인 siRNA 디자인 프로그램을 사용하여 asiRNA의 염기 서열을 디자인하는 경우 최적화된 asiRNA의 디자인이 다소 어려울 수 있다. 따라서 본 연구의 asiRNA는 다음과 같은 방법으로 진행하였다. NCBI database 검색을 통해 SNAI1 유전자 정보를 획득하였다(mRNA accession number: NM_005985). 동물실험을 고려하여 mouse와 공통표적을 가지는 염기 서열 기준으로 homology 100%를 보이는 염기 서열을 우선 선발한 후 antisense strand에서 seed region(5' 기준 2번-8번 염기서열 부분)을 제외한 부분에서의 1개의 mismatch를 허용하는 염기 서열 또한 추가로 선발하여 총 43종의 asiRNA를 디자인 후 OliX Inc.(Korea)에서 10nmole scale로 합성하였다. 합성된 asiRNA는 95℃ 5분, 37℃ 25분 incubation 과정을 거쳐 annealing 하였고, 12% Polyacrylamide Gel Electrophoresis(PAGE) 후 ChemiDoc UV transilluminator(Biorad)를 통해 QC를 하였다.To secure double-stranded nucleic acid molecules that induce high-efficiency RNAi interference targeting SNAI1, asiRNA was designed after target sequencing for the SNAI1 gene. The asiRNA structure has a different secondary structure, GC contents (%), 5'end stability difference compared to the commonly known siRNA, so it is optimized asiRNA design when designing the base sequence of asiRNA using a general siRNA design program. This can be rather difficult. Therefore, the asiRNA of this study was conducted as follows. SNAI1 gene information was obtained through NCBI database search (mRNA accession number: NM_005985). Considering animal experiments, first select a nucleotide sequence showing 100% homology based on a nucleotide sequence having a common target with a mouse, and then remove the seed region from the antisense strand (bases 2-8 to 5') A total of 43 asiRNAs were selected and further synthesized on a 10 nmole scale by OliX Inc. (Korea). The synthesized asiRNA was annealing after incubation at 95°C for 5 minutes and 37°C for 25 minutes, followed by QC through ChemiDoc UV transilluminator (Biorad) after 12% Polyacrylamide Gel Electrophoresis (PAGE).
실시예 2: SNAI1를 표적으로 하는 RNAi 유도 이중 가닥의 핵산 분자 스크리닝Example 2: Screening of RNAi-induced double-stranded nucleic acid molecule targeting SNAI1
mRNA 수준에서 유전자 억제 효율을 확인하기 위해, 선정한 43종의 asiRNA를 이용하여 A549 세포 주에 0.3nM 농도로 transfection 한 후 qRT-PCR을 수행하여 SNAI1 mRNA의 발현 정도를 측정하였다. A549 세포주는 F-12K Nutrient Mixture(Gibco), 10% fetal bovine serum(FBS, Gibco), 100 units/ml Penicillin 100μg/ml Streptomycin 조건에서 배양하였다. A549 세포를 24-well plate에 3x104 cells/well로 seeding 해주고 asiRNA(0.3nM, OliX Inc.) 와 RNAiMax(2μl/ml, Invitrogen Inc.)를 이용하여 총 volume 500μl Opti-MEM 조건에서 Invitrogen 제공 프로토콜에 따라 transfection을 수행하였다. 24시간 뒤, Tri-RNA reagent(FAVORGEN)를 이용해 total RNA를 추출한 다음 High-capacity cDNA reverse transcription kit(Applied Biosystems)를 이용해 cDNA를 합성하였고, StepOne real-time PCR system 기계로 power SYBR green PCR master Mix(Applied Biosystems)와 표 2의 Primer를 이용해 SNAI1 유전자 발현 정도를 확인하였다.In order to confirm the efficiency of gene inhibition at the mRNA level, the expression level of SNAI1 mRNA was measured by performing qRT-PCR after transfection to the A549 cell line using 43 selected asiRNAs at a concentration of 0.3 nM. The A549 cell line was cultured in F-12K Nutrient Mixture (Gibco), 10% fetal bovine serum (FBS, Gibco), 100 units/ml Penicillin 100 μg/ml Streptomycin. A549 cells are seeded in a 24-well plate at 3x10 4 cells/well, and asviRNA (0.3nM, OliX Inc.) and RNAiMax (2μl/ml, Invitrogen Inc.) are used to provide Invitrogen in a total volume of 500μl Opti-MEM. According to the transfection was performed. After 24 hours, total RNA was extracted using Tri-RNA reagent (FAVORGEN), and cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems). (Applied Biosystems) and using the Primer of Table 2 was confirmed the degree of SNAI1 gene expression.
SNAI1을 표적으로 하는 43종의 서열에 대한 asiRNA의 유전자억제 효율을 도 1에 나타내었다. 그 결과 최소 n=2에서 50% 이상 mRNA knockdown 효능을 보인 4종(#18, 24, 25, 26)의 candidate를 선발하여 단백질 수준에서의 유전자 억제 효율 정도를 확인하는 단계를 진행하였다.The efficiency of gene inhibition of asiRNA for 43 sequences targeting SNAI1 is shown in FIG. 1. As a result, four candidates (#18, 24, 25, and 26) that showed mRNA knockdown efficacy of 50% or more at a minimum of n=2 were selected to proceed with the step of confirming the degree of gene suppression efficiency at the protein level.
43종의 asiRNA screening 결과를 통해 최소 n=1에서 50% 이상 knockdown 효능을 보인 9종(#15, 17, 18, 22, 24, 25, 26, 27, 28)을 선별하여 10nM 농도에서 transfection 후 western blot을 통해 protein knockdown을 확인하였다. Panc-1 세포주는 Dulbecco's Modified Eagle Medium(DMEM, Gibco), 10% fetal bovine serum(FBS, Gibco), 100 units/ml Penicillin 100μg/ml Streptomycin 조건에서 배양하였다. A549 및 Panc-1 세포를 6-well plate에 9x104 cells/well로 seeding하고 asiRNA(10nM, OliX Inc.)와 RNAiMax(2μl/ml, Invitrogen Inc.)를 이용하여 총 volume 2ml Opti-MEM 조건에서 Invitrogen 제공 프로토콜에 따라 transfection을 수행하였다. 48시간 후에 RIPA buffer(Sigma)를 이용해 cell lysis를 한 후 BCA protein assay kit(Invitrogen)로 단백질을 정량 하였다. 15% SDS-PAGE를 사용하여 각 샘플마다 20μg 단백질을 60V에서 30분, 110V에서 1시간을 분리 과정 후, PVDF membrane(Bio-rad)으로 300mA에서 2시간 동안 transfer 하였다. Transfer 후에 membrane을 5% skim milk에서 1시간 blocking 해준 후 SNAI1 antibody(Cell Signaling) 1:1000으로 4℃에서 12시간 동안 반응하였다. 다음 날 anti-rabbit Goat antibody-HRP(Santa cruz) 1:5000으로 1시간 반응시킨 후 ChemiDoc(BioRad)을 사용해 SNAI1 단백질 발현 정도를 비교할 수 있었다.After transfection at 10 nM concentration, 9 species (#15, 17, 18, 22, 24, 25, 26, 27, 28) that showed a knockdown effect of at least 50% at a minimum of n=1 through 43 asiRNA screening results were selected. Protein knockdown was confirmed by western blot. The Panc-1 cell line was cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco), 10% fetal bovine serum (FBS, Gibco), 100 units/ml Penicillin 100 μg/ml Streptomycin. A549 and Panc-1 cells were seeded in a 6-well plate at 9x10 4 cells/well, using asiRNA (10 nM, OliX Inc.) and RNAiMax (2 μl/ml, Invitrogen Inc.) in a total volume of 2 ml Opti-MEM. Transfection was performed according to the protocol provided by Invitrogen. After 48 hours, cell lysis was performed using RIPA buffer (Sigma), and proteins were quantified using a BCA protein assay kit (Invitrogen). After 15% SDS-PAGE was used to separate 20 μg protein from each sample for 30 minutes at 60 V and 1 hour at 110 V, it was transferred to a PVDF membrane (Bio-rad) at 300 mA for 2 hours. After transfer, the membrane was blocked for 1 hour in 5% skim milk, and then reacted with SNAI1 antibody (Cell Signaling) 1:1000 at 4°C for 12 hours. The next day, after reacting with anti-rabbit Goat antibody-HRP (Santa cruz) 1:5000 for 1 hour, ChemiDoc (BioRad) was used to compare SNAI1 protein expression.
본 실험으로 4종(#18, 24, 25, 26)의 asiRNA 물질이 SNAI1 단백질 발현을 약 70% knockdown 시키는 것을 확인하였으며(도 2), 반복실험을 통해서 경향성이 유지되는 것을 확인하였다. 선정된 4종의 asiRNA 염기 서열을 이용하여 length optimization 단계로 진행하였다.In this experiment, it was confirmed that 4 types (#18, 24, 25, 26) asiRNA material knocked down SNAI1 protein expression by about 70% (FIG. 2), and it was confirmed that the tendency was maintained through repeated experiments. Proceeding to the length optimization step using the selected 4 kinds of asiRNA nucleotide sequences.
실시예 3: SNAI1을 표적으로 하는 RNAi 유도 이중 가닥의 핵산 분자 16종 design을 통한 염기 서열 길이 최적화Example 3: Optimization of nucleotide sequence length through 16 design of RNAi-induced double-stranded nucleic acid molecule targeting SNAI1
실시예 2에서 도출된 4종의 asiRNA 염기 서열을 기반으로 antisense 서열의 길이를 screening 시 사용한 길이인 24 mer, 가능한 길이인 19 및 26 mer, 최대 효율을 보일 것으로 보이는 예측되는 21 mer로 설정하여 총 16종의 염기서열을 디자인하였다.Based on the four asiRNA base sequences derived in Example 2, the length of the antisense sequence was set to 24 mer, the length used for screening, 19 and 26 mer, the possible lengths, and the predicted 21 mer, which is expected to show the maximum efficiency. 16 base sequences were designed.
실시예 4: SNAI1을 표적으로 하는 RNAi 유도 이중 가닥의 핵산 분자 스크리닝을 통한 length optimizationExample 4: Length optimization through RNAi-induced double-stranded nucleic acid molecule screening targeting SNAI1
Panc-1 세포를 6-well plate에 9x104 cells/well로 seeding 해주고 asiRNA(10nM, OliX Inc.)와 RNAiMax(2μl/ml, Invitrogen Inc.)를 이용하여 총 volume 2ml Opti-MEM 조건에서 Invitrogen 제공 프로토콜에 따라 transfection을 수행하였다. 48시간 후에 RIPA buffer(Sigma)를 이용해 cell lysis를 한 후 BCA protein assay kit(Invitrogen)로 단백질을 정량 하였다. 15% SDS-PAGE를 사용하여 각 샘플마다 20μg 단백질을 60V에서 30분, 110V에서 1시간 동안 분리한 후 PVDF membrane(Bio-rad)으로 300mA 에서 2시간 동안 transfer 하였다. Transfer 후에 membrane을 5% skim milk에서 1시간 blocking 해준 후 SNAI1 antibody(Cell Signaling) 1:1000으로 4℃에서 12시간 동안 반응하였다. 다음 날 anti-rabbit Goat antibody-HRP(Santa cruz) 1:5000으로 1시간 반응한 후 ChemiDoc UV transilluminator(BioRad)를 사용해 SNAI1 단백질 발현양을 확인할 수 있었다(도 3). 결과적으로 3종(asiSNAI1 18(19 mer), asiSNAI1 26(26 mer), asiSNAI1 26(19 mer))의 후보를 선정하였다(표 4).Seed Panc-1 cells in a 6-well plate at 9x10 4 cells/well, and provide asviRNA (10 nM, OliX Inc.) and RNAiMax (2 μl/ml, Invitrogen Inc.) using total volume 2 ml Opti-MEM conditions Transfection was performed according to the protocol. After 48 hours, cell lysis was performed using RIPA buffer (Sigma), and proteins were quantified using a BCA protein assay kit (Invitrogen). 20 μg protein for each sample was separated for 30 minutes at 60 V and 1 hour at 110 V using 15% SDS-PAGE, and then transferred to PVDF membrane (Bio-rad) for 2 hours at 300 mA. After transfer, the membrane was blocked for 1 hour in 5% skim milk, and then reacted with SNAI1 antibody (Cell Signaling) 1:1000 at 4°C for 12 hours. The next day, after reacting with anti-rabbit Goat antibody-HRP (Santa cruz) 1:5000 for 1 hour, the amount of SNAI1 protein expression was confirmed using ChemiDoc UV transilluminator (BioRad) (FIG. 3 ). As a result, three candidates (asiSNAI1 18 (19 mer), asiSNAI1 26 (26 mer), and asiSNAI1 26 (19 mer)) were selected (Table 4).
실시예 5: SNAI1 유전자를 표적하는 세포 관통능(cell-penetrating ability)이 있는 cp-asiRNA 32종 스크리닝Example 5: Screening of 32 cp-asiRNAs with cell-penetrating ability targeting the SNAI1 gene
SNAI1을 표적으로 하는 3종의 asiRNA에 cholesterol의 위치는 고정시키고, 2'OMe, 2'F(Fluoro), PS(phosphothioate bond)의 위치와 개수에 따라 16가지 modification pattern을 가진 SNAI1 cp-asiRNA을 디자인 후 Dharmacon Inc.(USA)에서 합성하였다. cp-asiRNA는 endocytosis 효율 및 stability를 높여 delivery vehicle의 도움 없이도 높은 효율로 세포막을 투과하여 표적 유전자의 발현을 억제할 수 있다. 합성된 cp-asiRNA는 95℃ 5분, 37℃ 25분 incubation 과정을 거쳐 annealing 하였고 12% Polyacrylamide Gel Electrophoresis(PAGE) 후 ChemiDoc UV transilluminator(BioRad)를 통해 QC 하였다.The position of cholesterol is fixed in three asiRNAs targeting SNAI1, and SNAI1 cp-asiRNA with 16 modification patterns is selected according to the position and number of 2'OMe, 2'F (Fluoro), and PS (phosphothioate bond). After design, it was synthesized by Dharmacon Inc. (USA). cp-asiRNA enhances endocytosis efficiency and stability, and can suppress the expression of target genes by penetrating the cell membrane with high efficiency without the aid of a delivery vehicle. The synthesized cp-asiRNA was annealed after incubation at 95°C for 5 minutes and 37°C for 25 minutes, followed by QC through ChemiDoc UV transilluminator (BioRad) after 12% Polyacrylamide Gel Electrophoresis (PAGE).
실시예 6: SNAI1 유전자를 표적하는 세포 관통능이 있는 cp-asiRNA 스크리닝Example 6: Screening of cp-asiRNA with cell penetrating ability targeting SNAI1 gene
mRNA 수준에서 유전자 억제 효율을 확인하기 위해, 위의 32종의 cp-asiRNA를 이용하여 A549 세포주에 1μM 농도로 incubation(free uptake) 한 후 qRT-PCR을 수행하여 SNAI1의 발현 정도를 측정하였다.In order to confirm the efficiency of gene inhibition at the mRNA level, the expression level of SNAI1 was measured by performing incubation (free uptake) at a concentration of 1 μM in the A549 cell line using the above 32 cp-asiRNAs and performing qRT-PCR.
A549 세포를 24-well plate에 3x104 cells/well로 seeding 해주고 32종의 cp-asiRNA를 Opti-MEM media 조건에서 1μM 으로 24시간 incubation 한 뒤, Tri-RNA reagent(FAVORGEN)를 이용해 total RNA를 추출한 다음 High-capacity cDNA reverse transcription kit(Applied Biosystems)를 이용해 cDNA를 합성하였고, StepOne real-time PCR system 기계로 power SYBR green PCR master Mix(Applied Biosystems)와 표 2의 primer를 이용해 SNAI1 발현 정도를 확인하였다(도 4). 그 결과 높은 효능을 보인 상위 12종(#1, 5, 8, 9, 13, 19, 21, 24, 25, 26, 27, 28)의 candidate를 선발하였다.A549 cells were seeded in a 24-well plate at 3x10 4 cells/well, and 32 cp-asiRNAs were incubated for 24 hours at 1 μM in Opti-MEM media, and total RNA was extracted using Tri-RNA reagent (FAVORGEN). Next, cDNA was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems), and the level of SNAI1 expression was confirmed using a power SYBR green PCR master Mix (Applied Biosystems) and primers in Table 2 with a StepOne real-time PCR system machine. (Figure 4). As a result, candidates of the top 12 (#1, 5, 8, 9, 13, 19, 21, 24, 25, 26, 27, 28) with high efficacy were selected.
32종의 ap-asiRNA screening 결과를 통해 상위 12종(#1, 5, 8, 9, 13, 19, 21, 24, 25, 26, 27, 28)을 선별하여 1, 1.5, 3μM 농도 처리 후 western blot을 실시하였다.After selecting the top 12 species (#1, 5, 8, 9, 13, 19, 21, 24, 25, 26, 27, 28) through 32 ap-asiRNA screening results, after processing 1, 1.5, 3 μM concentration Western blot was performed.
A549 세포를 12-well plate에 4x104 cells/well로 seeding 해주고 12종의 cp-asiRNA를 Opti-MEM media 조건에서 1, 1.5, 3μM 으로 24시간 incubation 한 뒤, F-12K Nutrient Mixture(Gibco), 10% fetal bovine serum(FBS, Gibco), 100 units/ml Penicillin 100μg/ml Streptomycin 조건으로 media를 교체하였고, media 교체 24시간 후에 protein 수준에서 SNAI1 발현을 확인하였다(도 5). 실험 결과 효력 기준 상위 2종(#19, #26)을 선정하였다(표 6).After seeding A549 cells in a 12-well plate at 4x10 4 cells/well and incubating 12 cp-asiRNAs with 1, 1.5 and 3 μM in Opti-MEM media for 24 hours, F-12K Nutrient Mixture (Gibco), Media was replaced with 10% fetal bovine serum (FBS, Gibco), 100 units/ml Penicillin 100 μg/ml Streptomycin, and SNAI1 expression was confirmed at protein level 24 hours after media replacement (FIG. 5). As a result of the experiment, the top two criteria (#19, #26) were selected (Table 6).
실시예 7: SNAI1 유전자를 표적하는 세포 관통능이 있는 cp-asiRNA의 SNAI1 억제 효과 확인Example 7: Confirmation of SNAI1 inhibitory effect of cp-asiRNA with cell penetrating ability targeting SNAI1 gene
상기 실시예 6에서, asiSNAI1 26(26 mer)에 화학적 변형을 도입한 cp-asiRNA의 SNAI1 발현 억제 효과가 높은 것을 고려할 때, asiSNAI1 26(19 mer)(표 4의 서열번호 51의 sense 서열 및 서열번호 101의 antisense 서열)에 화학적 변형을 도입한 cp-asiRNA의 효과 또한 높을 것으로 예상되었다. 이에 따라, asiSNAI1 26(19 mer)에 실시예 5와 같은 방법으로 화학적 변형을 도입하여 세포 관통능이 있는 cp-asiRNA인 OLX201D-026-33 및 OLX201D-026-34를 추가로 합성하였다(표 7).In Example 6, considering that the effect of inhibiting SNAI1 expression of cp-asiRNA by introducing chemical modification into asiSNAI1 26 (26 mer) is high, asiSNAI1 26 (19 mer) (sense sequence and sequence of SEQ ID NO: 51 of Table 4) It was also expected that the effect of cp-asiRNA, which introduced a chemical modification to the antisense sequence of No. 101), would be high. Accordingly, asiSNAI1 26 (19 mer) was introduced by chemical modification in the same manner as in Example 5 to further synthesize OLX201D-026-33 and OLX201D-026-34, cp-asiRNAs having cell penetrating ability (Table 7). .
상기 표 7의 OLX201D-026-33 및 OLX201D-026-34와 실시예 6에서 선정된 OLX201D-026-26을 대상으로 마우스 피부 조직 내에서의 타겟 단백질 억제 효력을 평가하였다.OLX201D-026-33 and OLX201D-026-34 of Table 7 and OLX201D-026-26 selected in Example 6 were evaluated for target protein inhibitory effect in mouse skin tissue.
대상 동물은 올릭스 기업부설연구소 실험동물실에서 C57BL/6(6주령, 수컷, OrientBio) 마우스를 1주일간 순화한 후, 7주령 동물을 시험에 사용하였다. 각 후보 물질은 0.5x PBS를 vehicle 용매로 사용하여 10mg/ml stock solution으로 조제하였고, 0.3, 1.0 및 2.0mg/100㎕ 3개 농도로 희석하여 마우스 피내에 100㎕씩 1회 투여하였으며, 각 투여 부위간 간격은 최소 3cm로 유지하였다. 투여 3일째 마우스를 희생하고, 8-mm biopsy punch(BP-80F, Kai medical)를 사용하여 투여 부위의 피부 조직을 채취하였다(도 6 및 표 8).The target animals were purified for 1 week in C57BL/6 (6 week old, male, OrientBio) mice in the experimental animal room of the Orix Research Institute, and 7 week old animals were used for the test. Each candidate substance was prepared as a 10 mg/ml stock solution using 0.5x PBS as a vehicle solvent, diluted to three concentrations of 0.3, 1.0 and 2.0 mg/100 µl and administered once in 100 µl to the mouse skin. Inter-site spacing was maintained at a minimum of 3 cm. The mice were sacrificed on the third day of administration, and skin tissue at the administration site was collected using an 8-mm biopsy punch (BP-80F, Kai medical) (FIG. 6 and Table 8).
채취한 조직을 1x PBS에 3회 washing 후, RIPA buffer(Sigma-Aldrich)를 넣고 homogenizer를 이용하여 tissue lysis를 한 후, BCA protein assay kit(Invitrogen)로 단백질을 정량하였다. Western blotting을 통한 단백질 분석을 위해 10% SDS-PAGE를 사용하여 각 샘플마다 30μg 단백질을 60V에서 30분, 110V에서 1시간 분리한 후, PVDF membrane(Bio-Rad)으로 250mA에서 2시간 동안 transfer시켰다. Transfer 후 membrane을 5% skim-milk에서 1시간 blocking 준 후, SNAI1 antibody(Cell Signaling) 1:1000으로 4℃에서 12시간, anti-rabbit Goat antibody-HRP(Santacruz) 1:5000으로 1시간 반응시킨 후, ChemiDoc(BioRad)을 사용해 SNAI1 단백질 발현 정도를 확인하였다.After washing the collected tissue 3 times in 1x PBS, RIPA buffer (Sigma-Aldrich) was added, tissue lysis was performed using a homogenizer, and proteins were quantified using a BCA protein assay kit (Invitrogen). For protein analysis through Western blotting, 30 μg protein for each sample was separated for 30 minutes at 60 V and 1 hour at 110 V using 10% SDS-PAGE, and then transferred to PVDF membrane (Bio-Rad) for 2 hours at 250 mA. . After transfer, the membrane was blocked for 1 hour in 5% skim-milk, reacted with SNAI1 antibody (Cell Signaling) 1:1000 for 12 hours at 4°C, and reacted for 1 hour with anti-rabbit Goat antibody-HRP (Santacruz) 1:5000. Then, the level of SNAI1 protein expression was confirmed using ChemiDoc (BioRad).
그 결과, 3종의 cp-asiRNA 모두 타겟 단백질 SNAI1의 생성을 효과적으로 억제하는 것을 확인하였다(도 7).As a result, it was confirmed that all three cp-asiRNAs effectively inhibit the production of the target protein SNAI1 (FIG. 7 ).
본 발명에 따르면, E-카데린의 발현을 억제하는 기능을 함으로써 조직의 재생과 섬유화, 암의 발생 및 전이와 밀접한 연관이 있는 EMT의 핵심인자인 전사인자 SNAI1(Snail1)을 조절하는 비대칭 siRNA를 선별하고, 화학적으로 변형시켜 전달체로 인한 세포독성을 제거하고 in vivo에서 보다 효율적인 유전자 발현의 억제를 가능하게 함으로써, 섬유화 또는 암의 예방 또는 치료제로 유용하게 사용할 수 있다.According to the present invention, an asymmetric siRNA that regulates the transcription factor SNAI1 (Snail1), which is a key factor of EMT, which is closely related to tissue regeneration and fibrosis, cancer development and metastasis by functioning to suppress the expression of E-cadherin By selecting and chemically modifying to remove cytotoxicity caused by the carrier and enabling more efficient suppression of gene expression in vivo , it can be usefully used as a preventive or therapeutic agent for fibrosis or cancer.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.
Claims (19)
- SNAI1(Snail1)을 코딩하는 mRNA와 상보적인 서열을 포함하는 안티센스 가닥과, 상기 안티센스 가닥과 상보적 결합을 형성하는 센스 가닥을 포함하고, 상기 안티센스 가닥의 5' 말단 및 센스 가닥의 3' 말단은 블런트 말단(blunt end)을 형성하는 것을 특징으로 하는 siRNA.The antisense strand comprising a sequence complementary to an mRNA encoding SNAI1 (Snail1), the sense strand forming a complementary bond with the antisense strand, the 5'end of the antisense strand and the 3'end of the sense strand are SiRNA characterized in that it forms a blunt end.
- 제1항에 있어서, 상기 센스 가닥은 15-17nt의 길이를 가지고, 상기 안티센스 가닥은 16nt 이상의 길이를 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 1, wherein the sense strand has a length of 15-17nt, and the antisense strand has a length of 16nt or more.
- 제2항에 있어서, 상기 안티센스 가닥은 16-31nt의 길이를 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 2, wherein the antisense strand has a length of 16-31nt.
- 제2항에 있어서, 상기 안티센스 가닥은 19-26nt의 길이를 가지는 것을 특징으로 하는 siRNA.3. The siRNA of claim 2, wherein the antisense strand has a length of 19-26nt.
- 제1항에 있어서, 상기 센스 가닥은 서열번호 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 및 85로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.The method of claim 1, wherein the sense strand is SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, Group consisting of 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 and 85 SiRNA, characterized in that selected from.
- 제5항에 있어서, 상기 센스 가닥은 서열번호 35, 47, 49 및 51로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.According to claim 5, The sense strand is siRNA, characterized in that selected from the group consisting of SEQ ID NO: 35, 47, 49 and 51.
- 제1항에 있어서, 상기 안티센스 가닥은 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 및 102로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.According to claim 1, wherein the antisense strand SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 91, SiRNA, characterized in that selected from the group consisting of 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 and 102.
- 제7항에 있어서, 상기 안티센스 가닥은 서열번호 36, 48, 50, 52, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 및 102로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.According to claim 7, The antisense strand is selected from the group consisting of SEQ ID NO: 36, 48, 50, 52, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101 and 102 Characterized by siRNA.
- 제1항에 있어서, 상기 siRNA의 센스 가닥 또는 안티센스 가닥은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 하는 siRNA.The siRNA of claim 1, wherein the sense strand or the antisense strand of the siRNA comprises one or more chemical modifications.
- 제9항에 있어서,The method of claim 9,상기 화학적 변형은 다음으로 구성된 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 siRNA:The chemical modification is siRNA characterized in that it comprises one or more selected from the group consisting of:뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환;-OH group at the 2'carbon position of the sugar structure in the nucleotide -CH3 (methyl), -OCH3 (methoxy), -NH2, -F (fluorine), -O-2-methoxyethyl -O-propyl (propyl), -O-2-methylthioethyl, -O-3-aminopropyl, -O-3-dimethylaminopropyl;뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환;Oxygen in the sugar structure in the nucleotide is substituted with sulfur;뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate), 보라노포페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형;Nucleotide bonds are modified with phosphorothioate, boranophosphate, or methyl phosphonate;PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형; 및Modification to peptide nucleic acid (PNA), locked nucleic acid (LNA) or unlocked nucleic acid (UNA) form; And인산기(phosphate group), 친유성 화합물(lipophilic compound) 또는 세포 침투 펩타이드 결합.Phosphate group, lipophilic compound or cell-penetrating peptide binding.
- 제10항에 있어서, 상기 친유성 화합물(lipophilic compound)은 콜레스테롤, 토코페롤 및 탄소수 10개 이상의 장쇄지방산으로 구성된 군에서 선택되는 것을 특징으로 하는 siRNA.The siRNA according to claim 10, wherein the lipophilic compound is selected from the group consisting of cholesterol, tocopherol, and long-chain fatty acids having 10 or more carbon atoms.
- 제9항에 있어서,The method of claim 9,센스 가닥 또는 안티센스 가닥 중 2개 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -OCH3(methoxy) 또는 -F(불소)로 치환되는 변형;A modification in which the -OH group is substituted with -OCH3 (methoxy) or -F (fluorine) at the 2'carbon position of the sugar structure in two or more nucleotides of the sense strand or the antisense strand;센스 또는 안티센스 가닥에서 10% 이상의 뉴클레오티드 결합이 포스포로티오에이트(phosphorothioate)로 변형;10% or more nucleotide bonds in the sense or antisense strand are modified with phosphorothioate;센스 가닥의 3' 말단에 콜레스테롤 결합; 및Cholesterol binding to the 3'end of the sense strand; And안티센스 가닥의 5' 말단에 인산기(phosphate group) 결합;으로 구성된 군에서 선택된 하나 이상의 변형을 포함하는 것을 특징으로 하는 siRNA.SiRNA, characterized in that it comprises at least one modification selected from the group consisting of a phosphate group (phosphate group) bond to the 5'end of the antisense strand.
- 제12항에 있어서,The method of claim 12,상기 센스 가닥은 하기 표의 (a) 내지 (i)로 구성된 군에서 선택된 어느 하나이고,The sense strand is any one selected from the group consisting of (a) to (i) in the table below,안티센스 가닥은 하기 표의 (j) 내지 (s)로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 siRNA.The antisense strand is siRNA, characterized in that any one selected from the group consisting of (j) to (s) in the table below.(상기 서열에서 *는 포스포로티오에이트 결합(phosphorothioated bond), m은 2'-O-메틸(Methyl), 2'-F-는 2'-플루오르(Fluoro), /chol/은 콜레스테롤, P-는 5'-인산기(Phosphate group)를 의미함)(In the above sequence, * is a phosphorothioate bond, m is 2'-O-methyl (Methyl), 2'-F- is 2'-Fluoro, /chol/ is cholesterol, P- Means 5'-Phosphate group)
- 제13항에 있어서,The method of claim 13,상기 센스 가닥은 상기 표의 (e), (g) 및 (i)로 구성된 군에서 선택되는 어느 하나이며, 안티센스 가닥은 상기 표의 (o), (p), (r) 및 (s)로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 하는 siRNA.The sense strand is any one selected from the group consisting of (e), (g) and (i) in the table, and the antisense strand is a group consisting of (o), (p), (r) and (s) in the table. SiRNA, characterized in that any one selected from.
- 제1항에 있어서, 상기 siRNA는 세포 관통능(cell-penetrating ability)을 가지는 것을 특징으로 하는 siRNA.The siRNA according to claim 1, wherein the siRNA has a cell-penetrating ability.
- 제1항 내지 제15항 중 어느 한 항에 따른 siRNA를 포함하는 섬유화의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for the prevention or treatment of fibrosis comprising siRNA according to any one of claims 1 to 15.
- 제16항에 있어서, 상기 섬유화는 망막하섬유화, 폐섬유화, 간섬유화, 심근섬유화 또는 신장섬유화인 것을 특징으로 하는 섬유화의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating fibrosis according to claim 16, wherein the fibrosis is subretinal fibrosis, lung fibrosis, liver fibrosis, myocardial fibrosis or renal fibrosis.
- 제1항 내지 제15항 중 어느 한 항에 따른 siRNA를 포함하는 암의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for the prophylaxis or treatment of cancer comprising the siRNA according to any one of claims 1 to 15.
- 제18항에 있어서, 상기 암은 폐암, 유방암, 결장암 또는 전립선암인 것을 특징으로 하는 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 18, wherein the cancer is lung cancer, breast cancer, colon cancer or prostate cancer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0158453 | 2018-12-10 | ||
KR20180158453 | 2018-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122534A1 true WO2020122534A1 (en) | 2020-06-18 |
Family
ID=71077502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/017332 WO2020122534A1 (en) | 2018-12-10 | 2019-12-10 | Asymmetric sirna for inhibiting expression of snai1 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020122534A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118638794A (en) * | 2024-08-12 | 2024-09-13 | 中国药科大学 | Double-stranded siRNA, shRNA, pharmaceutical composition and application for regulating protease activated receptor 4 gene expression |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060134787A1 (en) * | 2004-12-22 | 2006-06-22 | University Of Massachusetts | Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA |
KR20180128423A (en) * | 2016-04-11 | 2018-12-03 | 올릭스 주식회사 | Methods for the treatment of idiopathic pulmonary fibrosis using RNA complexes targeting connective tissue growth factors |
-
2019
- 2019-12-10 WO PCT/KR2019/017332 patent/WO2020122534A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060134787A1 (en) * | 2004-12-22 | 2006-06-22 | University Of Massachusetts | Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA |
KR20180128423A (en) * | 2016-04-11 | 2018-12-03 | 올릭스 주식회사 | Methods for the treatment of idiopathic pulmonary fibrosis using RNA complexes targeting connective tissue growth factors |
Non-Patent Citations (3)
Title |
---|
DATABASE Nucleotide 22 November 2018 (2018-11-22), "Homo sapiens snail family transcriptional repressor 1 (SNAI1), mRNA", XP055722202, retrieved from NCBI Database accession no. NM_005985.4 * |
HEMMATZADEH, M. ET AL.: "Snail-1 Silencing by siRNA Inhibits Migration of TE-8 Esophageal Cancer Cells Through Downregulation of Metastasis-Related Genes Adv", ADV PHARM BULL, vol. 8, no. 3, 29 August 2018 (2018-08-29), pages 437 - 445, XP055722199 * |
MUSAVI SHENAS, S. M. H. ET AL.: "SiRNA-mediated silencing of Snail-1 induces apoptosis and alters micro RNA expression in human urinary bladder cancer cell line", ARTIF. CELLS NANOMED. BIOTECHNOL, vol. 45, no. 5, 4 July 2017 (2017-07-04), pages 969 - 974, XP055722201 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118638794A (en) * | 2024-08-12 | 2024-09-13 | 中国药科大学 | Double-stranded siRNA, shRNA, pharmaceutical composition and application for regulating protease activated receptor 4 gene expression |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012053741A2 (en) | Nucleic acid molecules inducing rna interference, and uses thereof | |
WO2013176477A1 (en) | Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor | |
JP5976643B2 (en) | Methods and compositions for specific inhibition of beta-catenin by double stranded RNA | |
WO2019050071A1 (en) | Composition for preventing or treating liver fibrosis, containing exosome or exosome-derived ribonucleic acid | |
US20180312839A1 (en) | Methods and compositions for increasing smn expression | |
US20220133774A1 (en) | Modulation of micrornas against myotonic dystrophy type 1 and antagonists of micrornas therefor | |
WO2011122889A2 (en) | Method for inhibiting the senescence of adult stem cells by inhibiting mirna expression | |
WO2012161545A2 (en) | Composition for promoting apoptosis or inhibiting cell growth, comprising epstein-barr virus microrna | |
WO2017043370A1 (en) | Exosome secretion inhibitor | |
WO2020149702A1 (en) | Asymmetric sirna for inhibiting expression of neural retina leucine zipper (nrl) | |
WO2010064762A1 (en) | Anticancer drugs containing micrornas as active ingredients, and method for preparing same | |
WO2018155890A1 (en) | Asymmetric sirna for inhibiting expression of male pattern hair loss target gene | |
US10787669B2 (en) | Antisense compounds targeting Leucine-Rich repeat kinase 2(LRRK2) for the treatment of Parkinsons disease | |
WO2020122534A1 (en) | Asymmetric sirna for inhibiting expression of snai1 | |
RU2636003C2 (en) | Composition for treatment of cancer associated with hpv infection | |
EP3724335A1 (en) | Antisense compounds targeting leucine-rich repeat kinase 2 (lrrk2) for the treatment of parkinsons disease | |
US20230129651A1 (en) | Hairpin structure nucleic acid molecules capable of modulating target gene expression and uses thereof | |
WO2011087343A2 (en) | Composition for treating cancer related to an hpv infection | |
WO2010095879A2 (en) | Sirna to be bound to transcripts of apoptosis-related genes, and compositions for treating cancer using same | |
WO2021194179A1 (en) | Oncolytic virus comprising nucleic acid sequence that bispecifically targets stat3 and mtor | |
WO2019066519A1 (en) | Pharmaceutical composition for prevention or treatment of age-related macular degeneration containing rna complex targeting connective tissue growth factor | |
WO2010064851A2 (en) | Mtor-targeted sirna having an interspecific cross reaction, recombination vector containing same, and pharmaceutical composition containing same | |
WO2015056970A1 (en) | Composition for preventing or treating osteoporosis, containing progranulin inhibitor as active ingredient | |
WO2022131883A1 (en) | Rnai agent for inhibiting hbv expression and use thereof | |
WO2022124760A1 (en) | Composition for inducing or enhancing generation of cones or cone-like rods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19895000 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19895000 Country of ref document: EP Kind code of ref document: A1 |