WO2020122230A1 - Pure copper sheet, member for electronic/electric device, and member for heat dissipation - Google Patents
Pure copper sheet, member for electronic/electric device, and member for heat dissipation Download PDFInfo
- Publication number
- WO2020122230A1 WO2020122230A1 PCT/JP2019/048948 JP2019048948W WO2020122230A1 WO 2020122230 A1 WO2020122230 A1 WO 2020122230A1 JP 2019048948 W JP2019048948 W JP 2019048948W WO 2020122230 A1 WO2020122230 A1 WO 2020122230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pure copper
- copper plate
- less
- punching
- electronic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention is a pure copper plate suitable for a member for electronic/electrical devices such as a heat sink, a thick copper circuit, a bus bar, and the like, and particularly a pure copper plate excellent in punching workability, a member for electronic/electrical devices comprising the pure copper plate, and
- the present invention relates to a heat dissipation member.
- Patent Documents 1-3 propose a copper material with improved punching workability.
- Patent Document 1 discloses a technique of improving stamping workability by adding S, Se, Te, Sb, Bi or the like to a Cu—Ni—Si alloy.
- Patent Document 2 discloses a technique for improving press punchability by defining crystal texture orientation in a Cu—Fe—P alloy.
- Patent Document 3 discloses a technique for improving punching workability by dispersing Cr or a Cr compound in a Cu—Cr—Sn—Zn alloy.
- Patent Documents 1-3 all of them are intended to improve punching workability for various copper alloys. Since it is required to have excellent electrical conductivity and thermal conductivity in members for electronic/electrical equipment and heat radiation members for large current applications, it is particularly excellent in electrical conductivity and thermal conductivity, not the above-mentioned copper alloy.
- a thick plate material made of pure copper may be used. When the material strength of the thick plate material is high, the springback amount becomes large at the time of forming, it becomes impossible to secure high dimensional accuracy, and the equipment load may become high at the time of bending. Therefore, it is preferable to use a pure copper plate having a relatively low material strength as the thick plate material.
- the present invention has been made in view of the above-mentioned circumstances, and is a pure copper plate excellent in punching workability, capable of performing punching with high precision and efficiency, and an electronic/electrical device made of this pure copper plate.
- An object is to provide a device member and a heat dissipation member.
- the pure copper plate according to one aspect of the present invention has a purity of Cu excluding S of 99.96 mass% or more, and the balance being inevitable impurities. , S in the range of 20 mass ppm or more and 1000 mass ppm or less.
- the pure copper plate of this structure since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to disperse the Cu—S based compound, and at the time of punching, the Cu—S based compound becomes the starting point and fracture occurs Therefore, the punching workability can be improved. Further, by setting the S content within the above range, the occurrence of hot work cracking can be suppressed. Furthermore, since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and it is possible to secure the properties such as conductivity and strength as a pure copper plate. Therefore, it is suitable as a material for electronic and electrical equipment members and heat dissipation members for large current applications.
- the total content of Pb and Bi is preferably 20 massppm or less.
- Pb and Bi which may be contained as unavoidable impurities, are likely to segregate at the grain boundaries and have a low melting point, thus deteriorating hot workability. Therefore, by limiting the total content of Pb and Bi contained as unavoidable impurities to 20 mass ppm or less, the occurrence of hot work cracking can be further suppressed.
- the P content is preferably 5 massppm or less. It was found that P, which may be contained as an unavoidable impurity, has an effect of affecting the distribution state of the Cu—S compound. Therefore, by limiting the content of P contained as an unavoidable impurity to 5 mass ppm or less, the Cu-S compound can be sufficiently dispersed, and the punching workability can be further improved.
- the fracture surface ratio in the punched cross section is 20% or more.
- the shear surface ratio is sufficiently low, burrs can be suppressed during punching, and dimensional accuracy is improved. It becomes possible. Further, it is possible to suppress wear of the mold and generation of punching scraps, and it is possible to efficiently perform punching.
- the tensile strength is preferably 500 MPa or less.
- the tensile strength is 500 MPa or less and the characteristics as a pure copper plate are ensured, it is particularly suitable as a material for a member for electronic/electrical equipment and a member for heat dissipation for large current applications.
- the electrical conductivity is preferably 90% IACS or more.
- the electrical conductivity is 90% IACS or more and the characteristics as a pure copper plate are secured, it is particularly suitable as a material for a member for electronic/electric equipment and a member for heat dissipation for large current applications.
- the member for electronic/electrical equipment which is one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate. According to the electronic/electrical device member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the conductivity is excellent. Therefore, it can be preferably used even in a large current application.
- the heat dissipation member according to one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate. According to the heat dissipation member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the heat conductivity is excellent. Therefore, it is possible to efficiently dissipate heat even in an application that generates a large amount of heat.
- a pure copper plate having excellent punching workability, capable of performing punching with high accuracy and efficiency, a member for electronic/electrical equipment and a member for heat dissipation made of this pure copper plate.
- the pure copper plate which is one embodiment of the present invention is explained.
- the pure copper plate of the present embodiment is used as a material for electronic/electrical equipment members such as thick copper circuits, bus bars, and heat dissipation members such as heat sinks, and the aforementioned electronic/electrical equipment members and heat dissipation members are used.
- a punching process is performed at the time of molding.
- the pure copper plate of the present embodiment has a purity of Cu excluding S of 99.96 mass% or more, the balance being inevitable impurities, and containing S in the range of 20 mass ppm to 1000 mass ppm. That is, the pure copper plate according to the present embodiment contains S in the range of 20 massppm or more and 1000 massppm or less with respect to pure copper having a purity of Cu excluding S of 99.96 mass% or more.
- the total content of Pb and Bi that are inevitable impurities is 20 mass ppm or less.
- the content of P, which is an unavoidable impurity is preferably 5 massppm or less.
- the fracture surface ratio in the punched cross section when the punching test is performed is 20% or more.
- the tensile strength is preferably 500 MPa or less.
- the electrical conductivity is 90% IACS or more.
- the purity of Cu excluding S is specified to be 99.96 mass% or more.
- the purity of Cu excluding S is preferably 99.965 mass% or more, and more preferably 99.97 mass% or more.
- the upper limit of the purity of Cu except S is not particularly limited, but if it exceeds 99.999 mass%, a special refining step is required, and the manufacturing cost increases significantly, so 99.999 mass% or less is required. Is preferred.
- S content 20 massppm or more and 1000 massppm or less
- S has a low solid solubility limit in Cu and therefore hardly reduces the conductivity.
- the segregation of S at the grain boundaries reduces the hot workability.
- Cu reacts with S to produce a Cu—S-based compound such as Cu 2 S.
- the above-mentioned Cu-S compound becomes a starting point of fracture when punching is performed, and the punching workability is improved.
- the S content is set within the range of 20 mass ppm or more and 1000 mass ppm or less.
- the lower limit of the S content is preferably 25 mass ppm or more, and more preferably 30 mass ppm or more.
- the upper limit of the S content is preferably 900 massppm or less, and more preferably 800 massppm or less.
- Pb and Bi total content 20 massppm or less
- Pb and Bi contained as unavoidable impurities have a low solid solubility limit in Cu and a low melting point, they segregate at the grain boundaries to reduce hot workability. Therefore, when further improving the hot workability, it is preferable to limit the total content of Pb and Bi, which are inevitable impurities, to 20 mass ppm or less.
- the total content of Pb and Bi is preferably 15 massppm or less, more preferably 10 massppm or less.
- P content 5 massppm or less
- P contained as an unavoidable impurity affects the dispersion state of the Cu-S compound. Specifically, P is preferentially present at nucleation sites (eg, grain boundaries, dislocations and strains in the grains) generated by the Cu—S compound, which may hinder the dispersion of the Cu—S compound. There is. Therefore, when the Cu—S-based compound is further uniformly dispersed to stably improve the punching workability, it is preferable to limit the content of P, which is an unavoidable impurity, to 5 mass ppm or less. In order to further improve the punching workability, the P content is preferably 4 massppm or less, more preferably 3 massppm or less.
- unavoidable impurities other than Pb, Bi, P are Ag, B, Ca, Mg, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Examples include Tl, Be, N, C, Si, Li, H, O and the like. Since these unavoidable impurities may reduce the conductivity, the total amount is preferably 100 massppm or less.
- Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr may react with S in Cu to reduce the number of Cu—S-based compounds produced, and may reduce the conductivity. Therefore, it is preferable to limit the total content to 10 mass ppm or less.
- the fracture surface ratio (fracture surface ratio If the cross-sectional area)/(shear surface area+fracture surface area) is 20% or more, burrs are less likely to occur during punching and the dimensional accuracy is improved. Further, it becomes possible to suppress wear of the mold and generation of punching scraps.
- the fracture surface ratio in the punched cross section is preferably 25% or more, more preferably 30% or more.
- the upper limit of the fracture surface ratio is not particularly limited, but is preferably 80% or less.
- the clearance of the die during the punching test is not particularly limited, but it is preferably set to about 5% of the plate thickness.
- the thickness of the sample during the punching test is preferably set to 0.3 to 3 mm.
- the tensile strength of 500 MPa or less ensures the properties as a pure copper plate, and is particularly suitable as a material for a member for electronic and electric devices and a member for heat dissipation for large current applications. ..
- the tensile strength of the pure copper plate is preferably 475 MPa or less, more preferably 450 MPa or less.
- the lower limit of the tensile strength of the pure copper plate is not particularly limited, but it is preferably 100 MPa or more.
- the pure copper plate of the present embodiment by setting the electrical conductivity to 90% IACS (International Annealed Copper Standard) or more, the properties as a pure copper plate are secured, and a member for electronic and electric devices for large current use and heat dissipation It is particularly suitable as a material for components.
- the electric conductivity of the pure copper plate is preferably 95% IACS or more, and more preferably 97% IACS or more.
- the upper limit of the conductivity of the pure copper plate is not particularly limited, but it is preferably 103% IACS or less.
- the copper raw material is melted, S is added to adjust the components, and a molten copper is produced.
- oxygen-free copper defined by C1020 is preferably used.
- a simple substance of S, a Cu—S master alloy, or the like can be used to add S.
- oxygen-free copper specified by C1020 it is preferable to use oxygen-free copper specified by C1020.
- in the melting step in order to reduce the hydrogen concentration, it is preferable to carry out atmosphere melting in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O to keep the holding time during melting to a minimum.
- the molten copper having the adjusted components is poured into a mold to produce an ingot.
- a part of S reacts with Cu to form a Cu—S-based compound.
- Heat treatment step S02 Heat treatment is performed for homogenization and solution treatment of the obtained ingot.
- the heat treatment temperature 500° C. or more and 900° C. or less is maintained for 1 hour or more and 8 hours or less.
- Hot working is carried out in order to homogenize the structure and to uniformly disperse the Cu-S based compound produced by casting.
- it is effective to set the end temperature of hot working to be high.
- the hot working finish temperature is preferably 500° C. or higher, more preferably 550° C. or higher, even more preferably 600° C. or higher, and even more preferably 650° C. or higher. preferable.
- the hot working temperature is preferably in the range of 500° C. or higher and 1000° C. or lower.
- the total working rate of hot working is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more.
- the cooling method after hot working is not particularly limited, but air cooling or water cooling is preferable.
- the working method in the hot working step S03 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
- Cold working is performed on the copper material after the hot working step S03 to work it into a predetermined shape.
- the temperature condition in the cold working step S04 is not particularly limited, but it is preferably performed in the range of ⁇ 200° C. or higher and 200° C. or lower.
- the working rate in the cold working step S04 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to refine the crystal grains in the subsequent steps. When further improving the strength, it is more preferable that the processing rate is 50% or more.
- the working method in the cold working step S04 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
- Recrystallization heat treatment step S05 A heat treatment for the purpose of recrystallization is performed on the copper material after the cold working step S04. In order to uniformly disperse the Cu—S compound, it is preferable to perform heat treatment at a temperature of 700° C. or lower.
- the heat treatment condition of the recrystallization heat treatment step S05 is not particularly limited, but it is preferable to hold the heat treatment temperature in the range of 200° C. to 600° C. for 1 second to 24 hours. In order to make the recrystallization structure uniform, the cold working step S04 and the recrystallization heat treatment step S05 may be repeated twice or more.
- refining process S06 In order to adjust the material strength, heat treatment may be performed on the copper material after the recrystallization heat treatment step S05. If it is not necessary to increase the material strength, refining may not be performed.
- the processing rate of the refining process is not particularly limited, but it is preferably carried out within the range of 0% to 50% in order to adjust the material strength. If necessary, in order to remove residual strain, a heat treatment may be further performed after the tempering process.
- the pure copper plate of this embodiment is produced.
- the thickness of the pure copper plate is preferably 0.3 mm or more and 5.0 mm or less.
- the lower limit of the thickness of the pure copper plate is preferably 1.0 mm or more, more preferably 1.5 mm or more.
- the pure copper plate of the present embodiment configured as described above, since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to generate a Cu—S-based compound, and Cu can be formed at the time of punching. Since the destruction starts from the —S-based compound, the punching workability can be improved. Further, by setting the content of S within the above range, it becomes possible to suppress deterioration of hot workability. Since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and the properties such as electrical conductivity and thermal conductivity and strength as a pure copper plate are secured. Therefore, it is suitable as a material for a member for electronic/electrical devices and a member for heat dissipation for large current applications.
- the content of P which is an unavoidable impurity
- the content of P is 5 massppm or less
- the fracture surface ratio in the punched cross section is 20% or more, the ratio of the sheared surface is sufficiently low, the occurrence of burrs during the punching process can be suppressed, and the dimensional accuracy can be improved. It will be possible. Further, it is possible to suppress wear of the mold and generation of punching scraps, and it is possible to efficiently perform punching.
- the tensile strength is 500 MPa or less, the characteristics as a pure copper plate are sufficiently ensured, so that it is suitable as a material for a member for electronic/electrical devices and a member for heat dissipation for large current applications. ..
- the electrical conductivity is 90% IACS or more
- the characteristics as a pure copper plate are sufficiently ensured, and thus it is suitable as a material for a member for electronic/electrical equipment and a member for heat dissipation for large current applications. ing.
- the electronic/electrical device member of the present embodiment is formed of the pure copper plate of the present embodiment described above, it has good shape accuracy and excellent conductivity. Therefore, it can be preferably used even in a large current application. Since the heat dissipation member of the present embodiment is formed of the pure copper plate of the present embodiment described above, the shape accuracy is good and the heat conductivity is excellent. For this reason, it is possible to efficiently dissipate heat even in applications that generate a large amount of heat.
- the pure copper plate, the member for electronic/electrical devices, and the member for heat dissipation which are the embodiments of the present invention, have been described above, but the present invention is not limited to this, and within the scope not departing from the technical idea of the invention. It can be changed as appropriate.
- an example of the method for producing a pure copper plate has been described, but the method for producing a pure copper plate is not limited to the one described in the embodiment, and an existing production method may be appropriately selected. It may be manufactured.
- a mother alloy was prepared.
- Pb, Bi, and P, which are impurities a mother alloy of each element is prepared from Pb, Bi, P having a purity of 99.9 mass% or more and pure copper having a purity of 99.9 mass%, and adjusted using the mother alloy. did.
- the above-mentioned copper raw material was charged into a high-purity graphite crucible and subjected to high frequency melting in an atmosphere furnace in an Ar gas atmosphere.
- the above Cu-1 mass% S master alloy and a master alloy of various elements for adjusting the amount of impurities were added to prepare the composition shown in Table 1.
- the obtained copper melt was poured into a carbon mold and solidified at 10° C./sec.
- the ingot was produced by cooling at a cooling rate of.
- the size of the ingot was about 25 mm in thickness x about 60 mm in width x about 150 to 200 mm in length.
- the obtained ingot was subjected to a heat treatment in the Ar gas atmosphere under the temperature condition shown in Table 2 for 1 hour, and then water-cooled.
- the copper material after the heat treatment was cut and surface grinding was performed to remove the oxide film on the surface.
- the thickness of the copper material to be subjected to hot rolling is adjusted so that the final thickness is as shown in Table 2 in consideration of the rolling rates of the subsequent hot rolling, cold rolling and temper rolling. did.
- the copper material after hot rolling was subjected to cold rolling at the rolling ratios shown in Table 2.
- the copper material after cold rolling was subjected to recrystallization heat treatment under the conditions shown in Table 2.
- the copper material after the recrystallization heat treatment was temper-rolled under the conditions shown in Table 2 to produce a strip for characteristic evaluation having a thickness shown in Table 2 and a width of 60 mm.
- Test strength A No. 13B test piece specified in JIS Z 2201 was sampled from the characteristic evaluation strip, and the tensile strength was measured according to JIS Z 2241. The test piece was sampled so that the tensile direction of the tensile test was parallel to the rolling direction of the characteristic evaluation strip.
- a test piece having a width of 10 mm and a length of 60 mm was sampled from the characteristic evaluation strip, and the electrical resistance was determined by the four-terminal method. Moreover, the dimension of the test piece was measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and the volume. The test piece was sampled so that its longitudinal direction was parallel to the rolling direction of the characteristic evaluation strip.
- the punched surface was observed using an optical microscope, the surface generated by shear deformation was taken as the shear surface, and the portion obtained by subtracting the thickness of the shear surface from the sample thickness was taken as the fracture surface thickness.
- the fracture surface ratio was calculated as the fracture surface thickness/sample thickness.
- the burr height was measured from the longitudinal section of the punched sample using an optical microscope.
- Comparative Example 1 the S content was 2 massppm, which was smaller than the range of the present invention, so the fracture surface ratio was as low as 10% and the burr height was as large as 25 ⁇ m.
- Comparative Example 2 the S content was 1075 mass ppm, which was higher than the range of the present invention, and cracking occurred during hot working. Therefore, the subsequent processing and evaluation were stopped.
- Example 1-36 of the present invention in which the S content was in the range of 20 mass ppm to 1000 mass ppm, the fracture surface ratio was sufficiently high and the burr height was also small. Therefore, it was possible to perform punching with high dimensional accuracy. Further, it was excellent in workability during hot working and cold working.
- example 35 in which the total content of Pb and Bi exceeded 20 massppm and in the present invention example 36 in which the P content exceeded 5 massppm, ear cracking was confirmed during hot working, but in practice, There was no problem.
- a pure copper plate having excellent punching workability, capable of performing punching with high accuracy and efficiency, a member for electronic/electrical equipment and a member for heat dissipation made of this pure copper plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
This pure copper sheet is characterized in that the purity of Cu exclusive of S is 99.96 mass% or more, the balance being unavoidable impurities, and that S is included in the range of 20-1000 mass ppm. It is preferred that the total content of Pb and Bi is not more than 20 mass ppm. It is preferred that the content of P is not more than 5 mass ppm.
Description
本発明は、ヒートシンク、厚銅回路、バスバー等の電子・電気機器用部材に適した純銅板であって、特に打ち抜き加工性に優れた純銅板、この純銅板からなる電子・電気機器用部材及び放熱用部材に関する。
本願は、2018年12月13日に、日本に出願された特願2018-233346号に基づき優先権を主張し、その内容をここに援用する。 The present invention is a pure copper plate suitable for a member for electronic/electrical devices such as a heat sink, a thick copper circuit, a bus bar, and the like, and particularly a pure copper plate excellent in punching workability, a member for electronic/electrical devices comprising the pure copper plate, and The present invention relates to a heat dissipation member.
The present application claims priority based on Japanese Patent Application No. 2018-233346 filed in Japan on December 13, 2018, the contents of which are incorporated herein by reference.
本願は、2018年12月13日に、日本に出願された特願2018-233346号に基づき優先権を主張し、その内容をここに援用する。 The present invention is a pure copper plate suitable for a member for electronic/electrical devices such as a heat sink, a thick copper circuit, a bus bar, and the like, and particularly a pure copper plate excellent in punching workability, a member for electronic/electrical devices comprising the pure copper plate, and The present invention relates to a heat dissipation member.
The present application claims priority based on Japanese Patent Application No. 2018-233346 filed in Japan on December 13, 2018, the contents of which are incorporated herein by reference.
従来、厚銅回路、バスバー等の電子・電気機器用部材、及び、ヒートシンク等の放熱用部材においては、導電性及び熱伝導性の高い銅又は銅合金が用いられている。
電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電子・電気機器用部材や放熱用部材の大型化、厚肉化が図られている。このため、電子・電気機器用部材及び放熱用部材を構成する材料には、高い導電率及び熱伝導性やプレス加工時の良好な打ち抜き加工性が求められている。 2. Description of the Related Art Conventionally, copper or copper alloys having high electrical conductivity and thermal conductivity have been used for members for electronic/electrical devices such as thick copper circuits and bus bars, and for heat dissipation members such as heat sinks.
Due to the decrease in current density and the diffusion of heat due to Joule heat generation accompanying the increase in current of electronic devices and electric devices, the electronic/electric device members and heat dissipation members used in these electronic devices and electric devices are It is being made larger and thicker. For this reason, high electrical conductivity and thermal conductivity and good punching workability at the time of press working are required for materials constituting the members for electronic/electrical devices and the members for heat dissipation.
電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電子・電気機器用部材や放熱用部材の大型化、厚肉化が図られている。このため、電子・電気機器用部材及び放熱用部材を構成する材料には、高い導電率及び熱伝導性やプレス加工時の良好な打ち抜き加工性が求められている。 2. Description of the Related Art Conventionally, copper or copper alloys having high electrical conductivity and thermal conductivity have been used for members for electronic/electrical devices such as thick copper circuits and bus bars, and for heat dissipation members such as heat sinks.
Due to the decrease in current density and the diffusion of heat due to Joule heat generation accompanying the increase in current of electronic devices and electric devices, the electronic/electric device members and heat dissipation members used in these electronic devices and electric devices are It is being made larger and thicker. For this reason, high electrical conductivity and thermal conductivity and good punching workability at the time of press working are required for materials constituting the members for electronic/electrical devices and the members for heat dissipation.
例えば特許文献1-3には、打ち抜き加工性を向上させた銅材料が提案されている。
特許文献1には、Cu-Ni-Si系合金において、S,Se,Te,Sb、Bi等を添加することにより、スタンピング加工性を改善する技術が開示されている。
特許文献2には、Cu-Fe-P系合金において、結晶組織配向性を規定することにより、プレス打ち抜き性を向上させる技術が開示されている。
特許文献3には、Cu-Cr-Sn-Zn系合金において、CrまたはCr化合物を分散させることにより、打ち抜き加工性を向上させる技術が開示されている。 For example, Patent Documents 1-3 propose a copper material with improved punching workability.
Patent Document 1 discloses a technique of improving stamping workability by adding S, Se, Te, Sb, Bi or the like to a Cu—Ni—Si alloy.
Patent Document 2 discloses a technique for improving press punchability by defining crystal texture orientation in a Cu—Fe—P alloy.
Patent Document 3 discloses a technique for improving punching workability by dispersing Cr or a Cr compound in a Cu—Cr—Sn—Zn alloy.
特許文献1には、Cu-Ni-Si系合金において、S,Se,Te,Sb、Bi等を添加することにより、スタンピング加工性を改善する技術が開示されている。
特許文献2には、Cu-Fe-P系合金において、結晶組織配向性を規定することにより、プレス打ち抜き性を向上させる技術が開示されている。
特許文献3には、Cu-Cr-Sn-Zn系合金において、CrまたはCr化合物を分散させることにより、打ち抜き加工性を向上させる技術が開示されている。 For example, Patent Documents 1-3 propose a copper material with improved punching workability.
Patent Document 1 discloses a technique of improving stamping workability by adding S, Se, Te, Sb, Bi or the like to a Cu—Ni—Si alloy.
Patent Document 2 discloses a technique for improving press punchability by defining crystal texture orientation in a Cu—Fe—P alloy.
Patent Document 3 discloses a technique for improving punching workability by dispersing Cr or a Cr compound in a Cu—Cr—Sn—Zn alloy.
ところで、特許文献1-3においては、いずれも各種銅合金を対象として打ち抜き加工性の向上を図ったものである。
大電流用途の電子・電気機器用部材及び放熱用部材においては、導電性及び熱伝導性に優れていることが要求されるため、上述した銅合金ではなく、導電性及び熱伝導性に特に優れた純銅からなる厚板材が用いられることがある。
厚板材において材料強度が高い場合には、成形加工時においてスプリングバック量が大きくなってしまい、高い寸法精度を確保できなくなり、曲げ加工時等に設備負荷が高くなるおそれがある。このため、厚板材としては、比較的材料強度が低い純銅板を適用することが好ましい。 By the way, in Patent Documents 1-3, all of them are intended to improve punching workability for various copper alloys.
Since it is required to have excellent electrical conductivity and thermal conductivity in members for electronic/electrical equipment and heat radiation members for large current applications, it is particularly excellent in electrical conductivity and thermal conductivity, not the above-mentioned copper alloy. A thick plate material made of pure copper may be used.
When the material strength of the thick plate material is high, the springback amount becomes large at the time of forming, it becomes impossible to secure high dimensional accuracy, and the equipment load may become high at the time of bending. Therefore, it is preferable to use a pure copper plate having a relatively low material strength as the thick plate material.
大電流用途の電子・電気機器用部材及び放熱用部材においては、導電性及び熱伝導性に優れていることが要求されるため、上述した銅合金ではなく、導電性及び熱伝導性に特に優れた純銅からなる厚板材が用いられることがある。
厚板材において材料強度が高い場合には、成形加工時においてスプリングバック量が大きくなってしまい、高い寸法精度を確保できなくなり、曲げ加工時等に設備負荷が高くなるおそれがある。このため、厚板材としては、比較的材料強度が低い純銅板を適用することが好ましい。 By the way, in Patent Documents 1-3, all of them are intended to improve punching workability for various copper alloys.
Since it is required to have excellent electrical conductivity and thermal conductivity in members for electronic/electrical equipment and heat radiation members for large current applications, it is particularly excellent in electrical conductivity and thermal conductivity, not the above-mentioned copper alloy. A thick plate material made of pure copper may be used.
When the material strength of the thick plate material is high, the springback amount becomes large at the time of forming, it becomes impossible to secure high dimensional accuracy, and the equipment load may become high at the time of bending. Therefore, it is preferable to use a pure copper plate having a relatively low material strength as the thick plate material.
しかしながら、純銅板においては、打ち抜き加工性が特に悪いことで知られており、純銅板を厚肉化することによって、この問題がさらに顕著となっている。このため、純銅板を打ち抜き加工した場合には、寸法精度の低下、打ち抜き屑の発生、金型の摩耗等の問題が生じ、純銅板からなる電子・電気機器用部材及び放熱用部材を精度良く、かつ、効率良く製造することが困難であった。
However, in the case of pure copper plate, it is known that the punching workability is particularly poor, and by thickening the pure copper plate, this problem becomes more noticeable. Therefore, when a pure copper plate is punched, problems such as a decrease in dimensional accuracy, generation of punching scraps, and die wear occur, and the members for electronic/electrical equipment and the heat radiation member made of a pure copper plate are accurately manufactured. In addition, it was difficult to manufacture efficiently.
この発明は、前述した事情に鑑みてなされたものであって、打ち抜き加工性に優れ、精度良く、かつ、効率的に打ち抜き加工を行うことが可能な純銅板、この純銅板からなる電子・電気機器用部材及び放熱用部材を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is a pure copper plate excellent in punching workability, capable of performing punching with high precision and efficiency, and an electronic/electrical device made of this pure copper plate. An object is to provide a device member and a heat dissipation member.
この課題を解決するために、本発明者らが鋭意検討した結果、純銅板にSを適量添加してCu-S系化合物を分散させることにより、導電率や熱伝導率、強度等の特性を確保したまま、打ち抜き加工性を向上できるとの知見を得た。また、Sは、純銅板の熱間加工割れを引き起こすことが知られているが、Sの含有量を適正化することによって、熱間加工割れの発生を抑制することができるとの知見を得た。
In order to solve this problem, as a result of diligent studies by the present inventors, by adding an appropriate amount of S to a pure copper plate to disperse a Cu—S-based compound, the characteristics such as conductivity, thermal conductivity, and strength can be improved. We have obtained the knowledge that punching workability can be improved while ensuring the same. Further, S is known to cause hot work cracking of a pure copper plate, but it has been found that the occurrence of hot work cracks can be suppressed by optimizing the S content. It was
本発明は、上述の知見に基づいてなされたものであって、本発明の一態様である純銅板は、Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされるとともに、Sを20massppm以上1000massppm以下の範囲内で含むことを特徴としている。
The present invention has been made based on the above findings, and the pure copper plate according to one aspect of the present invention has a purity of Cu excluding S of 99.96 mass% or more, and the balance being inevitable impurities. , S in the range of 20 mass ppm or more and 1000 mass ppm or less.
この構成の純銅板によれば、Sを20massppm以上1000massppm以下の範囲内で含んでいるので、Cu-S系化合物を分散させることができ、打ち抜き加工時にはCu-S系化合物を起点として破壊が起こるため、打ち抜き加工性を向上させることができる。また、Sの含有量を上述の範囲内とすることにより、熱間加工割れの発生を抑制することができる。
さらに、Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされているので、銅の純度が十分に高く、純銅板としての導電性や強度等の特性を確保することができ、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。 According to the pure copper plate of this structure, since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to disperse the Cu—S based compound, and at the time of punching, the Cu—S based compound becomes the starting point and fracture occurs Therefore, the punching workability can be improved. Further, by setting the S content within the above range, the occurrence of hot work cracking can be suppressed.
Furthermore, since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and it is possible to secure the properties such as conductivity and strength as a pure copper plate. Therefore, it is suitable as a material for electronic and electrical equipment members and heat dissipation members for large current applications.
さらに、Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされているので、銅の純度が十分に高く、純銅板としての導電性や強度等の特性を確保することができ、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。 According to the pure copper plate of this structure, since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to disperse the Cu—S based compound, and at the time of punching, the Cu—S based compound becomes the starting point and fracture occurs Therefore, the punching workability can be improved. Further, by setting the S content within the above range, the occurrence of hot work cracking can be suppressed.
Furthermore, since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and it is possible to secure the properties such as conductivity and strength as a pure copper plate. Therefore, it is suitable as a material for electronic and electrical equipment members and heat dissipation members for large current applications.
本発明の一態様である純銅板においては、Pb及びBiの合計含有量が20massppm以下とされていることが好ましい。
不可避不純物として含まれるおそれがあるPb及びBiは、粒界に偏析しやすく、かつ、融点が低いため、熱間加工性を低下させる。よって、不可避不純物として含まれるPb及びBiの合計含有量を20massppm以下に制限することにより、熱間加工割れの発生をさらに抑制することができる。 In the pure copper plate which is one aspect of the present invention, the total content of Pb and Bi is preferably 20 massppm or less.
Pb and Bi, which may be contained as unavoidable impurities, are likely to segregate at the grain boundaries and have a low melting point, thus deteriorating hot workability. Therefore, by limiting the total content of Pb and Bi contained as unavoidable impurities to 20 mass ppm or less, the occurrence of hot work cracking can be further suppressed.
不可避不純物として含まれるおそれがあるPb及びBiは、粒界に偏析しやすく、かつ、融点が低いため、熱間加工性を低下させる。よって、不可避不純物として含まれるPb及びBiの合計含有量を20massppm以下に制限することにより、熱間加工割れの発生をさらに抑制することができる。 In the pure copper plate which is one aspect of the present invention, the total content of Pb and Bi is preferably 20 massppm or less.
Pb and Bi, which may be contained as unavoidable impurities, are likely to segregate at the grain boundaries and have a low melting point, thus deteriorating hot workability. Therefore, by limiting the total content of Pb and Bi contained as unavoidable impurities to 20 mass ppm or less, the occurrence of hot work cracking can be further suppressed.
本発明の一態様である純銅板においては、Pの含有量が5massppm以下とされていることが好ましい。
不可避不純物として含まれるおそれがあるPは、Cu-S系化合物の分布状態に影響を与える作用を有することが判明した。このため、不可避不純物として含まれるPの含有量を5massppm以下に制限することにより、Cu-S系化合物を十分に分散させることができ、打ち抜き加工性をさらに向上させることが可能となる。 In the pure copper plate which is one embodiment of the present invention, the P content is preferably 5 massppm or less.
It was found that P, which may be contained as an unavoidable impurity, has an effect of affecting the distribution state of the Cu—S compound. Therefore, by limiting the content of P contained as an unavoidable impurity to 5 mass ppm or less, the Cu-S compound can be sufficiently dispersed, and the punching workability can be further improved.
不可避不純物として含まれるおそれがあるPは、Cu-S系化合物の分布状態に影響を与える作用を有することが判明した。このため、不可避不純物として含まれるPの含有量を5massppm以下に制限することにより、Cu-S系化合物を十分に分散させることができ、打ち抜き加工性をさらに向上させることが可能となる。 In the pure copper plate which is one embodiment of the present invention, the P content is preferably 5 massppm or less.
It was found that P, which may be contained as an unavoidable impurity, has an effect of affecting the distribution state of the Cu—S compound. Therefore, by limiting the content of P contained as an unavoidable impurity to 5 mass ppm or less, the Cu-S compound can be sufficiently dispersed, and the punching workability can be further improved.
本発明の一態様である純銅板においては、打ち抜き断面における破断面比率が20%以上であることが好ましい。
この場合、打ち抜き加工をした際の断面において、破断面比率が20%以上とされているので、せん断面の比率が十分に低く、打ち抜き加工時におけるバリの発生を抑制でき、寸法精度を向上させることが可能となる。また、金型の摩耗及び打ち抜き屑の発生を抑制することができ、打ち抜き加工を効率良く行うことができる。 In the pure copper plate which is one embodiment of the present invention, it is preferable that the fracture surface ratio in the punched cross section is 20% or more.
In this case, since the fracture surface ratio is 20% or more in the cross section after punching, the shear surface ratio is sufficiently low, burrs can be suppressed during punching, and dimensional accuracy is improved. It becomes possible. Further, it is possible to suppress wear of the mold and generation of punching scraps, and it is possible to efficiently perform punching.
この場合、打ち抜き加工をした際の断面において、破断面比率が20%以上とされているので、せん断面の比率が十分に低く、打ち抜き加工時におけるバリの発生を抑制でき、寸法精度を向上させることが可能となる。また、金型の摩耗及び打ち抜き屑の発生を抑制することができ、打ち抜き加工を効率良く行うことができる。 In the pure copper plate which is one embodiment of the present invention, it is preferable that the fracture surface ratio in the punched cross section is 20% or more.
In this case, since the fracture surface ratio is 20% or more in the cross section after punching, the shear surface ratio is sufficiently low, burrs can be suppressed during punching, and dimensional accuracy is improved. It becomes possible. Further, it is possible to suppress wear of the mold and generation of punching scraps, and it is possible to efficiently perform punching.
本発明の一態様である純銅板においては、引張強度が500MPa以下であることが好ましい。
この場合、引張強度が500MPa以下であり、純銅板としての特性が確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。 In the pure copper plate which is one aspect of the present invention, the tensile strength is preferably 500 MPa or less.
In this case, since the tensile strength is 500 MPa or less and the characteristics as a pure copper plate are ensured, it is particularly suitable as a material for a member for electronic/electrical equipment and a member for heat dissipation for large current applications.
この場合、引張強度が500MPa以下であり、純銅板としての特性が確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。 In the pure copper plate which is one aspect of the present invention, the tensile strength is preferably 500 MPa or less.
In this case, since the tensile strength is 500 MPa or less and the characteristics as a pure copper plate are ensured, it is particularly suitable as a material for a member for electronic/electrical equipment and a member for heat dissipation for large current applications.
本発明の一態様である純銅板においては、導電率が90%IACS以上であることが好ましい。
この場合、導電率が90%IACS以上であり、純銅板としての特性が確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。 In the pure copper plate which is one aspect of the present invention, the electrical conductivity is preferably 90% IACS or more.
In this case, since the electrical conductivity is 90% IACS or more and the characteristics as a pure copper plate are secured, it is particularly suitable as a material for a member for electronic/electric equipment and a member for heat dissipation for large current applications.
この場合、導電率が90%IACS以上であり、純銅板としての特性が確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。 In the pure copper plate which is one aspect of the present invention, the electrical conductivity is preferably 90% IACS or more.
In this case, since the electrical conductivity is 90% IACS or more and the characteristics as a pure copper plate are secured, it is particularly suitable as a material for a member for electronic/electric equipment and a member for heat dissipation for large current applications.
本発明の一態様である電子・電気機器用部材は、上述の純銅板からなることを特徴としている。
この構成の電子・電気機器用部材によれば、上述の純銅板で構成されているので、形状精度が良く、導電性に優れている。よって、大電流用途においても好適に使用することが可能となる。 The member for electronic/electrical equipment which is one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate.
According to the electronic/electrical device member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the conductivity is excellent. Therefore, it can be preferably used even in a large current application.
この構成の電子・電気機器用部材によれば、上述の純銅板で構成されているので、形状精度が良く、導電性に優れている。よって、大電流用途においても好適に使用することが可能となる。 The member for electronic/electrical equipment which is one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate.
According to the electronic/electrical device member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the conductivity is excellent. Therefore, it can be preferably used even in a large current application.
本発明の一態様である放熱用部材は、上述の純銅板からなることを特徴としている。
この構成の放熱用部材によれば、上述の純銅板で構成されているので、形状精度が良く、熱伝導性に優れている。よって、発熱量が多い用途においても、効率的に放熱させることが可能となる。 The heat dissipation member according to one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate.
According to the heat dissipation member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the heat conductivity is excellent. Therefore, it is possible to efficiently dissipate heat even in an application that generates a large amount of heat.
この構成の放熱用部材によれば、上述の純銅板で構成されているので、形状精度が良く、熱伝導性に優れている。よって、発熱量が多い用途においても、効率的に放熱させることが可能となる。 The heat dissipation member according to one aspect of the present invention is characterized by being made of the above-mentioned pure copper plate.
According to the heat dissipation member having this structure, since it is composed of the above-mentioned pure copper plate, the shape accuracy is good and the heat conductivity is excellent. Therefore, it is possible to efficiently dissipate heat even in an application that generates a large amount of heat.
本発明によれば、打ち抜き加工性に優れ、精度良く、かつ、効率的に打ち抜き加工を行うことが可能な純銅板、この純銅板からなる電子・電気機器用部材及び放熱用部材を提供することができる。
According to the present invention, there is provided a pure copper plate having excellent punching workability, capable of performing punching with high accuracy and efficiency, a member for electronic/electrical equipment and a member for heat dissipation made of this pure copper plate. You can
以下に、本発明の一実施形態である純銅板について説明する。
本実施形態である純銅板は、厚銅回路、バスバー等の電子・電気機器用部材、及び、ヒートシンク等の放熱用部材の素材として用いられ、前述の電子・電気機器用部材及び放熱用部材を成形する際に、打ち抜き加工が施される。 Below, the pure copper plate which is one embodiment of the present invention is explained.
The pure copper plate of the present embodiment is used as a material for electronic/electrical equipment members such as thick copper circuits, bus bars, and heat dissipation members such as heat sinks, and the aforementioned electronic/electrical equipment members and heat dissipation members are used. A punching process is performed at the time of molding.
本実施形態である純銅板は、厚銅回路、バスバー等の電子・電気機器用部材、及び、ヒートシンク等の放熱用部材の素材として用いられ、前述の電子・電気機器用部材及び放熱用部材を成形する際に、打ち抜き加工が施される。 Below, the pure copper plate which is one embodiment of the present invention is explained.
The pure copper plate of the present embodiment is used as a material for electronic/electrical equipment members such as thick copper circuits, bus bars, and heat dissipation members such as heat sinks, and the aforementioned electronic/electrical equipment members and heat dissipation members are used. A punching process is performed at the time of molding.
本実施形態である純銅板は、Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされるとともに、Sを20massppm以上1000massppm以下の範囲内で含んでいる。すなわち、本実施形態である純銅板は、Sを除くCuの純度が99.96mass%以上の純銅に対して、Sを20massppm以上1000massppm以下の範囲で含有している。
The pure copper plate of the present embodiment has a purity of Cu excluding S of 99.96 mass% or more, the balance being inevitable impurities, and containing S in the range of 20 mass ppm to 1000 mass ppm. That is, the pure copper plate according to the present embodiment contains S in the range of 20 massppm or more and 1000 massppm or less with respect to pure copper having a purity of Cu excluding S of 99.96 mass% or more.
本実施形態である純銅板においては、不可避不純物であるPb及びBiの合計含有量が20massppm以下であることが好ましい。
本実施形態である純銅板においては、不可避不純物であるPの含有量が5massppm以下であることが好ましい。 In the pure copper plate of this embodiment, it is preferable that the total content of Pb and Bi that are inevitable impurities is 20 mass ppm or less.
In the pure copper plate of this embodiment, the content of P, which is an unavoidable impurity, is preferably 5 massppm or less.
本実施形態である純銅板においては、不可避不純物であるPの含有量が5massppm以下であることが好ましい。 In the pure copper plate of this embodiment, it is preferable that the total content of Pb and Bi that are inevitable impurities is 20 mass ppm or less.
In the pure copper plate of this embodiment, the content of P, which is an unavoidable impurity, is preferably 5 massppm or less.
本実施形態である純銅板においては、打ち抜き試験を実施した際の打ち抜き断面における破断面比率が20%以上とされていることが好ましい。
本実施形態である純銅板においては、引張強度が500MPa以下であることが好ましい。
本実施形態である純銅板においては、導電率が90%IACS以上とされていることが好ましい。 In the pure copper plate of this embodiment, it is preferable that the fracture surface ratio in the punched cross section when the punching test is performed is 20% or more.
In the pure copper plate of this embodiment, the tensile strength is preferably 500 MPa or less.
In the pure copper plate of this embodiment, it is preferable that the electrical conductivity is 90% IACS or more.
本実施形態である純銅板においては、引張強度が500MPa以下であることが好ましい。
本実施形態である純銅板においては、導電率が90%IACS以上とされていることが好ましい。 In the pure copper plate of this embodiment, it is preferable that the fracture surface ratio in the punched cross section when the punching test is performed is 20% or more.
In the pure copper plate of this embodiment, the tensile strength is preferably 500 MPa or less.
In the pure copper plate of this embodiment, it is preferable that the electrical conductivity is 90% IACS or more.
本実施形態の純銅板において、上述のように成分組成、各種特性を規定した理由について以下に説明する。
The reasons for defining the component composition and various characteristics as described above in the pure copper plate of this embodiment will be described below.
(Cuの純度:99.96mass%以上)
大電流用途の電子・電気機器用部材及び放熱用部材においては、通電時の発熱を抑制するために、導電性及び熱伝導性に優れていることが要求されており、導電性及び熱伝導性に特に優れた純銅を用いることが好ましい。
本実施形態である純銅板においては、Sを除くCuの純度を99.96mass%以上に規定している。
Sを除くCuの純度は99.965mass%以上であることが好ましく、99.97mass%以上であることがさらに好ましい。Sを除くCuの純度の上限に特に制限はないが、99.999mass%を超える場合には、特別な精錬工程が必要となり、製造コストが大幅に増加するため、99.999mass%以下とすることが好ましい。 (Cu purity: 99.96 mass% or more)
It is required that electronic and electric equipment members and heat dissipation members for large current applications have excellent electrical conductivity and thermal conductivity in order to suppress heat generation during energization. It is preferable to use pure copper which is particularly excellent in
In the pure copper plate of this embodiment, the purity of Cu excluding S is specified to be 99.96 mass% or more.
The purity of Cu excluding S is preferably 99.965 mass% or more, and more preferably 99.97 mass% or more. The upper limit of the purity of Cu except S is not particularly limited, but if it exceeds 99.999 mass%, a special refining step is required, and the manufacturing cost increases significantly, so 99.999 mass% or less is required. Is preferred.
大電流用途の電子・電気機器用部材及び放熱用部材においては、通電時の発熱を抑制するために、導電性及び熱伝導性に優れていることが要求されており、導電性及び熱伝導性に特に優れた純銅を用いることが好ましい。
本実施形態である純銅板においては、Sを除くCuの純度を99.96mass%以上に規定している。
Sを除くCuの純度は99.965mass%以上であることが好ましく、99.97mass%以上であることがさらに好ましい。Sを除くCuの純度の上限に特に制限はないが、99.999mass%を超える場合には、特別な精錬工程が必要となり、製造コストが大幅に増加するため、99.999mass%以下とすることが好ましい。 (Cu purity: 99.96 mass% or more)
It is required that electronic and electric equipment members and heat dissipation members for large current applications have excellent electrical conductivity and thermal conductivity in order to suppress heat generation during energization. It is preferable to use pure copper which is particularly excellent in
In the pure copper plate of this embodiment, the purity of Cu excluding S is specified to be 99.96 mass% or more.
The purity of Cu excluding S is preferably 99.965 mass% or more, and more preferably 99.97 mass% or more. The upper limit of the purity of Cu except S is not particularly limited, but if it exceeds 99.999 mass%, a special refining step is required, and the manufacturing cost increases significantly, so 99.999 mass% or less is required. Is preferred.
(Sの含有量:20massppm以上1000massppm以下)
Sは、図1の状態図に示すように、Cu中の固溶限が低いため、導電率をほとんど低下させない。一方、Sが粒界に偏析することで、熱間加工性が低下する。
そして、Sを含有させることにより、CuとSとが反応してCu2S等のCu-S系化合物が生成する。このCu-S系化合物が分散していると、打ち抜き加工を実施した際に、上述のCu-S系化合物が破壊の起点となり、打ち抜き加工性が向上する。 (S content: 20 massppm or more and 1000 massppm or less)
As shown in the state diagram of FIG. 1, S has a low solid solubility limit in Cu and therefore hardly reduces the conductivity. On the other hand, the segregation of S at the grain boundaries reduces the hot workability.
Then, by containing S, Cu reacts with S to produce a Cu—S-based compound such as Cu 2 S. When the Cu-S compound is dispersed, the above-mentioned Cu-S compound becomes a starting point of fracture when punching is performed, and the punching workability is improved.
Sは、図1の状態図に示すように、Cu中の固溶限が低いため、導電率をほとんど低下させない。一方、Sが粒界に偏析することで、熱間加工性が低下する。
そして、Sを含有させることにより、CuとSとが反応してCu2S等のCu-S系化合物が生成する。このCu-S系化合物が分散していると、打ち抜き加工を実施した際に、上述のCu-S系化合物が破壊の起点となり、打ち抜き加工性が向上する。 (S content: 20 massppm or more and 1000 massppm or less)
As shown in the state diagram of FIG. 1, S has a low solid solubility limit in Cu and therefore hardly reduces the conductivity. On the other hand, the segregation of S at the grain boundaries reduces the hot workability.
Then, by containing S, Cu reacts with S to produce a Cu—S-based compound such as Cu 2 S. When the Cu-S compound is dispersed, the above-mentioned Cu-S compound becomes a starting point of fracture when punching is performed, and the punching workability is improved.
Sの含有量が20massppm未満では、Cu-S系化合物が十分に生成せず、打ち抜き加工性を向上させることができないおそれがある。一方、Sの含有量が1000massppm超える場合には、熱間加工性が大幅に低下するおそれがある。
以上のことから、本実施形態においては、Sの含有量を20massppm以上1000massppm以下の範囲内に設定している。
打ち抜き加工性をさらに向上させるためには、Sの含有量の下限を25massppm以上とすることが好ましく、30massppm以上とすることがさらに好ましい。一方、熱間加工性の低下をさらに抑制するためには、Sの含有量の上限を900massppm以下とすることが好ましく、800massppm以下とすることがさらに好ましい。 If the S content is less than 20 mass ppm, the Cu—S-based compound is not sufficiently generated, and the punching workability may not be improved. On the other hand, if the S content exceeds 1000 mass ppm, the hot workability may be significantly reduced.
From the above, in the present embodiment, the S content is set within the range of 20 mass ppm or more and 1000 mass ppm or less.
In order to further improve the punching workability, the lower limit of the S content is preferably 25 mass ppm or more, and more preferably 30 mass ppm or more. On the other hand, in order to further suppress the deterioration of hot workability, the upper limit of the S content is preferably 900 massppm or less, and more preferably 800 massppm or less.
以上のことから、本実施形態においては、Sの含有量を20massppm以上1000massppm以下の範囲内に設定している。
打ち抜き加工性をさらに向上させるためには、Sの含有量の下限を25massppm以上とすることが好ましく、30massppm以上とすることがさらに好ましい。一方、熱間加工性の低下をさらに抑制するためには、Sの含有量の上限を900massppm以下とすることが好ましく、800massppm以下とすることがさらに好ましい。 If the S content is less than 20 mass ppm, the Cu—S-based compound is not sufficiently generated, and the punching workability may not be improved. On the other hand, if the S content exceeds 1000 mass ppm, the hot workability may be significantly reduced.
From the above, in the present embodiment, the S content is set within the range of 20 mass ppm or more and 1000 mass ppm or less.
In order to further improve the punching workability, the lower limit of the S content is preferably 25 mass ppm or more, and more preferably 30 mass ppm or more. On the other hand, in order to further suppress the deterioration of hot workability, the upper limit of the S content is preferably 900 massppm or less, and more preferably 800 massppm or less.
(Pb及びBiの合計含有量:20massppm以下)
不可避不純物として含まれるPb及びBiは、Cu中の固溶限が低く、かつ、融点が低いため、粒界に偏析することによって、熱間加工性を低下させる。
このため、熱間加工性をさらに向上させる場合には、不可避不純物であるPb及びBiの合計含有量を20massppm以下に制限することが好ましい。
熱間加工性をより向上させる場合には、Pb及びBiの合計含有量を15massppm以下とすることが好ましく、10massppm以下とすることがさらに好ましい。 (Pb and Bi total content: 20 massppm or less)
Since Pb and Bi contained as unavoidable impurities have a low solid solubility limit in Cu and a low melting point, they segregate at the grain boundaries to reduce hot workability.
Therefore, when further improving the hot workability, it is preferable to limit the total content of Pb and Bi, which are inevitable impurities, to 20 mass ppm or less.
When further improving the hot workability, the total content of Pb and Bi is preferably 15 massppm or less, more preferably 10 massppm or less.
不可避不純物として含まれるPb及びBiは、Cu中の固溶限が低く、かつ、融点が低いため、粒界に偏析することによって、熱間加工性を低下させる。
このため、熱間加工性をさらに向上させる場合には、不可避不純物であるPb及びBiの合計含有量を20massppm以下に制限することが好ましい。
熱間加工性をより向上させる場合には、Pb及びBiの合計含有量を15massppm以下とすることが好ましく、10massppm以下とすることがさらに好ましい。 (Pb and Bi total content: 20 massppm or less)
Since Pb and Bi contained as unavoidable impurities have a low solid solubility limit in Cu and a low melting point, they segregate at the grain boundaries to reduce hot workability.
Therefore, when further improving the hot workability, it is preferable to limit the total content of Pb and Bi, which are inevitable impurities, to 20 mass ppm or less.
When further improving the hot workability, the total content of Pb and Bi is preferably 15 massppm or less, more preferably 10 massppm or less.
(Pの含有量:5massppm以下)
不可避不純物として含まれるPは、Cu-S系化合物の分散状況に影響を与えることが判明した。具体的には、上述のCu-S系化合物が生成する核生成サイト(例えば、粒界、粒内の転位やひずみ)にPが優先的に存在し、Cu-S系化合物の分散を妨げるおそれがある。
このため、Cu-S系化合物をさらに均一に分散させて、打ち抜き加工性を安定して向上させる場合には、不可避不純物であるPの含有量を5massppm以下に制限することが好ましい。
打ち抜き加工性をさらに安定して向上させる場合には、Pの含有量を4massppm以下とすることが好ましく、3massppm以下とすることがさらに好ましい。 (P content: 5 massppm or less)
It was found that P contained as an unavoidable impurity affects the dispersion state of the Cu-S compound. Specifically, P is preferentially present at nucleation sites (eg, grain boundaries, dislocations and strains in the grains) generated by the Cu—S compound, which may hinder the dispersion of the Cu—S compound. There is.
Therefore, when the Cu—S-based compound is further uniformly dispersed to stably improve the punching workability, it is preferable to limit the content of P, which is an unavoidable impurity, to 5 mass ppm or less.
In order to further improve the punching workability, the P content is preferably 4 massppm or less, more preferably 3 massppm or less.
不可避不純物として含まれるPは、Cu-S系化合物の分散状況に影響を与えることが判明した。具体的には、上述のCu-S系化合物が生成する核生成サイト(例えば、粒界、粒内の転位やひずみ)にPが優先的に存在し、Cu-S系化合物の分散を妨げるおそれがある。
このため、Cu-S系化合物をさらに均一に分散させて、打ち抜き加工性を安定して向上させる場合には、不可避不純物であるPの含有量を5massppm以下に制限することが好ましい。
打ち抜き加工性をさらに安定して向上させる場合には、Pの含有量を4massppm以下とすることが好ましく、3massppm以下とすることがさらに好ましい。 (P content: 5 massppm or less)
It was found that P contained as an unavoidable impurity affects the dispersion state of the Cu-S compound. Specifically, P is preferentially present at nucleation sites (eg, grain boundaries, dislocations and strains in the grains) generated by the Cu—S compound, which may hinder the dispersion of the Cu—S compound. There is.
Therefore, when the Cu—S-based compound is further uniformly dispersed to stably improve the punching workability, it is preferable to limit the content of P, which is an unavoidable impurity, to 5 mass ppm or less.
In order to further improve the punching workability, the P content is preferably 4 massppm or less, more preferably 3 massppm or less.
(その他の不可避不純物)
Pb,Bi,P以外のその他の不可避的不純物としては、Ag,B,Ca,Mg,Sr,Ba,Sc,Y,希土類元素,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Fe,Ru,Os,Co,Se,Te,Rh,Ir,Ni,Pd,Pt,Au,Zn,Cd,Hg,Al,Ga,In,Ge,Sn,As,Sb,Tl,Be,N,C,Si,Li,H,O等が挙げられる。これらの不可避不純物は、導電率を低下させるおそれがあることから、総量で100massppm以下とすることが好ましい。
Ti,Mg,Zr,Nb,Ca,V,Ni,Mn及びCrは、Cu中のSと反応し、Cu-S系化合物の生成個数を低減させるおそれがあるとともに、導電率を低下させるおそれがあることから、合計含有量を10massppm以下に制限することが好ましい。 (Other inevitable impurities)
Other unavoidable impurities other than Pb, Bi, P are Ag, B, Ca, Mg, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Examples include Tl, Be, N, C, Si, Li, H, O and the like. Since these unavoidable impurities may reduce the conductivity, the total amount is preferably 100 massppm or less.
Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr may react with S in Cu to reduce the number of Cu—S-based compounds produced, and may reduce the conductivity. Therefore, it is preferable to limit the total content to 10 mass ppm or less.
Pb,Bi,P以外のその他の不可避的不純物としては、Ag,B,Ca,Mg,Sr,Ba,Sc,Y,希土類元素,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Fe,Ru,Os,Co,Se,Te,Rh,Ir,Ni,Pd,Pt,Au,Zn,Cd,Hg,Al,Ga,In,Ge,Sn,As,Sb,Tl,Be,N,C,Si,Li,H,O等が挙げられる。これらの不可避不純物は、導電率を低下させるおそれがあることから、総量で100massppm以下とすることが好ましい。
Ti,Mg,Zr,Nb,Ca,V,Ni,Mn及びCrは、Cu中のSと反応し、Cu-S系化合物の生成個数を低減させるおそれがあるとともに、導電率を低下させるおそれがあることから、合計含有量を10massppm以下に制限することが好ましい。 (Other inevitable impurities)
Other unavoidable impurities other than Pb, Bi, P are Ag, B, Ca, Mg, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Examples include Tl, Be, N, C, Si, Li, H, O and the like. Since these unavoidable impurities may reduce the conductivity, the total amount is preferably 100 massppm or less.
Ti, Mg, Zr, Nb, Ca, V, Ni, Mn, and Cr may react with S in Cu to reduce the number of Cu—S-based compounds produced, and may reduce the conductivity. Therefore, it is preferable to limit the total content to 10 mass ppm or less.
(打ち抜き断面における破断面比率:20%以上)
打ち抜き試験を行った際の断面を観察した際に、図2に示すように、せん断によって形成された面をせん断面とし、それ以外の面を破断面とした場合に、破断面比率=(破断面面積)/(せん断面面積+破断面面積)が20%以上であれば、打ち抜き加工時にバリが生じにくく、寸法精度が向上することになる。また、金型の摩耗及び打ち抜き屑の発生を抑制することが可能となる。 (Fracture surface ratio in punched cross section: 20% or more)
When observing the cross section after the punching test, as shown in FIG. 2, when the surface formed by shearing is the shear surface and the other surface is the fracture surface, the fracture surface ratio = (fracture surface ratio If the cross-sectional area)/(shear surface area+fracture surface area) is 20% or more, burrs are less likely to occur during punching and the dimensional accuracy is improved. Further, it becomes possible to suppress wear of the mold and generation of punching scraps.
打ち抜き試験を行った際の断面を観察した際に、図2に示すように、せん断によって形成された面をせん断面とし、それ以外の面を破断面とした場合に、破断面比率=(破断面面積)/(せん断面面積+破断面面積)が20%以上であれば、打ち抜き加工時にバリが生じにくく、寸法精度が向上することになる。また、金型の摩耗及び打ち抜き屑の発生を抑制することが可能となる。 (Fracture surface ratio in punched cross section: 20% or more)
When observing the cross section after the punching test, as shown in FIG. 2, when the surface formed by shearing is the shear surface and the other surface is the fracture surface, the fracture surface ratio = (fracture surface ratio If the cross-sectional area)/(shear surface area+fracture surface area) is 20% or more, burrs are less likely to occur during punching and the dimensional accuracy is improved. Further, it becomes possible to suppress wear of the mold and generation of punching scraps.
打ち抜き加工性をさらに確保するためには、打ち抜き断面における破断面比率を25%以上とすることが好ましく、30%以上とすることがさらに好ましい。なお、破断面比率の上限は特に制限はないが、80%以下とすることが好ましい。
打ち抜き試験時における金型のクリアランスは、特に限定しないが、板厚の約5%で設定する事が好ましい。打ち抜き試験時における試料の厚さは、0.3~3mmに設定する事が好ましい。 In order to further secure the punching workability, the fracture surface ratio in the punched cross section is preferably 25% or more, more preferably 30% or more. The upper limit of the fracture surface ratio is not particularly limited, but is preferably 80% or less.
The clearance of the die during the punching test is not particularly limited, but it is preferably set to about 5% of the plate thickness. The thickness of the sample during the punching test is preferably set to 0.3 to 3 mm.
打ち抜き試験時における金型のクリアランスは、特に限定しないが、板厚の約5%で設定する事が好ましい。打ち抜き試験時における試料の厚さは、0.3~3mmに設定する事が好ましい。 In order to further secure the punching workability, the fracture surface ratio in the punched cross section is preferably 25% or more, more preferably 30% or more. The upper limit of the fracture surface ratio is not particularly limited, but is preferably 80% or less.
The clearance of the die during the punching test is not particularly limited, but it is preferably set to about 5% of the plate thickness. The thickness of the sample during the punching test is preferably set to 0.3 to 3 mm.
(引張強度:500MPa以下)
本実施形態である純銅板においては、引張強度を500MPa以下とすることにより、純銅板としての特性が確保され、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。
純銅板の引張強度は475MPa以下であることが好ましく、450MPa以下であることがさらに好ましい。純銅板の引張強度の下限は、特に制限はないが、100MPa以上であることが好ましい。 (Tensile strength: 500 MPa or less)
In the pure copper plate of the present embodiment, the tensile strength of 500 MPa or less ensures the properties as a pure copper plate, and is particularly suitable as a material for a member for electronic and electric devices and a member for heat dissipation for large current applications. ..
The tensile strength of the pure copper plate is preferably 475 MPa or less, more preferably 450 MPa or less. The lower limit of the tensile strength of the pure copper plate is not particularly limited, but it is preferably 100 MPa or more.
本実施形態である純銅板においては、引張強度を500MPa以下とすることにより、純銅板としての特性が確保され、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。
純銅板の引張強度は475MPa以下であることが好ましく、450MPa以下であることがさらに好ましい。純銅板の引張強度の下限は、特に制限はないが、100MPa以上であることが好ましい。 (Tensile strength: 500 MPa or less)
In the pure copper plate of the present embodiment, the tensile strength of 500 MPa or less ensures the properties as a pure copper plate, and is particularly suitable as a material for a member for electronic and electric devices and a member for heat dissipation for large current applications. ..
The tensile strength of the pure copper plate is preferably 475 MPa or less, more preferably 450 MPa or less. The lower limit of the tensile strength of the pure copper plate is not particularly limited, but it is preferably 100 MPa or more.
(導電率:90%IACS以上)
本実施形態である純銅板においては、導電率を90%IACS(International Annealed Copper Standard)以上とすることにより、純銅板としての特性が確保され、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。
純銅板の導電率は95%IACS以上であることが好ましく、97%IACS以上であることがさらに好ましい。純銅板の導電率の上限は、特に制限はないが、103%IACS以下であることが好ましい。 (Conductivity: 90% IACS or more)
In the pure copper plate of the present embodiment, by setting the electrical conductivity to 90% IACS (International Annealed Copper Standard) or more, the properties as a pure copper plate are secured, and a member for electronic and electric devices for large current use and heat dissipation It is particularly suitable as a material for components.
The electric conductivity of the pure copper plate is preferably 95% IACS or more, and more preferably 97% IACS or more. The upper limit of the conductivity of the pure copper plate is not particularly limited, but it is preferably 103% IACS or less.
本実施形態である純銅板においては、導電率を90%IACS(International Annealed Copper Standard)以上とすることにより、純銅板としての特性が確保され、大電流用途の電子・電気機器用部材及び放熱用部材の素材として特に適している。
純銅板の導電率は95%IACS以上であることが好ましく、97%IACS以上であることがさらに好ましい。純銅板の導電率の上限は、特に制限はないが、103%IACS以下であることが好ましい。 (Conductivity: 90% IACS or more)
In the pure copper plate of the present embodiment, by setting the electrical conductivity to 90% IACS (International Annealed Copper Standard) or more, the properties as a pure copper plate are secured, and a member for electronic and electric devices for large current use and heat dissipation It is particularly suitable as a material for components.
The electric conductivity of the pure copper plate is preferably 95% IACS or more, and more preferably 97% IACS or more. The upper limit of the conductivity of the pure copper plate is not particularly limited, but it is preferably 103% IACS or less.
このような構成とされた本実施形態である純銅板の製造方法について、図3に示すフロー図を参照して説明する。
A method of manufacturing the pure copper plate of this embodiment having such a configuration will be described with reference to the flow chart shown in FIG.
(溶解・鋳造工程S01)
銅原料を溶解し、Sを添加して成分調整を行い、銅溶湯を製出する。銅原料としては、例えば、C1020で規定される無酸素銅を用いることが好ましい。Sの添加には、S単体やCu-S母合金等を用いることができる。Cu-S母合金を製造する際にも、C1020で規定される無酸素銅等を用いることが好ましい。溶解工程では、水素濃度低減のため、H2Oの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
そして、成分調整された銅溶湯を鋳型に注入して鋳塊を製出する。量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この鋳造時の冷却過程において、一部のSがCuと反応してCu-S系化合物が生成する。 (Melting/casting process S01)
The copper raw material is melted, S is added to adjust the components, and a molten copper is produced. As the copper raw material, for example, oxygen-free copper defined by C1020 is preferably used. A simple substance of S, a Cu—S master alloy, or the like can be used to add S. Also when producing a Cu—S master alloy, it is preferable to use oxygen-free copper specified by C1020. In the melting step, in order to reduce the hydrogen concentration, it is preferable to carry out atmosphere melting in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O to keep the holding time during melting to a minimum.
Then, the molten copper having the adjusted components is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use the continuous casting method or the semi-continuous casting method.
In the cooling process at the time of casting, a part of S reacts with Cu to form a Cu—S-based compound.
銅原料を溶解し、Sを添加して成分調整を行い、銅溶湯を製出する。銅原料としては、例えば、C1020で規定される無酸素銅を用いることが好ましい。Sの添加には、S単体やCu-S母合金等を用いることができる。Cu-S母合金を製造する際にも、C1020で規定される無酸素銅等を用いることが好ましい。溶解工程では、水素濃度低減のため、H2Oの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
そして、成分調整された銅溶湯を鋳型に注入して鋳塊を製出する。量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この鋳造時の冷却過程において、一部のSがCuと反応してCu-S系化合物が生成する。 (Melting/casting process S01)
The copper raw material is melted, S is added to adjust the components, and a molten copper is produced. As the copper raw material, for example, oxygen-free copper defined by C1020 is preferably used. A simple substance of S, a Cu—S master alloy, or the like can be used to add S. Also when producing a Cu—S master alloy, it is preferable to use oxygen-free copper specified by C1020. In the melting step, in order to reduce the hydrogen concentration, it is preferable to carry out atmosphere melting in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O to keep the holding time during melting to a minimum.
Then, the molten copper having the adjusted components is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use the continuous casting method or the semi-continuous casting method.
In the cooling process at the time of casting, a part of S reacts with Cu to form a Cu—S-based compound.
(熱処理工程S02)
得られた鋳塊の均質化及び溶体化のために加熱処理を行う。非酸化雰囲気又は還元性雰囲気中において、500℃以上900℃以下の熱処理温度で、1時間以上8時間以下保持する。
この熱処理工程S02により、鋳造時に生成したCu-S系化合物の一部のSを固溶させることにより、後の工程で、再度、Cu-S系化合物を生成させて均一に分散させることができる。 (Heat treatment step S02)
Heat treatment is performed for homogenization and solution treatment of the obtained ingot. In a non-oxidizing atmosphere or a reducing atmosphere, the heat treatment temperature of 500° C. or more and 900° C. or less is maintained for 1 hour or more and 8 hours or less.
By this heat treatment step S02, a part of S of the Cu—S based compound generated during casting is solid-dissolved, so that the Cu—S based compound can be generated again and dispersed uniformly in a later step. ..
得られた鋳塊の均質化及び溶体化のために加熱処理を行う。非酸化雰囲気又は還元性雰囲気中において、500℃以上900℃以下の熱処理温度で、1時間以上8時間以下保持する。
この熱処理工程S02により、鋳造時に生成したCu-S系化合物の一部のSを固溶させることにより、後の工程で、再度、Cu-S系化合物を生成させて均一に分散させることができる。 (Heat treatment step S02)
Heat treatment is performed for homogenization and solution treatment of the obtained ingot. In a non-oxidizing atmosphere or a reducing atmosphere, the heat treatment temperature of 500° C. or more and 900° C. or less is maintained for 1 hour or more and 8 hours or less.
By this heat treatment step S02, a part of S of the Cu—S based compound generated during casting is solid-dissolved, so that the Cu—S based compound can be generated again and dispersed uniformly in a later step. ..
(熱間加工工程S03)
組織の均一化のため、及び、鋳造で生成したCu-S系化合物を均一に分散させるために、熱間加工を実施する。Cu-S系化合物を分散させるためには、熱間加工の終了温度を高く設定することが有効である。具体的には、熱間加工の終了温度は500℃以上とすることが好ましく、550℃以上とすることがさらに好ましく、600℃以上とすることがより好ましく、650℃以上とすることがなお一層好ましい。
熱間加工温度については、500℃以上1000℃以下の範囲内とすることが好ましい。 (Hot working step S03)
Hot working is carried out in order to homogenize the structure and to uniformly disperse the Cu-S based compound produced by casting. In order to disperse the Cu-S compound, it is effective to set the end temperature of hot working to be high. Specifically, the hot working finish temperature is preferably 500° C. or higher, more preferably 550° C. or higher, even more preferably 600° C. or higher, and even more preferably 650° C. or higher. preferable.
The hot working temperature is preferably in the range of 500° C. or higher and 1000° C. or lower.
組織の均一化のため、及び、鋳造で生成したCu-S系化合物を均一に分散させるために、熱間加工を実施する。Cu-S系化合物を分散させるためには、熱間加工の終了温度を高く設定することが有効である。具体的には、熱間加工の終了温度は500℃以上とすることが好ましく、550℃以上とすることがさらに好ましく、600℃以上とすることがより好ましく、650℃以上とすることがなお一層好ましい。
熱間加工温度については、500℃以上1000℃以下の範囲内とすることが好ましい。 (Hot working step S03)
Hot working is carried out in order to homogenize the structure and to uniformly disperse the Cu-S based compound produced by casting. In order to disperse the Cu-S compound, it is effective to set the end temperature of hot working to be high. Specifically, the hot working finish temperature is preferably 500° C. or higher, more preferably 550° C. or higher, even more preferably 600° C. or higher, and even more preferably 650° C. or higher. preferable.
The hot working temperature is preferably in the range of 500° C. or higher and 1000° C. or lower.
熱間加工の総加工率は50%以上とすることが好ましく、60%以上とすることがさらに好ましく、70%以上であることがより好ましい。
熱間加工後の冷却方法については、特に制限はないが、空冷又は水冷を行うことが好ましい。
熱間加工工程S03における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましい。 The total working rate of hot working is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more.
The cooling method after hot working is not particularly limited, but air cooling or water cooling is preferable.
The working method in the hot working step S03 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
熱間加工後の冷却方法については、特に制限はないが、空冷又は水冷を行うことが好ましい。
熱間加工工程S03における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましい。 The total working rate of hot working is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more.
The cooling method after hot working is not particularly limited, but air cooling or water cooling is preferable.
The working method in the hot working step S03 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
(冷間加工工程S04)
熱間加工工程S03後の銅素材に対して、冷間加工を実施して所定の形状に加工する。この冷間加工工程S04における温度条件は特に限定はないが、-200℃以上200℃以下の範囲で行うことが好ましい。この冷間加工工程S04における加工率は、最終形状に近似するように適宜選択されることになるが、後の工程で結晶粒微細化を図るには30%以上とすることが好ましい。さらなる強度の向上を図る場合には、加工率を50%以上とすることがより好ましい。
冷間加工工程S04における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましい。 (Cold processing step S04)
Cold working is performed on the copper material after the hot working step S03 to work it into a predetermined shape. The temperature condition in the cold working step S04 is not particularly limited, but it is preferably performed in the range of −200° C. or higher and 200° C. or lower. The working rate in the cold working step S04 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to refine the crystal grains in the subsequent steps. When further improving the strength, it is more preferable that the processing rate is 50% or more.
The working method in the cold working step S04 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
熱間加工工程S03後の銅素材に対して、冷間加工を実施して所定の形状に加工する。この冷間加工工程S04における温度条件は特に限定はないが、-200℃以上200℃以下の範囲で行うことが好ましい。この冷間加工工程S04における加工率は、最終形状に近似するように適宜選択されることになるが、後の工程で結晶粒微細化を図るには30%以上とすることが好ましい。さらなる強度の向上を図る場合には、加工率を50%以上とすることがより好ましい。
冷間加工工程S04における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましい。 (Cold processing step S04)
Cold working is performed on the copper material after the hot working step S03 to work it into a predetermined shape. The temperature condition in the cold working step S04 is not particularly limited, but it is preferably performed in the range of −200° C. or higher and 200° C. or lower. The working rate in the cold working step S04 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to refine the crystal grains in the subsequent steps. When further improving the strength, it is more preferable that the processing rate is 50% or more.
The working method in the cold working step S04 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted.
(再結晶熱処理工程S05)
冷間加工工程S04後の銅素材に対して、再結晶を目的とした熱処理を行う。Cu-S系化合物を均一に分散させるためには、700℃以下の温度で熱処理することが好ましい。
再結晶熱処理工程S05の熱処理条件は、特に限定しないが、200℃以上600℃以下の範囲の熱処理温度で、1秒以上24時間以下の範囲で保持することが好ましい。
再結晶組織の均一化のために、冷間加工工程S04と再結晶熱処理工程S05を2回以上繰り返して行っても良い。 (Recrystallization heat treatment step S05)
A heat treatment for the purpose of recrystallization is performed on the copper material after the cold working step S04. In order to uniformly disperse the Cu—S compound, it is preferable to perform heat treatment at a temperature of 700° C. or lower.
The heat treatment condition of the recrystallization heat treatment step S05 is not particularly limited, but it is preferable to hold the heat treatment temperature in the range of 200° C. to 600° C. for 1 second to 24 hours.
In order to make the recrystallization structure uniform, the cold working step S04 and the recrystallization heat treatment step S05 may be repeated twice or more.
冷間加工工程S04後の銅素材に対して、再結晶を目的とした熱処理を行う。Cu-S系化合物を均一に分散させるためには、700℃以下の温度で熱処理することが好ましい。
再結晶熱処理工程S05の熱処理条件は、特に限定しないが、200℃以上600℃以下の範囲の熱処理温度で、1秒以上24時間以下の範囲で保持することが好ましい。
再結晶組織の均一化のために、冷間加工工程S04と再結晶熱処理工程S05を2回以上繰り返して行っても良い。 (Recrystallization heat treatment step S05)
A heat treatment for the purpose of recrystallization is performed on the copper material after the cold working step S04. In order to uniformly disperse the Cu—S compound, it is preferable to perform heat treatment at a temperature of 700° C. or lower.
The heat treatment condition of the recrystallization heat treatment step S05 is not particularly limited, but it is preferable to hold the heat treatment temperature in the range of 200° C. to 600° C. for 1 second to 24 hours.
In order to make the recrystallization structure uniform, the cold working step S04 and the recrystallization heat treatment step S05 may be repeated twice or more.
(調質加工工程S06)
材料強度を調整するために、再結晶熱処理工程S05後の銅素材に対して調質加工を行ってもよい。材料強度を高くする必要がない場合は、調質加工を行わなくてもよい。
調質加工の加工率は特に限定しないが、材料強度を調整するために0%超え50%以下の範囲内で実施することが好ましい。
必要に応じて、残留ひずみの除去のために、調質加工後にさらに熱処理を行ってもよい。 (Refining process S06)
In order to adjust the material strength, heat treatment may be performed on the copper material after the recrystallization heat treatment step S05. If it is not necessary to increase the material strength, refining may not be performed.
The processing rate of the refining process is not particularly limited, but it is preferably carried out within the range of 0% to 50% in order to adjust the material strength.
If necessary, in order to remove residual strain, a heat treatment may be further performed after the tempering process.
材料強度を調整するために、再結晶熱処理工程S05後の銅素材に対して調質加工を行ってもよい。材料強度を高くする必要がない場合は、調質加工を行わなくてもよい。
調質加工の加工率は特に限定しないが、材料強度を調整するために0%超え50%以下の範囲内で実施することが好ましい。
必要に応じて、残留ひずみの除去のために、調質加工後にさらに熱処理を行ってもよい。 (Refining process S06)
In order to adjust the material strength, heat treatment may be performed on the copper material after the recrystallization heat treatment step S05. If it is not necessary to increase the material strength, refining may not be performed.
The processing rate of the refining process is not particularly limited, but it is preferably carried out within the range of 0% to 50% in order to adjust the material strength.
If necessary, in order to remove residual strain, a heat treatment may be further performed after the tempering process.
このようにして、本実施形態である純銅板が製出される。純銅板の厚さの上限は特にないが、純銅板に対してプレス加工等の打ち抜き加工を実施して電子・電気機器用部材及び放熱用部材を製造する場合には、厚さが5.0mmを超えるとプレス機の荷重が著しく増大すること、及び、単位時間あたりの生産性が落ちることになり、コスト高になる。このため、本実施形態においては、純銅板の厚さを0.3mm超え5.0mm以下とすることが好ましい。純銅板の厚さの下限は、1.0mm超えとすることが好ましく、1.5mm超えとすることがさらに好ましい。
In this way, the pure copper plate of this embodiment is produced. There is no particular upper limit on the thickness of the pure copper plate, but when the punching process such as press working is performed on the pure copper plate to manufacture the electronic/electrical device member and the heat dissipation member, the thickness is 5.0 mm. If it exceeds, the load of the press machine will remarkably increase and the productivity per unit time will decrease, resulting in high cost. Therefore, in the present embodiment, the thickness of the pure copper plate is preferably 0.3 mm or more and 5.0 mm or less. The lower limit of the thickness of the pure copper plate is preferably 1.0 mm or more, more preferably 1.5 mm or more.
以上のような構成とされた本実施形態である純銅板によれば、Sを20massppm以上1000massppm以下の範囲内で含んでいるので、Cu-S系化合物を生成させることができ、打ち抜き加工時にCu-S系化合物を起点として破壊が起こるため、打ち抜き加工性を向上させることができる。また、Sの含有量が上述の範囲内とすることにより、熱間加工性の低下を抑制することが可能となる。
Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされているので、銅の純度が十分に高く、純銅板としての導電性及び熱伝導性や強度等の特性を確保することができ、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。 According to the pure copper plate of the present embodiment configured as described above, since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to generate a Cu—S-based compound, and Cu can be formed at the time of punching. Since the destruction starts from the —S-based compound, the punching workability can be improved. Further, by setting the content of S within the above range, it becomes possible to suppress deterioration of hot workability.
Since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and the properties such as electrical conductivity and thermal conductivity and strength as a pure copper plate are secured. Therefore, it is suitable as a material for a member for electronic/electrical devices and a member for heat dissipation for large current applications.
Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物とされているので、銅の純度が十分に高く、純銅板としての導電性及び熱伝導性や強度等の特性を確保することができ、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。 According to the pure copper plate of the present embodiment configured as described above, since S is contained in the range of 20 mass ppm or more and 1000 mass ppm or less, it is possible to generate a Cu—S-based compound, and Cu can be formed at the time of punching. Since the destruction starts from the —S-based compound, the punching workability can be improved. Further, by setting the content of S within the above range, it becomes possible to suppress deterioration of hot workability.
Since the purity of Cu excluding S is 99.96 mass% or more, and the balance is unavoidable impurities, the purity of copper is sufficiently high and the properties such as electrical conductivity and thermal conductivity and strength as a pure copper plate are secured. Therefore, it is suitable as a material for a member for electronic/electrical devices and a member for heat dissipation for large current applications.
本実施形態において、不可避不純物であるPb及びBiの合計含有量が20massppm以下とされている場合には、低融点のPb及びBiが粒界に偏析して熱間加工性が低下することを抑制することができ、熱間加工割れの発生をさらに抑制することが可能となる。
In the present embodiment, when the total content of Pb and Bi, which are inevitable impurities, is 20 massppm or less, it is possible to prevent Pb and Bi having a low melting point from segregating at the grain boundaries and deteriorating the hot workability. Therefore, it is possible to further suppress the occurrence of hot working cracks.
本実施形態において、不可避不純物であるPの含有量が5massppm以下とされている場合には、PによるCu-S系化合物の分布状態への影響を抑えることができ、Cu-S系化合物を十分に分散させることが可能となる。これにより、純銅板の打ち抜き加工性をさらに向上させることが可能となる。
In the present embodiment, when the content of P, which is an unavoidable impurity, is 5 massppm or less, it is possible to suppress the influence of P on the distribution state of the Cu—S based compound, and the Cu—S based compound is sufficiently added. Can be dispersed in This makes it possible to further improve the punching workability of the pure copper plate.
本実施形態において、打ち抜き断面における破断面比率が20%以上とされている場合には、せん断面の比率が十分に低く、打ち抜き加工時におけるバリの発生を抑制でき、寸法精度を向上させることが可能となる。また、金型の摩耗や打ち抜き屑の発生を抑制でき、打ち抜き加工を効率良く行うことが可能となる。
In this embodiment, when the fracture surface ratio in the punched cross section is 20% or more, the ratio of the sheared surface is sufficiently low, the occurrence of burrs during the punching process can be suppressed, and the dimensional accuracy can be improved. It will be possible. Further, it is possible to suppress wear of the mold and generation of punching scraps, and it is possible to efficiently perform punching.
本実施形態において、引張強度が500MPa以下である場合には、純銅板としての特性が十分に確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。
In the present embodiment, when the tensile strength is 500 MPa or less, the characteristics as a pure copper plate are sufficiently ensured, so that it is suitable as a material for a member for electronic/electrical devices and a member for heat dissipation for large current applications. ..
本実施形態において、導電率が90%IACS以上である場合には、純銅板としての特性が十分に確保されているので、大電流用途の電子・電気機器用部材及び放熱用部材の素材として適している。
In the present embodiment, when the electrical conductivity is 90% IACS or more, the characteristics as a pure copper plate are sufficiently ensured, and thus it is suitable as a material for a member for electronic/electrical equipment and a member for heat dissipation for large current applications. ing.
本実施形態である電子・電気機器用部材においては、上述した本実施形態である純銅板で構成されているので、形状精度が良く、導電性に優れている。このため、大電流用途においても好適に使用することが可能となる。
本実施形態である放熱用部材においては、上述した本実施形態である純銅板で構成されているので、形状精度が良く、熱伝導性に優れている。このため、発熱量が多い用途においても、効率的に放熱させることが可能となる。 Since the electronic/electrical device member of the present embodiment is formed of the pure copper plate of the present embodiment described above, it has good shape accuracy and excellent conductivity. Therefore, it can be preferably used even in a large current application.
Since the heat dissipation member of the present embodiment is formed of the pure copper plate of the present embodiment described above, the shape accuracy is good and the heat conductivity is excellent. For this reason, it is possible to efficiently dissipate heat even in applications that generate a large amount of heat.
本実施形態である放熱用部材においては、上述した本実施形態である純銅板で構成されているので、形状精度が良く、熱伝導性に優れている。このため、発熱量が多い用途においても、効率的に放熱させることが可能となる。 Since the electronic/electrical device member of the present embodiment is formed of the pure copper plate of the present embodiment described above, it has good shape accuracy and excellent conductivity. Therefore, it can be preferably used even in a large current application.
Since the heat dissipation member of the present embodiment is formed of the pure copper plate of the present embodiment described above, the shape accuracy is good and the heat conductivity is excellent. For this reason, it is possible to efficiently dissipate heat even in applications that generate a large amount of heat.
以上、本発明の実施形態である純銅板、電子・電気機器用部材及び放熱用部材について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、純銅板の製造方法の一例について説明したが、純銅板の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。 The pure copper plate, the member for electronic/electrical devices, and the member for heat dissipation, which are the embodiments of the present invention, have been described above, but the present invention is not limited to this, and within the scope not departing from the technical idea of the invention. It can be changed as appropriate.
For example, in the above-described embodiment, an example of the method for producing a pure copper plate has been described, but the method for producing a pure copper plate is not limited to the one described in the embodiment, and an existing production method may be appropriately selected. It may be manufactured.
例えば、上述の実施形態では、純銅板の製造方法の一例について説明したが、純銅板の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。 The pure copper plate, the member for electronic/electrical devices, and the member for heat dissipation, which are the embodiments of the present invention, have been described above, but the present invention is not limited to this, and within the scope not departing from the technical idea of the invention. It can be changed as appropriate.
For example, in the above-described embodiment, an example of the method for producing a pure copper plate has been described, but the method for producing a pure copper plate is not limited to the one described in the embodiment, and an existing production method may be appropriately selected. It may be manufactured.
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料と、上記純度99.99mass%以上の無酸素銅に純度99mass%以上の純Sを用いて作成したCu-1mass%S母合金を準備した。
不純物であるPb,Bi,Pについては、純度99.9mass%以上のPb,Bi,Pと純度99.9mass%の純銅とから各々の元素の母合金を作成し、その母合金を用いて調整した。 The results of confirmation experiments conducted to confirm the effects of the present invention will be described below.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more, and Cu-1 mass% S prepared by using pure S having a purity of 99 mass% or more for the oxygen-free copper having a purity of 99.99 mass% or more. A mother alloy was prepared.
Regarding Pb, Bi, and P, which are impurities, a mother alloy of each element is prepared from Pb, Bi, P having a purity of 99.9 mass% or more and pure copper having a purity of 99.9 mass%, and adjusted using the mother alloy. did.
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料と、上記純度99.99mass%以上の無酸素銅に純度99mass%以上の純Sを用いて作成したCu-1mass%S母合金を準備した。
不純物であるPb,Bi,Pについては、純度99.9mass%以上のPb,Bi,Pと純度99.9mass%の純銅とから各々の元素の母合金を作成し、その母合金を用いて調整した。 The results of confirmation experiments conducted to confirm the effects of the present invention will be described below.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more, and Cu-1 mass% S prepared by using pure S having a purity of 99 mass% or more for the oxygen-free copper having a purity of 99.99 mass% or more. A mother alloy was prepared.
Regarding Pb, Bi, and P, which are impurities, a mother alloy of each element is prepared from Pb, Bi, P having a purity of 99.9 mass% or more and pure copper having a purity of 99.9 mass%, and adjusted using the mother alloy. did.
上述の銅原料を高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯に、上述のCu-1mass%S母合金、及び、不純物量を調整するために各種元素の母合金を投入し、表1に示す成分組成に調製した。得られた銅溶湯を、カーボン鋳型に注湯して、凝固時に10℃/sec.の冷却速度で冷却して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約25mm×幅約60mm×長さ約150~200mmとした。
The above-mentioned copper raw material was charged into a high-purity graphite crucible and subjected to high frequency melting in an atmosphere furnace in an Ar gas atmosphere. To the obtained copper melt, the above Cu-1 mass% S master alloy and a master alloy of various elements for adjusting the amount of impurities were added to prepare the composition shown in Table 1. The obtained copper melt was poured into a carbon mold and solidified at 10° C./sec. The ingot was produced by cooling at a cooling rate of. The size of the ingot was about 25 mm in thickness x about 60 mm in width x about 150 to 200 mm in length.
得られた鋳塊に対して、Arガス雰囲気中において、表2に記載の温度条件で1時間保持する熱処理を実施し、その後、水冷した。
熱処理後の銅素材を切断するとともに表面の酸化被膜を除去するために表面研削を実施した。このとき、その後の熱間圧延、冷間圧延、調質圧延の圧延率を考慮して、最終厚さが表2に示すものとなるように、熱間圧延に供する銅素材の厚さを調整した。
上述のように厚さを調整した銅素材に対して、表2に記載された条件で熱間圧延を行い、水冷を行った。 The obtained ingot was subjected to a heat treatment in the Ar gas atmosphere under the temperature condition shown in Table 2 for 1 hour, and then water-cooled.
The copper material after the heat treatment was cut and surface grinding was performed to remove the oxide film on the surface. At this time, the thickness of the copper material to be subjected to hot rolling is adjusted so that the final thickness is as shown in Table 2 in consideration of the rolling rates of the subsequent hot rolling, cold rolling and temper rolling. did.
The copper material, the thickness of which was adjusted as described above, was hot-rolled under the conditions shown in Table 2 and water-cooled.
熱処理後の銅素材を切断するとともに表面の酸化被膜を除去するために表面研削を実施した。このとき、その後の熱間圧延、冷間圧延、調質圧延の圧延率を考慮して、最終厚さが表2に示すものとなるように、熱間圧延に供する銅素材の厚さを調整した。
上述のように厚さを調整した銅素材に対して、表2に記載された条件で熱間圧延を行い、水冷を行った。 The obtained ingot was subjected to a heat treatment in the Ar gas atmosphere under the temperature condition shown in Table 2 for 1 hour, and then water-cooled.
The copper material after the heat treatment was cut and surface grinding was performed to remove the oxide film on the surface. At this time, the thickness of the copper material to be subjected to hot rolling is adjusted so that the final thickness is as shown in Table 2 in consideration of the rolling rates of the subsequent hot rolling, cold rolling and temper rolling. did.
The copper material, the thickness of which was adjusted as described above, was hot-rolled under the conditions shown in Table 2 and water-cooled.
熱間圧延後の銅素材に対して、表2に記載された圧延率で冷間圧延を実施した。
次に、冷間圧延後の銅素材に対して、表2に記載された条件により、再結晶熱処理を実施した。
そして、再結晶熱処理後の銅素材に対して、表2に記載された条件で調質圧延を行い、表2に示す厚さで幅60mmの特性評価用条材を製造した。 The copper material after hot rolling was subjected to cold rolling at the rolling ratios shown in Table 2.
Next, the copper material after cold rolling was subjected to recrystallization heat treatment under the conditions shown in Table 2.
Then, the copper material after the recrystallization heat treatment was temper-rolled under the conditions shown in Table 2 to produce a strip for characteristic evaluation having a thickness shown in Table 2 and a width of 60 mm.
次に、冷間圧延後の銅素材に対して、表2に記載された条件により、再結晶熱処理を実施した。
そして、再結晶熱処理後の銅素材に対して、表2に記載された条件で調質圧延を行い、表2に示す厚さで幅60mmの特性評価用条材を製造した。 The copper material after hot rolling was subjected to cold rolling at the rolling ratios shown in Table 2.
Next, the copper material after cold rolling was subjected to recrystallization heat treatment under the conditions shown in Table 2.
Then, the copper material after the recrystallization heat treatment was temper-rolled under the conditions shown in Table 2 to produce a strip for characteristic evaluation having a thickness shown in Table 2 and a width of 60 mm.
そして、以下の項目について評価を実施した。評価結果を表3に示す。
Then, the following items were evaluated. The evaluation results are shown in Table 3.
(加工性評価)
加工性の評価として、前述の熱間圧延、冷間圧延時における耳割れの有無を観察した。
目視で耳割れが全くあるいはほとんど認められなかったものを「A」、長さ1mm未満の小さな耳割れが発生したものを「B」、長さ1mm以上3mm未満の耳割れが発生したものを「C」、長さ3mm以上の大きな耳割れが発生したものを「D」とした。
なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。 (Processability evaluation)
As an evaluation of workability, the presence or absence of edge cracks was observed during the above hot rolling and cold rolling.
"A" indicates that there was no or little ear cracking visually, "B" indicates that a small ear crack having a length of less than 1 mm occurred, and "B" indicates that a ear crack having a length of 1 mm or more and less than 3 mm occurred. "C", and those in which a large ear crack having a length of 3 mm or more occurred were designated as "D".
The length of the edge crack is the length of the edge crack extending from the end in the width direction of the rolled material toward the center in the width direction.
加工性の評価として、前述の熱間圧延、冷間圧延時における耳割れの有無を観察した。
目視で耳割れが全くあるいはほとんど認められなかったものを「A」、長さ1mm未満の小さな耳割れが発生したものを「B」、長さ1mm以上3mm未満の耳割れが発生したものを「C」、長さ3mm以上の大きな耳割れが発生したものを「D」とした。
なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。 (Processability evaluation)
As an evaluation of workability, the presence or absence of edge cracks was observed during the above hot rolling and cold rolling.
"A" indicates that there was no or little ear cracking visually, "B" indicates that a small ear crack having a length of less than 1 mm occurred, and "B" indicates that a ear crack having a length of 1 mm or more and less than 3 mm occurred. "C", and those in which a large ear crack having a length of 3 mm or more occurred were designated as "D".
The length of the edge crack is the length of the edge crack extending from the end in the width direction of the rolled material toward the center in the width direction.
(引張強度)
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241により引張強度を測定した。
試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して平行になるように採取した。 (Tensile strength)
A No. 13B test piece specified in JIS Z 2201 was sampled from the characteristic evaluation strip, and the tensile strength was measured according to JIS Z 2241.
The test piece was sampled so that the tensile direction of the tensile test was parallel to the rolling direction of the characteristic evaluation strip.
特性評価用条材からJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241により引張強度を測定した。
試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して平行になるように採取した。 (Tensile strength)
A No. 13B test piece specified in JIS Z 2201 was sampled from the characteristic evaluation strip, and the tensile strength was measured according to JIS Z 2241.
The test piece was sampled so that the tensile direction of the tensile test was parallel to the rolling direction of the characteristic evaluation strip.
(導電率)
特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。 (conductivity)
A test piece having a width of 10 mm and a length of 60 mm was sampled from the characteristic evaluation strip, and the electrical resistance was determined by the four-terminal method. Moreover, the dimension of the test piece was measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and the volume. The test piece was sampled so that its longitudinal direction was parallel to the rolling direction of the characteristic evaluation strip.
特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。 (conductivity)
A test piece having a width of 10 mm and a length of 60 mm was sampled from the characteristic evaluation strip, and the electrical resistance was determined by the four-terminal method. Moreover, the dimension of the test piece was measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and the volume. The test piece was sampled so that its longitudinal direction was parallel to the rolling direction of the characteristic evaluation strip.
(打ち抜き加工性)
特性評価用条材から金型で角孔(8mm×8mm)を多数打抜いて、破断面比率の測定、及びかえり高さの測定により評価を行った。金型のクリアランスは対板厚比3%となる様に適宜調整し、50spm(stroke per minute)の打ち抜き速度により打ち抜きを行った。破断面比率、かえり高さの測定は、穴抜き側の切口面(特性評価用条材の圧延方向と平行な打ち抜き面)を光学顕微鏡で観察し、穴抜きした10サンプルの平均値として評価した。光学顕微鏡を用いて打ち抜き面を観察し、せん断変形で生じた面をせん断面とし、試料厚さからせん断面の厚さを引いた部分を破断面厚さとした。破断面比率は、破断面厚さ/試料厚さとして算出した。かえり高さについては、穴抜きしたサンプルの縦断面から、光学顕微鏡を用いて測定した。 (Punching processability)
A large number of square holes (8 mm×8 mm) were punched out from the characteristic evaluation strip with a die, and the evaluation was performed by measuring the fracture surface ratio and the burr height. The clearance of the mold was appropriately adjusted so that the plate thickness ratio was 3%, and punching was performed at a punching speed of 50 spm (stroke per minute). The fracture surface ratio and the burr height were measured by observing the cut surface on the punching side (the punching surface parallel to the rolling direction of the characteristic evaluation strip) with an optical microscope and evaluating it as the average value of 10 punched samples. .. The punched surface was observed using an optical microscope, the surface generated by shear deformation was taken as the shear surface, and the portion obtained by subtracting the thickness of the shear surface from the sample thickness was taken as the fracture surface thickness. The fracture surface ratio was calculated as the fracture surface thickness/sample thickness. The burr height was measured from the longitudinal section of the punched sample using an optical microscope.
特性評価用条材から金型で角孔(8mm×8mm)を多数打抜いて、破断面比率の測定、及びかえり高さの測定により評価を行った。金型のクリアランスは対板厚比3%となる様に適宜調整し、50spm(stroke per minute)の打ち抜き速度により打ち抜きを行った。破断面比率、かえり高さの測定は、穴抜き側の切口面(特性評価用条材の圧延方向と平行な打ち抜き面)を光学顕微鏡で観察し、穴抜きした10サンプルの平均値として評価した。光学顕微鏡を用いて打ち抜き面を観察し、せん断変形で生じた面をせん断面とし、試料厚さからせん断面の厚さを引いた部分を破断面厚さとした。破断面比率は、破断面厚さ/試料厚さとして算出した。かえり高さについては、穴抜きしたサンプルの縦断面から、光学顕微鏡を用いて測定した。 (Punching processability)
A large number of square holes (8 mm×8 mm) were punched out from the characteristic evaluation strip with a die, and the evaluation was performed by measuring the fracture surface ratio and the burr height. The clearance of the mold was appropriately adjusted so that the plate thickness ratio was 3%, and punching was performed at a punching speed of 50 spm (stroke per minute). The fracture surface ratio and the burr height were measured by observing the cut surface on the punching side (the punching surface parallel to the rolling direction of the characteristic evaluation strip) with an optical microscope and evaluating it as the average value of 10 punched samples. .. The punched surface was observed using an optical microscope, the surface generated by shear deformation was taken as the shear surface, and the portion obtained by subtracting the thickness of the shear surface from the sample thickness was taken as the fracture surface thickness. The fracture surface ratio was calculated as the fracture surface thickness/sample thickness. The burr height was measured from the longitudinal section of the punched sample using an optical microscope.
比較例1は、Sの含有量が2massppmと本発明の範囲よりも少ないため、破断面比率が10%と低くなり、かえり高さが25μmと大きくなった。
比較例2は、Sの含有量が1075massppmと本発明の範囲よりも多く、熱間加工時に割れが発生した。このため、その後の加工、評価を中止した。 In Comparative Example 1, the S content was 2 massppm, which was smaller than the range of the present invention, so the fracture surface ratio was as low as 10% and the burr height was as large as 25 μm.
In Comparative Example 2, the S content was 1075 mass ppm, which was higher than the range of the present invention, and cracking occurred during hot working. Therefore, the subsequent processing and evaluation were stopped.
比較例2は、Sの含有量が1075massppmと本発明の範囲よりも多く、熱間加工時に割れが発生した。このため、その後の加工、評価を中止した。 In Comparative Example 1, the S content was 2 massppm, which was smaller than the range of the present invention, so the fracture surface ratio was as low as 10% and the burr height was as large as 25 μm.
In Comparative Example 2, the S content was 1075 mass ppm, which was higher than the range of the present invention, and cracking occurred during hot working. Therefore, the subsequent processing and evaluation were stopped.
これに対して、Sの含有量が20massppm以上1000massppm以下の範囲内とされた本発明例1-36においては、破断面比率が十分に高く、かえり高さも小さくなった。よって、寸法精度良く打ち抜き加工を行うことができた。また、熱間加工時及び冷間加工時の加工性に優れていた。
Pb及びBiの合計含有量が20massppmを超えた本発明例35、及び、Pの含有量が5massppmを超えた本発明例36においては、熱間加工時に耳割れが確認されたが、実用上、問題はなかった。 On the other hand, in Example 1-36 of the present invention in which the S content was in the range of 20 mass ppm to 1000 mass ppm, the fracture surface ratio was sufficiently high and the burr height was also small. Therefore, it was possible to perform punching with high dimensional accuracy. Further, it was excellent in workability during hot working and cold working.
In the present invention example 35 in which the total content of Pb and Bi exceeded 20 massppm, and in the present invention example 36 in which the P content exceeded 5 massppm, ear cracking was confirmed during hot working, but in practice, There was no problem.
Pb及びBiの合計含有量が20massppmを超えた本発明例35、及び、Pの含有量が5massppmを超えた本発明例36においては、熱間加工時に耳割れが確認されたが、実用上、問題はなかった。 On the other hand, in Example 1-36 of the present invention in which the S content was in the range of 20 mass ppm to 1000 mass ppm, the fracture surface ratio was sufficiently high and the burr height was also small. Therefore, it was possible to perform punching with high dimensional accuracy. Further, it was excellent in workability during hot working and cold working.
In the present invention example 35 in which the total content of Pb and Bi exceeded 20 massppm, and in the present invention example 36 in which the P content exceeded 5 massppm, ear cracking was confirmed during hot working, but in practice, There was no problem.
以上のことから、本発明例によれば、打ち抜き加工性に優れ、精度良く、かつ、効率的に打ち抜き加工を行うことが可能な純銅板を提供できることが確認された。
From the above, according to the present invention example, it was confirmed that it is possible to provide a pure copper plate having excellent punching workability, capable of performing punching with high accuracy and efficiency.
本発明によれば、打ち抜き加工性に優れ、精度良く、かつ、効率的に打ち抜き加工を行うことが可能な純銅板、この純銅板からなる電子・電気機器用部材及び放熱用部材を提供することができる。
According to the present invention, there is provided a pure copper plate having excellent punching workability, capable of performing punching with high accuracy and efficiency, a member for electronic/electrical equipment and a member for heat dissipation made of this pure copper plate. You can
Claims (8)
- Sを除くCuの純度が99.96mass%以上で、残部が不可避不純物であるとともに、Sを20massppm以上1000massppm以下の範囲内で含むことを特徴とする純銅板。 A pure copper plate characterized in that the purity of Cu excluding S is 99.96 mass% or more, the balance is unavoidable impurities, and contains S in the range of 20 mass ppm to 1000 mass ppm.
- Pb及びBiの合計含有量が20massppm以下であることを特徴とする請求項1に記載の純銅板。 The pure copper plate according to claim 1, wherein the total content of Pb and Bi is 20 massppm or less.
- Pの含有量が5massppm以下であることを特徴とする請求項1又は請求項2に記載の純銅板。 The pure copper plate according to claim 1 or 2, wherein the content of P is 5 massppm or less.
- 打ち抜き断面における破断面比率が20%以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の純銅板。 The pure copper plate according to any one of claims 1 to 3, wherein the fracture surface ratio in the punched cross section is 20% or more.
- 引張強度が500MPa以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の純銅板。 The pure copper plate according to any one of claims 1 to 4, which has a tensile strength of 500 MPa or less.
- 導電率が90%IACS以上であることを特徴とする請求項1から請求項5のいずれか一項に記載の純銅板。 The pure copper plate according to any one of claims 1 to 5, which has an electrical conductivity of 90% IACS or more.
- 請求項1から請求項6のいずれか一項に記載の純銅板からなることを特徴とする電子・電気機器用部材。 A member for electronic/electrical equipment, comprising the pure copper plate according to any one of claims 1 to 6.
- 請求項1から請求項6のいずれか一項に記載の純銅板からなることを特徴とする放熱用部材。 A heat dissipation member comprising the pure copper plate according to any one of claims 1 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018233346A JP2020094241A (en) | 2018-12-13 | 2018-12-13 | Pure copper material, member for electronic and electrical device, member for heat release |
JP2018-233346 | 2018-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122230A1 true WO2020122230A1 (en) | 2020-06-18 |
Family
ID=71077323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048948 WO2020122230A1 (en) | 2018-12-13 | 2019-12-13 | Pure copper sheet, member for electronic/electric device, and member for heat dissipation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020094241A (en) |
WO (1) | WO2020122230A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112375927A (en) * | 2020-10-16 | 2021-02-19 | 中南大学 | Preparation method of high-heat-resistance oxygen-free copper |
WO2023277197A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277198A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277196A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277199A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
JP2023008974A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and component for electronic/electrical equipment and bus bar |
JP2023008975A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
JP2023008977A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
JP2023008976A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4536664B1 (en) * | 1968-02-02 | 1970-11-20 | ||
JPS61113739A (en) * | 1984-11-07 | 1986-05-31 | Nippon Mining Co Ltd | Copper alloy having superior corrosion resistance |
JPH067961A (en) * | 1992-05-12 | 1994-01-18 | Honda Motor Co Ltd | Cu alloy electrode for resistance welding |
JPH10245647A (en) * | 1997-03-06 | 1998-09-14 | Furukawa Electric Co Ltd:The | Copper wire rod for insulation-coated electric wire and its production |
WO2004087974A1 (en) * | 2003-04-03 | 2004-10-14 | Outokumpu Oyj | Machinable copper alloy |
JP2015206075A (en) * | 2014-04-21 | 2015-11-19 | 株式会社Shカッパープロダクツ | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
JP2016169414A (en) * | 2015-03-12 | 2016-09-23 | 新日鉄住金マテリアルズ株式会社 | Metal wire for solar cell wire and solar cell module |
JP2018031064A (en) * | 2016-08-26 | 2018-03-01 | 三菱マテリアル株式会社 | Copper stock for sputtering target |
-
2018
- 2018-12-13 JP JP2018233346A patent/JP2020094241A/en active Pending
-
2019
- 2019-12-13 WO PCT/JP2019/048948 patent/WO2020122230A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4536664B1 (en) * | 1968-02-02 | 1970-11-20 | ||
JPS61113739A (en) * | 1984-11-07 | 1986-05-31 | Nippon Mining Co Ltd | Copper alloy having superior corrosion resistance |
JPH067961A (en) * | 1992-05-12 | 1994-01-18 | Honda Motor Co Ltd | Cu alloy electrode for resistance welding |
JPH10245647A (en) * | 1997-03-06 | 1998-09-14 | Furukawa Electric Co Ltd:The | Copper wire rod for insulation-coated electric wire and its production |
WO2004087974A1 (en) * | 2003-04-03 | 2004-10-14 | Outokumpu Oyj | Machinable copper alloy |
JP2015206075A (en) * | 2014-04-21 | 2015-11-19 | 株式会社Shカッパープロダクツ | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car |
JP2016169414A (en) * | 2015-03-12 | 2016-09-23 | 新日鉄住金マテリアルズ株式会社 | Metal wire for solar cell wire and solar cell module |
JP2018031064A (en) * | 2016-08-26 | 2018-03-01 | 三菱マテリアル株式会社 | Copper stock for sputtering target |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112375927A (en) * | 2020-10-16 | 2021-02-19 | 中南大学 | Preparation method of high-heat-resistance oxygen-free copper |
WO2023277197A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277198A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277196A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
WO2023277199A1 (en) * | 2021-07-02 | 2023-01-05 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and electronic/electrical device component and busbar |
JP2023008974A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, and component for electronic/electrical equipment and bus bar |
JP2023008975A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
JP2023008977A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
JP2023008976A (en) * | 2021-07-02 | 2023-01-19 | 三菱マテリアル株式会社 | Copper strip for edgewise bending, component for electronic/electrical equipment, and bus bar |
JP7215627B2 (en) | 2021-07-02 | 2023-01-31 | 三菱マテリアル株式会社 | Copper strips for edgewise bending, parts for electronic and electrical equipment, bus bars |
JP7215626B2 (en) | 2021-07-02 | 2023-01-31 | 三菱マテリアル株式会社 | Copper strips for edgewise bending, parts for electronic and electrical equipment, bus bars |
JP7243904B2 (en) | 2021-07-02 | 2023-03-22 | 三菱マテリアル株式会社 | Copper strips for edgewise bending, parts for electronic and electrical equipment, bus bars |
JP7243903B2 (en) | 2021-07-02 | 2023-03-22 | 三菱マテリアル株式会社 | Copper strips for edgewise bending, parts for electronic and electrical equipment, bus bars |
Also Published As
Publication number | Publication date |
---|---|
JP2020094241A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020122230A1 (en) | Pure copper sheet, member for electronic/electric device, and member for heat dissipation | |
WO2020122112A1 (en) | Pure copper plate | |
CN114269957B (en) | Pure copper plate | |
JP6758746B2 (en) | Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars | |
CN114787400B (en) | Copper alloy, copper alloy plastic working material, electronic/electrical device module, terminal, bus bar, and heat dissipating substrate | |
KR102474714B1 (en) | Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar | |
JP6680041B2 (en) | Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars | |
WO2017043551A1 (en) | Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar | |
WO2017170699A1 (en) | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays | |
JP5910790B1 (en) | Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars | |
WO2019189534A1 (en) | Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar | |
JP6680042B2 (en) | Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars | |
WO2017170733A1 (en) | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays | |
CN115244196A (en) | Pure copper plate, copper-ceramic junction body, and insulated circuit board | |
TWI502084B (en) | Copper alloy for electronic/electric device, component for electronic/electric device, and terminal | |
WO2021107102A1 (en) | Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, heat-dissipating board | |
KR20230030578A (en) | Copper alloys, plastically processed copper alloys, parts for electronic and electrical devices, terminals, bus bars, lead frames, and heat dissipation boards | |
KR20220105156A (en) | Copper alloy, copper alloy plastic processing material, electronic/electrical device parts, terminal, bus bar, heat dissipation board | |
WO2017043558A1 (en) | Copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar | |
WO2023127851A1 (en) | Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate | |
JP7078091B2 (en) | Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards | |
KR20240090128A (en) | Copper alloy, plastically processed copper alloy material, parts for electronic and electrical devices, terminals, bus bars, lead frames | |
KR20230030580A (en) | Copper alloys, plastically processed copper alloys, parts for electronic and electrical devices, terminals, bus bars, lead frames, and heat dissipation boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19896039 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19896039 Country of ref document: EP Kind code of ref document: A1 |