[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020121398A1 - Display device and method for manufacturing same - Google Patents

Display device and method for manufacturing same Download PDF

Info

Publication number
WO2020121398A1
WO2020121398A1 PCT/JP2018/045427 JP2018045427W WO2020121398A1 WO 2020121398 A1 WO2020121398 A1 WO 2020121398A1 JP 2018045427 W JP2018045427 W JP 2018045427W WO 2020121398 A1 WO2020121398 A1 WO 2020121398A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
light emitting
electron transport
layer
display device
Prior art date
Application number
PCT/JP2018/045427
Other languages
French (fr)
Japanese (ja)
Inventor
久幸 内海
仲西 洋平
昌行 兼弘
翔太 岡本
弘毅 今林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/298,847 priority Critical patent/US12022673B2/en
Priority to CN201880100139.XA priority patent/CN113243054B/en
Priority to PCT/JP2018/045427 priority patent/WO2020121398A1/en
Publication of WO2020121398A1 publication Critical patent/WO2020121398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a display device provided with an electron transport layer containing metal oxide nanoparticles between a cathode and a light emitting layer, and a manufacturing method thereof.
  • FIG. 3A is a diagram showing a laminated structure of a main part of a light emitting element of a conventional display device
  • FIG. 3B is a diagram showing a light emitting layer on a light emitting layer of the display device shown in FIG. It is a figure which shows the structure of an electron carrying layer typically.
  • the display device including the quantum dot light emitting diode includes an electron transport layer (hereinafter, referred to as “ETL”) 124c between the quantum dot light emitting layer 124b and the cathode 125.
  • ETL electron transport layer
  • the ETL 124c is formed by spin coating (spinner coating) a dispersion liquid in which nanoparticles NP of metal oxide (generally zinc oxide) are dispersed in a solvent.
  • JP-A-2015-099804 Japanese Patent Laid-Open Publication
  • the nanoparticles NP have small particles, they easily aggregate and have low dispersibility. Therefore, if the ETL124c is formed by applying the above-mentioned dispersion liquid by a spinner, stable film formation cannot be performed, and as shown in FIG. 3B, the formed ETL124c has a non-uniform and flat surface. Will be bad. As a result, the electron transfer of the ETL 124c is biased, and it is highly possible that the ETL 124c does not emit light uniformly.
  • Patent Document 1 in order to improve film adhesion between a transparent resin substrate in an organic electroluminescence element and an inorganic functional layer such as an electrode layer, a barrier layer, and a charge injection/transport layer, the above transparent resin substrate is used. Between the above-mentioned inorganic functional layer and the above-mentioned inorganic functional layer, forming a metal oxide nanoparticle-containing layer in which nanoparticles of a metal oxide surface-treated with a coupling agent such as a silane coupling agent are dispersed in an actinic ray curable resin. Is disclosed.
  • Patent Document 1 by surface-treating the metal oxide nanoparticles with a coupling agent such as a silane coupling agent, the affinity between the metal oxide nanoparticles and the actinic radiation curable resin is increased.
  • the metal oxide nanoparticles can be uniformly dispersed in the actinic radiation curable resin.
  • the metal oxide nanoparticle-containing layer described in Patent Document 1 is not the electron transport layer itself. Further, the silane coupling agent is not a dopant and cannot transfer electrons. That is, the silane coupling agent does not have a function of receiving an electron and giving it to the metal oxide nanoparticles. Therefore, the metal oxide nanoparticle-containing layer described in Patent Document 1 cannot be used as an electron transport layer.
  • One embodiment of the present invention has been made in view of the above problems, and an object thereof is that the dispersibility of an electron transporting layer containing nanoparticles of a metal oxide is higher than that of a conventional one, and that the luminous efficiency is superior to that of the conventional one.
  • An object of the present invention is to provide a display device and a manufacturing method thereof.
  • the display device includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a cathode and the light emitting layer. And an electron transporting layer provided between the nanoparticles, the electron transporting layer including nanoparticles of a metal oxide and an organic modifying agent having an electron donating property and covering the surface of the nanoparticles.
  • a method for manufacturing a display device includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, the cathode, and the light emission.
  • An electron-transporting layer provided between the layer and the layer, the electron-transporting layer including nanoparticles of a metal oxide and an organic modifier having an electron-donating property, which covers the surface of the nanoparticles.
  • a method of manufacturing a display device which comprises: laminating the electron transport layer on the light emitting layer after the light emitting layer is cured.
  • the present invention it is possible to provide a display device in which the dispersibility of an electron transport layer containing nanoparticles of a metal oxide is higher than before, and which is more excellent in light emission efficiency than before, and a manufacturing method thereof.
  • (A) is a figure which shows typically an example of the laminated structure of the light emitting element of the display apparatus which concerns on embodiment of this invention, (b) is electron transport on the light emitting layer of the display apparatus shown in (a). It is a figure which shows the structure of a layer typically. It is sectional drawing which shows an example of schematic structure of the display apparatus which concerns on embodiment of this invention.
  • (A) is a figure which shows the laminated structure of the principal part of the light emitting element of the conventional display apparatus, (b) is a structure of the electron carrying layer on the light emitting layer of the display apparatus shown to (a) typically.
  • the display device is a QLED display including a quantum dot light emitting diode (hereinafter, referred to as “QLED”) as a light emitting element will be described as an example.
  • QLED quantum dot light emitting diode
  • FIG. 1A is a diagram schematically showing an example of a laminated structure of QLEDs in the display device 1 according to the present embodiment.
  • 1B is an electron transport layer (hereinafter, referred to as “ETL”) on the quantum dot light emitting layer (hereinafter, referred to as “QD light emitting layer”) 24b of the display device 1 illustrated in FIG. 1A. It is a figure which shows the structure of 24c typically.
  • FIG. 2 is a cross-sectional view showing an example of a schematic configuration of the display device 1 according to the present embodiment, which includes QLEDs 5R, 5G, and 5B as light emitting elements.
  • the display device 1 has a configuration in which a QLED layer 5 is provided as a light emitting element layer on the array substrate 2.
  • the QLED layer 5 is covered with a sealing layer 6.
  • the array substrate 2 includes, for example, a lower surface film 10, a resin layer 12, a barrier layer 3, and a TFT layer 4 as a drive element layer.
  • the lower surface film 10 is, for example, a PET (polyethylene terephthalate) film for realizing a display device having excellent flexibility by sticking the supporting substrate (for example, mother glass) on the lower surface of the resin layer 12 after peeling the supporting substrate.
  • a solid substrate such as a glass substrate may be used.
  • the resin layer 12 may be made of polyimide, for example.
  • the resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched therebetween.
  • the barrier layer 3 is a layer that prevents foreign matter such as water and oxygen from entering the TFT layer 4 and the QLED layer 5.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring above the inorganic insulating film 16, a gate electrode GE and a gate.
  • the TFT as a drive element is configured to include the semiconductor film 15 and the gate electrode GE, including the wiring including the wiring and the planarization film 21 (interlayer insulating film) above the source wiring SH.
  • the semiconductor film 15 is made of, for example, LTPS (low temperature polysilicon) or an oxide semiconductor. Although the TFT having the semiconductor film 15 as a channel is shown as a top gate structure in FIG. 2, it may be a bottom gate structure.
  • the barrier layer 3 and the inorganic insulating films 16, 18, and 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film (SiNO), which are formed by a CVD (Chemical Vapor Deposition) method. Alternatively, a laminated film of these can be used.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • SiNO silicon oxynitride film
  • CVD Chemical Vapor Deposition
  • the wirings such as the gate electrode GE, the capacitance electrode CE, and the source wiring SH are, for example, Al (aluminum), W (tungsten), Mo (molybdenum), Ta (tantalum), Cr (chromium), Ti (titanium), Cu( It is composed of a metal single layer film or a laminated film containing at least one of copper).
  • the flattening film 21 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the QLED layer 5 is provided with a plurality of QLEDs as light emitting elements.
  • the QLED is formed for each sub pixel corresponding to the sub pixel.
  • the display device 1 has, for example, a sub-pixel RSP (red sub-pixel) that emits red light, a sub-pixel GSP (green sub-pixel) that emits green light, and a sub-pixel BSP (that emits blue light) as sub-pixels. Blue sub-pixels).
  • RSP red sub-pixel
  • GSP green sub-pixel
  • BSP blue light
  • the sub-pixel RSP is provided with a QLED 5R that emits red light as a QLED.
  • the sub-pixel GSP is provided with a QLED 5G that emits green light as a QLED.
  • the sub-pixel BSP is provided with a QLED 5B that emits blue light as a QLED.
  • red light refers to light having an emission center wavelength in the wavelength band of 600 nm or more and 780 nm or less.
  • Green light refers to light having an emission center wavelength in a wavelength band of more than 500 nm and 600 nm or less.
  • Blue light refers to light having an emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • each of the QLEDs has an anode 22 and a hole transport layer (hereinafter referred to as “HTL”) 24a (HTL24aR, HTL24aG, HTL24aB).
  • HTL hole transport layer
  • each QD light emitting layer 24b any one of QD light emitting layer 24bR, QD light emitting layer 24bG, and QD light emitting layer 24bB having a different wavelength region
  • ETL24c ETL24cR, ETL24cG, ETL24cB
  • the cathode 25 is laminated in this order from the array substrate 2 side.
  • the anode 22 is electrically connected to each TFT of the array substrate 2.
  • the QLED 5R includes the HTL 24aR as the HTL 24a, the QD light emitting layer 24bR as the QD light emitting layer 24b, and the ETL24cR (first electron transport layer) as the ETL 24c.
  • the QLED 5G includes the HTL 24aG as the HTL 24a, the QD light emitting layer 24bG as the QD light emitting layer 24b, and the ETL 24cG (second electron transport layer) as the ETL 24c.
  • the QLED 5B includes the HTL 24aB as the HTL 24a, the QD light emitting layer 24bB as the QD light emitting layer 24b, and the ETL 24cB (third electron transport layer) as the ETL 24c.
  • the anode 22, the HTL 24a, the QD light emitting layer 24b, and the ETL 24c in each subpixel are separated into islands for each subpixel by an edge cover 23 that covers the edge of the anode 22.
  • the cathode 25 is not separated by the edge cover 23 and is formed as a common layer common to each sub-pixel.
  • the anode 22 and the cathode 25 include a conductive material and are electrically connected to the HTL 24a and the ETL 24c, respectively.
  • One of the anode 22 and the cathode 25 is a transparent electrode having a light-transmitting property, and the other is a reflective electrode having a light-reflecting property.
  • the cathode 25 is a transparent electrode, and is, for example, ITO (indium tin oxide), IZO (indium zinc oxide), or AZO. (Aluminum zinc oxide) or GZO (gallium zinc oxide) or the like, and is formed of a light-transmitting conductive material.
  • the anode 22 has, for example, a layer made of such a translucent conductive material and a high visible light reflectance such as Al (aluminum), Cu (copper), Au (gold), or Ag (silver).
  • a laminate of a layer made of a metal or an alloy thereof is used.
  • the display device 1 may be a bottom emission type display device that extracts light from the anode 22 side. In this case, a transparent electrode is used for the anode 22 and a reflective electrode is used for the cathode 25.
  • the display device 1 holes and electrons are recombined in the QD light emitting layer 24b by a driving current between the anode 22 and the cathode 25, and excitons generated by the recombination generate quantum dots (semiconductor nanoparticles: hereinafter, " The light is emitted in the process of transition from the conduction band level of QD”) to the valence band level.
  • the HTL 24a transports holes from the anode 22 to the QD light emitting layer 24b.
  • the HTL 24a may include an inorganic material such as nickel oxide (NiO) or molybdenum oxide (MoO 3 ), and may be PEDOT (polyethylenedioxythiophene), PEDOT-PSS (poly(3,4-ethylenedioxythiophene).
  • HTL24aR, HTL24aG, and HTL24aB may be formed of the same material or may
  • the ETL 24c transports electrons from the cathode 25 to the QD light emitting layer 24b.
  • the ETL 24c will be described in detail later.
  • the QD light emitting layer 24b emits light by recombination of holes transported from the anode 22 and electrons transported from the cathode 25.
  • each sub-pixel is provided with a QD of each color as a light emitting material.
  • the QD light emitting layer 24bR in the sub pixel RSP has a red QD
  • the QD light emitting layer 24bG in the sub pixel GSP has a green QD
  • the QD light emitting layer 24bB in the sub pixel BSP has a blue QD.
  • the QD light emitting layer 24b includes a plurality of types of QDs
  • the same sub-pixel includes the same type of QDs.
  • Red QD, green QD, and blue QD are, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus). ), As (arsenic), Sb (antimony), Al (aluminum), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), and Mg (magnesium). You may include the semiconductor material comprised by the element of.
  • a dispersion liquid in which QD is dispersed in a solvent such as hexane, toluene, octadecane, cyclododecene, or phenylcyclohexane is applied by sub-pixels by a spin coating method, an inkjet method, or the like.
  • a film can be formed.
  • the dispersion liquid may be mixed with a dispersion material such as thiol and amine.
  • the sealing layer 6 prevents foreign matter such as water and oxygen from penetrating into the QLED layer 5.
  • the sealing layer 6 includes, for example, an inorganic sealing film 26 that covers the cathode 25, an organic buffer film 27 that is an upper layer than the inorganic sealing film 26, and an inorganic sealing film 28 that is an upper layer than the organic buffer film 27. ..
  • the inorganic sealing film 26 and the inorganic sealing film 28 are each an inorganic insulating film, and are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film (SiNO), which are formed by a CVD method. Alternatively, a laminated film of these can be used.
  • the organic buffer film 27 is a translucent organic film having a flattening effect, and can be made of a coatable organic material such as acrylic.
  • the organic buffer film 27 can be formed by, for example, inkjet coating, but a bank for stopping the droplet may be provided in the non-display area.
  • ETL24c is an organic modified metal oxide in which the surface of metal oxide nanoparticles NP is covered by surface modification with an organic modifying agent OM having an electron donating property. Contains nanoparticles. Therefore, the ETL 24c contains the metal oxide nanoparticles NP and the organic modifier OM having an electron donating property and covering the surface of the nanoparticles NP.
  • nanoparticles mean particles having a weight average particle diameter of nanometer size (that is, less than 1 ⁇ m).
  • the weight average particle diameter of the nanoparticles NP is preferably in the range of 1 nm to 20 nm because the emission characteristics can be improved, and in the range of 2.5 nm to 12 nm, the electron transfer of ETL24c. It is more preferable because the degree can be improved.
  • the metal oxide are selected from the group consisting of ZnO (zinc oxide), TiO 2 (titanium oxide), MgZnO (magnesium zinc oxide), Ta 2 O 3 (tantalum oxide), and SrTiO 3 (strontium titanium oxide). At least one kind of metal oxide is used.
  • the ETL 24c may include the same kind of metal oxide nanoparticles NP in the sub-pixel RSP, the sub-pixel GSP, and the sub-pixel BSP, and the sub-pixel RSP, the sub-pixel GSP, and the sub-pixel BSP have different types.
  • the metal oxide nanoparticles NP may be included.
  • the ETL24cR, ETL24cG, and ETL24cB may include nanoparticles NP of the same type of metal oxide, or may include nanoparticles NP of different types of metal oxides.
  • the metal oxide nanoparticles used for ETL zinc oxide nanoparticles (hereinafter, referred to as “ZnO—NP”) are common, and they are inexpensive and easily available. Therefore, ZnO-NP is suitable as the nanoparticles NP.
  • the organic modifier OM is an organic dopant compound capable of donating and accepting electrons and donating electrons to the nanoparticles NP.
  • the nanoparticles NP receive electrons from the cathode 25 via the organic modifier OM and release (transport) the received electrons to the QD light emitting layer 24b.
  • the organic modifier OM is not particularly limited as long as it is a dopant (donor) having an electron donating property.
  • the dopant is used to adjust the concentration of carriers (electrons, holes) and variously control the band structure such as forbidden band width and physical properties by changing the physical properties of the semiconductor crystal.
  • a dopant that is an impurity added to a semiconductor and that supplies electrons to the semiconductor as carriers is called a donor.
  • Examples of the organic modifier OM include 1,3-bis(carbazol-9-yl)benzene, 4,4′,4′′-tri(carbazol-9-yl)triphenylamine, 4,4′- Examples thereof include at least one compound selected from the group consisting of bis(carbazol-9-yl)biphenyl.
  • the ETL24cR, ETL24cG, and ETL24cB may include the same type of organic modifier OM or may include different types of organic modifier OM.
  • These organic modifiers OM have, for example, a structure having a plurality of benzene rings, and a nitrogen atom bonded to the benzene rings, and by the electron-donating action of the unpaired electrons of nitrogen, the electrons are applied to the nanoparticles NP. To donate.
  • the above-mentioned organically modified metal oxide nanoparticles can be manufactured by applying various known methods known as surface modification methods for inorganic particles, and the manufacturing method is not particularly limited.
  • ZnO—NP is recovered by precipitating ZnO—NP by adding hexane to ZnO—NP dispersed in ethanol.
  • a solvent in which the organic modifier OM is dissolved is added to NP, and the mixture is agitated to allow ZnO-NP and the organic modifier OM to coexist, whereby the ZnO-NP is surface-coated with the organic modifier OM.
  • the surface modification in this case is, for example, a chemical bond by a coordinate bond (coordinative bond between the donor and the ZnO—NP by the organic modifier OM), and is carried out at normal temperature under atmospheric pressure.
  • the surface modification may be reactive modification, and the temperature, pressure, stirring time, type of stirring device, etc. are not particularly limited.
  • the ETL24c is a spin coating method (spinner coating) of the solvent containing the metal oxide nanoparticles NP and the organic modifier OM (in other words, a dispersion liquid in which the organic modified metal oxide nanoparticles are dispersed in the solvent). ) Or an ink-jet method or the like for application.
  • the solvent examples include toluene, chlorobenzene, o-dichlorobenzene, phenylcyclohexane, 4-isopropylbiphenyl, 1,1-bis(3,4-dimethylphenyl)ethane and the like.
  • the solvent may be used alone or as a mixture of plural kinds. Since these solvents are volatile and volatilize at room temperature or by heating, the solid film of ETL24c can be easily formed.
  • the dispersibility of the nanoparticles NP in the solvent can be improved by covering the surface of the nanoparticles NP with the organic modifier OM. Therefore, the flatness of the ETL 24c is improved by applying the nanoparticles NP covered with the organic modifier OM by, for example, the spin coating method or the inkjet method as described above.
  • the ETL 24c is a metal oxide of the metal oxide nanoparticles NP and the organic modifier OM. It is possible to increase the number of electrons supplied to the QD light emitting layer 24b as compared with the case where only the nanoparticles NP are included).
  • the reason for this is as follows.
  • electrons are supplied (injected) from the cathode 25 to the nanoparticles NP, and the electrons are emitted from the nanoparticles NP to the QD emission layer 24b.
  • electrons are supplied to the nanoparticles NP from the donor on the surface of the nanoparticles NP.
  • the electrons deficient in the emission of the nanoparticles NP are always supplemented. Therefore, there is no shortage of electrons in the QLED.
  • the electrons are also supplied from the cathode 25 to the donor.
  • the electron When the electron is supplied from the cathode 25 to the donor, the electron is supplied from the donor to the nanoparticle NP so as to be extruded, and further, the electron is emitted from the nanoparticle NP to be extruded to the QD emission layer 24b. Therefore, the electrons are exchanged via the donor in this way, so that the mobility (movement speed) of the electrons is increased. The higher the moving speed, the more the number (number) of electrons flowing per unit time. Therefore, by covering the nanoparticles NP with the organic modifier OM, the number of electrons supplied to the QD emission layer 24b can be increased.
  • the nanoparticles NP are covered with the organic modifier OM having an electron donating property, it is possible to increase the number of electrons supplied to the QD light emitting layer 24b. Therefore, the luminous efficiency of the display device 1 can be improved as compared with the conventional case.
  • the number of holes and the number of electrons in the QD light emitting layer 24b are as close to each other as possible.
  • the light emission efficiency is improved.
  • a material having a high hole transport efficiency has been developed as an HTL material. According to this embodiment, even if the HTL 24a is made of a material having a high hole transport efficiency, the QLED does not run out of electrons. Therefore, in this embodiment, it is possible to easily improve the luminous efficiency.
  • the number of holes and the number of electrons in the QD light-emitting layer 24b are adjusted. It is also possible to make adjustments so that the numbers substantially match. Therefore, in the present embodiment, it is possible to improve the light emission efficiency more easily.
  • the surface of the nanoparticles NP is not covered with the modifying agent (donor), and the surface of the nanoparticles NP is exposed. Therefore, for example, as shown in FIG.
  • the nanoparticles NP themselves are thermally damaged.
  • the nanoparticles (NP) are greatly damaged (deteriorated) by the foreign substances under an active atmosphere (that is, an atmosphere in which foreign substances such as oxygen and water are present). The characteristics deteriorate quickly.
  • the nanoparticles NP by covering the surface of the nanoparticles NP with the organic modifier OM as described above, the nanoparticles NP is damaged by the foreign matter such as water and oxygen under the active atmosphere ( Is less susceptible to deterioration. Therefore, according to the present embodiment, it is possible to provide the display device 1 having higher reliability than the conventional one.
  • the barrier effect is low because the spacing between the nanoparticles NP expands depending on the coating state of the dispersion liquid.
  • the organic modifier OM when the surface of the nanoparticles NP is covered with the organic modifier OM as described above, when the material to be the upper layer of the ETL 24c is applied onto the ETL 24c (for example, the cathode 25 is The organic modifier OM reduces the thermal damage to the nanoparticles NP itself and the thermal damage to the lower layer of the ETL 24c such as the QD light emitting layer 24b due to the heat (when laminated by a method such as sputtering or vapor deposition). can do.
  • the ETL 24c having high flatness can be formed.
  • the lower layer of the ETL 24c is not damaged through the portion where the ETL 24c is thinner than the others. Therefore, according to this embodiment, it is possible to prevent damage to the lower layer of the ETL 24c due to the ETL 24c having a non-uniform film thickness.
  • the display device 1 in which the dispersibility of the electron transport layer containing the nanoparticles of the metal oxide is higher than the conventional one and the luminous efficiency is superior to the conventional one. Further, according to the present embodiment, as described above, the flatness of the electron transport layer containing nanoparticles of the metal oxide can be improved as compared with the conventional one, and the nanoparticles are heated, oxygen, or water. It is possible to provide the display device 1 that can be protected from foreign matter such as.
  • the volume ratio (mixing ratio) of the organic modifier OM to the nanoparticles NP in ETL24c represented by the organic modifier OM/metal oxide nanoparticles NP is 1/99 to 30/70. It is preferably within the range, more preferably within the range of 2/98 to 20/80, and particularly preferably within the range of 10/90 to 20/80.
  • the volume ratio can be easily obtained by, for example, obtaining the diameters of the nanoparticles NP and the organic modifier OM with an SEM (scanning electron microscope).
  • Table 1 shows that ZnO-NP was used as the nanoparticles NP, 1,3-bis(carbazol-9-yl)benzene was used as the organic modifier OM (donor), and toluene was used as the solvent. Under the same conditions except that the volume ratio between the nanoparticles NP and the donor was variously changed, the above-mentioned volume ratio when the display device having the structure shown in FIG. 2 was manufactured, and the ETL film thickness (average film thickness), ETL The relationship between the film thickness controllability, the surface roughness of ETL, and the external quantum efficiency (EQE) of the display device is shown.
  • sample No. Sample No. 1 is a comparative product. 2 to 8 are products of this embodiment.
  • the film thickness controllability indicates the difference between the actual film thickness of the ETL film measured by a step gauge and the target film thickness (target film thickness: 60 nm).
  • target film thickness target film thickness: 60 nm.
  • the difference between the film thickness of the formed ETL and the target film thickness is within a range of ⁇ 1.0 nm or less, it is defined as “ ⁇ ”, and the above difference exceeds ⁇ 1.0 nm and is within ⁇ 5.0 nm.
  • the difference was within the range of ⁇ 5.0 nm or more and ⁇ 8.0 nm or less, it was marked with “ ⁇ ”.
  • the surface roughness shows the magnitude of the surface roughness of ETL measured by an atomic force microscope (AFM), and the case where the surface roughness is less than 3.0 nm is “ ⁇ ”. ",” when the surface roughness is 3.0 nm or more and 3.5 nm or less, and “ ⁇ ” when the surface roughness exceeds 3.5 nm and 4.0 nm or less. did.
  • the product of the present embodiment includes the nanoparticles NP and the organic modifier OM having an electron donating property. Therefore, the product of the present embodiment exhibits EQE. It was proved that it was improved over the comparative product.
  • the thickness of ETL24c becomes slightly thicker than the target thickness, and the film thickness controllability is improved. Although it is low, there is a high possibility that the target film thickness will be approximated by adjusting the solution.
  • the ETL24c was deposited under the same conditions except that the volume ratio of the nanoparticles NP and the donor was variously changed as described above.
  • the film thickness controllability is low as compared with the case where the donor component amount for the nanoparticles is small, but as described above, even when the donor component amount for the nanoparticles is large.
  • the dispersibility of the nanoparticles NP in the solvent is improved as compared with the conventional case. It is possible to form the ETL 24c which has higher flatness than the conventional one, is capable of uniform light emission, and has high light emission efficiency.
  • the nanoparticles NP are covered with the organic modifier OM (donor), as described above, the number of electrons supplied to the QD emission layer 24b can be reduced.
  • the ETL 24c is separately formed in an island shape for each sub pixel.
  • the volume ratio of the organic modifier OM to the nanoparticles NP is larger in the order of ETL24cB (third electron transport layer), ETL24cG (second electron transport layer), ETL24cR (first electron transport layer).
  • the volume ratio of the organic modifier OM to the nanoparticles NP in ETL24cB is preferably in the range of 2/98 to 10/90, and the organic modifier OM to the nanoparticles NP in ETL24cG is preferable.
  • the volume ratio of the organic modifier OM to the nanoparticles NP in ETL24cR is in the range of 20/80 to 30/70. (However, the above volume ratio satisfies the relationship of ETL24cR>ETL24G>ETL24cB). When the above volume ratio satisfies the above relation and is set within the above range, the luminous efficiency can be controlled.
  • the resin layer 12 is formed on a translucent support substrate (for example, mother glass) not shown.
  • the barrier layer 3, the TFT layer 4, the QLED layer 5, and the sealing layer 6 are formed in this order on the resin layer 12.
  • a top film is attached on the sealing layer 6.
  • the supporting substrate is peeled off from the resin layer 12 by irradiation with laser light, the lower surface film 10 is attached to the lower surface of the resin layer 12, and then the lower surface film 10, the resin layer 12, the barrier layer 3, the TFT layer 4,
  • the laminated body including the QLED layer 5 and the sealing layer 6 is divided to obtain a plurality of pieces.
  • a functional film (not shown) is attached to the obtained individual pieces.
  • an electronic circuit board for example, an IC chip and an FPC
  • an electronic circuit board is mounted on a part (terminal portion) of the outside (non-display area, frame) of the display area in which the plurality of sub-pixels are formed.
  • the display device 1 is manufactured.
  • the anode 22, the edge cover 23, the HTL 24a, the QD light emitting layer 24b, the ETL 24c, and the cathode 25 are formed in this order on the TFT layer 4.
  • a solvent in which the organic modifier OM (donor) is dissolved is added to the metal oxide nanoparticles NP to be surface-modified with the organic modifier OM.
  • a dispersion containing the metal oxide nanoparticles NP is prepared, and the dispersion is applied onto the QD emission layer 24b by, for example, a spin coating method or an inkjet method.
  • the QD light emitting layer 24b (any one of the QD light emitting layer 24bR, the QD light emitting layer 24bG, and the QD light emitting layer 24bB) in each sub-pixel is cured
  • the upper surface of each QD light emitting layer 24b is cured.
  • the corresponding ETL24c (ETL24cR, ETL24cG, ETL24cB) is laminated. This prevents the material of the QD light emitting layer 24b and the material of the ETL 24c from being mixed with each other.
  • the ETL 24c is formed at 150° C. or lower. This prevents the material of the QD light emitting layer 24b from being thermally damaged.
  • the light emitting element is a QLED has been described as an example, but the present embodiment is not limited to this.
  • the light emitting element may be, for example, an organic light emitting diode (OLED) or an inorganic light emitting diode.
  • the plurality of types of quantum dots are a combination of red QD, green QD, and blue QD
  • the display device 1 includes subpixels RSP, subpixels GSP, and subpixels BSP as subpixels.
  • the combination is not necessarily required.
  • the light emitting element includes the HTL 24a, the light emitting layer (for example, the QD light emitting layer 24b), and the ETL 24c as the functional layers, which are laminated in this order from the anode 22 side between the anode 22 and the cathode 25.
  • the functional layer is not limited to the above combination as long as the functional layer includes the light emitting layer and the ETL 24c is provided between the cathode 25 and the light emitting layer.
  • a functional layer other than the above, such as an electron injection layer (EIL) may be further provided between the cathode 25 and the ETL 24c.
  • EIL electron injection layer
  • Display Device 22 Anode 24b, 24bR, 24bG, 24bB QD Light Emitting Layer (Light Emitting Layer) 24c, 24cR, 24cG, 24cB ETL 25 cathode RSP red sub-pixel GSP green sub-pixel BSP blue sub-pixel NP nanoparticles (metal oxide nanoparticles) OM organic modifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A display device (1) includes a positive electrode (22), a negative electrode (25), a QD light emitting layer (24b) that is provided between the positive electrode and the negative electrode, and an ETL (24c) that is provided between the negative electrode and the QD light emitting layer, wherein the ETL comprises metal oxide nanoparticles (NP) and an organic modifier (OM) that covers the surfaces of the nanoparticles and has electron donating characteristics.

Description

表示装置およびその製造方法Display device and manufacturing method thereof
 本発明は、陰極と発光層との間に、金属酸化物のナノ粒子を含む電子輸送層を備えた表示装置およびその製造方法に関する。 The present invention relates to a display device provided with an electron transport layer containing metal oxide nanoparticles between a cathode and a light emitting layer, and a manufacturing method thereof.
 図3の(a)は、従来の表示装置の発光素子の要部の積層構造を示す図であり、図3の(b)は、図3の(a)に示す表示装置の発光層上の電子輸送層の構造を模式的に示す図である。図3の(a)に示すように、量子ドット発光ダイオードを備えた表示装置は、量子ドット発光層124bと陰極125との間に、電子輸送層(以下、「ETL」と記す)124cを備えている。ETL124cは、図3の(b)に示すように、金属酸化物(一般的に、酸化亜鉛)のナノ粒子NPを溶媒に分散した分散液をスピンコート(スピナー塗布)することにより形成される。 3A is a diagram showing a laminated structure of a main part of a light emitting element of a conventional display device, and FIG. 3B is a diagram showing a light emitting layer on a light emitting layer of the display device shown in FIG. It is a figure which shows the structure of an electron carrying layer typically. As shown in FIG. 3A, the display device including the quantum dot light emitting diode includes an electron transport layer (hereinafter, referred to as “ETL”) 124c between the quantum dot light emitting layer 124b and the cathode 125. ing. As shown in FIG. 3B, the ETL 124c is formed by spin coating (spinner coating) a dispersion liquid in which nanoparticles NP of metal oxide (generally zinc oxide) are dispersed in a solvent.
日本国公開特許公報「特開2015-099804号」Japanese Patent Laid-Open Publication "JP-A-2015-099804"
 しかしながら、上記ナノ粒子NPは粒子が小さいため、凝集し易く、分散性が低い。このため、上記分散液をスピナー塗布することによりETL124cを形成すると、安定した成膜を行うことができず、図3の(b)に示すように、形成されたETL124cが、不均一で平坦性が悪いものとなる。その結果、ETL124cの電子移動に偏りが見られ、均一に発光しない可能性が高い。 However, since the nanoparticles NP have small particles, they easily aggregate and have low dispersibility. Therefore, if the ETL124c is formed by applying the above-mentioned dispersion liquid by a spinner, stable film formation cannot be performed, and as shown in FIG. 3B, the formed ETL124c has a non-uniform and flat surface. Will be bad. As a result, the electron transfer of the ETL 124c is biased, and it is highly possible that the ETL 124c does not emit light uniformly.
 なお、例えば特許文献1には、有機エレクトロルミネッセンス素子における透明樹脂基板と、電極層、バリア層、電荷注入・輸送層等の無機機能層との膜密着性を改良するために、上記透明樹脂基板と上記無機機能層との間に、シランカップリング剤等のカップリング剤で表面処理された金属酸化物のナノ粒子を活性線硬化樹脂に分散させた金属酸化物ナノ粒子含有層を形成することが開示されている。 In addition, for example, in Patent Document 1, in order to improve film adhesion between a transparent resin substrate in an organic electroluminescence element and an inorganic functional layer such as an electrode layer, a barrier layer, and a charge injection/transport layer, the above transparent resin substrate is used. Between the above-mentioned inorganic functional layer and the above-mentioned inorganic functional layer, forming a metal oxide nanoparticle-containing layer in which nanoparticles of a metal oxide surface-treated with a coupling agent such as a silane coupling agent are dispersed in an actinic ray curable resin. Is disclosed.
 特許文献1によれば、上記金属酸化物のナノ粒子を、シランカップリング剤等のカップリング剤で表面処理することで、上記金属酸化物のナノ粒子と上記活性線硬化樹脂との親和力を高めて、上記金属酸化物のナノ粒子を上記活性線硬化樹脂に均一に分散させることができる。 According to Patent Document 1, by surface-treating the metal oxide nanoparticles with a coupling agent such as a silane coupling agent, the affinity between the metal oxide nanoparticles and the actinic radiation curable resin is increased. Thus, the metal oxide nanoparticles can be uniformly dispersed in the actinic radiation curable resin.
 しかしながら、特許文献1に記載の金属酸化物ナノ粒子含有層は、電子輸送層そのものではない。また、シランカップリング剤は、ドーパントではなく、電子の授受を行うことはできない。つまり、シランカップリング剤は、電子を受け取ってそれを金属酸化物のナノ粒子に与える機能を有していない。このため、特許文献1に記載の金属酸化物ナノ粒子含有層は、電子輸送層として用いることはできない。 However, the metal oxide nanoparticle-containing layer described in Patent Document 1 is not the electron transport layer itself. Further, the silane coupling agent is not a dopant and cannot transfer electrons. That is, the silane coupling agent does not have a function of receiving an electron and giving it to the metal oxide nanoparticles. Therefore, the metal oxide nanoparticle-containing layer described in Patent Document 1 cannot be used as an electron transport layer.
 本発明の一態様は、上記問題点に鑑みなされたものであり、その目的は、金属酸化物のナノ粒子を含む電子輸送層の分散性が従来よりも高く、従来よりも発光効率に優れた表示装置およびその製造方法を提供することを目的とする。 One embodiment of the present invention has been made in view of the above problems, and an object thereof is that the dispersibility of an electron transporting layer containing nanoparticles of a metal oxide is higher than that of a conventional one, and that the luminous efficiency is superior to that of the conventional one. An object of the present invention is to provide a display device and a manufacturing method thereof.
 上記の課題を解決するために、本発明の一態様に係る表示装置は、陽極と、陰極と、上記陽極と上記陰極との間に設けられた発光層と、上記陰極と上記発光層との間に設けられた電子輸送層と、を備え、上記電子輸送層は、金属酸化物のナノ粒子と、該ナノ粒子の表面を覆う、電子供与性を有する有機修飾剤と、を含む。 In order to solve the above problems, the display device according to one embodiment of the present invention includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a cathode and the light emitting layer. And an electron transporting layer provided between the nanoparticles, the electron transporting layer including nanoparticles of a metal oxide and an organic modifying agent having an electron donating property and covering the surface of the nanoparticles.
 上記の課題を解決するために、本発明の一態様に係る表示装置の製造方法は、陽極と、陰極と、上記陽極と上記陰極との間に設けられた発光層と、上記陰極と上記発光層との間に設けられた電子輸送層と、を備え、上記電子輸送層が、金属酸化物のナノ粒子と、該ナノ粒子の表面を覆う、電子供与性を有する有機修飾剤と、を含む表示装置の製造方法であって、上記発光層が硬化した後、上記発光層上に上記電子輸送層を積層する方法である。 In order to solve the above problems, a method for manufacturing a display device according to one embodiment of the present invention includes an anode, a cathode, a light emitting layer provided between the anode and the cathode, the cathode, and the light emission. An electron-transporting layer provided between the layer and the layer, the electron-transporting layer including nanoparticles of a metal oxide and an organic modifier having an electron-donating property, which covers the surface of the nanoparticles. A method of manufacturing a display device, which comprises: laminating the electron transport layer on the light emitting layer after the light emitting layer is cured.
 本発明の一態様によれば、金属酸化物のナノ粒子を含む電子輸送層の分散性が従来よりも高く、従来よりも発光効率に優れた表示装置およびその製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a display device in which the dispersibility of an electron transport layer containing nanoparticles of a metal oxide is higher than before, and which is more excellent in light emission efficiency than before, and a manufacturing method thereof.
(a)は、本発明の実施形態に係る表示装置の発光素子の積層構造の一例を模式的に示す図であり、(b)は、(a)に示す表示装置の発光層上の電子輸送層の構造を模式的に示す図である。(A) is a figure which shows typically an example of the laminated structure of the light emitting element of the display apparatus which concerns on embodiment of this invention, (b) is electron transport on the light emitting layer of the display apparatus shown in (a). It is a figure which shows the structure of a layer typically. 本発明の実施形態に係る表示装置の概略構成の一例を示す断面図である。It is sectional drawing which shows an example of schematic structure of the display apparatus which concerns on embodiment of this invention. (a)は、従来の表示装置の発光素子の要部の積層構造を示す図であり、(b)は、(a)に示す表示装置の発光層上の電子輸送層の構造を模式的に示す図である。(A) is a figure which shows the laminated structure of the principal part of the light emitting element of the conventional display apparatus, (b) is a structure of the electron carrying layer on the light emitting layer of the display apparatus shown to (a) typically. FIG.
 本発明の一実施形態について図1の(a)・(b)および図2に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to FIGS. 1A and 1B and FIG. 2.
 <表示装置>
 以下では、本実施形態に係る表示装置が、発光素子として量子ドット発光ダイオード(以下、「QLED」と記す)を備えたQLEDディスプレイである場合を例に挙げて説明する。
<Display device>
Hereinafter, a case where the display device according to the present embodiment is a QLED display including a quantum dot light emitting diode (hereinafter, referred to as “QLED”) as a light emitting element will be described as an example.
 図1の(a)は、本実施形態に係る表示装置1におけるQLEDの積層構造の一例を模式的に示す図である。図1の(b)は、図1の(a)に示す表示装置1の量子ドット発光層(以下、「QD発光層」と記す)24b上の電子輸送層(以下、「ETL」と記す)24cの構造を模式的に示す図である。図2は、発光素子としてQLED5R・5G・5Bを含む、本実施形態に係る表示装置1の概略構成の一例を示す断面図である。 FIG. 1A is a diagram schematically showing an example of a laminated structure of QLEDs in the display device 1 according to the present embodiment. 1B is an electron transport layer (hereinafter, referred to as “ETL”) on the quantum dot light emitting layer (hereinafter, referred to as “QD light emitting layer”) 24b of the display device 1 illustrated in FIG. 1A. It is a figure which shows the structure of 24c typically. FIG. 2 is a cross-sectional view showing an example of a schematic configuration of the display device 1 according to the present embodiment, which includes QLEDs 5R, 5G, and 5B as light emitting elements.
 図2に示すように、本実施形態に係る表示装置1は、アレイ基板2上に、発光素子層としてQLED層5が設けられた構成を有している。QLED層5は、封止層6で覆われている。 As shown in FIG. 2, the display device 1 according to the present embodiment has a configuration in which a QLED layer 5 is provided as a light emitting element layer on the array substrate 2. The QLED layer 5 is covered with a sealing layer 6.
 アレイ基板2は、例えば、下面フィルム10と、樹脂層12と、バリア層3と、駆動素子層としてのTFT層4と、を備えている。 The array substrate 2 includes, for example, a lower surface film 10, a resin layer 12, a barrier layer 3, and a TFT layer 4 as a drive element layer.
 下面フィルム10は、支持基板(例えば、マザーガラス)を剥離した後に樹脂層12の下面に貼り付けることで柔軟性に優れた表示デバイスを実現するための、例えばPET(ポリエチレンテレフタレート)フィルムである。なお、下面フィルム10および樹脂層12に代えて、ガラス基板等のソリッドな基板を用いても構わない。なお、樹脂層12の材料としては、例えばポリイミド等が挙げられる。樹脂層12の部分を、二層の樹脂膜(例えば、ポリイミド膜)およびこれらに挟まれた無機絶縁膜で置き換えることもできる。 The lower surface film 10 is, for example, a PET (polyethylene terephthalate) film for realizing a display device having excellent flexibility by sticking the supporting substrate (for example, mother glass) on the lower surface of the resin layer 12 after peeling the supporting substrate. Instead of the lower surface film 10 and the resin layer 12, a solid substrate such as a glass substrate may be used. The resin layer 12 may be made of polyimide, for example. The resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched therebetween.
 バリア層3は、水、酸素等の異物がTFT層4およびQLED層5に侵入することを防ぐ層である。 The barrier layer 3 is a layer that prevents foreign matter such as water and oxygen from entering the TFT layer 4 and the QLED layer 5.
 TFT層4には、発光素子を制御するサブ画素回路が形成されている。TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層の、ゲート電極GEおよびゲート配線と、ゲート電極GEおよびゲート配線GHよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量電極CEと、容量電極CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層の、ソース配線SHを含む配線と、ソース配線SHよりも上層の平坦化膜21(層間絶縁膜)とを含み、半導体膜15およびゲート電極GEを含むように、駆動素子としてのTFTが構成される。 A sub-pixel circuit that controls the light emitting element is formed on the TFT layer 4. The TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring above the inorganic insulating film 16, a gate electrode GE and a gate. The inorganic insulating film 18 above the wiring GH, the capacitive electrode CE above the inorganic insulating film 18, the inorganic insulating film 20 above the capacitive electrode CE, and the source wiring SH above the inorganic insulating film 20. The TFT as a drive element is configured to include the semiconductor film 15 and the gate electrode GE, including the wiring including the wiring and the planarization film 21 (interlayer insulating film) above the source wiring SH.
 半導体膜15は、例えばLTPS(低温ポリシリコン)あるいは酸化物半導体で構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい。 The semiconductor film 15 is made of, for example, LTPS (low temperature polysilicon) or an oxide semiconductor. Although the TFT having the semiconductor film 15 as a channel is shown as a top gate structure in FIG. 2, it may be a bottom gate structure.
 バリア層3および無機絶縁膜16・18・20は、例えば、CVD(Chemical Vapor Deposition)法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜、酸窒化シリコン膜(SiNO)、またはこれらの積層膜によって構成することができる。 The barrier layer 3 and the inorganic insulating films 16, 18, and 20 are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film (SiNO), which are formed by a CVD (Chemical Vapor Deposition) method. Alternatively, a laminated film of these can be used.
 ゲート電極GE、容量電極CE、ソース配線SH等の配線は、例えば、Al(アルミニウム)、W(タングステン)、Mo(モリブデン)、Ta(タンタル)、Cr(クロム)、Ti(チタン)、Cu(銅)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。 The wirings such as the gate electrode GE, the capacitance electrode CE, and the source wiring SH are, for example, Al (aluminum), W (tungsten), Mo (molybdenum), Ta (tantalum), Cr (chromium), Ti (titanium), Cu( It is composed of a metal single layer film or a laminated film containing at least one of copper).
 平坦化膜21は、例えば、ポリイミド樹脂やアクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。 The flattening film 21 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
 QLED層5には、発光素子として、複数のQLEDが設けられている。QLEDは、サブ画素に対応して、サブ画素毎に形成されている。 The QLED layer 5 is provided with a plurality of QLEDs as light emitting elements. The QLED is formed for each sub pixel corresponding to the sub pixel.
 表示装置1は、サブ画素として、例えば、赤色光を放出するサブ画素RSP(赤色サブ画素)と、緑色光を放出するサブ画素GSP(緑色サブ画素)と、青色光を放出するサブ画素BSP(青色サブ画素)と、を備えている。 The display device 1 has, for example, a sub-pixel RSP (red sub-pixel) that emits red light, a sub-pixel GSP (green sub-pixel) that emits green light, and a sub-pixel BSP (that emits blue light) as sub-pixels. Blue sub-pixels).
 サブ画素RSPには、QLEDとして、赤色光を発光するQLED5Rが設けられている。サブ画素GSPには、QLEDとして、緑色光を発光するQLED5Gが設けられている。サブ画素BSPには、QLEDとして、青色光を発光するQLED5Bが設けられている。 The sub-pixel RSP is provided with a QLED 5R that emits red light as a QLED. The sub-pixel GSP is provided with a QLED 5G that emits green light as a QLED. The sub-pixel BSP is provided with a QLED 5B that emits blue light as a QLED.
 ここで、赤色光とは、600nmを越え、780nm以下の波長帯域に発光中心波長を有する光を示す。緑色光とは、500nmを越え、600nm以下の波長帯域に発光中心波長を有する光を示す。青色光とは、400nm以上、500nm以下の波長帯域に発光中心波長を有する光を示す。 Here, red light refers to light having an emission center wavelength in the wavelength band of 600 nm or more and 780 nm or less. Green light refers to light having an emission center wavelength in a wavelength band of more than 500 nm and 600 nm or less. Blue light refers to light having an emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
 図1の(a)および図2に示すように、QLED(QLED5R・5G・5B)のそれぞれは、陽極22と、正孔輸送層(以下、「HTL」と記す)24a(HTL24aR、HTL24aG、HTL24aB)と、発光層として、波長領域が異なる各QD発光層24b(QD発光層24bR、QD発光層24bG、およびQD発光層24bBの何れか1層)と、ETL24c(ETL24cR、ETL24cG、ETL24cB)と、陰極25とが、アレイ基板2側からこの順に、積層された構成を有している。陽極22は、アレイ基板2のTFTとそれぞれ電気的に接続されている。 As shown in (a) and FIG. 2 of FIG. 1, each of the QLEDs ( QLEDs 5R, 5G, 5B) has an anode 22 and a hole transport layer (hereinafter referred to as “HTL”) 24a (HTL24aR, HTL24aG, HTL24aB). ), as a light emitting layer, each QD light emitting layer 24b (any one of QD light emitting layer 24bR, QD light emitting layer 24bG, and QD light emitting layer 24bB) having a different wavelength region, and ETL24c (ETL24cR, ETL24cG, ETL24cB), The cathode 25 is laminated in this order from the array substrate 2 side. The anode 22 is electrically connected to each TFT of the array substrate 2.
 QLED5Rは、HTL24aとしてHTL24aRを備え、QD発光層24bとしてQD発光層24bRを備え、ETL24cとしてETL24cR(第1電子輸送層)を備えている。QLED5Gは、HTL24aとしてHTL24aGを備え、QD発光層24bとしてQD発光層24bGを備え、ETL24cとしてETL24cG(第2電子輸送層)を備えている。QLED5Bは、HTL24aとしてHTL24aBを備え、QD発光層24bとしてQD発光層24bBを備え、ETL24cとしてETL24cB(第3電子輸送層)を備えている。 The QLED 5R includes the HTL 24aR as the HTL 24a, the QD light emitting layer 24bR as the QD light emitting layer 24b, and the ETL24cR (first electron transport layer) as the ETL 24c. The QLED 5G includes the HTL 24aG as the HTL 24a, the QD light emitting layer 24bG as the QD light emitting layer 24b, and the ETL 24cG (second electron transport layer) as the ETL 24c. The QLED 5B includes the HTL 24aB as the HTL 24a, the QD light emitting layer 24bB as the QD light emitting layer 24b, and the ETL 24cB (third electron transport layer) as the ETL 24c.
 各サブ画素における陽極22、HTL24a、QD発光層24b、ETL24cのそれぞれは、図2に示すように、陽極22のエッジを覆うエッジカバー23によって、サブ画素毎に島状に分離されている。なお、陰極25は、エッジカバー23によっては分離されず、各サブ画素に共通した共通層として形成されている。 As shown in FIG. 2, the anode 22, the HTL 24a, the QD light emitting layer 24b, and the ETL 24c in each subpixel are separated into islands for each subpixel by an edge cover 23 that covers the edge of the anode 22. The cathode 25 is not separated by the edge cover 23 and is formed as a common layer common to each sub-pixel.
 陽極22および陰極25は導電性材料を含み、それぞれ、HTL24aおよびETL24cと電気的に接続されている。陽極22および陰極25のうち一方は透光性を有する透明電極であり、他方は光反射性を有する反射電極である。表示装置1が、陰極25側から光を取り出すトップエミッション型の表示装置である場合、陰極25が、透明電極であり、例えば、ITO(インジウムスズ酸化物)、IZO(インジウム亜鉛酸化物)、AZO(アルミニウム亜鉛酸化物)またはGZO(ガリウム亜鉛酸化物)等の透光性の導電材で形成される。一方、陽極22には、例えば、これら透光性の導電材からなる層と、Al(アルミニウム)、Cu(銅)、Au(金)、またはAg(銀)等の可視光の反射率の高い金属またはその合金からなる層と、の積層体が用いられる。なお、表示装置1は、陽極22側から光を取り出すボトムエミッション型の表示装置であってもよい。この場合、陽極22に透明電極が用いられ、陰極25に反射電極が用いられる。 The anode 22 and the cathode 25 include a conductive material and are electrically connected to the HTL 24a and the ETL 24c, respectively. One of the anode 22 and the cathode 25 is a transparent electrode having a light-transmitting property, and the other is a reflective electrode having a light-reflecting property. When the display device 1 is a top emission type display device that extracts light from the cathode 25 side, the cathode 25 is a transparent electrode, and is, for example, ITO (indium tin oxide), IZO (indium zinc oxide), or AZO. (Aluminum zinc oxide) or GZO (gallium zinc oxide) or the like, and is formed of a light-transmitting conductive material. On the other hand, the anode 22 has, for example, a layer made of such a translucent conductive material and a high visible light reflectance such as Al (aluminum), Cu (copper), Au (gold), or Ag (silver). A laminate of a layer made of a metal or an alloy thereof is used. The display device 1 may be a bottom emission type display device that extracts light from the anode 22 side. In this case, a transparent electrode is used for the anode 22 and a reflective electrode is used for the cathode 25.
 表示装置1は、陽極22と陰極25との間の駆動電流によって正孔と電子とがQD発光層24b内で再結合し、これによって生じたエキシトンが、量子ドット(半導体ナノ粒子:以下、「QD」と記す)の伝導帯準位から価電子帯準位に遷移する過程で光を放出する。 In the display device 1, holes and electrons are recombined in the QD light emitting layer 24b by a driving current between the anode 22 and the cathode 25, and excitons generated by the recombination generate quantum dots (semiconductor nanoparticles: hereinafter, " The light is emitted in the process of transition from the conduction band level of QD”) to the valence band level.
 HTL24aは、陽極22からの正孔をQD発光層24bへと輸送する。HTL24aは、例えば酸化ニッケル(NiO)、酸化モリブデン(MoO)等の無機材料を含んでいてもよく、PEDOT(ポリエチレンジオキシチオフエン)、PEDOT-PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))、TPD(4,4’-ビス[N-フェニル-N-(3’’-メチルフェニル)アミノ]ビフェニル)、PVK(ポリ(N-ビニルカルバゾール))、TFB(ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(4-sec-ブチルフェニル))ジフェニルアミン)])、CBP(4,4’-ビス(9-カルバゾイル)-ビフェニル)、NPD(N,N’-ジ-[(1-ナフチル)-N,N’-ジフェニル]-(1,1’-ビフェニル)-4,4’-ジアミン)等の有機材料を含んでいてもよい。HTL24aR、HTL24aG、HTL24aBは、同じ材料で形成されていてもよく、正孔移動度が互いに異なる材料で形成されていてもよい。 The HTL 24a transports holes from the anode 22 to the QD light emitting layer 24b. The HTL 24a may include an inorganic material such as nickel oxide (NiO) or molybdenum oxide (MoO 3 ), and may be PEDOT (polyethylenedioxythiophene), PEDOT-PSS (poly(3,4-ethylenedioxythiophene). )-Poly(styrene sulfonic acid)), TPD (4,4′-bis[N-phenyl-N-(3″-methylphenyl)amino]biphenyl), PVK (poly(N-vinylcarbazole)), TFB (Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)]), CBP(4,4 '-Bis(9-carbazoyl)-biphenyl), NPD(N,N'-di-[(1-naphthyl)-N,N'-diphenyl]-(1,1'-biphenyl)-4,4'- An organic material such as a diamine) may be contained. The HTL24aR, HTL24aG, and HTL24aB may be formed of the same material or may be formed of materials having different hole mobilities.
 ETL24cは、陰極25からの電子をQD発光層24bへと輸送する。なお、ETL24cについては、後で詳細に説明する。 The ETL 24c transports electrons from the cathode 25 to the QD light emitting layer 24b. The ETL 24c will be described in detail later.
 QD発光層24bは、陽極22から輸送された正孔と、陰極25から輸送された電子との再結合により光を発する。本実施形態では、発光材料として、各色のQDを、各サブ画素に備えている。具体的には、サブ画素RSPにおけるQD発光層24bRは赤色QDを備え、サブ画素GSPにおけるQD発光層24bGは緑色QDを備え、サブ画素BSPにおけるQD発光層24bBは青色QDを備えている。このようにQD発光層24bは、複数種のQDを備え、同一のサブ画素においては、同種のQDを備えている。 The QD light emitting layer 24b emits light by recombination of holes transported from the anode 22 and electrons transported from the cathode 25. In this embodiment, each sub-pixel is provided with a QD of each color as a light emitting material. Specifically, the QD light emitting layer 24bR in the sub pixel RSP has a red QD, the QD light emitting layer 24bG in the sub pixel GSP has a green QD, and the QD light emitting layer 24bB in the sub pixel BSP has a blue QD. In this way, the QD light emitting layer 24b includes a plurality of types of QDs, and the same sub-pixel includes the same type of QDs.
 赤色QD、緑色QD、青色QDは、例えば、Cd(カドミウム)、S(硫黄)、Te(テルル)、Se(セレン)、Zn(亜鉛)、In(インジウム)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、Al(アルミニウム)、Ga(ガリウム)、Pb(鉛)、Si(ケイ素)、Ge(ゲルマニウム)、Mg(マグネシウム)からなる群より選択される少なくとも一種の元素で構成されている半導体材料を含んでもよい。 Red QD, green QD, and blue QD are, for example, Cd (cadmium), S (sulfur), Te (tellurium), Se (selenium), Zn (zinc), In (indium), N (nitrogen), P (phosphorus). ), As (arsenic), Sb (antimony), Al (aluminum), Ga (gallium), Pb (lead), Si (silicon), Ge (germanium), and Mg (magnesium). You may include the semiconductor material comprised by the element of.
 QD発光層24bは、例えば、ヘキサン、トルエン、オクタデカン、シクロドデセン、フェニルシクロヘキサン等の溶媒にQDを分散させた分散液を用いて、スピンコート法またはインクジェット法等によって、サブ画素毎に塗り分けを行うことにより、成膜することができる。なお、上記分散液には、チオール、アミン等の分散材料を混合してもよい。 For the QD light emitting layer 24b, for example, a dispersion liquid in which QD is dispersed in a solvent such as hexane, toluene, octadecane, cyclododecene, or phenylcyclohexane is applied by sub-pixels by a spin coating method, an inkjet method, or the like. As a result, a film can be formed. The dispersion liquid may be mixed with a dispersion material such as thiol and amine.
 封止層6は、QLED層5への、水、酸素等の異物の浸透を防ぐ。封止層6は、例えば、陰極25を覆う無機封止膜26と、無機封止膜26よりも上層の有機バッファ膜27と、有機バッファ膜27よりも上層の無機封止膜28とを含む。無機封止膜26および無機封止膜28はそれぞれ無機絶縁膜であり、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜、酸窒化シリコン膜(SiNO)、またはこれらの積層膜によって構成することができる。有機バッファ膜27は、平坦化効果のある透光性有機膜であり、アクリル等の塗布可能な有機材料によって構成することができる。有機バッファ膜27は例えばインクジェット塗布によって形成することができるが、液滴を止めるためのバンクを非表示領域に設けてもよい。 The sealing layer 6 prevents foreign matter such as water and oxygen from penetrating into the QLED layer 5. The sealing layer 6 includes, for example, an inorganic sealing film 26 that covers the cathode 25, an organic buffer film 27 that is an upper layer than the inorganic sealing film 26, and an inorganic sealing film 28 that is an upper layer than the organic buffer film 27. .. The inorganic sealing film 26 and the inorganic sealing film 28 are each an inorganic insulating film, and are, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film (SiNO), which are formed by a CVD method. Alternatively, a laminated film of these can be used. The organic buffer film 27 is a translucent organic film having a flattening effect, and can be made of a coatable organic material such as acrylic. The organic buffer film 27 can be formed by, for example, inkjet coating, but a bank for stopping the droplet may be provided in the non-display area.
 <ETL24c>
 図1の(b)に示すように、ETL24cは、金属酸化物のナノ粒子NPの表面が、電子供与性を有する有機修飾剤OMで表面修飾されることにより覆われた、有機修飾金属酸化物ナノ粒子を含んでいる。このため、ETL24cは、金属酸化物のナノ粒子NPと、該ナノ粒子NPの表面を覆う、電子供与性を有する有機修飾剤OMとを含んでいる。
<ETL24c>
As shown in (b) of FIG. 1, ETL24c is an organic modified metal oxide in which the surface of metal oxide nanoparticles NP is covered by surface modification with an organic modifying agent OM having an electron donating property. Contains nanoparticles. Therefore, the ETL 24c contains the metal oxide nanoparticles NP and the organic modifier OM having an electron donating property and covering the surface of the nanoparticles NP.
 なお、本実施形態において、「ナノ粒子」とは、その重量平均粒子径がナノメートルサイズ(つまり、1μm未満)の粒子を示す。上記ナノ粒子NPの重量平均粒子径は、1nm~20nmの範囲内であることが、発光特性を向上させることができることから好ましく、2.5nm~12nmの範囲内であることが、ETL24cの電子移動度を向上させることができることからより好ましい。 In the present embodiment, “nanoparticles” mean particles having a weight average particle diameter of nanometer size (that is, less than 1 μm). The weight average particle diameter of the nanoparticles NP is preferably in the range of 1 nm to 20 nm because the emission characteristics can be improved, and in the range of 2.5 nm to 12 nm, the electron transfer of ETL24c. It is more preferable because the degree can be improved.
 上記金属酸化物としては、例えば、ZnO(酸化亜鉛)、TiO(酸化チタン)、MgZnO(酸化マグネシウム亜鉛)、Ta(酸化タンタル)、SrTiO(酸化ストロンチウムチタン)からなる群より選ばれる少なくとも一種の金属酸化物が挙げられる。ETL24cは、サブ画素RSP、サブ画素GSP、サブ画素BSPにおいて、同じ種類の金属酸化物のナノ粒子NPを含んでいてもよく、これらサブ画素RSP、サブ画素GSP、サブ画素BSP毎に、異なる種類の金属酸化物のナノ粒子NPを含んでいてもよい。言い換えれば、ETL24cR、ETL24cG、ETL24cBは、同じ種類の金属酸化物のナノ粒子NPを含んでいてもよく、互いに異なる種類の金属酸化物のナノ粒子NPを含んでいてもよい。ETLに用いられる金属酸化物のナノ粒子としては、酸化亜鉛のナノ粒子(以下、「ZnO-NP」と記す)が一般的であり、安価かつ容易に入手できる。このため、上記ナノ粒子NPとしては、ZnO-NPが好適である。 Examples of the metal oxide are selected from the group consisting of ZnO (zinc oxide), TiO 2 (titanium oxide), MgZnO (magnesium zinc oxide), Ta 2 O 3 (tantalum oxide), and SrTiO 3 (strontium titanium oxide). At least one kind of metal oxide is used. The ETL 24c may include the same kind of metal oxide nanoparticles NP in the sub-pixel RSP, the sub-pixel GSP, and the sub-pixel BSP, and the sub-pixel RSP, the sub-pixel GSP, and the sub-pixel BSP have different types. The metal oxide nanoparticles NP may be included. In other words, the ETL24cR, ETL24cG, and ETL24cB may include nanoparticles NP of the same type of metal oxide, or may include nanoparticles NP of different types of metal oxides. As the metal oxide nanoparticles used for ETL, zinc oxide nanoparticles (hereinafter, referred to as “ZnO—NP”) are common, and they are inexpensive and easily available. Therefore, ZnO-NP is suitable as the nanoparticles NP.
 上記有機修飾剤OMは、電子の授受が可能であり、上記ナノ粒子NPに対して電子を供与することができる有機ドーパント化合物である。上記ナノ粒子NPは、有機修飾剤OMを介して陰極25から電子を受け取り、受け取った電子をQD発光層24bに放出(輸送)する。上記有機修飾剤OMは、電子供与性を有するドーパント(ドナー)であれば、特に限定されるものではない。ドーパントとは、半導体の結晶の物性を変化させることで、キャリア(電子、正孔)の濃度を調整したり、禁制帯幅等のバンド構造、物理的特性等を、様々に制御したりするために半導体に添加する不純物であり、そのなかでも、キャリアとして電子を半導体に供給するドーパントを、ドナーと称する。 The organic modifier OM is an organic dopant compound capable of donating and accepting electrons and donating electrons to the nanoparticles NP. The nanoparticles NP receive electrons from the cathode 25 via the organic modifier OM and release (transport) the received electrons to the QD light emitting layer 24b. The organic modifier OM is not particularly limited as long as it is a dopant (donor) having an electron donating property. The dopant is used to adjust the concentration of carriers (electrons, holes) and variously control the band structure such as forbidden band width and physical properties by changing the physical properties of the semiconductor crystal. A dopant that is an impurity added to a semiconductor and that supplies electrons to the semiconductor as carriers is called a donor.
 上記有機修飾剤OMとしては、例えば、1,3-ビス(カルバゾール-9-イル)ベンゼン、4,4’,4’’-トリ(カルバゾール-9-イル)トリフェニルアミン、4,4’-ビス(カルバゾール-9-イル)ビフェニル、からなる群より選ばれる少なくとも一種の化合物が挙げられる。ETL24cR、ETL24cG、ETL24cBは、同じ種類の有機修飾剤OMを含んでいてもよく、互いに異なる種類の有機修飾剤OMを含んでいてもよい。 Examples of the organic modifier OM include 1,3-bis(carbazol-9-yl)benzene, 4,4′,4″-tri(carbazol-9-yl)triphenylamine, 4,4′- Examples thereof include at least one compound selected from the group consisting of bis(carbazol-9-yl)biphenyl. The ETL24cR, ETL24cG, and ETL24cB may include the same type of organic modifier OM or may include different types of organic modifier OM.
 これら有機修飾剤OMは、例えば、複数のベンゼン環を有し、該ベンゼン環に窒素原子が結合した構造を有し、窒素が有する不対電子の電子供与作用により、上記ナノ粒子NPに電子を供与する。 These organic modifiers OM have, for example, a structure having a plurality of benzene rings, and a nitrogen atom bonded to the benzene rings, and by the electron-donating action of the unpaired electrons of nitrogen, the electrons are applied to the nanoparticles NP. To donate.
 上記有機修飾金属酸化物ナノ粒子は、無機粒子の表面修飾方法として知られている公知の各種方法を適用することで製造することが可能であり、その製造方法は、特に限定されない。 The above-mentioned organically modified metal oxide nanoparticles can be manufactured by applying various known methods known as surface modification methods for inorganic particles, and the manufacturing method is not particularly limited.
 上記金属酸化物のナノ粒子NPがZnO-NPである場合、例えば、エタノール中に分散されたZnO-NPにヘキサンを加えてZnO-NPを沈殿させることでZnO-NPを回収し、該ZnO-NPに、上記有機修飾剤OMを溶解させた溶媒を加えて撹拌する等して、ZnO-NPと上記有機修飾剤OMとを共存させることで、ZnO-NPを、上記有機修飾剤OMで表面修飾させることができる。なお、この場合の表面修飾は、例えば配位結合による化学結合(有機修飾剤OMによるドナーとZnO-NPとの配位結合)であり、大気圧下で常温にて行われる。しかしながら、上記表面修飾としては、反応性修飾であってもよく、温度、圧力、撹拌時間、撹拌装置の種類等は、特に限定されない。 When the metal oxide nanoparticles NP are ZnO—NP, for example, ZnO—NP is recovered by precipitating ZnO—NP by adding hexane to ZnO—NP dispersed in ethanol. A solvent in which the organic modifier OM is dissolved is added to NP, and the mixture is agitated to allow ZnO-NP and the organic modifier OM to coexist, whereby the ZnO-NP is surface-coated with the organic modifier OM. It can be modified. The surface modification in this case is, for example, a chemical bond by a coordinate bond (coordinative bond between the donor and the ZnO—NP by the organic modifier OM), and is carried out at normal temperature under atmospheric pressure. However, the surface modification may be reactive modification, and the temperature, pressure, stirring time, type of stirring device, etc. are not particularly limited.
 ETL24cは、上記金属酸化物のナノ粒子NPおよび上記有機修飾剤OMを含む上記溶媒(言い換えれば、上記溶媒に上記有機修飾金属酸化物ナノ粒子が分散された分散液)をスピンコート法(スピナー塗布)あるいはインクジェット法等により塗布することで形成することができる。 The ETL24c is a spin coating method (spinner coating) of the solvent containing the metal oxide nanoparticles NP and the organic modifier OM (in other words, a dispersion liquid in which the organic modified metal oxide nanoparticles are dispersed in the solvent). ) Or an ink-jet method or the like for application.
 上記溶媒としては、例えば、トルエン、クロロベンゼン、o-ジクロロベンゼン、フェニルシクロヘキサン、4-イソプロピルビフェニル、1,1-ビス(3,4-ジメチルフェニル)エタン等が挙げられる。上記溶媒は、一種類のみを用いてもよく、複数種類を混合して用いても構わない。これらの溶媒は揮発性であり、常温で揮発したり、加熱により揮発したりするため、ETL24cの固体膜を容易に形成することができる。 Examples of the solvent include toluene, chlorobenzene, o-dichlorobenzene, phenylcyclohexane, 4-isopropylbiphenyl, 1,1-bis(3,4-dimethylphenyl)ethane and the like. The solvent may be used alone or as a mixture of plural kinds. Since these solvents are volatile and volatilize at room temperature or by heating, the solid film of ETL24c can be easily formed.
 本実施形態によれば、上記ナノ粒子NPの表面を有機修飾剤OMで覆うことにより、上記溶媒中での上記ナノ粒子NPの分散性を向上させることができる。このため、有機修飾剤OMで覆われた上記ナノ粒子NPを、上述したように例えばスピンコート法あるいはインクジェット法等により塗布することで、ETL24cの平坦性が向上する。 According to this embodiment, the dispersibility of the nanoparticles NP in the solvent can be improved by covering the surface of the nanoparticles NP with the organic modifier OM. Therefore, the flatness of the ETL 24c is improved by applying the nanoparticles NP covered with the organic modifier OM by, for example, the spin coating method or the inkjet method as described above.
 また、有機修飾剤OMにドナーを用いると、上記ナノ粒子NPが有機修飾剤OMで覆われていない場合(言い換えると、ETL24cが、金属酸化物のナノ粒子NPおよび有機修飾剤OMのうち金属酸化物のナノ粒子NPのみを含む場合)と比較して、QD発光層24bに供給する電子の数を増加させることができる。 Further, when a donor is used as the organic modifier OM, when the nanoparticles NP are not covered with the organic modifier OM (in other words, the ETL 24c is a metal oxide of the metal oxide nanoparticles NP and the organic modifier OM). It is possible to increase the number of electrons supplied to the QD light emitting layer 24b as compared with the case where only the nanoparticles NP are included).
 この理由としては、以下の通りである。上記ナノ粒子NPの表面が有機修飾剤OM(ドナー)で覆われている場合、陰極25から電子が上記ナノ粒子NPに供給(注入)され、上記ナノ粒子NPからQD発光層24bに電子が放出されると、上記ナノ粒子NPの表面のドナーから電子が上記ナノ粒子NPに供給される。これにより、上記ナノ粒子NPにおいて、放出により不足した電子が常に補われる。このため、QLEDにおいて、電子が不足することがない。また、電子は、陰極25からドナーにも供給される。陰極25からドナーに電子が供給されると、押し出されるようにドナーから上記ナノ粒子NPに電子が供給され、さらに、押し出されるように上記ナノ粒子NPからQD発光層24bに電子が放出される。このため、このようにドナーを介して電子の遣り取りが行われることで、電子の移動度(移動速度)が高まる。移動速度が速い方が、単位時間当たりに流れる電子の量(数)が増える。したがって、上記ナノ粒子NPが有機修飾剤OMで覆われていることで、QD発光層24bに供給する電子の数を増加させることができる。このように、本実施形態では、上記ナノ粒子NPが電子供与性を有する有機修飾剤OMで覆われていることで、QD発光層24bに供給する電子の数を増加させることが可能である。このため、表示装置1の発光効率を従来よりも向上させることができる。 The reason for this is as follows. When the surface of the nanoparticles NP is covered with the organic modifier OM (donor), electrons are supplied (injected) from the cathode 25 to the nanoparticles NP, and the electrons are emitted from the nanoparticles NP to the QD emission layer 24b. Then, electrons are supplied to the nanoparticles NP from the donor on the surface of the nanoparticles NP. As a result, the electrons deficient in the emission of the nanoparticles NP are always supplemented. Therefore, there is no shortage of electrons in the QLED. The electrons are also supplied from the cathode 25 to the donor. When the electron is supplied from the cathode 25 to the donor, the electron is supplied from the donor to the nanoparticle NP so as to be extruded, and further, the electron is emitted from the nanoparticle NP to be extruded to the QD emission layer 24b. Therefore, the electrons are exchanged via the donor in this way, so that the mobility (movement speed) of the electrons is increased. The higher the moving speed, the more the number (number) of electrons flowing per unit time. Therefore, by covering the nanoparticles NP with the organic modifier OM, the number of electrons supplied to the QD emission layer 24b can be increased. As described above, in the present embodiment, since the nanoparticles NP are covered with the organic modifier OM having an electron donating property, it is possible to increase the number of electrons supplied to the QD light emitting layer 24b. Therefore, the luminous efficiency of the display device 1 can be improved as compared with the conventional case.
 また、QD発光層24bにおける正孔の数と電子の数とは、できるだけ一致していることが望ましい。QD発光層24bにおける正孔の数と電子の数とが一致することで、発光効率が向上する。特に、近年、HTL材料として、正孔輸送効率が高い材料の開発が進められている。本実施形態によれば、たとえHTL24aに正孔輸送効率が高い材料を用いたとしても、QLEDにおいて電子が不足することがない。このため、本実施形態では、発光効率を容易に向上させることが可能である。また、上記ナノ粒子NPの表面をドナーで覆い、ドナーから上記ナノ粒子NPに電子を供給して電子の過不足がない状態に調整することで、QD発光層24bにおける正孔の数と電子の数とがほぼ一致するように調整することも可能である。このため、本実施形態では、発光効率をより容易に向上させることも可能である。 Moreover, it is desirable that the number of holes and the number of electrons in the QD light emitting layer 24b are as close to each other as possible. By matching the number of holes and the number of electrons in the QD light emitting layer 24b, the light emission efficiency is improved. In particular, in recent years, a material having a high hole transport efficiency has been developed as an HTL material. According to this embodiment, even if the HTL 24a is made of a material having a high hole transport efficiency, the QLED does not run out of electrons. Therefore, in this embodiment, it is possible to easily improve the luminous efficiency. In addition, by covering the surface of the nanoparticles NP with a donor and supplying electrons from the donor to the nanoparticles NP to adjust the state so that there is no excess or deficiency of electrons, the number of holes and the number of electrons in the QD light-emitting layer 24b are adjusted. It is also possible to make adjustments so that the numbers substantially match. Therefore, in the present embodiment, it is possible to improve the light emission efficiency more easily.
 また、従来の発光素子は、ナノ粒子NPの表面が修飾剤(ドナー)で覆われておらず、ナノ粒子NPの表面が剥き出しであるため、例えば図3の(b)に示したようにETL124c上に該ETL124cの上層となる材料を塗布するときに、ナノ粒子NP自体が熱的ダメージを受ける。また、ナノ粒子NPの表面が剥き出しであることから、活性雰囲気下(すなわち、酸素や水等の異物が存在する雰囲気下)での上記異物によるナノ粒子NPのダメージ(劣化)が大きく、電気化学特性の低下が早い。 Further, in the conventional light emitting device, the surface of the nanoparticles NP is not covered with the modifying agent (donor), and the surface of the nanoparticles NP is exposed. Therefore, for example, as shown in FIG. When the material to be the upper layer of the ETL124c is applied thereon, the nanoparticles NP themselves are thermally damaged. In addition, since the surface of the nanoparticles NP is exposed, the nanoparticles (NP) are greatly damaged (deteriorated) by the foreign substances under an active atmosphere (that is, an atmosphere in which foreign substances such as oxygen and water are present). The characteristics deteriorate quickly.
 しかしながら、本実施形態によれば、上述したように上記ナノ粒子NPの表面を有機修飾剤OMで覆うことにより、上記ナノ粒子NPが、活性雰囲気下で、水、酸素等の上記異物によるダメージ(劣化)を受け難くなる。このため、本実施形態によれば、従来よりも信頼性が高い表示装置1を提供することができる。 However, according to the present embodiment, by covering the surface of the nanoparticles NP with the organic modifier OM as described above, the nanoparticles NP is damaged by the foreign matter such as water and oxygen under the active atmosphere ( Is less susceptible to deterioration. Therefore, according to the present embodiment, it is possible to provide the display device 1 having higher reliability than the conventional one.
 また、従来の発光素子は、前述したように、ナノ粒子NPの表面が修飾剤(ドナー)で覆われていないことから、凝集し易く、分散性が低い。このため、従来の発光素子は、分散液の塗布状態によっては、ナノ粒子NP同士の間隔が広がることから、バリア効果が低い。図3の(b)に示したようにETL124cが不均一であると、該ETL24c上に、該ETL24cの上層となる材料を塗布するとき(例えば、陰極125をスパッタあるいは蒸着等の手法にて積層するとき)に、量子ドット発光層124b等、ETL124cの下層に熱的ダメージを与える可能性がある。 Further, in the conventional light emitting element, as described above, since the surface of the nanoparticles NP is not covered with the modifier (donor), the light emitting element easily aggregates and has low dispersibility. Therefore, in the conventional light emitting device, the barrier effect is low because the spacing between the nanoparticles NP expands depending on the coating state of the dispersion liquid. When the ETL 124c is non-uniform as shown in FIG. 3B, when the material to be the upper layer of the ETL 24c is applied onto the ETL 24c (for example, the cathode 125 is laminated by a method such as sputtering or vapor deposition). When doing so, there is a possibility that thermal damage may occur to the lower layer of the ETL 124c such as the quantum dot light emitting layer 124b.
 しかしながら、本実施形態によれば、上述したように上記ナノ粒子NPの表面を有機修飾剤OMで覆うことにより、ETL24c上に、該ETL24cの上層となる材料を塗布するとき(例えば、陰極25をスパッタあるいは蒸着等の手法にて積層するとき)の熱による、上記ナノ粒子NP自体の熱的ダメージ、並びに、QD発光層24b等、ETL24cの下層の熱的ダメージを、上記有機修飾剤OMで緩和することができる。特に、本実施形態によれば、前述したように、上記ナノ粒子NPの表面を有機修飾剤OMで覆うことにより、平坦性が高いETL24cを形成することができる。したがって、ETL24cが他よりも薄い部分を通じてETL24cの下層がダメージを受けることがない。このため、本実施形態によれば、不均一な膜厚のETL24cに起因する、ETL24cの下層のダメージを防止することができる。 However, according to this embodiment, when the surface of the nanoparticles NP is covered with the organic modifier OM as described above, when the material to be the upper layer of the ETL 24c is applied onto the ETL 24c (for example, the cathode 25 is The organic modifier OM reduces the thermal damage to the nanoparticles NP itself and the thermal damage to the lower layer of the ETL 24c such as the QD light emitting layer 24b due to the heat (when laminated by a method such as sputtering or vapor deposition). can do. In particular, according to this embodiment, as described above, by covering the surface of the nanoparticles NP with the organic modifier OM, the ETL 24c having high flatness can be formed. Therefore, the lower layer of the ETL 24c is not damaged through the portion where the ETL 24c is thinner than the others. Therefore, according to this embodiment, it is possible to prevent damage to the lower layer of the ETL 24c due to the ETL 24c having a non-uniform film thickness.
 以上のように、本実施形態によれば、金属酸化物のナノ粒子を含む電子輸送層の分散性が従来よりも高く、従来よりも発光効率に優れた表示装置1を提供することができる。また、本実施形態によれば、上述したように、金属酸化物のナノ粒子を含む電子輸送層の平坦性を従来よりも向上させることができるとともに、上記ナノ粒子を、熱や、酸素、水等の異物から保護することができる表示装置1を提供することができる。 As described above, according to the present embodiment, it is possible to provide the display device 1 in which the dispersibility of the electron transport layer containing the nanoparticles of the metal oxide is higher than the conventional one and the luminous efficiency is superior to the conventional one. Further, according to the present embodiment, as described above, the flatness of the electron transport layer containing nanoparticles of the metal oxide can be improved as compared with the conventional one, and the nanoparticles are heated, oxygen, or water. It is possible to provide the display device 1 that can be protected from foreign matter such as.
 本実施形態において、有機修飾剤OM/金属酸化物のナノ粒子NPで示される、ETL24cにおける、上記ナノ粒子NPに対する有機修飾剤OMの体積比(混合比)は、1/99~30/70の範囲内であることが好ましく、2/98~20/80の範囲内であることがより好ましく、10/90~20/80の範囲内であることが特に好ましい。なお、上記体積比は、例えば、SEM(走査型電子顕微鏡)により、ナノ粒子NPと有機修飾剤OMとの各直径を求めることで、簡易的に求めることができる。 In the present embodiment, the volume ratio (mixing ratio) of the organic modifier OM to the nanoparticles NP in ETL24c represented by the organic modifier OM/metal oxide nanoparticles NP is 1/99 to 30/70. It is preferably within the range, more preferably within the range of 2/98 to 20/80, and particularly preferably within the range of 10/90 to 20/80. The volume ratio can be easily obtained by, for example, obtaining the diameters of the nanoparticles NP and the organic modifier OM with an SEM (scanning electron microscope).
 表1は、上記ナノ粒子NPとしてZnO-NPを使用し、有機修飾剤OM(ドナー)として1,3-ビス(カルバゾール-9-イル)ベンゼンを使用し、溶媒としてトルエンを使用して、上記ナノ粒子NPとドナーとの体積比を種々変更した以外は同じ条件で、図2に示す構造を有する表示装置を製造したときの上記体積比と、ETLの膜厚(平均膜厚)、ETLの膜厚制御性、ETLの表面粗度、および表示装置の外部量子効率(EQE)との関係を示している。なお、表1において、サンプルNo.1は比較品であり、サンプルNo.2~8は、本実施形態品である。 Table 1 shows that ZnO-NP was used as the nanoparticles NP, 1,3-bis(carbazol-9-yl)benzene was used as the organic modifier OM (donor), and toluene was used as the solvent. Under the same conditions except that the volume ratio between the nanoparticles NP and the donor was variously changed, the above-mentioned volume ratio when the display device having the structure shown in FIG. 2 was manufactured, and the ETL film thickness (average film thickness), ETL The relationship between the film thickness controllability, the surface roughness of ETL, and the external quantum efficiency (EQE) of the display device is shown. In Table 1, sample No. Sample No. 1 is a comparative product. 2 to 8 are products of this embodiment.
 なお、表1において、膜厚制御性は、段差計により測定された、ETLの実際に成膜された膜厚と、狙いの膜厚(目標膜厚:60nm)と、の差を示し、成膜されたETLの膜厚と目標膜厚との差が±1.0nm以下の範囲内である場合を「◎」とし、上記差が±1.0nmを越えて、±5.0nm以下の範囲内である場合を「○」とし、上記差が±5.0nmを越えて、±8.0nm以下の範囲内である場合を「△」とした。 In Table 1, the film thickness controllability indicates the difference between the actual film thickness of the ETL film measured by a step gauge and the target film thickness (target film thickness: 60 nm). When the difference between the film thickness of the formed ETL and the target film thickness is within a range of ±1.0 nm or less, it is defined as “⊚”, and the above difference exceeds ±1.0 nm and is within ±5.0 nm. When the difference was within the range of ±5.0 nm or more and ±8.0 nm or less, it was marked with “◯”.
 また、表1において、表面粗度(Rms)は、原子間力顕微鏡(AFM)により測定したETLの表面粗度の大きさを示し、上記表面粗度が3.0nm未満である場合を「◎」とし、上記表面粗度が3.0nm以上、3.5nm以下である場合を「○」とし、上記表面粗度が3.5nmを越えて、4.0nm以下である場合を「△」とした。 Further, in Table 1, the surface roughness (Rms) shows the magnitude of the surface roughness of ETL measured by an atomic force microscope (AFM), and the case where the surface roughness is less than 3.0 nm is “⊚”. "," when the surface roughness is 3.0 nm or more and 3.5 nm or less, and "△" when the surface roughness exceeds 3.5 nm and 4.0 nm or less. did.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施形態品は、比較品とは異なり、上記ナノ粒子NPと、電子供与性を有する有機修飾剤OMとを具備しているので、本実施形態品では、EQEを、上記比較品よりも向上させることが実証された。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, unlike the comparative product, the product of the present embodiment includes the nanoparticles NP and the organic modifier OM having an electron donating property. Therefore, the product of the present embodiment exhibits EQE. It was proved that it was improved over the comparative product.
 また、表1に示すように、ETL24cにおける、上記ナノ粒子NPに対するドナーの体積比を1/99~30/70とすることで、EQEを、従来よりも向上させることができるとともに、良好な膜厚制御性を得ることができることが確認された。また、上記体積比を10/90~20/80の範囲内とすることで、上記有機修飾金属酸化物ナノ粒子(つまり、上記ドナーで覆われた金属酸化物のナノ粒子NP)の分散性を向上させることができ、膜厚制御性を高めることができるとともに、表面粗度が小さいことから、狙いの膜厚(目標膜厚:60nm)と大差ない膜厚のETL24cを成膜することができることが確認された。 Further, as shown in Table 1, by setting the volume ratio of the donor to the nanoparticles NP in ETL24c to be 1/99 to 30/70, EQE can be improved more than in the past and a good film can be obtained. It was confirmed that the thickness controllability could be obtained. By adjusting the volume ratio within the range of 10/90 to 20/80, the dispersibility of the organically modified metal oxide nanoparticles (that is, the metal oxide nanoparticles NP covered with the donor) can be improved. It is possible to improve the thickness, controllability of the film thickness can be improved, and since the surface roughness is small, it is possible to form the ETL 24c having a film thickness which is not much different from the target film thickness (target film thickness: 60 nm). Was confirmed.
 なお、上記体積比が40/40あるいは50/50等の場合のように、上記ナノ粒子に対するドナー成分が多くなると、ETL24cの膜厚が、上記目標膜厚よりも若干厚くなり、膜厚制御性が低いが、溶液調整することで目標膜厚に近くなる可能性が高い。 When the donor component for the nanoparticles is increased as in the case where the volume ratio is 40/40 or 50/50, the thickness of ETL24c becomes slightly thicker than the target thickness, and the film thickness controllability is improved. Although it is low, there is a high possibility that the target film thickness will be approximated by adjusting the solution.
 つまり、上記測定は、上記体積比を評価するために、上述したように上記ナノ粒子NPとドナーとの体積比を種々変更した以外は同じ条件でETL24cを成膜したものである。上記ナノ粒子に対するドナー成分が多い場合、上記ナノ粒子に対するドナー成分量が少ない場合と比較すれば膜厚制御性が低いものの、上述したように上記ナノ粒子に対するドナー成分量が多い場合であっても、成膜条件を変更することで、ETL24cの膜厚を上記目標膜厚に近づけることが可能である。 That is, in the above measurement, in order to evaluate the volume ratio, the ETL24c was deposited under the same conditions except that the volume ratio of the nanoparticles NP and the donor was variously changed as described above. When the donor component for the nanoparticles is large, the film thickness controllability is low as compared with the case where the donor component amount for the nanoparticles is small, but as described above, even when the donor component amount for the nanoparticles is large. By changing the film forming conditions, it is possible to bring the film thickness of the ETL 24c close to the target film thickness.
 また、表1に示すように、本実施形態によれば、本実施形態品である何れのサンプルにおいても、サンプルNo.1の比較品と比較すると、表面粗度が低く、平坦なETLが得られた。 Further, as shown in Table 1, according to the present embodiment, in any of the samples of the present embodiment, the sample No. Compared with the comparative product of No. 1, the surface roughness was low and flat ETL was obtained.
 何れにしても、本実施形態によれば、上記ナノ粒子NPの表面を有機修飾剤OMで覆うことにより、前述したように、上記溶媒中での上記ナノ粒子NPの分散性を従来よりも向上させることができ、従来よりも平坦性が高く、均一発光が可能であり、発光効率が高いETL24cを形成することができる。また、何れにしても、本実施形態によれば、上記ナノ粒子NPが有機修飾剤OM(ドナー)で覆われていることで、前述したように、QD発光層24bに供給する電子の数を増加させることができるとともに、活性雰囲気下での異物による上記ナノ粒子NPのダメージや、陰極25の形成時の熱による上記ナノ粒子NPおよびETL24cの下層のダメージを防止することができる。 In any case, according to the present embodiment, by covering the surface of the nanoparticles NP with the organic modifier OM, as described above, the dispersibility of the nanoparticles NP in the solvent is improved as compared with the conventional case. It is possible to form the ETL 24c which has higher flatness than the conventional one, is capable of uniform light emission, and has high light emission efficiency. In any case, according to the present embodiment, since the nanoparticles NP are covered with the organic modifier OM (donor), as described above, the number of electrons supplied to the QD emission layer 24b can be reduced. It is possible to increase the number of the nanoparticles NP and the damage to the nanoparticles NP due to the foreign matter under the active atmosphere and the damage to the lower layer of the nanoparticles NP and the ETL 24c due to the heat when the cathode 25 is formed.
 また、本実施形態では、上述したように、ETL24cは、サブ画素毎に島状に塗り分け形成されている。上記ナノ粒子NPに対する上記有機修飾剤OMの体積比は、発光効率の観点から、ETL24cB(第3電子輸送層)、ETL24cG(第2電子輸送層)、ETL24cR(第1電子輸送層)の順に大きいことが好ましい。この場合、ETL24cBにおける、上記ナノ粒子NPに対する上記有機修飾剤OMの体積比は、2/98~10/90の範囲内であることが好ましく、ETL24cGにおける、上記ナノ粒子NPに対する上記有機修飾剤OMの体積比は、10/90~20/80の範囲内であることが好ましく、ETL24cRにおける、上記ナノ粒子NPに対する上記有機修飾剤OMの体積比は、20/80~30/70の範囲内であることが好ましい(但し、上記体積比は、ETL24cR>ETL24G>ETL24cBの関係を満たす)。上記体積比が、上記関係を満たすとともに上記範囲内に設定することで、発光効率を制御できる。 Further, in the present embodiment, as described above, the ETL 24c is separately formed in an island shape for each sub pixel. From the viewpoint of luminous efficiency, the volume ratio of the organic modifier OM to the nanoparticles NP is larger in the order of ETL24cB (third electron transport layer), ETL24cG (second electron transport layer), ETL24cR (first electron transport layer). Preferably. In this case, the volume ratio of the organic modifier OM to the nanoparticles NP in ETL24cB is preferably in the range of 2/98 to 10/90, and the organic modifier OM to the nanoparticles NP in ETL24cG is preferable. Is preferably in the range of 10/90 to 20/80, and the volume ratio of the organic modifier OM to the nanoparticles NP in ETL24cR is in the range of 20/80 to 30/70. (However, the above volume ratio satisfies the relationship of ETL24cR>ETL24G>ETL24cB). When the above volume ratio satisfies the above relation and is set within the above range, the luminous efficiency can be controlled.
 <表示装置1の製造方法>
 次に、上記表示装置1の製造方法について説明する。なお、以下では、表示装置1として、フレキシブルな表示装置を製造する場合を例に挙げて説明する。
<Method of manufacturing display device 1>
Next, a method for manufacturing the display device 1 will be described. In the following, a case where a flexible display device is manufactured as the display device 1 will be described as an example.
 フレキシブルな表示装置1を製造する場合、まず、図示しない透光性の支持基板(例えば、マザーガラス)上に樹脂層12を形成する。次いで、図2に示すように、樹脂層12上に、バリア層3、TFT層4、QLED層5、封止層6をこの順に形成する。その後、封止層6上に上面フィルムを貼り付ける。次いで、レーザ光の照射等によって支持基板を樹脂層12から剥離し、該樹脂層12の下面に下面フィルム10を貼り付けた後、下面フィルム10、樹脂層12、バリア層3、TFT層4、QLED層5、封止層6を含む積層体を分断し、複数の個片を得る。次いで、得られた個片に図示しない機能フィルムを貼り付ける。その後、複数のサブ画素が形成された表示領域よりも外側(非表示領域、額縁)の一部(端子部)に電子回路基板(例えば、ICチップおよびFPC)をマウントする。これにより、表示装置1が製造される。 When manufacturing the flexible display device 1, first, the resin layer 12 is formed on a translucent support substrate (for example, mother glass) not shown. Next, as shown in FIG. 2, the barrier layer 3, the TFT layer 4, the QLED layer 5, and the sealing layer 6 are formed in this order on the resin layer 12. Then, a top film is attached on the sealing layer 6. Then, the supporting substrate is peeled off from the resin layer 12 by irradiation with laser light, the lower surface film 10 is attached to the lower surface of the resin layer 12, and then the lower surface film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, The laminated body including the QLED layer 5 and the sealing layer 6 is divided to obtain a plurality of pieces. Then, a functional film (not shown) is attached to the obtained individual pieces. After that, an electronic circuit board (for example, an IC chip and an FPC) is mounted on a part (terminal portion) of the outside (non-display area, frame) of the display area in which the plurality of sub-pixels are formed. Thereby, the display device 1 is manufactured.
 QLED層5の形成工程では、TFT層4上に、例えば、陽極22、エッジカバー23、HTL24a、QD発光層24b、ETL24c、陰極25を、この順に形成する。 In the step of forming the QLED layer 5, for example, the anode 22, the edge cover 23, the HTL 24a, the QD light emitting layer 24b, the ETL 24c, and the cathode 25 are formed in this order on the TFT layer 4.
 上記ETL24cの形成工程では、前述したように、例えば金属酸化物のナノ粒子NPに、有機修飾剤OM(ドナー)を溶解させた溶媒を添加する等して、有機修飾剤OMにより表面修飾された金属酸化物のナノ粒子NPを含む分散液を調製し、該分散液を、例えば、スピンコート法あるいはインクジェット法等により、QD発光層24b上に塗布する。 In the step of forming the ETL 24c, as described above, for example, a solvent in which the organic modifier OM (donor) is dissolved is added to the metal oxide nanoparticles NP to be surface-modified with the organic modifier OM. A dispersion containing the metal oxide nanoparticles NP is prepared, and the dispersion is applied onto the QD emission layer 24b by, for example, a spin coating method or an inkjet method.
 このとき、本実施形態では、各サブ画素におけるQD発光層24b(QD発光層24bR、QD発光層24bG、およびQD発光層24bBの何れか1層)が硬化した後、各QD発光層24bの上に、対応するETL24c(ETL24cR、ETL24cG、ETL24cB)を積層する。これにより、QD発光層24bの材料とETL24cの材料とが混じり合うことがなくなる。 At this time, in the present embodiment, after the QD light emitting layer 24b (any one of the QD light emitting layer 24bR, the QD light emitting layer 24bG, and the QD light emitting layer 24bB) in each sub-pixel is cured, the upper surface of each QD light emitting layer 24b is cured. Then, the corresponding ETL24c (ETL24cR, ETL24cG, ETL24cB) is laminated. This prevents the material of the QD light emitting layer 24b and the material of the ETL 24c from being mixed with each other.
 なお、上記分散液の塗布にインクジェット法を用いることで、例えばスピンコート法に比べて、狭い範囲を精度良く塗布することができる。このため、膜厚等に関して品質の高いETL24cを形成することができる。 By using an inkjet method for coating the above dispersion liquid, it is possible to coat a narrower range with higher accuracy than, for example, the spin coating method. Therefore, it is possible to form the ETL 24c having high quality with respect to the film thickness and the like.
 また、本実施形態では、ETL24cを150℃以下で形成する。これにより、QD発光層24bの材料が熱的にダメージを受けることがなくなる。 Also, in this embodiment, the ETL 24c is formed at 150° C. or lower. This prevents the material of the QD light emitting layer 24b from being thermally damaged.
 <変形例>
 なお、上述した実施形態では、発光素子がQLEDである場合を例に挙げて説明したが、本実施形態は、これに限定されるものではない。上記発光素子は、例えば、有機発光ダイオード(OLED)であってもよく、無機発光ダイオードであってもよい。
<Modification>
In the above-described embodiment, the case where the light emitting element is a QLED has been described as an example, but the present embodiment is not limited to this. The light emitting element may be, for example, an organic light emitting diode (OLED) or an inorganic light emitting diode.
 また、本実施形態では、複数種の量子ドットが、赤色QD、緑色QD、青色QDの組み合わせであり、表示装置1が、サブ画素として、サブ画素RSP、サブ画素GSP、サブ画素BSPを備えている場合を例に挙げて説明したが、必ずしもこの組み合わせでなくてもよい。 Further, in the present embodiment, the plurality of types of quantum dots are a combination of red QD, green QD, and blue QD, and the display device 1 includes subpixels RSP, subpixels GSP, and subpixels BSP as subpixels. However, the combination is not necessarily required.
 また、本実施形態では、発光素子が、陽極22と陰極25との間に、機能層として、HTL24a、発光層(例えばQD発光層24b)、ETL24cが、陽極22側からこの順に積層されている場合を例に挙げて説明したが、上記機能層は、発光層を備えるとともに、陰極25と発光層との間にETL24cを備えていれば、上記組み合わせに限定されない。例えば、陰極25とETL24cとの間に、電子注入層(EIL)をさらに備える等、上記以外の機能層をさらに備えていてもよい。 In addition, in the present embodiment, the light emitting element includes the HTL 24a, the light emitting layer (for example, the QD light emitting layer 24b), and the ETL 24c as the functional layers, which are laminated in this order from the anode 22 side between the anode 22 and the cathode 25. Although the case has been described as an example, the functional layer is not limited to the above combination as long as the functional layer includes the light emitting layer and the ETL 24c is provided between the cathode 25 and the light emitting layer. For example, a functional layer other than the above, such as an electron injection layer (EIL), may be further provided between the cathode 25 and the ETL 24c.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each of the embodiments.
   1   表示装置
  22   陽極
  24b、24bR、24bG、24bB  QD発光層(発光層)
  24c、24cR、24cG、24cB  ETL
  25   陰極
  RSP  赤色サブ画素
  GSP  緑色サブ画素
  BSP  青色サブ画素
  NP   ナノ粒子(金属酸化物のナノ粒子)
  OM   有機修飾剤
1 Display Device 22 Anode 24b, 24bR, 24bG, 24bB QD Light Emitting Layer (Light Emitting Layer)
24c, 24cR, 24cG, 24cB ETL
25 cathode RSP red sub-pixel GSP green sub-pixel BSP blue sub-pixel NP nanoparticles (metal oxide nanoparticles)
OM organic modifier

Claims (9)

  1.  陽極と、陰極と、上記陽極と上記陰極との間に設けられた発光層と、上記陰極と上記発光層との間に設けられた電子輸送層と、を備え、
     上記電子輸送層は、金属酸化物のナノ粒子と、該ナノ粒子の表面を覆う、電子供与性を有する有機修飾剤と、を含むことを特徴とする表示装置。
    An anode, a cathode, a light emitting layer provided between the anode and the cathode, and an electron transport layer provided between the cathode and the light emitting layer,
    The display device characterized in that the electron transport layer contains nanoparticles of a metal oxide and an organic modifier having an electron donating property and covering the surface of the nanoparticles.
  2.  上記有機修飾剤が、1,3-ビス(カルバゾール-9-イル)ベンゼン、4,4’,4’’-トリ(カルバゾール-9-イル)トリフェニルアミン、4,4’-ビス(カルバゾール-9-イル)ビフェニル、からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項1に記載の表示装置。 The organic modifier is 1,3-bis(carbazol-9-yl)benzene, 4,4′,4″-tri(carbazol-9-yl)triphenylamine, 4,4′-bis(carbazol- The display device according to claim 1, which is at least one compound selected from the group consisting of 9-yl)biphenyl.
  3.  上記ナノ粒子に対する上記有機修飾剤の体積比が、1/99~30/70の範囲内であることを特徴とする請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the volume ratio of the organic modifier to the nanoparticles is in the range of 1/99 to 30/70.
  4.  赤色サブ画素と、緑色サブ画素と、青色サブ画素とを備え、
     上記電子輸送層は、上記赤色サブ画素に形成された第1電子輸送層と、上記緑色サブ画素に形成された第2電子輸送層と、上記青色サブ画素に形成された第3電子輸送層と、を含み、
     上記ナノ粒子に対する上記有機修飾剤の体積比が、上記第3電子輸送層、上記第2電子輸送層、上記第1電子輸送層の順に大きいことを特徴とする請求項1~3の何れか1項に記載の表示装置。
    A red sub-pixel, a green sub-pixel, and a blue sub-pixel,
    The electron transport layer includes a first electron transport layer formed in the red subpixel, a second electron transport layer formed in the green subpixel, and a third electron transport layer formed in the blue subpixel. Including,
    4. The volume ratio of the organic modifier with respect to the nanoparticles increases in the order of the third electron transport layer, the second electron transport layer, and the first electron transport layer. The display device according to item.
  5.  上記第1電子輸送層における、上記ナノ粒子に対する上記有機修飾剤の体積比が、20/80~30/70の範囲内であり、
     上記第2電子輸送層における、上記ナノ粒子に対する上記有機修飾剤の体積比が、10/90~20/80の範囲内であり、
     上記第3電子輸送層における、上記ナノ粒子に対する上記有機修飾剤の体積比が、2/98~10/90の範囲内であることを特徴とする請求項4に記載の表示装置。
    The volume ratio of the organic modifier to the nanoparticles in the first electron transport layer is in the range of 20/80 to 30/70,
    The volume ratio of the organic modifier to the nanoparticles in the second electron transport layer is in the range of 10/90 to 20/80,
    The display device according to claim 4, wherein a volume ratio of the organic modifier to the nanoparticles in the third electron transport layer is within a range of 2/98 to 10/90.
  6.  上記金属酸化物が酸化亜鉛、酸化チタン、酸化マグネシウム亜鉛、酸化タンタル、酸化ストロンチウムチタンからなる群より選ばれる少なくとも一種であることを特徴とする請求項1~5の何れか1項に記載の表示装置。 The display according to any one of claims 1 to 5, wherein the metal oxide is at least one selected from the group consisting of zinc oxide, titanium oxide, magnesium zinc oxide, tantalum oxide, and strontium titanium oxide. apparatus.
  7.  陽極と、陰極と、上記陽極と上記陰極との間に設けられた発光層と、上記陰極と上記発光層との間に設けられた電子輸送層と、を備え、上記電子輸送層が、金属酸化物のナノ粒子と、該ナノ粒子の表面を覆う、電子供与性を有する有機修飾剤と、を含む表示装置の製造方法であって、
     上記発光層が硬化した後、上記発光層上に上記電子輸送層を積層することを特徴とする表示装置の製造方法。
    An anode, a cathode, a light emitting layer provided between the anode and the cathode, and an electron transport layer provided between the cathode and the light emitting layer, the electron transport layer is a metal What is claimed is: 1. A method for manufacturing a display device, comprising: oxide nanoparticles; and an organic modifier having an electron donating property, which covers the surface of the nanoparticles.
    A method for manufacturing a display device, comprising stacking the electron transport layer on the light emitting layer after the light emitting layer is cured.
  8.  上記発光層を150℃以下で形成することを特徴とする請求項7に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 7, wherein the light emitting layer is formed at 150° C. or lower.
  9.  上記電子輸送層をインクジェット法で形成することを特徴とする請求項7または8に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 7, wherein the electron transport layer is formed by an inkjet method.
PCT/JP2018/045427 2018-12-11 2018-12-11 Display device and method for manufacturing same WO2020121398A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/298,847 US12022673B2 (en) 2018-12-11 2018-12-11 Display device including electron transport layer having nanoparticle of metal oxide
CN201880100139.XA CN113243054B (en) 2018-12-11 2018-12-11 Display device and method for manufacturing the same
PCT/JP2018/045427 WO2020121398A1 (en) 2018-12-11 2018-12-11 Display device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045427 WO2020121398A1 (en) 2018-12-11 2018-12-11 Display device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2020121398A1 true WO2020121398A1 (en) 2020-06-18

Family

ID=71077158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045427 WO2020121398A1 (en) 2018-12-11 2018-12-11 Display device and method for manufacturing same

Country Status (3)

Country Link
US (1) US12022673B2 (en)
CN (1) CN113243054B (en)
WO (1) WO2020121398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026348A1 (en) * 2021-08-24 2023-03-02 シャープディスプレイテクノロジー株式会社 Light emitting element, light emitting device, and method for manufacturing light emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064543A (en) * 2019-10-16 2021-04-22 シャープ株式会社 Light emitting element, display device and method for manufacturing light emitting element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084274A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Organic electroluminescent device
JP2009212238A (en) * 2008-03-03 2009-09-17 Kyushu Electric Power Co Inc Organic electric field light-emitting element and method of manufacturing the same
JP2010238673A (en) * 2002-11-11 2010-10-21 Semiconductor Energy Lab Co Ltd Process for fabricating light emitting device
WO2012160714A1 (en) * 2011-05-20 2012-11-29 国立大学法人山形大学 Organic electronic device and method for manufacturing same
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element
JP2015041698A (en) * 2013-08-22 2015-03-02 国立大学法人山形大学 Organic electronic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240281A1 (en) * 2005-04-21 2006-10-26 Eastman Kodak Company Contaminant-scavenging layer on OLED anodes
KR101310058B1 (en) * 2011-10-06 2013-09-24 전남대학교산학협력단 Inverted organic solar cell and method for fabricating the same
JP6535977B2 (en) * 2014-03-27 2019-07-03 セイコーエプソン株式会社 Method of manufacturing light emitting device
KR101620870B1 (en) * 2014-04-18 2016-05-16 재단법인 구미전자정보기술원 Light-emitting diode comprising surface modified zinc oxide as material for electron transport layer
CN104103766A (en) * 2014-06-27 2014-10-15 京东方科技集团股份有限公司 Organic light-emitting diode, array substrate and fabrication method thereof and display device
KR102181978B1 (en) * 2014-08-22 2020-11-24 삼성디스플레이 주식회사 Light emitting display device and method of manufacturing the same
KR20160066650A (en) * 2014-12-02 2016-06-13 삼성디스플레이 주식회사 Fabrication method of display device and display device
JP2016113538A (en) * 2014-12-15 2016-06-23 三菱化学株式会社 Metal oxide-containing layer forming composition, electronic device, and method for producing electronic device
KR20160104161A (en) * 2015-02-25 2016-09-05 삼성디스플레이 주식회사 Light emitting display device and method of manufacturing the same
JP5994884B2 (en) 2015-03-03 2016-09-21 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
CN106340532A (en) * 2016-10-19 2017-01-18 华南理工大学 Organic light-emitting diode display screen employing transparent electrodes and preparation method thereof
CN107039602A (en) * 2017-04-21 2017-08-11 京东方科技集团股份有限公司 A kind of organic electroluminescence device and preparation method thereof, display device
CN107603340B (en) * 2017-10-12 2020-10-30 京东方科技集团股份有限公司 Zinc oxide ink, preparation method thereof, electron transport film layer and display device
KR102540847B1 (en) * 2018-03-14 2023-06-05 삼성전자주식회사 Electroluminescent device, and display device comprising thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238673A (en) * 2002-11-11 2010-10-21 Semiconductor Energy Lab Co Ltd Process for fabricating light emitting device
WO2009084274A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Organic electroluminescent device
JP2009212238A (en) * 2008-03-03 2009-09-17 Kyushu Electric Power Co Inc Organic electric field light-emitting element and method of manufacturing the same
WO2012160714A1 (en) * 2011-05-20 2012-11-29 国立大学法人山形大学 Organic electronic device and method for manufacturing same
WO2013122182A1 (en) * 2012-02-15 2013-08-22 国立大学法人山形大学 Organic electroluminescent element
JP2015041698A (en) * 2013-08-22 2015-03-02 国立大学法人山形大学 Organic electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026348A1 (en) * 2021-08-24 2023-03-02 シャープディスプレイテクノロジー株式会社 Light emitting element, light emitting device, and method for manufacturing light emitting element

Also Published As

Publication number Publication date
US12022673B2 (en) 2024-06-25
CN113243054A (en) 2021-08-10
US20220037609A1 (en) 2022-02-03
CN113243054B (en) 2024-04-05

Similar Documents

Publication Publication Date Title
US10439155B2 (en) Quantum dot light-emitting diode and quantum dot light-emitting device having the same
US11309509B2 (en) Display device and manufacturing method for same
US11637258B2 (en) Display devices with different light sources
US11296150B2 (en) Display devices with different light sources in pixel structures
KR20130008892A (en) Quantum-dot light emitting diode and method for fabricating the same
US11495767B2 (en) Photoelectronic device, flat panel display using the same, and fabrication method of photoelectronic device
US11502266B2 (en) Light emitting element comprising quantum dots and method for producing light emitting element
US10978659B2 (en) Inorganic illuminant, light-emitting diode and light-emitting device having thereof
US20230180496A1 (en) Display device and display device production method
CN113196881B (en) Electroluminescent element and display device
WO2020121398A1 (en) Display device and method for manufacturing same
US20220359845A1 (en) Light-emitting element, light-emitting device, and method for manufacturing light-emitting element
US20210119160A1 (en) Light-emitting element and display device
JP7474345B2 (en) Photoelectric conversion element, display device, and method for manufacturing photoelectric conversion element
US12029058B2 (en) Light emitting element and display device using same
US20240081086A1 (en) Ligh-emitting element and light-emitting device
US20230071128A1 (en) Display device
WO2021044634A1 (en) Display device and method for producing same
WO2020213070A1 (en) Display device
WO2023062672A1 (en) Light emission element, display device, and method for manufacturing display device
WO2022239107A1 (en) Light-emitting element, light-emitting device, and method for manufacturing light-emitting element
WO2024003983A1 (en) Light-emitting element and display device
WO2023062839A1 (en) Light emitting element
WO2023026348A1 (en) Light emitting element, light emitting device, and method for manufacturing light emitting element
WO2023062840A1 (en) Light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP