WO2020119691A1 - 凿岩台车及其推进液压控制系统 - Google Patents
凿岩台车及其推进液压控制系统 Download PDFInfo
- Publication number
- WO2020119691A1 WO2020119691A1 PCT/CN2019/124393 CN2019124393W WO2020119691A1 WO 2020119691 A1 WO2020119691 A1 WO 2020119691A1 CN 2019124393 W CN2019124393 W CN 2019124393W WO 2020119691 A1 WO2020119691 A1 WO 2020119691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- way
- hydraulic control
- directional valve
- propulsion
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 66
- 239000003921 oil Substances 0.000 claims abstract description 90
- 239000010720 hydraulic oil Substances 0.000 claims abstract description 13
- 239000011435 rock Substances 0.000 claims description 62
- 238000013016 damping Methods 0.000 claims description 7
- 238000010619 multiway switching Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 235000019994 cava Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/08—Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/02—Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
- E21B7/022—Control of the drilling operation; Hydraulic or pneumatic means for activation or operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
Definitions
- the invention relates to the field of tunnel excavation equipment, in particular to a propulsion hydraulic control system of a rock drilling trolley.
- the invention also relates to a rock drilling trolley including the above-mentioned propulsion hydraulic control system.
- Rock drilling trolley is a kind of rock drilling equipment used for narrow ore veins. It is generally directly controlled by full hydraulic pressure and has the functions of connecting rod drilling and unloading rod storage. When carrying out rock drilling operations, it is necessary to meet several speed requirements for the hydraulic rock drilling trolley's hole advancing speed, rock advancing speed, hole drilling fast retreat speed and no-load advancing fast forward and fast return. In the process of opening holes and rock drilling, when encountering complex geology such as fissures and karst caves, the phenomenon of empty travel of rock drilling is easy to occur, that is, the phenomenon of empty hitting. If the speed is not adjusted and controlled, the propulsion speed is too fast and the speed is not affected.
- the purpose of the present invention is to provide a propulsion hydraulic control system for a rock drilling trolley, which can adjust the propulsion speed as required, reduce the difficulty of operation, and improve the work efficiency.
- Another object of the present invention is to provide a rock drilling trolley including the above-mentioned propulsion hydraulic control system.
- the present invention provides a propulsion hydraulic control system for a rock drilling trolley, which includes a hydraulic pump, a propulsion oil cylinder and a multi-way reversing valve for controlling the reversal of the propulsion oil cylinder.
- the two working oil ports of the valve are connected to the oil inlet and outlet ports of the first electromagnetic commutation throttle device and the second electromagnetic commutation throttle device respectively, and the first electromagnetic commutation throttle device passes the first hydraulic control commutation in parallel
- the valve and the second hydraulic control valve communicate with the rodless cavity of the propulsion cylinder
- the second electromagnetic commutation throttle device communicates with the rod cavity of the propulsion cylinder
- the propulsion hydraulic control system further includes a serial Three one-way throttle valves and a fourth one-way throttle valve, the third one-way throttle valve is connected in parallel with the first hydraulically controlled directional valve, the fourth one-way throttle valve and the first
- the hydraulic control directional valve is connected in series and connected in parallel with the second hydraulic control directional valve
- the first hydraulic control directional valve can receive the pilot control oil with a low impact opening
- the second hydraulic control directional valve can receive the impact Total pilot control oil
- the first hydraulic control directional valve and the second hydraulic control directional valve can switch the working position according to the
- the set flow rate of the third one-way throttle valve is smaller than the set flow rate of the fourth one-way throttle valve.
- the first hydraulic control directional valve and the second hydraulic control directional valve are specifically two-position three-way hydraulic control directional valves, and the hydraulic control port of the two-position three-way hydraulic control directional valve has high pressure.
- the oil inlet and outlet are isolated, the oil inlet and outlet are connected when the hydraulic control port of the two-position three-way hydraulic control valve is relieved of pressure.
- the hydraulic control port of the two-position three-way hydraulic control directional valve receives pilot control oil through damping.
- the multi-way directional valve is specifically a three-position six-way directional valve.
- the three-position six-way directional valve When the three-position six-way directional valve is in the first working position, hydraulic oil can enter the rodless cavity of the propulsion cylinder.
- the three-position six-way directional valve When the three-position six-way directional valve is in the second working position, hydraulic oil can enter the rod cavity of the propulsion cylinder, and the three-position six-way directional valve is in the unloaded state when it is in the third working position.
- a safety check valve and a relief valve are provided between the three-position six-way reversing valve and the hydraulic pump.
- the first electromagnetic commutation throttle device includes a first electromagnetic commutation valve and a first one-way throttle valve
- the second electromagnetic commutation throttle device includes a second electromagnetic commutation valve and a second one-way throttle valve
- the two working oil ports of the multi-way directional valve communicate with the inlet and outlet ports of the first electromagnetic directional valve and the second electromagnetic directional valve respectively, and one working oil of the first electromagnetic directional valve
- the first one-way throttle valve is connected to the third one-way throttle valve, and the other working oil port of the first electromagnetic directional valve is directly connected to the third one-way throttle valve
- the second One working port of the electromagnetic directional valve is connected to the rod cavity of the propulsion cylinder through a second one-way throttle valve
- the other working port of the second electromagnetic directional valve is directly connected to the rod of the propulsion cylinder Cavity.
- the first electromagnetic directional valve and the second electromagnetic directional valve are specifically two-position three-way electromagnetic directional valves.
- the two-position three-way electromagnetic directional valve When the two-position three-way electromagnetic directional valve is in the first working position, it is directly connected In the propulsion cylinder, when the two-position three-way electromagnetic directional valve is in the second working position, the propulsion cylinder is communicated through a one-way throttle valve.
- the present invention provides a rock drilling trolley including a propulsion hydraulic control system.
- the propulsion hydraulic control system is specifically any of the propulsion hydraulic control systems described above.
- the rock drilling trolley is specifically a medium-deep hole rock drilling trolley.
- the invention provides a propulsion hydraulic control system of a rock drilling trolley, which includes a hydraulic pump, a propulsion oil cylinder and a multi-way directional valve for controlling the reversal of the propulsion oil cylinder.
- the two working oil ports of the multi-way directional valve communicate with the first An electromagnetic commutation throttle device and a second electromagnetic commutation throttle device oil inlet and outlet, the first electromagnetic commutation throttle device is connected in parallel through the first hydraulic control valve and the second hydraulic control valve to propel the cylinder Rod-less cavity, the second electromagnetic commutation throttle device communicates with the rod cavity of the propulsion cylinder, and also includes a third unidirectional throttle valve and a fourth unidirectional throttle valve connected in series, the third unidirectional throttle valve and the A hydraulic control directional valve is connected in parallel, a fourth one-way throttle valve is connected in series with the first hydraulic control directional valve, and is connected in parallel with the second hydraulic control directional valve, the first hydraulic control directional valve can receive the pilot control of opening low impact Oil, the
- the propulsion speed of rock drilling mode is divided into working conditions and grades, and the propulsion speed is switched according to different impact conditions.
- the propulsion speed requirements the general requirements for opening propulsion speed are the lowest, followed by rock drilling propulsion speed, and the air thrust process is generally full speed to improve work efficiency.
- the maximum speed of hole opening and rock drilling propulsion is set by a one-way throttle valve, and the control pilot oil of the hole opening mode and impact conditions is fed back to the control system, so that different propulsion speed modes are automatically matched.
- the throttling speed is used to set the advancement speed of the unloading lever to match the rotation speed.
- the invention also provides a rock drilling trolley including the above propulsion hydraulic control system. Since the propulsion hydraulic control system has the above technical effects, the above rock drilling trolley should also have the same technical effect, which will not be described in detail here.
- FIG. 1 is a hydraulic principle diagram of a specific embodiment of a propulsion hydraulic control system provided by the present invention.
- the core of the present invention is to provide a propulsion hydraulic control system for a rock drilling trolley, which can adjust the propulsion speed according to needs, reduce the operation difficulty, and improve the work efficiency.
- Another core of the present invention is to provide a rock drilling trolley including the above propulsion hydraulic control system.
- FIG. 1 is a hydraulic schematic diagram of a specific embodiment of a propulsion hydraulic control system provided by the present invention.
- a specific embodiment of the present invention provides a propulsion hydraulic control system for a rock drilling trolley, including a hydraulic pump 2, a propulsion cylinder 16, and a multi-way directional valve 3, wherein the hydraulic pump 2 is driven by a motor 1, and the multi-way directional valve 3 is The hydraulic pump 2 and the propulsion cylinder 16 are connected to control the reversal of the propulsion cylinder 16.
- a safety check valve 5 and a relief valve 4 may also be provided between the multi-way valve 3 and the hydraulic pump 2.
- the multi-way directional valve 3 may be a three-position six-way directional valve.
- the three-position six-way directional valve When the three-position six-way directional valve is in the first working position, its oil inlet P communicates with the second working oil port B, and the oil return port T Connected to the first working oil port A, so that high-pressure oil can enter the rodless cavity of the propulsion cylinder 16, the low-pressure oil in the rod cavity flows back to the oil tank, and the oil inlet of the three-position six-way directional valve is in the second working position P is connected to the first working oil port A, and the oil return port T is connected to the second working oil port B.
- the high-pressure oil can enter the rod cavity of the propulsion cylinder 16, the low-pressure oil in the rodless cavity flows back to the tank, and the three-position six-way reversal
- the valve When the valve is in the third working position, the inlet port P, the return port T, the first working port A and the second working port B are all isolated, and the three-position six-way directional valve is in communication with the middle working port ,
- the oil inlet is directly connected to the oil tank and is in the unloaded state. At this time, the motor 1 is started and the hydraulic pump 2 is unloaded and started.
- Other types of directional valves can also be used, which are all within the protection scope of the present invention.
- the propulsion hydraulic control system provided by the specific embodiment of the present invention further includes a first electromagnetic commutation throttle device, a second electromagnetic commutation throttle device, a third one-way throttle valve 10, and a fourth one-way throttle valve 11.
- the two working oil ports A and B of the multi-way directional valve 3 are connected to the oil inlets and outlets of the first electromagnetic directional throttle device and the second electromagnetic directional throttle device.
- the first electromagnetic directional throttle device is connected in parallel
- the first hydraulic control directional valve 12 and the second hydraulic control directional valve 13 communicate with the rodless cavity of the propulsion cylinder 16
- the second electromagnetic directional throttle device communicates with the rod cavity of the propulsion cylinder 16
- the third one-way throttle valve 10 is connected in parallel with the first hydraulic control valve 12
- the fourth one-way throttle valve 11 is connected in parallel with the first hydraulic control valve 12 and the second hydraulic control valve 13
- the first hydraulic control valve 12 can Receiving the open hole low-impact pilot control oil KK
- the second hydraulic control valve 13 can receive the impact total pilot control oil CJ
- the first hydraulic control valve 12 and the second hydraulic control valve 13 can control the oil according to the pilot
- the state switches working positions to control whether hydraulic oil enters and exits the rodless chamber of the propulsion cylinder 16 through the third one
- first hydraulically controlled directional valve 12 and the second hydraulically controlled directional valve 13 are specifically two-position three-way hydraulically controlled directional valves.
- other types of directional valves can also be used.
- the hydraulic control port of the directional valve is isolated at high pressure.
- the hydraulic control port of the two-position three-way hydraulic control valve is always open when the hydraulic port is discharged.
- the hydraulic control port of the two-position three-way hydraulic directional valve receives the pilot control oil through damping.
- the working process is as follows: when the rock drilling trolley is in the open hole working mode, the total impact pilot control oil CJ and the open hole low impact pilot control oil KK are in a high pressure state, and the high pressure oil enters through the first damping 14 and the second damping 15 respectively
- the hydraulic control ports of the first hydraulic control directional valve 12 and the second hydraulic control directional valve 13, at this time, the first hydraulic control directional valve 12 and the second hydraulic control directional valve 13 are in the state of isolation of the inlet and outlet, Control the multi-way directional valve 3 in the first working position, the high-pressure oil at the outlet of the hydraulic pump 2 passes through the check valve 5, the multi-way directional valve 3 (P to B port), the first electromagnetic directional valve throttle device (this Is in a non-throttle state, which can be understood as normal flow of hydraulic oil without damping), the throttle branch of the third one-way throttle valve 10 and the throttle branch of the fourth one-way throttle valve 11 enter the chisel
- the low-pressure oil in the rod cavity of the propulsion cylinder 16 passes through the electric second electromagnetic directional valve throttle device (at this time in the unthrottled state, which can be understood as normal flow of hydraulic oil without damping) and the multi-way directional valve 3 (A To the T port) back to the tank.
- the multi-directional directional valve 3 in the second working position the high-pressure oil at the outlet of the hydraulic pump 2 passes through the safety check valve 5, the multi-directional directional valve 3 (P to A port) and the non-throttled second electromagnetic directional valve
- the throttle device enters the rod cavity of the propelling cylinder 16 of the rock drilling trolley, and the propelling cylinder 16 retracts.
- the low-pressure oil in the rodless chamber of the propulsion cylinder 16 passes through the one-way valve branch of the fourth one-way throttle valve 11, the one-way valve branch of the third one-way throttle valve 10, and the first in the unthrottled state Throttle device of electromagnetic directional valve and multiple directional valve 3 (B to T port) return to tank.
- the set flow rate of the third one-way throttle valve 10 can be made smaller than the set flow rate of the fourth one-way throttle valve 11 to make the hole mode rock drilling
- the maximum speed of the propulsion cylinder 16 of the trolley is set by the third one-way throttle valve 10
- the maximum speed of the propulsion cylinder 16 of the rock drilling mode is set by the fourth one-way throttle valve 11.
- the third one-way throttle valve 10 and the fourth one-way throttle valve 11 are connected in series, but only by the throttle branch of the third one-way throttle valve 10 Due to the setting limitation, during the process of retracting the hole-pushing cylinder 16 of the rock drilling trolley, the speed is not regulated by the throttle due to the one-way valve branch which is a one-way throttle valve.
- the impact master pilot control oil CJ When the rock drilling trolley is in the rock drilling working mode, the impact master pilot control oil CJ is in a high pressure state, and the open hole low impact pilot control oil KK is in a pressure relief state, and the high pressure oil enters the hydraulic control port of the second hydraulic control directional valve 13,
- the first hydraulic control directional valve 12 is in a pressure-relief state, and the oil inlet and outlet are in communication.
- the second hydraulic control directional valve 13 is in a high-pressure state.
- the oil inlet and outlet are isolated, and the third one-way throttle valve 10 can be bypassed.
- the multi-way directional valve 3 in the first working position, the high-pressure oil at the outlet of the hydraulic pump 2 passes through the safety check valve 5, the multi-way directional valve 3 (P to B port), and the first electromagnetic directional control in the unthrottled state
- the throttle branches of the valve throttle device, the first hydraulic control directional valve 12 and the fourth one-way throttle valve 11 enter the rodless cavity of the propulsion cylinder 16 of the rock drilling vehicle, and the propulsion cylinder 16 extends.
- the low-pressure oil in the rod chamber of the propulsion cylinder 16 returns to the tank through the throttle device of the second electromagnetic directional valve in the unthrottled state and the multi-way directional valve 3 (ports A to T).
- the multi-way directional valve 3 in the second working position, the high-pressure oil at the outlet of the hydraulic pump 2 passes through the safety check valve 5, the multi-way directional valve 3 (P to A port), and the second electromagnetic directional control in the unthrottled state
- the valve throttle device enters the rod cavity of the propelling cylinder 16 of the rock drilling trolley, and the propelling cylinder 16 retracts.
- the low-pressure oil in the rodless chamber of the propulsion cylinder 16 passes through the one-way valve branch of the fourth one-way throttle valve 11, the first hydraulic control directional valve 12, and the first electromagnetic directional valve throttle device in the unthrottled state
- multi-way valve 3 (B to T port) return to the tank.
- the extension speed of the rock drilling propelling cylinder 16 is adjusted by the throttling branch of the fourth one-way throttle valve 11.
- the rock drilling propelling cylinder 16 retracts, it passes through the fourth one-way throttle
- the speed of the one-way valve branch of valve 11 is not regulated by it.
- the first electromagnetic directional throttle device includes a first electromagnetic directional valve 6 and a first one-way throttle valve 8, and a second electromagnetic directional throttle device Including the second electromagnetic directional valve 7 and the second one-way throttle valve 9, the two working oil ports of the multi-way directional valve 3 are connected to the oil inlet and outlet of the first electromagnetic directional valve 6 and the second electromagnetic directional valve 7 respectively Port, one working port of the first electromagnetic directional valve 6 is connected to the rodless cavity of the propulsion cylinder 16 through the first one-way throttle valve 8, and the other working port of the first electromagnetic directional valve 6 is directly connected to the propulsion cylinder 16 Rod-less cavity, one working port of the second electromagnetic directional valve 7 is connected to the rod cavity of the propulsion cylinder 16 through the second one-way throttle valve 9, and the other working port of the second electromagnetic directional valve 7 is directly connected The rod cavity of the propulsion cylinder 16.
- the first electromagnetic directional valve 6 and the second electromagnetic directional valve 7 are specifically two-position three-way electromagnetic directional valves.
- the propulsion cylinder 16 is directly connected.
- the propulsion cylinder 16 is communicated through the one-way throttle valve.
- the first electromagnetic commutation throttle device and the second electromagnetic commutation throttle device are in an unthrottled state, that is, the first electromagnetic commutation valve 6 and the first
- the two electromagnetic directional valves 7 are in the first working position when the power is lost.
- the hydraulic oil enters and exits the propulsion cylinder 16 and only flows through the first electromagnetic directional valve 6 and the second electromagnetic directional valve 7 and does not flow through the first one-way throttle.
- the valve 8 and the second one-way throttle valve 9 can be understood as non-damped flow.
- the first electromagnetic commutation throttle device and the second electromagnetic commutation throttle device are in the throttle state, that is, the first electromagnetic commutation valve 6 and the second electromagnetic commutation valve 7
- the power is in the second working position.
- the hydraulic oil enters the propulsion cylinder 16 it needs to flow through the throttle branch of the electromagnetic directional valve and the one-way throttle valve to control the flow rate.
- the hydraulic fluid flows out of the propulsion cylinder 16, it needs to pass through the electromagnetic change
- the one-way valve branch of the one-way valve and one-way throttle valve does not regulate the flow rate.
- the impact total pilot control oil CJ and the open hole low impact pilot control oil KK are in the pressure relief state
- the first hydraulic control directional valve 12 and the second hydraulic control directional valve 12 are in the pressure relief state
- the oil inlet and outlet The communication can bypass the third one-way throttle valve 10 and the fourth one-way throttle valve 11 simultaneously.
- the high-pressure oil of the hydraulic pump 2 sequentially passes through the throttle branch of the multi-way directional valve 3, the first electromagnetic directional valve 6, the first one-way throttle valve 8, and the second hydraulically-controlled directional valve 13 enters the rodless cavity of the propulsion cylinder 16, the propulsion cylinder 16 extends, and the first one-way throttle valve 8 adjusts the extension speed of the propulsion cylinder 16 when the lever is removed.
- the high-pressure oil of the hydraulic pump 2 sequentially passes through the throttle branches of the multi-way directional valve 3, the second electromagnetic directional valve 7, and the second one-way throttle valve 9, and enters the rod of the propulsion cylinder 16 Cavity, the propulsion cylinder 16 retracts, and the second one-way throttle valve 9 adjusts the retracting speed of the propulsion cylinder 16 when the lever is removed.
- the return path of the low-pressure oil is the same, but the one-way valve branch through the one-way throttle valve does not require speed adjustment.
- the propulsion cylinder 16 When the rock drilling trolley is pushed empty, the first electromagnetic directional valve 6 and the second electromagnetic directional valve 7 are de-energized, and the impact total pilot control oil CJ and the open hole low impact pilot control oil KK are in a pressure relief state.
- the propulsion cylinder 16 When the propulsion cylinder 16 is extended, the high-pressure oil of the hydraulic pump 2 passes through the multi-way directional valve 3, the first electromagnetic directional valve 6, and the second hydraulic control directional valve 13 directly into the rodless cavity of the propulsion cylinder 16, the propulsion cylinder 16 has The low-pressure oil in the rod cavity passes through the second electromagnetic directional valve 7 and the multi-way directional valve 3 and returns to the oil tank.
- the propulsion cylinder 16 When the propulsion cylinder 16 is retracted, the high-pressure oil of the hydraulic pump 2 passes through the multi-way directional valve 3 and the second electromagnetic directional valve 7 directly into the propulsion cylinder 16 with a rod cavity.
- the low-pressure oil in the propulsion cylinder 16 without the rod cavity passes through the second The hydraulic control directional valve 13, the first electromagnetic directional valve 6, and the multi-way directional valve 3 return to the tank. Therefore, when the rock drilling trolley is air-pushed, the propulsion speed is not adjusted by the one-way throttle valve of the system, and the propulsion cylinder 16 has high propulsion and retraction speeds, and the system works efficiently.
- the propulsion speed of rock drilling mode is divided into working conditions and grades, and the propulsion speed is switched according to different impact conditions.
- the propulsion speed requirements the general requirements for opening propulsion speed are the lowest, followed by rock drilling propulsion speed, and the air thrust process is generally full speed to improve work efficiency.
- the maximum speed of hole opening and rock drilling propulsion is set by a one-way throttle valve, and the control pilot oil of the hole opening mode and impact conditions is fed back to the control system, so that different propulsion speed modes are automatically matched.
- the throttling speed is used to set the advancement speed of the unloading lever to match the rotation speed.
- a specific embodiment of the present invention also provides a rock drilling trolley including the above propulsion hydraulic control system.
- a rock drilling trolley including the above propulsion hydraulic control system.
- the rock drilling trolley may be a medium-deep hole rock drilling trolley.
Landscapes
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
一种凿岩台车的推进液压控制系统,包括液压泵(2)、推进油缸(16)和用于控制推进油缸换向的多路换向阀(3),还包括第一电磁换向节流装置(6)、第二电磁换向节流装置(7)、第一液控换向阀(12)、第二液控换向阀(13)、第三单向节流阀(10)和第四单向节流阀(11),第一液控换向阀和第二液控换向阀能够根据先导控制油的状态切换工作位以控制液压油是否通过第三单向节流阀和/或第四单向节流阀进出推进油缸的无杆腔。还公开了一种包括上述推进液压控制系统的凿岩台车。该推进液压控制系统减小了凿岩台车损耗,降低了操作人员的作业量,不需要人工实时调整,降低了接卸杆操控难度,提高了系统的操控性,改善了施工效率。
Description
本发明涉及隧道挖掘设备领域,特别是涉及一种凿岩台车的推进液压控制系统。此外,本发明还涉及一种包括上述推进液压控制系统的凿岩台车。
凿岩台车是一种用于窄矿脉的开采凿岩设备,一般采用全液压直接控制,具备接杆钻孔、卸杆入库的功能。在进行凿岩作业时,需要满足液压凿岩台车开孔推进速度、凿岩推进速度、开孔凿岩快速回退速度和空载推进快进快回几种速度要求。在开孔、凿岩过程中当遇到裂隙、溶洞等复杂地质,容易出现凿岩空行程的现象,即空打现象,如果不对速度进行调节控制,容易出现的推进速度过快、速度不受控等问题,增大凿岩台车损耗,加大了操作人员的作业量,因此需要对推进速度进行控制。另一方面,接卸杆时,凿岩台车的推进速度需要与回转速度匹配,根据回转钻杆的螺距等确定推进速度,如果不匹配就会导致憋杆或者无法快速完成接卸杆,严重时损坏钻杆及设备。人工根据接卸杆状态操作实时调整难度大,操控性差,劳动强度大,效率低。
因此,如何提供一种能够根据需要调整推进速度的液压控制系统是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种凿岩台车的推进液压控制系统,能够根据需要调整推进速度,降低操作难度,提高工作效率。本发明的另一目的是提供一种包括上述推进液压控制系统的凿岩台车。
为解决上述技术问题,本发明提供一种凿岩台车的推进液压控制系统,包括液压泵、推进油缸和用于控制所述推进油缸换向的多路换向阀,所述多路换向阀的两个工作油口分别连通第一电磁换向节流装 置和第二电磁换向节流装置的进出油口,所述第一电磁换向节流装置通过并联的第一液控换向阀和第二液控换向阀连通所述推进油缸的无杆腔,所述第二电磁换向节流装置连通所述推进油缸的有杆腔,所述推进液压控制系统还包括串联的第三单向节流阀和第四单向节流阀,所述第三单向节流阀与所述第一液控换向阀并联,所述第四单向节流阀与所述第一液控换向阀串联,与所述第二液控换向阀并联,所述第一液控换向阀能够接收开孔低冲击先导控制油,所述第二液控换向阀能够接收冲击总先导控制油,所述第一液控换向阀和所述第二液控换向阀能够根据先导控制油的状态切换工作位以控制液压油是否通过所述第三单向节流阀和/或第四单向节流阀进出所述推进油缸的无杆腔。
优选地,所述第三单向节流阀的调定流量小于所述第四单向节流阀的调定流量。
优选地,所述第一液控换向阀和所述第二液控换向阀具体为两位三通液控换向阀,所述两位三通液控换向阀的液控口高压时进出油口隔绝,所述两位三通液控换向阀的液控口泄压时进出油口导通。
优选地,所述两位三通液控换向阀的液控口通过阻尼接收先导控制油。
优选地,所述多路换向阀具体为三位六通换向阀,所述三位六通换向阀处于第一工作位时,液压油能够进入所述推进油缸的无杆腔,所述三位六通换向阀处于第二工作位时,液压油能够进入所述推进油缸的有杆腔,所述三位六通换向阀处于第三工作位时,处于卸载状态。
优选地,所述三位六通换向阀和所述液压泵之间设置有安全单向阀和溢流阀。
优选地,所述第一电磁换向节流装置包括第一电磁换向阀和第一单向节流阀,所述第二电磁换向节流装置包括第二电磁换向阀和第二单向节流阀,所述多路换向阀的两个工作油口分别连通第一电磁换向阀和第二电磁换向阀的进出油口,所述第一电磁换向阀的一个工作油口通过第一单向节流阀连接所述第三单向节流阀,所述第一电磁换向阀的另一个工作油口直接连接所述第三单向节流阀,所述第二电磁换 向阀的一个工作油口通过第二单向节流阀连接所述推进油缸的有杆腔,所述第二电磁换向阀的另一个工作油口直接连接所述推进油缸的有杆腔。
优选地,所述第一电磁换向阀和所述第二电磁换向阀具体为两位三通电磁换向阀,所述两位三通电磁换向阀处于第一工作位时,直接连接所述推进油缸,所述两位三通电磁换向阀处于第二工作位时,通过单向节流阀连通所述推进油缸。
本发明提供一种凿岩台车,包括推进液压控制系统,所述推进液压控制系统具体为上述任意一项所述的推进液压控制系统。
优选地,所述凿岩台车具体为中深孔凿岩台车。
本发明提供一种凿岩台车的推进液压控制系统,包括液压泵、推进油缸和用于控制推进油缸换向的多路换向阀,多路换向阀的两个工作油口分别连通第一电磁换向节流装置和第二电磁换向节流装置的进出油口,第一电磁换向节流装置通过并联的第一液控换向阀和第二液控换向阀连通推进油缸的无杆腔,第二电磁换向节流装置连通推进油缸的有杆腔,还包括串联的第三单向节流阀和第四单向节流阀,第三单向节流阀与第一液控换向阀并联,第四单向节流阀与第一液控换向阀串联,与第二液控换向阀并联,第一液控换向阀能够接收开孔低冲击先导控制油,第二液控换向阀能够接收冲击总先导控制油,第一液控换向阀和第二液控换向阀能够根据先导控制油的状态切换工作位以控制液压油是否通过第三单向节流阀和/或第四单向节流阀进出推进油缸的无杆腔。
对凿岩模式推进速度进行分工况分级限定,根据不同冲击工况进行推进速度的切换控制。根据推进速度要求,一般开孔推进速度要求最低,凿岩推进速度次之,空推过程一般全速以提高工作效率。开孔和凿岩推进最大速度通过单向节流阀调定,将开孔模式及冲击工况的控制先导油反馈到控制系统,进而实现不同推进速度模式自动匹配。避免了开孔、凿岩遇到溶洞、裂隙复杂地质等出现的推进速度过大、速度不受控等问题,实现了空打过程推进速度控制,减小了凿岩台车 损耗,降低了操作人员的作业量。具有接卸杆推进速度控制,通过节流调速调定接卸杆推进速度与回转速度匹配,通过控制模式切换,只要将手柄定位到推进位,即可简单实现接卸杆动作匹配,不需要人工实时调整,降低了接卸杆操控难度,提高了系统的操控性,改善了施工效率。
本发明还提供一种包括上述推进液压控制系统的凿岩台车,由于上述推进液压控制系统具有上述技术效果,上述凿岩台车也应具有同样的技术效果,在此不再详细介绍。
图1为本发明所提供的推进液压控制系统的一种具体实施方式的液压原理图。
本发明的核心是提供一种凿岩台车的推进液压控制系统,能够根据需要调整推进速度,降低操作难度,提高工作效率。本发明的另一核心是提供一种包括上述推进液压控制系统的凿岩台车。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1,图1为本发明所提供的推进液压控制系统的一种具体实施方式的液压原理图。
本发明具体实施方式提供一种凿岩台车的推进液压控制系统,包括液压泵2、推进油缸16和多路换向阀3,其中液压泵2通过电机1驱动,多路换向阀3分别连接液压泵2和推进油缸16,用于控制推进油缸16换向。为了提高安全性还可以在多路换向阀3和液压泵2之间设置安全单向阀5和溢流阀4。
具体地,多路换向阀3可以为三位六通换向阀,三位六通换向阀处于第一工作位时,其进油口P连通第二工作油口B,回油口T连通第一工作油口A,使高压油能够进入推进油缸16的无杆腔,有杆腔内的低压油流回油箱,三位六通换向阀处于第二工作位时,其进油口P连通第一工作油口A,回油口T连通第二工作油口B,高压油能够进 入推进油缸16的有杆腔,无杆腔内的低压油流回油箱,三位六通换向阀处于第三工作位时,进油口P、回油口T、第一工作油口A和第二工作油口B均处于隔绝状态,三位六通换向阀的中位工作油口连通,进油口直接连回油箱,处于卸载状态,此时启动电机1,液压泵2卸载启动。也可采用其他类型的换向阀,均在本发明的保护范围之内。
本发明具体实施方式提供的推进液压控制系统,还包括第一电磁换向节流装置、第二电磁换向节流装置、第三单向节流阀10和第四单向节流阀11。
多路换向阀3的两个工作油口A、B分别连通第一电磁换向节流装置和第二电磁换向节流装置的进出油口,第一电磁换向节流装置通过并联的第一液控换向阀12和第二液控换向阀13连通推进油缸16的无杆腔,第二电磁换向节流装置连通推进油缸16的有杆腔,第三单向节流阀10与第一液控换向阀12并联,第四单向节流阀11同时与第一液控换向阀12及第二液控换向阀13并联,第一液控换向阀12能够接收开孔低冲击先导控制油KK,第二液控换向阀13能够接收冲击总先导控制油CJ,第一液控换向阀12和第二液控换向阀13能够根据先导控制油的状态切换工作位以控制液压油是否通过第三单向节流阀10和/或第四单向节流阀11进出推进油缸16的无杆腔。
具体地,第一液控换向阀12和第二液控换向阀13具体为两位三通液控换向阀,当热也可采用其他类型的换向阀,两位三通液控换向阀的液控口高压时进出油口隔绝,两位三通液控换向阀的液控口泄压时时进出油口导通。两位三通液控换向阀的液控口通过阻尼接收先导控制油。
工作过程为:当凿岩台车处于开孔工作模式,冲击总先导控制油CJ和开孔低冲击先导控制油KK都处于高压状态,高压油分别通过第一阻尼14和第二阻尼15对应进入第一液控换向阀12和第二液控换向阀13的液控口,此时第一液控换向阀12和第二液控换向阀13均处于进出油口隔绝的状态,控制多路换向阀3处于第一工作位,液压泵2出口高压油依次经过单向阀5、多路换向阀3(P到B口)、第一电磁 换向阀节流装置(此时处于非节流状态,可以理解为液压油无阻尼正常流动)、第三单向节流阀10的节流阀支路和第四单向节流阀11的节流阀支路进入到凿岩台车的推进油缸16的无杆腔,推进油缸16伸出。推进油缸16的有杆腔内的低压油经电第二电磁换向阀节流装置(此时处于非节流状态,可以理解为液压油无阻尼正常流动)和多路换向阀3(A到T口)回油箱。控制多路换向阀3处于第二工作位,液压泵2出口高压油经过安全单向阀5、多路换向阀3(P到A口)和非节流状态的第二电磁换向阀节流装置,进入到凿岩台车推进油缸16的有杆腔,推进油缸16缩回。推进油缸16的无杆腔内的低压油依次经过第四单向节流阀11的单向阀支路、第三单向节流阀10的单向阀支路、非节流状态的第一电磁换向阀节流装置和多路换向阀3(B到T口)回油箱。其中,由于开孔模式推进速度一般小于凿岩模式推进速度,可以使第三单向节流阀10的调定流量小于第四单向节流阀11的调定流量,使开孔模式凿岩台车推进油缸16最大速度由第三单向节流阀10调定,凿岩模式凿岩台车推进油缸16最大速度由第四单向节流阀11调定。凿岩台车开孔推进油缸16伸出的过程中,第三单向节流阀10和第四单向节流阀11串联,但是仅受第三单向节流阀10的节流支路调定限制,凿岩台车开孔推进油缸16缩回的过程中,由于流经的为单向节流阀的单向阀支路,因此速度不受节流调节。
当凿岩台车处于凿岩工作模式,冲击总先导控制油CJ处于高压状态,开孔低冲击先导控制油KK处于泄压状态,高压油进入第二液控换向阀13的液控口,第一液控换向阀12处于泄压状态,进出油口连通,第二液控换向阀13处于高压状态,进出油口隔绝,可以绕过第三单向节流阀10。控制多路换向阀3处于第一工作位,液压泵2出口高压油依次经过安全单向阀5、多路换向阀3(P到B口)、非节流状态的第一电磁换向阀节流装置、第一液控换向阀12和第四单向节流阀11的节流支路进入到凿岩台车推进油缸16的无杆腔,推进油缸16伸出。推进油缸16的有杆腔内的低压油经过非节流状态的第二电磁换向阀节流装置和多路换向阀3(A到T口)回油箱。控制多路换向阀3 处于第二工作位,液压泵2出口高压油依次经过安全单向阀5、多路换向阀3(P到A口)、非节流状态的第二电磁换向阀节流装置进入到凿岩台车推进油缸16的有杆腔,推进油缸16缩回。推进油缸16的无杆腔内的低压油经过第四单向节流阀11的单向阀支路、第一液控换向阀12、非节流状态的第一电磁换向阀节流装置和多路换向阀3(B到T口)回油箱。因此,凿岩台车凿岩推进油缸16伸出速度受第四单向节流阀11的节流支路调节,凿岩台车凿岩推进油缸16缩回时,经过第四单向节流阀11的单向阀支路,速度不受其调节。
在上述各具体实施方式提供的推进液压控制系统的基础上,第一电磁换向节流装置包括第一电磁换向阀6和第一单向节流阀8,第二电磁换向节流装置包括第二电磁换向阀7和第二单向节流阀9,多路换向阀3的两个工作油口分别连通第一电磁换向阀6和第二电磁换向阀7的进出油口,第一电磁换向阀6的一个工作油口通过第一单向节流阀8连接推进油缸16的无杆腔,第一电磁换向阀6的另一个工作油口直接连接推进油缸16的无杆腔,第二电磁换向阀7的一个工作油口通过第二单向节流阀9连接推进油缸16的有杆腔,第二电磁换向阀7的另一个工作油口直接连接推进油缸16的有杆腔。
具体地,第一电磁换向阀6和第二电磁换向阀7具体为两位三通电磁换向阀,两位三通电磁换向阀处于第一工作位时,直接连接推进油缸16,两位三通电磁换向阀处于第二工作位时,通过单向节流阀连通推进油缸16。
当凿岩台车处于开孔工作模式和凿岩工作模式时,第一电磁换向节流装置和第二电磁换向节流装置处于非节流状态,即第一电磁换向阀6和第二电磁换向阀7失电均处于第一工作位,液压油进出推进油缸16仅流经第一电磁换向阀6和第二电磁换向阀7,不会流经第一单向节流阀8和第二单向节流阀9,可以理解为无阻尼流通。
当凿岩台车处于接卸杆模式时,第一电磁换向节流装置和第二电磁换向节流装置处于节流状态,即第一电磁换向阀6和第二电磁换向阀7得电均处于第二工作位,液压油进入推进油缸16时需要流经电磁 换向阀和单向节流阀的节流支路,进行流速调控,液压流出推进油缸16时需要流经电磁换向阀和单向节流阀的单向阀支路,不进行流速调控。
此时,冲击总先导控制油CJ和开孔低冲击先导控制油KK都处于泄压状态,第一液控换向阀12和第二液控换向阀12均处于泄压状态,进出油口连通,能够同时绕过第三单向节流阀10和第四单向节流阀11进行工作。推进油缸16伸出时,液压泵2高压油依次经过多路换向阀3、第一电磁换向阀6、第一单向节流阀8的节流支路、第二液控换向阀13进入推进油缸16的无杆腔,推进油缸16伸出,第一单向节流阀8调节接卸杆时推进油缸16的伸出速度。推进油缸16缩回时,液压泵2高压油依次经过多路换向阀3、第二电磁换向阀7、第二单向节流阀9的节流支路,进入推进油缸16的有杆腔,推进油缸16缩回,第二单向节流阀9调节接卸杆时推进油缸16缩回速度。低压油的回油路径相同,但是经过单向节流阀的单向阀支路,不需进行速度调节。
当凿岩台车空推时,第一电磁换向阀6和第二电磁换向阀7失电,冲击总先导控制油CJ和开孔低冲击先导控制油KK都处于泄压状态。推进油缸16伸出时,液压泵2高压油依次经过多路换向阀3、第一电磁换向阀6、第二液控换向阀13直接进入推进油缸16无杆腔,推进油缸16有杆腔内的低压油经过第二电磁换向阀7和多路换向阀3回油箱。推进油缸16缩回时,液压泵2高压油依次经过多路换向阀3、第二电磁换向阀7直接进入推进油缸16有杆腔,推进油缸16无杆腔内的低压油经过第二液控换向阀13、第一电磁换向阀6、多路换向阀3回油箱。因此,凿岩台车空推时,推进速度不经过系统的单向节流阀调速,推进油缸16推进伸出及回退速度高,系统工作效率高。
对凿岩模式推进速度进行分工况分级限定,根据不同冲击工况进行推进速度的切换控制。根据推进速度要求,一般开孔推进速度要求最低,凿岩推进速度次之,空推过程一般全速以提高工作效率。开孔和凿岩推进最大速度通过单向节流阀调定,将开孔模式及冲击工况的控制先导油反馈到控制系统,进而实现不同推进速度模式自动匹配。 避免了开孔、凿岩遇到溶洞、裂隙复杂地质等出现的推进速度过大、速度不受控等问题,实现了空打过程推进速度控制,减小了凿岩台车损耗,降低了操作人员的作业量。具有接卸杆推进速度控制,通过节流调速调定接卸杆推进速度与回转速度匹配,通过控制模式切换,只要将手柄定位到推进位,即可简单实现接卸杆动作匹配,不需要人工实时调整,降低了接卸杆操控难度,提高了系统的操控性,改善了施工效率。
除了上述推进液压控制系,本发明的具体实施方式还提供一种包括上述推进液压控制系的凿岩台车,该凿岩台车其他各部分的结构请参考现有技术,本文不再赘述。
具体地,上述凿岩台车可以是中深孔凿岩台车。
以上对本发明所提供的凿岩台车及其推进液压控制系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (10)
- 一种凿岩台车的推进液压控制系统,包括液压泵(2)、推进油缸(16)和用于控制所述推进油缸(16)换向的多路换向阀(3),其特征在于,所述多路换向阀(3)的两个工作油口分别连通第一电磁换向节流装置和第二电磁换向节流装置的进出油口,所述第一电磁换向节流装置通过并联的第一液控换向阀(12)和第二液控换向阀(13)连通所述推进油缸(16)的无杆腔,所述第二电磁换向节流装置连通所述推进油缸(16)的有杆腔,所述推进液压控制系统还包括串联的第三单向节流阀(10)和第四单向节流阀(11),所述第三单向节流阀(10)与所述第一液控换向阀(12)并联,所述第四单向节流阀(11)与所述第一液控换向阀(12)串联,与所述第二液控换向阀(13)并联,所述第一液控换向阀(12)能够接收开孔低冲击先导控制油,所述第二液控换向阀(13)能够接收冲击总先导控制油,所述第一液控换向阀(12)和所述第二液控换向阀(13)能够根据先导控制油的状态切换工作位以控制液压油是否通过所述第三单向节流阀(10)和/或第四单向节流阀(11)进出所述推进油缸(16)的无杆腔。
- 根据权利要求1所述的推进液压控制系统,其特征在于,所述第三单向节流阀(10)的调定流量小于所述第四单向节流阀(11)的调定流量。
- 根据权利要求2所述的推进液压控制系统,其特征在于,所述第一液控换向阀(12)和所述第二液控换向阀(13)具体为两位三通液控换向阀,所述两位三通液控换向阀的液控口高压时进出油口隔绝,所述两位三通液控换向阀的液控口泄压时进出油口导通。
- 根据权利要求3所述的推进液压控制系统,其特征在于,所述两位三通液控换向阀的液控口通过阻尼接收先导控制油。
- 根据权利要求1所述的推进液压控制系统,其特征在于,所述多路换向阀(3)具体为三位六通换向阀,所述三位六通换向阀处于第一工作位时,液压油能够进入所述推进油缸(16)的无杆腔,所述三位六通换向阀处于第二工作位时,液压油能够进入所述推进油缸 (16)的有杆腔,所述三位六通换向阀处于第三工作位时,处于卸载状态。
- 根据权利要求5所述的推进液压控制系统,其特征在于,所述三位六通换向阀和所述液压泵(2)之间设置有安全单向阀(5)和溢流阀(4)。
- 根据权利要求1至6任意一项所述的推进液压控制系统,其特征在于,所述第一电磁换向节流装置包括第一电磁换向阀(6)和第一单向节流阀(8),所述第二电磁换向节流装置包括第二电磁换向阀(7)和第二单向节流阀(9),所述多路换向阀(3)的两个工作油口分别连通第一电磁换向阀(6)和第二电磁换向阀(7)的进出油口,所述第一电磁换向阀(6)的一个工作油口通过第一单向节流阀(8)连接所述第三单向节流阀(10),所述第一电磁换向阀(6)的另一个工作油口直接连接所述第三单向节流阀(10),所述第二电磁换向阀(7)的一个工作油口通过第二单向节流阀(9)连接所述推进油缸(16)的有杆腔,所述第二电磁换向阀(7)的另一个工作油口直接连接所述推进油缸(16)的有杆腔。
- 根据权利要求7所述的推进液压控制系统,其特征在于,所述第一电磁换向阀(6)和所述第二电磁换向阀(7)具体为两位三通电磁换向阀,所述两位三通电磁换向阀处于第一工作位时,直接连接所述推进油缸(16),所述两位三通电磁换向阀处于第二工作位时,通过单向节流阀连通所述推进油缸(16)。
- 一种凿岩台车,包括推进液压控制系统,其特征在于,所述推进液压控制系统具体为权利要求1至8任意一项所述的推进液压控制系统。
- 根据权利要求9所述的凿岩台车,其特征在于,所述凿岩台车具体为中深孔凿岩台车。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811506268.7 | 2018-12-10 | ||
CN201811506268.7A CN109236765B (zh) | 2018-12-10 | 2018-12-10 | 凿岩台车及其推进液压控制系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020119691A1 true WO2020119691A1 (zh) | 2020-06-18 |
Family
ID=65073861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/124393 WO2020119691A1 (zh) | 2018-12-10 | 2019-12-10 | 凿岩台车及其推进液压控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109236765B (zh) |
WO (1) | WO2020119691A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682380A (zh) * | 2020-12-29 | 2021-04-20 | 徐工集团工程机械股份有限公司科技分公司 | 一种快换液压系统 |
CN115142842A (zh) * | 2022-07-08 | 2022-10-04 | 中煤科工集团重庆研究院有限公司 | 一种煤矿钻机机械手控制系统及其控制方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109236765B (zh) * | 2018-12-10 | 2019-03-26 | 中国铁建重工集团有限公司 | 凿岩台车及其推进液压控制系统 |
CN110332163B (zh) * | 2019-07-25 | 2024-04-19 | 中国铁建重工集团股份有限公司 | 液压控制系统与铲运机 |
CN110296115B (zh) * | 2019-07-31 | 2024-04-19 | 中国铁建重工集团股份有限公司 | 凿岩台车及其钻臂控制液压系统 |
CN111502565B (zh) * | 2020-04-27 | 2022-04-08 | 湖南创远高新机械有限责任公司 | 自动接卸杆液压控制系统及钻机动力头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2449267A2 (de) * | 2009-07-02 | 2012-05-09 | Robert Bosch GmbH | Ventilanordnung |
CN202788599U (zh) * | 2012-01-20 | 2013-03-13 | 中船重工中南装备有限责任公司 | 一种凿岩机的凿岩控制系统 |
CN203627354U (zh) * | 2013-10-25 | 2014-06-04 | 宝鸡石油机械有限责任公司 | 一种履带式坑道钻机的液压控制系统 |
CN204704173U (zh) * | 2015-05-29 | 2015-10-14 | 阿特拉斯科普柯(南京)建筑矿山设备有限公司 | 液压凿岩机的推进速度控制系统 |
CN107939757A (zh) * | 2017-12-29 | 2018-04-20 | 徐州徐工铁路装备有限公司 | 一种凿岩台车的凿岩控制系统 |
CN109236765A (zh) * | 2018-12-10 | 2019-01-18 | 中国铁建重工集团有限公司 | 凿岩台车及其推进液压控制系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207673634U (zh) * | 2017-12-29 | 2018-07-31 | 徐州徐工铁路装备有限公司 | 凿岩台车的凿岩控制系统 |
-
2018
- 2018-12-10 CN CN201811506268.7A patent/CN109236765B/zh active Active
-
2019
- 2019-12-10 WO PCT/CN2019/124393 patent/WO2020119691A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2449267A2 (de) * | 2009-07-02 | 2012-05-09 | Robert Bosch GmbH | Ventilanordnung |
CN202788599U (zh) * | 2012-01-20 | 2013-03-13 | 中船重工中南装备有限责任公司 | 一种凿岩机的凿岩控制系统 |
CN203627354U (zh) * | 2013-10-25 | 2014-06-04 | 宝鸡石油机械有限责任公司 | 一种履带式坑道钻机的液压控制系统 |
CN204704173U (zh) * | 2015-05-29 | 2015-10-14 | 阿特拉斯科普柯(南京)建筑矿山设备有限公司 | 液压凿岩机的推进速度控制系统 |
CN107939757A (zh) * | 2017-12-29 | 2018-04-20 | 徐州徐工铁路装备有限公司 | 一种凿岩台车的凿岩控制系统 |
CN109236765A (zh) * | 2018-12-10 | 2019-01-18 | 中国铁建重工集团有限公司 | 凿岩台车及其推进液压控制系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682380A (zh) * | 2020-12-29 | 2021-04-20 | 徐工集团工程机械股份有限公司科技分公司 | 一种快换液压系统 |
CN115142842A (zh) * | 2022-07-08 | 2022-10-04 | 中煤科工集团重庆研究院有限公司 | 一种煤矿钻机机械手控制系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109236765A (zh) | 2019-01-18 |
CN109236765B (zh) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020119691A1 (zh) | 凿岩台车及其推进液压控制系统 | |
CN102966612B (zh) | 矿用全液压坑道钻机液压控制系统 | |
CN110454140B (zh) | 具备集成式液压联动阀块的钻机电液双控制系统及方法 | |
WO2016074509A1 (zh) | 全液压钻式采煤机液压控制系统 | |
CN110307196A (zh) | 一种水平取芯钻机及其推进液压系统 | |
CN202971363U (zh) | 矿用全液压坑道钻机液压控制系统 | |
CN101225839A (zh) | 一种采用液压变压器的节能型盾构液压控制系统 | |
CN107620762B (zh) | 凿岩机及其液压自动控制系统 | |
WO2020119668A1 (zh) | 凿岩台车的冲击控制液压系统 | |
CN106762888B (zh) | Tbm变转速变排量泵控电液推进系统及控制方法 | |
CN108223467B (zh) | 用于全液压履带式反循环工程钻机的液压系统 | |
CN112983907B (zh) | 一种凿岩冲击液压控制系统 | |
CN103821451A (zh) | 凿岩机防卡钎液压控制系统 | |
CN111456746A (zh) | 一种超大直径盾构多模式推进系统及控制方法 | |
CN102536141B (zh) | 一种凿岩钻车的自动换钎控制系统 | |
CN203716837U (zh) | 凿岩机防卡钎液压控制系统 | |
CN112628231B (zh) | 一种自动钻进控制阀组、控制系统及其控制方法 | |
CN113494499B (zh) | 集成控制阀、牙轮钻机的自动卸杆钳液压系统及卸杆钳 | |
CN208503124U (zh) | 用于混凝土湿喷台车的双回路泵送液压系统 | |
CN202531060U (zh) | 一种凿岩钻车的自动换钎控制系统 | |
CN104653529B (zh) | 凿岩台车的防溶洞卡钎系统 | |
CN211039203U (zh) | 多功能坑道钻机多路换向阀 | |
CN108050113B (zh) | 一种水平定向钻机动力头旋转防止反转控制系统 | |
CN115711087A (zh) | 一种凿岩钻孔控制的三级防卡钎系统 | |
CN114962363A (zh) | 一种多工况深孔勘探车集成化负载敏感比例电液控多路阀组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19896556 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19896556 Country of ref document: EP Kind code of ref document: A1 |