[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020118597A1 - Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide - Google Patents

Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide Download PDF

Info

Publication number
WO2020118597A1
WO2020118597A1 PCT/CN2018/120821 CN2018120821W WO2020118597A1 WO 2020118597 A1 WO2020118597 A1 WO 2020118597A1 CN 2018120821 W CN2018120821 W CN 2018120821W WO 2020118597 A1 WO2020118597 A1 WO 2020118597A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
alkyl
yield
reacting
Prior art date
Application number
PCT/CN2018/120821
Other languages
French (fr)
Inventor
Christophe Pierre Alain Chassaing
Jingjun Yin
Edward Cleator
Lichen SONG
Wensong Xiao
Thomas Dahmen
Daniel Salanta
Claudia SCHEIPERS
Harald Schmitt
Original Assignee
Intervet International B.V.
Intervet Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intervet International B.V., Intervet Inc. filed Critical Intervet International B.V.
Priority to PCT/CN2018/120821 priority Critical patent/WO2020118597A1/en
Priority to EP19817316.3A priority patent/EP3894403A1/en
Priority to JP2021533236A priority patent/JP7497357B2/en
Priority to PCT/EP2019/084887 priority patent/WO2020120673A1/en
Priority to CA3122183A priority patent/CA3122183A1/en
Priority to US17/311,615 priority patent/US20220017499A1/en
Priority to CN201980082538.2A priority patent/CN113227077B/en
Priority to BR112021011084-4A priority patent/BR112021011084A2/en
Publication of WO2020118597A1 publication Critical patent/WO2020118597A1/en
Priority to JP2024015683A priority patent/JP2024054201A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • WO 2018/108969 discloses compounds of formula I which are selective Janus kinase (JAK) inhibitors, and as such are useful for the treatment of JAK-mediated diseases such as atopic dermatitis, arthritis, and cancer. Specifically, 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) is disclosed.
  • WO 2013/041042 discloses pyrazole carboxamides as Janus kinase inhibitors that are useful for the treatment of rheumatoid arthritis, asthma, chronic obstructive pulmonary disease (COPD) and cancer.
  • the compounds of this disclosure are of the following formula.
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl with a compound of Formula (XII)
  • the borylation step is performed in the presence of 4, 4 ⁇ -di-tert-butylbipyridine or of N-benzyl-1-phenyl-N- (2-pyridylmethyleneamino) methanamine as ligands.
  • the borylation step is performed in an organic solvent such as tetrahydrofuran, cyclohexane or dioxane. Conversion of the obtained boronic ester (VIII) into the corresponding bromide (XI) is then achieved in the presence of a brominating agent.
  • the brominating agent is chosen from copper (I) bromide associated with an oxidazing agent or copper (II) bromide. In another embodiment of the invention, the brominating agent is copper (II) bromide.
  • the introduction of the 6-methoxy substituent to deliver the target 2-fluoro-4-bromo-6-methoxy-pyridine (XIIb) is achieved in the presence of an alkali methoxide such as potassium or sodium methoxide. In one embodiment of the invention, the alkali methoxide is sodium methoxide.
  • 2-Fluoro-4-iodo-6-methoxy-pyridine (XIIa) is thus obtained in high purity and yield and in a single synthetic step from 2-fluoro-6-methoxy-pyridine (IX) via a novel halogenation /halogen dance protocol.
  • the halogenation/halogen dance step is performed in the presence of a lithium amide base.
  • the lithium amide base is chosen from lithium 2, 2, 6, 6-tetramethylpiperidide and lithium diisopropylamide.
  • the lithium amide base is lithium 2, 2, 6, 6-tetramethylpiperidide.
  • the halogenation/halogen dance step is performed in the presence of 2 to 2.5 equivalent of lithium amide base.
  • the reaction is performed in the presence of 2 to 2.1 equivalent lithium amide base.
  • the halogenation/halogen dance reaction is performed at a temperature between -78 and -65 °C.
  • the reaction is performed between -75 and -70 °C.
  • the reaction is performed using 15 to 20 volumes of solvent.
  • This new intermediate (V) offers the advantages over the parent amide (XV) to be much more soluble in organic solvents and to be amenable to clean conversion into 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) . Due to the higher solubility in organic solvents a new scalable and much more cost efficient chiral separation of the racemate (V) is achieved.
  • Ethyl 3-amino-1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (VI) is prepared by the reaction of ethyl 3-amino-1H-pyrazole-4-carboxylate (IV) with 3, 6-dihydro-2H-pyran-4-carbonitrile (III) in the presence of a base in an organic solvent at elevated temperature, followed by chiral separation (scheme 6) .
  • the base is selected from 1, 8-diazabicyclo [5.4.0] undec-7-ene, potassium carbonate, potassium phosphate tribasic. In another embodiment of this invention, the base is potassium carbonate or potassium phosphate tribasic.
  • the organic solvent is ethanol, 1, 4-dioxane, N, N-dimethylformamide, toluene or acetonitrile. In a sub-aspect of this invention, the organic solvent is either toluene or acetonitrile. In an embodiment of this invention, 1 to 2.5 equivalents of 3, 6-dihydro-2H-pyran-4-carbonitrile (III) are engaged in the reaction. In another embodiment of the invention, 1.1 to 1.5 equivalents of 3, 6-dihydro-2H-pyran-4-carbonitrile (III) are engaged in the reaction
  • the palladium catalyst is chosen from tris (dibenzylideneacetone) dipalladium (0) , allylpalladium (II) chloride dimer, [ (2-di-tert-butylphosphino-3, 6-dimethoxy-2′, 4′, 6′-triisopropyl-1, 1′-biphenyl) -2- (2′-amino-1, 1′-biphenyl) ] palladium (II) methanesulfonate and palladium (II) acetate and the ligand is selected from 2- (di-tert-butylphosphino) -2′, 4′, 6′-triisopropyl-3, 6-dimethoxy-1, 1′-biphenyl, 2-di-tert-butylphosphino-2′, 4′, 6′-triisopropylbiphenyl and 4, 5-bis (diphenylphosphino)
  • the lithium salt is lithium bromide, lithium chloride or lithium hydroxide. In another embodiment of the invention, the lithium salt is either lithium bromide or lithium hydroxide. In a further embodiment of the invention, the trialkylamine base is triethylamine. In another embodiment of the invention, the hydrolysis is performed at elevated temperature. In an additional embodiment of the invention, the hydrolysis is performed at a temperature between 60 and 100 °C. In a further embodiment of the invention, the hydrolysis is performed at a temperature between 65 and 85 °C.
  • the active intermediate is an acid chloride derived from the acid of formula (XIV) and is obtained by the reaction of the acid (XIV) with a chlorinating agent such as oxalyl chloride or thionyl chloride.
  • the active intermediate results from the reaction of the acid of formula (XIV) with a coupling reagent such as a carbodiimide (DCC, DIC, EDC.
  • HCl a O- (benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium salt
  • HBTU a O- (benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium salt
  • HATU a O- (7-azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium salt
  • an additive such as hydroxybenzotriazole or ethyl cyano (hydroxyimino) acetate.
  • Lithium tetramethylpiperidide (CAS n° 38227-87-1) (often abbreviated LiTMP or LTMP) is a chemical compound with the molecular formula C 9 H 18 LiN. It is used as a non-nucleophilic base.
  • Trimethylsilyl cyanide (CAS n° 7677-24-9) (TMSCN) is the chemical compound with the formula (CH 3 ) 3 SiCN.
  • This volatile liquid consists of a cyanide group, that is CN, attached to a trimethylsilyl group. The molecule is used in organic synthesis as the equivalent of hydrogen cyanide.
  • COD 1, 5-Cyclooctadiene (CAS n° 1552-12-1) often abbreviated COD is a chemical compound used as a ligand in numerous metal complexes.
  • Pinacol (CAS n° 76-09-5) usually abbreviated pin is often a structural component of boron esters that are engaged in organometallic coupling processes.
  • MTBE stands for methyl tert-butyl ether (CAS n° 1634-04-4) and is used as organic solvent.
  • Dibenzylideneacetone (CAS n° 35225-79-7) often abbreviated dba is a chemical compound used as a ligand in numerous metal complexes.
  • 2-Di-tert-butylphosphino-2′, 4′, 6′-triisopropylbiphenyl (CAS n° 564483-19-8) often abbreviated t-Bu Xphos or tert-Butyl Xphos is a chemical compound used as a ligand in numerous metal complexes.
  • Xantphos is a chemical compound used as a ligand in numerous metal complexes.
  • HCl are reagents used for converting carboxylic acids into the corresponding O-acylurea intermediates which are prompt to reactions with a variety of nucleophiles.
  • O- (Benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium hexafluorophosphate (CAS n° 94790-37-1) often abbreviated HBTU
  • O- (Benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium tetrafluoroborate (CAS n° 125700-67-6) often abbreviated TBTU are reagents used for converting carboxylic acids into the corresponding 1-hydroxybenzotriazole esters which are prompt to reactions with a variety of nucleophiles.
  • O- (7-Azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium hexafluorophosphate (CAS n° 148893-10-1) often abbreviated HATU
  • O- (7-Azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium tetrafluoroborate (CAS n° 873798-09-5) are reagents used for converting carboxylic acids into the corresponding 1-hydroxyazabenzotriazole esters which are prompt to reactions with a variety of nucleophiles.
  • ammonia equivalent is a synthetic equivalent of ammonia, for example ammonium chloride.
  • a brominating agent is a reagent used to introduce bromine into the reaction, for example copper (II) bromide or copper (I) bromide associated to an oxidant.
  • An embodiment of the invention is a process for making a compound of Formula (XII) ,
  • R is I
  • the process further comprises reacting the compound of Formula (X) in the presence of a lithium amide base, preferably lithium/TMP, to yield a compound of Formula (XII) a
  • step a) the product of step a) is not isolated and purified before being carried on to step b.
  • An embodiment of the invention is a process for making a compound of Formula (XII) ,
  • R is Br
  • the process further comprises reacting the compound of Formula (VIII) with a brominating agent, preferably copper (II) bromide or copper (I) bromide associated to an oxidant, preferably copper (II) bromide, to yield a compound of Formula (XI)
  • a brominating agent preferably copper (II) bromide or copper (I) bromide associated to an oxidant, preferably copper (II) bromide
  • the process further comprises reacting the compound of Formula (XI) with an alkali methoxide, preferably sodium methoxide or potassium methoxide to yield a compound of Formula (XIIb)
  • an alkali methoxide preferably sodium methoxide or potassium methoxide
  • An embodiment of the invention is a process for making a compound of Formula (VI)
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl
  • the process further comprises reacting the compound of Formula (III) with a compound of Formula (IV) in the presence of a base such as potassium phosphate tribasic or potassium acetate
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl.
  • the process further comprises separating the enantiomers of the compound of Formula (V) to give the compound of Formula (VI) .
  • the separation of enantiomers is achieved by chiral chromatography.
  • An embodiment of the invention is a compound of Formula (V)
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl.
  • An embodiment of the invention is the compound of Formula (VI)
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl.
  • An embodiment of the invention is a compound of Formula (XIII)
  • R 1 is C 1 -C 4 alkyl, preferably C 1 -C 2 alkyl, most preferably ethyl.
  • An embodiment of the invention is a compound of Formula (XIV)
  • An additional embodiment of the invention is a process to make the compound of Formula (I)
  • Eluents A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
  • ESI/MS positive and negative ions scan: 100-1000 m/z; UV at 254 and 210 nm;
  • Eluents A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
  • ESI/MS positive and negative ions scan: 100-1000 m/z;
  • Binary pump G4220A included degasser
  • Eluents A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
  • ESI/MS positive and negative ions scan: 100-1000 m/z;
  • a jacketed glass reactor (10 L) equipped with a reflux condenser, a mechanical stirred, an internal thermometer, a gas scrubber and placed under nitrogen atmosphere is charged with dry acetonitrile (2.55 L) and with dihydro-2H-pyran-4 (3H) -one (II) (365 g, 3.65 mol) .
  • the resulting mixture is stirred and the temperature is adjusted between -5 and 0 °C.
  • Zinc iodide 35 g, 0.11 mol is added to the solution while maintaining the temperature below 10 °C.
  • reaction mixture is then cooled to room temperature and is added to a solution of iron sulfate hepta hydrate (304 g, 1.09 mol) in water (7.3 L) adjusted to pH > 10 by the addition of aqueous 50%sodium hydroxide.
  • aqueous 50%sodium hydroxide aqueous 50%sodium hydroxide.
  • the resulting mixture is extracted with methyl-tert-butyl ether (3.5 L) , the organic phase is collected and the aqueous phase is diluted with water (6 L) .
  • the diluted aqueous phase is extracted with methyl-tert-butyl ether (2 ⁇ 2.5 L) .
  • the combined organic layers are washed with aqueous saturated sodium hydrogencarbonate (1.83 L) and are concentrated under reduced pressure at 40 °C. Distillation of the crude residue under reduced pressure (bp ⁇ 45 °C at 0.5 mbar) affords the desired product (III) as colorless oil (289 g, 2.6 mol) .
  • a jacketed glass reactor (5L) equipped with a reflux condenser, a mechanical stirrer, an internal thermometer and placed under nitrogen atmosphere was charged with dry acetonitrile (750 mL) , potassium phosphate tribasic monohydrate (38.3 g, 0.16 mol) and ethyl 3-amino-1H-pyrazole-4-carboxylate (IV) (500 g, 3.19 mol) .
  • the resulting mixture was heated to 80 °C and 3, 6-dihydro-2H-pyran-4-carbonitrile (III) (462 g, 4.15 mol) was quickly added via an addition funnel.
  • the addition funnel was rinsed with acetonitrile (250 mL) which was also added to the reaction mixture.
  • the reaction mixture was reacted for 6.5 h at 80 °C under vigorous stirring before heating was stopped and the reaction mixture further stirred overnight. After concentration of the reaction mixture under reduced pressure a yellow slurry was obtained.
  • the obtained material was diluted with ethyl acetate (5 L) and the resulting solution was extracted with aqueous 1 M hydrochloric acid (3 ⁇ 1.5 L) , was washed once with brine (1 L) , was filtered over a filter filled with a pad of magnesium sulfate and was concentrated under reduced pressure to afford a yellow oil.
  • the yellow oil was taken up in methanol (1.36 L) , the resulting mixture was warmed up to 40 °C under stirring to ensure homogenization.
  • the resulting mixture was heated to 65 °C and stirred at this temperature for 90 min. After cooling to room temperature, the mixture was concentrated under reduced pressure at 40 °C.
  • the obtained crude residue was stirred with acetonitrile (650 mL) for 30 min at 50 °C. The hot solution was filtered over a pad of Celite and the filtrate was concentrated under reduced pressure. The obtained residue was taken up in 2-propanol (750 mL) , the resulting mixture was warmed to 100 °C and was then allowed to slowly reach room temperature under gentle stirring.
  • the formed precipitate was filtered off, the wet cake was rinsed with 2-propanol (50 mL) and was then dried under reduced pressure at 40 °C to afford the desired product (XIII) (61.2 g, 149 mmol) .
  • the new formed solid was washed with 2-propanol (2 ⁇ 50 mL) and was dried under reduced pressure at 40 °C to afford a second crop of desired product (XIII) (8.2 g, 19.5 mmol) .
  • the resulting mixture was heated to 60 °C and stirred at this temperature for 18 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The obtained residue was diluted with 2-propanol (20 mL) and the resulting mixture was warmed up until a solution was obtained. Heating was stopped and the solution was allowed to slowly reach room temperature. The suspension was filtered to collect the formed precipitate. The wet cake is rinsed with 2-propanol (25 mL) and was dried under reduced pressure at 40 °C to afford the desired product (XIII) as off-white solid (1.07 g, 2.75 mmol) .
  • Lithium bromide (769 mg, 8.86 mmol) and triethylamine (380 ⁇ L, 2.66 mmol) were added to a solution of ethyl 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylate (XIII) (345 mg, 0.89 mmol) in acetonitrile (4.34 mL) and water (87 ⁇ L) and the resulting mixture was stirred at 80 °C for 20 h.
  • the reaction mixture was cooled to room temperature, was diluted with ethyl acetate (25 mL) and was extracted with aqueous saturated sodium hydrogencarbonate (3 ⁇ 10 mL) .
  • the combined aqueous layers were the acidified to pH 3 by the addition of 1 M aqueous hydrochloric acid.
  • the precipitate formed was isolated by filtration and was dried under reduced pressure at 40 °C to deliver the desired product (XIV) as colorless solid (308 mg, 0.85 mmol) .
  • N- (3-Dimethylaminopropyl) -N′-ethylcarbodiimide hydrochloride (245 mg, 1.28 mmol) , 1-hydroxybenzotriazole hydrate (131 mg, 0.85 mmol) , ammonium chloride (91 mg, 1.71 mmol) , triethylamine (238 ⁇ L, 1.71 mmol) and 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylic acid (XIV) (308 mg, 0.85 mmol) were stirred at room temperature in a mixture of tetrahydrofuran (3 mL) and of N, N-dimethylformamide (1 mL) for 90 min.
  • a 160 L glass-lined vessel was charged with crude (I) (3.72 kg, 10.32 mol) and methanol (80.8 L) .
  • the contents were heated to reflux (65°C) and authentic crystal seeds of compound (I) (109 g, 302.5 mmol) charged as a slurry in methanol (1.9 L) .
  • the mixture was stirred at 275 rpm and aged for 14.5 h.
  • the slurry was cooled to 60°C and sampled for analysis purpose: Pure compound (I) was obtained.
  • the slurry was cooled from 65°C to 20°C over 12 h and then aged at 20°C for 6 h.
  • the batch was filtered and the cake was washed with methanol (5.4 L) .
  • N-dimethylacetamide (7.55 L) was degassed using subsurface nitrogen for 30 min.
  • tBuBrettPhos (96.0 g, 0.198 mol)
  • allyl palladium (II) chloride dimer (36.2 g, 0.099 moles) were added and the resulting mixture was stirred at 20 °C for 100 min with a subsurface nitrogen purge.
  • Another vessel was charged with compound (XVI) (2.32 kg, 9.88 mol) , with compound (XIIa) (2.50 kg, 9.88 mol) , potassium phosphate tribasic (4.19 kg, 19.76 mol) and with N, N-dimethylacetamide (17.55 L) .
  • the resulting mixture was stirred and degassed and the solution of the catalyst prepared in the first vessel was added.
  • the first vessel was rinsed with N, N-dimethylacetamide (0.5 L) which was also added to the reaction mixture.
  • the reaction mixture was then stirred at room temperature and was monitored by UV-HPLC until full conversion was observed.
  • the reaction mixture was filtered and the wet cake was washed with N, N-dimethylacetamide (5 L) .
  • the filtrate was cooled between 0 and 5 °C and water (90 L) was added over 105 min while maintaining the temperature between 0 and 5 °C.
  • the resulting slurry was aged 1 h at this temperature.
  • the slurry was then filtered and the cake was washed twice with water (10 and 20 L) and four times with methanol (15 and 3 ⁇ 19 L) .
  • the wet cake was dried under a nitrogen stream to deliver the desired compound (I) (3.14 kg, 0.154 mol) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

New processes for the preparation of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) which include (i) novel more efficient synthesis for bromo and iodo pyridine intermediates, (ii) synthesis of a novel pyrazole ester intermediate which can be obtained in enantiopure form and (iii) the combination of these intermediates into compound (I).

Description

[Title established by the ISA under Rule 37.2] PROCESS FOR MAKING 1- [ (3R, 4S) -4-CYANOTETRAHYDROPYRAN-3-YL] -3- [(2-FLUORO-6-METHOXY-4-PYRIDYL) AMINO] PYRAZOLE-4-CARBOXAMIDE BACKGROUND
WO 2018/108969 discloses compounds of formula I which are selective Janus kinase (JAK) inhibitors, and as such are useful for the treatment of JAK-mediated diseases such as atopic dermatitis, arthritis, and cancer. Specifically, 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) is disclosed.
Figure PCTCN2018120821-appb-000001
The known synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) was articulated around the key intermediate 3-amino-1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxamide (See Compound (XVI) of Scheme 4 below) . Due to the poor solubility of this intermediate in organic solvents, the chiral separation of the parent racemate (XV) had to be performed by chiral supercritical fluid chromatography (SFC) . In addition, its further conversion to 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) was accompanied by the formation of a side product making the production of the pure final product more difficult.
WO 2013/041042 discloses pyrazole carboxamides as Janus kinase inhibitors that are useful for the treatment of rheumatoid arthritis, asthma, chronic obstructive pulmonary disease (COPD) and cancer. The compounds of this disclosure are of the following formula.
Figure PCTCN2018120821-appb-000002
SUMMARY OF THE INVENTION
A process for making a compound of Formula (I)
Figure PCTCN2018120821-appb-000003
comprising
a. reacting a compound of Formula (VI)
Figure PCTCN2018120821-appb-000004
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl with a compound of Formula (XII)
Figure PCTCN2018120821-appb-000005
in the presence of a catalyst and of a base wherein R is I or Br, to yield a compound of Formula (XIII)
Figure PCTCN2018120821-appb-000006
and
b. converting the compound of Formula (XIII) to the compound of Formula (I) . The process further comprising
a. reacting the compound of Formula (XIII) in the presence of a trialkylamine, preferably triethylamine with a lithium salt, preferably lithium bromide, lithium chloride or lithium hydroxide to yield a compound of Formula (XIV)
Figure PCTCN2018120821-appb-000007
and
b. converting the compound of Formula (XIV) to the compound of Formula (I) . The process further comprising forming an active intermediate of the compound of Formula (XIV) and then reacting with ammonia or an equivalent thereof such as ammonium chloride associated to a base to yield the compound of Formula (I) .
DETAILED DESCRIPTION
A new access to 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) was discovered. The principal novelties reside in (i) a novel more efficient synthesis of a bromo-pyridine intermediate (XIIb) disclosed in WO 2018/108969 (ii) the synthesis and use of a new iodo-pyridine building block (XIIa) (iii) the synthesis and use of a pyrazole ester intermediate (V) which can be obtained in enantiopure form (VI) by chiral separation and (iv) the new synthetic steps for the conversion of this advanced intermediate (VI) into 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) . Unlike the known synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) , the novel synthetic sequence offers the potential to be scaled up at reasonable cost thus to be compatible with the production of large quantities of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) .
Scheme 1
Figure PCTCN2018120821-appb-000008
Descriptions of the preparation of key intermediates in the new synthesis are given below.
The synthesis of 2-fluoro-4-bromo-6-methoxy-pyridine (XIIb) disclosed in WO 2018/108969 was based on a four steps process starting from 3, 5-dichloro-2, 4, 6-trifluoropyridine. Some synthetic steps composing this process proved unreliable and poor yielding. As illustrative drawbacks, the hydrodechlorination of 3, 5-dichloro-2, 4, 6-trifluoropyridine into 2, 4, 6-trifluoropyridine (M. Schlosser et al. Chem. Eur. J. 2005, 11, 1903) could only be achieved in hydrophobic alcohols and suffered from partial hydrolysis of the product. In addition, the further conversion of the obtained 2, 4, 6-trifluoropyridine into 2, 6-difluoro-4- hydrazinylpyridine was not regioselective. A novel more efficient two steps synthesis based on iridium (I) -catalyzed borylation of 2, 6-difluoropyridine has been thus developed (scheme 2) .
Scheme 2: Novel access to compound of formula (XIIb)
Figure PCTCN2018120821-appb-000009
This process allows for the selective borylation of the position 4 of 2, 6-difluoropyridine (VII) in good yield (65%) . In one embodiment of the invention, the borylation step is performed in the presence of 4, 4`-di-tert-butylbipyridine or of N-benzyl-1-phenyl-N- (2-pyridylmethyleneamino) methanamine as ligands. In a another embodiment of the invention, the borylation step is performed in an organic solvent such as tetrahydrofuran, cyclohexane or dioxane. Conversion of the obtained boronic ester (VIII) into the corresponding bromide (XI) is then achieved in the presence of a brominating agent. In an embodiment of the invention, the brominating agent is chosen from copper (I) bromide associated with an oxidazing agent or copper (II) bromide. In another embodiment of the invention, the brominating agent is copper (II) bromide. The introduction of the 6-methoxy substituent to deliver the target 2-fluoro-4-bromo-6-methoxy-pyridine (XIIb) is achieved in the presence of an alkali methoxide such as potassium or sodium methoxide. In one embodiment of the invention, the alkali methoxide is sodium methoxide.
As a cost efficient alternative to the newly developed synthesis of 2-fluoro-4-bromo-6-methoxy-pyridine (XIIb) is the synthesis and the use of 2-fluoro-4-iodo-6-methoxy-pyridine (XIIa) (scheme 3) .
Scheme 3: Novel access to compound of formula (XIIa)
Figure PCTCN2018120821-appb-000010
2-Fluoro-4-iodo-6-methoxy-pyridine (XIIa) is thus obtained in high purity and yield and in a single synthetic step from 2-fluoro-6-methoxy-pyridine (IX) via a novel halogenation /halogen dance protocol. In an embodiment of the invention, the halogenation/halogen dance step is performed in the presence of a lithium amide base. In a sub-aspect of the invention, the lithium amide base is chosen from lithium 2, 2, 6, 6-tetramethylpiperidide and lithium diisopropylamide. In a further sub-aspect of the invention the lithium amide base is lithium 2, 2, 6, 6-tetramethylpiperidide. In one part of the invention, the halogenation/halogen dance step is performed in the presence of 2 to 2.5 equivalent of lithium amide base. In a sub-part of the invention, the reaction is performed in the presence of 2 to 2.1 equivalent lithium amide base. In an embodiment of the invention, the halogenation/halogen dance reaction is performed at a temperature between -78 and -65 ℃. In a sub-embodiment of the invention, the reaction is performed between -75 and -70 ℃. In a further embodiment of the invention, the reaction is performed using 15 to 20 volumes of solvent.
The known synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) was articulated around the key intermediate 3-amino-1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxamide (XVI) (WO2018/108969) (See Scheme 4) . Due to the poor solubility of this intermediate in organic solvents, the chiral separation of the parent racemate (XV) had to be performed by chiral supercritical fluid chromatography (SFC) . In addition, its further conversion to 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) was  accompanied by the formation of a side product resulting from the presence of a reactive amide group.
Scheme 4
Figure PCTCN2018120821-appb-000011
It was discovered that 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) can be more conveniently prepared from ethyl 3-amino-1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (VI) which can be obtained from ethyl 3-amino-1H-pyrazole-4-carboxylate (IV) via a new synthesis (scheme 5) .
Scheme 5: Novel synthesis of compound of formula (I)
Figure PCTCN2018120821-appb-000012
This new intermediate (V) offers the advantages over the parent amide (XV) to be much more soluble in organic solvents and to be amenable to clean conversion into 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) . Due to the higher solubility in  organic solvents a new scalable and much more cost efficient chiral separation of the racemate (V) is achieved.
Ethyl 3-amino-1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (VI) is prepared by the reaction of ethyl 3-amino-1H-pyrazole-4-carboxylate (IV) with 3, 6-dihydro-2H-pyran-4-carbonitrile (III) in the presence of a base in an organic solvent at elevated temperature, followed by chiral separation (scheme 6) .
Scheme 6: Preparation of the novel synthetic intermediate of formula (VI)
Figure PCTCN2018120821-appb-000013
In an embodiment of this invention, the base is selected from 1, 8-diazabicyclo [5.4.0] undec-7-ene, potassium carbonate, potassium phosphate tribasic. In another embodiment of this invention, the base is potassium carbonate or potassium phosphate tribasic.
In an embodiment of this invention, the organic solvent is ethanol, 1, 4-dioxane, N, N-dimethylformamide, toluene or acetonitrile. In a sub-aspect of this invention, the organic solvent is either toluene or acetonitrile. In an embodiment of this invention, 1 to 2.5 equivalents of 3, 6-dihydro-2H-pyran-4-carbonitrile (III) are engaged in the reaction. In another embodiment of the invention, 1.1 to 1.5 equivalents of 3, 6-dihydro-2H-pyran-4-carbonitrile (III) are engaged in the reaction
The coupling step between either 2-fluoro-4-bromo-6-methoxy-pyridine (XIIb) or 2-fluoro-4-iodo-6-methoxy-pyridine (XIIa) and the compound of formula (VI) is achieved in the presence of a palladium catalyst and of a ligand (scheme 7) .
Scheme 7: Preparation of compound of formula (XIII)
Figure PCTCN2018120821-appb-000014
In one embodiment of the invention, the palladium catalyst is chosen from tris (dibenzylideneacetone) dipalladium (0) , allylpalladium (II) chloride dimer, [ (2-di-tert-butylphosphino-3, 6-dimethoxy-2′, 4′, 6′-triisopropyl-1, 1′-biphenyl) -2- (2′-amino-1, 1′-biphenyl) ] palladium (II) methanesulfonate and palladium (II) acetate and the ligand is selected from 2- (di-tert-butylphosphino) -2′, 4′, 6′-triisopropyl-3, 6-dimethoxy-1, 1′-biphenyl, 2-di-tert-butylphosphino-2′, 4′, 6′-triisopropylbiphenyl and 4, 5-bis (diphenylphosphino) -9, 9-dimethylxanthene. In a part of the invention, the palladium catalyzed coupling step is performed in the presence of a base such as potassium acetate or potassium phosphate tribasic.
The hydrolysis of the obtained ester of formula (XIII) into the corresponding acid of formula (XIV) (scheme 8) is performed in the presence of a lithium salt, of a trialkylamine and of a catalytic amount of water.
Scheme 8: Preparation of compound of formula (XIV)
Figure PCTCN2018120821-appb-000015
In an embodiment of the invention, the lithium salt is lithium bromide, lithium chloride or lithium hydroxide. In another embodiment of the invention, the lithium salt is either lithium bromide or lithium hydroxide. In a further embodiment of the invention, the trialkylamine base is triethylamine. In another embodiment of the invention, the hydrolysis is performed at elevated temperature. In an additional embodiment of the invention, the hydrolysis is performed at a temperature between 60 and 100 ℃. In a further embodiment of the invention, the hydrolysis is performed at a temperature between 65 and 85 ℃.
The conversion of the penultimate acid (XIV) into 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I) is achieved by converting the acid of formula (XIV) into an active intermediate and by reacting this intermediate with ammonia or a synthetic equivalent thereof (scheme 9) .
Scheme 9: Conversion of the intermediate of formula (XIV) into compound (I)
Figure PCTCN2018120821-appb-000016
In an embodiment of the invention, the active intermediate is an acid chloride derived from the acid of formula (XIV) and is obtained by the reaction of the acid (XIV) with a chlorinating agent such as oxalyl chloride or thionyl chloride. In a another embodiment of the invention, the active intermediate results from the reaction of the acid of formula (XIV) with a coupling reagent such as a carbodiimide (DCC, DIC, EDC. HCl) , a O- (benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium salt (HBTU, TBTU) , a O- (7-azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium salt (HATU, TATU) reagent optionally in the presence of an additive such as hydroxybenzotriazole or ethyl cyano (hydroxyimino) acetate.
Definitions
Lithium tetramethylpiperidide (CAS n° 38227-87-1) (often abbreviated LiTMP or LTMP) is a chemical compound with the molecular formula C 9H 18LiN. It is used as a non-nucleophilic base.
Trimethylsilyl cyanide (CAS n° 7677-24-9) (TMSCN) is the chemical compound with the formula (CH 33SiCN. This volatile liquid consists of a cyanide group, that is CN, attached to a trimethylsilyl group. The molecule is used in organic synthesis as the equivalent of hydrogen cyanide.
1, 5-Cyclooctadiene (CAS n° 1552-12-1) often abbreviated COD is a chemical compound used as a ligand in numerous metal complexes.
Pinacol (CAS n° 76-09-5) usually abbreviated pin is often a structural component of boron esters that are engaged in organometallic coupling processes.
MTBE stands for methyl tert-butyl ether (CAS n° 1634-04-4) and is used as organic solvent.
Dibenzylideneacetone (CAS n° 35225-79-7) often abbreviated dba is a chemical compound used as a ligand in numerous metal complexes.
2-Di-tert-butylphosphino-2′, 4′, 6′-triisopropylbiphenyl (CAS n° 564483-19-8) often abbreviated t-Bu Xphos or tert-Butyl Xphos is a chemical compound used as a ligand in numerous metal complexes.
4, 5-Bis (diphenylphosphino) -9, 9-dimethylxanthene (CAS n° 161265-03-8) usually abbreviated Xantphos is a chemical compound used as a ligand in numerous metal complexes.
1, 3-Dicyclohexylcarbodiimide (CAS n° 538-75-0) often abbreviated DCC, 1, 3-diisopropylcarbodiimide (CAS n° 693-13-0) often abbreviated DIC and 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide hydrochloride (CAS n° 25952-53-8) usually abbreviated EDC. HCl are reagents used for converting carboxylic acids into the corresponding O-acylurea intermediates which are prompt to reactions with a variety of nucleophiles.
O- (Benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium hexafluorophosphate (CAS n° 94790-37-1) often abbreviated HBTU and O- (Benzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium tetrafluoroborate (CAS n° 125700-67-6) often abbreviated TBTU are reagents used for converting carboxylic acids into the corresponding 1-hydroxybenzotriazole esters which are prompt to reactions with a variety of nucleophiles.
O- (7-Azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium hexafluorophosphate (CAS n° 148893-10-1) often abbreviated HATU and O- (7-Azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium tetrafluoroborate (CAS n° 873798-09-5) are reagents used for converting carboxylic acids into the corresponding 1-hydroxyazabenzotriazole esters which are prompt to reactions with a variety of nucleophiles.
An ammonia equivalent is a synthetic equivalent of ammonia, for example ammonium chloride.
A brominating agent is a reagent used to introduce bromine into the reaction, for example copper (II) bromide or copper (I) bromide associated to an oxidant.
An embodiment of the invention is a process for making a compound of Formula (XII) ,
Figure PCTCN2018120821-appb-000017
wherein R is I,
comprising
reacting a compound of Formula (IX)
Figure PCTCN2018120821-appb-000018
with iodine and a lithium amide base, preferably lithium/TMP, to yield a compound of Formula (X)
Figure PCTCN2018120821-appb-000019
In an embodiment, the process further comprises reacting the compound of Formula (X) in the presence of a lithium amide base, preferably lithium/TMP, to yield a compound of Formula (XII) a
Figure PCTCN2018120821-appb-000020
In an alternative embodiment, the product of step a) is not isolated and purified before being carried on to step b.
An embodiment of the invention is a process for making a compound of Formula (XII) ,
Figure PCTCN2018120821-appb-000021
wherein R is Br,
comprising
reacting a compound of Formula (VII)
Figure PCTCN2018120821-appb-000022
with an iridium catalyst and bis (pinacolato) diboron to yield a compound of Formula (VIII)
Figure PCTCN2018120821-appb-000023
In an embodiment, the process further comprises reacting the compound of Formula (VIII) with a brominating agent, preferably copper (II) bromide or copper (I) bromide associated to an oxidant, preferably copper (II) bromide, to yield a compound of Formula (XI)
Figure PCTCN2018120821-appb-000024
In an embodiment, the process further comprises reacting the compound of Formula (XI) with an alkali methoxide, preferably sodium methoxide or potassium methoxide to yield a compound of Formula (XIIb)
Figure PCTCN2018120821-appb-000025
An embodiment of the invention is a process for making a compound of Formula (VI)
Figure PCTCN2018120821-appb-000026
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl
comprising
reacting a compound of Formula (II)
Figure PCTCN2018120821-appb-000027
with
i. Hydrogen cyanide or an equivalent thereof such as TMSCN and
ii. POCl 3 or SOCl 2
to yield a compound of Formula (III)
Figure PCTCN2018120821-appb-000028
In an embodiment, the process further comprises reacting the compound of Formula (III) with a compound of Formula (IV) in the presence of a base such as potassium phosphate tribasic or potassium acetate
Figure PCTCN2018120821-appb-000029
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl
to yield a compound of Formula (V)
Figure PCTCN2018120821-appb-000030
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
In an embodiment, the process further comprises separating the enantiomers of the compound of Formula (V) to give the compound of Formula (VI) .
In an embodiment, the separation of enantiomers is achieved by chiral chromatography.
An embodiment of the invention is a compound of Formula (V)
Figure PCTCN2018120821-appb-000031
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
An embodiment of the invention is the compound of Formula (VI)
Figure PCTCN2018120821-appb-000032
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
An embodiment of the invention is a compound of Formula (XIII)
Figure PCTCN2018120821-appb-000033
wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
An embodiment of the invention is a compound of Formula (XIV)
Figure PCTCN2018120821-appb-000034
An additional embodiment of the invention is a process to make the compound of Formula (I)
Figure PCTCN2018120821-appb-000035
comprising reacting the compound of Formula (XVI)
Figure PCTCN2018120821-appb-000036
with the compound of Formula (XIIa)
Figure PCTCN2018120821-appb-000037
to yield the compound of Formula (I)
HPLC methods:
Method A
Agilent Technologies UHPLC/MSD 6130 B Series 1290 composed of Binary pump G7120A included degasser
Well plate sampler G4226A
Column oven G1316B
Diode array detector G4212A
Mass detector G6130B Quadrupole LC/MS with ESI-source
Column: Waters XP, 2.1 x 50mm Xbridge BEH C18 2.5 μ, T = 40 ℃;
Eluents: A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
B: water with 0.05 %formic acid (vol. /vol. ) ;
Flow: 0.8 mL/min;
Gradient: from 2 to 100 %eluent A 1.2 min, 0.5 min 100 %eluent A; Run time: 2.2 min;
Detection: ESI/MS, positive and negative ions scan: 100-1000 m/z; UV at 254 and 210 nm;
Method B
Agilent Technologies UHPLC/MS 1260 Series composed of:
Binary pump G7120A included degasser
Well plate sampler G4226A
Column oven G7116B
Diode array detector G7117B
Mass detector G6150B Quadrupole LC/MS with ESI-jetstream-source Column: Waters XP, 2.1 x 50mm Xbridge BEH C18 2.5 μ, T = 40 ℃;
Eluents: A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
B: water with 0.05 %formic acid (vol. /vol. ) ;
Flow: 0.8 mL/min;
Gradient: from 2 to 100 %eluent A 1.2 min, 0.5 min 100 %eluent A;
Run time: 2.2 min;
Detection: ESI/MS, positive and negative ions scan: 100-1000 m/z;
UV at 254 and 210 nm;
Method C
Agilent Technologies UHPLC/MS 1260 Series composed of:
Binary pump G4220A included degasser
Well plate sampler G4226A
Column oven G7116B
Diode array detector G4212A
Mass detector G6130B Quadrupole LC/MS with ESI/APCI-multi mode source Column: Waters XP, 2.1 x 50mm Xbridge BEH C18 2.5 μ, T = 40 ℃;
Eluents: A: acetonitrile with 0.05 % (vol. /vol. ) formic acid.
B: water with 0.05 %formic acid (vol. /vol. ) ;
Flow: 0.8 mL/min;
Gradient: from 2 to 100 %eluent A 1.2 min, 0.5 min 100 %eluent A;
Run time: 2.2 min;
Detection: ESI/MS, positive and negative ions scan: 100-1000 m/z;
UV at 254 and 210 nm;
EXAMPLES
Synthesis of ethyl 3-amino-1- [ (trans) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (III)
Figure PCTCN2018120821-appb-000038
A jacketed glass reactor (10 L) equipped with a reflux condenser, a mechanical stirred, an internal thermometer, a gas scrubber and placed under nitrogen atmosphere is charged with dry acetonitrile (2.55 L) and with dihydro-2H-pyran-4 (3H) -one (II) (365 g, 3.65 mol) . The resulting mixture is stirred and the temperature is adjusted between -5 and 0 ℃. Zinc iodide (35 g, 0.11 mol) is added to the solution while maintaining the temperature below 10 ℃. After the temperature is adjusted between -5 and 0 ℃, trimethylsilanecarbonitrile (433 mL, 3.46 mol) is added dropwise over 80 min while keeping the temperature below 0 ℃. After 3 h reaction time at 0 ℃ complete conversion of the starting material is observed and pyridine (1.76 L, 21.9 mol) followed by phosphoryl chloride (510 mL; 5.47 mol) are added to the reaction mixture. The temperature is raised to 80 ℃ and the reaction mixture is stirred at this temperature for 16 h. The reaction mixture is then cooled to room temperature and is added to a solution of iron sulfate hepta hydrate (304 g, 1.09 mol) in water (7.3 L) adjusted to pH > 10 by the addition of aqueous 50%sodium hydroxide. During the addition of the reaction mixture to the basic iron sulfate solution, the temperature is maintained below 20 ℃ and the pH is kept above 10 by the addition of aqueous 50%sodium hydroxide. The resulting mixture is extracted with methyl-tert-butyl ether (3.5 L) , the organic phase is collected and the aqueous phase is diluted with water (6 L) . The diluted aqueous phase is extracted with methyl-tert-butyl ether (2 × 2.5 L) . The combined organic layers are washed with aqueous saturated sodium hydrogencarbonate (1.83 L) and are concentrated under reduced pressure at 40 ℃. Distillation of the crude residue under reduced pressure (bp ~45 ℃ at 0.5 mbar) affords the desired product (III) as colorless oil (289 g, 2.6 mol) .
HPLC Method A: Ret. Time: 0.58 min; m/z 110
1H NMR (300 MHz, CDCl 3) δ (ppm) : 6.60 –6.57 (1H, m) ; 4.21 –4.18 (2H, m) ; 3.75 (2H, J = 5.52 Hz, t) ; 2.31 –2.25 (2H, m)
Synthesis of 2, 6-difluoro-4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) pyridine (VIII)
Figure PCTCN2018120821-appb-000039
Bis (pinacolato) diboron (68.8 g, 0.27 mol) ; 4, 4 ‘-di-tert-butyl bipyridine (2.10 g, 7.82 mmol) and (1, 5-cyclooctadiene) (methoxy) iridium (I) dimer (2.59 g, 3.91 mmol) were suspended in methyl-tert-butylether (10 mL) under inert atmosphere and 2, 6-difluoropyridine (VII) (23.8 mL, 0.26 mol) was added. The temperature was slowly raised to 45 ℃ and the reaction mixture was stirred at this temperature for 5 h. The reaction mixture was then allowed to cool down to room temperature and was concentrated under reduced pressure. The isolated residue was purified by filtration over a short silica gel column using pentane as eluent to deliver the desired product (VIII) as colorless solid (32.7 g, 0.14 mol) .
HPLC Method A: Ret. Time: 0.68 min; m/z 581
1H NMR (300 MHz, CDCl 3) δ (ppm) : 7.08 (2H, m) ; 1.28 (12H, s)
Synthesis of 4-bromo-2-fluoro-6-methoxy-pyridine (XIIb)
Figure PCTCN2018120821-appb-000040
2, 6-Difluoro-4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) pyridine (VIII) (32 g, 133 mmol) was dissolved in methanol (380 mL) and a 1.1 M aqueous solution of copper (II) bromide (104 g, 465 mmol) was added. The resulting mixture was  heated to reflux and was stirred at this temperature for 90 min. The heating was stopped and the reaction mixture was cooled to 0 ℃ with an ice bath before a 10%aqueous ammonium hydroxide (300 mL) solution was added dropwise under stirring. The resulting mixture was extracted with pentane (3 × 200 mL) and the solution of desired product (XI) in pentane was directly engaged in the next step. Dry methanol (160 mL) was added to the solution of 4-bromo-2-fluoro-6-methoxy-pyridine (XI) in pentane and a solution of sodium methoxide (100 mmol) in dry methanol (88.4 mL) was added at about 20 ℃ under stirring. After 2.5 h reaction time, the mixture was cooled to 0 ℃ by application of an ice bath and the mixture was poured into a stirred mixture of 2 N aqueous hydrochloric acid (224 mL) and ice (224 g) . After separation of the organic phase, the aqueous phase was extracted with pentane (100 mL) . The combined organic layers were washed with brine (50 mL) and concentrated under reduced pressure (700 to 750 mbar) at about 38 ℃. The desired product (XIIb) was obtained as light yellow solid (21.5 g, 92 mmol) in the presence of residual pentane (11%wt. ) .
HPLC Method A: Ret. Time: 1.11 min
1H NMR (300 MHz, CDCl 3) δ (ppm) : 6.82 (1H, m) ; 6.68 –6.67 (1H, m) ; 3.93 (3H, s)
Synthesis of 2-fluoro-6-methoxy-4-iodo-pyridine (XIIa)
Figure PCTCN2018120821-appb-000041
A dried flask (20 L) under inert atmosphere was charged with dry tetrahydrofuran (5.99 L) at 15 ℃. 2, 2, 6, 6-Tetramethylpiperidine (1161 g, 8.22 mol) was added and the resulting solution was cooled to -30 ℃. A solution of n-BuLi in hexanes (2292 mL, 7.47 mol) was added dropwise in 30 min while maintaining the  temperature at about -30 ℃. The resulting mixture was stirred at this temperature for 1 h. The mixture was then lowered to -75 to -70 ℃ and a solution of 2-fluoro-6-methoxy-pyridine (IX) (500 g, 3.93 mol) in dry tetrahydrofuran (1496 mL) was added in 30 min while keeping the temperature at -75 to -70 ℃. The reaction mixture was stirred for 90 min at this temperature before a solution of iodine (998.4 g, 3.93 mol) in dry tetrahydrofuran (2494 mL) was added within 1 h at -75 to -70 ℃. The mixture was stirred between -75 to -70 ℃ for 14 h. Water (3.5 L) was added at -75 to -70 ℃ within 30 min and the reaction mixture was allowed to reach room temperature. The organic layer was separated and the aqueous phase was extracted with methyl-tert-butyl ether (2 × 2.5 L) . The combined organic layers were washed with 85%wt. aqueous phosphoric acid (2 × 4 L) and concentrated at a temperature not exceeding 30 ℃ for 4 h to a total weight of 1250 g. After steam distillation at 102 ℃ and separation of the aqueous layer, a colorless oil was obtained. Heptane (390 mL) was added to the isolated oil and the resulting mixture was stirred between -10 to -5 ℃ for 30 min. The formed solid was collected by filtration and was washed with a small volume of pre cooled heptane (about 55 mL) to afford the desired product (XIIa) (530 g, 2.09 mol) .
HPLC Method A: Ret. Time: 1.14 min
1H NMR (300 MHz, CDCl 3) δ (ppm) : 7.03 (1H, m) ; 6.88 –6.86 (1H, m) ; 3.93 (3H, s)
Synthesis of ethyl 3-amino-1- [ (trans) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (V)
Figure PCTCN2018120821-appb-000042
A jacketed glass reactor (5L) equipped with a reflux condenser, a mechanical stirrer, an internal thermometer and placed under nitrogen atmosphere was charged with dry acetonitrile (750 mL) , potassium phosphate tribasic monohydrate (38.3 g, 0.16 mol) and ethyl 3-amino-1H-pyrazole-4-carboxylate (IV) (500 g, 3.19 mol) . The resulting mixture was heated to 80 ℃ and 3, 6-dihydro-2H-pyran-4-carbonitrile (III) (462 g, 4.15 mol) was quickly added via an addition funnel. The addition funnel was rinsed with acetonitrile (250 mL) which was also added to the reaction mixture. The reaction mixture was reacted for 6.5 h at 80 ℃ under vigorous stirring before heating was stopped and the reaction mixture further stirred overnight. After concentration of the reaction mixture under reduced pressure a yellow slurry was obtained. The obtained material was diluted with ethyl acetate (5 L) and the resulting solution was extracted with aqueous 1 M hydrochloric acid (3 × 1.5 L) , was washed once with brine (1 L) , was filtered over a filter filled with a pad of magnesium sulfate and was concentrated under reduced pressure to afford a yellow oil. The yellow oil was taken up in methanol (1.36 L) , the resulting mixture was warmed up to 40 ℃ under stirring to ensure homogenization. The solution was then cooled to 25 ℃ and was seeded at this temperature with 2.0 g pure seeds before being gently stirred at -20 ℃ overnight. The precipitate formed was filtered off, was washed with pre chilled methanol (1 L) and was dried under reduced pressure at 40 ℃ to give an off-white solid. The isolated white solid was heated to reflux in 2-propanol (1 L) for 1h and the mixture was slowly allowed to reach room temperature under gentle stirring overnight. The precipitate formed was filtered off, was washed with 2- propanol (300 mL) and was dried under reduced pressure at 40 ℃ to afford the desired product (V) as off-white solid (347.2 g, 1.20 mol) .
HPLC Method A: Ret. Time: 0.75 min; m/z 265
1H NMR (600 MHz, CDCl 3) δ (ppm) : 7.82 (s, 1H) ; 4.28 (2H, J = 7.1 Hz, q) ; 4.14 (1H, J = 4.3, 9.0 Hz, dt) ; 4.08 (1H, J = 4.2, 12.0 Hz, dd) ; 4.00 (1H, J = 4.0, 12.1 Hz, td) ; 3.90 (1H, J = 8.7, 12.0 Hz, dd) ; 3.55 -3.50 (1H, m) ; 3.62 -3.44 (2H, m) ; 2.20 -2.10 (1H, m) ; 2.06 -1.94 (1H, m) ; 1.34 (3H, J = 7.1 Hz, t)
Chiral separation of ethyl 3-amino-1- [ (trans) -4-cyanotetrahydropyran-3-yl] pyrazole-4-carboxylate (V) to ethyl 3-amino-1- [ (3S, 4R) -4-cyanotetrahydro-2H-pyran-3-yl] -1H-pyrazole-4-carboxylate (VI)
Figure PCTCN2018120821-appb-000043
Separation of the mixture of enantiomers (V) to the single enantiomer (VI) was achieved by chiral chromatography.
Synthesis of ethyl 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylate (XIII)
Figure PCTCN2018120821-appb-000044
Ethyl 3-amino-1- [ (3S, 4R) -4-cyanotetrahydro-2H-pyran-3-yl] -1H-pyrazole-4-carboxylate (VI) (50 g, 189 mmol) , 4-bromo-2-fluoro-6-methoxy-pyridine (XIIb) (39 g, 189 mmol) , tris (dibenzylideneacetone) dipalladium (0) (3.57 g, 3.8 mmol) , 2-di-tert-butylphosphino-2′, 4′, 6′-triisopropylbiphenyl (3.21 g, 7.6 mmol) and potassium acetate (37.1 g, 378 mmol) were placed under inert atmosphere and 2-propanol (600 mL) was added. The resulting mixture was heated to 65 ℃ and stirred at this temperature for 90 min. After cooling to room temperature, the mixture was concentrated under reduced pressure at 40 ℃. The obtained crude residue was stirred with acetonitrile (650 mL) for 30 min at 50 ℃. The hot solution was filtered over a pad of Celite and the filtrate was concentrated under reduced pressure. The obtained residue was taken up in 2-propanol (750 mL) , the resulting mixture was warmed to 100 ℃ and was then allowed to slowly reach room temperature under gentle stirring. The formed precipitate was filtered off, the wet cake was rinsed with 2-propanol (50 mL) and was then dried under reduced pressure at 40 ℃ to afford the desired product (XIII) (61.2 g, 149 mmol) . Concentration of the filtrate combined with the 2-propanol rinse under reduced pressure, afforded a solid. The new formed solid was washed with 2-propanol (2 × 50 mL) and was dried under reduced pressure at 40 ℃ to afford a second crop of desired product (XIII) (8.2 g, 19.5 mmol) .
HPLC Method B: Ret. Time: 1.10 min; m/z 390
1H NMR (600 MHz, CDCl 3) δ (ppm) : 8.61 (1H, s) ; 7.95 (1H, s) ; 6.73 (1H, s) ; 6.68 (1H, J = 1.5 Hz, d) ; 4.33 (2H, J = 7.1 Hz, q) ; 4.25 (1H, J = 4.2, 9.0 Hz, dt) ; 4.16 (1H, J = 4.2, 12.0 Hz, dd) ; 4.06 (1H, J = 4.0, 12.1 Hz, td) ; 3.98 (1H, J = 8.8, 12.1 Hz, dd) ; 3.92 (3H, s) ; 3.70 -3.62 (1H, m) ; 3.61 -3.52 (1H, m) ; 2.25 -2.15 (1H, m) ; 2.06 (1H, J = 4.2, 10.3, 14.2 Hz, dtd) ; 1.38 (3H, J = 7.1 Hz, t)
Synthesis of ethyl 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylate (XIII)
Figure PCTCN2018120821-appb-000045
Ethyl 3-amino-1- [ (3S, 4R) -4-cyanotetrahydro-2H-pyran-3-yl] -1H-pyrazole-4-carboxylate (VI) (1 g, 3.78 mmol) , 2-fluoro-4-iodo-6-methoxypyridine (XIIa) (1.15 g, 4.54 mmol) , palladium diacetate (21 mg, 0.095 mmol) , 4, 5-bis(diphenylphosphino) -9, 9-dimethylxanthene (109 mg, 0.19 mmol) and potassium phosphate tribasic (2.41 g, 11.35 mmol) were placed under nitrogen atmosphere and 1, 4-dioxane (10 mL) is added. The resulting mixture was heated to 60 ℃ and stirred at this temperature for 18 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The obtained residue was diluted with 2-propanol (20 mL) and the resulting mixture was warmed up until a solution was obtained. Heating was stopped and the solution was allowed to slowly reach room temperature. The suspension was filtered to collect the formed precipitate. The wet cake is rinsed with 2-propanol (25 mL) and was dried under reduced pressure at 40 ℃ to afford the desired product (XIII) as off-white solid (1.07 g, 2.75 mmol) . Concentration of the filtrate under reduced pressure and dilution of the resulting residue in 2-propanol (5 mL) at reflux afforded a second crop of desired product (XIII) (180 mg, 0.5 mmol) after filtration and drying of the obtained precipitate.
Synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylic acid (XIV)
Figure PCTCN2018120821-appb-000046
Lithium bromide (769 mg, 8.86 mmol) and triethylamine (380 μL, 2.66 mmol) were added to a solution of ethyl 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylate (XIII) (345 mg, 0.89 mmol) in acetonitrile (4.34 mL) and water (87 μL) and the resulting mixture was stirred at 80 ℃ for 20 h. The reaction mixture was cooled to room temperature, was diluted with ethyl acetate (25 mL) and was extracted with aqueous saturated sodium hydrogencarbonate (3 × 10 mL) . The combined aqueous layers were the acidified to pH 3 by the addition of 1 M aqueous hydrochloric acid. The precipitate formed was isolated by filtration and was dried under reduced pressure at 40 ℃ to deliver the desired product (XIV) as colorless solid (308 mg, 0.85 mmol) .
HPLC Method C: Ret. Time: 0.88 min; m/z 362
Synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I)
Figure PCTCN2018120821-appb-000047
N- (3-Dimethylaminopropyl) -N′-ethylcarbodiimide hydrochloride (245 mg, 1.28 mmol) , 1-hydroxybenzotriazole hydrate (131 mg, 0.85 mmol) , ammonium chloride (91 mg, 1.71 mmol) , triethylamine (238 μL, 1.71 mmol) and 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxylic acid (XIV) (308 mg, 0.85 mmol) were stirred at room temperature in a  mixture of tetrahydrofuran (3 mL) and of N, N-dimethylformamide (1 mL) for 90 min. Aqueous saturated sodium hydrogencarbonate (5 mL) was added to the reaction mixture and the aqueous phase was extracted with ethyl acetate (2 × 15 mL) . The combined organic layers were washed with brine (5 mL) , dried over sodium sulfate, filtered and concentrated under reduced pressure to afford the crude desired product (I) (276 mg, 0.77 mmol) .
HPLC Method A: Ret. Time: 0.86 min; m/z 361
1H NMR (600 MHz, CDCl 3) δ (ppm) : 9.70 (1H, s) ; 8.35 (1H, s) ; 7.83 (1H, br s) ; 7.32 (1H, br s) ; 7.03 -6.68 (2H, m) ; 4.64 (1H, J = 4.4, 10.2 Hz, dt) ; 4.04 (1H, J = 4.4, 11.3 Hz, dd) ; 3.94 -3.86 (1H, m) ; 3.79 (3H, s) ; 3.71 -3.59 (2H, m) ; 3.49 (1H, J = 2.2, 11.7 Hz, dt) ; 2.20 -2.12 (1H, m) ; 2.04 -1.93 (1H, m)
Purification to 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I)
Figure PCTCN2018120821-appb-000048
A 160 L glass-lined vessel was charged with crude (I) (3.72 kg, 10.32 mol) and methanol (80.8 L) . The contents were heated to reflux (65℃) and authentic crystal seeds of compound (I) (109 g, 302.5 mmol) charged as a slurry in methanol (1.9 L) . The mixture was stirred at 275 rpm and aged for 14.5 h. The slurry was cooled to 60℃ and sampled for analysis purpose: Pure compound (I) was obtained. The slurry was cooled from 65℃ to 20℃ over 12 h and then aged at 20℃ for 6 h. The batch was filtered and the cake was washed with methanol (5.4 L) . The solid was dried at 40℃ for 23 h in a vacuum oven with a nitrogen  bleed. The material was then passed through a Co-Mill to break up any lumps and compound (I) (2.21 kg, 6.14 mol) was obtained as a white powder.
Alternative synthesis of 1- [ (3R, 4S) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide (I)
Figure PCTCN2018120821-appb-000049
In a first vessel N, N-dimethylacetamide (7.55 L) was degassed using subsurface nitrogen for 30 min. tBuBrettPhos (96.0 g, 0.198 mol) and allyl palladium (II) chloride dimer (36.2 g, 0.099 moles) were added and the resulting mixture was stirred at 20 ℃ for 100 min with a subsurface nitrogen purge. Another vessel was charged with compound (XVI) (2.32 kg, 9.88 mol) , with compound (XIIa) (2.50 kg, 9.88 mol) , potassium phosphate tribasic (4.19 kg, 19.76 mol) and with N, N-dimethylacetamide (17.55 L) . The resulting mixture was stirred and degassed and the solution of the catalyst prepared in the first vessel was added. The first vessel was rinsed with N, N-dimethylacetamide (0.5 L) which was also added to the reaction mixture. The reaction mixture was then stirred at room temperature and was monitored by UV-HPLC until full conversion was observed. The reaction mixture was filtered and the wet cake was washed with N, N-dimethylacetamide (5 L) . The filtrate was cooled between 0 and 5 ℃ and water (90 L) was added over 105 min while maintaining the temperature between 0 and 5 ℃. The resulting slurry was aged 1 h at this temperature. The slurry was then filtered and the cake was washed twice with water (10 and 20 L) and four times with methanol (15 and 3 × 19 L) . The wet cake was dried under a nitrogen stream to deliver the desired compound (I) (3.14 kg, 0.154 mol) .

Claims (17)

  1. A process for making a compound of Formula (I)
    Figure PCTCN2018120821-appb-100001
    comprising
    a. reacting a compound of Formula (VI)
    Figure PCTCN2018120821-appb-100002
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl with a compound of Formula (XII)
    Figure PCTCN2018120821-appb-100003
    in the presence of a catalyst and of a base wherein R is I or Br, to yield a compound of Formula (XIII)
    Figure PCTCN2018120821-appb-100004
    and
    b. converting the compound of Formula (XIII) to the compound of Formula (I) .
  2. The method of claim 1, further comprising a. reacting the compound of Formula (XIII) in the presence of a trialkylamine , preferably trimethylamine with a lithium salt, preferably lithium bromide, lithium chloride or lithium hydroxide to yield a compound of Formula (XIV)
    Figure PCTCN2018120821-appb-100005
    and
    b. converting the compound of Formula (XIV) to the compound of Formula (I) .
  3. The method of claim 2, further comprising forming an active intermediate of the compound of Formula (XIV) and then reacting with ammonia or an ammonia equivalent, preferably ammonium chloride in the presence of a base to yield the compound of Formula (I) .
  4. A process for making a compound of Formula (XII) ,
    Figure PCTCN2018120821-appb-100006
    wherein R is I,
    comprising
    a. reacting a compound of Formula (IX)
    Figure PCTCN2018120821-appb-100007
    with iodine and a lithium amide base, preferably lithium/TMP, to yield a compound of Formula (X)
    Figure PCTCN2018120821-appb-100008
    and
    b. converting the compound of Formula (X) to the compound of Formula (XII) .
  5. The process of claim 4, further comprising in step b reacting the compound of Formula (X) in the presence of a lithium amide base, preferably lithium/TMP, to yield a compound of Formula (XII) a
    Figure PCTCN2018120821-appb-100009
  6. The process of claim 5, wherein the compound of Formula (X) is not isolated and purified before being carried on to compound of Formula (XIIa) .
  7. A process for making a compound of Formula (XII) ,
    Figure PCTCN2018120821-appb-100010
    wherein R is Br,
    comprising
    a. reacting a compound of Formula (VII)
    Figure PCTCN2018120821-appb-100011
    with an iridium catalyst and bis (pinacolato) diboron to yield a compound of Formula (VIII)
    Figure PCTCN2018120821-appb-100012
    and
    b. converting the compound of Formula (VIII) to the compound of Formula (XII) .
  8. The process of claim 7, further comprising
    a. reacting the compound of Formula (VIII) with a brominating agent, preferably copper (II) bromide or copper (I) bromide associated to an oxidant, preferably copper (II) bromide, to yield a compound of Formula (XI)
    Figure PCTCN2018120821-appb-100013
    and
    b. converting the compound of Formula (XI) to the compound of Formula (XII) .
  9. The process of claim 8, further comprising reacting the compound of Formula (XI) with an alkali methoxide, preferably sodium methoxide or potassium methoxide to yield a compound of Formula (XIIb)
    Figure PCTCN2018120821-appb-100014
  10. A process for making a compound of Formula (VI)
    Figure PCTCN2018120821-appb-100015
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl comprising
    a. reacting a compound of Formula (II)
    Figure PCTCN2018120821-appb-100016
    with
    i. Hydrogen cyanide or an equivalent thereof such as TMSCN and
    ii. POCl 3 or SOCl 2
    to yield a compound of Formula (III)
    Figure PCTCN2018120821-appb-100017
    and
    b. converting the compound of Formula (III) to the compound of Formula (VI) .
  11. The process of claim 10, further comprising
    a. reacting the compound of Formula (III) with a compound of Formula (IV) in the presence of a base such as potassium phosphate tribasic or potassium acetate
    Figure PCTCN2018120821-appb-100018
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl to yield a compound of Formula (V)
    Figure PCTCN2018120821-appb-100019
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl; and
    b. converting the compound of Formula (V) to the compound of Formula (VI) .
  12. The process of claim 11, further comprising separating the enantiomers of the compound of Formula (V) to give the compound of Formula (VI) .
  13. The process of claim 12, wherein the separation of enantiomers is achieved by chiral chromatography.
  14. A compound of Formula (V)
    Figure PCTCN2018120821-appb-100020
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
  15. The compound of claim 14, wherein the compound is the compound of Formula (VI)
    Figure PCTCN2018120821-appb-100021
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
  16. A compound of Formula (XIII)
    Figure PCTCN2018120821-appb-100022
    wherein R 1 is C 1-C 4 alkyl, preferably C 1-C 2 alkyl, most preferably ethyl.
  17. A compound of Formula (XIV)
    Figure PCTCN2018120821-appb-100023
PCT/CN2018/120821 2018-12-13 2018-12-13 Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide WO2020118597A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2018/120821 WO2020118597A1 (en) 2018-12-13 2018-12-13 Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide
EP19817316.3A EP3894403A1 (en) 2018-12-13 2019-12-12 Process for preparing 1-[(3r,4s)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]p yrazole-4-carboxamide
JP2021533236A JP7497357B2 (en) 2018-12-13 2019-12-12 Process for the preparation of 1-[(3R,4S)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]pyrazole-4-carboxamide
PCT/EP2019/084887 WO2020120673A1 (en) 2018-12-13 2019-12-12 Process for preparing 1-[(3r,4s)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]p yrazole-4-carboxamide
CA3122183A CA3122183A1 (en) 2018-12-13 2019-12-12 Process for preparing 1-[(3r,4s)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]p yrazole-4-carboxamide
US17/311,615 US20220017499A1 (en) 2018-12-13 2019-12-12 Process for Preparing 1-([3R,4S)-4-Cyanotetrahydropyran-3-YL]-3-[(2-fluoro-6-Methoxy-4-Pyridyl)Amino]Pyrazole-4-Carboxamide
CN201980082538.2A CN113227077B (en) 2018-12-13 2019-12-12 Method for preparing 1- [ (3R, 4S) -4-cyano tetrahydropyran-3-yl ] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino ] pyrazole-4-carboxamide
BR112021011084-4A BR112021011084A2 (en) 2018-12-13 2019-12-12 PROCESS FOR PREPARING 1-[(3R,4S)-4-CYANOTETRAHYDROPYRAN-3-IL]-3-[(2-FLUORO-6-METOXY-4-PYRIDYL)AMINO]PYRAZOLE-4-CARBOXAMIDE
JP2024015683A JP2024054201A (en) 2018-12-13 2024-02-05 Process for preparing 1-[(3r,4s)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]pyrazole-4-carboxamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120821 WO2020118597A1 (en) 2018-12-13 2018-12-13 Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide

Publications (1)

Publication Number Publication Date
WO2020118597A1 true WO2020118597A1 (en) 2020-06-18

Family

ID=71075865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120821 WO2020118597A1 (en) 2018-12-13 2018-12-13 Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide

Country Status (1)

Country Link
WO (1) WO2020118597A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133420A1 (en) 2020-12-18 2022-06-23 Boehringer Ingelheim Animal Health USA Inc. Boron containing pyrazole compounds, compositions comprising them, methods and uses thereof
CN117049935A (en) * 2023-10-13 2023-11-14 成都泰和伟业生物科技有限公司 Method for constructing carbon-carbon bond through electrophilic cross-coupling reaction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040863A1 (en) * 2011-09-22 2013-03-28 Merck Sharp & Dohme Corp. Cycloalkylnitrile pyrazole carboxamides as janus kinase inhibitors
WO2016184652A1 (en) * 2015-04-28 2016-11-24 Ludwig-Maximilians-Universität München Methods for producing metalated organic compounds
WO2018108969A1 (en) * 2016-12-14 2018-06-21 Intervet International B.V. Aminopyrazoles as selective janus kinase inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040863A1 (en) * 2011-09-22 2013-03-28 Merck Sharp & Dohme Corp. Cycloalkylnitrile pyrazole carboxamides as janus kinase inhibitors
WO2016184652A1 (en) * 2015-04-28 2016-11-24 Ludwig-Maximilians-Universität München Methods for producing metalated organic compounds
WO2018108969A1 (en) * 2016-12-14 2018-06-21 Intervet International B.V. Aminopyrazoles as selective janus kinase inhibitors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SADLER, SCOTT A. ET AL.: "Iridium-catalyzed C-H borylation of pyridines", ORG. BIOMOL. CHEM, vol. 12, no. 37, 1 August 2014 (2014-08-01), pages 7318, XP055711937, DOI: 20190902174303Y *
TAYLOR, NICHOLAS J. ET AL.: "Derisking the Cu-Mediated 18F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands", J. AM. CHEM. SOC., vol. 139, no. 24, 12 June 2017 (2017-06-12), pages 8267 - 8276, XP055711935 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133420A1 (en) 2020-12-18 2022-06-23 Boehringer Ingelheim Animal Health USA Inc. Boron containing pyrazole compounds, compositions comprising them, methods and uses thereof
US11827657B2 (en) 2020-12-18 2023-11-28 Boehringer Ingelheim Animal Health USA Inc. Boron containing pyrazole compounds, compositions comprising them, methods and uses thereof
CN117049935A (en) * 2023-10-13 2023-11-14 成都泰和伟业生物科技有限公司 Method for constructing carbon-carbon bond through electrophilic cross-coupling reaction
CN117049935B (en) * 2023-10-13 2023-12-08 成都泰和伟业生物科技有限公司 Method for constructing carbon-carbon bond through electrophilic cross-coupling reaction

Similar Documents

Publication Publication Date Title
CN107176955B (en) A kind of Ba Rui replaces the preparation method of Buddhist nun
JP6438551B2 (en) Process for producing substituted anthranilic acid derivatives
CN105294536A (en) Method for preparing 3-imino isoindoline ketone compounds
WO2020118597A1 (en) Process for making 1- [ (3r, 4s) -4-cyanotetrahydropyran-3-yl] -3- [ (2-fluoro-6-methoxy-4-pyridyl) amino] pyrazole-4-carboxamide
JP2024054201A (en) Process for preparing 1-[(3r,4s)-4-cyanotetrahydropyran-3-yl]-3-[(2-fluoro-6-methoxy-4-pyridyl)amino]pyrazole-4-carboxamide
CN102367260A (en) Synthesis method of 2-aminopyrimidine-5-boric acid
CN107628999B (en) The preparation method of Aripiprazole dodecylate
JP2007230963A (en) Method for producing 2,4-disubstituted pyridine
CN105622380B (en) Preparation method of apremilast and intermediate thereof
WO2022082329A1 (en) Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile
JP7227925B2 (en) Method for producing 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate
KR102635225B1 (en) Method for producing tetracyclic compounds
EP4306514A1 (en) Method for preparing intermediate for synthesis of sphingosine-1-phosphate receptor agonist
CN108250008B (en) Chiral resolution method of 3,3,3',3' -tetramethyl-1, 1 '-spiroindane-6, 6' -diol derivative
CN114573512A (en) Method for synthesizing C2-difluoroalkyl benzimidazole derivative
CN114213424A (en) Synthetic method of furan [3, 2-b ] pyridine derivative
CN106831522B (en) Lactam compound and preparation method thereof
JP4879907B2 (en) Process for producing phenyl 2-pyrimidinyl ketones and novel intermediates thereof
JP2014532058A (en) Process for producing 5- [2- [7- (trifluoromethyl) -5- [4- (trifluoromethyl) phenyl] pyrazolo [1,5-a] pyrimidin-3-yl] ethynyl] -2-pyridinamine
JP5205971B2 (en) Method for producing tetrahydropyran compound
CN108503583B (en) Alkylation method of nitrogen-hydrogen-containing compound and application thereof
CN111233739B (en) Method for preparing 4- (2' -indolyl) -1, 3-eneyne derivative
TW200410930A (en) Method for producing acetylene compound
CN106366069A (en) Preparation method of N-heteroaryl carbazole compounds
JP2022517411A (en) Method for preparing tetrahydropyridopyrimidines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942828

Country of ref document: EP

Kind code of ref document: A1