[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020116055A1 - Noise filter and network connection device - Google Patents

Noise filter and network connection device Download PDF

Info

Publication number
WO2020116055A1
WO2020116055A1 PCT/JP2019/042556 JP2019042556W WO2020116055A1 WO 2020116055 A1 WO2020116055 A1 WO 2020116055A1 JP 2019042556 W JP2019042556 W JP 2019042556W WO 2020116055 A1 WO2020116055 A1 WO 2020116055A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
windings
noise filter
winding
common mode
Prior art date
Application number
PCT/JP2019/042556
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 樋口
由浩 今西
峰日登 吉田
康誌 齋藤
佳惠 中村
紗弥佳 関口
みゆき 野尻
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020559793A priority Critical patent/JP7115564B2/en
Publication of WO2020116055A1 publication Critical patent/WO2020116055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a noise filter and a network connection device.
  • a circuit for transmitting and receiving a differential signal and supplying power by superimposing a DC current on the differential signal line is known.
  • a common mode choke coil is inserted in the differential signal line to prevent leakage of common mode noise to a cable that transmits differential signals.
  • an inductor (differential mode inductor) that has a high impedance to the differential mode signal is inserted in the power supply line that connects the differential signal line and the power supply. To be done.
  • a common mode choke coil may be inserted in series in the differential signal line, and a circuit may be provided to ground each differential signal line via an inductor and a capacitor.
  • Patent Document 1 discloses a coil component that constitutes a circuit in which a common mode choke coil and a normal mode (differential mode) choke coil are connected in series.
  • This coil component includes a first magnetic core forming a closed magnetic circuit and a second magnetic core forming a closed magnetic circuit having a shape that fits inside the first magnetic core.
  • Each of the first winding and the second winding is wound around both the first magnetic core and the second magnetic core in one part, and is wound around the first magnetic core only in the other part.
  • the portion wound around the first magnetic core has opposite winding directions between the first winding and the second winding, and the portion wound around the second magnetic core has the first winding and the second winding.
  • the winding direction is the same as the winding.
  • this coil component is a four-terminal circuit in which a common mode choke coil and a differential mode choke coil are connected in series. For this reason, this coil component is used for the purpose of directly inserting the common mode choke coil into the differential signal line and connecting the differential signal line to the inductor power supply and ground via the differential mode choke coil (differential mode inductor). It cannot be used.
  • Board An integrated circuit device mounted on the substrate, A connector mounted on the board and connected to an external device, Two signal lines formed on the substrate and connecting the integrated circuit element and the connector; And a noise filter mounted on the substrate,
  • the noise filter is A first core and a second core that are arranged so as to be adjacent to each other at a distance; Two end magnetic members made of a magnetic material, which connect one ends of the first core and the second core to each other and connect the other ends of the first core and the second core, Two first windings wound around the first core to form a common mode choke coil;
  • the first core and the second core are provided with two second windings wound in opposite directions, and the two coils formed of the two second windings are open magnetic circuits.
  • a common mode choke coil composed of the first winding is inserted in series with the two signal lines, and one end of each of the two second windings is connected to each of the two signal lines.
  • a network connection device is provided.
  • a noise filter that integrates a common mode choke coil consisting of two first windings and another two coils consisting of two second windings can be obtained. It is possible to insert the common mode choke coil in series with the signal line and connect the signal line to the power supply or the ground via the two coils composed of the two second windings.
  • FIG. 1A, 1B, and 1C are a front view, a bottom view, and a side view, respectively, of a noise filter according to the first embodiment.
  • FIG. 2 is a schematic equivalent circuit diagram of the network connection device equipped with the noise filter according to the first embodiment.
  • FIG. 3 is a side view of the noise filter according to the first embodiment.
  • FIG. 4A is a diagram showing a connection configuration of an evaluation experiment for measuring an S parameter using a network analyzer
  • FIG. 4B is a front view of a noise filter according to a comparative example.
  • FIG. 5 is a graph showing the measurement results of the transmission coefficient Scc21.
  • FIG. 6 is a schematic equivalent circuit diagram of the network connection device according to the second embodiment.
  • FIG. 7 is a front view of the noise filter according to the third embodiment.
  • FIG. 8 is a schematic diagram of a vehicle equipped with the network connection device according to the fourth embodiment.
  • the support 20 includes a first core 21, a first end magnetic member 22, a second end magnetic member 23, a second core 25, a first electrode pair 11, a second electrode pair 12, and a third electrode pair 13. Including.
  • the first core 21, the first end magnetic member 22, the second end magnetic member 23, and the second core 25 are made of a magnetic material such as Ni—Zn ferrite.
  • the 1st core 21 and the 2nd core 25 are arranged so that it may line up at intervals, and the 1st end magnetic member 22 connects one end of the 1st core 21 and the 2nd core 25,
  • the second end magnetic member 23 connects the other ends of the first core 21 and the second core 25.
  • the first core 21 has, for example, a rectangular columnar or columnar outer shape.
  • the second end magnetic member 23 includes an end plate 23A continuous with the end of the first core 21, and side plates 23B extending from both ends of the end plate toward the first end magnetic member 22 in plan view. .
  • the first electrode pair 11 is provided on the bottom surface of the first end magnetic member 22.
  • the two electrodes of the first electrode pair 11 are arranged on both sides of the first core 21 in plan view.
  • the second electrode pair 12 and the third electrode pair 13 are provided on the bottom surface of the second end magnetic member 23.
  • the two electrodes of the third electrode pair 13 are respectively disposed on the bottom surface of the end plate 23A and on both sides of the first core 21 in plan view.
  • the two electrodes of the second electrode pair 12 are respectively arranged at the tips of the bottom surfaces of the two side plates 23B.
  • the first electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged at different positions in the axial direction of the first core 21, and the first core 21 moves from one end to the other end of the first core 21.
  • the electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged in this order.
  • the first electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged in a total of six electrodes on one virtual plane for surface mounting.
  • the second core 25 is composed of a top plate that extends from the upper surface of the first end magnetic member 22 to the upper surface of the second end magnetic member 23.
  • a closed magnetic circuit is formed by the first core 21, the first end magnetic member 22, the second core 25, and the second end magnetic member 23.
  • the two first windings 16 are wound around the first core 21 in the same winding direction.
  • the two first windings 16 function as a common mode choke coil having a high impedance with respect to common mode noise.
  • This common mode choke coil has a closed magnetic circuit structure.
  • the two second windings 17 are wound over the first core 21 and the second core 25 so that the winding directions are opposite to each other.
  • the two second windings 17 have low impedance with respect to common mode noise and high impedance with respect to differential mode signals.
  • such an inductor is referred to as a "differential mode inductor".
  • This differential mode inductor has an open magnetic circuit structure.
  • the two first windings 16 and the two second windings 17 are shown with a number smaller than the actual number of windings so that the winding direction can be easily understood.
  • each of the two first windings 16 is connected to each electrode of the first electrode pair 11, and the other end is connected to each electrode of the second electrode pair 12.
  • One end of each of the two second windings 17 is connected to each electrode of the first electrode pair 11, and the other end is connected to each electrode of the third electrode pair 13.
  • Each of the two first windings 16 is connected to the electrodes on the same side with respect to the first core 21 in plan view.
  • each of the two second windings 17 is connected to the electrodes on the same side with respect to the first core 21 in plan view.
  • FIG. 2 is a schematic equivalent circuit diagram of a network connection device equipped with the noise filter 10 according to the first embodiment.
  • the noise filter 10, the integrated circuit element (IC) 31, the connector 32, and the two capacitors 35 are mounted on the substrate 30. Further, the substrate 30 is provided with two signal lines 37 for transmitting differential signals and a ground conductor 38. A cable 40 for transmitting/receiving a signal to/from an external device is connected to the connector 32.
  • the two signal lines 37 connect the IC 31 and the connector 32.
  • the noise filter 10 is inserted into the two signal lines 37 so that the first electrode pair 11 of the noise filter 10 is connected to the IC 31 and the second electrode pair 12 is connected to the connector 32.
  • the third electrode pair 13 of the noise filter 10 is connected to the ground conductor 38 via the capacitors 35, respectively.
  • the two first windings 16 of the noise filter 10 form a common mode choke coil 18, and the two second windings 17 form a differential mode inductor 19.
  • the common mode choke coil 18 is inserted in series with the two signal lines 37.
  • the two signal lines 37 are grounded between the IC 31 and the common mode choke coil 18 via the differential mode inductor 19 and the capacitor 35.
  • the common mode choke coil 18 suppresses common mode noise leaking from the signal line 37 to the cable 40. Further, the common mode noise generated on the signal line 37 flows into the ground conductor 38 via the differential mode inductor 19. Therefore, the effect of suppressing common mode noise can be enhanced. Since the common mode choke coil 18 and the differential mode inductor 19 are provided on the common support 20, it is possible to reduce the number of parts.
  • the capacitor 35 prevents a direct current flowing through the ground conductor 38 from flowing into the signal line 37.
  • FIG. 3 is a front view of the noise filter 10 according to the first embodiment, in which the magnetic flux 51 generated by the first winding 16 and the magnetic flux 52 generated by the second winding 17 are schematically shown. Has been done.
  • Most of the magnetic flux 51 generated by the current flowing through the first winding 16 is in the closed magnetic circuit formed by the first core 21, the first end magnetic member 22, the second core 25, and the second end magnetic member 23. Be trapped.
  • the direction of the magnetic flux 51 in the first core 21 and the direction of the magnetic flux 51 in the second core 25 are opposite to each other.
  • the magnetic flux 51 in the first core 21 is directed from the second end magnetic member 23 to the first end magnetic member 22, the magnetic flux 51 in the second core 25, on the contrary, is the first end magnetic member.
  • the second end magnetic member 23 faces from 22. Therefore, the second winding wire 17 wound around the first core 21 and the second core 25 does not interlink with the magnetic flux 51. As a result, the influence of the current flowing through the first winding 16 on the second winding 17 is reduced.
  • the magnetic flux 52 generated by the current flowing through the second winding 17 has the same direction inside the first core 21 and inside the second core 25. Therefore, the coil including the two second windings 17 has the disclosed path structure. That is, the magnetic flux 52 includes the leakage magnetic flux leaked from the support 20 made of a magnetic material. In the configuration in which the second winding wire 17 is wound only around the first core 21 like the first winding wire 16, most components of the magnetic flux generated by the current flowing through the second winding wire 17 interlink with the first winding wire 16. To do.
  • the magnetic flux 52 generated by the current flowing through the second winding 17 only the magnetic flux 52 in the first core 21 is linked to the first winding 16 and the second core 25 The magnetic flux 52 therein does not interlink with the first winding 16. That is, only a part of the magnetic flux 52 generated by the current flowing through the second winding 17 is linked to the first winding 16. Therefore, the influence of the current flowing through the second winding 17 on the first winding 16 is reduced.
  • FIG. 4A is a diagram showing a connection configuration for measuring the S parameter of the noise filter using the network analyzer 60.
  • the two electrodes of the first electrode pair 11 of the noise filter 10 are connected to the ports P1 and P3 of the network analyzer 60, respectively, and the two electrodes of the second electrode pair 12 are connected to the ports P2 and P4 of the network analyzer 60, respectively. did.
  • Two electrodes of the third electrode pair 13 of the noise filter 10 were grounded. With this connection configuration, the transmission coefficient Scc21 of the common mode component from the first electrode pair 11 to the second electrode pair 12 was measured.
  • the common mode choke coil 18 suppresses the leakage of the common mode component to the second electrode pair 12, and the differential mode inductor 19 causes the common mode component to flow to the ground. Therefore, it can be said that the smaller the transmission coefficient Scc21, the more effectively the common mode choke coil 18 and the differential mode inductor 19 function.
  • FIG. 4B is a front view of the noise filter according to the comparative example.
  • the first winding 16 and the second winding 17 are both wound around the first core 21.
  • the other structure is the same as that of the noise filter 10 according to the first embodiment.
  • FIG. 5 is a graph showing the measurement results of the transmission coefficient Scc21.
  • the horizontal axis represents the frequency in the unit of "MHz", and the vertical axis represents the transmission coefficient Scc21 in the unit of "dB".
  • a solid line and a broken line in the graph of FIG. 5 show the measurement results of the noise filter 10 according to the first example and the noise filter according to the comparative example (FIG. 4B), respectively.
  • the transmission coefficient Scc21 of the noise filter 10 according to the first example is smaller than the transmission coefficient Scc21 of the noise filter according to the comparative example. That is, in the noise filter 10 according to the first example, the common mode choke coil 18 and the differential mode inductor 19 function more effectively than the noise filter according to the comparative example. This can be said to be the effect of adopting the configuration in which the second winding 17 is wound over the first core 21 and the second core 25 in the noise filter 10 according to the first embodiment.
  • the top plate of the support 20 (FIG. 1A) is used as the second core 25, the excellent effect that the component size does not increase even if the second core 25 is provided can be obtained. ..
  • the first winding 16 forming the common mode choke coil 18 is connected between the first electrode pair 11 and the second electrode pair 12, and the differential mode inductor 19 is connected.
  • the second winding wire 17 constituting the above is connected between the first electrode pair 11 and the third electrode pair 13.
  • the first winding 16 is connected between the first electrode pair 11 and the third electrode pair 13
  • the second winding 17 is connected between the first electrode pair 11 and the second electrode pair 12. You may connect.
  • FIG. 6 is a schematic equivalent circuit diagram of the network connection device according to the second embodiment.
  • the two electrodes of the third electrode pair 13 of the noise filter 10 are grounded via the capacitors 35, respectively.
  • the two electrodes of the third electrode pair 13 of the noise filter 10 are connected to the two power supply lines 33 provided on the substrate 30, respectively.
  • the power supply line 33 is connected to an external DC power supply 41 via a power supply terminal 39.
  • Capacitors 34 are inserted in series in the two signal lines 37 between the noise filter 10 and the IC 31.
  • the DC power supplied from the DC power supply 41 to the substrate 30 is supplied to the external device through the power supply line 33, the signal line 37, the connector 32, and the cable 40.
  • the common mode choke coil 18 suppresses the leakage of common mode noise from the signal line 37 to the cable 40.
  • the differential mode inductor 19 suppresses the high frequency signal transmitted through the signal line 37 from flowing into the power supply line 33. Thereby, it is possible to suppress the disturbance of the signal waveform of the high frequency signal transmitted through the signal line 37.
  • the capacitor 34 disconnects the IC 31 from the power supply line 33 in a direct current manner.
  • noise filter 10 according to the first embodiment (FIGS. 1A, 1B, and 1C) is used as the noise filter 10, magnetic coupling between the common mode choke coil 18 and the differential mode inductor 19 is reduced, and Can function effectively.
  • the magnetic flux 52 generated by the current flowing through the two second windings 17 interlinks with the portion of the first winding 16 that is wound around the first core 21, and also with the portion that is wound around the second core 25. Interlink.
  • the magnetic flux 52 interlinking with the portion wound around the first core 21 and the magnetic flux 52 interlinking with the portion wound around the second core 25 have a relationship of canceling each other out. is there. Therefore, the magnetic flux 52 generated by the current flowing through the second winding 17 has a smaller amount of components interlinking with the first winding 16 than in the case of the first embodiment. Therefore, the influence of the current flowing through the second winding 17 on the first winding 16 is reduced.
  • the effect of suppressing the magnetic coupling between the common mode choke coil 18 and the differential mode inductor 19 is greater than that in the first embodiment.
  • the characteristics relating to noise suppression are further improved.
  • FIG. 8 is a schematic diagram of a vehicle 75 equipped with the network connection device 70 according to the fourth embodiment.
  • the network connection device 70 mounted on the vehicle 75 is equipped with the noise filter 10 according to any one of the first to third embodiments.
  • the vehicle 75 is further equipped with a DC power supply 41 and an in-vehicle device 72.
  • noise filter 10 Since the noise filter 10 according to any one of the first to third embodiments is mounted on the network connection device 70 according to the fourth embodiment, noise suppression, device miniaturization, and parts are achieved. It is possible to reduce the number of points.
  • Second Winding Common Mode Choke Coil 19 Differential Mode Inductor 20 Support 21 Core 22 First End Magnetic Member 23 Second end magnetic member 23A End plate 23B Side plate 25 Second core 30 Substrate 31 Integrated circuit element (IC) 32 connector 33 power supply line 34, 35 capacitor 37 signal line 38 ground conductor 39 power supply terminal 40 cable 41 DC power supply 51 magnetic flux generated by the first winding 52 magnetic flux generated by the second winding 60 network analyzer 70 network connection device 72 vehicle-mounted Equipment 75 vehicle

Landscapes

  • Filters And Equalizers (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A first core and a second core are arranged with an interval therebetween. Two end part magnetic members made of a magnetic material connect one end parts of the first core and the second core to each other, and connect the other end parts to each other. Two first winding wires are wound around the first core and constitute a common mode choke coil. Two second winding wires are wound in reverse directions to each other over the first core and the second core, and the two coils constituted of the two second winding wires have an open magnetic path structure.

Description

ノイズフィルタ及びネットワーク接続装置Noise filter and network connection device
 本発明は、ノイズフィルタ及びネットワーク接続装置に関する。 The present invention relates to a noise filter and a network connection device.
 差動信号ラインに直流電流を重畳させて、差動信号の送受信と電源の供給とを行う回路が公知である。差動信号の伝送を行うケーブルへのコモンモードノイズの漏洩を防止するために差動信号ラインにコモンモードチョークコイルが挿入される。差動信号ラインから電源への高周波信号の伝導を抑制するために、差動信号ラインと電源とを接続する電源線に、ディファレンシャルモード信号に対して高インピーダンスになるインダクタ(ディファレンシャルモードインダクタ)が挿入される。 A circuit for transmitting and receiving a differential signal and supplying power by superimposing a DC current on the differential signal line is known. A common mode choke coil is inserted in the differential signal line to prevent leakage of common mode noise to a cable that transmits differential signals. In order to suppress the conduction of high frequency signals from the differential signal line to the power supply, an inductor (differential mode inductor) that has a high impedance to the differential mode signal is inserted in the power supply line that connects the differential signal line and the power supply. To be done.
 コモンモードノイズを抑制する効果を高めるために、差動信号ラインにコモンモードチョークコイルを直列に挿入するとともに、差動信号ラインの各々をインダクタ及びコンデンサを介して接地する回路を設ける場合がある。 In order to enhance the effect of suppressing common mode noise, a common mode choke coil may be inserted in series in the differential signal line, and a circuit may be provided to ground each differential signal line via an inductor and a capacitor.
 部品点数の増加や実装面積の増大を抑制するためにコモンモードチョークコイルとディファレンシャルモードインダクタとを一体化することが望まれる。  It is desirable to integrate the common mode choke coil and the differential mode inductor in order to suppress the increase in the number of parts and the mounting area.
 下記の特許文献1に、コモンモードチョークコイルとノーマルモード(ディファレンシャルモード)チョークコイルとを直列に接続した回路を構成するコイル部品が開示されている。このコイル部品は、閉磁路を形成する第1の磁心と、その内側に収まるような形状の閉磁路を形成する第2の磁心とを含む。第1の巻線及び第2の巻線の各々が、一部分で第1の磁芯と第2の磁心の両方に一緒に巻き付けられ、他の部分では第1の磁心のみに巻き付けられている。第1の磁芯に巻かれる部分は、第1の巻線と第2の巻線とで巻き方向が逆であり、第2の磁芯に巻かれる部分は、第1の巻線と第2の巻線とで巻き方向が同一である。 Patent Document 1 below discloses a coil component that constitutes a circuit in which a common mode choke coil and a normal mode (differential mode) choke coil are connected in series. This coil component includes a first magnetic core forming a closed magnetic circuit and a second magnetic core forming a closed magnetic circuit having a shape that fits inside the first magnetic core. Each of the first winding and the second winding is wound around both the first magnetic core and the second magnetic core in one part, and is wound around the first magnetic core only in the other part. The portion wound around the first magnetic core has opposite winding directions between the first winding and the second winding, and the portion wound around the second magnetic core has the first winding and the second winding. The winding direction is the same as the winding.
特開平09-148144号公報JP, 09-148144, A
 特許文献1に開示されたコイル部品では、2本の巻線によりコモンモードチョークコイルとディファレンシャルモードチョークコイルとの両方が構成されている。すなわち、このコイル部品は、コモンモードチョークコイルとディファレンシャルモードチョークコイルとが直列に接続された四端子回路である。このため、このコイル部品は、差動信号ラインにコモンモードチョークコイルを直接に挿入するとともに、差動信号ラインをディファレンシャルモードチョークコイル(ディファレンシャルモードインダクタ)を介してインダクタ電源やグランドに接続する用途に使用することはできない。 In the coil component disclosed in Patent Document 1, two windings form both a common mode choke coil and a differential mode choke coil. That is, this coil component is a four-terminal circuit in which a common mode choke coil and a differential mode choke coil are connected in series. For this reason, this coil component is used for the purpose of directly inserting the common mode choke coil into the differential signal line and connecting the differential signal line to the inductor power supply and ground via the differential mode choke coil (differential mode inductor). It cannot be used.
 本発明の目的は、差動信号ラインに挿入されるコモンモードチョークコイル、及び差動信号ラインを電源やグランドに接続するディファレンシャルモードインダクタを一体化したノイズフィルタを提供することである。本発明の他の目的は、このノイズフィルタを搭載したネットワーク接続装置を提供することである。 The object of the present invention is to provide a noise filter that integrates a common mode choke coil that is inserted into a differential signal line and a differential mode inductor that connects the differential signal line to a power supply or ground. Another object of the present invention is to provide a network connection device equipped with this noise filter.
 本発明の一観点によると、
 間隔を隔てて隣り合うように配置された第1コア及び第2コアと、
 前記第1コア及び前記第2コアの一方の端部同士を接続し、他方の端部同士を接続する磁性材料からなる2つの端部磁性部材と、
 前記第1コアに巻かれてコモンモードチョークコイルを構成する2本の第1巻線と、
 前記第1コア及び前記第2コアに跨って、相互に逆向きに巻かれた2本の第2巻線と
を有し、前記2本の第2巻線からなる2つのコイルは開磁路構造を有するノイズフィルタが提供される。
According to one aspect of the invention,
A first core and a second core that are arranged so as to be adjacent to each other at a distance;
Two end magnetic members made of a magnetic material, which connect one ends of the first core and the second core to each other and connect the other ends of the first core and the second core,
Two first windings wound around the first core to form a common mode choke coil;
The first core and the second core are provided with two second windings wound in opposite directions, and the two coils formed of the two second windings are open magnetic circuits. A noise filter having a structure is provided.
 本発明の他の観点によると、
 基板と、
 前記基板に実装された集積回路素子と、
 前記基板に実装され、外部機器に接続されるコネクタと、
 前記基板に形成され、前記集積回路素子と前記コネクタとを接続する2本の信号線と、
 前記基板に実装されたノイズフィルタと
を有し、
 前記ノイズフィルタは、
 間隔を隔てて隣り合うように配置された第1コア及び第2コアと、
 前記第1コア及び前記第2コアの一方の端部同士を接続し、他方の端部同士を接続する磁性材料からなる2つの端部磁性部材と、
 前記第1コアに巻かれてコモンモードチョークコイルを構成する2本の第1巻線と、
 前記第1コア及び前記第2コアに跨って、相互に逆向きに巻かれた2本の第2巻線と
を有し、前記2本の第2巻線からなる2つのコイルは開磁路構造を有し、
 前記第1巻線で構成されるコモンモードチョークコイルが前記2本の信号線に直列に挿入され、前記2本の第2巻線の一方の端部が、それぞれ前記2本の信号線に接続されているネットワーク接続装置が提供される。
According to another aspect of the invention,
Board,
An integrated circuit device mounted on the substrate,
A connector mounted on the board and connected to an external device,
Two signal lines formed on the substrate and connecting the integrated circuit element and the connector;
And a noise filter mounted on the substrate,
The noise filter is
A first core and a second core that are arranged so as to be adjacent to each other at a distance;
Two end magnetic members made of a magnetic material, which connect one ends of the first core and the second core to each other and connect the other ends of the first core and the second core,
Two first windings wound around the first core to form a common mode choke coil;
The first core and the second core are provided with two second windings wound in opposite directions, and the two coils formed of the two second windings are open magnetic circuits. Have a structure,
A common mode choke coil composed of the first winding is inserted in series with the two signal lines, and one end of each of the two second windings is connected to each of the two signal lines. A network connection device is provided.
 2本の第1巻線からなるコモンモードチョークコイル及び2本の第2巻線からなる他の2つのコイルを一体化したノイズフィルタが得られる。コモンモードチョークコイルを信号線に直列に挿入し、2本の第2巻線からなる2つのコイルを介して信号線を電源またはグランドに接続することが可能である。 A noise filter that integrates a common mode choke coil consisting of two first windings and another two coils consisting of two second windings can be obtained. It is possible to insert the common mode choke coil in series with the signal line and connect the signal line to the power supply or the ground via the two coils composed of the two second windings.
図1A、図1B、及び図1Cは、それぞれ第1実施例によるノイズフィルタの正面図、底面図、及び側面図である。1A, 1B, and 1C are a front view, a bottom view, and a side view, respectively, of a noise filter according to the first embodiment. 図2は、第1実施例によるノイズフィルタを搭載したネットワーク接続装置の概略等価回路図である。FIG. 2 is a schematic equivalent circuit diagram of the network connection device equipped with the noise filter according to the first embodiment. 図3は、第1実施例によるノイズフィルタの側面図である。FIG. 3 is a side view of the noise filter according to the first embodiment. 図4Aは、ネットワークアナライザを用いてSパラメータを測定する評価実験の接続構成を示す図であり、図4Bは、比較例によるノイズフィルタの正面図である。FIG. 4A is a diagram showing a connection configuration of an evaluation experiment for measuring an S parameter using a network analyzer, and FIG. 4B is a front view of a noise filter according to a comparative example. 図5は、透過係数Scc21の測定結果を示すグラフである。FIG. 5 is a graph showing the measurement results of the transmission coefficient Scc21. 図6は、第2実施例によるネットワーク接続装置の概略等価回路図である。FIG. 6 is a schematic equivalent circuit diagram of the network connection device according to the second embodiment. 図7は、第3実施例によるノイズフィルタの正面図である。FIG. 7 is a front view of the noise filter according to the third embodiment. 図8は、第4実施例によるネットワーク接続装置を搭載した車両の概略図である。FIG. 8 is a schematic diagram of a vehicle equipped with the network connection device according to the fourth embodiment.
 [第1実施例]
 図1から図5までの図面を参照して第1実施例によるノイズフィルタ及びネットワーク接続装置について説明する。
[First embodiment]
A noise filter and a network connection device according to a first embodiment will be described with reference to FIGS. 1 to 5.
 図1A、図1B、及び図1Cは、それぞれ第1実施例によるノイズフィルタの正面図、底面図、及び側面図である。第1実施例によるノイズフィルタ10は、一般的にプリント基板等の表面に実装される態様で使用される。ノイズフィルタ10の、プリント基板を向く面を「底面」と定義し、底面とは反対方向を向く面を「上面」と定義し、プリント基板の表面に対してほぼ平行な方向を向く面を「側面」と定義する。ノイズフィルタ10は、支持体20、2本の第1巻線16、及び2本の第2巻線17を含む。 1A, 1B, and 1C are a front view, a bottom view, and a side view, respectively, of the noise filter according to the first embodiment. The noise filter 10 according to the first embodiment is generally used in a form mounted on the surface of a printed circuit board or the like. The surface of the noise filter 10 that faces the printed circuit board is defined as the “bottom surface”, the surface that faces the opposite direction to the bottom surface is defined as the “top surface”, and the surface that faces the direction substantially parallel to the surface of the printed circuit board is defined as the “top surface”. Side. The noise filter 10 includes a support 20, two first windings 16 and two second windings 17.
 支持体20は、第1コア21、第1端部磁性部材22、第2端部磁性部材23、第2コア25、第1電極対11、第2電極対12、及び第3電極対13を含む。第1コア21、第1端部磁性部材22、第2端部磁性部材23、及び第2コア25は、例えばNi-Zn系フェライト等の磁性材料で形成される。第1コア21と第2コア25とは間隔を隔てて並ぶように配置されており、第1端部磁性部材22が第1コア21及び第2コア25の一方の端部同士を接続し、第2端部磁性部材23が第1コア21及び第2コア25の他方の端部同士を接続している。第1コア21は、例えば四角柱状または円柱状の外形を有する。第2端部磁性部材23は、第1コア21の端部に連続する端板23Aと、平面視においてこの端板の両端からそれぞれ第1端部磁性部材22に向かって延びる側板23Bとを含む。 The support 20 includes a first core 21, a first end magnetic member 22, a second end magnetic member 23, a second core 25, a first electrode pair 11, a second electrode pair 12, and a third electrode pair 13. Including. The first core 21, the first end magnetic member 22, the second end magnetic member 23, and the second core 25 are made of a magnetic material such as Ni—Zn ferrite. The 1st core 21 and the 2nd core 25 are arranged so that it may line up at intervals, and the 1st end magnetic member 22 connects one end of the 1st core 21 and the 2nd core 25, The second end magnetic member 23 connects the other ends of the first core 21 and the second core 25. The first core 21 has, for example, a rectangular columnar or columnar outer shape. The second end magnetic member 23 includes an end plate 23A continuous with the end of the first core 21, and side plates 23B extending from both ends of the end plate toward the first end magnetic member 22 in plan view. .
 第1端部磁性部材22の底面に、第1電極対11が設けられている。第1電極対11の2つの電極は、平面視において第1コア21の両側に配置されている。第2端部磁性部材23の底面に、第2電極対12及び第3電極対13が設けられている。第3電極対13の2つの電極は、それぞれ端板23Aの底面に、平面視において第1コア21の両側に配置されている。第2電極対12の2つの電極は、それぞれ2枚の側板23Bの底面の先端に配置されている。 The first electrode pair 11 is provided on the bottom surface of the first end magnetic member 22. The two electrodes of the first electrode pair 11 are arranged on both sides of the first core 21 in plan view. The second electrode pair 12 and the third electrode pair 13 are provided on the bottom surface of the second end magnetic member 23. The two electrodes of the third electrode pair 13 are respectively disposed on the bottom surface of the end plate 23A and on both sides of the first core 21 in plan view. The two electrodes of the second electrode pair 12 are respectively arranged at the tips of the bottom surfaces of the two side plates 23B.
 第1電極対11、第2電極対12、及び第3電極対13は第1コア21の軸方向に関して異なる位置に配置されており、第1コア21の一端から他端に向かって、第1電極対11、第2電極対12、及び第3電極対13がこの順番に並んでいる。また、第1電極対11、第2電極対12、及び第3電極対13の合計6個の電極は、表面実装するために1つの仮想平面上に配置されている。 The first electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged at different positions in the axial direction of the first core 21, and the first core 21 moves from one end to the other end of the first core 21. The electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged in this order. In addition, the first electrode pair 11, the second electrode pair 12, and the third electrode pair 13 are arranged in a total of six electrodes on one virtual plane for surface mounting.
 第2コア25は、第1端部磁性部材22の上面から第2端部磁性部材23の上面まで架け渡された天板で構成される。第1コア21、第1端部磁性部材22、第2コア25、及び第2端部磁性部材23により、閉磁路が形成される。 The second core 25 is composed of a top plate that extends from the upper surface of the first end magnetic member 22 to the upper surface of the second end magnetic member 23. A closed magnetic circuit is formed by the first core 21, the first end magnetic member 22, the second core 25, and the second end magnetic member 23.
 第1コア21に、2本の第1巻線16が、巻き方向が同一になるように巻き付けられている。2本の第1巻線16は、コモンモードノイズに対して高インピーダンスとなるコモンモードチョークコイルとして機能する。このコモンモードチョークコイルは閉磁路構造を有する。2本の第2巻線17が、第1コア21と第2コア25とに跨って、巻き方向が相互に逆向きになるように巻き付けられている。2本の第2巻線17は、コモンモードノイズに対して低インピーダンスになり、ディファレンシャルモード信号に対して高インピーダンスになる。このようなインダクタを、本明細書において「ディファレンシャルモードインダクタ」ということとする。このディファレンシャルモードインダクタは開磁路構造を有する。なお、図1Aから図1Cまでの図面において、2本の第1巻線16及び2本の第2巻線17は、巻き方向が容易にわかるように実際の巻き数より少なく表されている。 The two first windings 16 are wound around the first core 21 in the same winding direction. The two first windings 16 function as a common mode choke coil having a high impedance with respect to common mode noise. This common mode choke coil has a closed magnetic circuit structure. The two second windings 17 are wound over the first core 21 and the second core 25 so that the winding directions are opposite to each other. The two second windings 17 have low impedance with respect to common mode noise and high impedance with respect to differential mode signals. In this specification, such an inductor is referred to as a "differential mode inductor". This differential mode inductor has an open magnetic circuit structure. In the drawings from FIG. 1A to FIG. 1C, the two first windings 16 and the two second windings 17 are shown with a number smaller than the actual number of windings so that the winding direction can be easily understood.
 2本の第1巻線16の各々の一端は第1電極対11の各電極に接続され、他端は第2電極対12の各電極に接続されている。2本の第2巻線17の各々の一端は第1電極対11の各電極に接続され、他端は第3電極対13の各電極に接続されている。2本の第1巻線16の各々は、平面視において第1コア21に対して同一の側の電極に接続されている。同様に、2本の第2巻線17の各々は、平面視において第1コア21に対して同一の側の電極に接続されている。 One end of each of the two first windings 16 is connected to each electrode of the first electrode pair 11, and the other end is connected to each electrode of the second electrode pair 12. One end of each of the two second windings 17 is connected to each electrode of the first electrode pair 11, and the other end is connected to each electrode of the third electrode pair 13. Each of the two first windings 16 is connected to the electrodes on the same side with respect to the first core 21 in plan view. Similarly, each of the two second windings 17 is connected to the electrodes on the same side with respect to the first core 21 in plan view.
 図2は、第1実施例によるノイズフィルタ10を搭載したネットワーク接続装置の概略等価回路図である。基板30に、ノイズフィルタ10、集積回路素子(IC)31、コネクタ32、及び2つのコンデンサ35が実装されている。さらに、基板30に、差動信号を伝送する2本の信号線37、及びグランド導体38が設けられている。コネクタ32に、外部機器との信号の送受信を行うためのケーブル40が接続される。 FIG. 2 is a schematic equivalent circuit diagram of a network connection device equipped with the noise filter 10 according to the first embodiment. The noise filter 10, the integrated circuit element (IC) 31, the connector 32, and the two capacitors 35 are mounted on the substrate 30. Further, the substrate 30 is provided with two signal lines 37 for transmitting differential signals and a ground conductor 38. A cable 40 for transmitting/receiving a signal to/from an external device is connected to the connector 32.
 2本の信号線37は、IC31とコネクタ32とを接続する。ノイズフィルタ10の第1電極対11がIC31に接続され、第2電極対12がコネクタ32に接続されるように、2本の信号線37にノイズフィルタ10が挿入されている。ノイズフィルタ10の第3電極対13が、それぞれコンデンサ35を介してグランド導体38に接続されている。 The two signal lines 37 connect the IC 31 and the connector 32. The noise filter 10 is inserted into the two signal lines 37 so that the first electrode pair 11 of the noise filter 10 is connected to the IC 31 and the second electrode pair 12 is connected to the connector 32. The third electrode pair 13 of the noise filter 10 is connected to the ground conductor 38 via the capacitors 35, respectively.
 ノイズフィルタ10の2本の第1巻線16が、コモンモードチョークコイル18を構成しており、2本の第2巻線17がディファレンシャルモードインダクタ19を構成している。コモンモードチョークコイル18は、2本の信号線37に直列に挿入される。2本の信号線37は、IC31とコモンモードチョークコイル18との間において、ディファレンシャルモードインダクタ19及びコンデンサ35を介して接地される。 The two first windings 16 of the noise filter 10 form a common mode choke coil 18, and the two second windings 17 form a differential mode inductor 19. The common mode choke coil 18 is inserted in series with the two signal lines 37. The two signal lines 37 are grounded between the IC 31 and the common mode choke coil 18 via the differential mode inductor 19 and the capacitor 35.
 次に、図3を参照して、第1実施例の優れた効果について説明する。
 第1実施例では、コモンモードチョークコイル18が、信号線37からケーブル40に漏洩するコモンモードノイズを抑制する。さらに、信号線37に発生したコモンモードノイズが、ディファレンシャルモードインダクタ19を介してグランド導体38に流入する。このため、コモンモードノイズを抑制する効果を高めることができる。コモンモードチョークコイル18とディファレンシャルモードインダクタ19とが共通の支持体20に設けられているため、部品点数の削減を図ることが可能になる。
Next, the excellent effect of the first embodiment will be described with reference to FIG.
In the first embodiment, the common mode choke coil 18 suppresses common mode noise leaking from the signal line 37 to the cable 40. Further, the common mode noise generated on the signal line 37 flows into the ground conductor 38 via the differential mode inductor 19. Therefore, the effect of suppressing common mode noise can be enhanced. Since the common mode choke coil 18 and the differential mode inductor 19 are provided on the common support 20, it is possible to reduce the number of parts.
 コンデンサ35は、グランド導体38を流れる直流電流が信号線37へ流れ込むのを防止する。 The capacitor 35 prevents a direct current flowing through the ground conductor 38 from flowing into the signal line 37.
 図3は、第1実施例によるノイズフィルタ10の正面図であり、この正面図に、第1巻線16により発生する磁束51、及び第2巻線17により発生する磁束52が模式的に示されている。 FIG. 3 is a front view of the noise filter 10 according to the first embodiment, in which the magnetic flux 51 generated by the first winding 16 and the magnetic flux 52 generated by the second winding 17 are schematically shown. Has been done.
 第1巻線16を流れる電流により発生する磁束51の大部分は、第1コア21、第1端部磁性部材22、第2コア25、及び第2端部磁性部材23からなる閉磁路内に閉じ込められる。第1コア21内の磁束51の向きと、第2コア25内に磁束51の向きとは相互に逆である。例えば、第1コア21内の磁束51が第2端部磁性部材23から第1端部磁性部材22を向くとき、第2コア25内に磁束51は、その反対に、第1端部磁性部材22から第2端部磁性部材23を向く。このため、第1コア21と第2コア25とに跨って巻きつけられた第2巻線17は、磁束51と鎖交しない。その結果、第1巻線16を流れる電流による第2巻線17への影響が軽減される。 Most of the magnetic flux 51 generated by the current flowing through the first winding 16 is in the closed magnetic circuit formed by the first core 21, the first end magnetic member 22, the second core 25, and the second end magnetic member 23. Be trapped. The direction of the magnetic flux 51 in the first core 21 and the direction of the magnetic flux 51 in the second core 25 are opposite to each other. For example, when the magnetic flux 51 in the first core 21 is directed from the second end magnetic member 23 to the first end magnetic member 22, the magnetic flux 51 in the second core 25, on the contrary, is the first end magnetic member. The second end magnetic member 23 faces from 22. Therefore, the second winding wire 17 wound around the first core 21 and the second core 25 does not interlink with the magnetic flux 51. As a result, the influence of the current flowing through the first winding 16 on the second winding 17 is reduced.
 第2巻線17を流れる電流により発生する磁束52は、第1コア21内と第2コア25内とで同一の向きになる。このため、2本の第2巻線17からなるコイルは開示路構造を有することとなる。すなわち、磁束52は、磁性材料からなる支持体20から漏れた漏れ磁束を含む。第2巻線17を第1巻線16と同様に第1コア21のみに巻き付けた構成では、第2巻線17を流れる電流によって発生する磁束のほとんどの成分が第1巻線16と鎖交する。これに対して第1実施例では、第2巻線17を流れる電流によって発生する磁束52のうち、第1コア21内の磁束52のみが第1巻線16と鎖交し、第2コア25内の磁束52は第1巻線16と鎖交しない。すなわち、第2巻線17を流れる電流によって発生する磁束52の一部の成分のみが第1巻線16と鎖交する。このため、第2巻線17を流れる電流による第1巻線16への影響が軽減される。 The magnetic flux 52 generated by the current flowing through the second winding 17 has the same direction inside the first core 21 and inside the second core 25. Therefore, the coil including the two second windings 17 has the disclosed path structure. That is, the magnetic flux 52 includes the leakage magnetic flux leaked from the support 20 made of a magnetic material. In the configuration in which the second winding wire 17 is wound only around the first core 21 like the first winding wire 16, most components of the magnetic flux generated by the current flowing through the second winding wire 17 interlink with the first winding wire 16. To do. On the other hand, in the first embodiment, of the magnetic flux 52 generated by the current flowing through the second winding 17, only the magnetic flux 52 in the first core 21 is linked to the first winding 16 and the second core 25 The magnetic flux 52 therein does not interlink with the first winding 16. That is, only a part of the magnetic flux 52 generated by the current flowing through the second winding 17 is linked to the first winding 16. Therefore, the influence of the current flowing through the second winding 17 on the first winding 16 is reduced.
 第1実施例の優れた効果を確認するために、第1実施例によるノイズフィルタ10と、比較例によるノイズフィルタについて評価実験を行った。次に、図4Aから図5までの図面を参照して、この評価実験について説明する。 In order to confirm the excellent effect of the first embodiment, an evaluation experiment was conducted on the noise filter 10 according to the first embodiment and the noise filter according to the comparative example. Next, this evaluation experiment will be described with reference to FIGS. 4A to 5.
 図4Aは、ネットワークアナライザ60を用いてノイズフィルタのSパラメータを測定するための接続構成を示す図である。ノイズフィルタ10の第1電極対11の2つの電極を、それぞれネットワークアナライザ60のポートP1、P3に接続し、第2電極対12の2つの電極を、それぞれネットワークアナライザ60のポートP2、P4に接続した。ノイズフィルタ10の第3電極対13の2つの電極を接地した。この接続構成で、第1電極対11から第2電極対12へのコモンモード成分の透過係数Scc21を測定した。 FIG. 4A is a diagram showing a connection configuration for measuring the S parameter of the noise filter using the network analyzer 60. The two electrodes of the first electrode pair 11 of the noise filter 10 are connected to the ports P1 and P3 of the network analyzer 60, respectively, and the two electrodes of the second electrode pair 12 are connected to the ports P2 and P4 of the network analyzer 60, respectively. did. Two electrodes of the third electrode pair 13 of the noise filter 10 were grounded. With this connection configuration, the transmission coefficient Scc21 of the common mode component from the first electrode pair 11 to the second electrode pair 12 was measured.
 この接続においては、コモンモードチョークコイル18によってコモンモード成分の第2電極対12への漏洩が抑制され、ディファレンシャルモードインダクタ19によってコモンモード成分がグランドに流れる。このため、透過係数Scc21が小さいほど、コモンモードチョークコイル18及びディファレンシャルモードインダクタ19が有効に機能しているといえる。 In this connection, the common mode choke coil 18 suppresses the leakage of the common mode component to the second electrode pair 12, and the differential mode inductor 19 causes the common mode component to flow to the ground. Therefore, it can be said that the smaller the transmission coefficient Scc21, the more effectively the common mode choke coil 18 and the differential mode inductor 19 function.
 図4Bは、比較例によるノイズフィルタの正面図である。比較例においては、第1巻線16及び第2巻線17が、共に第1コア21に巻きつけられている。その他の構成は、第1実施例によるノイズフィルタ10の構成と同一である。 FIG. 4B is a front view of the noise filter according to the comparative example. In the comparative example, the first winding 16 and the second winding 17 are both wound around the first core 21. The other structure is the same as that of the noise filter 10 according to the first embodiment.
 図5は、透過係数Scc21の測定結果を示すグラフである。横軸は周波数を単位「MHz」で表し、縦軸は透過係数Scc21を単位「dB」で表す。図5のグラフ中の実線及び破線は、それぞれ第1実施例によるノイズフィルタ10及び比較例によるノイズフィルタ(図4B)の測定結果を示す。第1実施例によるノイズフィルタ10の透過係数Scc21が、比較例によるノイズフィルタの透過係数Scc21より小さいことがわかる。すなわち、第1実施例によるノイズフィルタ10において、比較例によるノイズフィルタよりも、コモンモードチョークコイル18及びディファレンシャルモードインダクタ19が有効に機能していることがわかる。これは、第1実施例よるノイズフィルタ10で、第2巻線17を第1コア21と第2コア25とに跨って巻き付けた構成を採用したことの効果といえる。 FIG. 5 is a graph showing the measurement results of the transmission coefficient Scc21. The horizontal axis represents the frequency in the unit of "MHz", and the vertical axis represents the transmission coefficient Scc21 in the unit of "dB". A solid line and a broken line in the graph of FIG. 5 show the measurement results of the noise filter 10 according to the first example and the noise filter according to the comparative example (FIG. 4B), respectively. It can be seen that the transmission coefficient Scc21 of the noise filter 10 according to the first example is smaller than the transmission coefficient Scc21 of the noise filter according to the comparative example. That is, in the noise filter 10 according to the first example, the common mode choke coil 18 and the differential mode inductor 19 function more effectively than the noise filter according to the comparative example. This can be said to be the effect of adopting the configuration in which the second winding 17 is wound over the first core 21 and the second core 25 in the noise filter 10 according to the first embodiment.
 この評価実験から、第1実施例において、コモンモードチョークコイル18(図2)とディファレンシャルモードインダクタ19(図2)との磁気結合を抑制することにより、ノイズ抑制効果を高めることができることが確認された。 From this evaluation experiment, it was confirmed that the noise suppressing effect can be enhanced by suppressing the magnetic coupling between the common mode choke coil 18 (FIG. 2) and the differential mode inductor 19 (FIG. 2) in the first embodiment. It was
 さらに、第1実施例では、支持体20(図1A)の天板を第2コア25として利用しているため、第2コア25を設けても部品寸法が大きくならないという優れた効果も得られる。 Furthermore, in the first embodiment, since the top plate of the support 20 (FIG. 1A) is used as the second core 25, the excellent effect that the component size does not increase even if the second core 25 is provided can be obtained. ..
 次に、第1実施例の変形例について説明する。
 第1実施例では、図1Bに示したように、コモンモードチョークコイル18を構成する第1巻線16を第1電極対11と第2電極対12との間に接続し、ディファレンシャルモードインダクタ19を構成する第2巻線17を第1電極対11と第3電極対13との間に接続している。その他の構成として、第1巻線16を第1電極対11と第3電極対13との間に接続し、第2巻線17を第1電極対11と第2電極対12との間に接続してもよい。
Next, a modification of the first embodiment will be described.
In the first embodiment, as shown in FIG. 1B, the first winding 16 forming the common mode choke coil 18 is connected between the first electrode pair 11 and the second electrode pair 12, and the differential mode inductor 19 is connected. The second winding wire 17 constituting the above is connected between the first electrode pair 11 and the third electrode pair 13. As another configuration, the first winding 16 is connected between the first electrode pair 11 and the third electrode pair 13, and the second winding 17 is connected between the first electrode pair 11 and the second electrode pair 12. You may connect.
 [第2実施例]
 次に、図6を参照して第2実施例によるネットワーク接続装置について説明する。以下、第1実施例によるノイズフィルタ10を用いたネットワーク接続装置(図2)と共通の構成については説明を省略する。
[Second Embodiment]
Next, a network connection device according to the second embodiment will be described with reference to FIG. Hereinafter, the description of the same configuration as that of the network connection device (FIG. 2) using the noise filter 10 according to the first embodiment will be omitted.
 図6は、第2実施例によるネットワーク接続装置の概略等価回路図である。第1実施例によるネットワーク接続装置(図2)では、ノイズフィルタ10の第3電極対13の2つの電極がそれぞれコンデンサ35を介して接地されている。これに対し、第2実施例では、ノイズフィルタ10の第3電極対13の2つの電極が、それぞれ基板30に設けられた2本の電源ライン33に接続されている。電源ライン33は、電源端子39を介して外部の直流電源41に接続される。 FIG. 6 is a schematic equivalent circuit diagram of the network connection device according to the second embodiment. In the network connection device (FIG. 2) according to the first embodiment, the two electrodes of the third electrode pair 13 of the noise filter 10 are grounded via the capacitors 35, respectively. On the other hand, in the second embodiment, the two electrodes of the third electrode pair 13 of the noise filter 10 are connected to the two power supply lines 33 provided on the substrate 30, respectively. The power supply line 33 is connected to an external DC power supply 41 via a power supply terminal 39.
 ノイズフィルタ10とIC31との間の2本の信号線37に、それぞれコンデンサ34が直列に挿入されている。 Capacitors 34 are inserted in series in the two signal lines 37 between the noise filter 10 and the IC 31.
 第2実施例では、直流電源41から基板30に供給された直流電力が、電源ライン33、信号線37、コネクタ32、及びケーブル40を通して外部機器に供給される。電源ライン33を外部の直流電源41に接続せず、ケーブル40が接続されている外部機器からケーブル40、コネクタ32、信号線37を介して電源ライン33に直流電力を供給する構成を採用することも可能である。 In the second embodiment, the DC power supplied from the DC power supply 41 to the substrate 30 is supplied to the external device through the power supply line 33, the signal line 37, the connector 32, and the cable 40. Adopting a configuration in which the power supply line 33 is not connected to the external DC power supply 41 and DC power is supplied from the external device to which the cable 40 is connected to the power supply line 33 via the cable 40, the connector 32, and the signal line 37. Is also possible.
 次に、第2実施例の優れた効果について説明する。
 第2実施例においても、コモンモードチョークコイル18が、信号線37からケーブル40へのコモンモードノイズの漏洩を抑制する。ディファレンシャルモードインダクタ19は信号線37を伝送される高周波信号が電源ライン33に流れ込むのを抑制する。これにより、信号線37を伝送される高周波信号の信号波形の乱れを抑制することができる。コンデンサ34は、IC31を電源ライン33から直流的に切り離す。
Next, the excellent effect of the second embodiment will be described.
Also in the second embodiment, the common mode choke coil 18 suppresses the leakage of common mode noise from the signal line 37 to the cable 40. The differential mode inductor 19 suppresses the high frequency signal transmitted through the signal line 37 from flowing into the power supply line 33. Thereby, it is possible to suppress the disturbance of the signal waveform of the high frequency signal transmitted through the signal line 37. The capacitor 34 disconnects the IC 31 from the power supply line 33 in a direct current manner.
 ノイズフィルタ10として、第1実施例によるノイズフィルタ10(図1A、図1B、図1C)を用いているため、コモンモードチョークコイル18とディファレンシャルモードインダクタ19との間の磁気結合を低減させ、両者を有効に機能させることができる。 Since the noise filter 10 according to the first embodiment (FIGS. 1A, 1B, and 1C) is used as the noise filter 10, magnetic coupling between the common mode choke coil 18 and the differential mode inductor 19 is reduced, and Can function effectively.
 [第3実施例]
 次に、図7を参照して第3実施例によるノイズフィルタ10について説明する。以下、第1実施例によるノイズフィルタ10(図1A、図1B、図1C)と共通の構成については説明を省略する
[Third Embodiment]
Next, the noise filter 10 according to the third embodiment will be described with reference to FIG. Hereinafter, description of the configuration common to the noise filter 10 (FIGS. 1A, 1B and 1C) according to the first embodiment will be omitted.
 図7は、第3実施例によるノイズフィルタ10の正面図である。第1実施例では、2本の第1巻線16(図1A)が第1コア21のみに巻きつけられている。これに対し、第3実施例では、2本の第1巻線16の各々の一部分が第1コア21に巻き付けられており、残りの部分が第2コア25に巻き付けられている。第1巻線16に電流を流したとき、第1コア21に巻き付けられた部分と、第2コア25に巻き付けられた部分とが、閉磁路に同一方向の磁束を発生させるように、巻き方向が設定されている。2本の第2巻線17は、第1実施例と同様に第1コア21と第2コア25とに跨って、巻き方向が相互に逆になるように巻き付けられている。 FIG. 7 is a front view of the noise filter 10 according to the third embodiment. In the first embodiment, the two first windings 16 (FIG. 1A) are wound only around the first core 21. On the other hand, in the third embodiment, a part of each of the two first windings 16 is wound around the first core 21, and the remaining part is wound around the second core 25. When an electric current is applied to the first winding 16, the winding direction of the portion wound around the first core 21 and the portion wound around the second core 25 generate a magnetic flux in the same direction in the closed magnetic circuit. Is set. The two second windings 17 are wound over the first core 21 and the second core 25 so that the winding directions are opposite to each other, as in the first embodiment.
 次に、第3実施例の優れた効果について説明する。
 第3実施例においても、2本の第1巻線16を流れる電流によって発生する磁束51のほとんどの成分は、第2巻線17と鎖交しない。このため、第1実施例と同様に、第1巻線16を流れる電流による第2巻線17への影響が軽減される。
Next, the excellent effect of the third embodiment will be described.
Also in the third embodiment, most components of the magnetic flux 51 generated by the current flowing through the two first windings 16 do not interlink with the second winding 17. Therefore, similarly to the first embodiment, the influence of the current flowing through the first winding 16 on the second winding 17 is reduced.
 2本の第2巻線17に流れる電流により発生する磁束52は、第1巻線16のうち第1コア21に巻き付けられた部分と鎖交するとともに、第2コア25に巻き付けられた部分とも鎖交する。第1巻線16から見ると、第1コア21に巻き付けられた部分と鎖交する磁束52と、第2コア25に巻き付けられた部分と鎖交する磁束52とは、相互に打ち消し合う関係にある。このため、第2巻線17を流れる電流によって発生する磁束52のうち第1巻線16と鎖交する成分は、第1実施例の場合よりも少ない。従って、第2巻線17を流れる電流による第1巻線16への影響が軽減される。 The magnetic flux 52 generated by the current flowing through the two second windings 17 interlinks with the portion of the first winding 16 that is wound around the first core 21, and also with the portion that is wound around the second core 25. Interlink. When viewed from the first winding 16, the magnetic flux 52 interlinking with the portion wound around the first core 21 and the magnetic flux 52 interlinking with the portion wound around the second core 25 have a relationship of canceling each other out. is there. Therefore, the magnetic flux 52 generated by the current flowing through the second winding 17 has a smaller amount of components interlinking with the first winding 16 than in the case of the first embodiment. Therefore, the influence of the current flowing through the second winding 17 on the first winding 16 is reduced.
 このように、第3実施例では、第1実施例と比べてコモンモードチョークコイル18とディファレンシャルモードインダクタ19(図2、図6)との磁気結合を抑制する効果が大きくなる。その結果、ノイズ抑制に関する特性がさらに改善される。 As described above, in the third embodiment, the effect of suppressing the magnetic coupling between the common mode choke coil 18 and the differential mode inductor 19 (FIGS. 2 and 6) is greater than that in the first embodiment. As a result, the characteristics relating to noise suppression are further improved.
 [第4実施例]
 次に、図8を参照して第4実施例によるネットワーク接続装置について説明する。以下、第1実施例から第3実施例までの各実施例によるノイズフィルタ及びネットワーク接続装置と共通の構成については説明を省略する。
[Fourth Embodiment]
Next, a network connection device according to the fourth embodiment will be described with reference to FIG. Hereinafter, description of the configuration common to the noise filter and the network connection device according to each of the first to third embodiments will be omitted.
 図8は、第4実施例によるネットワーク接続装置70を搭載した車両75の概略図である。車両75に搭載されたネットワーク接続装置70は、第1実施例から第3実施例までのいずれか1つの実施例によるノイズフィルタ10を実装している。この車両75には、さらに、直流電源41及び車載機器72が搭載されている。 FIG. 8 is a schematic diagram of a vehicle 75 equipped with the network connection device 70 according to the fourth embodiment. The network connection device 70 mounted on the vehicle 75 is equipped with the noise filter 10 according to any one of the first to third embodiments. The vehicle 75 is further equipped with a DC power supply 41 and an in-vehicle device 72.
 直流電源41からネットワーク接続装置70に直流電力が供給される。ネットワーク接続装置70と車載機器72とがケーブル40で接続されている。ケーブル40を介して、ネットワーク接続装置70と車載機器72との間で差動信号が伝送される。さらに、直流電源41から、ネットワーク接続装置70及びケーブル40を介して車載機器72に直流電力が供給される。 DC power is supplied from the DC power supply 41 to the network connection device 70. The network connection device 70 and the in-vehicle device 72 are connected by the cable 40. A differential signal is transmitted between the network connection device 70 and the in-vehicle device 72 via the cable 40. Further, DC power is supplied from the DC power supply 41 to the vehicle-mounted device 72 via the network connection device 70 and the cable 40.
 第4実施例によるネットワーク接続装置70には、第1実施例から第3実施例までのいずれか1つの実施例によるノイズフィルタ10が搭載されているため、ノイズの抑制、装置の小型化、部品点数の削減等を図ることができる。 Since the noise filter 10 according to any one of the first to third embodiments is mounted on the network connection device 70 according to the fourth embodiment, noise suppression, device miniaturization, and parts are achieved. It is possible to reduce the number of points.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Needless to say, each of the above-described embodiments is an example, and partial replacement or combination of the configurations shown in different embodiments is possible. The same effects by the same configurations of the plurality of embodiments will not be sequentially described for each embodiment. Furthermore, the invention is not limited to the embodiments described above. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 ノイズフィルタ
11 第1電極対
12 第2電極対
13 第3電極対
16 第1巻線
17 第2巻線
18 コモンモードチョークコイル
19 ディファレンシャルモードインダクタ
20 支持体
21 コア
22 第1端部磁性部材
23 第2端部磁性部材
23A 端板
23B 側板
25 第2コア
30 基板
31 集積回路素子(IC)
32 コネクタ
33 電源ライン
34、35 コンデンサ
37 信号線
38 グランド導体
39 電源端子
40 ケーブル
41 直流電源
51 第1巻線により発生する磁束
52 第2巻線により発生する磁束
60 ネットワークアナライザ
70 ネットワーク接続装置
72 車載機器
75 車両
 
10 Noise Filter 11 First Electrode Pair 12 Second Electrode Pair 13 Third Electrode Pair 16 First Winding 17 Second Winding 18 Common Mode Choke Coil 19 Differential Mode Inductor 20 Support 21 Core 22 First End Magnetic Member 23 Second end magnetic member 23A End plate 23B Side plate 25 Second core 30 Substrate 31 Integrated circuit element (IC)
32 connector 33 power supply line 34, 35 capacitor 37 signal line 38 ground conductor 39 power supply terminal 40 cable 41 DC power supply 51 magnetic flux generated by the first winding 52 magnetic flux generated by the second winding 60 network analyzer 70 network connection device 72 vehicle-mounted Equipment 75 vehicle

Claims (7)

  1.  間隔を隔てて配置された第1コア及び第2コアと、
     前記第1コア及び前記第2コアの一方の端部同士を接続し、他方の端部同士を接続する磁性材料からなる2つの端部磁性部材と、
     前記第1コアに巻かれてコモンモードチョークコイルを構成する2本の第1巻線と、
     前記第1コア及び前記第2コアに跨って、相互に逆向きに巻かれた2本の第2巻線と
    を有し、前記2本の第2巻線からなる2つのコイルは開磁路構造を有するノイズフィルタ。
    A first core and a second core that are spaced apart;
    Two end magnetic members made of a magnetic material, which connect one ends of the first core and the second core to each other, and connect the other ends of the first core and the second core,
    Two first windings wound around the first core to form a common mode choke coil;
    The first core and the second core are provided with two second windings wound in opposite directions, and the two coils formed of the two second windings are open magnetic circuits. A noise filter having a structure.
  2.  前記2本の第1巻線は、前記第2コアには巻かれていない請求項1に記載のノイズフィルタ。 The noise filter according to claim 1, wherein the two first windings are not wound around the second core.
  3.  前記2本の第1巻線は、前記第2コアにも巻かれており、前記2本の第1巻線のうち前記第1コアに巻かれた部分と、前記第2コアに巻かれた部分とが、前記第1コア、前記第2コア、及び前記端部磁性部材からなる閉磁路に同一方向の磁束を発生させる向きに巻かれている請求項1に記載のノイズフィルタ。 The two first windings are also wound around the second core, and a portion of the two first windings wound around the first core and a portion wound around the second core. The noise filter according to claim 1, wherein the portion and the portion are wound in a closed magnetic circuit formed of the first core, the second core, and the end magnetic member so as to generate magnetic flux in the same direction.
  4.  基板と、
     前記基板に実装された集積回路素子と、
     前記基板に実装され、外部機器に接続されるコネクタと、
     前記基板に形成され、前記集積回路素子と前記コネクタとを接続する2本の信号線と、
     前記基板に実装されたノイズフィルタと
    を有し、
     前記ノイズフィルタは、
     間隔を隔てて配置された第1コア及び第2コアと、
     前記第1コア及び前記第2コアの一方の端部同士を接続し、他方の端部同士を接続する磁性材料からなる2つの端部磁性部材と、
     前記第1コアに巻かれてコモンモードチョークコイルを構成する2本の第1巻線と、
     前記第1コア及び前記第2コアに跨って、相互に逆向きに巻かれた2本の第2巻線と
    を有し、前記2本の第2巻線からなる2つのコイルは開磁路構造を有し、
     前記第1巻線で構成されるコモンモードチョークコイルが前記2本の信号線に直列に挿入され、前記2本の第2巻線の一方の端部が、それぞれ前記2本の信号線に接続されているネットワーク接続装置。
    Board,
    An integrated circuit device mounted on the substrate,
    A connector mounted on the board and connected to an external device,
    Two signal lines formed on the substrate and connecting the integrated circuit element and the connector;
    And a noise filter mounted on the substrate,
    The noise filter is
    A first core and a second core that are spaced apart;
    Two end magnetic members made of a magnetic material, which connect one ends of the first core and the second core to each other and connect the other ends of the first core and the second core,
    Two first windings wound around the first core to form a common mode choke coil;
    The first core and the second core are provided with two second windings wound in opposite directions, and the two coils formed of the two second windings are open magnetic circuits. Have a structure,
    A common mode choke coil composed of the first winding is inserted in series with the two signal lines, and one end of each of the two second windings is connected to each of the two signal lines. Network connection device.
  5.  前記基板に電源ラインが設けられており、
     前記2本の巻線の他方の端部がそれぞれ前記電源ラインに接続されている請求項4に記載のネットワーク接続装置。
    A power line is provided on the substrate,
    The network connection device according to claim 4, wherein the other ends of the two windings are connected to the power supply line, respectively.
  6.  前記2本の巻線の他方の端部が、それぞれコンデンサを介して接地されている請求項4に記載のネットワーク接続装置。 The network connection device according to claim 4, wherein the other ends of the two windings are grounded via capacitors, respectively.
  7.  前記コネクタはケーブルを介して車載機器と接続される請求項4乃至6のいずれか1項に記載のネットワーク接続装置。
     
     
    7. The network connection device according to claim 4, wherein the connector is connected to an in-vehicle device via a cable.

PCT/JP2019/042556 2018-12-03 2019-10-30 Noise filter and network connection device WO2020116055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559793A JP7115564B2 (en) 2018-12-03 2019-10-30 Noise filter and network connection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018226447 2018-12-03
JP2018-226447 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020116055A1 true WO2020116055A1 (en) 2020-06-11

Family

ID=70973608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042556 WO2020116055A1 (en) 2018-12-03 2019-10-30 Noise filter and network connection device

Country Status (2)

Country Link
JP (1) JP7115564B2 (en)
WO (1) WO2020116055A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276658A1 (en) * 2021-07-02 2023-01-05 株式会社村田製作所 Composite coil component and electronic circuit unit
WO2023286649A1 (en) * 2021-07-13 2023-01-19 株式会社村田製作所 Bus line
JP7582476B2 (en) 2021-07-02 2024-11-13 株式会社村田製作所 Composite coil components and electronic circuit units

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12113507B2 (en) 2022-12-16 2024-10-08 Bae Systems Controls Inc. Differential and common mode link dampener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163046A (en) * 1996-12-02 1998-06-19 Matsushita Electric Ind Co Ltd Noise filter
JP2007037034A (en) * 2005-07-29 2007-02-08 Tdk Corp Filter element
WO2009008213A1 (en) * 2007-07-11 2009-01-15 Murata Manufacturing Co., Ltd. Common mode choke coil
JP2016174104A (en) * 2015-03-17 2016-09-29 株式会社村田製作所 Choke coil for noise countermeasure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163046A (en) * 1996-12-02 1998-06-19 Matsushita Electric Ind Co Ltd Noise filter
JP2007037034A (en) * 2005-07-29 2007-02-08 Tdk Corp Filter element
WO2009008213A1 (en) * 2007-07-11 2009-01-15 Murata Manufacturing Co., Ltd. Common mode choke coil
JP2016174104A (en) * 2015-03-17 2016-09-29 株式会社村田製作所 Choke coil for noise countermeasure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276658A1 (en) * 2021-07-02 2023-01-05 株式会社村田製作所 Composite coil component and electronic circuit unit
JP7582476B2 (en) 2021-07-02 2024-11-13 株式会社村田製作所 Composite coil components and electronic circuit units
WO2023286649A1 (en) * 2021-07-13 2023-01-19 株式会社村田製作所 Bus line

Also Published As

Publication number Publication date
JP7115564B2 (en) 2022-08-09
JPWO2020116055A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
KR102036203B1 (en) Emc-filter for suppressing noise signals
US5083101A (en) Integrated electromagnetic interference filter
WO2020116055A1 (en) Noise filter and network connection device
JP6642006B2 (en) Coil component and circuit board having the same
JP7159901B2 (en) Differential mode choke coil component and circuit with same
US6448863B1 (en) Differential transmission cable and joint with specific distances
JP2017123365A (en) Coil component and circuit board including the same
JP5088898B2 (en) Inductance element
US7116203B2 (en) Circuit using choke coil and choke coil
CN105723598A (en) Noise filter
CN108768160A (en) EMI power filter
US11521787B2 (en) Coil component
CN109660033B (en) Power transfer unit
JP2003318031A (en) Noise filter
JP2019213186A (en) Electronic component and electronic control unit
JP4033852B2 (en) Common mode filter
JP2010027951A (en) Winding-type common mode choke coil with terminating circuit
JPH0291904A (en) Compound choke coil for preventing noise
US20160379751A1 (en) Pulse transformer
WO2020012794A1 (en) Bias-t circuit and signal transmission device
JP7073864B2 (en) Composite filter components and power superimposition circuit
JP4450457B2 (en) Lightning surge cutoff transformer
JPWO2020235046A1 (en) Noise filter
CN205984507U (en) Noise filter mounting structure
US11875923B2 (en) Noise reduction element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559793

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892212

Country of ref document: EP

Kind code of ref document: A1