[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020115338A1 - Uv-cured electrically conductive ink - Google Patents

Uv-cured electrically conductive ink Download PDF

Info

Publication number
WO2020115338A1
WO2020115338A1 PCT/ES2018/070783 ES2018070783W WO2020115338A1 WO 2020115338 A1 WO2020115338 A1 WO 2020115338A1 ES 2018070783 W ES2018070783 W ES 2018070783W WO 2020115338 A1 WO2020115338 A1 WO 2020115338A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
curing
silver
electrically conductive
conductive ink
Prior art date
Application number
PCT/ES2018/070783
Other languages
Spanish (es)
French (fr)
Inventor
Itziar FRAILE SANTAMARIA
Nerea BURGOS GARCÍA
Francisco Raúl CASTRO FERNÁNDEZ
Mikel AZCONA CALERO
Maitane GABILONDO NIETO
Original Assignee
Asociacion Centro Tecnologico Ceit-Ik4
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asociacion Centro Tecnologico Ceit-Ik4 filed Critical Asociacion Centro Tecnologico Ceit-Ik4
Priority to PCT/ES2018/070783 priority Critical patent/WO2020115338A1/en
Publication of WO2020115338A1 publication Critical patent/WO2020115338A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to an electrically conductive ink, curing by ultraviolet radiation, which is especially suitable for the manufacture by printing of electrical and / or electronic components.
  • Printable conductive inks have become very important in recent times for the manufacture of various electrical or electronic components, such as RFID antennas, transistors, solar cells, sensors, etc.
  • Said inks comprise at least one monomer, oligomer, or polymer to be cured, and a metallic material that gives the ink the electrically conductive property.
  • noble metals are usually preferred for low resistivity applications due to their chemical stability.
  • silver has the highest thermal and electrical conductivity, being the reason for its wide use in the formulation of UV-curing electric conductive inks.
  • the problem is that noble metals, including silver, are expensive materials, therefore a decrease in the proportion of silver used for the formulation of the inks is desirable.
  • a subject of the present invention is an electrically conductive ink for curing by ultraviolet radiation that uses a lower proportion of silver than the inks currently on the market and guarantees the electrical conductivity of the ink.
  • the UV-curing electrical conductive ink comprises at least one monomer and a metallic material that gives the ink the electrically conductive property, where the metallic material comprises flake-shaped silver particles in a proportion of between 10-30% by weight in relation to the total weight of the ink.
  • the ink proposed by the invention after its deposition and cured by ultraviolet radiation allows obtaining a final composite-type coating that is electrically conductive from 5% silver by volume with respect to the total volume of the coating already cured, while the coatings obtained with the inks currently available on the market, they require a minimum amount of silver with a higher volume ratio.
  • This minimum critical volume amount of silver metal filler, which must be added before the electrically conductive property becomes apparent, is known as the percolation limit. This limit represents the lowest volume fraction of filler that retains enough connectivity to create conductive paths over the thickness of the coating.
  • the silver particles have a particle distribution of between 1.5 and 4 microns. Even more preferably the silver particles have a particle distribution of between 2 and 3.5 microns.
  • UV curing conductive inks with spherical silver particles are known, where the contact between particles is tangent, whereby final coatings with a percolation limit of 25-33.5% by volume are obtained, however , the flake-shaped silver particles with the particle distribution proposed by the invention provide better particle-to-particle contact since they have larger and more stable contact areas.
  • the particles are synthesized by means of a hydrometallurgical reduction process with a growth favored in a single plane, thus obtaining flake-shaped silver particles having a shape that extends in a single plane.
  • the reduction hydrometallurgical process is specifically focused to have a good control in the final particle size, so it fits to an ink formulation with a clear economic (less silver) and technical focus of the formulated inks.
  • Figure 1 shows the results of resistivity in final coatings obtained from inks formulated according to the invention.
  • Figure 2 shows a graph of the size distribution of flake silver particles used in the formulation of the ink of the invention.
  • Figure 3 shows a comparative graph of a temperature sensor printed with an ink according to the invention and another sensor printed with a commercial ink.
  • the invention proposes an electric conductive ink for curing by UV radiation comprising at least one monomer and silver particles in the form of flakes that give the ink the electrically conductive property.
  • the following contains some examples of commercial products used as raw materials for the preparation of silver particles and the formulation of ink.
  • Other materials used as reagents were deionized water and alcohols (ethanol, isopropanol ). Alkyd and acrylic resins have also been worked on.
  • a series of silver particles were synthesized from a hydrometallurgical process that controls and directs their growth to obtain flake-shaped silver particles with a particle distribution of between 1.5 and 4 microns. Preferably a particle distribution is between 2 and 3.5 microns.
  • Figure 2 shows a graph with the distribution of silver particle sizes measured with a commercial "Zetasizer" measuring equipment.
  • Silver particles were used in a proportion of between 10-30% by weight in relation to the total weight of the ink.
  • the mixture of the polymeric and metallic parts were cured at variable times with a low energy UV lamp with a wavelength of 254 nm.
  • a field emission gun scanning electron microscope FEI Quanta 3D FEG model was used in a low vacuum configuration using acceleration voltages between 10 and 20 kV.
  • the film thickness was measured with a KLA-Tencor P-7 profilometer, while the resistance was determined with an ISO-TECH IDM 71 voltmeter.
  • the resistivity tests of the temperature sensor were carried out in a climatic chamber at temperatures between -40 and 60 ° C maintaining controlled humidity conditions.
  • Figure 1 shows the results of resistivity in the final coating obtained from an ink with flake-shaped silver particles according to the proportion of between 10-30% by weight in relation to the total weight of the ink.
  • Figure 3 shows a comparative graph between a temperature sensor printed with an ink formulated according to the invention and another printed with a commercial thermal radiation curing ink.
  • the ink formulated and used to print the temperature sensor is cured by UV radiation and comprises flaky silver particles in a proportion of 15% by weight relative to the total weight of the ink.
  • the results of this sensor are compared with the other sensor, printed in identical conditions, but cured at 150 ° C and using a commercial ink with a silver content of 40% by weight in relation to the total weight of the ink.
  • the slope of the regression line of the sensor formulated with the ink of the invention is represented by a dotted dashed line, and the slope of the sensor formulated with commercial ink is represented by a dashed line with triangles.
  • the slopes give the sensitivity values of 0.0713 ° C-1 for commercial ink and 0.0936 ° C-1 for ink formulated according to the invention. Therefore, a higher sensitivity is obtained, which is around 25-30%.
  • the ink used for the temperature sensor is prepared from silver flakes synthesized by reduction of silver nitrate (AgNOs) in HO and presence of iron sulfate in the form of heptahydrated salt (FeSC FhO) with vigorous stirring of 150 rpm . Subsequently citric acid (ObH d Og) is added to the solution. After 1 h, the solution is filtered 3 times in HO and 2 times in organic alcohols. The flakes suspended in the organic alcohols are mixed vigorously with the photoinitiator and the acrylate monomers to obtain the ink.
  • AgNOs silver nitrate
  • FeSC FhO heptahydrated salt
  • citric acid ObH d Og

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The invention relates to a UV-cured electrically conductive ink comprising at least one monomer and a metal material which provides the ink with electrically conductive properties, wherein the metal material comprises silver particles in the form of flakes in a proportion between 10 and 30% in weight relative to the total weight of the ink, such that, after the curing of the ink by means of UV radiation, a coating is obtained, having a low silver content and being electrically conductive on the basis of 5% silver volume relative to the total volume of the coating.

Description

DESCRIPCIÓN DESCRIPTION
TINTA CONDUCTORA ELÉCTRICA DE CURADO UV UV CURING ELECTRIC CONDUCTIVE INK
Sector de la técnica Technique sector
La presente invención se refiere a una tinta eléctricamente conductora, de curado por radiación ultravioleta, que es especialmente adecuada para la fabricación por impresión de componentes eléctricos y/o electrónicos. The present invention relates to an electrically conductive ink, curing by ultraviolet radiation, which is especially suitable for the manufacture by printing of electrical and / or electronic components.
Estado de la técnica State of the art
Las tintas conductoras imprimibles están cobrando gran importancia en los últimos tiempos para la fabricación de diversos componentes eléctricos o electrónicos, tales como antenas RFID, transistores, células solares, sensores, etc. Dichas tintas comprenden al menos un monómero, oligómero, o polímero a ser curado, y un material metálico que le confiere a la tinta la propiedad eléctricamente conductora. Printable conductive inks have become very important in recent times for the manufacture of various electrical or electronic components, such as RFID antennas, transistors, solar cells, sensors, etc. Said inks comprise at least one monomer, oligomer, or polymer to be cured, and a metallic material that gives the ink the electrically conductive property.
El desarrollo de tintas imprimibles para la obtención de recubrimientos gruesos representa un importante avance respecto a la tecnología convencional de recubrimientos delgados por deposición física, o química, en fase vapor (PVD, CVD), ya que el proceso de deposición se lleva a cabo en condiciones menos exigentes y más baratas. The development of printable inks to obtain thick coatings represents an important advance with respect to the conventional technology of thin coatings by physical or chemical deposition in the vapor phase (PVD, CVD), since the deposition process is carried out in less demanding and cheaper conditions.
Sin embargo, la mayoría de las tintas disponibles en el mercado para la impresión de recubrimientos gruesos tienen la desventaja de requerir un tratamiento de curado a alta temperatura (>150°C) para eliminar compuestos orgánicos y lograr una sinterización adecuada de las partículas del material metálico. Este requisito hace imposible la compatibilidad de este tipo de tintas con muchos sustratos existentes en el mercado sobre los que deben ser imprimidas las tintas. En contrapartida, aunque las propiedades del recubrimiento están limitadas por el volumen ocupado por el polímero, las tintas curables por UV permiten su procesamiento a bajas temperaturas (25°C) mediante exposición a radiación UV durante cortos periodos de tiempo. However, most of the inks available on the market for the printing of thick coatings have the disadvantage of requiring a high temperature cure treatment (> 150 ° C) to remove organic compounds and achieve adequate sintering of the material particles. metal. This requirement makes it impossible for these types of inks to be compatible with many substrates on the market on which the inks must be printed. In contrast, although the properties of the coating are limited by the volume occupied by the polymer, UV-curable inks allow its processing at low temperatures (25 ° C) by exposure to UV radiation for short periods of time.
Como material metálico los metales nobles son usualmente preferidos para aplicaciones de baja resistividad debido a su estabilidad química. Entre ellos, la plata presenta la mayor conductividad térmica y eléctrica, siendo la razón de su amplio uso en la formulación de tintas conductoras eléctrica de curado UV. As a metallic material, noble metals are usually preferred for low resistivity applications due to their chemical stability. Among them, silver has the highest thermal and electrical conductivity, being the reason for its wide use in the formulation of UV-curing electric conductive inks.
El problema reside en que los metales nobles, entre los que se incluye la plata, son materiales caros, por lo tanto, es deseable una disminución en la proporción de plata empleada para la formulación de las tintas. The problem is that noble metals, including silver, are expensive materials, therefore a decrease in the proportion of silver used for the formulation of the inks is desirable.
Objeto de la invención Object of the invention
La presente invención tiene por objeto una tinta eléctricamente conductora de curado por radiación ultravioleta que emplea una menor proporción de plata que las tintas actualmente existentes en el mercado y garantizando la conductividad eléctrica de la tinta. A subject of the present invention is an electrically conductive ink for curing by ultraviolet radiation that uses a lower proportion of silver than the inks currently on the market and guarantees the electrical conductivity of the ink.
La tinta conductora eléctrica de curado UV comprende al menos un monómero y un material metálico que le confiere a la tinta la propiedad eléctricamente conductora, en donde el material metálico comprende partículas de plata en forma de copos en una proporción de entre un 10-30% en peso en relación con el peso total de la tinta. The UV-curing electrical conductive ink comprises at least one monomer and a metallic material that gives the ink the electrically conductive property, where the metallic material comprises flake-shaped silver particles in a proportion of between 10-30% by weight in relation to the total weight of the ink.
La tinta propuesta por la invención tras su deposición y curado por radiación ultravioleta permite obtener un recubrimiento final de tipo composite que es eléctricamente conductor a partir de un 5% de plata en volumen respecto al volumen total de recubrimiento ya curado, mientras que los recubrimientos obtenidos con las tintas actualmente existentes en el mercado requieren una cantidad de plata mínima con una mayor proporción en volumen. The ink proposed by the invention after its deposition and cured by ultraviolet radiation allows obtaining a final composite-type coating that is electrically conductive from 5% silver by volume with respect to the total volume of the coating already cured, while the coatings obtained with the inks currently available on the market, they require a minimum amount of silver with a higher volume ratio.
Esta cantidad mínima de volumen critico de relleno metálico de plata, que debe ser añadida antes de que la propiedad eléctricamente conductora se haga aparente se conoce como límite de percolación. Este límite representa la fracción de volumen más baja de relleno que retiene suficiente conectividad para la creación de caminos conductores sobre el espesor del recubrimiento. This minimum critical volume amount of silver metal filler, which must be added before the electrically conductive property becomes apparent, is known as the percolation limit. This limit represents the lowest volume fraction of filler that retains enough connectivity to create conductive paths over the thickness of the coating.
Preferentemente las partículas de plata tienen una distribución de partícula de entre 1 ,5 y 4 mieras. Aún mas preferentemente las partículas de plata tienen una distribución de partícula de entre 2 y 3,5 mieras. Preferably the silver particles have a particle distribution of between 1.5 and 4 microns. Even more preferably the silver particles have a particle distribution of between 2 and 3.5 microns.
El uso de partículas de plata con dicha distribución mejora el contacto entre partículas y por tanto optimiza la conductividad eléctrica empleando una cantidad de plata mínima. De esta manera se emplean partículas de un tamaño homogéneo, evitándose emplear partículas esféricas o pequeñas que aumentan la carga de plata sin mejorar el contacto entre partículas. The use of silver particles with such distribution improves the contact between particles and by Therefore optimizes electrical conductivity using a minimum amount of silver. In this way, particles of a homogeneous size are used, avoiding the use of spherical or small particles that increase the silver charge without improving the contact between particles.
Por ejemplo, son conocidas las tintas conductoras de curado UV con partículas esféricas de plata, en donde el contacto entre partículas es tangente, con lo que se obtienen recubrimientos finales con un límite de percolación del 25-33,5 % en volumen, sin embargo, las partículas de plata en forma de copos con la distribución de partícula propuesta por la invención proporcionan un mejor contacto de partícula a partícula ya que presentan áreas de contacto más grandes y estables. For example, UV curing conductive inks with spherical silver particles are known, where the contact between particles is tangent, whereby final coatings with a percolation limit of 25-33.5% by volume are obtained, however , the flake-shaped silver particles with the particle distribution proposed by the invention provide better particle-to-particle contact since they have larger and more stable contact areas.
Según la invención las partículas se sintetizan mediante un proceso hidrometalúrgico de reducción con un crecimiento favorecido en un solo plano, obteniéndose por tanto partículas de plata en forma de copos que tienen una forma que se extiende en un solo plano. El proceso hidrometalúrgico de reducción está específicamente enfocado para tener un buen control en el tamaño de partícula final, de forma se ajuste a una formulación de tinta con un claro enfoque económico (menor cantidad de plata) y técnico de las tintas formuladas. According to the invention, the particles are synthesized by means of a hydrometallurgical reduction process with a growth favored in a single plane, thus obtaining flake-shaped silver particles having a shape that extends in a single plane. The reduction hydrometallurgical process is specifically focused to have a good control in the final particle size, so it fits to an ink formulation with a clear economic (less silver) and technical focus of the formulated inks.
Descripción de las figuras Description of the figures
En la figura 1 se muestran los resultados de resistividad en recubrimientos finales obtenidos a partir de tintas formuladas según la invención. Figure 1 shows the results of resistivity in final coatings obtained from inks formulated according to the invention.
La figura 2 muestra una gráfica de la distribución de tamaños de partículas de plata en forma de copos empleadas en la formulación de la tinta de la invención. Figure 2 shows a graph of the size distribution of flake silver particles used in the formulation of the ink of the invention.
La figura 3 muestra una gráfica comparativa de un sensor de temperatura impreso con una tinta de acuerdo con la invención y otro sensor impreso con una tinta comercial. Figure 3 shows a comparative graph of a temperature sensor printed with an ink according to the invention and another sensor printed with a commercial ink.
Descripción detallada de la invención Detailed description of the invention
La invención propone una tinta conductora eléctrica de curado por radiación UV que comprende al menos un monómero y unas partículas de plata en forma de copos que le confieren a la tinta la propiedad eléctricamente conductora. La siguiente recoge algunos ejemplos de productos comerciales utilizados como materias primas para la preparación de las partículas de plata y la formulación de la tinta. Otros materiales utilizados como reactivos fueron el agua desionizada y alcoholes (etanol, isopropanol...). También se ha trabajado con resinas alquídicas y acrílicas. The invention proposes an electric conductive ink for curing by UV radiation comprising at least one monomer and silver particles in the form of flakes that give the ink the electrically conductive property. The following contains some examples of commercial products used as raw materials for the preparation of silver particles and the formulation of ink. Other materials used as reagents were deionized water and alcohols (ethanol, isopropanol ...). Alkyd and acrylic resins have also been worked on.
Figure imgf000006_0001
Figure imgf000006_0001
Se sintetizaron una serie de partículas de plata a partir de un proceso hidrometalúrgico que controla y dirige su crecimiento para obtener partículas de plata en forma de copos con una distribución de partícula de entre 1 ,5 y 4 mieras. Preferentemente una distribución de partícula es de entre 2 y 3,5 mieras. En la figura 2 se muestra una gráfica con la distribución de tamaños de partículas de plata medidos con un equipo de medición comercial “Zetasizer”. A series of silver particles were synthesized from a hydrometallurgical process that controls and directs their growth to obtain flake-shaped silver particles with a particle distribution of between 1.5 and 4 microns. Preferably a particle distribution is between 2 and 3.5 microns. Figure 2 shows a graph with the distribution of silver particle sizes measured with a commercial "Zetasizer" measuring equipment.
Se emplearon partículas de plata en una proporción de entre un 10-30% en peso en relación con el peso total de la tinta. Silver particles were used in a proportion of between 10-30% by weight in relation to the total weight of the ink.
Como materiales de partida para formular la parte polimérica de las tintas se emplearon monómeros acrílicos mono- di- y tri-sustituidos y fotoiniciadores comerciales con diferentes propiedades de curado. Las concentraciones de los fotoiniciadores varían entre 0,2-0, 8 % en peso respecto al peso total de la tinta. As starting materials to formulate the polymeric part of the inks, mono-di- and tri-substituted acrylic monomers and commercial photoinitiators with different curing properties were used. The concentrations of the photoinitiators vary between 0.2-0.8% by weight with respect to the total weight of the ink.
Para la obtención del recubrimiento la mezcla de las partes polimérica y metálica fueron curadas a tiempos variables con una lámpara UV de baja energía con una longitud de onda de 254 nm. To obtain the coating, the mixture of the polymeric and metallic parts were cured at variable times with a low energy UV lamp with a wavelength of 254 nm.
La estructura cristalina y la morfología de la plata se caracterizaron por difracción de rayos X utilizando un difractómetro Philips XPERT MRD (Cu Ka1A= 1.54059 Á) de 20° a 80° con un tamaño de paso de 0.02° en 2Q y 10s/° de velocidad de exploración. Para la caracterización microestructural, se utilizó un microscopio electrónico de barrido con pistola de emisión de campo (modelo FEI Quanta 3D FEG) en configuración de bajo vacío utilizando tensiones de aceleración entre 10 y 20 kV. The crystal structure and morphology of silver were characterized by X-ray diffraction. using a Philips XPERT MRD diffractometer (Cu Ka1A = 1.54059 Á) from 20 ° to 80 ° with a step size of 0.02 ° in 2Q and 10s / ° of scanning speed. For microstructural characterization, a field emission gun scanning electron microscope (FEI Quanta 3D FEG model) was used in a low vacuum configuration using acceleration voltages between 10 and 20 kV.
Para el cálculo de la resistividad, el espesor de la película se midió con un perfilómetro KLA- Tencor P-7, mientras que la resistencia se determinó con un voltímetro ISO-TECH IDM 71. Además, los ensayos de resistividad del sensor de temperatura se realizaron en cámara climática a temperaturas entre -40 y 60°C manteniendo condiciones de humedad controlada. To calculate the resistivity, the film thickness was measured with a KLA-Tencor P-7 profilometer, while the resistance was determined with an ISO-TECH IDM 71 voltmeter. In addition, the resistivity tests of the temperature sensor were carried out in a climatic chamber at temperatures between -40 and 60 ° C maintaining controlled humidity conditions.
En la figura 1 se muestran los resultados de resistividad en el recubrimiento final obtenido a partir de una tinta con partículas de plata en forma de copos según la proporción de entre un 10-30% en peso en relación con el peso total de la tinta. Figure 1 shows the results of resistivity in the final coating obtained from an ink with flake-shaped silver particles according to the proportion of between 10-30% by weight in relation to the total weight of the ink.
En concreto se muestran cuatro recubrimientos finales en los que se ha variado el tipo de fotoiniciador empleado para el curado de la tinta, observándose que la tendencia en todos los casos es análoga. En la gráfica puede observarse que todos los recubrimientos presentan aproximadamente el límite de percolación en el 5% de plata en volumen respecto al volumen total del recubrimiento. Specifically, four final coatings are shown in which the type of photoinitiator used for curing the ink has been varied, observing that the trend in all cases is analogous. From the graph it can be seen that all the coatings have approximately the percolation limit of 5% silver by volume with respect to the total volume of the coating.
También se puede ver que para contenidos de plata superiores a 5 % la tendencia es asintótica por lo que no hay cambios notables en la resistividad. En el rango de 3-5 % la resistividad aumenta exponencialmente en todos los casos desde que se ha alcanzado el límite de percolación. Los cuatro casos muestran tendencias similares porque en todos ellos los monómeros utilizados en la formulación de las tintas son de tipo acrilato y las partículas utilizadas presentan la misma morfología y tamaño. Para contenidos inferiores al 3% de plata la tendencia es asintótica a la resistividad del polímero. It can also be seen that for silver contents greater than 5% the trend is asymptotic, so there are no notable changes in resistivity. In the 3-5% range the resistivity increases exponentially in all cases since the percolation limit has been reached. The four cases show similar trends because in all of them the monomers used in the formulation of the inks are of the acrylate type and the particles used have the same morphology and size. For contents less than 3% silver the tendency is asymptotic to the resistivity of the polymer.
Las tintas formuladas se emplearon para obtener un sensor de temperatura impreso. En la figura 3 se muestra una gráfica comparativa entre un sensor de temperatura impreso con una tinta formulada según la invención y otro impreso con una tinta comercial de curado por radiación térmica. The formulated inks were used to obtain a printed temperature sensor. Figure 3 shows a comparative graph between a temperature sensor printed with an ink formulated according to the invention and another printed with a commercial thermal radiation curing ink.
La tinta formulada y empleada para imprimir el sensor de temperatura es curada por radiación UV y comprende partículas de plata en forma de copos en una proporción de 15% en peso en relación con el peso total de la tinta. Los resultados de este sensor se comparan con el otro sensor, impreso en idénticas condiciones, pero curado a 150°C y empleando una tinta comercial con un contenido en plata de un 40% en peso en relación con el peso total de la tinta. The ink formulated and used to print the temperature sensor is cured by UV radiation and comprises flaky silver particles in a proportion of 15% by weight relative to the total weight of the ink. The results of this sensor are compared with the other sensor, printed in identical conditions, but cured at 150 ° C and using a commercial ink with a silver content of 40% by weight in relation to the total weight of the ink.
Para la caracterización de los recubrimientos como del sensor de temperatura, se han calculado las sensibilidades (coeficiente de temperatura) de ambos recubrimientos mediante la siguiente ecuación:
Figure imgf000008_0001
To characterize the coatings as the temperature sensor, the sensitivities (temperature coefficient) of both coatings have been calculated using the following equation:
Figure imgf000008_0001
La pendiente de la línea de regresión del sensor formulado con la tinta de la invención se representa mediante una línea discontinua con puntos, y la pendiente del sensor formulado con la tinta comercial se representa con una línea discontinua con triángulos. The slope of the regression line of the sensor formulated with the ink of the invention is represented by a dotted dashed line, and the slope of the sensor formulated with commercial ink is represented by a dashed line with triangles.
Las pendientes dan los valores de sensibilidad de 0.0713 °C-1 para la tinta comercial y 0.0936 °C-1 para tinta formulada según la invención. Por lo tanto, se obtiene una mayor sensibilidad, que está en torno al 25-30 %. The slopes give the sensitivity values of 0.0713 ° C-1 for commercial ink and 0.0936 ° C-1 for ink formulated according to the invention. Therefore, a higher sensitivity is obtained, which is around 25-30%.
La tinta utilizada para el sensor de temperatura se prepara a partir de copos de plata sintetizados por reducción de nitrato de plata (AgNOs) en H O y presencia de sulfato de hierro en forma de sal heptahidratada (FeSC FhO) con una agitación vigorosa de 150 rpm. Posteriormente se adiciona ácido cítrico (ObHdOg) a la disolución. Transcurrida 1 h se filtra la disolución 3 veces en H O y 2 en alcoholes orgánicos. Los copos suspendidos en los alcoholes orgánicos se mezclan vigorosamente con el fotoiniciador y los monómeros tipo acrilato para obtener la tinta. The ink used for the temperature sensor is prepared from silver flakes synthesized by reduction of silver nitrate (AgNOs) in HO and presence of iron sulfate in the form of heptahydrated salt (FeSC FhO) with vigorous stirring of 150 rpm . Subsequently citric acid (ObH d Og) is added to the solution. After 1 h, the solution is filtered 3 times in HO and 2 times in organic alcohols. The flakes suspended in the organic alcohols are mixed vigorously with the photoinitiator and the acrylate monomers to obtain the ink.
A continuación se muestra una tabla con los componentes empleados para la formulación de la tinta con la que se ha impreso el sensor de temperatura, indicándose el porcentaje en peso de cada componente en relación al peso total de la tinta. Below is a table with the components used for the formulation of the ink with which the temperature sensor has been printed, indicating the percentage by weight of each component in relation to the total weight of the ink.
Figure imgf000008_0002
Figure imgf000008_0002

Claims

REIVINDICACIONES
1.- Tinta conductora eléctrica de curado UV que comprende al menos un monómero y un material metálico que le confiere a la tinta la propiedad eléctricamente conductora, caracterizada por que el material metálico comprende partículas de plata en forma de copos en una proporción de entre un 10-30% en peso en relación con el peso total de la tinta. 1.- UV-curing electric conductive ink comprising at least one monomer and a metallic material that gives the ink the electrically conductive property, characterized in that the metallic material comprises flake-shaped silver particles in a proportion of between a 10-30% by weight in relation to the total weight of the ink.
2.- Tinta conductora eléctrica de curado UV, según la reivindicación anterior, caracterizada por que las partículas de plata en forma de copos tienen una distribución de partícula de entre 1 ,5 y 4 mieras. 2.- UV curing electric conductive ink, according to the preceding claim, characterized in that the flake-shaped silver particles have a particle distribution of between 1, 5 and 4 microns.
3.- Tinta conductora eléctrica de curado UV, según la reivindicación anterior, caracterizada por que la distribución de partícula es de entre 2 y 3,5 mieras. 3.- UV curing electric conductive ink, according to the preceding claim, characterized in that the particle distribution is between 2 and 3.5 microns.
4 Tinta conductora eléctrica de curado UV, según una cualquiera de las reivindicaciones anterior, caracterizada por que las partículas de plata en forma de copos tienen una forma que se extiende en un solo plano. Electric conductive UV curing ink according to any one of the preceding claims, characterized in that the flake-shaped silver particles have a shape that extends in a single plane.
5.- Tinta conductora eléctrica de curado UV, según una cualquiera de las reivindicaciones anterior, caracterizada por que la parte polimérica comprende monómeros acrílicos y fotoiniciadores. 5. Electric conductive ink for UV curing, according to any one of the preceding claims, characterized in that the polymeric part comprises acrylic monomers and photoinitiators.
6.- Tinta conductora eléctrica de curado UV, según la reivindicación anterior, caracterizada por que la proporción en peso de los fotoiniciadores en relación con el peso total de la tinta es de entre un 0,2-0, 8% en peso. 6.- UV curing electric conductive ink, according to the preceding claim, characterized in that the proportion by weight of the photoinitiators in relation to the total weight of the ink is between 0.2-0.8% by weight.
7.- Tinta conductora eléctrica de curado UV, según una cualquiera de las reivindicaciones anterior, caracterizada por que el monómero es de tipo acrilato. 7.- UV curing electric conductive ink, according to any one of the preceding claims, characterized in that the monomer is of the acrylate type.
PCT/ES2018/070783 2018-12-04 2018-12-04 Uv-cured electrically conductive ink WO2020115338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2018/070783 WO2020115338A1 (en) 2018-12-04 2018-12-04 Uv-cured electrically conductive ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2018/070783 WO2020115338A1 (en) 2018-12-04 2018-12-04 Uv-cured electrically conductive ink

Publications (1)

Publication Number Publication Date
WO2020115338A1 true WO2020115338A1 (en) 2020-06-11

Family

ID=70974214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070783 WO2020115338A1 (en) 2018-12-04 2018-12-04 Uv-cured electrically conductive ink

Country Status (1)

Country Link
WO (1) WO2020115338A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980597A1 (en) * 2007-04-10 2008-10-15 National Starch and Chemical Investment Holding Corporation Electrically conductive uv-curable ink
WO2013119387A1 (en) * 2012-02-07 2013-08-15 Henkel Corporation Uv curable metallic decorative compositions
CN104761957A (en) * 2015-03-04 2015-07-08 深圳广恒威科技有限公司 Transparent conductive ink, preparation method thereof and production method for transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980597A1 (en) * 2007-04-10 2008-10-15 National Starch and Chemical Investment Holding Corporation Electrically conductive uv-curable ink
WO2013119387A1 (en) * 2012-02-07 2013-08-15 Henkel Corporation Uv curable metallic decorative compositions
CN104761957A (en) * 2015-03-04 2015-07-08 深圳广恒威科技有限公司 Transparent conductive ink, preparation method thereof and production method for transparent conductive film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GABILONDO, M. ET AL.: "Desarrollo de tintas conductoras eléctricas de curado UV a partir de partículas metálicas sintetizadas por vías hidrometalurgicas", PROGRAMA CIENTIFICO EXTENSO, VI CONGRESO DE PULVIMETALURGIA, 2017, pages 11, Retrieved from the Internet <URL:htto://vicnp.es/wD-content/uploads/2017/06/PROGRAMA-CIENT%C3%8DFICO-EXTENSO-VICNP-Y-ICIP.pdf> *
GU L Y ET AL.: "Research on the conductivity of UV-curable conductive ink", APPLIED MECHANICS AND MATERIALS, vol. 469, 30 November 2013 (2013-11-30), pages 51 - 54, ISSN: 1660-9336, ISBN: 978-3-03785-946-9 *

Similar Documents

Publication Publication Date Title
US20210269664A1 (en) 2-dimensional mxene surface-modified with catechol derivative, method for preparing the same, and mxene organic ink including the same
EP2905313B1 (en) Metal particle dispersion, article and sintered film using metal particle dispersion, and method for producing sintered film
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
KR20210103399A (en) 2-dimensional mxene surface-modified with catechol derivatives, the preparation method thereof, and mxene organic ink containing the same
JP5657469B2 (en) Improved throughput to produce silver nanoparticles stabilized with low-melting organic amines on a large scale
Shao et al. Facile synthesis of low temperature sintering Ag nanopaticles for printed flexible electronics
JP5920540B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5811430B2 (en) Metal nanoparticle protective polymer, metal colloid solution, and production method thereof
TWI718177B (en) Core-shell, oxidation-resistant, electrically-conductive particles for low temperature conductive applications
US20180111190A1 (en) Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder
Mao et al. Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film
Taş et al. The chemical synthesis and characterizations of silver-doped polyaniline: role of silver–solvent interactions
Bhadra et al. Size variation of polyaniline nanoparticles dispersed in polyvinyl alcohol matrix
WO2020115338A1 (en) Uv-cured electrically conductive ink
Dou et al. Synthesis of a grape-like conductive carbon black/Ag hybrid as the conductive filler for soft silicone rubber
JP5858200B1 (en) Copper powder and conductive paste, conductive paint, conductive sheet, antistatic paint using the same
Gu et al. Inter-diffusion of Cu 2+ ions into CuS nanocrystals confines the microwave absorption properties
JP2017071819A (en) Silver powder and conductive paste, conductive coating and conductive sheet using the same
JP5453789B2 (en) Metal fine particle dispersion, method for producing metal thin film, and metal thin film
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
CN111699060A (en) Metal nanopowders comprising a solid solution of silver and copper
KR101834397B1 (en) COATING COMPOSITION OF NANOSOLUTION CONTAINING Cu-S NANOPARTICLE AND PREPARING METHOD OF THE SAME
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
JP6350475B2 (en) Method for producing copper powder and method for producing conductive paste using the same
US12116436B2 (en) Polymer dispersant capable of hybridizing nano-metal and nano-carbon, preparing method therefor, and method for manufacturing hybrid film using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942299

Country of ref document: EP

Kind code of ref document: A1