[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020110842A1 - Air conditioner, and server - Google Patents

Air conditioner, and server Download PDF

Info

Publication number
WO2020110842A1
WO2020110842A1 PCT/JP2019/045338 JP2019045338W WO2020110842A1 WO 2020110842 A1 WO2020110842 A1 WO 2020110842A1 JP 2019045338 W JP2019045338 W JP 2019045338W WO 2020110842 A1 WO2020110842 A1 WO 2020110842A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
control unit
compressor
heating operation
timer
Prior art date
Application number
PCT/JP2019/045338
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 六角
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020110842A1 publication Critical patent/WO2020110842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to air conditioner technology.
  • Patent Document 1 discloses an air conditioner.
  • the temperature detection unit monitors the room temperature for a certain period of time after the air conditioning operation is stopped, and the information unit calculates the change rate of the room temperature during the certain period of time, and when the change rate of the room temperature is small, the heat insulation performance It is determined that the indoor environment is high, and when the rate of change in room temperature is high, it is determined that the indoor environment has low heat insulation performance, and indoor information is generated from the determination result.
  • the driving control unit determines the driving start time of the reserved driving based on the indoor information. The operation start time in an indoor environment with low heat insulation performance is earlier than the operation start time in an indoor environment with high heat insulation performance.
  • JP-A-11-94327 discloses a control device for an air conditioner.
  • an indoor heat load predicting unit that predicts an indoor heat load based on information from an indoor unit is provided, the indoor heat load is predicted by a neural network, and the indoor heat load is predicted.
  • the control target determining means for determining the control target based on the means and the control amount calculating means for determining the control amount are provided to control the actuators such as the compressor and the electric expansion valve.
  • the indoor heat load is predicted, and learning and storage is performed so that the prediction accuracy is improved based on the result of driving. Therefore, it is possible to obtain comfortable air-conditioning control with good startup performance and stable indoor temperature.
  • An object of the present invention is to provide a technique for operating an air conditioner more efficiently than before.
  • an air conditioner includes a heating operation mechanism and a control unit.
  • the control unit delays the start time of the heating operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
  • the four-way switching valve is in the cooling operation state.
  • the four-way switching valve is in the heating operation state.
  • 5 is a flowchart showing a timer operation process in the control unit 101 according to the first embodiment.
  • FIG. 1 is a schematic configuration diagram of the air conditioner 100 according to the first embodiment during a cooling operation and a defrosting operation.
  • FIG. 2 is a schematic configuration diagram of the air conditioner 100 according to the first embodiment during heating operation.
  • an air conditioner 100 is a separate air conditioner, and mainly includes an outdoor unit 10, an indoor unit 30, and a remote controller 50. There is.
  • the air conditioner 100 is configured by connecting the indoor unit 30 and the outdoor unit 10 via refrigerant pipes 17 and 18.
  • the outdoor unit 10, the indoor unit 30, the remote controller 50, and the refrigerant pipes 17 and 18 will be described in detail.
  • Outdoor unit 10 is mainly composed of a housing 11, a compressor 12, a four-way switching valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, a refrigerant pipe 17, a refrigerant pipe 18, and a two. It includes a one-way valve 19, a three-way valve 20, an outdoor heat exchanger temperature sensor 21, a discharge temperature sensor 22, an intake temperature sensor 23, an outlet temperature sensor 24, an outside air temperature sensor 25, and an outdoor controller 29.
  • the outdoor unit 10 is installed outdoors.
  • the casing 11, the compressor 12, the four-way switching valve 13, the outdoor heat exchanger 14, the expansion valve 15, the outdoor blower 16, the refrigerant pipe 17, the refrigerant pipe 18, the two-way valve 19, the three-way valve 20, the temperature sensor 21. 25 to 25 and an outdoor control unit 29 are stored.
  • the compressor 12 has a discharge pipe 12a and a suction pipe 12b.
  • the discharge pipe 12a and the suction pipe 12b are connected to different connection ports of the four-way switching valve 13, respectively.
  • the compressor 12 is communicatively connected to the outdoor control unit 29 via a communication line, and operates according to a control signal transmitted from the outdoor control unit 29.
  • the compressor 12 sucks low-pressure refrigerant gas from the suction pipe 12b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 12a.
  • the control form of the compressor 12 is not particularly limited, and may be a constant speed type compressor or an inverter type compressor.
  • the four-way switching valve 13 is connected to the discharge pipe 12a and the suction pipe 12b of the compressor 12, the outdoor heat exchanger 14 and the indoor heat exchanger 32 via a refrigerant pipe.
  • the four-way switching valve 13 is communicatively connected to the outdoor control unit 29 via a communication line and operates according to a control signal transmitted from the outdoor control unit 29.
  • the four-way switching valve 13 connects the discharge pipe 12a of the compressor 12 to the outdoor heat exchanger 14 and operates the suction pipe 12b of the compressor 12 according to the control signal transmitted from the outdoor control unit 29 during operation.
  • the cooling operation state is connected to the indoor heat exchanger 32 (see FIG. 1)
  • the discharge pipe 12a of the compressor 12 is connected to the indoor heat exchanger 32
  • the suction pipe 12b of the compressor 12 is connected to the outdoor heat exchanger 14.
  • the heating operation state (see FIG. 2) is switched.
  • the outdoor heat exchanger 14 is a fin and tube type in which a large number of heat radiating fins (not shown) are attached to heat transfer tubes (not shown) bent back and forth at both left and right ends, and is used during cooling operation. It functions as a condenser (see FIG. 1) and an evaporator during heating operation (see FIG. 2).
  • a parallel flow type heat exchanger or a serpent type heat exchanger may be used as the heat exchanger.
  • the expansion valve 15 is an electronic expansion valve whose opening degree can be controlled via a stepping motor, one of which is connected to the two-way valve 19 via a refrigerant pipe 17 and the other of which is connected to the outdoor heat exchanger 14. Has been done.
  • the stepping motor of the expansion valve 15 is communicatively connected to the outdoor control unit 29 via a communication line and operates according to a control signal transmitted from the outdoor control unit 29.
  • the expansion valve 15 reduces the high-temperature and high-pressure liquid refrigerant flowing out of the condenser (the outdoor heat exchanger 14 during cooling and the indoor heat exchanger 32 during heating) to a state in which it easily evaporates during operation. At the same time, it plays the role of adjusting the amount of refrigerant supplied to the evaporator (the indoor heat exchanger 32 during cooling and the outdoor heat exchanger 14 during heating).
  • the outdoor blower 16 is mainly composed of a propeller fan and a motor.
  • the propeller fan is rotationally driven by a motor to supply outdoor air to the outdoor heat exchanger 14.
  • the motor is communicatively connected to the outdoor control unit 29 via a communication line, and operates according to a control signal transmitted from the outdoor control unit 29.
  • the two-way valve 19 is arranged in the refrigerant pipe 17.
  • the two-way valve 19 is closed when the refrigerant pipe 17 is removed from the outdoor unit 10, and prevents the refrigerant from leaking from the outdoor unit 10 to the outside.
  • the three-way valve 20 is arranged in the refrigerant pipe 18.
  • the three-way valve 20 is closed when the refrigerant pipe 18 is removed from the outdoor unit 10, and prevents the refrigerant from leaking from the outdoor unit 10 to the outside.
  • the refrigerant needs to be recovered from the outdoor unit 10 or the entire refrigeration cycle including the indoor unit 30, the refrigerant is recovered through the three-way valve 20.
  • the outdoor heat exchanger temperature sensor 21 is arranged in the outdoor heat exchanger 14, the discharge temperature sensor 22 is arranged in the discharge pipe 12a of the compressor 12, and the suction temperature sensor 23 is arranged in the suction pipe 12b of the compressor 12.
  • the outlet temperature sensor 24 is arranged in the refrigerant pipe 17 near the outlet of the outdoor heat exchanger 14, and the outside air temperature sensor 25 is for measuring the outside air temperature and is arranged at a predetermined position inside the housing 11. Has been done. All of these temperature sensors 21 to 25 are communicatively connected to the outdoor control unit 29 via a communication line, and transmit information regarding the measured temperature to the outdoor control unit 29.
  • the outdoor control unit 29 is communicatively connected to the compressor 12, the four-way switching valve 13, the expansion valve 15, the outdoor blower 16 and the temperature sensors 21 to 25 via a communication line.
  • the processor of the outdoor control unit 29 performs arithmetic processing on output information of the temperature sensors 21 to 25 and various control parameters stored in the memory at any time to derive appropriate control parameters, and the control parameters are It is transmitted to the compressor 12, the four-way switching valve 13, the expansion valve 15, and the outdoor blower 16.
  • the processor transmits or receives control parameters and the like to the indoor control unit 35 as needed.
  • the indoor unit 30 mainly includes a housing 31, an indoor heat exchanger 32, an indoor blower 33, a flap 36, an indoor heat exchanger temperature sensor 34, an indoor temperature sensor 37, an indoor control unit 35, and infrared light reception.
  • the unit 38 and the motion sensor 39 are included.
  • the indoor unit 30 is generally installed on the wall surface in the room.
  • the housing 31 houses an indoor heat exchanger 32, an indoor blower 33, an indoor heat exchanger temperature sensor 34, an indoor temperature sensor 37, an indoor control unit 35, and the like.
  • the flap 36 constitutes a part of the housing 31.
  • the indoor heat exchanger 32 is a combination of three heat exchangers 32A, 32B and 32C like a roof covering the indoor blower 33.
  • Each of the heat exchangers 32A, 32B, and 32C is a heat transfer tube (not shown) bent back and forth at a plurality of left and right ends, and a large number of heat radiation fins (not shown) are attached to the heat exchanger 32A, 32B, and 32C. It functions as an evaporator (see FIG. 1) and as a condenser during heating operation (see FIG. 2).
  • the indoor blower 33 is mainly composed of a cross flow fan and a motor.
  • the cross flow fan is rotationally driven by a motor, sucks the indoor air into the housing 31 and supplies the indoor air to the indoor heat exchanger 32, and sends the air that has been heat-exchanged by the indoor heat exchanger 32 into the room.
  • the motor is communicatively connected to the indoor control unit 35 via a communication line, and operates according to a control signal transmitted from the indoor control unit 35.
  • the flap 36 is composed of a wind direction plate and a motor.
  • the flap is rotated by a motor and adjusts a delivery direction of air delivered to the room by a cross flow fan.
  • the motor is communicatively connected to the indoor control unit 35 via a communication line, and operates according to a control signal transmitted from the indoor control unit 35.
  • the indoor heat exchanger temperature sensor 34 is arranged in the indoor heat exchanger 32, and the indoor temperature sensor 37 measures the indoor temperature and is arranged in the housing 31 near the suction port.
  • the temperature sensors 34 and 37 are communicatively connected to the indoor control unit 35 via a communication line, and send information on the measured temperature to the indoor control unit 35.
  • the indoor control unit 35 is communicatively connected to the indoor blower 33, the flap 36, and the temperature sensors 34 and 37 via a communication line.
  • the processor of the indoor control unit 35 performs arithmetic processing on the control signal from the remote controller 50, the output information of the temperature sensors 34 and 37, and the like to derive appropriate control parameters at any time, and outputs the control parameters and the like to the indoor blower 33. Or to the flap 36.
  • the processor transmits control parameters and the like to the outdoor control unit 29 and receives control parameters and the like from the outdoor control unit 29 as necessary.
  • the infrared light receiving unit 38 receives blinking infrared light generated from the remote controller 50.
  • the infrared light receiving unit 38 processes the blinking infrared light into a signal and transfers the generated signal to the indoor control unit 35.
  • the human sensor 39 detects whether or not there is a person around the air conditioner 100 using infrared rays or the like, and transfers the detection result to the indoor control unit 35.
  • the compressor 12, the four-way switching valve 13, the outdoor heat exchanger 14 and the expansion valve 15 of the outdoor unit 10, and the indoor heat exchanger 32 of the indoor unit 30 are sequentially connected by the refrigerant pipes 17 and 18, and the refrigerant circuit Is composed of.
  • the refrigerant circuit, the outdoor blower 16, the indoor blower 33, and the flap 36 are collectively referred to as an air conditioning mechanism, which is indicated by reference numeral 2 in FIGS. 1 and 2.
  • the remote controller 50 is for transmitting various commands of the user to the indoor control unit 35 of the indoor unit 30 by using blinking infrared rays, and mainly includes an infrared light emitting unit, a display panel, It is composed of an operation stop button, a mode switching button, a temperature increasing button, a temperature decreasing button, an air volume increasing button, an air volume decreasing button, an air direction adjusting button, an automatic operation button and the like.
  • the refrigerant pipe 17 is a pipe thinner than the refrigerant pipe 18, and the liquid refrigerant flows during the cooling operation and the defrosting operation.
  • the refrigerant pipe 18 is thicker than the refrigerant pipe 17, and the gas refrigerant flows during the cooling operation.
  • the refrigerant for example, HFC-based R410A, R32, or the like is used.
  • the four-way switching valve 13 is in the state shown in FIG. 1, that is, the discharge pipe 12a of the compressor 12 is connected to the outdoor heat exchanger 14, and the suction pipe of the compressor 12 is also connected. 12b is connected to the indoor heat exchanger 32. At this time, the two-way valve 19 and the three-way valve 20 are open.
  • the compressor 12 is started in this state, the gas refrigerant is sucked into the compressor 12, compressed, and then sent to the outdoor heat exchanger 14 via the four-way switching valve 13 to perform the outdoor heat exchange. It is cooled in the container 14 and becomes liquid refrigerant.
  • this liquid refrigerant is sent to the expansion valve 15 and is decompressed to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 32 via the two-way valve 19, cools the indoor air, and is evaporated to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 12 again via the three-way valve 20 and the four-way switching valve 13.
  • the air conditioner 100 has the cooling operation mechanism, that is, the cooling operation cycle.
  • the four-way switching valve 13 is in the state shown in FIG. 2, that is, the discharge pipe 12a of the compressor 12 is connected to the indoor heat exchanger 32, and the suction pipe of the compressor 12 is also connected. 12b is connected to the outdoor heat exchanger 14. At this time, the two-way valve 19 and the three-way valve 20 are open.
  • the compressor 12 is started in this state, the gas refrigerant is sucked into the compressor 12, compressed, and then supplied to the indoor heat exchanger 32 via the four-way switching valve 13 and the three-way valve 20.
  • the indoor air is heated and condensed to become a liquid refrigerant.
  • this liquid refrigerant is sent to the expansion valve 15 via the two-way valve 19 and is decompressed to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 14 and evaporated in the outdoor heat exchanger 14 to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 12 again via the four-way switching valve 13.
  • the air conditioner 100 according to the present embodiment has the heating operation mechanism, that is, the heating operation cycle.
  • the outdoor control unit 29 determines whether or not the outdoor heat exchanger 14 is frosted, based on the temperature from the temperature sensor 21 for the outdoor heat exchanger.
  • the outdoor control unit 29 switches the four-way switching valve 13 to perform the above-described cooling operation to defrost (reverse defrosting).
  • the outdoor control unit 29 determines whether or not the frost on the outdoor heat exchanger 14 has been appropriately removed, based on the temperature from the temperature sensor 21 for the outdoor heat exchanger.
  • FIG. 3 is a functional block diagram showing a functional configuration of the air conditioner 100 according to the first embodiment.
  • the air conditioner 100 includes the outdoor control unit 29 and the indoor control unit 35.
  • the outdoor control unit 29 and the indoor control unit 35 are collectively referred to as the control unit 101.
  • the outdoor control unit 29 and the indoor control unit 35 can communicate by wiring.
  • the process executed by the control unit 101 may be basically executed by the outdoor control unit 29 or may be executed by the outdoor control unit 29.
  • the air conditioner 100 may not include the indoor control unit 35, and almost all the functions of the control unit 101 may be installed in the outdoor control unit 29.
  • the air conditioner 100 may not include the outdoor control unit 29, and almost all the functions of the control unit 101 may be installed in the indoor control unit 35.
  • the control unit 101 includes, for example, a processor 110 for performing various arithmetic processes, a memory 120 for storing various programs and data, a clock 130, and the like.
  • the processor 110 is composed of, for example, a CPU (Central Processing Unit).
  • the processor 110 executes various processes according to the programs stored in the memory 120.
  • the processor 110 based on the control program stored in the memory 120, based on the information acquired from the temperature sensors 21 to 25, 34, 37, the infrared light receiving section 38, the human sensor 39, etc. It controls the blowers 16, 33, the expansion valve 15, and the like.
  • the processor 110 stores the timer 120 in the memory 120 and the start time and the end of the heating operation or the cooling operation in the memory 120 in accordance with the user command input via the remote controller 50 or the device control application of the smartphone. Stores time etc. Then, by referring to the clock 130, the processor 110 starts the heating operation or finishes the heating operation so that the set temperature is reached by the set time according to the timer set time stored in the memory 120. Control, start the cooling operation, or end the cooling operation. More specifically, the processor 110 efficiently controls the indoor temperature by keeping the rotation speed of the compressor 12 constant so as not to exceed a preset maximum value of the rotation speed of the compressor 12. Executes control to bring the temperature closer to the set temperature.
  • the air conditioner 100 may further include an interface unit 40 for reading and writing data and programs from a computer-readable non-transitory recording medium 41.
  • the processor 110 may perform various controls by storing the program read from the recording medium 41 by the interface unit 40 in the memory 120 or by updating an existing program. ⁇ Timer operation process by control unit 101>
  • FIG. 4 is a flowchart showing a timer operation process in the control unit 101 according to this embodiment.
  • the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S102).
  • the timer command includes the timer set time, operation mode, set temperature, and the like.
  • the control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S103).
  • the control unit 101 determines whether or not there is a person around the air conditioner 100 via the human sensor 39 (step S104). As will be described later, the control unit 101 may perform the timer operation control based on the number of people around the air conditioner 100.
  • the control unit 101 corrects the operation start time calculated from the timer set time (step S106). For example, when the heating operation is started by the timer, the control unit 101 delays the original start time when there is a person and when there is no person. The control unit 101 may directly correct the start time, or indirectly correct the start time by correcting the room performance. Further, when starting the cooling operation by the timer, the control unit 101 advances the original start time when there is a person and when there is no person. The control unit 101 may directly correct the start time, or may indirectly correct the start time by correcting the room performance.
  • step S110 the control unit 101 executes the set timer command (step S112).
  • control unit 101 restores the operation start time, that is, restores the one set by the user (step S108). .. Then, when the original operation start time is reached (YES in step S110), control unit 101 executes the set timer command (step S112). ⁇ Second Embodiment>
  • the control unit 101 may correct the operation end time calculated from the time set by the timer in step S106 of FIG. For example, when the heating operation is ended by the timer, the control unit 101 may advance the end time when there is a person. Alternatively, when the timer ends the cooling operation, the control unit 101 may delay the end time when there is a person.
  • the start time of the heating operation may be made earlier than the set time, or the start time of the cooling operation may be made later than the set time. You may. ⁇ Third Embodiment>
  • the control unit 101 when there is a person around the air conditioner 100, not only the operation start time and the operation end time based on the timer set time but also the set temperature may be corrected. For example, the control unit 101 lowers the set temperature when there is a person around the air conditioner 100 during the heating operation and the cooling operation even during the timer control or other than the timer control. Good. Note that the control unit 101 may directly correct the set temperature, indirectly correct the set temperature by correcting the room performance to a higher level when there is a person during heating, or there is a person during cooling. In this case, the set temperature may be indirectly corrected to be low by correcting the room performance to be low.
  • the rotation speed of the compressor 12 may be changed when there is a person around the air conditioner 100.
  • the control unit 101 controls the rotation speed of the compressor 12 when there is a person around the air conditioner 100 during the heating operation and the cooling operation even during the timer control or other than the timer control. You may perform control which reduces.
  • the control unit 101 may directly reduce the rotation speed of the compressor 12, or indirectly correct the rotation speed of the compressor 12 by correcting the room performance to be higher when a person is present during heating.
  • the room performance may be corrected to be low, and thus the rotation speed of the compressor 12 may be indirectly corrected to be high.
  • the maximum rotation speed of the compressor 12 during heating is suppressed by about 20%.
  • the maximum rotation speed of the compressor 12 during cooling may be increased by about 10%.
  • the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S102).
  • the timer command includes the timer set time, operation mode, set temperature, and the like.
  • the control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S103B).
  • the control unit 101 determines whether or not there is a person around the air conditioner 100 via the human sensor 39 (step S104). As will be described later, the control unit 101 may perform the timer operation control based on the number of people around the air conditioner 100.
  • the control unit 101 corrects the operation start time calculated from the timer set time and the rotation speed of the compressor 12 (Ste S106B). For example, when the heating operation is started by the timer, the control unit 101 delays the start time when there is a person and lowers the rotation speed of the compressor 12 as compared with when there is no person. Note that the control unit 101 may directly correct the start time or the rotation speed of the compressor 12, or may indirectly delay the start time or rotate the compressor 12 by correcting the room performance to be higher. You may reduce the number. Further, when the cooling operation is started by the timer, the control unit 101 makes the start time earlier or raises the rotation speed of the compressor 12 when there is a person than when there is no person. The control unit 101 may directly correct the start time or the rotation speed of the compressor 12, or indirectly improve the start time by correcting the room performance to a lower value or rotate the compressor 12 faster. You may increase the number.
  • step S110 the control unit 101 executes the set timer command (step S112).
  • control unit 101 restores the operation start time and the rotation speed of the compressor 12 (step S108B). Then, when the original operation start time is reached (YES in step S110), control unit 101 executes the set timer command (step S112).
  • the presence sensor 39 is used to determine whether or not there is a person around the air conditioner 100, but the present invention is not limited to this.
  • the indoor unit 30 is equipped with an image sensor 39B and the like, and the control unit 101 determines whether or not there is a person around the air conditioner 100 based on the image data from the image sensor 39B. You may judge.
  • thermography sensor 39C or the like is mounted on the indoor unit 30, and the control unit 101 determines whether or not there is a person around the air conditioner 100 based on the thermography. Good.
  • the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like are corrected depending on whether or not there is a person around the air conditioner 100.
  • the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like may be corrected according to the number of people around the air conditioner 100.
  • the memory 120 of the air conditioner 100 stores the correction data 121 as shown in FIG. 7.
  • the correction data 121 stores the correspondence relationship between the number of people around the air conditioner 100 and the correction values such as the start time and end time of timer operation, the set temperature, and the rotation speed of the compressor 12.
  • control unit 101 executes the timer operation process as shown in FIG.
  • the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S202).
  • the timer command includes the timer set time, operation mode, set temperature, and the like.
  • the control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S203).
  • the control unit 101 identifies the number of people around the air conditioner 100 via the image sensor 39B and the like (step S204).
  • the control unit 101 corrects the start time of the timer based on the number of people around the air conditioner 100 (step S206). For example, when the heating operation is started by the timer, the control unit 101 delays the start time as the number of people increases. When the cooling operation is started by the timer, the control unit 101 advances the start time as the number of people increases. Also in this embodiment, the set time may be corrected via the room performance.
  • step S210 the control unit 101 executes the input instruction (step S212).
  • control unit 101 may correct the operation end time by a timer. For example, when the heating operation ends by the timer, the control unit 101 may set the end time earlier as the number of people increases. Alternatively, the control unit 101 may delay the end time as the number of people increases when the cooling operation is ended by the timer.
  • the target of correction may be the set temperature to be lowered during heating or cooling, the rotation speed of the compressor 12, or the like.
  • the number of rotations of the compressor 12 during heating may be decreased or the number of rotations of the compressor 12 during cooling may be increased as the number of people in the surroundings increases.
  • the control unit 101 reduces the rotation speed of the compressor 12 so as to reduce the power consumption of 100 W for one person around the air conditioner 100.
  • the control unit 101 increases the rotation speed of the compressor 12 so that the power consumption of 100 W for one person around the air conditioner 100 increases.
  • the rotation speed of the machine 12 may be corrected.
  • the air conditioner 100 acquires the operating state of the electric device 200 in the room.
  • the electric device 200 is a home appliance such as a vacuum cleaner, a microwave oven, a refrigerator, and a washing machine, a TV, a hard disk recorder, a music player, a projector, an AV (audio/visual) device such as a speaker, an IH cooking heater, a water heater, and other housing equipment, And so on. That is, in the present embodiment, the network system 1 including the air conditioner 100, the electric device 200, and the like is realized.
  • step S206 and the like of FIG. 8 the control unit 101, based on the operating state of the electric device 200 around the air conditioner 100, the start time and the end time of the timer operation, the set temperature, and the rotation speed of the compressor 12. Are corrected (step S206).
  • the control unit 101 acquires the power consumption of one or a plurality of electric devices 200 operating in the room where the air conditioner 100 is arranged, and their total is high. The later, the later the start time.
  • the control unit 101 acquires the power consumption of one or a plurality of electric devices 200 operating in the room where the air conditioner 100 is arranged, and the higher the sum thereof, the more the Increase the start time.
  • the control unit 101 when the heating operation is started by the timer, the control unit 101 turns ON/OFF the operation of one or a plurality of electric devices 200 operating in the room in which the air conditioner 100 is arranged, and operates the electric device 200.
  • the start time and end time of the operation may be corrected based on the number of operating electric devices. For example, when the heating operation is started by the timer, the control unit 101 delays the start time while the other electric device 200 is in operation. Moreover, when starting the cooling operation by the timer, the control unit 101 advances the start time while the other electric device 200 is in operation.
  • control unit 101 may correct the set time and the set temperature of the timer, not limited to the person, the animal, and the electric device 200, based on the temperature distribution acquired by the sensor 39C for thermography. For example, in step S206 of FIG. 8, the control unit 101 calculates the amount of heat generated around the air conditioner 100, and the larger the amount of heat, the later the start time during heating or the start time during cooling. May be earlier, the end time during heating may be earlier, the end time during cooling may be later, or the rotation speed of the compressor 12 may be reduced. ⁇ Eighth Embodiment>
  • control unit 101 of the air conditioner 100 executes various processes, but other devices may execute the above processes.
  • the server 300 illustrated in FIG. 9 acquires necessary information from the air conditioner 100, the electric device 200, and other devices, corrects the set time and the set temperature of the timer, and controls the air conditioner 100. Good. That is, in the present embodiment, the network system 1 including the air conditioner 100, the electric device 200, the server 300, and the like is realized.
  • the server 300 includes a CPU 310, a memory 320, an operation unit 340, and a communication interface 360 as main components.
  • the CPU 310 controls each unit of the server 300 by executing a program stored in the memory 320.
  • the memory 320 is realized by various types of RAM, various types of ROM, and the like, and may be included in the server 300, removable from various interfaces of the server 300, or the server 300. It may be a recording medium of another device accessible from.
  • the memory 320 stores a program executed by the CPU 310, data generated by execution of the program by the CPU 310, input data, and a database used for other processes and services according to the present embodiment.
  • the operation unit 340 receives a command from a service administrator or the like and inputs the command to the CPU 310.
  • the communication interface 360 transmits data from the CPU 310 to other devices such as the air conditioner 100, the electric device 200, and other servers via the Internet, carrier network, router 400, and the like. Conversely, the communication interface 360 receives data from another device via the Internet, a carrier network, a router, etc., and transfers it to the CPU 310.
  • the CPU 310 acquires the timer command accepted by the target air conditioner 100 this time via the communication interface 360 (step S302).
  • the timer command includes the timer set time, operation mode, set temperature, and the like.
  • the CPU 310 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order for the air conditioner 100 to operate efficiently, based on the timer setting time, room temperature, and outside temperature. Yes (step S303).
  • the CPU 310 specifies the number of people around the air conditioner 100 by acquiring the detection result from the air conditioner 100 via the communication interface 360 (step S304). Note that, as in the first embodiment, the CPU 310 may perform timer operation control based on the presence or absence of a person around the air conditioner 100.
  • the CPU 310 corrects the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like based on the number of people around the air conditioner 100 (step S306).
  • CPU 310 causes air conditioner 100 to execute a timer command via communication interface 360 (step S312).
  • the server 300 may provide the corrected timer set time to the air conditioner 100, and cause the air conditioner 100 to determine whether the timer set time has been reached.
  • an air conditioner including a heating operation mechanism and a control unit.
  • the control unit delays the start time of the heating operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
  • an air conditioner including a cooling operation mechanism and a control unit.
  • the controller accelerates the start time of the cooling operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
  • an air conditioner including a heating operation mechanism and a control unit.
  • the control unit delays the start time of the heating operation by the timer when there are devices in operation around the air conditioner or when there are many devices in operation around the air conditioner.
  • an air conditioner including a cooling operation mechanism and a control unit.
  • the control unit accelerates the start time of the cooling operation by the timer when there are devices in operation around the air conditioner or when there are many devices in operation around the air conditioner.
  • an air conditioner including a thermo sensor, a heating operation mechanism, and a control unit is provided.
  • the control unit delays the start time of the heating operation by the timer when the amount of heat around the air conditioner by the thermosensor is large.
  • an air conditioner including a thermo sensor, a cooling operation mechanism, and a control unit is provided.
  • the control unit accelerates the start time of the cooling operation by the timer when the amount of heat around the air conditioner by the thermosensor is large.
  • the communication interface for communicating with the air conditioner and the information from the air conditioner via the communication interface are used when there is a person around the air conditioner or when the air conditioner is used.
  • a server including a processor for delaying the start time of the heating operation by the timer of the air conditioner when the number of people around the machine is large.
  • the communication interface for communicating with the air conditioner and the information from the air conditioner via the communication interface are used when there is a person around the air conditioner or when the air conditioner is used.
  • a server including a processor for accelerating the start time of the cooling operation by the timer of the air conditioner when the number of people around the machine is large.
  • the communication interface for communicating with the air conditioner, the electric device, and other devices, and the operation around the air conditioner based on the information from the air conditioner via the communication interface.
  • a server for delaying the start time of the heating operation by the timer of the air conditioner is provided when there is a device inside or when there are many devices operating around the air conditioner.
  • the communication interface for communicating with the air conditioner and the operation around the air conditioner are performed based on the information from the air conditioner, the electric device, and other devices via the communication interface.
  • a server including a processor for accelerating the start time of the cooling operation by the timer of the air conditioner when there is a device in the air conditioner or when there are many devices in operation around the air conditioner.
  • the amount of heat around the air conditioner is based on the communication interface for communicating with the air conditioner, the electric device, and other devices, and the information from the air conditioner via the communication interface.
  • a server including a processor for delaying the start time of the heating operation by the timer when there is a lot of power consumption.
  • the amount of heat around the air conditioner is based on the communication interface for communicating with the air conditioner and the information from the air conditioner, the electric device, and other devices via the communication interface.
  • a server including a processor for accelerating the start time of the cooling operation by the timer when there is a lot of power consumption.
  • the heating operation mechanism and the control unit are provided, and the control unit lowers the rotation speed of the compressor when a person is around the air conditioner than when there is no person.
  • An air conditioner for heating operation is provided.
  • the heating operation mechanism and the control unit are provided, and the control unit performs the heating operation by lowering the rotation speed of the compressor as the number of people around the air conditioner increases. Machine is provided.
  • the cooling operation mechanism and the control unit are provided, and the control unit increases the rotation speed of the compressor when a person is around the air conditioner as compared with when there is no person.
  • An air conditioner that performs cooling operation is provided.
  • the cooling operation mechanism and the control unit are provided, and the control unit performs the cooling operation by increasing the rotation speed of the compressor as the number of people around the air conditioner increases. Machine is provided.
  • the heating operation mechanism and the control unit are provided, and the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation.
  • the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation.
  • an air conditioner in which the number of rotations is reduced to perform heating operation.
  • the cooling operation mechanism and the control unit are provided, and the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation.
  • the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation.
  • an air conditioner that performs a cooling operation by increasing the rotation speed of the air conditioner.
  • thermo sensor a thermo sensor, a heating operation mechanism, and a control unit are provided, and the control unit controls the rotation speed of the compressor as the amount of heat around the air conditioner detected by the thermo sensor increases.
  • An air conditioner that reduces heating operation is provided.
  • thermosensor the thermosensor, the cooling operation mechanism, and the control unit are provided, and the control unit has a compressor during the cooling operation as the amount of heat around the air conditioner detected by the thermosensor increases.
  • air conditioner that performs cooling operation by increasing the rotation speed of the air conditioner.
  • the communication interface for communicating with the air conditioner and the air conditioner when a person is around the air conditioner based on the information from the air conditioner via the communication interface.
  • a server is provided, which comprises a processor for causing the machine to perform a heating operation at a lower rotation speed of the compressor than when there is no person.
  • the communication interface for communicating with the air conditioner, and the air conditioner increases as the number of people around the air conditioner increases based on the information from the air conditioner via the communication interface.
  • a server is provided, which comprises a processor for reducing the rotation speed of a compressor to perform heating operation.
  • the communication interface for communicating with the air conditioner and the air conditioner when a person is around the air conditioner based on the information from the air conditioner via the communication interface.
  • a server is provided, which comprises a processor for causing the compressor to perform a cooling operation by increasing the rotation speed of the compressor more than when there is no person.
  • the communication interface for communicating with the air conditioner, and the air conditioner increases as the number of people around the air conditioner increases based on the information from the air conditioner via the communication interface.
  • a server is provided, which includes a processor for increasing a rotation speed of a compressor to perform a cooling operation.
  • the communication interface for communicating with the air conditioner, the electric device, and other devices, and the surroundings of the air conditioner based on the information from the air conditioner via the communication interface.
  • a server includes a processor for causing an air conditioner to perform a heating operation at a lower rotation speed of a compressor when a device is in operation than when there is no device in operation.
  • the communication interface for communicating with the air conditioner, the electric device, and other devices, and the surroundings of the air conditioner based on the information from the air conditioner via the communication interface.
  • a server includes a processor for causing an air conditioner to perform a cooling operation by increasing the rotation speed of a compressor when there is a device in operation as compared with when there is no device in operation.
  • the communication interface for communicating with the air conditioner, the electric device, and the other device, and the air conditioner, the air conditioner based on the information from the air conditioner via the communication interface.
  • a server including: a processor configured to perform a heating operation by reducing the rotation speed of the compressor as the amount of heat around the conditioner increases.
  • the communication interface for communicating with the air conditioner, the electric device, and the other device, and the air conditioner, the air conditioner based on the information from the air conditioner via the communication interface.
  • a server including: a processor for increasing the rotation speed of the compressor to perform a cooling operation as the amount of heat around the conditioner increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner (100) is provided with a space heating operation mechanism, and a control unit (101). The control unit (101) delays a start time of a space heating operation by a timer if there is a person near the air conditioner (100), or if there are a large number of people around the air conditioner (100).

Description

空気調和機およびサーバAir conditioner and server
 本発明は、空気調和機の技術に関する。 The present invention relates to air conditioner technology.
 効率的に空気調和機を運転するための技術が開示されている。たとえば、特開2013-238369号公報(特許文献1)には、空気調和機が開示されている。特許文献1によると、温度検出部は、空調運転停止後に一定時間、室温をモニタリングし、情報部は、一定時間における室温の変化速度を算出して、室温の変化速度が小さいとき、断熱性能の高い室内環境であると判断し、室温の変化速度が大きいとき、断熱性能の低い室内環境であると判断して、判断結果から室内情報を生成する。運転制御部は、室内情報に基づいて、予約運転の運転開始時間を決める。断熱性能の低い室内環境における運転開始時間は断熱性能の高い室内環境における運転開始時間よりも早くなる。 ◇Technology for operating an air conditioner efficiently is disclosed. For example, Japanese Patent Laying-Open No. 2013-238369 (Patent Document 1) discloses an air conditioner. According to Patent Document 1, the temperature detection unit monitors the room temperature for a certain period of time after the air conditioning operation is stopped, and the information unit calculates the change rate of the room temperature during the certain period of time, and when the change rate of the room temperature is small, the heat insulation performance It is determined that the indoor environment is high, and when the rate of change in room temperature is high, it is determined that the indoor environment has low heat insulation performance, and indoor information is generated from the determination result. The driving control unit determines the driving start time of the reserved driving based on the indoor information. The operation start time in an indoor environment with low heat insulation performance is earlier than the operation start time in an indoor environment with high heat insulation performance.
 また、特開平11-94327号公報(特許文献2)には、空気調和機の制御装置が開示されている。特開平11-94327号公報(特許文献2)によると、室内機からの情報により室内熱負荷を予測する室内熱負荷予測手段を設け、室内熱負荷をニューラルネットワークにより予測し、この室内熱負荷予測手段に基づき制御目標を決定する制御目標決定手段と、制御量を決定する制御量演算手段を設け、圧縮機および電動膨張弁等のアクチュエーターを制御する構成としたため、室内の温度変化と経過時間により室内熱負荷を予測し、運転した結果より予測精度が向上するように学習記憶するため、立ち上がり性能が良く、室内温度が安定した快適な空調の制御が得られる。 Further, JP-A-11-94327 (Patent Document 2) discloses a control device for an air conditioner. According to Japanese Patent Laid-Open No. 11-94327 (Patent Document 2), an indoor heat load predicting unit that predicts an indoor heat load based on information from an indoor unit is provided, the indoor heat load is predicted by a neural network, and the indoor heat load is predicted. The control target determining means for determining the control target based on the means and the control amount calculating means for determining the control amount are provided to control the actuators such as the compressor and the electric expansion valve. The indoor heat load is predicted, and learning and storage is performed so that the prediction accuracy is improved based on the result of driving. Therefore, it is possible to obtain comfortable air-conditioning control with good startup performance and stable indoor temperature.
特開2013-238369号公報JP, 2013-238369, A 特開平11-94327号公報Japanese Patent Laid-Open No. 11-94327
 本発明の目的は、従来よりも効率的に空気調和機を運転するための技術を提供することにある。 An object of the present invention is to provide a technique for operating an air conditioner more efficiently than before.
 この発明のある態様に従うと、空気調和機が提供される。空気調和機は、暖房運転機構と、制御部と、を備える。制御部は、空気調和機の周囲に人がいるとき、または空気調和機の周囲の人数が多いとき、タイマーによる暖房運転の開始時間を遅くする。 According to an aspect of the present invention, an air conditioner is provided. The air conditioner includes a heating operation mechanism and a control unit. The control unit delays the start time of the heating operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
 以上のように、この発明によれば、従来よりも効率的に空気調和機を運転するための技術が提供される。 As described above, according to the present invention, a technique for operating an air conditioner more efficiently than before is provided.
第1の実施の形態にかかる空気調和機の概略構成図である。なお、本図では、四路切換弁が冷房運転状態となっている。It is a schematic structure figure of the air harmony machine concerning a 1st embodiment. In this figure, the four-way switching valve is in the cooling operation state. 第1の実施の形態にかかる空気調和機の概略構成図である。なお、本図では、四路切換弁が暖房運転状態となっている。It is a schematic structure figure of the air harmony machine concerning a 1st embodiment. In this figure, the four-way switching valve is in the heating operation state. 第1の実施の形態にかかる空気調和機の機能構成を表わす機能ブロック図である。It is a functional block diagram showing the functional composition of the air harmony machine concerning a 1st embodiment. 第1の実施の形態にかかる制御部101におけるタイマー運転処理を示すフローチャートである。5 is a flowchart showing a timer operation process in the control unit 101 according to the first embodiment. 第4の実施の形態にかかる空気調和機の第1の機能構成を表わす機能ブロック図である。It is a functional block diagram showing the 1st functional composition of the air harmony machine concerning a 4th embodiment. 第4の実施の形態にかかる空気調和機の第2の機能構成を表わす機能ブロック図である。It is a functional block diagram showing the 2nd functional composition of the air harmony machine concerning a 4th embodiment. 第5の実施の形態にかかる補正データ121を示すイメージ図である。It is an image figure which shows the correction data 121 concerning 5th Embodiment. 第5の実施の形態にかかる制御部101におけるタイマー運転処理を示すフローチャートである。It is a flow chart which shows timer operation processing in control part 101 concerning a 5th embodiment. 第6の実施の形態にかかるネットワークシステム1の全体構成を示すイメージ図である。It is an image figure showing the whole network system 1 composition concerning a 6th embodiment. 第8の実施の形態にかかるサーバ300の構成を示すブロック図である。It is a block diagram which shows the structure of the server 300 concerning 8th Embodiment. 第8の実施の形態にかかるサーバ300のCPU310によるタイマー関連処理を示すフローチャートである。It is a flow chart which shows timer related processing by CPU310 of server 300 concerning an 8th embodiment. 第3の実施の形態にかかる制御部101におけるタイマー運転処理を示すフローチャートである。It is a flowchart which shows the timer driving process in the control part 101 concerning 3rd Embodiment.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <第1の実施の形態>
 <空気調和機の全体構成>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
<First Embodiment>
<Overall structure of air conditioner>
 まず、本実施の形態にかかる空気調和機100の全体構成と基本的な動作概要とについて説明する。なお、図1は、第1の実施の形態にかかる空気調和機100の冷房運転時および除霜運転時の概略構成図である。また、図2は、第1の実施の形態にかかる空気調和機100の暖房運転時の概略構成図である。 First, the overall configuration and the basic operation outline of the air conditioner 100 according to this embodiment will be described. 1. FIG. 1 is a schematic configuration diagram of the air conditioner 100 according to the first embodiment during a cooling operation and a defrosting operation. FIG. 2 is a schematic configuration diagram of the air conditioner 100 according to the first embodiment during heating operation.
 図1および図2を参照して、本実施の形態にかかる空気調和機100は、セパレート式の空気調和機であって、主に、室外機10、室内機30およびリモートコントローラ50から構成されている。なお、空気調和機100は、室内機30と室外機10とが冷媒配管17および18を介して接続されることによって構成されている。以下、室外機10、室内機30、リモートコントローラ50、冷媒配管17および18について詳述する。 With reference to FIG. 1 and FIG. 2, an air conditioner 100 according to the present embodiment is a separate air conditioner, and mainly includes an outdoor unit 10, an indoor unit 30, and a remote controller 50. There is. The air conditioner 100 is configured by connecting the indoor unit 30 and the outdoor unit 10 via refrigerant pipes 17 and 18. Hereinafter, the outdoor unit 10, the indoor unit 30, the remote controller 50, and the refrigerant pipes 17 and 18 will be described in detail.
 (1)室外機
 室外機10は、主に、筐体11、圧縮機12、四路切換弁13、室外熱交換器14、膨張弁15、室外送風機16、冷媒配管17、冷媒配管18、二方弁19、三方弁20、室外熱交換器温度センサ21、吐出温度センサ22、吸入温度センサ23、出口温度センサ24、外気温度センサ25および室外制御部29から構成されている。なお、この室外機10は、屋外に設置されている。
(1) Outdoor unit The outdoor unit 10 is mainly composed of a housing 11, a compressor 12, a four-way switching valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, a refrigerant pipe 17, a refrigerant pipe 18, and a two. It includes a one-way valve 19, a three-way valve 20, an outdoor heat exchanger temperature sensor 21, a discharge temperature sensor 22, an intake temperature sensor 23, an outlet temperature sensor 24, an outside air temperature sensor 25, and an outdoor controller 29. The outdoor unit 10 is installed outdoors.
 筐体11には、圧縮機12、四路切換弁13、室外熱交換器14、膨張弁15、室外送風機16、冷媒配管17、冷媒配管18、二方弁19、三方弁20、温度センサ21~25および室外制御部29等が収納されている。 The casing 11, the compressor 12, the four-way switching valve 13, the outdoor heat exchanger 14, the expansion valve 15, the outdoor blower 16, the refrigerant pipe 17, the refrigerant pipe 18, the two-way valve 19, the three-way valve 20, the temperature sensor 21. 25 to 25 and an outdoor control unit 29 are stored.
 圧縮機12は、吐出管12aおよび吸入管12bを有している。吐出管12aおよび吸入管12bは、それぞれ、四路切換弁13の異なる接続口に接続されている。また、圧縮機12は、通信線を介して室外制御部29に通信接続されており、室外制御部29から送信される制御信号に従って動作する。圧縮機12は、運転時、吸入管12bから低圧の冷媒ガスを吸入し、その冷媒ガスを圧縮して高圧の冷媒ガスを生成した後、その高圧の冷媒ガスを吐出管12aから吐出する。なお、本実施の形態において、この圧縮機12の制御形式は、特に限定されず、定速式の圧縮機であってもよいし、インバータ式の圧縮機であってもよい。 The compressor 12 has a discharge pipe 12a and a suction pipe 12b. The discharge pipe 12a and the suction pipe 12b are connected to different connection ports of the four-way switching valve 13, respectively. Further, the compressor 12 is communicatively connected to the outdoor control unit 29 via a communication line, and operates according to a control signal transmitted from the outdoor control unit 29. During operation, the compressor 12 sucks low-pressure refrigerant gas from the suction pipe 12b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 12a. In the present embodiment, the control form of the compressor 12 is not particularly limited, and may be a constant speed type compressor or an inverter type compressor.
 四路切換弁13は、冷媒配管を介して圧縮機12の吐出管12aおよび吸入管12b、室外熱交換器14ならびに室内熱交換器32に接続されている。そして、この四路切換弁13は、通信線を介して室外制御部29に通信接続されており、室外制御部29から送信される制御信号に従って動作する。これによって、四路切換弁13は、運転時、室外制御部29から送信される制御信号に従って、圧縮機12の吐出管12aを室外熱交換器14に連結させると共に圧縮機12の吸入管12bを室内熱交換器32に連結させる冷房運転状態(図1参照)と、圧縮機12の吐出管12aを室内熱交換器32に連結させると共に圧縮機12の吸入管12bを室外熱交換器14に連結させる暖房運転状態(図2参照)とを切り換える。 The four-way switching valve 13 is connected to the discharge pipe 12a and the suction pipe 12b of the compressor 12, the outdoor heat exchanger 14 and the indoor heat exchanger 32 via a refrigerant pipe. The four-way switching valve 13 is communicatively connected to the outdoor control unit 29 via a communication line and operates according to a control signal transmitted from the outdoor control unit 29. As a result, the four-way switching valve 13 connects the discharge pipe 12a of the compressor 12 to the outdoor heat exchanger 14 and operates the suction pipe 12b of the compressor 12 according to the control signal transmitted from the outdoor control unit 29 during operation. When the cooling operation state is connected to the indoor heat exchanger 32 (see FIG. 1), the discharge pipe 12a of the compressor 12 is connected to the indoor heat exchanger 32, and the suction pipe 12b of the compressor 12 is connected to the outdoor heat exchanger 14. The heating operation state (see FIG. 2) is switched.
 室外熱交換器14は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたもの(フィン&チューブ型)であって、冷房運転時(図1参照)には凝縮器として機能し、暖房運転時(図2参照)には蒸発器として機能する。なお、熱交換器としてパラレルフロー型熱交換器やサーペン型熱交換器を用いてもよい。 The outdoor heat exchanger 14 is a fin and tube type in which a large number of heat radiating fins (not shown) are attached to heat transfer tubes (not shown) bent back and forth at both left and right ends, and is used during cooling operation. It functions as a condenser (see FIG. 1) and an evaporator during heating operation (see FIG. 2). A parallel flow type heat exchanger or a serpent type heat exchanger may be used as the heat exchanger.
 膨張弁15は、ステッピングモータを介して開度制御が可能な電子膨張弁であって、一方が冷媒配管17を介して二方弁19に接続されると共に、他方が室外熱交換器14に接続されている。また、この膨張弁15のステッピングモータは、通信線を介して室外制御部29に通信接続されており、室外制御部29から送信される制御信号に従って動作する。膨張弁15は、運転時において、凝縮器(冷房時は室外熱交換器14であり、暖房時は室内熱交換器32である)から流出する高温高圧の液冷媒を蒸発しやすい状態に減圧すると共に、蒸発器(冷房時は室内熱交換器32であり、暖房時は室外熱交換器14である)への冷媒供給量を調節する役目を担っている。 The expansion valve 15 is an electronic expansion valve whose opening degree can be controlled via a stepping motor, one of which is connected to the two-way valve 19 via a refrigerant pipe 17 and the other of which is connected to the outdoor heat exchanger 14. Has been done. The stepping motor of the expansion valve 15 is communicatively connected to the outdoor control unit 29 via a communication line and operates according to a control signal transmitted from the outdoor control unit 29. The expansion valve 15 reduces the high-temperature and high-pressure liquid refrigerant flowing out of the condenser (the outdoor heat exchanger 14 during cooling and the indoor heat exchanger 32 during heating) to a state in which it easily evaporates during operation. At the same time, it plays the role of adjusting the amount of refrigerant supplied to the evaporator (the indoor heat exchanger 32 during cooling and the outdoor heat exchanger 14 during heating).
 室外送風機16は、主に、プロペラファンおよびモータから構成されている。プロペラファンは、モータによって回転駆動され、屋外の外気を室外熱交換器14に供給する。モータは、通信線を介して室外制御部29に通信接続されており、室外制御部29から送信される制御信号に従って動作する。 The outdoor blower 16 is mainly composed of a propeller fan and a motor. The propeller fan is rotationally driven by a motor to supply outdoor air to the outdoor heat exchanger 14. The motor is communicatively connected to the outdoor control unit 29 via a communication line, and operates according to a control signal transmitted from the outdoor control unit 29.
 二方弁19は、冷媒配管17に配設されている。なお、二方弁19は、室外機10から冷媒配管17が取り外されるときに閉じられ、冷媒が室外機10から外部に漏れることを防ぐ。 The two-way valve 19 is arranged in the refrigerant pipe 17. The two-way valve 19 is closed when the refrigerant pipe 17 is removed from the outdoor unit 10, and prevents the refrigerant from leaking from the outdoor unit 10 to the outside.
 三方弁20は、冷媒配管18に配設されている。なお、三方弁20は、室外機10から冷媒配管18が取り外されるときに閉じられ、冷媒が室外機10から外部に漏れることを防ぐ。また、室外機10から、あるいは室内機30を含めた冷凍サイクル全体から、冷媒を回収する必要があるときは、三方弁20を通じて冷媒の回収が行われる。 The three-way valve 20 is arranged in the refrigerant pipe 18. The three-way valve 20 is closed when the refrigerant pipe 18 is removed from the outdoor unit 10, and prevents the refrigerant from leaking from the outdoor unit 10 to the outside. When the refrigerant needs to be recovered from the outdoor unit 10 or the entire refrigeration cycle including the indoor unit 30, the refrigerant is recovered through the three-way valve 20.
 室外熱交換器温度センサ21は室外熱交換器14に配置されており、吐出温度センサ22は圧縮機12の吐出管12aに配置されており、吸入温度センサ23は圧縮機12の吸入管12bに配置されており、出口温度センサ24は室外熱交換器14の出口付近の冷媒配管17に配置されており、外気温度センサ25は外気温度測定用であって筐体11の内部の所定箇所に配置されている。これらの温度センサ21~25は、全て、通信線を介して室外制御部29に通信接続されており、計測された温度に関する情報を室外制御部29に送信している。 The outdoor heat exchanger temperature sensor 21 is arranged in the outdoor heat exchanger 14, the discharge temperature sensor 22 is arranged in the discharge pipe 12a of the compressor 12, and the suction temperature sensor 23 is arranged in the suction pipe 12b of the compressor 12. The outlet temperature sensor 24 is arranged in the refrigerant pipe 17 near the outlet of the outdoor heat exchanger 14, and the outside air temperature sensor 25 is for measuring the outside air temperature and is arranged at a predetermined position inside the housing 11. Has been done. All of these temperature sensors 21 to 25 are communicatively connected to the outdoor control unit 29 via a communication line, and transmit information regarding the measured temperature to the outdoor control unit 29.
 室外制御部29は、通信線を介して圧縮機12、四路切換弁13、膨張弁15、室外送風機16および温度センサ21~25に通信接続されている。たとえば、室外制御部29のプロセッサは、随時、温度センサ21~25の出力情報や、メモリに記憶される種々の制御パラメータ等を演算処理して適切な制御パラメータを導出し、その制御パラメータを、圧縮機12や、四路切換弁13、膨張弁15、室外送風機16に送信する。また、プロセッサは、必要に応じて、制御パラメータ等を室内制御部35に送信したり、受信したりする。 The outdoor control unit 29 is communicatively connected to the compressor 12, the four-way switching valve 13, the expansion valve 15, the outdoor blower 16 and the temperature sensors 21 to 25 via a communication line. For example, the processor of the outdoor control unit 29 performs arithmetic processing on output information of the temperature sensors 21 to 25 and various control parameters stored in the memory at any time to derive appropriate control parameters, and the control parameters are It is transmitted to the compressor 12, the four-way switching valve 13, the expansion valve 15, and the outdoor blower 16. In addition, the processor transmits or receives control parameters and the like to the indoor control unit 35 as needed.
 (2)室内機
 室内機30は、主に、筐体31、室内熱交換器32、室内送風機33、フラップ36、室内熱交換器温度センサ34、室内温度センサ37、室内制御部35、赤外線受光部38、人感センサ39から構成されている。なお、この室内機30は、一般的に室内の壁面に設置されている。
(2) Indoor unit The indoor unit 30 mainly includes a housing 31, an indoor heat exchanger 32, an indoor blower 33, a flap 36, an indoor heat exchanger temperature sensor 34, an indoor temperature sensor 37, an indoor control unit 35, and infrared light reception. The unit 38 and the motion sensor 39 are included. The indoor unit 30 is generally installed on the wall surface in the room.
 筐体31には、室内熱交換器32、室内送風機33、室内熱交換器温度センサ34、室内温度センサ37および室内制御部35等が収納されている。フラップ36は、筐体31の一部を構成している。 The housing 31 houses an indoor heat exchanger 32, an indoor blower 33, an indoor heat exchanger temperature sensor 34, an indoor temperature sensor 37, an indoor control unit 35, and the like. The flap 36 constitutes a part of the housing 31.
 室内熱交換器32は、3個の熱交換器32A、32B、32Cを、室内送風機33を覆う屋根のように組み合わせたものである。なお、各熱交換器32A、32B、32Cは、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものであって、冷房運転時(図1参照)には蒸発器として機能し、暖房運転時(図2参照)には凝縮器として機能する。 The indoor heat exchanger 32 is a combination of three heat exchangers 32A, 32B and 32C like a roof covering the indoor blower 33. Each of the heat exchangers 32A, 32B, and 32C is a heat transfer tube (not shown) bent back and forth at a plurality of left and right ends, and a large number of heat radiation fins (not shown) are attached to the heat exchanger 32A, 32B, and 32C. It functions as an evaporator (see FIG. 1) and as a condenser during heating operation (see FIG. 2).
 室内送風機33は、主に、クロスフローファンおよびモータから構成されている。クロスフローファンは、モータによって回転駆動され、室内の空気を筐体31に吸い込んで室内熱交換器32に供給すると共に、室内熱交換器32で熱交換された空気を室内に送出する。モータは、通信線を介して室内制御部35に通信接続されており、室内制御部35から送信される制御信号に従って動作する。 The indoor blower 33 is mainly composed of a cross flow fan and a motor. The cross flow fan is rotationally driven by a motor, sucks the indoor air into the housing 31 and supplies the indoor air to the indoor heat exchanger 32, and sends the air that has been heat-exchanged by the indoor heat exchanger 32 into the room. The motor is communicatively connected to the indoor control unit 35 via a communication line, and operates according to a control signal transmitted from the indoor control unit 35.
 フラップ36は、風向板およびモータから構成されている。フラップは、モータによって回動され、クロスフローファンによって室内に送出される空気の送出方向を調節する。モータは、通信線を介して室内制御部35に通信接続されており、室内制御部35から送信される制御信号に従って動作する。 The flap 36 is composed of a wind direction plate and a motor. The flap is rotated by a motor and adjusts a delivery direction of air delivered to the room by a cross flow fan. The motor is communicatively connected to the indoor control unit 35 via a communication line, and operates according to a control signal transmitted from the indoor control unit 35.
 室内熱交換器温度センサ34は室内熱交換器32に配置されており、室内温度センサ37は、室内温度を測定するものであって筐体31内の吸込口付近に配置されている。温度センサ34,37は、通信線を介して室内制御部35に通信接続されており、計測された温度に関する情報を室内制御部35に送信している。 The indoor heat exchanger temperature sensor 34 is arranged in the indoor heat exchanger 32, and the indoor temperature sensor 37 measures the indoor temperature and is arranged in the housing 31 near the suction port. The temperature sensors 34 and 37 are communicatively connected to the indoor control unit 35 via a communication line, and send information on the measured temperature to the indoor control unit 35.
 室内制御部35は、通信線を介して室内送風機33、フラップ36および温度センサ34,37に通信接続されている。室内制御部35のプロセッサは、随時、リモートコントローラ50からの制御信号や、温度センサ34,37の出力情報等を演算処理して適切な制御パラメータを導出し、その制御パラメータ等を、室内送風機33や、フラップ36に送信する。また、プロセッサは、必要に応じて、制御パラメータ等を室外制御部29に送信したり、制御パラメータ等を室外制御部29から受信したりする。 The indoor control unit 35 is communicatively connected to the indoor blower 33, the flap 36, and the temperature sensors 34 and 37 via a communication line. The processor of the indoor control unit 35 performs arithmetic processing on the control signal from the remote controller 50, the output information of the temperature sensors 34 and 37, and the like to derive appropriate control parameters at any time, and outputs the control parameters and the like to the indoor blower 33. Or to the flap 36. In addition, the processor transmits control parameters and the like to the outdoor control unit 29 and receives control parameters and the like from the outdoor control unit 29 as necessary.
 赤外線受光部38は、リモートコントローラ50から発生される点滅赤外線を受光するものである。この赤外線受光部38は、点滅赤外線を信号化処理し、生成した信号を室内制御部35に受け渡す。 The infrared light receiving unit 38 receives blinking infrared light generated from the remote controller 50. The infrared light receiving unit 38 processes the blinking infrared light into a signal and transfers the generated signal to the indoor control unit 35.
 人感センサ39は、赤外線などを利用して空気調和機100の周囲に人がいるか否かを検知して、検知結果を室内制御部35に受け渡す。 The human sensor 39 detects whether or not there is a person around the air conditioner 100 using infrared rays or the like, and transfers the detection result to the indoor control unit 35.
 なお、室外機10の圧縮機12、四路切換弁13、室外熱交換器14および膨張弁15、ならびに室内機30の室内熱交換器32は、冷媒配管17,18によって順次接続され、冷媒回路を構成している。本実施の形態において、この冷媒回路、室外送風機16、室内送風機33およびフラップ36を併せて空気調和機構と称し、図1および図2中において符号2で示す。 The compressor 12, the four-way switching valve 13, the outdoor heat exchanger 14 and the expansion valve 15 of the outdoor unit 10, and the indoor heat exchanger 32 of the indoor unit 30 are sequentially connected by the refrigerant pipes 17 and 18, and the refrigerant circuit Is composed of. In the present embodiment, the refrigerant circuit, the outdoor blower 16, the indoor blower 33, and the flap 36 are collectively referred to as an air conditioning mechanism, which is indicated by reference numeral 2 in FIGS. 1 and 2.
 (3)リモートコントローラ
 リモートコントローラ50は、点滅赤外線を利用してユーザの様々な指令を室内機30の室内制御部35に伝達するためのものであって、主に、赤外線発光部、表示パネル、運転停止ボタン、モード切換ボタン、温度上昇ボタン、温度下降ボタン、風量上昇ボタン、風量下降ボタン、風向調節ボタン、自動運転ボタン等から構成されている。
(3) Remote Controller The remote controller 50 is for transmitting various commands of the user to the indoor control unit 35 of the indoor unit 30 by using blinking infrared rays, and mainly includes an infrared light emitting unit, a display panel, It is composed of an operation stop button, a mode switching button, a temperature increasing button, a temperature decreasing button, an air volume increasing button, an air volume decreasing button, an air direction adjusting button, an automatic operation button and the like.
 (4)冷媒配管
 冷媒配管17は、冷媒配管18よりも細い管であって、冷房運転時および除霜運転時に液冷媒が流れる。冷媒配管18は、冷媒配管17よりも太い管であって、冷房運転時にガス冷媒が流れる。なお、冷媒としては、例えば、HFC系のR410AやR32等が用いられる。
(4) Refrigerant Pipe The refrigerant pipe 17 is a pipe thinner than the refrigerant pipe 18, and the liquid refrigerant flows during the cooling operation and the defrosting operation. The refrigerant pipe 18 is thicker than the refrigerant pipe 17, and the gas refrigerant flows during the cooling operation. As the refrigerant, for example, HFC-based R410A, R32, or the like is used.
 <空気調和機の基本的な動作>
 以下、本実施の形態にかかる空気調和機100の冷房運転機構、暖房運転機構、および除霜運転機構について詳述する。
<Basic operation of the air conditioner>
Hereinafter, the cooling operation mechanism, the heating operation mechanism, and the defrosting operation mechanism of the air conditioner 100 according to the present embodiment will be described in detail.
 (1)冷房運転機構
 冷房運転では、四路切換弁13が図1に示される状態、すなわち、圧縮機12の吐出管12aが室外熱交換器14に接続され、かつ、圧縮機12の吸入管12bが室内熱交換器32に接続された状態となる。また、このとき、二方弁19および三方弁20は開状態とされている。この状態で、圧縮機12が起動されると、ガス冷媒が、圧縮機12に吸入され、圧縮された後、四路切換弁13を経由して室外熱交換器14に送られ、室外熱交換器14において冷却され、液冷媒となる。その後、この液冷媒は、膨張弁15に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、二方弁19を経由して室内熱交換器32に供給され、室内空気を冷却するとともに蒸発されてガス冷媒となる。最後に、そのガス冷媒は、三方弁20および四路切換弁13を経由して、再び、圧縮機12に吸入される。このようにして、本実施の形態にかかる空気調和機100は、冷房運転機構すなわち冷房運転サイクルを有する。
(1) Cooling Operation Mechanism In the cooling operation, the four-way switching valve 13 is in the state shown in FIG. 1, that is, the discharge pipe 12a of the compressor 12 is connected to the outdoor heat exchanger 14, and the suction pipe of the compressor 12 is also connected. 12b is connected to the indoor heat exchanger 32. At this time, the two-way valve 19 and the three-way valve 20 are open. When the compressor 12 is started in this state, the gas refrigerant is sucked into the compressor 12, compressed, and then sent to the outdoor heat exchanger 14 via the four-way switching valve 13 to perform the outdoor heat exchange. It is cooled in the container 14 and becomes liquid refrigerant. Thereafter, this liquid refrigerant is sent to the expansion valve 15 and is decompressed to be in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 32 via the two-way valve 19, cools the indoor air, and is evaporated to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 12 again via the three-way valve 20 and the four-way switching valve 13. In this way, the air conditioner 100 according to the present embodiment has the cooling operation mechanism, that is, the cooling operation cycle.
 (2)暖房運転機構
 暖房運転では、四路切換弁13が図2に示される状態、すなわち、圧縮機12の吐出管12aが室内熱交換器32に接続され、かつ、圧縮機12の吸入管12bが室外熱交換器14に接続された状態となる。また、このとき、二方弁19および三方弁20は開状態とされている。この状態で、圧縮機12が起動されると、ガス冷媒が、圧縮機12に吸入され、圧縮された後、四路切換弁13および三方弁20を経由して室内熱交換器32に供給され、室内空気を加熱すると共に凝縮されて液冷媒となる。その後、この液冷媒は、二方弁19を経由して膨張弁15に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、室外熱交換器14に送られて、室外熱交換器14において蒸発させられてガス冷媒となる。最後に、そのガス冷媒は、四路切換弁13を経由して、再び、圧縮機12に吸入される。このようにして、本実施の形態にかかる空気調和機100は、暖房運転機構すなわち暖房運転サイクルを有する。
(2) Heating operation mechanism In heating operation, the four-way switching valve 13 is in the state shown in FIG. 2, that is, the discharge pipe 12a of the compressor 12 is connected to the indoor heat exchanger 32, and the suction pipe of the compressor 12 is also connected. 12b is connected to the outdoor heat exchanger 14. At this time, the two-way valve 19 and the three-way valve 20 are open. When the compressor 12 is started in this state, the gas refrigerant is sucked into the compressor 12, compressed, and then supplied to the indoor heat exchanger 32 via the four-way switching valve 13 and the three-way valve 20. The indoor air is heated and condensed to become a liquid refrigerant. Then, this liquid refrigerant is sent to the expansion valve 15 via the two-way valve 19 and is decompressed to be in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 14 and evaporated in the outdoor heat exchanger 14 to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 12 again via the four-way switching valve 13. In this way, the air conditioner 100 according to the present embodiment has the heating operation mechanism, that is, the heating operation cycle.
 (3)除霜運転機構
 暖房運転時には、室外熱交換器14に霜が付き熱交換能力が落ちる場合がある。そこで、室外制御部29が、室外熱交換器用の温度センサ21からの温度に基づいて、室外熱交換器14に霜が付いたか否かを判定する。室外制御部29は、霜が付いたと判断した場合に、四路切換弁13を切り換えて上述の冷房運転を行なうことによって除霜する(リバース除霜)。なお、室外制御部29は、室外熱交換器用の温度センサ21からの温度に基づいて、適切に室外熱交換器14の霜が除かれたか否かを判定する。
 <空気調和機100の機能構成>
(3) Defrosting Operation Mechanism During the heating operation, the outdoor heat exchanger 14 may be frosted and the heat exchange capacity may be deteriorated. Therefore, the outdoor control unit 29 determines whether or not the outdoor heat exchanger 14 is frosted, based on the temperature from the temperature sensor 21 for the outdoor heat exchanger. When the outdoor control unit 29 determines that there is frost, the outdoor control unit 29 switches the four-way switching valve 13 to perform the above-described cooling operation to defrost (reverse defrosting). The outdoor control unit 29 determines whether or not the frost on the outdoor heat exchanger 14 has been appropriately removed, based on the temperature from the temperature sensor 21 for the outdoor heat exchanger.
<Functional configuration of the air conditioner 100>
 次に、図3を参照しながら、本実施の形態にかかる空気調和機100の機能構成について説明する。なお、図3は、第1の実施の形態にかかる空気調和機100の機能構成を表わす機能ブロック図である。 Next, the functional configuration of the air conditioner 100 according to the present embodiment will be described with reference to FIG. Note that FIG. 3 is a functional block diagram showing a functional configuration of the air conditioner 100 according to the first embodiment.
 まず、上述したように、空気調和機100は、室外制御部29と室内制御部35とを含む。以下では、説明のために、室外制御部29と室内制御部35とを合わせて制御部101という。なお、室外制御部29と室内制御部35とは、配線によって通信可能である。そして、制御部101が実行する処理は、基本的に、室外制御部29によって実行されてもよいし、室外制御部29によって実行されてもよい。 First, as described above, the air conditioner 100 includes the outdoor control unit 29 and the indoor control unit 35. Hereinafter, for the sake of explanation, the outdoor control unit 29 and the indoor control unit 35 are collectively referred to as the control unit 101. The outdoor control unit 29 and the indoor control unit 35 can communicate by wiring. The process executed by the control unit 101 may be basically executed by the outdoor control unit 29 or may be executed by the outdoor control unit 29.
 また、空気調和機100が室内制御部35を有さずに、制御部101のほとんど全ての機能が室外制御部29に搭載されてもよい。あるいは、空気調和機100が室外制御部29を有さずに、制御部101のほとんど全ての機能が室内制御部35に搭載されてもよい。 Further, the air conditioner 100 may not include the indoor control unit 35, and almost all the functions of the control unit 101 may be installed in the outdoor control unit 29. Alternatively, the air conditioner 100 may not include the outdoor control unit 29, and almost all the functions of the control unit 101 may be installed in the indoor control unit 35.
 制御部101は、例えば、各種演算処理を行なうためのプロセッサ110と、各種プログラムやデータを記憶するためのメモリ120と、時計130などを含む。プロセッサ110は、例えばCPU(Central Processing Unit)により構成される。プロセッサ110は、メモリ120内に格納されたプログラムに従って各種の処理を実行する。 The control unit 101 includes, for example, a processor 110 for performing various arithmetic processes, a memory 120 for storing various programs and data, a clock 130, and the like. The processor 110 is composed of, for example, a CPU (Central Processing Unit). The processor 110 executes various processes according to the programs stored in the memory 120.
 たとえば、プロセッサ110は、メモリ120に記憶される制御プログラムに基づいて、温度センサ21~25,34,37や赤外線受光部38や人感センサ39などからの取得した情報に基づいて、圧縮機12や送風機16,33や膨張弁15などを制御する。 For example, the processor 110, based on the control program stored in the memory 120, based on the information acquired from the temperature sensors 21 to 25, 34, 37, the infrared light receiving section 38, the human sensor 39, etc. It controls the blowers 16, 33, the expansion valve 15, and the like.
 特に、本実施の形態においては、プロセッサ110は、リモートコントローラ50やスマートフォンの機器制御アプリケーションなどを介して入力されるユーザ命令に従って、メモリ120にタイマー設定時刻や暖房運転や冷房運転の開始時刻や終了時刻などを格納する。そして、プロセッサ110は、時計130を参照することによって、メモリ120に記憶されているタイマー設定時刻に従って、当該設定時刻までに設定温度に到達するように、暖房運転を開始したり、暖房運転を終了したり、冷房運転を開始したり、冷房運転を終了したりする。より詳細には、プロセッサ110は、予め設定されている圧縮機12の回転数の最大値を超えないように、さらに圧縮機12の回転数を一定にするなどして、効率的に室内温度を設定温度に近づけていく制御を実行する。 In particular, in the present embodiment, the processor 110 stores the timer 120 in the memory 120 and the start time and the end of the heating operation or the cooling operation in the memory 120 in accordance with the user command input via the remote controller 50 or the device control application of the smartphone. Stores time etc. Then, by referring to the clock 130, the processor 110 starts the heating operation or finishes the heating operation so that the set temperature is reached by the set time according to the timer set time stored in the memory 120. Control, start the cooling operation, or end the cooling operation. More specifically, the processor 110 efficiently controls the indoor temperature by keeping the rotation speed of the compressor 12 constant so as not to exceed a preset maximum value of the rotation speed of the compressor 12. Executes control to bring the temperature closer to the set temperature.
 空気調和機100は、さらに、コンピュータが読取可能な一時的でない(non-transitory)記録媒体41からデータやプログラムの読出しや書き込みを行なうためのインターフェイス部40を備えていてもよい。この場合、プロセッサ110は、インターフェイス部40が記録媒体41から読出したプログラムをメモリ120に格納することで、あるいは既存のプログラムをアップデートすることで、各種の制御を行なってもよい。
 <制御部101によるタイマー運転処理>
The air conditioner 100 may further include an interface unit 40 for reading and writing data and programs from a computer-readable non-transitory recording medium 41. In this case, the processor 110 may perform various controls by storing the program read from the recording medium 41 by the interface unit 40 in the memory 120 or by updating an existing program.
<Timer operation process by control unit 101>
 次に、本実施の形態にかかる制御部101におけるタイマー運転処理について説明する。図4は、本実施の形態にかかる制御部101におけるタイマー運転処理を示すフローチャートである。 Next, the timer operation processing in the control unit 101 according to the present embodiment will be described. FIG. 4 is a flowchart showing a timer operation process in the control unit 101 according to this embodiment.
 まず、制御部101は、赤外線受光部38やスマートフォンなどからタイマー命令を受け付ける(ステップS102)。タイマー命令には、タイマー設定時刻や運転モードや設定温度などが含まれる。 First, the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S102). The timer command includes the timer set time, operation mode, set temperature, and the like.
 制御部101は、タイマー設定時刻や室温や外気温などに基づいて、効率的な運転を行うために暖房運転や冷房運転の開始時刻や終了時刻や圧縮機12の回転数などを決定する(ステップS103)。 The control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S103).
 制御部101は、人感センサ39を介して、空気調和機100の周囲に人がいるか否かを判断する(ステップS104)。なお、後述するように、制御部101は、空気調和機100の周囲の人数に基づいて、タイマー運転制御を行ってもよい。 The control unit 101 determines whether or not there is a person around the air conditioner 100 via the human sensor 39 (step S104). As will be described later, the control unit 101 may perform the timer operation control based on the number of people around the air conditioner 100.
 制御部101は、空気調和機100の周囲に人がいる場合(ステップS104にてYESである場合)、タイマーの設定時刻から計算された運転の開始時刻を補正する(ステップS106)。たとえば、制御部101は、タイマーによって暖房運転を開始する場合は、人がいる場合に人がいない場合のもともとの開始時刻を遅くする。なお、制御部101は、直接開始時刻を補正してもよいし、部屋性能を高めに補正することによって間接的に開始時刻を遅くしてもよい。また、制御部101は、タイマーによって冷房運転を開始する場合は、人がいる場合に人がいない場合のもともとの開始時刻を早くする。なお、制御部101は、直接開始時刻を補正してもよいし、部屋性能を低めに補正することによって間接的に開始時刻を早くしてもよい。 When there is a person around the air conditioner 100 (YES in step S104), the control unit 101 corrects the operation start time calculated from the timer set time (step S106). For example, when the heating operation is started by the timer, the control unit 101 delays the original start time when there is a person and when there is no person. The control unit 101 may directly correct the start time, or indirectly correct the start time by correcting the room performance. Further, when starting the cooling operation by the timer, the control unit 101 advances the original start time when there is a person and when there is no person. The control unit 101 may directly correct the start time, or may indirectly correct the start time by correcting the room performance.
 制御部101は、補正した運転開始時刻に達すると(ステップS110にてYESである場合)、設定されたタイマー命令を実行する(ステップS112)。 When the corrected operation start time is reached (YES in step S110), the control unit 101 executes the set timer command (step S112).
 一方、制御部101は、空気調和機100の周囲に人がいない場合(ステップS104にてNOである場合)、運転開始時刻を元に戻す、すなわちユーザに設定されたものに戻す(ステップS108)。そして、制御部101は、元の運転開始時刻に達すると(ステップS110にてYESである場合)、設定されたタイマー命令を実行する(ステップS112)。
 <第2の実施の形態>
On the other hand, when there is no person around the air conditioner 100 (NO in step S104), the control unit 101 restores the operation start time, that is, restores the one set by the user (step S108). .. Then, when the original operation start time is reached (YES in step S110), control unit 101 executes the set timer command (step S112).
<Second Embodiment>
 上記の実施の形態においては、空気調和機100の周囲に人がいる場合に、タイマーによる設定時刻から計算される運転開始時刻を補正するものであった(図4のステップS106など)。しかしながら、制御部101は、図4のステップS106において、タイマーによる設定時刻から計算される運転終了時刻を補正してもよい。たとえば、制御部101は、タイマーによって暖房運転を終了する場合は、人がいる場合に終了時刻を早くしてもよい。あるいは、制御部101は、タイマーによって冷房運転を終了する場合は、人がいる場合に終了時刻を遅くしてもよい。 In the above embodiment, when there is a person around the air conditioner 100, the operation start time calculated from the time set by the timer is corrected (step S106 in FIG. 4, etc.). However, the control unit 101 may correct the operation end time calculated from the time set by the timer in step S106 of FIG. For example, when the heating operation is ended by the timer, the control unit 101 may advance the end time when there is a person. Alternatively, when the timer ends the cooling operation, the control unit 101 may delay the end time when there is a person.
 なお、タイマーの設定時刻に運転が開始される空気調和機に関しても、人がいる場合に、設定時刻よりも暖房運転の開始時刻を早めたり、設定時刻よりも冷房運転の開始時刻を遅くしたりしてもよい。
 <第3の実施の形態>
Regarding the air conditioner that starts operation at the set time of the timer, when there is a person, the start time of the heating operation may be made earlier than the set time, or the start time of the cooling operation may be made later than the set time. You may.
<Third Embodiment>
 さらに、空気調和機100の周囲に人がいる場合に、タイマーの設定時刻に基づく運転開始時刻や終了時刻を補正する形態に限らず、設定温度を補正するものであってもよい。たとえば、制御部101は、タイマー制御中において、あるいはタイマー制御中以外であっても、暖房運転中および冷房運転中に、空気調和機100の周囲に人がいる場合に設定温度を下げたりしてもよい。なお、制御部101は、直接設定温度を補正してもよいし、暖房時に人がいる場合に部屋性能を高めに補正することによって間接的に設定温度を高く補正したり、冷房時に人がいる場合に部屋性能を低めに補正することによって間接的に設定温度を低く補正したりしてもよい。 Further, when there is a person around the air conditioner 100, not only the operation start time and the operation end time based on the timer set time but also the set temperature may be corrected. For example, the control unit 101 lowers the set temperature when there is a person around the air conditioner 100 during the heating operation and the cooling operation even during the timer control or other than the timer control. Good. Note that the control unit 101 may directly correct the set temperature, indirectly correct the set temperature by correcting the room performance to a higher level when there is a person during heating, or there is a person during cooling. In this case, the set temperature may be indirectly corrected to be low by correcting the room performance to be low.
 あるいは、空気調和機100の周囲に人がいる場合に、圧縮機12の回転数を変更するものであってもよい。たとえば、制御部101は、タイマー制御中において、あるいはタイマー制御中以外であっても、暖房運転中および冷房運転中に、空気調和機100の周囲に人がいる場合に圧縮機12の回転数を低減する制御を行ってもよい。なお、制御部101は、直接圧縮機12の回転数を低減してもよいし、暖房時に人がいる場合に部屋性能を高めに補正することによって間接的に圧縮機12の回転数を低く補正したり、冷房時に人がいる場合に部屋性能を低めに補正することによって間接的に圧縮機12の回転数を高く補正したりしてもよい。 Alternatively, the rotation speed of the compressor 12 may be changed when there is a person around the air conditioner 100. For example, the control unit 101 controls the rotation speed of the compressor 12 when there is a person around the air conditioner 100 during the heating operation and the cooling operation even during the timer control or other than the timer control. You may perform control which reduces. The control unit 101 may directly reduce the rotation speed of the compressor 12, or indirectly correct the rotation speed of the compressor 12 by correcting the room performance to be higher when a person is present during heating. Alternatively, when there is a person during cooling, the room performance may be corrected to be low, and thus the rotation speed of the compressor 12 may be indirectly corrected to be high.
 より詳細には、たとえば、タイマー制御中において、あるいはタイマー制御中以外であっても、空気調和機100の周囲に人がいる場合に暖房時の圧縮機12の最大回転数を2割程度抑えたり、空気調和機100の周囲に人がいる場合に冷房時の圧縮機12の最大回転数を1割程度上げたりしてもよい。 More specifically, for example, even during timer control or other than timer control, when there is a person around the air conditioner 100, the maximum rotation speed of the compressor 12 during heating is suppressed by about 20%. When there is a person around the air conditioner 100, the maximum rotation speed of the compressor 12 during cooling may be increased by about 10%.
 あるいは、タイマーの設定時間に設定温度に到達するように効率よく暖房運転を行うために、部屋性能などを考慮して、暖房運転の開始時刻や圧縮機12の回転数などを決定する際に、空気調和機100の周囲に人がいる場合に、圧縮機12の回転数を低めに設定し直すことが考えられる。逆に、冷房運転の開始時刻や圧縮機12の回転数を決定する際には、空気調和機100の周囲に人がいる場合に、圧縮機12の回転数を高めに設定し直すことが考えられる。 Alternatively, in order to efficiently perform the heating operation so as to reach the set temperature in the set time of the timer, in consideration of room performance and the like, when determining the start time of the heating operation, the rotation speed of the compressor 12, and the like, When there is a person around the air conditioner 100, it may be possible to reset the rotation speed of the compressor 12 to a lower value. On the contrary, when determining the start time of the cooling operation and the rotation speed of the compressor 12, it is conceivable to reset the rotation speed of the compressor 12 to a higher value when there is a person around the air conditioner 100. Be done.
 より詳細には、図12に示すように、まず、制御部101は、赤外線受光部38やスマートフォンなどからタイマー命令を受け付ける(ステップS102)。タイマー命令には、タイマー設定時刻や運転モードや設定温度などが含まれる。 More specifically, as shown in FIG. 12, first, the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S102). The timer command includes the timer set time, operation mode, set temperature, and the like.
 制御部101は、タイマー設定時刻や室温や外気温などに基づいて、効率的な運転を行うために暖房運転や冷房運転の開始時刻や終了時刻や圧縮機12の回転数などを決定する(ステップS103B)。 The control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S103B).
 制御部101は、人感センサ39を介して、空気調和機100の周囲に人がいるか否かを判断する(ステップS104)。なお、後述するように、制御部101は、空気調和機100の周囲の人数に基づいて、タイマー運転制御を行ってもよい。 The control unit 101 determines whether or not there is a person around the air conditioner 100 via the human sensor 39 (step S104). As will be described later, the control unit 101 may perform the timer operation control based on the number of people around the air conditioner 100.
 制御部101は、空気調和機100の周囲に人がいる場合(ステップS104にてYESである場合)、タイマーの設定時刻から計算された運転の開始時刻や圧縮機12の回転数を補正する(ステップS106B)。たとえば、制御部101は、タイマーによって暖房運転を開始する場合は、人がいる場合に人がいない場合よりも開始時刻を遅くしたり圧縮機12の回転数を下げたりする。なお、制御部101は、直接的に開始時刻や圧縮機12の回転数を補正してもよいし、部屋性能を高めに補正することによって間接的に開始時刻を遅くしたり圧縮機12の回転数を下げたりしてもよい。また、制御部101は、タイマーによって冷房運転を開始する場合は、人がいる場合に人がいない場合よりも開始時刻を早くしたり圧縮機12の回転数を上げたりする。なお、制御部101は、直接的に開始時刻や圧縮機12の回転数を補正してもよいし、部屋性能を低めに補正することによって間接的に開始時刻を早くしたりや圧縮機12の回転数を上げたりてもよい。 When a person is present around the air conditioner 100 (YES in step S104), the control unit 101 corrects the operation start time calculated from the timer set time and the rotation speed of the compressor 12 ( Step S106B). For example, when the heating operation is started by the timer, the control unit 101 delays the start time when there is a person and lowers the rotation speed of the compressor 12 as compared with when there is no person. Note that the control unit 101 may directly correct the start time or the rotation speed of the compressor 12, or may indirectly delay the start time or rotate the compressor 12 by correcting the room performance to be higher. You may reduce the number. Further, when the cooling operation is started by the timer, the control unit 101 makes the start time earlier or raises the rotation speed of the compressor 12 when there is a person than when there is no person. The control unit 101 may directly correct the start time or the rotation speed of the compressor 12, or indirectly improve the start time by correcting the room performance to a lower value or rotate the compressor 12 faster. You may increase the number.
 制御部101は、補正した運転開始時刻に達すると(ステップS110にてYESである場合)、設定されたタイマー命令を実行する(ステップS112)。 When the corrected operation start time is reached (YES in step S110), the control unit 101 executes the set timer command (step S112).
 一方、制御部101は、空気調和機100の周囲に人がいない場合(ステップS104にてNOである場合)、運転開始時刻や圧縮機12の回転数を元に戻す(ステップS108B)。そして、制御部101は、元の運転開始時刻に達すると(ステップS110にてYESである場合)、設定されたタイマー命令を実行する(ステップS112)。
 <第4の実施の形態>
On the other hand, when there is no person around the air conditioner 100 (NO in step S104), the control unit 101 restores the operation start time and the rotation speed of the compressor 12 (step S108B). Then, when the original operation start time is reached (YES in step S110), control unit 101 executes the set timer command (step S112).
<Fourth Embodiment>
 上記の実施の形態においては、人感センサ39を利用して空気調和機100の周囲に人がいるか否かを判断するものであったが、このような形態には限られない。たとえば、図5に示すように、室内機30に画像センサ39Bなどを搭載して、制御部101が画像センサ39Bからの画像データに基づいて、空気調和機100の周囲に人がいるか否かを判断してもよい。 In the above embodiment, the presence sensor 39 is used to determine whether or not there is a person around the air conditioner 100, but the present invention is not limited to this. For example, as shown in FIG. 5, the indoor unit 30 is equipped with an image sensor 39B and the like, and the control unit 101 determines whether or not there is a person around the air conditioner 100 based on the image data from the image sensor 39B. You may judge.
 あるいは、図6に示すように、室内機30にサーモグラフィ用のセンサ39Cなどを搭載して、制御部101がサーモグラフィに基づいて、空気調和機100の周囲に人がいるか否かを判断してもよい。
 <第5の実施の形態>
Alternatively, as shown in FIG. 6, a thermography sensor 39C or the like is mounted on the indoor unit 30, and the control unit 101 determines whether or not there is a person around the air conditioner 100 based on the thermography. Good.
<Fifth Embodiment>
 上記の実施の形態においては、空気調和機100の周囲に人がいるか否かに応じて、タイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などを補正するものであったが、このような形態には限られない。たとえば、空気調和機100の周囲の人の人数に応じて、タイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などを補正してもよい。 In the above embodiment, the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like are corrected depending on whether or not there is a person around the air conditioner 100. However, it is not limited to such a form. For example, the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like may be corrected according to the number of people around the air conditioner 100.
 より詳細には、空気調和機100のメモリ120は、図7に示すような補正データ121を記憶する。補正データ121は、空気調和機100の周囲の人数とタイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などの補正値との対応関係を記憶する。 More specifically, the memory 120 of the air conditioner 100 stores the correction data 121 as shown in FIG. 7. The correction data 121 stores the correspondence relationship between the number of people around the air conditioner 100 and the correction values such as the start time and end time of timer operation, the set temperature, and the rotation speed of the compressor 12.
 そして、本実施の形態においては、制御部101は図8に示すようなタイマー運転処理を実行する。 Then, in the present embodiment, the control unit 101 executes the timer operation process as shown in FIG.
 まず、制御部101は、赤外線受光部38やスマートフォンなどからタイマー命令を受け付ける(ステップS202)。タイマー命令には、タイマー設定時刻や運転モードや設定温度などが含まれる。 First, the control unit 101 receives a timer command from the infrared light receiving unit 38, a smartphone or the like (step S202). The timer command includes the timer set time, operation mode, set temperature, and the like.
 制御部101は、タイマー設定時刻や室温や外気温などに基づいて、効率的な運転を行うために暖房運転や冷房運転の開始時刻や終了時刻や圧縮機12の回転数などを決定する(ステップS203)。 The control unit 101 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order to perform efficient operation, based on the timer set time, room temperature, and outside temperature (step). S203).
 制御部101は、画像センサ39Bなどを介して、空気調和機100の周囲の人数を特定する(ステップS204)。 The control unit 101 identifies the number of people around the air conditioner 100 via the image sensor 39B and the like (step S204).
 制御部101は、空気調和機100の周囲の人数に基づいて、タイマーの開始時刻を補正する(ステップS206)。たとえば、制御部101は、タイマーによって暖房運転を開始する場合は、人が多くいるほど開始時刻を遅くする。制御部101は、タイマーによって冷房運転を開始する場合は、人が多くいるほど開始時刻を早くする。本実施の形態においても部屋性能を介して設定時刻を補正してもよい。 The control unit 101 corrects the start time of the timer based on the number of people around the air conditioner 100 (step S206). For example, when the heating operation is started by the timer, the control unit 101 delays the start time as the number of people increases. When the cooling operation is started by the timer, the control unit 101 advances the start time as the number of people increases. Also in this embodiment, the set time may be corrected via the room performance.
 制御部101は、補正した開始時刻に達すると(ステップS210にてYESである場合)、入力された命令を実行する(ステップS212)。 When the corrected start time is reached (YES in step S210), the control unit 101 executes the input instruction (step S212).
 また、第2の実施の形態のように、制御部101は、タイマーによる運転終了時刻を補正してもよい。たとえば、制御部101は、タイマーによって暖房運転を終了する場合は、人が多くいるほど終了時刻を早くしてもよい。あるいは、制御部101は、タイマーによって冷房運転を終了する場合は、人が多くいるほど終了時刻を遅くしてもよい。 Also, as in the second embodiment, the control unit 101 may correct the operation end time by a timer. For example, when the heating operation ends by the timer, the control unit 101 may set the end time earlier as the number of people increases. Alternatively, the control unit 101 may delay the end time as the number of people increases when the cooling operation is ended by the timer.
 また、第3の実施の形態のように、補正の対象は、暖房時や冷房時に下げるべき設定温度や圧縮機12の回転数などであってもよい。たとえば、周囲の人数が多いほど暖房時の圧縮機12の回転数を下げたり、冷房時の圧縮機12の回転数を上げたりすることが考えられる。具体的には、暖房運転を行う際は、制御部101は、空気調和機100の周囲の人間一人に対して100W分の消費電力を低減できるように圧縮機12の回転数を低減させる。逆に、冷房運転を行う際は、制御部101は、空気調和機100の周囲の人間一人に対して100W分の消費電力が増加するように圧縮機12の回転数を増加させる。
 <第6の実施の形態>
Further, as in the third embodiment, the target of correction may be the set temperature to be lowered during heating or cooling, the rotation speed of the compressor 12, or the like. For example, the number of rotations of the compressor 12 during heating may be decreased or the number of rotations of the compressor 12 during cooling may be increased as the number of people in the surroundings increases. Specifically, when performing the heating operation, the control unit 101 reduces the rotation speed of the compressor 12 so as to reduce the power consumption of 100 W for one person around the air conditioner 100. On the contrary, when performing the cooling operation, the control unit 101 increases the rotation speed of the compressor 12 so that the power consumption of 100 W for one person around the air conditioner 100 increases.
<Sixth Embodiment>
 さらには、空気調和機100の周囲の人の存在に限らず、空気調和機100が配置される部屋の電気機器の運転状況などに応じて、タイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などを補正してもよい。 Furthermore, not only the presence of people around the air conditioner 100, but also the start time and end time of timer operation, the set temperature, and the compression depending on the operating status of the electric devices in the room in which the air conditioner 100 is arranged. The rotation speed of the machine 12 may be corrected.
 より詳細には、図9に示すように、空気調和機100が、室内の電気機器200の運転状態を取得する。電気機器200は、掃除機、電子レンジ、冷蔵庫、洗濯機などの家電、テレビ、ハードディスクレコーダ、音楽プレーヤー、プロジェクタ、スピーカなどのAV(オーディオ・ビジュアル)機器、IHクッキングヒーター、給湯器などの住宅設備、などであってもよい。つまり、本実施の形態においては、空気調和機100や電気機器200などから構成されるネットワークシステム1が実現される。 More specifically, as shown in FIG. 9, the air conditioner 100 acquires the operating state of the electric device 200 in the room. The electric device 200 is a home appliance such as a vacuum cleaner, a microwave oven, a refrigerator, and a washing machine, a TV, a hard disk recorder, a music player, a projector, an AV (audio/visual) device such as a speaker, an IH cooking heater, a water heater, and other housing equipment, And so on. That is, in the present embodiment, the network system 1 including the air conditioner 100, the electric device 200, and the like is realized.
 そして、図8のステップS206などにおいて、制御部101は、空気調和機100の周囲の電気機器200の稼働状態に基づいて、タイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などを補正する(ステップS206)。たとえば、制御部101は、タイマーによって暖房運転を開始する場合は、空気調和機100が配置される室内で稼働している1または複数の電気機器200の消費電力を取得してそれらの合計が高いほど、開始時刻を遅くする。制御部101は、タイマーによって冷房運転を開始する場合は、空気調和機100が配置される室内で稼働している1または複数の電気機器200の消費電力を取得してそれらの合計が高いほど、開始時刻を早くする。 Then, in step S206 and the like of FIG. 8, the control unit 101, based on the operating state of the electric device 200 around the air conditioner 100, the start time and the end time of the timer operation, the set temperature, and the rotation speed of the compressor 12. Are corrected (step S206). For example, when the heating operation is started by the timer, the control unit 101 acquires the power consumption of one or a plurality of electric devices 200 operating in the room where the air conditioner 100 is arranged, and their total is high. The later, the later the start time. When starting the cooling operation by the timer, the control unit 101 acquires the power consumption of one or a plurality of electric devices 200 operating in the room where the air conditioner 100 is arranged, and the higher the sum thereof, the more the Increase the start time.
 なお、当然に、制御部101は、タイマーによって暖房運転を開始する場合は、空気調和機100が配置される室内で稼働している1または複数の電気機器200の運転のON/OFFや、稼働している電気機器の個数などに基づいて、運転の開始時刻や終了時刻を補正してもよい。たとえば、制御部101は、タイマーによって暖房運転を開始する場合は、他の電気機器200が運転中に、開始時刻を遅くする。また、制御部101は、タイマーによって冷房運転を開始する場合は、他の電気機器200が運転中に、開始時刻を早くする。
 <第7の実施の形態>
It should be noted that, of course, when the heating operation is started by the timer, the control unit 101 turns ON/OFF the operation of one or a plurality of electric devices 200 operating in the room in which the air conditioner 100 is arranged, and operates the electric device 200. The start time and end time of the operation may be corrected based on the number of operating electric devices. For example, when the heating operation is started by the timer, the control unit 101 delays the start time while the other electric device 200 is in operation. Moreover, when starting the cooling operation by the timer, the control unit 101 advances the start time while the other electric device 200 is in operation.
<Seventh Embodiment>
 あるいは、人や動物や電気機器200に限らず、制御部101は、サーモグラフィ用のセンサ39Cによって取得する温度分布に基づいて、タイマーの設定時刻や設定温度を補正してもよい。たとえば、図8のステップS206において、制御部101は、空気調和機100の周囲で発生する熱量を計算して、当該熱量が多いほど、暖房時の開始時刻を遅くしたり、冷房時の開始時刻を早くしたり、暖房時の終了時刻を早くしたり、冷房時の終了時刻を遅くしたり、圧縮機12の回転数を低減してもよい。
 <第8の実施の形態>
Alternatively, the control unit 101 may correct the set time and the set temperature of the timer, not limited to the person, the animal, and the electric device 200, based on the temperature distribution acquired by the sensor 39C for thermography. For example, in step S206 of FIG. 8, the control unit 101 calculates the amount of heat generated around the air conditioner 100, and the larger the amount of heat, the later the start time during heating or the start time during cooling. May be earlier, the end time during heating may be earlier, the end time during cooling may be later, or the rotation speed of the compressor 12 may be reduced.
<Eighth Embodiment>
 上記の実施の形態おいては、各種の処理を空気調和機100の制御部101が実行するものであったが、他の装置が上記の処理を実行してもよい。たとえば、図9に示すサーバ300が、空気調和機100や電気機器200、その他の機器から必要な情報を取得して、タイマーの設定時刻や設定温度を補正して空気調和機100を制御してもよい。つまり、本実施の形態においては、空気調和機100や電気機器200やサーバ300などから構成されるネットワークシステム1が実現される。 In the above embodiment, the control unit 101 of the air conditioner 100 executes various processes, but other devices may execute the above processes. For example, the server 300 illustrated in FIG. 9 acquires necessary information from the air conditioner 100, the electric device 200, and other devices, corrects the set time and the set temperature of the timer, and controls the air conditioner 100. Good. That is, in the present embodiment, the network system 1 including the air conditioner 100, the electric device 200, the server 300, and the like is realized.
 より詳細には、図10に示すように、サーバ300は、主たる構成要素として、CPU310と、メモリ320と、操作部340と、通信インターフェイス360とを含む。 More specifically, as shown in FIG. 10, the server 300 includes a CPU 310, a memory 320, an operation unit 340, and a communication interface 360 as main components.
 CPU310は、メモリ320に記憶されているプログラムを実行することによって、サーバ300の各部を制御する。 The CPU 310 controls each unit of the server 300 by executing a program stored in the memory 320.
 メモリ320は、各種のRAM、各種のROMなどによって実現され、サーバ300に内包されているものであってもよいし、サーバ300の各種インターフェイスに着脱可能なものであってもよいし、サーバ300からアクセス可能な他の装置の記録媒体であってもよい。メモリ320は、CPU310によって実行されるプログラムや、CPU310によるプログラムの実行により生成されたデータ、入力されたデータ、その他の本実施の形態にかかる処理やサービスに利用されるデータベースなどを記憶する。 The memory 320 is realized by various types of RAM, various types of ROM, and the like, and may be included in the server 300, removable from various interfaces of the server 300, or the server 300. It may be a recording medium of another device accessible from. The memory 320 stores a program executed by the CPU 310, data generated by execution of the program by the CPU 310, input data, and a database used for other processes and services according to the present embodiment.
 操作部340は、サービスの管理者などの命令を受け付けて、当該命令をCPU310に入力する。 The operation unit 340 receives a command from a service administrator or the like and inputs the command to the CPU 310.
 通信インターフェイス360は、CPU310からのデータを、インターネット、キャリア網、ルータ400などを介して、空気調和機100や電気機器200や他のサーバなどの他の装置に送信する。逆に、通信インターフェイス360は、インターネット、キャリア網、ルータなどを介して他の装置からのデータを受信して、CPU310に受け渡す。 The communication interface 360 transmits data from the CPU 310 to other devices such as the air conditioner 100, the electric device 200, and other servers via the Internet, carrier network, router 400, and the like. Conversely, the communication interface 360 receives data from another device via the Internet, a carrier network, a router, etc., and transfers it to the CPU 310.
 そして、たとえば、図11に示すように、CPU310は、今回対象となる空気調和機100が受け付けたタイマー命令を、通信インターフェイス360を介して取得する(ステップS302)。タイマー命令には、タイマー設定時刻や運転モードや設定温度などが含まれる。 Then, for example, as shown in FIG. 11, the CPU 310 acquires the timer command accepted by the target air conditioner 100 this time via the communication interface 360 (step S302). The timer command includes the timer set time, operation mode, set temperature, and the like.
 CPU310は、タイマー設定時刻や室温や外気温などに基づいて、空気調和機100が効率的な運転を行うために暖房運転や冷房運転の開始時刻や終了時刻や圧縮機12の回転数などを決定する(ステップS303)。 The CPU 310 determines the start time and end time of the heating operation and the cooling operation, the rotation speed of the compressor 12, and the like in order for the air conditioner 100 to operate efficiently, based on the timer setting time, room temperature, and outside temperature. Yes (step S303).
 CPU310は、通信インターフェイス360を介して、空気調和機100から検知結果を取得することによって、空気調和機100の周囲の人数を特定する(ステップS304)。なお、第1の実施の形態のように、CPU310は、空気調和機100の周囲の人の有無に基づいて、タイマー運転制御を行ってもよい。 The CPU 310 specifies the number of people around the air conditioner 100 by acquiring the detection result from the air conditioner 100 via the communication interface 360 (step S304). Note that, as in the first embodiment, the CPU 310 may perform timer operation control based on the presence or absence of a person around the air conditioner 100.
 CPU310は、空気調和機100の周囲の人数に基づいて、タイマー運転の開始時間や終了時間や設定温度や圧縮機12の回転数などを補正する(ステップS306)。CPU310は、補正した開始時刻に達すると(ステップS310にてYESである場合)、通信インターフェイス360を介して空気調和機100にタイマー命令を実行させる(ステップS312)。 The CPU 310 corrects the start time and end time of the timer operation, the set temperature, the rotation speed of the compressor 12, and the like based on the number of people around the air conditioner 100 (step S306). When the corrected start time is reached (YES in step S310), CPU 310 causes air conditioner 100 to execute a timer command via communication interface 360 (step S312).
 ただし、サーバ300は、補正したタイマー設定時刻を空気調和機100に提供し、タイマー設定時刻に達したか否かの判断は空気調和機100に実行させてもよい。
 <まとめ>
However, the server 300 may provide the corrected timer set time to the air conditioner 100, and cause the air conditioner 100 to determine whether the timer set time has been reached.
<Summary>
 上記の実施の形態おいては、暖房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、空気調和機の周囲に人がいるとき、または空気調和機の周囲の人数が多いとき、タイマーによる暖房運転の開始時間を遅くする。 In the above embodiment, an air conditioner including a heating operation mechanism and a control unit is provided. The control unit delays the start time of the heating operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
 上記の実施の形態おいては、冷房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、空気調和機の周囲に人がいるとき、または空気調和機の周囲の人数が多いとき、タイマーによる冷房運転の開始時間を早くする。 In the above embodiment, an air conditioner including a cooling operation mechanism and a control unit is provided. The controller accelerates the start time of the cooling operation by the timer when there are many people around the air conditioner or when there are many people around the air conditioner.
 上記の実施の形態おいては、暖房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、空気調和機の周囲に運転中の機器があるとき、または空気調和機の周囲の運転中の機器が多いとき、タイマーによる暖房運転の開始時間を遅くする。 In the above embodiment, an air conditioner including a heating operation mechanism and a control unit is provided. The control unit delays the start time of the heating operation by the timer when there are devices in operation around the air conditioner or when there are many devices in operation around the air conditioner.
 上記の実施の形態おいては、冷房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、空気調和機の周囲に運転中の機器があるとき、または空気調和機の周囲の運転中の機器が多いとき、タイマーによる冷房運転の開始時間を早くする。 In the above embodiment, an air conditioner including a cooling operation mechanism and a control unit is provided. The control unit accelerates the start time of the cooling operation by the timer when there are devices in operation around the air conditioner or when there are many devices in operation around the air conditioner.
 上記の実施の形態おいては、サーモセンサと、暖房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、サーモセンサによる空気調和機の周囲の熱量が多いときにタイマーによる暖房運転の開始時間を遅くする。 In the above embodiment, an air conditioner including a thermo sensor, a heating operation mechanism, and a control unit is provided. The control unit delays the start time of the heating operation by the timer when the amount of heat around the air conditioner by the thermosensor is large.
 上記の実施の形態おいては、サーモセンサと、冷房運転機構と、制御部と、を備える空気調和機が提供される。制御部は、サーモセンサによる空気調和機の周囲の熱量が多いときにタイマーによる冷房運転の開始時間を早くする。 In the above embodiment, an air conditioner including a thermo sensor, a cooling operation mechanism, and a control unit is provided. The control unit accelerates the start time of the cooling operation by the timer when the amount of heat around the air conditioner by the thermosensor is large.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機からの情報に基づいて、空気調和機の周囲に人がいるとき、または空気調和機の周囲の人数が多いとき、空気調和機のタイマーによる暖房運転の開始時間を遅くするためのプロセッサとを備えるサーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner and the information from the air conditioner via the communication interface are used when there is a person around the air conditioner or when the air conditioner is used. There is provided a server including a processor for delaying the start time of the heating operation by the timer of the air conditioner when the number of people around the machine is large.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機からの情報に基づいて、空気調和機の周囲に人がいるとき、または空気調和機の周囲の人数が多いとき、空気調和機のタイマーによる冷房運転の開始時間を早くするためのプロセッサとを備えるサーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner and the information from the air conditioner via the communication interface are used when there is a person around the air conditioner or when the air conditioner is used. There is provided a server including a processor for accelerating the start time of the cooling operation by the timer of the air conditioner when the number of people around the machine is large.
 上記の実施の形態おいては、空気調和機や電気機器やその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機からの情報に基づいて、空気調和機の周囲に運転中の機器があるとき、または空気調和機の周囲の運転中の機器が多いとき、空気調和機のタイマーによる暖房運転の開始時間を遅くするためのプロセッサとを備えるサーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner, the electric device, and other devices, and the operation around the air conditioner based on the information from the air conditioner via the communication interface. A server for delaying the start time of the heating operation by the timer of the air conditioner is provided when there is a device inside or when there are many devices operating around the air conditioner.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機や電気機器およびその他の機器からの情報に基づいて、空気調和機の周囲に運転中の機器があるとき、または空気調和機の周囲の運転中の機器が多いとき、空気調和機のタイマーによる冷房運転の開始時間を早くするためのプロセッサとを備えるサーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner and the operation around the air conditioner are performed based on the information from the air conditioner, the electric device, and other devices via the communication interface. There is provided a server including a processor for accelerating the start time of the cooling operation by the timer of the air conditioner when there is a device in the air conditioner or when there are many devices in operation around the air conditioner.
 上記の実施の形態おいては、空気調和機や電気機器およびその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機からの情報に基づいて、空気調和機の周囲の熱量が多いときにタイマーによる暖房運転の開始時間を遅くするためのプロセッサとを備えるサーバが提供される。 In the above embodiment, the amount of heat around the air conditioner is based on the communication interface for communicating with the air conditioner, the electric device, and other devices, and the information from the air conditioner via the communication interface. There is provided a server including a processor for delaying the start time of the heating operation by the timer when there is a lot of power consumption.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して空気調和機や電気機器およびその他の機器からの情報に基づいて、空気調和機の周囲の熱量が多いときにタイマーによる冷房運転の開始時間を早くするためのプロセッサとを備えるサーバが提供される。 In the above-described embodiment, the amount of heat around the air conditioner is based on the communication interface for communicating with the air conditioner and the information from the air conditioner, the electric device, and other devices via the communication interface. There is provided a server including a processor for accelerating the start time of the cooling operation by the timer when there is a lot of power consumption.
 上記の実施の形態おいては、暖房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲に人がいるとき、人がいないときよりも圧縮機の回転数を下げて暖房運転を行う、空気調和機が提供される。 In the above-described embodiment, the heating operation mechanism and the control unit are provided, and the control unit lowers the rotation speed of the compressor when a person is around the air conditioner than when there is no person. An air conditioner for heating operation is provided.
 上記の実施の形態おいては、暖房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲の人が多いほど圧縮機の回転数を下げて暖房運転を行う、空気調和機が提供される。 In the above embodiment, the heating operation mechanism and the control unit are provided, and the control unit performs the heating operation by lowering the rotation speed of the compressor as the number of people around the air conditioner increases. Machine is provided.
 上記の実施の形態おいては、冷房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲に人がいるとき、人がいないときよりも圧縮機の回転数を上げて冷房運転を行う、空気調和機が提供される。 In the above-described embodiment, the cooling operation mechanism and the control unit are provided, and the control unit increases the rotation speed of the compressor when a person is around the air conditioner as compared with when there is no person. An air conditioner that performs cooling operation is provided.
 上記の実施の形態おいては、冷房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲の人が多いほど圧縮機の回転数を上げて冷房運転を行う、空気調和機が提供される。 In the above embodiment, the cooling operation mechanism and the control unit are provided, and the control unit performs the cooling operation by increasing the rotation speed of the compressor as the number of people around the air conditioner increases. Machine is provided.
 上記の実施の形態おいては、暖房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲に運転中の機器があるとき、運転中の機器がないときよりも圧縮機の回転数を下げて暖房運転を行う、空気調和機が提供される。 In the above-described embodiment, the heating operation mechanism and the control unit are provided, and the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation. There is provided an air conditioner in which the number of rotations is reduced to perform heating operation.
 上記の実施の形態おいては、冷房運転機構と、制御部と、を備え、制御部は、空気調和機の周囲に運転中の機器があるとき、運転中の機器がないときよりも圧縮機の回転数を上げて冷房運転を行う、空気調和機が提供される。 In the above-described embodiment, the cooling operation mechanism and the control unit are provided, and the control unit controls the compressor when there is a device in operation around the air conditioner more than when there is no device in operation. There is provided an air conditioner that performs a cooling operation by increasing the rotation speed of the air conditioner.
 上記の実施の形態おいては、サーモセンサと、暖房運転機構と、制御部と、を備え、制御部は、サーモセンサにより検知した空気調和機の周囲の熱量が多いほど圧縮機の回転数を低減して暖房運転を行う、空気調和機が提供される。 In the above embodiment, a thermo sensor, a heating operation mechanism, and a control unit are provided, and the control unit controls the rotation speed of the compressor as the amount of heat around the air conditioner detected by the thermo sensor increases. An air conditioner that reduces heating operation is provided.
 上記の実施の形態おいては、サーモセンサと、冷房運転機構と、制御部と、を備え、制御部は、サーモセンサにより検知した空気調和機の周囲の熱量が多いほど冷房運転時の圧縮機の回転数を増加して冷房運転を行う、空気調和機が提供される。 In the above-described embodiment, the thermosensor, the cooling operation mechanism, and the control unit are provided, and the control unit has a compressor during the cooling operation as the amount of heat around the air conditioner detected by the thermosensor increases. There is provided an air conditioner that performs cooling operation by increasing the rotation speed of the air conditioner.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に人がいるとき、空気調和機に、人がいないときよりも圧縮機の回転数を下げて暖房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner and the air conditioner when a person is around the air conditioner based on the information from the air conditioner via the communication interface. A server is provided, which comprises a processor for causing the machine to perform a heating operation at a lower rotation speed of the compressor than when there is no person.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に人が多いほど、空気調和機に、圧縮機の回転数を下げて暖房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner, and the air conditioner increases as the number of people around the air conditioner increases based on the information from the air conditioner via the communication interface. A server is provided, which comprises a processor for reducing the rotation speed of a compressor to perform heating operation.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に人がいるとき、空気調和機に、人がいないときよりも圧縮機の回転数を上げて冷房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner and the air conditioner when a person is around the air conditioner based on the information from the air conditioner via the communication interface. A server is provided, which comprises a processor for causing the compressor to perform a cooling operation by increasing the rotation speed of the compressor more than when there is no person.
 上記の実施の形態おいては、空気調和機と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に人が多いほど、空気調和機に、圧縮機の回転数を上げて冷房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner, and the air conditioner increases as the number of people around the air conditioner increases based on the information from the air conditioner via the communication interface. A server is provided, which includes a processor for increasing a rotation speed of a compressor to perform a cooling operation.
 上記の実施の形態おいては、空気調和機や電気機器およびその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に運転中の機器があるとき、空気調和機に、運転中の機器がないときよりも圧縮機の回転数を下げて暖房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner, the electric device, and other devices, and the surroundings of the air conditioner based on the information from the air conditioner via the communication interface. A server is provided that includes a processor for causing an air conditioner to perform a heating operation at a lower rotation speed of a compressor when a device is in operation than when there is no device in operation.
 上記の実施の形態おいては、空気調和機や電気機器およびその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機の周囲に運転中の機器があるとき、空気調和機に、運転中の機器がないときよりも圧縮機の回転数を上げて冷房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above embodiment, the communication interface for communicating with the air conditioner, the electric device, and other devices, and the surroundings of the air conditioner based on the information from the air conditioner via the communication interface. A server is provided that includes a processor for causing an air conditioner to perform a cooling operation by increasing the rotation speed of a compressor when there is a device in operation as compared with when there is no device in operation.
 上記の実施の形態おいては、空気調和機や電気機器およびその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機に、空気調和機の周囲の熱量が多いほど圧縮機の回転数を低減して暖房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner, the electric device, and the other device, and the air conditioner, the air conditioner based on the information from the air conditioner via the communication interface. There is provided a server including: a processor configured to perform a heating operation by reducing the rotation speed of the compressor as the amount of heat around the conditioner increases.
 上記の実施の形態おいては、空気調和機や電気機器およびその他の機器と通信するための通信インターフェイスと、通信インターフェイスを介して、空気調和機からの情報に基づいて、空気調和機に、空気調和機の周囲の熱量が多いほど圧縮機の回転数を増加して冷房運転を行わせるためのプロセッサと、を備える、サーバが提供される。 In the above-described embodiment, the communication interface for communicating with the air conditioner, the electric device, and the other device, and the air conditioner, the air conditioner based on the information from the air conditioner via the communication interface. There is provided a server including: a processor for increasing the rotation speed of the compressor to perform a cooling operation as the amount of heat around the conditioner increases.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
1    :ネットワークシステム
10   :室外機
11   :筐体
12   :圧縮機
12a  :吐出管
12b  :吸入管
13   :四路切換弁
14   :室外熱交換器
15   :膨張弁
16   :室外送風機
17   :冷媒配管
18   :冷媒配管
19   :二方弁
20   :三方弁
21   :室外熱交換器温度センサ
22   :吐出温度センサ
23   :吸入温度センサ
24   :出口温度センサ
25   :外気温度センサ
29   :室外制御部
30   :室内機
31   :筐体
32   :室内熱交換器
32A  :熱交換器
32B  :熱交換器
32C  :熱交換器
33   :室内送風機
34   :室内熱交換器温度センサ
35   :室内制御部
36   :フラップ
37   :室内温度センサ
38   :赤外線受光部
39   :人感センサ
39B  :画像センサ
39C  :センサ
40   :インターフェイス部
41   :記録媒体
50   :リモートコントローラ
100  :空気調和機
101  :制御部
110  :プロセッサ
120  :メモリ
121  :補正データ
130  :時計
200  :電気機器
300  :サーバ
310  :CPU
320  :メモリ
340  :操作部
360  :通信インターフェイス
400  :ルータ
1: network system 10: outdoor unit 11: casing 12: compressor 12a: discharge pipe 12b: suction pipe 13: four-way switching valve 14: outdoor heat exchanger 15: expansion valve 16: outdoor blower 17: refrigerant pipe 18: Refrigerant pipe 19: Two-way valve 20: Three-way valve 21: Outdoor heat exchanger temperature sensor 22: Discharge temperature sensor 23: Suction temperature sensor 24: Outlet temperature sensor 25: Outside air temperature sensor 29: Outdoor control unit 30: Indoor unit 31: Case 32: Indoor heat exchanger 32A: Heat exchanger 32B: Heat exchanger 32C: Heat exchanger 33: Indoor blower 34: Indoor heat exchanger temperature sensor 35: Indoor controller 36: Flap 37: Indoor temperature sensor 38: Infrared light receiving section 39: Human sensor 39B: Image sensor 39C: Sensor 40: Interface section 41: Recording medium 50: Remote controller 100: Air conditioner 101: Control section 110: Processor 120: Memory 121: Correction data 130: Clock 200 : Electric device 300: Server 310: CPU
320: memory 340: operation unit 360: communication interface 400: router

Claims (11)

  1.  空気調和機であって、
     制御部を備え、前記制御部は、前記空気調和機の周囲に人がいるとき、または前記空気調和機の周囲の人数が多いとき、暖房運転の際は、タイマーによる暖房運転の開始時間を遅くし、冷房運転の際はタイマーによる冷房運転の開始時間を早くする、空気調和機。
    An air conditioner,
    When a person is present around the air conditioner, or when the number of people around the air conditioner is large, the control unit delays the start time of the heating operation by the timer during the heating operation. However, an air conditioner that accelerates the start time of the cooling operation by the timer during the cooling operation.
  2.  空気調和機であって、
     制御部を備え、前記制御部は、前記空気調和機の周囲に運転中の機器があるとき、または前記空気調和機の周囲の運転中の機器が多いとき、暖房運転の際はタイマーによる暖房運転の開始時間を遅くし、冷房運転の際にはタイマーによる冷房運転の開始時間を早くする、空気調和機。
    An air conditioner,
    A control unit is provided, and the control unit, when there are devices operating around the air conditioner, or when there are many devices operating around the air conditioner, a heating operation by a timer during heating operation. An air conditioner that delays the start time of the air conditioner and accelerates the start time of the air conditioner operation by the timer during the air conditioner operation.
  3.  空気調和機であって、
     サーモセンサと、制御部と、を備え、前記制御部は、前記サーモセンサによる空気調和機の周囲の熱量が多いとき、暖房運転の際にはタイマーによる暖房運転の開始時間を遅くし、冷房運転の際にはタイマーによる冷房運転の開始時間を早くする、空気調和機。
    An air conditioner,
    A thermosensor and a control unit are provided, and the control unit delays the start time of the heating operation by the timer during the heating operation when the heat amount around the air conditioner by the thermosensor is large, and the cooling operation is performed. In the case of, an air conditioner that accelerates the start time of the cooling operation by the timer.
  4.  空気調和機と通信するための通信インターフェイスと、
     前記通信インターフェイスを介して前記空気調和機および/またはその他の機器からの情報に基づいて、前記空気調和機の周囲に人がいるとき、または前記空気調和機の周囲の人数が多いとき、暖房運転の際には前記空気調和機のタイマーによる暖房運転の開始時間を遅くし、冷房運転の際には前記空気調和機のタイマーによる冷房運転の開始時間を早くするためのプロセッサとを備えるサーバ。
    A communication interface for communicating with the air conditioner,
    Based on information from the air conditioner and/or other devices via the communication interface, when there is a person around the air conditioner or when there are many people around the air conditioner, heating operation is performed. A server for delaying the start time of the heating operation by the timer of the air conditioner in the case of, and for increasing the start time of the cooling operation by the timer of the air conditioner in the case of cooling operation.
  5.  空気調和機と通信するための通信インターフェイスと、
     前記通信インターフェイスを介して前記空気調和機および/またはその他の機器からの情報に基づいて、前記空気調和機の周囲の熱量が多いときに暖房運転の際には、タイマーによる暖房運転の開始時間を遅くするし、冷房運転の際にはタイマーによる冷房運転の開始時間を早くするためのプロセッサとを備えるサーバ。
    A communication interface for communicating with the air conditioner,
    Based on the information from the air conditioner and/or other devices via the communication interface, when the heat amount around the air conditioner is large, the start time of the heating operation by the timer is set when the heating operation is performed. A server that has a processor for slowing down and speeding up the start time of the cooling operation by the timer during the cooling operation.
  6.  空気調和機であって、
     制御部を備え、前記制御部は、前記空気調和機の周囲に人がいるとき、人がいないときよりも暖房運転の際には圧縮機の回転数を下げて暖房運転を行い、冷房運転の際には、圧縮機の回転数を上げて冷房運転を行う空気調和機。
    An air conditioner,
    When a person is present around the air conditioner, the control section reduces the rotation speed of the compressor to perform heating operation during heating operation as compared to when there is no person. At that time, an air conditioner that performs cooling operation by increasing the rotation speed of the compressor.
  7.  空気調和機であって、
     制御部を備え、前記制御部は、前記空気調和機の周囲の人が多いほど暖房運転の際には圧縮機の回転数を下げて暖房運転を行い、冷房運転の際には圧縮機の回転数を上げて冷房運転を行う、空気調和機。
    An air conditioner,
    A control unit is provided, and the more the number of people around the air conditioner is, the more the control unit reduces the rotation speed of the compressor during the heating operation to perform the heating operation, and the rotation speed of the compressor during the cooling operation. An air conditioner that increases the number and performs cooling operation.
  8.  空気調和機であって、
     サーモセンサと、
     制御部と、を備え、前記制御部は、前記サーモセンサにより検知した空気調和機の周囲の熱量が多いほど暖房運転の際には圧縮機の回転数を低減して暖房運転を行い、冷房運転の際には、冷房運転時の圧縮機の回転数を増加して冷房運転を行う、空気調和機。
    An air conditioner,
    A thermo sensor,
    And a control unit, wherein the control unit performs a heating operation by reducing the rotation speed of the compressor during a heating operation as the amount of heat around the air conditioner detected by the thermosensor increases, thereby performing a cooling operation. In this case, the air conditioner that performs cooling operation by increasing the rotation speed of the compressor during cooling operation.
  9.  空気調和機と通信するための通信インターフェイスと、
     前記通信インターフェイスを介して、前記空気調和機および/またはその他からの情報に基づいて、前記空気調和機の周囲に人がいるとき、前記空気調和機に、人がいないときよりも暖房運転の際には圧縮機の回転数を下げて暖房運転を行い、冷房運転の際には圧縮機の回転数を上げて冷房運転を行わせるためのプロセッサと、を備える、サーバ。
    A communication interface for communicating with the air conditioner,
    Based on information from the air conditioner and/or the other via the communication interface, when there is a person around the air conditioner, when the air conditioner is in heating operation more than when there is no person. A server for lowering the rotation speed of the compressor for heating operation, and for cooling operation, increasing the rotation speed of the compressor for cooling operation.
  10.  空気調和機と通信するための通信インターフェイスと、
     前記通信インターフェイスを介して、前記空気調和機および/またはその他機器からの情報に基づいて、前記空気調和機の周囲に人が多いほど、暖房運転の際には前記空気調和機に、圧縮機の回転数を下げて暖房運転を行い、冷房運転の際には圧縮機の回転数を上げて冷房運転を行わせるためのプロセッサと、を備える、サーバ。
    A communication interface for communicating with the air conditioner,
    Based on the information from the air conditioner and/or other devices via the communication interface, the more people are around the air conditioner, the more the air conditioner is operated during the heating operation, and the more A server for reducing the rotation speed to perform heating operation, and for cooling operation, increasing the rotation speed of the compressor to perform cooling operation.
  11.  空気調和機と通信するための通信インターフェイスと、
     前記通信インターフェイスを介して、前記空気調和機および/またはその他の機器からの情報に基づいて、前記空気調和機に、前記空気調和機の周囲の熱量が多いほど暖房運転の際には圧縮機の回転数を低減して暖房運転を行い、冷房運転の際には、圧縮機の回転数を増加して冷房運転を行わせるためのプロセッサと、を備える、サーバ。
    A communication interface for communicating with the air conditioner,
    Based on information from the air conditioner and/or other devices via the communication interface, the more heat quantity around the air conditioner, the higher the amount of heat around the air conditioner, A server for reducing the number of rotations to perform heating operation, and for cooling operation, increasing the number of rotations of the compressor to perform cooling operation.
PCT/JP2019/045338 2018-11-27 2019-11-20 Air conditioner, and server WO2020110842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221133A JP2022017620A (en) 2018-11-27 2018-11-27 Air conditioner, and server
JP2018-221133 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020110842A1 true WO2020110842A1 (en) 2020-06-04

Family

ID=70853010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045338 WO2020110842A1 (en) 2018-11-27 2019-11-20 Air conditioner, and server

Country Status (2)

Country Link
JP (1) JP2022017620A (en)
WO (1) WO2020110842A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337154A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Infrared rays source detector and dwelling environment control device using the detector
JP2004108698A (en) * 2002-09-19 2004-04-08 Daikin Ind Ltd Energy monitoring system and energy monitoring device
JP2010261617A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioning system
JP2011179749A (en) * 2010-03-01 2011-09-15 Osaka Gas Co Ltd Heat treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337154A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Infrared rays source detector and dwelling environment control device using the detector
JP2004108698A (en) * 2002-09-19 2004-04-08 Daikin Ind Ltd Energy monitoring system and energy monitoring device
JP2010261617A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Air conditioning system
JP2011179749A (en) * 2010-03-01 2011-09-15 Osaka Gas Co Ltd Heat treatment equipment

Also Published As

Publication number Publication date
JP2022017620A (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
US11313577B2 (en) Air-conditioning system, machine learning apparatus, and machine learning method
JP7579818B2 (en) Air conditioner and network system
JP2020193759A (en) Air conditioning system
US20160377312A1 (en) Air conditioning apparatus
JP2017133699A (en) Air conditioning control device, air conditioning control system, air conditioning control method and program
JP6408792B2 (en) Air conditioner, air conditioner control method, and control program for air conditioner
WO2020035908A1 (en) Air-conditioning device, control device, air-conditioning method, and program
JP7420562B2 (en) Air conditioners and servers
JP2022040837A (en) Air conditioner
WO2020110842A1 (en) Air conditioner, and server
CN113728205A (en) Air conditioner, operation control method, and program
JP6562139B2 (en) Refrigeration equipment
WO2018029872A1 (en) Air conditioner
WO2021181486A1 (en) Air conditioning system, air conditioning control device, air conditioning method, and program
JP7319866B2 (en) air conditioning system
JP6220707B2 (en) Air conditioner and air conditioning system
JP7219266B2 (en) air conditioning system
JP2020101349A (en) Air conditioner
JP7458190B2 (en) Air conditioners and air conditioning systems
US11965665B2 (en) Air conditioning system
JP7584285B2 (en) Air Conditioning System
JP2020085332A (en) Air conditioner
JP2021105472A (en) Air conditioner, air conditioning system and server
JP2022082951A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP