[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020110634A1 - Device for measuring glass sheet - Google Patents

Device for measuring glass sheet Download PDF

Info

Publication number
WO2020110634A1
WO2020110634A1 PCT/JP2019/043423 JP2019043423W WO2020110634A1 WO 2020110634 A1 WO2020110634 A1 WO 2020110634A1 JP 2019043423 W JP2019043423 W JP 2019043423W WO 2020110634 A1 WO2020110634 A1 WO 2020110634A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
end surface
measuring device
measuring
dimension
Prior art date
Application number
PCT/JP2019/043423
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 奥
茂 山木
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2020558247A priority Critical patent/JPWO2020110634A1/en
Priority to CN201990001194.3U priority patent/CN215447717U/en
Publication of WO2020110634A1 publication Critical patent/WO2020110634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a glass plate measuring device for measuring shape data of a glass plate including straightness of an end surface of the glass plate.
  • the glass plate manufacturing process includes a cutting process for cutting the glass plate into a predetermined size, and an end face processing process for finishing the cut end face of the glass plate such as chamfering.
  • the glass plate In the end face processing process, the glass plate is positioned with reference to the cut end face, and in various processes after the end face processing process, the glass plate is generally positioned with reference to the finished end face.
  • a shape measurement process for measuring the shape data of the glass plate including the straightness (straightness) of the end face of the glass plate is performed. May be done.
  • the straightness means the magnitude of deviation from a geometrically correct straight line of a straight line shape.
  • the shape data of various glass plates including the straightness of the end faces of the glass plates are often measured in different areas. Therefore, it takes time to move between measurement areas, so that the measurement efficiency is poor, and there is room for improvement from the viewpoint of space saving.
  • the first object of the present invention is to measure the straightness of the end surface of the glass plate easily and reliably.
  • the second object of the present invention is to efficiently measure various shape data including the straightness of the end surface of the glass plate in a small space.
  • the third object of the present invention is to easily and surely measure the shape data of the glass plate and to maintain the measurement accuracy for a long period of time.
  • the first invention devised to solve the above first problem is a glass plate measuring device for measuring the straightness of a rectangular glass plate, the mounting portion on which the glass plate is mounted. Having a table, a distance meter that measures the distance to the end surface of the measurement target of the glass plate placed on the mounting part, and the distance meter along the first direction that is separated from the end surface of the measurement target and the end surface of the measurement target.
  • a holding mechanism that holds the movable unit in the second direction, a straight edge that extends along the second direction, and a copying mechanism that allows the rangefinder held by the holding mechanism to follow the straight edge, To do.
  • the distance to the end surface of the measurement target of the glass plate is measured by the distance meter. Since the rangefinder can be moved in the second direction along the end surface of the measurement target by the holding mechanism, the distance to the end surface of the measurement target of the glass plate can be measured at a plurality of points in the second direction. At this time, since the distance meter moves along the straight edge by the copying mechanism, the position of the distance meter in the first direction away from the end surface of the measurement target becomes constant with the straight edge as a reference. Therefore, the straightness of the end surface of the glass plate can be easily and reliably measured based on the measurement result of the range finder without using advanced image analysis.
  • the distance meter preferably includes a contactor that comes into contact with the end surface of the measurement target, and the contactor is preferably a cylindrical roller.
  • the rangefinder is a contact-type rangefinder in which a contact is brought into contact with the end surface of the measurement target, it is possible to measure up to the end surface of the measurement target as compared with a non-contact type (for example, optical type) distance meter.
  • the distance can be easily measured.
  • the contactor is a rotatable roller, the portion of the contactor that comes into contact with the end surface of the glass plate changes in order with the rotation, and wear of the contactor can be suppressed.
  • the contactor is cylindrical, the displacement of the most protruding portion of the end face is always measured even if the end face of the glass plate is inclined, and the measurement error of the straightness of the end face of the glass plate is reduced.
  • the position of the glass plate can be prevented from shifting when measuring the straightness.
  • a supporting member that extends along the straight edge and supports the weight through the glass plate.
  • the holding mechanism is located between the end surface of the measurement target and the straight edge, and the copying mechanism has an elastic body that brings the holding mechanism to the straight edge.
  • the elastic body moves the holding mechanism closer to the straight edge, so that the position of the rangefinder in the first direction is more stable.
  • the straightness of the end surface of the glass plate can be measured more accurately.
  • the position of the rangefinder in the second direction can be accurately grasped by the scale.
  • a second invention devised to solve the above-mentioned second problem is a glass plate measuring device for measuring shape data of a rectangular glass plate, and a mounting part on which the glass plate is mounted.
  • a table having, a straightness measuring device for measuring the straightness of the end face of the glass plate placed on the placing part, a dimension measuring device for measuring the dimensions of the glass plate placed on the placing part, And a squareness measuring device for measuring a squareness of an end face intersecting at a corner of a glass plate placed on the section.
  • a third invention devised to solve the above-mentioned third problem is a glass plate measuring device for measuring shape data of a glass plate, and a distance for measuring a distance to an end face of a measurement target of the glass plate. It is characterized in that the range finder has a contactor made of a cylindrical roller that comes into contact with the end surface of the glass plate to be measured.
  • the rangefinder is a contact-type rangefinder in which a contact is brought into contact with the end face of the measurement target, the end face of the measurement target is compared to a non-contact type (for example, optical type) rangefinder.
  • a non-contact type for example, optical type
  • the distance to can be easily measured.
  • the contactor is cylindrical, the displacement of the most protruding portion of the end face is always measured even when the end face of the glass plate is inclined, and the measurement error of the distance to the end face of the glass plate is reduced.
  • the contactor is a rotatable roller, the portion of the contactor that comes into contact with the end surface of the glass plate changes in sequence with the rotation, and wear of the contactor can be suppressed. That is, the measurement accuracy can be maintained for a long period of time without frequently changing the contacts.
  • the straightness of the end surface of the glass plate can be measured easily and reliably.
  • the second invention it is possible to efficiently measure the shape data of the glass plate including straightness, dimensions, and squareness in a small space.
  • the shape data of the glass plate can be easily and surely measured and the measurement accuracy can be maintained for a long period of time.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 1 is a cross-sectional view showing an example of a contact state between the straight edge ruler and the roller of the copying mechanism.
  • FIG. 2B is a sectional view taken along line BB of FIG. 1, showing a preparatory step of placing a glass plate on a table using a placing jig.
  • It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is a figure which shows the straightness measuring process which measures the straightness of the end surface of a glass plate. It is a perspective view which shows the state which supported the weight by the support member through the glass plate in the straightness measurement process of FIG.
  • FIG. 13 is a cross-sectional view taken along the line DD in FIG. 12, showing the arrangement of calibration jigs in the calibration process.
  • FIG. 13 is a cross-sectional view taken along the line CC of FIG. 12, showing the positional relationship in the height direction between the support portion of the calibration jig and the glass plate.
  • XYZ in the figure is an orthogonal coordinate system.
  • the X and Y directions are horizontal, and the Z direction is vertical.
  • the glass plate measuring device 1 is a device for measuring the shape data of a rectangular glass plate G.
  • the glass plate measuring device 1 uses, as the shape data, the straightness of at least one of the end faces Ga to Gd of the glass plate G, the vertical and horizontal dimensions (X-direction dimension and Y-direction dimension) of the glass sheet G, and the glass.
  • the squareness of the end faces Ga to Gd intersecting at at least one of the corners G1 to G4 of the plate G is measured. That is, the glass plate measuring device 1 includes a straightness measuring device, a dimension measuring device, and a squareness measuring device.
  • the glass plate measuring device 1 basically includes a table 2 having a mounting portion 2x on which the glass plate G is mounted.
  • the glass plate G is mounted on the mounting portion 2x of the table 2 such that the end surfaces Ga and Gb are substantially parallel to the X direction and the end surfaces Gc and Gd are substantially parallel to the Y direction.
  • the thickness of the glass plate G is, for example, 0.2 to 10 mm, and the size of the glass plate G is, for example, 700 mm ⁇ 700 mm to 3000 mm ⁇ 3000 mm.
  • the glass plate G is manufactured by a known method such as a down draw method (for example, an overflow down draw method) or a float method.
  • the glass plate G is used, for example, as a substrate of a flat panel display such as a liquid crystal display or a cover glass such as a touch panel.
  • the mounting portion 2x may be formed of a single plane or a plurality of planes, but in the present embodiment, the first ridge portion 2a and the second ridge portion having a long contact portion that comes into contact with the glass plate G. It has a part 2b.
  • the contact portion of the first ridge portion 2a extends along the pair of opposed end surfaces Ga and Gb of the glass plate G, that is, along the X direction, and the contact portion of the second ridge portion 2b faces the glass plate G.
  • the contact portion of the first ridge portion 2a becomes elongated along the X direction, and therefore, when the glass plate G is moved along the X direction, the first ridge portion 2a does not contact the glass plate G. On the other hand, it does not become a great resistance. Therefore, it is possible to smoothly move (slide) the glass plate G in the X direction while the glass plate G is supported from below by the first ridge portion 2a.
  • the contact portion of the second ridge portion 2b is elongated along the Y direction, the second ridge portion 2b is larger than the glass plate G when the glass plate G is moved along the Y direction. I can't resist.
  • the glass plate G can be smoothly moved in two different X and Y directions for easy positioning.
  • the plurality of first ridge portions 2a are provided at a plurality of locations in the Y direction with a spacing in the X direction
  • the second ridge portions 2b are provided at a plurality of locations in the X direction with a spacing in the Y direction.
  • the first ridge portions 2a and the second ridge portions 2b are scattered on the table 2 at intervals so that the glass plate G can be supported in a stable posture.
  • the first ridge portion 2a and the second ridge portion 2b are detachably fixed to the table 2 by fasteners (not shown) such as screws. Therefore, any member of the plurality of ridges 2a and 2b can be individually replaced.
  • the arrangement of the first ridge portions 2a and the second ridge portions 2b is not particularly limited and may be, for example, a regular arrangement such as a grid pattern or a zigzag pattern. It may be a regular array.
  • the longitudinal direction of the contact portion of the first ridge portion 2a and the longitudinal direction of the contact portion of the second ridge portion 2b are not limited to the X direction and the Y direction, and may be directions different from each other.
  • another ridge portion having a long contact portion may be further provided along a direction different from the ridge portions 2a and 2b (for example, a direction having an angle of 45° with the X direction).
  • the cross-sectional shape of the first ridge portion 2a in the lateral direction is trapezoidal in consideration of the posture stability of the first ridge portion 2a on the table 2. That is, the first ridge portion 2a is wider on the bottom portion 2aa side than on the upper portion 2ab side, and is fixed to the table 2 in a state where the bottom portion 2aa is grounded to the table 2.
  • the upper portion 2ab (contact portion with the glass plate G) of the first ridge portion 2a may be a flat surface or a curved surface.
  • the upper portion 2ab of the ridge portion 2a may be formed in a linear shape by narrowing the width in the lateral direction.
  • the cross-sectional shape of the first ridge portion 2a in the lateral direction is, for example, a triangle. It can be shaped.
  • the cross-sectional shape of the first ridge portion 2a in the lateral direction is not particularly limited, and various changes can be made.
  • the first ridge portion 2a can adopt a sectional shape as shown in, for example, FIGS. 3A to 3D.
  • the first ridge portion 2a has a trapezoidal tip portion (on the side of the glass plate G) and a rectangular base portion (on the side of the table 2).
  • FIG. 3B the first ridge portion 2a has a semicircular shape whose tip portion forms a convex curved surface.
  • FIG. 3A the first ridge portion 2a has a trapezoidal tip portion (on the side of the glass plate G) and a rectangular base portion (on the side of the table 2).
  • the first ridge portion 2a has a semicircular shape whose tip portion forms a convex curved surface.
  • the first ridge portion 2a has a U shape having two ridges arranged in parallel.
  • the first ridge 2a may be brush-shaped, that is, the first ridge 2a may be a brush.
  • the cross-sectional shape of the second ridge portion 2b in the lateral direction (X direction) is not particularly limited, but may be the same as the cross-sectional shape of the first ridge portion 2a in the lateral direction (Y direction). Can be adopted.
  • the contact portion of the first ridge portion 2a and the contact portion of the second ridge portion 2b are preferably made of resin such as nylon. In this way, the glass plate G becomes slippery on the ridges 2a and 2b.
  • the entire first protrusion 2a and the second protrusion 2b are made of resin.
  • the longitudinal dimension (X-direction dimension) of the contact portion of the first ridge portion 2a and the longitudinal dimension (Y-direction dimension) of the contact portion of the second ridge portion 2b are, for example, 0.2 to 20 mm. Is preferred.
  • the short-side dimension (Y-direction dimension) of the contact portion of the first ridge portion 2a and the short-side dimension (X-direction dimension) of the contact portion of the second ridge portion 2b are, for example, 5 to 400 mm. Preferably.
  • the mounting portion 2x further includes a plurality of columnar protrusions 2c.
  • the projection 2c supports the glass plate G from below at its tip.
  • the tip of the protrusion 2c may be provided with a float mechanism for facilitating the positioning of the glass plate G, but in the present embodiment, it is composed of a spherical roller.
  • the protrusions 2c are scattered on the table 2 at intervals.
  • the arrangement mode of the protrusions 2c is not particularly limited, and may be, for example, a regular array such as a grid pattern or a zigzag pattern, or an irregular array.
  • the tip of the protrusion 2c may be a non-rolling body, and may have any shape such as a convex curved surface or a flat surface.
  • the glass plate measuring device 1 has a rangefinder 3, a holding mechanism 4, and a straightedge 5 as a configuration for measuring the straightness (straightness) of the end faces Ga to Gd of the glass plate G. And a copying mechanism 6 on the table 2.
  • the straightness means the magnitude of deviation from a geometrically correct straight line of a straight line shape.
  • the distance meter 3 measures the distance to the end surface Ga of the glass plate G placed on the mounting portion 2x of the table 2, that is, the displacement of the end surface Ga of the glass plate G from the reference position.
  • the reference position is set to the positions of both end portions in the X direction of the end surface Ga of the glass plate G. That is, the distance meter 3 is calibrated and the mounting position of the glass plate G is adjusted so that the measured value of the distance meter 3 is zero at both ends of the end surface Ga of the glass plate G in the X direction.
  • the distance meter 3 is a contact type distance meter (for example, a dial gauge) including a contactor 3a that contacts the end surface Ga of the measurement target, and a spindle 3b that holds the contactor 3a so as to be movable back and forth in the Y direction.
  • the contactor 3a is a cylindrical roller that rolls while contacting the end surface Ga of the glass plate G (see FIG. 8 described later). Further, the contactor 3a is biased toward the end surface Ga of the measurement target and can follow the end surface Ga of the measurement target.
  • the contactor 3a is, for example, a rolling element (for example, a spherical roller) having a shape other than a cylindrical shape, or a non-rolling element that slides on the end surface Ga of the glass plate G (for example, a needle-shaped member or a cylindrical member). May be
  • the holding mechanism 4 holds the rangefinder 3 so as to be movable in the Y direction (direction away from the end surface Ga of the glass plate G) and the X direction (direction along the end surface Ga of the glass plate G).
  • the holding mechanism 4 includes a first stage 4b movable in the X direction along a rail 4a provided on the table 2 and a first stage 4b movable in the Y direction along a rail 4c provided on the first stage 4b. And two stages 4d.
  • the first stage 4b can be moved in the X direction manually or automatically.
  • the distance meter 3 is attached on the second stage 4d.
  • the moving direction of the second stage 4d is parallel to the Y direction, it may have an angle with respect to the Y direction.
  • the holding mechanism 4 is provided on the table 2 and further includes a scale 4e indicating the position of the distance meter 3 in the X direction.
  • a scale 4e indicating the position of the distance meter 3 in the X direction.
  • predetermined marks indicating the measurement positions of the rangefinder 3 are provided on the scale 4e at equal intervals.
  • the scale 4e may be arranged at any position on the straightedge 5, for example.
  • the scale 4e may be omitted.
  • the straight edge 5 is provided on the table 2 along the X direction.
  • the straightness of the straightedge 5 is measured and recorded in advance.
  • the copying mechanism 6 is a mechanism for aligning the distance meter 3 attached to the holding mechanism 4 with the straightedge 5.
  • the copying mechanism 6 includes a pressing member 6a and a spring 6b.
  • the pressing member 6a has a base end attached to the second stage 4d, and a tip end coming into contact with the straight edge 5.
  • the spring 6b is provided between the first stage 4b and the second stage 4d so as to draw the second stage 4d toward the straight edge 5 side. Since the pressing member 6a is pressed against the straight edge ruler 5 by the pulling force of the spring 6b, the position of the range finder 3 in the X direction is stabilized.
  • the spring 6b may be provided so as to be pushed toward the straight edge 5 side by pushing the second stage 4d.
  • the spring 6b may be another elastic body such as rubber or may be omitted.
  • the pressing member 6a has a cylindrical roller 6c at its tip.
  • the straight edge ruler 5 includes a concave guide groove 5a that receives the roller 6c. That is, the roller 6c rolls on the straight edge ruler 5 while being received in the guide groove 5a.
  • the straightness of the straightedge 5 is measured and recorded in advance.
  • the tip of the pressing member 6a is, for example, a rolling element having a shape other than a cylindrical shape (for example, a spherical roller) or a non-rolling element that slides on the straight ruler 5 (for example, a spherical member or a cylindrical member). It may be.
  • the glass plate measuring device 1 has a first pin 7, a second pin 8 and a first size measuring instrument as a configuration for measuring the X-direction dimension and the Y-direction dimension of the glass plate G. 9 and the second dimension measuring device 10 are provided on the table 2.
  • the first pin 7 comes into contact with the end surface Gc of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the Y direction.
  • the second pin 8 comes into contact with the end surface Ga of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the X direction. That is, the second pin 8 comes into contact with the end face Ga that intersects the end face Gc with which the first pin 7 comes into contact at a substantially right angle.
  • the first dimension measuring device 9 measures the dimension between the end faces Gc and Gd substantially parallel to the Y direction, that is, the dimension (first dimension) of the glass plate G in the X direction.
  • the second dimension measuring device 10 measures the dimension between the end faces Ga and Gb substantially parallel to the X direction, that is, the Y dimension (second dimension) of the glass plate G.
  • the first dimension measuring device 9 is a contact type distance meter (for example, a dial gauge) including a contactor 9a that comes into contact with the end surface Gd and a spindle 9b that holds the contactor 9a so that it can move back and forth in the X direction.
  • the second dimension measuring device 10 includes a contactor 10a that contacts the end surface Gb, and a spindle 10b that holds the contactor 10a so that it can move back and forth in the Y direction.
  • the contacts 9a and 10a are cylindrical non-rolling elements.
  • the contacts 9a and 10a may be, for example, non-rolling bodies (for example, spherical members or needle-shaped members) having shapes other than the cylindrical shape, or rolling bodies (for example, cylindrical rollers or spherical rollers).
  • the first dimension measuring instrument 9 is provided on the first position adjusting mechanism F capable of adjusting the position in the X direction. As a result, the position of the first dimension measuring instrument 9 can be easily changed so that the glass sheets G having different dimensions can be measured. Further, when measuring other shape data other than the dimensions of the glass plate G, the first dimension measuring instrument 9 can be retracted to a position that does not interfere.
  • the first position adjusting mechanism F is not particularly limited as long as it can adjust the position of the first dimension measuring instrument 9 in the X direction, but in the present embodiment, the first rail Fa provided on the table 2 and the first rail Fa. , A first slider Fb movable in the X direction along the first rail Fa. The first slider Fb can be moved in the X direction manually or automatically.
  • a first dimension measuring meter 9 is attached on the first slider Fb.
  • the second dimension measuring device 10 is provided on the second position adjusting mechanism S whose position in the Y direction can be adjusted. Thereby, the position of the second dimension measuring instrument 10 can be easily changed so that the glass plates G having different dimensions can be measured. Further, when measuring shape data other than the dimensions of the glass plate G, the second dimension measuring instrument 10 can be retracted to a position where it does not interfere.
  • the second position adjusting mechanism S is not particularly limited as long as it can adjust the position of the second dimension measuring instrument 10 in the Y direction, but in the present embodiment, the second rail Sa provided on the table 2 and the second rail Sa are provided. , And a second slider Sb movable in the Y direction along the second rail Sa. The second slider Sb can be manually or automatically moved in the Y direction.
  • the second dimension measuring instrument 10 is attached on the second slider Sb.
  • Two sets of the first pin 7 and the first dimension measuring instrument 9 are provided, and two sets of the second pin 8 and the second dimension measuring instrument 10 are provided. That is, the X-direction dimension and the Y-direction dimension of the glass plate G are measured at two locations.
  • the X-direction dimension and the Y-direction dimension may be average values at two points.
  • the pair of the first pin 7 and the contactor 9a of the first dimension measuring device 9 face each other in the X direction. That is, the first pin 7 and the contactor 9a of the first dimension measuring instrument 9 forming the set have substantially the same Y-direction position.
  • the second pin 8 and the contactor 10a of the second dimension measuring instrument 10 forming a pair are directly opposed in the Y direction. That is, the second pin 8 and the contact 10a of the second dimension measuring instrument 10 forming the set have substantially the same X-direction position.
  • the first pin 7 and the second pin 8 are detachably held on the table 2.
  • engagement holes (not shown) for holding the pins 7 and 8 are provided on the table 2.
  • the engagement holes are preferably provided at a plurality of positions on the table 2 so that the mounting positions of the pins 7 and 8 can be adjusted when the size of the glass plate G is changed.
  • first pin 7 and the first dimension measuring meter 9 forming the set, and the second pin 8 and the second dimension measuring meter 10 forming the pair is omitted, and either the first dimension or the second dimension is omitted.
  • the configuration may be such that only one of them is measured. From the viewpoint of efficiently measuring the longitudinal dimension and the lateral dimension of the glass plate G, both the first pin 7 and the first dimension measuring instrument 9 forming a set, and the second pin 8 and the second dimension measuring instrument 10 forming the pair are both included. Is preferably provided.
  • the glass plate measuring device 1 has a first pin 11, a second pin 12, a range finder 13, and a distance meter 13 as a configuration for measuring the squareness of the end surfaces Ga to Gd of the glass plate G. Is provided on the table 2.
  • Reference numeral 14 in the figure is a calibration rangefinder for calibrating the rangefinder 13.
  • the first pin 11 is configured to come into contact with an end surface Gc (first end surface) of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the Y direction.
  • the second pin 12 comes into contact with an end surface Gb (second end surface) of the glass plate G mounted on the mounting portion 2x of the table 2 substantially parallel to the X direction. That is, the first pin 11 and the second pin 12 are respectively in contact with the end faces Gc, Gb intersecting at the corner G1 which is the target of measuring the squareness.
  • the first pin 11 is composed of a pair of pins provided at intervals in the Y direction
  • the second pin 12 is composed of a single pin provided only in the X direction.
  • the end surface Gc is held in parallel with the straight line connecting the pair of first pins 11 by coming into contact with the pair of first pins 11. That is, the end surface Gc is held with a predetermined inclination set in advance.
  • the second pin 12 contacts the end surface Gb while maintaining such inclination of the end surface Gc. Thereby, the glass plate G is positioned by the total of three points of the pair of first pin 11 and second pin 12.
  • the first pin 11 and the second pin 12 are detachably held on the table 2.
  • engagement holes (not shown) for holding the pins 11 and 12 are provided on the table 2.
  • the engagement holes are preferably provided at a plurality of positions on the table 2 so that the mounting positions of the pins 11 and 12 can be adjusted when the size of the glass plate G is changed. ..
  • the range finder 13 has a reference position (indicated by a one-dot chain line in FIG. 11) where the end surface Gb is located when the end surface Gc and the end surface Gb of the glass plate G positioned by the first pin 11 and the second pin 12 are at right angles. The displacement of the actual position of the end surface Gb (refer to the position) (deviation in the Y direction from the reference position) is measured.
  • the distance meter 13 is a contact type distance meter (for example, a dial gauge) including a contactor 13a that contacts the end surface Gb and a spindle 13b that holds the contactor 13a so as to be movable back and forth in the Y direction.
  • the contact 13a is a cylindrical non-rolling body.
  • the contactor 13a may be, for example, a non-rolling element (for example, a spherical member or a needle-shaped member) having a shape other than a cylindrical shape, or a rolling element (for example, a cylindrical roller or a spherical roller).
  • the distance meter 13 contacts the end surface Gb at a position different from the position where the second pin 12 contacts the end surface Gb. In the present embodiment, the distance meter 13 contacts the end surface Gb between the position where the second pin 12 contacts the end surface Gb and the position where the end surface Gb intersects the end surface Gc.
  • the calibration distance meter 14 also includes a contact type distance meter including a contactor 14a that contacts the end surface Gb and a spindle 14b that holds the contactor 14a so as to be movable back and forth in the Y direction (for example, Dial gauge).
  • the calibration distance meter 14 contacts the end surface Gb at a position different from the position where the second pin 12 and the distance meter 13 contact the end surface Gb.
  • the calibration distance meter 14 contacts the end surface Gb between the position where the second pin 12 contacts the end surface Gb and the position where the distance meter 13 contacts the end surface Gb. ..
  • the distance meters 13 and 14 are held by a holding mechanism (for example, a slide mechanism) so as to be movable in the Y direction. Thereby, when measuring shape data other than the squareness of the glass plate G, the rangefinders 13 and 14 can be retracted to a position where they do not interfere. Further, when the size of the glass plate G is changed, the positions of the distance meters 13 and 14 can be easily adjusted.
  • a holding mechanism for example, a slide mechanism
  • the glass plate measuring apparatus 1 includes a mounting jig 15 that supports the glass plate G from below as a configuration for mounting the glass plate G on the mounting portion 2x of the table 2.
  • the mounting jig 15 is a ladder-shaped member having an opening 15a through which the ridges 2a and 2b and the protrusion 2c of the table 2 can be inserted.
  • the mounting jig 15 is mounted on the table 2 after the glass plate G is transferred from the mounting jig 15 to the ridges 2a and 2b and the protrusion 2c.
  • the ridges 2a and 2b and/or the protrusion 2c may be provided outside the opening 15a in addition to inside the opening 15a as long as they do not interfere with the mounting jig 15.
  • the mounting jig 15 may be, for example, a lattice-shaped member, and may have any shape having an opening through which the protrusions 2a and 2b and the protrusion 2c can be inserted.
  • the glass plate measuring method includes a preparatory step of mounting the glass plate G on the mounting portion 2x of the table 2, a straightness measuring step of measuring straightness of an end surface of the glass plate G, and a glass plate G.
  • a dimension measurement step of measuring the vertical and horizontal dimensions of the and the squareness measurement step of measuring the squareness of the end surface of the glass sheet G are provided in this order.
  • the order of these steps after the preparation step may be interchanged, for example, the dimension measuring step, the straightness measuring step, and the squareness measuring step may be performed in this order.
  • the glass plate G is placed on the placing jig 15 and carried to a position above the table 2 (a state indicated by a chain line in the figure).
  • the mounting jig 15 is lowered from this state, and the projections 2a and 2b and the protrusion (spherical roller) 2c of the mounting portion 2x of the table 2 are inserted into the opening 15a of the mounting jig 15.
  • the glass plate G mounted on the mounting jig 15 is pushed up by the ridges 2a and 2b and the protrusion 2c, and the glass plate G is moved from the mounting jig 15 to the ridges 2a and 2b and the protrusions. It is transferred to the section 2c.
  • the mounting jig 15 is lower than the ridges 2a and 2b and the protrusion 2c in a state of being mounted on the table 2. Therefore, after the glass plate G is transferred from the mounting jig 15 to the ridges 2a and 2b and the protrusion 2c, the mounting jig 15 can be mounted on the table 2 and accommodated.
  • the glass plate G supported by the mounting portion 2x is positioned.
  • the glass plate G is positioned so that one end in the X direction and the other end in the X direction of the end surface Ga of the glass plate G are located at predetermined reference positions. Specifically, at the first position P1 and the second position P2 for measuring both ends of the end surface Ga in the X direction, the glass plate G is placed so that the displacement from the reference position measured by the distance meter 3 becomes zero. Position.
  • the rangefinder 3 when the rangefinder 3 is moved between the first position P1 and the second position P2, in order to prevent wear of the contactor 3a of the rangefinder 3, It is preferable that 3a is retracted from the end surface Ga of the glass plate G.
  • the weight 16 is placed on the glass plate G so that the glass plate G does not move.
  • the distance measuring device 3 while checking the position with the scale 4e, the distance measuring device 3 is moved by a predetermined distance in the X direction by the holding mechanism 4, and the straightness of the end surface Ga of the glass plate G is measured. The weight 16 is removed from the glass plate G when the straightness measuring step is completed.
  • the weight 16 placed on the glass plate G is arranged near the end surface Ga of the glass plate G and along the end surface Ga (that is, the straight edge 5).
  • a support member 17 that extends along the end surface Ga (that is, the straight edge 5) and supports the weight 16 through the glass plate G is arranged on the table 2 near the end surface Ga of the glass plate G.
  • the straightness measuring step it is preferable to remove the pins 7, 8, 11 and 12 from the table 2 and retract the dimension measuring instruments 9 and 10 and the distance measuring instruments 13 and 14 to positions that do not interfere.
  • Examples of the retracting method of the dimension measuring instruments 9 and 10 and the distance measuring devices 13 and 14 include a method of retracting the entire dimension measuring instruments 9 and 10 and the distance measuring devices 13 and 14 to the retracted position, and contactors 9a and 10a. , 13a, 14a are retracted to the retracted position (state of FIG. 6).
  • the contactor 3a of the distance meter 3 is a cylindrical roller and rolls while contacting the end surface Ga of the glass plate G.
  • the portion of the contactor 3a that contacts the end surface Ga of the glass plate G sequentially changes, so that wear of the contactor 3a can be suppressed.
  • the contactor 3a is cylindrical, even if the end surface Ga of the glass plate G is inclined, the displacement of the most protruding portion of the end surface Ga is always measured. Therefore, the measurement error of the straightness by the distance meter 3 becomes small.
  • the rotation axis of the contactor 3a is substantially parallel to the thickness direction (Z direction) of the glass plate G.
  • the displacement (straightness) of the end surface Ga of the glass plate G measured by the rangefinder 3 is a straight line. It is affected by the straightness of ruler 5. Therefore, the difference (S1-S2) between the measured straightness S1 of the end surface Ga of the glass plate G and the straightness S2 of the known straightedge 5 is recorded as the final straightness of the end surface Ga of the glass plate G. To be done.
  • the end surface Ga of the glass plate G After the straightness of the end surface Ga of the glass plate G is measured, it is preferable to measure the end surface Ga of the glass plate G again with the range finder 3 at the positions P1 and P2 to check whether the glass plate G is displaced. That is, if the displacement from the reference position measured by the distance meter 3 at both positions P1 and P2 is zero, it can be confirmed that the glass plate G is not displaced before and after the measurement.
  • the straightness of the end surface Ga of the glass plate G is measured has been illustrated above, it is preferable to measure the straightness of each of the four end surfaces Ga to Gd of the glass plate G.
  • the orientation of the glass plate G with respect to the table 2 is changed by the mounting jig 15 or other means, and the straightness of the remaining end surfaces Gb to Gd is adjusted. Perform the same procedure.
  • the straightness of each of the four end faces Ga to Gd of the glass plate G is measured, for example, in the end face processing step included in the manufacturing process of the glass plate G, based on the straightness of each end face Ga to Gd of the glass plate G, The position of the processing tool can be adjusted accurately. Therefore, it becomes easy to process each of the end surfaces Ga to Gd of the glass plate G with a constant grinding amount.
  • the method of adjusting the position of the working tool based on such straightness can also be applied to the case of performing constant pressure grinding.
  • the first pin 7 and the second pin 8 are brought into contact with the end surfaces Ga and Gc of the glass plate G to position the glass plate G supported by the mounting portion 2x. ..
  • the contactors 9a, 10a of the dimension measuring instruments 9, 10 are brought into contact with the end faces Gb, Gd of the glass plate G, and the X-direction dimension and the Y-direction dimension of the glass plate G are measured. Since the contactors 9a and 10a of the dimension measuring instruments 9 and 10 are cylindrical, the positions of the most protruding portions of the end faces Gb and Gd of the glass plate G are measured, like the contactor 3a of the distance meter 3.
  • the X-direction dimension and the Y-direction dimension of the glass plate G may be measured at the same time or separately.
  • the first pin 7 is brought into contact with the end surface Gc of the glass plate G
  • the dimension of the glass plate G in the X direction is measured by the first dimension measuring instrument 9, and then the first pin 7 is measured.
  • the contact between the first dimension measuring instrument 9 and the glass sheet G is released, the second pin 8 is brought into contact with the end surface Ga of the glass sheet G, and the dimension of the glass sheet G in the Y direction is measured by the second dimension measuring instrument 10.
  • the second dimension measuring instrument 10 is measured.
  • each of the X-direction dimension and the Y-direction dimension is measured at two points, but the number of pairs of pins and the dimension measuring device that faces them can be appropriately changed. That is, each of the X-direction dimension and the Y-direction dimension may be measured at only one place, or may be measured at three or more places.
  • the distance meters 3, 13, 14 it is preferable to retract the distance meters 3, 13, 14 to a position that does not interfere with them.
  • Examples of the method of retracting the rangefinders 3, 13, 14 include a method of retracting the entire rangefinders 3, 13, 14 to the retracted position, or a method of retracting only the contacts 3a, 13a, 14a to the retracted position. (State of FIG. 9) and the like.
  • the perpendicularity measuring step first, the first pin 11 and the second pin 12 are brought into contact with the end faces Gb and Gc of the glass plate G to position the glass plate G supported by the mounting portion 2x. To do. In this state, the contact 13a of the distance meter 13 is brought into contact with the end surface Gb of the glass plate G, and the displacement (displacement in the Y direction) from the reference position of the end surface Gb is measured. Since the contactor 13a of the distance meter 13 has a cylindrical shape, the position of the most protruding portion of the end surface Ga of the glass plate G is measured, like the contactor 3a of the distance meter 3.
  • the displacement measured by the distance meter 13 is converted into the inclination of the end surface Gb with respect to the vertical surface of the end surface Gc, and this inclination indicates the squareness.
  • d1 is the displacement in the Y direction measured by the distance meter 13
  • d2 is the distance in the X direction between the known distance meter 13 and the second pin 12
  • d3 is the known X direction dimension of the glass plate G. (Design value).
  • the inclination of the end surface Gb with respect to the vertical surface of the end surface Gc may be automatically calculated by a calculation device from the displacement measured by the distance meter 13, or may be converted into an inclination by the displacement measured by the distance meter 13.
  • the table may be created in advance and read from the conversion table.
  • the retracting method of the distance meters 3, 14 and the dimension measuring instruments 9, 10 include, for example, a method of retracting the entire distance measuring instruments 3, 14 and the dimension measuring instruments 9, 10 to the retracted position, and the contactors 3a, 9a. , 10a, 14a are retracted to the retracted position (state of FIG. 10).
  • the glass plate measuring method calibrates the first calibrating step for calibrating the dimension measuring instruments 9 and 10 used in the dimension measuring step and the range finder 13 used for squareness measurement before the preparing step. And a second calibration step. These calibration steps may be performed every time the glass plate G is measured, or may be performed after the glass plate G is measured a predetermined number of times or a predetermined time. Moreover, you may implement when the size of the glass plate G of a measuring object changes. Of course, only the first calibration step may be performed, or only the second calibration step may be performed.
  • the rod-shaped first calibration jig 18 is used to calibrate the first dimension measuring instrument 9, and the rod-shaped second calibration jig 19 is used to perform the second calibration.
  • FIG. 12 shows a state in which the first dimension measuring instrument 9 is calibrated by using the first calibration jig 18 by a solid line, and a state in which the second dimension measuring instrument 10 is calibrated by using the second calibration jig 19 is indicated by a chain line. Shows. The calibration of the first dimension measuring instrument 9 and the calibration of the second dimension measuring instrument 10 are performed separately.
  • the lengths of the first calibration jig 18 and the second calibration jig 19 are known.
  • the length of the first calibration jig 18 is set to the reference dimension (design dimension) of the X-direction dimension of the glass plate G
  • the length of the second calibration jig 19 is the glass plate G. Is set to the reference dimension (design dimension) of the Y-direction dimension.
  • the calibration jigs 18 and 19 themselves are preferably calibrated regularly (for example, about once a year).
  • one end of the first calibration jig 18 is brought into contact with the first pin 7, and the other end of the first calibration jig 18 is brought into contact with the contact 9a of the first dimension measuring instrument 9.
  • one end of the second calibration jig 19 is brought into contact with the second pin 8 and the other end of the second calibration jig 19 is brought into contact with the contact 10a of the second dimension measuring instrument 10.
  • the reference position (for example, the zero point) of the first dimension measuring device 9 is calibrated to a position where the contact 9a contacts the first calibration jig 18, and the reference position (for example, the zero point) of the second dimension measuring device 10 is the contact member. 10a is calibrated at a position where it contacts the second calibration jig 19.
  • the first dimension measuring instrument 9 measures the displacement of the end surface Gd of the glass plate G from the reference position
  • the second dimension measuring instrument 10 measures the displacement of the end surface Gb of the glass sheet G from the reference position. taking measurement. That is, the sum of the reference dimension in each direction and the measured displacement (negative displacement when shorter than the reference dimension, positive displacement when longer than the reference dimension) is the dimension of the glass plate G in the X direction and the Y direction. Recorded as dimensions. Therefore, if the reference positions of the dimension measuring instruments 9 and 10 are calibrated as described above, the measurement accuracy of the X-direction dimension and the Y-direction dimension is improved.
  • the first calibration jig 18 includes a small diameter portion 18a and a large diameter portion 18b having a diameter larger than that of the small diameter portion 18a.
  • the second calibration jig 19 includes a small diameter portion 19a and a large diameter portion 19b having a diameter larger than that of the small diameter portion 19a.
  • the material of the small diameter portions 18a, 19a and the large diameter portions 18b, 19b is not particularly limited, but in the present embodiment, the small diameter portions 18a, 19a are made of metal, and the large diameter portions 18b, 19b are made of rubber. Is formed by.
  • a first support portion 20 that supports the large diameter portion 18b of the first calibration jig 18 and a second support portion 21 that supports the large diameter portion 19b of the second calibration jig 19 are provided. There is. Semi-cylindrical concave grooves are formed on the upper surfaces of the supporting portions 20 and 21 to support the cylindrical large diameter portions 18b and 19b.
  • the first supporting portion 20 and the second supporting portion 21 are lower than the placing portion 2x of the table 2, that is, the protruding portions 2a and 2b and the protruding portion 2c. As a result, as shown in FIG. 14, the supporting portions 20 and 21 do not come into contact with the glass plate G placed on the placing portion 2x when the calibration work is not performed.
  • the calibration having the first proof surface 22a and the second proof surface 22b which can be in contact with the first pin 11 and the second pin 12 and which are perpendicular to each other.
  • Jig 22 for example, a squarer
  • a calibration rangefinder 14 that measures the displacement of the position of the second assurance surface 22b from the reference position with the first assurance surface 22a in contact with the first pin 11. Is used to calibrate the range finder 13. It is preferable that the calibration jig 22 itself is also calibrated regularly (for example, about once a year).
  • the distance meter 13 and the calibration distance meter 14 of the second assurance surface 22b of the calibration jig 22 are The calibration jig 22 is moved to the second pin 12 side (Y direction) while confirming that the numerical values match.
  • the second assurance surface 22b of the calibration jig 22 can be brought into contact with the second pin 12 while the calibration jig 22 is maintained in the correct posture.
  • the calibration jig 22 can be installed easily and accurately.
  • the distance meter 13 can be correctly calibrated by measuring the position of the second assurance surface 22b of the calibration jig 22 thus installed with the distance meter 13 and correcting the reference position (zero point).
  • the calibration rangefinder 14 may be detached from the table 2 and retracted, instead of being retracted by the method described above.
  • the glass plate measuring method according to the present embodiment is carried out, for example, in the glass plate manufacturing process.
  • the glass plate manufacturing process includes a forming process for forming a glass plate, a cutting process for cutting the formed glass plate into a predetermined size, and an end face processing process for performing a finishing process such as chamfering on the cut end face of the glass plate.
  • Including and The glass plate measuring method is performed, for example, after the cutting step and/or the end surface processing step.
  • a measurement sample of the glass plate measuring method one or more glass plates are extracted from the glass plates in the process of production.
  • the drawn glass plate (measurement sample) is discarded after the shape data is measured and reused as, for example, cullet.
  • the shape data including the straightness of the end face, the vertical and horizontal dimensions, and the squareness of the end face of the glass plate G can be obtained without using advanced image processing or the like. Easy and reliable measurement. Further, since all of these shape data of the glass plate G can be measured on the mounting portion 2x, space saving can be achieved. Furthermore, since the glass plate G is supported by the ridges 2a and 2b and the protrusion 2c, even if the glass plate G has a large size, its positioning can be realized easily and at low cost.
  • the mounting portion 2x of the table 2 has been described as including the protruding portions 2a and 2b and the protruding portion 2c formed of a spherical roller.
  • the mounting portion 2x is particularly configured.
  • the present invention is not limited to this, and may have a configuration including only one of the protrusions 2a and 2b and the protrusion 2c.
  • the straightness of the end face of the glass plate G is intermittently measured at a plurality of positions on the end face has been described, but the straightness may be continuously measured at the end face.
  • the dimension of the glass plate G may be measured at one point on the end face, or at three or more points or along the end face. It may be measured continuously.
  • the shape data is not limited to this.
  • the shape data may include only straightness, or may include dimensions or squareness in addition to straightness.
  • other data such as the thickness and warpage of the glass plate G may be included.
  • the rangefinders 3, 13, 14 and the dimension measuring instruments 9, 10 may be non-contact type rangefinders such as an optical type (for example, a laser rangefinder).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

A device 1 for measuring a glass sheet measures shape data including the straightness of a rectangular glass sheet G, wherein the device 1 for measuring a glass sheet is provided with: a table 2 having a mounting section 2x on which the glass sheet G is placed; a distance meter 3 for measuring the distance to an end surface to be measured of the glass sheet G placed on the mounting section 2x; a holding mechanism 4 for holding the distance meter 3 so that the distance meter 3 is movable in a first direction in which the distance meter 3 moves away from the end surface Ga to be measured and in a second direction along the end surface Ga to be measured; a straightedge 5 extending in the second direction; and a follower mechanism 6 for aligning the distance meter 3, which is held by the holding mechanism 4, along the straightedge 5.

Description

ガラス板測定装置Glass plate measuring device
 本発明は、ガラス板の端面の真直度を含むガラス板の形状データを測定するガラス板測定装置に関する。 The present invention relates to a glass plate measuring device for measuring shape data of a glass plate including straightness of an end surface of the glass plate.
 ガラス板の製造工程には、ガラス板を所定サイズに切断する切断工程や、ガラス板の切断された端面に対して面取りなどの仕上げ加工を施す端面加工工程が含まれる。 The glass plate manufacturing process includes a cutting process for cutting the glass plate into a predetermined size, and an end face processing process for finishing the cut end face of the glass plate such as chamfering.
 端面加工工程では、切断された端面を基準としてガラス板が位置決めされ、端面加工工程の後の各種工程では、仕上げ加工された端面を基準としてガラス板が位置決めされるのが一般的である。 In the end face processing process, the glass plate is positioned with reference to the cut end face, and in various processes after the end face processing process, the glass plate is generally positioned with reference to the finished end face.
 したがって、例えば、正確な位置決めを実施するなどの目的で、切断工程や端面加工工程の後に、ガラス板の端面の真直度(直進度)を含むガラス板の形状データを測定する形状測定工程が実施される場合がある。ここで、真直度は、直線形状の幾何学的に正しい直線からの狂いの大きさを意味する。 Therefore, for example, for the purpose of performing accurate positioning, after the cutting process and the end face processing process, a shape measurement process for measuring the shape data of the glass plate including the straightness (straightness) of the end face of the glass plate is performed. May be done. Here, the straightness means the magnitude of deviation from a geometrically correct straight line of a straight line shape.
 ガラス板の検査方法の一つとして、ガラス板の端面を上方からカメラで撮像し、その撮像された画像を解析する方法が挙げられる(例えば、特許文献1を参照)。 As one of the glass plate inspection methods, there is a method of taking an image of the end surface of the glass plate from above with a camera and analyzing the imaged image (see, for example, Patent Document 1).
特開2018-112411号公報Japanese Patent Laid-Open No. 2018-112411
 ガラス板の端面の真直度の測定方法として、上述の特許文献1の検査方法を応用し、ガラス板の端面を上方からカメラで撮像し、その撮像された画像を解析する方法が考えられる。しかしながら、ガラス板は、一部の特殊なガラスを除き透明である場合が多い。そのため、画像解析を用いたガラス板の端面の真直度の測定方法では、ガラス板の端面とその背景との境界を正確に検出することが難しく、高度な画像解析を要するという問題がある。特に、このような問題は、ガラス板が薄板になるに連れて顕著になる。 As a method of measuring the straightness of the end face of the glass plate, a method of applying the inspection method of Patent Document 1 described above, capturing an image of the end face of the glass plate from above with a camera, and analyzing the captured image is conceivable. However, the glass plate is often transparent except for some special glasses. Therefore, in the method of measuring the straightness of the end surface of the glass plate using image analysis, it is difficult to accurately detect the boundary between the end surface of the glass plate and its background, and there is a problem that advanced image analysis is required. In particular, such a problem becomes more remarkable as the glass plate becomes thinner.
 また、ガラス板の端面の真直度を含む様々なガラス板の形状データは、それぞれ異なるエリアで測定される場合が多い。したがって、測定エリア間の移動などに時間が掛かるため測定効率が悪く、また省スペース化の観点からも改善の余地がある。 Also, the shape data of various glass plates including the straightness of the end faces of the glass plates are often measured in different areas. Therefore, it takes time to move between measurement areas, so that the measurement efficiency is poor, and there is room for improvement from the viewpoint of space saving.
 本発明は、ガラス板の端面の真直度を簡単かつ確実に測定することを第一の課題とする。 The first object of the present invention is to measure the straightness of the end surface of the glass plate easily and reliably.
 また、本発明は、ガラス板の端面の真直度を含む様々な形状データを少ないスペースで効率よく測定することを第二の課題とする。 The second object of the present invention is to efficiently measure various shape data including the straightness of the end surface of the glass plate in a small space.
 更に、本発明は、ガラス板の形状データを簡単かつ確実に測定すると共に、長期間にわたって測定精度を維持することを第三の課題とする。 Furthermore, the third object of the present invention is to easily and surely measure the shape data of the glass plate and to maintain the measurement accuracy for a long period of time.
 上記の第一の課題を解決するために創案された第一の発明は、矩形状のガラス板の真直度を測定するガラス板測定装置であって、ガラス板が載置される載置部を有するテーブルと、載置部に載置されたガラス板の測定対象の端面までの距離を測定する距離計と、距離計を、測定対象の端面から離間する第一方向および測定対象の端面に沿う第二方向に移動可能に保持する保持機構と、第二方向に沿って延びる直定規と、保持機構に保持された距離計を直定規に沿わせる倣い機構と、を備えていることを特徴とする。 The first invention devised to solve the above first problem is a glass plate measuring device for measuring the straightness of a rectangular glass plate, the mounting portion on which the glass plate is mounted. Having a table, a distance meter that measures the distance to the end surface of the measurement target of the glass plate placed on the mounting part, and the distance meter along the first direction that is separated from the end surface of the measurement target and the end surface of the measurement target. A holding mechanism that holds the movable unit in the second direction, a straight edge that extends along the second direction, and a copying mechanism that allows the rangefinder held by the holding mechanism to follow the straight edge, To do.
 このような構成によれば、ガラス板の測定対象の端面までの距離が距離計により測定される。距離計は、保持機構によって、測定対象の端面に沿う第二方向に移動可能であるので、ガラス板の測定対象の端面までの距離を第二方向の複数箇所で測定できる。この際、距離計は倣い機構によって直定規に沿って移動するため、距離計の測定対象の端面から離間する第一方向における位置は、直定規を基準として一定となる。したがって、高度な画像解析などを用いることなく、距離計による測定結果に基づいてガラス板の端面の真直度を簡単かつ確実に測定できる。 According to such a configuration, the distance to the end surface of the measurement target of the glass plate is measured by the distance meter. Since the rangefinder can be moved in the second direction along the end surface of the measurement target by the holding mechanism, the distance to the end surface of the measurement target of the glass plate can be measured at a plurality of points in the second direction. At this time, since the distance meter moves along the straight edge by the copying mechanism, the position of the distance meter in the first direction away from the end surface of the measurement target becomes constant with the straight edge as a reference. Therefore, the straightness of the end surface of the glass plate can be easily and reliably measured based on the measurement result of the range finder without using advanced image analysis.
 上記の構成において、距離計は、測定対象の端面と接触する接触子を備え、接触子が、円筒状のローラであることが好ましい。 In the above configuration, the distance meter preferably includes a contactor that comes into contact with the end surface of the measurement target, and the contactor is preferably a cylindrical roller.
 このようにすれば、距離計が、測定対象の端面に接触子を接触させる接触式の距離計であるため、非接触式(例えば光学式)の距離計に比べて、測定対象の端面までの距離を簡単に測定できる。また、接触子が回転可能なローラであるため、その回転に伴って接触子のうちのガラス板の端面と接触する部分が順に変化し、接触子の摩耗を抑制できる。更に、接触子が円筒状であるため、ガラス板の端面が傾斜している場合でも端面の最突出部の変位が常に測定され、ガラス板の端面の真直度の測定誤差が小さくなる。 With this configuration, since the rangefinder is a contact-type rangefinder in which a contact is brought into contact with the end surface of the measurement target, it is possible to measure up to the end surface of the measurement target as compared with a non-contact type (for example, optical type) distance meter. The distance can be easily measured. Further, since the contactor is a rotatable roller, the portion of the contactor that comes into contact with the end surface of the glass plate changes in order with the rotation, and wear of the contactor can be suppressed. Further, since the contactor is cylindrical, the displacement of the most protruding portion of the end face is always measured even if the end face of the glass plate is inclined, and the measurement error of the straightness of the end face of the glass plate is reduced.
 上記の構成において、ガラス板の移動を規制する錘を備えていることが好ましい。 In the above configuration, it is preferable to provide a weight that regulates the movement of the glass plate.
 このようにすれば、真直度を測定する際に、ガラス板の位置がずれるのを防止できる。 By doing this, the position of the glass plate can be prevented from shifting when measuring the straightness.
 この場合、直定規に沿って延び、ガラス板を介して錘を支持する支持部材を備えていることが好ましい。 In this case, it is preferable to provide a supporting member that extends along the straight edge and supports the weight through the glass plate.
 このようにすれば、錘の荷重でガラス板が下方に撓むのを防止できる。 By doing this, it is possible to prevent the glass plate from bending downward due to the weight load.
 上記の構成において、保持機構は、測定対象の端面と直定規との間に位置し、倣い機構は、保持機構を直定規に寄せる弾性体を備えていることが好ましい。 In the above configuration, it is preferable that the holding mechanism is located between the end surface of the measurement target and the straight edge, and the copying mechanism has an elastic body that brings the holding mechanism to the straight edge.
 このようにすれば、弾性体によって、保持機構が直定規側に寄せられるため、距離計の第一方向における位置がより安定する。その結果、ガラス板の端面の真直度をより正確に測定できる。 By doing this, the elastic body moves the holding mechanism closer to the straight edge, so that the position of the rangefinder in the first direction is more stable. As a result, the straightness of the end surface of the glass plate can be measured more accurately.
 上記の構成において、距離計の第二方向の位置を示すスケールを備えていることが好ましい。 In the above configuration, it is preferable to provide a scale indicating the position of the distance meter in the second direction.
 このようにすれば、スケールによって、距離計の第二方向の位置を正確に把握できる。 By doing this, the position of the rangefinder in the second direction can be accurately grasped by the scale.
 上記の第二の課題を解決するために創案された第二の発明は、矩形状のガラス板の形状データを測定するガラス板測定装置であって、ガラス板が載置される載置部を有するテーブルと、載置部に載置されたガラス板の端面の真直度を測定する真直度測定装置と、載置部に載置されたガラス板の寸法を測定する寸法測定装置と、載置部に載置されたガラス板の角部で交差する端面の直角度を測定する直角度測定装置と、を備えていることを特徴とする。 A second invention devised to solve the above-mentioned second problem is a glass plate measuring device for measuring shape data of a rectangular glass plate, and a mounting part on which the glass plate is mounted. A table having, a straightness measuring device for measuring the straightness of the end face of the glass plate placed on the placing part, a dimension measuring device for measuring the dimensions of the glass plate placed on the placing part, And a squareness measuring device for measuring a squareness of an end face intersecting at a corner of a glass plate placed on the section.
 このような構成によれば、真直度、寸法、直角度を含むガラス板の形状データを、テーブルの載置部にガラス板を載置した状態で測定することができる。したがって、真直度、寸法、直角度を含むガラス板の形状データを少ないスペースで効率よく測定できる。 With such a configuration, it is possible to measure the shape data of the glass plate including straightness, dimensions, and squareness in a state in which the glass plate is placed on the placing portion of the table. Therefore, the shape data of the glass plate including straightness, dimensions, and squareness can be efficiently measured in a small space.
 上記の第三の課題を解決するために創案された第三の発明は、ガラス板の形状データを測定するガラス板測定装置であって、ガラス板の測定対象の端面までの距離を測定する距離計を備え、距離計が、ガラス板の測定対象の端面と接触する円筒状のローラからなる接触子を有することを特徴とする。 A third invention devised to solve the above-mentioned third problem is a glass plate measuring device for measuring shape data of a glass plate, and a distance for measuring a distance to an end face of a measurement target of the glass plate. It is characterized in that the range finder has a contactor made of a cylindrical roller that comes into contact with the end surface of the glass plate to be measured.
 このような構成によれば、距離計が、測定対象の端面に接触子を接触させる接触式の距離計であるため、非接触式(例えば光学式)の距離計に比べて、測定対象の端面までの距離を簡単に測定できる。また、接触子が円筒状であるため、ガラス板の端面が傾斜している場合でも端面の最突出部の変位が常に測定され、ガラス板の端面までの距離の測定誤差が小さくなる。更に、接触子が回転可能なローラであるため、その回転に伴って接触子のうちのガラス板の端面と接触する部分が順に変化し、接触子の摩耗を抑制できる。つまり、接触子を頻繁に交換しなくても、長期間にわたって測定精度を維持できる。 According to such a configuration, since the rangefinder is a contact-type rangefinder in which a contact is brought into contact with the end face of the measurement target, the end face of the measurement target is compared to a non-contact type (for example, optical type) rangefinder. The distance to can be easily measured. Further, since the contactor is cylindrical, the displacement of the most protruding portion of the end face is always measured even when the end face of the glass plate is inclined, and the measurement error of the distance to the end face of the glass plate is reduced. Further, since the contactor is a rotatable roller, the portion of the contactor that comes into contact with the end surface of the glass plate changes in sequence with the rotation, and wear of the contactor can be suppressed. That is, the measurement accuracy can be maintained for a long period of time without frequently changing the contacts.
 第一の発明によれば、ガラス板の端面の真直度を簡単かつ確実に測定できる。 According to the first invention, the straightness of the end surface of the glass plate can be measured easily and reliably.
 第二の発明によれば、真直度、寸法、直角度を含むガラス板の形状データを少ないスペースで効率よく測定できる。 According to the second invention, it is possible to efficiently measure the shape data of the glass plate including straightness, dimensions, and squareness in a small space.
 第三の発明によれば、ガラス板の形状データを簡単かつ確実に測定すると共に、長期間にわたって測定精度を維持できる。 According to the third invention, the shape data of the glass plate can be easily and surely measured and the measurement accuracy can be maintained for a long period of time.
本発明の実施形態に係るガラス板測定装置を示す平面図である。It is a top view which shows the glass plate measuring device which concerns on embodiment of this invention. 第一凸条部の短手方向の断面図である。It is sectional drawing of the 1st convex part in the lateral direction. 第一凸条部の変形例を示す短手方向の断面図である。It is a cross-sectional view in a lateral direction showing a modified example of the first ridge portion. 第一凸条部の変形例を示す短手方向の断面図である。It is a cross-sectional view in a lateral direction showing a modified example of the first ridge portion. 第一凸条部の変形例を示す短手方向の断面図である。It is a cross-sectional view in a lateral direction showing a modified example of the first ridge portion. 第一凸条部の変形例を示す短手方向の断面図である。It is a cross-sectional view in a lateral direction showing a modified example of the first ridge portion. 図1のA-A断面図であって、直定規と倣い機構のローラとの接触状態の一例を示す断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 and is a cross-sectional view showing an example of a contact state between the straight edge ruler and the roller of the copying mechanism. 図1のB-B断面図であって、載置治具を用いてガラス板をテーブルに載置する準備工程を示す図である。FIG. 2B is a sectional view taken along line BB of FIG. 1, showing a preparatory step of placing a glass plate on a table using a placing jig. 本発明の実施形態に係るガラス板測定装置の平面図であって、ガラス板の端面の真直度を測定する真直度測定工程を示す図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is a figure which shows the straightness measuring process which measures the straightness of the end surface of a glass plate. 図6の真直度測定工程において、ガラス板を介して錘を支持部材で支持した状態を示す斜視図である。It is a perspective view which shows the state which supported the weight by the support member through the glass plate in the straightness measurement process of FIG. 図6の真直度測定工程における、距離計の接触子とガラス板の端面との接触状態の一例を示す断面図である。It is sectional drawing which shows an example of the contact state of the contactor of a range finder and the end surface of a glass plate in the straightness measurement process of FIG. 本発明の実施形態に係るガラス板測定装置の平面図であって、ガラス板の寸法を測定する寸法測定工程を示す図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is a figure which shows the dimension measuring process which measures the dimension of a glass plate. 本発明の実施形態に係るガラス板測定装置の平面図であって、ガラス板の直角度を測定する直角度測定工程を示す図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is a figure which shows the squareness measuring process which measures the squareness of a glass plate. 図10の直角度測定工程において、距離計の測定値から直角度を得る方法を説明するための概略図である。It is a schematic diagram for demonstrating the method of obtaining a squareness from the measured value of a range finder in the squareness measurement process of FIG. 本発明の実施形態に係るガラス板測定装置の平面図であって、校正治具を用いて寸法測定計を校正する第一校正工程を示す図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is a figure which shows the 1st calibration process which calibrates a dimension measuring instrument using a calibration jig. 図12のD-D断面図であって、校正工程における校正治具の配置態様を示す図である。FIG. 13 is a cross-sectional view taken along the line DD in FIG. 12, showing the arrangement of calibration jigs in the calibration process. 図12のC-C断面図であって、校正治具の支持部とガラス板との高さ方向の位置関係を示す図である。FIG. 13 is a cross-sectional view taken along the line CC of FIG. 12, showing the positional relationship in the height direction between the support portion of the calibration jig and the glass plate. 本発明の実施形態に係るガラス板測定装置の平面図であって、校正治具を用いて距離計を校正する第二校正工程の序盤の状態を示す概略図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is the schematic which shows the state of the opening stage of the 2nd calibration process which calibrates a distance meter using a calibration jig. 本発明の実施形態に係るガラス板測定装置の平面図であって、校正治具を用いて距離計を校正する第二校正工程の終盤の状態を示す概略図である。It is a top view of the glass plate measuring device which concerns on embodiment of this invention, Comprising: It is the schematic which shows the state of the last stage of the 2nd calibration process which calibrates a range finder using a calibration jig.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、図中のXYZは直交座標系である。X方向およびY方向は水平方向であり、Z方向は鉛直方向である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, XYZ in the figure is an orthogonal coordinate system. The X and Y directions are horizontal, and the Z direction is vertical.
 図1に示すように、本実施形態に係るガラス板測定装置1は、矩形状のガラス板Gの形状データを測定するための装置である。本実施形態では、ガラス板測定装置1は、形状データとして、ガラス板Gの少なくとも一つの端面Ga~Gdの真直度と、ガラス板Gの縦横寸法(X方向寸法およびY方向寸法)と、ガラス板Gの少なくとも一つの角部G1~G4で交差する端面Ga~Gdの直角度と、を測定するようになっている。すなわち、ガラス板測定装置1は、真直度測定装置と、寸法測定装置と、直角度測定装置と、を備えている。 As shown in FIG. 1, the glass plate measuring device 1 according to the present embodiment is a device for measuring the shape data of a rectangular glass plate G. In this embodiment, the glass plate measuring device 1 uses, as the shape data, the straightness of at least one of the end faces Ga to Gd of the glass plate G, the vertical and horizontal dimensions (X-direction dimension and Y-direction dimension) of the glass sheet G, and the glass. The squareness of the end faces Ga to Gd intersecting at at least one of the corners G1 to G4 of the plate G is measured. That is, the glass plate measuring device 1 includes a straightness measuring device, a dimension measuring device, and a squareness measuring device.
(テーブル)
 ガラス板測定装置1は、ガラス板Gが載置される載置部2xを有するテーブル2を基本的な構成として備えている。ガラス板Gは、端面Ga,GbがX方向と実質的に平行となり、端面Gc,GdがY方向に実質的に平行となるように、テーブル2の載置部2xに載置される。
(table)
The glass plate measuring device 1 basically includes a table 2 having a mounting portion 2x on which the glass plate G is mounted. The glass plate G is mounted on the mounting portion 2x of the table 2 such that the end surfaces Ga and Gb are substantially parallel to the X direction and the end surfaces Gc and Gd are substantially parallel to the Y direction.
 ここで、ガラス板Gの厚みは、例えば0.2~10mmであり、ガラス板Gのサイズは、例えば700mm×700mm~3000mm×3000mmである。ガラス板Gは、ダウンドロー法(例えばオーバーフローダウンドロー法)、フロート法などの公知の方法により製造される。ガラス板Gは、例えば、液晶ディスプレイなどのフラットパネルディスプレイの基板や、タッチパネルなどのカバーガラスに利用される。 Here, the thickness of the glass plate G is, for example, 0.2 to 10 mm, and the size of the glass plate G is, for example, 700 mm×700 mm to 3000 mm×3000 mm. The glass plate G is manufactured by a known method such as a down draw method (for example, an overflow down draw method) or a float method. The glass plate G is used, for example, as a substrate of a flat panel display such as a liquid crystal display or a cover glass such as a touch panel.
 載置部2xは、単一又は複数の平面から形成されていてもよいが、本実施形態では、ガラス板Gと接触する長尺な接触部を有する第一凸条部2aおよび第二凸条部2bを備えている。 The mounting portion 2x may be formed of a single plane or a plurality of planes, but in the present embodiment, the first ridge portion 2a and the second ridge portion having a long contact portion that comes into contact with the glass plate G. It has a part 2b.
 第一凸条部2aの接触部は、ガラス板Gの対向する一対の端面Ga,Gb、すなわちX方向に沿って延びており、第二凸条部2bの接触部は、ガラス板Gの対向する一対の端面Gc,Gd、すなわちY方向に沿って延びている。 The contact portion of the first ridge portion 2a extends along the pair of opposed end surfaces Ga and Gb of the glass plate G, that is, along the X direction, and the contact portion of the second ridge portion 2b faces the glass plate G. The pair of end faces Gc, Gd that extend along the Y direction.
 このようにすれば、第一凸条部2aの接触部はX方向に沿って細長くなるため、ガラス板GをX方向に沿って移動させる際に、第一凸条部2aはガラス板Gに対して大きな抵抗にならない。そのため、第一凸条部2aでガラス板Gを下方から支持した状態のまま、ガラス板GをX方向にスムーズに移動(摺動)させることができる。同様に、第二凸条部2bの接触部はY方向に沿って細長くなるため、ガラス板GをY方向に沿って移動させる際に、第二凸条部2bはガラス板Gに対して大きな抵抗にならない。そのため、第二凸条部2bでガラス板Gを下方から支持した状態のまま、ガラス板GをY方向にスムーズに移動(摺動)させることができる。したがって、第一凸条部2aおよび第二凸条部2bでガラス板Gを支持した状態のまま、ガラス板GをX方向およびY方向の異なる二方向にスムーズに移動させて容易に位置決めすることができる。また、第一凸条部2aおよび第二凸条部2bは、ガラス板Gの全面を面で支持する場合に比べて支持面積を小さくできるため、大寸法のガラス板Gを支持する場合であっても、載置部2xの支持面積の拡大に伴うコストアップを抑制できる。 By doing so, the contact portion of the first ridge portion 2a becomes elongated along the X direction, and therefore, when the glass plate G is moved along the X direction, the first ridge portion 2a does not contact the glass plate G. On the other hand, it does not become a great resistance. Therefore, it is possible to smoothly move (slide) the glass plate G in the X direction while the glass plate G is supported from below by the first ridge portion 2a. Similarly, since the contact portion of the second ridge portion 2b is elongated along the Y direction, the second ridge portion 2b is larger than the glass plate G when the glass plate G is moved along the Y direction. I can't resist. Therefore, it is possible to smoothly move (slide) the glass plate G in the Y direction while the glass plate G is supported from below by the second ridge portion 2b. Therefore, while the glass plate G is being supported by the first ridges 2a and the second ridges 2b, the glass plate G can be smoothly moved in two different X and Y directions for easy positioning. You can In addition, since the supporting area of the first ridge portion 2a and the second ridge portion 2b can be reduced as compared with the case where the entire surface of the glass plate G is supported by a surface, it is a case of supporting a large-sized glass plate G. However, it is possible to suppress an increase in cost due to an increase in the supporting area of the mounting portion 2x.
 第一凸条部2aは、Y方向の複数箇所で、X方向に間隔を置いて複数設けられており、第二凸条部2bは、X方向の複数箇所で、Y方向に間隔を置いて複数設けられている。すなわち、第一凸条部2aおよび第二凸条部2bは、ガラス板Gを安定した姿勢で支持できるように、互いに間隔を置いてテーブル2上に点在している。 The plurality of first ridge portions 2a are provided at a plurality of locations in the Y direction with a spacing in the X direction, and the second ridge portions 2b are provided at a plurality of locations in the X direction with a spacing in the Y direction. There are multiple. That is, the first ridge portions 2a and the second ridge portions 2b are scattered on the table 2 at intervals so that the glass plate G can be supported in a stable posture.
 第一凸条部2aおよび第二凸条部2bは、ネジなどの締結具(図示しない)によってテーブル2に着脱可能に固定されている。したがって、複数の凸条部2a,2bのうちの任意の部材を個別に交換できる。 The first ridge portion 2a and the second ridge portion 2b are detachably fixed to the table 2 by fasteners (not shown) such as screws. Therefore, any member of the plurality of ridges 2a and 2b can be individually replaced.
 なお、第一凸条部2aおよび第二凸条部2bの配列態様は、特に限定されるものではなく、例えば、碁盤目状や千鳥状などの規則的な配列であってもよいし、不規則的な配列であってもよい。また、第一凸条部2aの接触部の長手方向および第二凸条部2bの接触部の長手方向は、X方向やY方向に限定されるものではなく、互いに異なる方向であればよい。更に、凸条部2a,2bと異なる方向(例えば、X方向とのなす角が45°の方向)に沿って長尺な接触部を有する別の凸条部を更に設けてもよい。 The arrangement of the first ridge portions 2a and the second ridge portions 2b is not particularly limited and may be, for example, a regular arrangement such as a grid pattern or a zigzag pattern. It may be a regular array. Further, the longitudinal direction of the contact portion of the first ridge portion 2a and the longitudinal direction of the contact portion of the second ridge portion 2b are not limited to the X direction and the Y direction, and may be directions different from each other. Further, another ridge portion having a long contact portion may be further provided along a direction different from the ridge portions 2a and 2b (for example, a direction having an angle of 45° with the X direction).
 図2に示すように、第一凸条部2aの短手方向(Y方向)の断面形状は、第一凸条部2aのテーブル2上での姿勢安定性を考慮し、台形状である。すなわち、第一凸条部2aは、底部2aa側が上部2ab側に比べて幅広になっており、底部2aaをテーブル2に接地させた状態でテーブル2に固定されている。ここで、第一凸条部2aの上部2ab(ガラス板Gとの接触部)は、平面であってもよいし、曲面であってもよい。あるいは、凸条部2aの上部2abは、短手方向の幅を狭くして線状としてもよく、この場合、第一凸条部2aの短手方向(Y方向)の断面形状は、例えば三角形状とすることができる。なお、第一凸条部2aの短手方向の断面形状は、特に限定されるものではなく、種々の変更が可能である。第一凸条部2aは、例えば図3A~図3Dに示すような断面形状を採用できる。図3Aでは、第一凸条部2aは、先端部(ガラス板G側)が台形状であり、基端部(テーブル2側)が矩形状である。図3Bでは、第一凸条部2aは、先端部が凸曲面を構成する半円状である。図3Cでは、第一凸条部2aは、並列に配列された二本の凸条を有するU字状である。図3Dでは、第一凸条部2aは、ブラシ状であり、つまり、第一凸条部2aがブラシで構成されてもよい。第二凸条部2bの短手方向(X方向)の断面形状は、特に限定されるものではないが、第一凸条部2aの短手方向(Y方向)の断面形状と同様の形状を採用できる。 As shown in FIG. 2, the cross-sectional shape of the first ridge portion 2a in the lateral direction (Y direction) is trapezoidal in consideration of the posture stability of the first ridge portion 2a on the table 2. That is, the first ridge portion 2a is wider on the bottom portion 2aa side than on the upper portion 2ab side, and is fixed to the table 2 in a state where the bottom portion 2aa is grounded to the table 2. Here, the upper portion 2ab (contact portion with the glass plate G) of the first ridge portion 2a may be a flat surface or a curved surface. Alternatively, the upper portion 2ab of the ridge portion 2a may be formed in a linear shape by narrowing the width in the lateral direction. In this case, the cross-sectional shape of the first ridge portion 2a in the lateral direction (Y direction) is, for example, a triangle. It can be shaped. In addition, the cross-sectional shape of the first ridge portion 2a in the lateral direction is not particularly limited, and various changes can be made. The first ridge portion 2a can adopt a sectional shape as shown in, for example, FIGS. 3A to 3D. In FIG. 3A, the first ridge portion 2a has a trapezoidal tip portion (on the side of the glass plate G) and a rectangular base portion (on the side of the table 2). In FIG. 3B, the first ridge portion 2a has a semicircular shape whose tip portion forms a convex curved surface. In FIG. 3C, the first ridge portion 2a has a U shape having two ridges arranged in parallel. In FIG. 3D, the first ridge 2a may be brush-shaped, that is, the first ridge 2a may be a brush. The cross-sectional shape of the second ridge portion 2b in the lateral direction (X direction) is not particularly limited, but may be the same as the cross-sectional shape of the first ridge portion 2a in the lateral direction (Y direction). Can be adopted.
 第一凸条部2aの接触部および第二凸条部2bの接触部は、例えばナイロンなどの樹脂であることが好ましい。このようにすれば、ガラス板Gが凸条部2a,2b上で滑りやすくなる。なお、本実施形態では、第一凸条部2aおよび第二凸条部2bの全体が、樹脂で形成されている。 The contact portion of the first ridge portion 2a and the contact portion of the second ridge portion 2b are preferably made of resin such as nylon. In this way, the glass plate G becomes slippery on the ridges 2a and 2b. In addition, in the present embodiment, the entire first protrusion 2a and the second protrusion 2b are made of resin.
 第一凸条部2aの接触部の長手方向の寸法(X方向寸法)および第二凸条部2bの接触部の長手方向の寸法(Y方向寸法)は、例えば0.2~20mmであることが好ましい。また、第一凸条部2aの接触部の短手方向の寸法(Y方向寸法)および第二凸条部2bの接触部の短手方向の寸法(X方向寸法)は、例えば5~400mmであることが好ましい。 The longitudinal dimension (X-direction dimension) of the contact portion of the first ridge portion 2a and the longitudinal dimension (Y-direction dimension) of the contact portion of the second ridge portion 2b are, for example, 0.2 to 20 mm. Is preferred. The short-side dimension (Y-direction dimension) of the contact portion of the first ridge portion 2a and the short-side dimension (X-direction dimension) of the contact portion of the second ridge portion 2b are, for example, 5 to 400 mm. Preferably.
 図1に示すように、本実施形態では、載置部2xは、複数の柱状の突起部2cを更に備えている。突起部2cは、先端部でガラス板Gを下方から支持する。突起部2cの先端部は、ガラス板Gの位置決めを容易にするために、フロート機構を備えていてもよいが、本実施形態では球状ローラで構成されている。突起部2cは、互いに間隔を置いてテーブル2上に点在している。なお、突起部2cの配列態様は、特に限定されるものではなく、例えば、碁盤目状や千鳥状などの規則的な配列であってもよいし、不規則的な配列であってもよい。また、突起部2cの先端部は、非転動体であってもよく、例えば、凸曲面や平面などの任意の形状を取り得る。 As shown in FIG. 1, in this embodiment, the mounting portion 2x further includes a plurality of columnar protrusions 2c. The projection 2c supports the glass plate G from below at its tip. The tip of the protrusion 2c may be provided with a float mechanism for facilitating the positioning of the glass plate G, but in the present embodiment, it is composed of a spherical roller. The protrusions 2c are scattered on the table 2 at intervals. The arrangement mode of the protrusions 2c is not particularly limited, and may be, for example, a regular array such as a grid pattern or a zigzag pattern, or an irregular array. The tip of the protrusion 2c may be a non-rolling body, and may have any shape such as a convex curved surface or a flat surface.
(真直度測定装置)
 図1に示すように、ガラス板測定装置1は、ガラス板Gの端面Ga~Gdの真直度(直進度)を測定するための構成として、距離計3と、保持機構4と、直定規5と、倣い機構6と、をテーブル2上に備えている。ここで、真直度は、直線形状の幾何学的に正しい直線からの狂いの大きさを意味する。
(Straightness measuring device)
As shown in FIG. 1, the glass plate measuring device 1 has a rangefinder 3, a holding mechanism 4, and a straightedge 5 as a configuration for measuring the straightness (straightness) of the end faces Ga to Gd of the glass plate G. And a copying mechanism 6 on the table 2. Here, the straightness means the magnitude of deviation from a geometrically correct straight line of a straight line shape.
 距離計3は、テーブル2の載置部2xに載置されたガラス板Gの端面Gaまでの距離、すなわち、ガラス板Gの端面Gaの基準位置からの変位を測定するようになっている。ここで、本実施形態では、基準位置は、ガラス板Gの端面GaのX方向両端部の位置に設定されている。つまり、ガラス板Gの端面GaのX方向両端部において距離計3の測定値が零を示すように、距離計3が校正されると共にガラス板Gの載置位置が調整されている。 The distance meter 3 measures the distance to the end surface Ga of the glass plate G placed on the mounting portion 2x of the table 2, that is, the displacement of the end surface Ga of the glass plate G from the reference position. Here, in the present embodiment, the reference position is set to the positions of both end portions in the X direction of the end surface Ga of the glass plate G. That is, the distance meter 3 is calibrated and the mounting position of the glass plate G is adjusted so that the measured value of the distance meter 3 is zero at both ends of the end surface Ga of the glass plate G in the X direction.
 距離計3は、測定対象の端面Gaと接触する接触子3aと、接触子3aをY方向に進退動可能に保持するスピンドル3bと、を備える接触式の距離計(例えばダイヤルゲージ)である。本実施形態では、接触子3aは円筒状のローラであり、ガラス板Gの端面Gaと接触しながら転動するようになっている(後述する図8を参照)。また、接触子3aは、測定対象の端面Ga側に付勢されており、測定対象の端面Gaに倣うことが可能である。なお、接触子3aは、例えば、円筒状以外の形状をなす転動体(例えば球状ローラ)や、ガラス板Gの端面Ga上を摺動する非転動体(例えば針状部材や円筒状部材など)であってもよい。 The distance meter 3 is a contact type distance meter (for example, a dial gauge) including a contactor 3a that contacts the end surface Ga of the measurement target, and a spindle 3b that holds the contactor 3a so as to be movable back and forth in the Y direction. In the present embodiment, the contactor 3a is a cylindrical roller that rolls while contacting the end surface Ga of the glass plate G (see FIG. 8 described later). Further, the contactor 3a is biased toward the end surface Ga of the measurement target and can follow the end surface Ga of the measurement target. The contactor 3a is, for example, a rolling element (for example, a spherical roller) having a shape other than a cylindrical shape, or a non-rolling element that slides on the end surface Ga of the glass plate G (for example, a needle-shaped member or a cylindrical member). May be
 保持機構4は、距離計3を、Y方向(ガラス板Gの端面Gaから離間する方向)およびX方向(ガラス板Gの端面Gaに沿う方向)に移動可能に保持している。 The holding mechanism 4 holds the rangefinder 3 so as to be movable in the Y direction (direction away from the end surface Ga of the glass plate G) and the X direction (direction along the end surface Ga of the glass plate G).
 保持機構4は、テーブル2上に設けられたレール4aに沿ってX方向に移動可能な第一ステージ4bと、第一ステージ4b上に設けられたレール4cに沿ってY方向に移動可能な第二ステージ4dと、を備えている。第一ステージ4bは、手動又は自動でX方向に移動可能である。第二ステージ4d上には、距離計3が取り付けられている。なお、第二ステージ4dの移動方向は、Y方向と平行であるが、Y方向に対して角度を有してもよい。 The holding mechanism 4 includes a first stage 4b movable in the X direction along a rail 4a provided on the table 2 and a first stage 4b movable in the Y direction along a rail 4c provided on the first stage 4b. And two stages 4d. The first stage 4b can be moved in the X direction manually or automatically. The distance meter 3 is attached on the second stage 4d. Although the moving direction of the second stage 4d is parallel to the Y direction, it may have an angle with respect to the Y direction.
 保持機構4は、テーブル2上に設けられ、距離計3のX方向における位置を示すスケール4eを更に備えている。本実施形態では、スケール4e上には、距離計3による測定位置を示す所定のマークが等間隔で付されている。なお、スケール4eの配置位置は、例えば直定規5上などの任意の位置を取り得る。スケール4eは省略してもよい。 The holding mechanism 4 is provided on the table 2 and further includes a scale 4e indicating the position of the distance meter 3 in the X direction. In the present embodiment, predetermined marks indicating the measurement positions of the rangefinder 3 are provided on the scale 4e at equal intervals. The scale 4e may be arranged at any position on the straightedge 5, for example. The scale 4e may be omitted.
 直定規5は、テーブル2上にX方向に沿って設けられている。直定規5の真直度は、予め測定されて記録されている。 The straight edge 5 is provided on the table 2 along the X direction. The straightness of the straightedge 5 is measured and recorded in advance.
 倣い機構6は、保持機構4に取り付けられた距離計3を直定規5に沿わせるための機構である。倣い機構6は、押圧部材6aと、バネ6bと、を備えている。 The copying mechanism 6 is a mechanism for aligning the distance meter 3 attached to the holding mechanism 4 with the straightedge 5. The copying mechanism 6 includes a pressing member 6a and a spring 6b.
 押圧部材6aは、基端部が第二ステージ4dに取り付けられて、先端部が直定規5と接触するようになっている。 The pressing member 6a has a base end attached to the second stage 4d, and a tip end coming into contact with the straight edge 5.
 バネ6bは、第二ステージ4dを直定規5側に引き寄せるように、第一ステージ4bと第二ステージ4dとの間に跨って設けられている。このようなバネ6bの引き寄せ力により、押圧部材6aが直定規5に押圧されるため、距離計3のX方向位置が安定する。なお、バネ6bは、第二ステージ4dを押して直定規5側に寄せるように設けてもよい。また、バネ6bは、例えばゴムなどの他の弾性体であってもよいし、省略してもよい。 The spring 6b is provided between the first stage 4b and the second stage 4d so as to draw the second stage 4d toward the straight edge 5 side. Since the pressing member 6a is pressed against the straight edge ruler 5 by the pulling force of the spring 6b, the position of the range finder 3 in the X direction is stabilized. The spring 6b may be provided so as to be pushed toward the straight edge 5 side by pushing the second stage 4d. The spring 6b may be another elastic body such as rubber or may be omitted.
 図4に示すように、押圧部材6aは、先端部に円筒状のローラ6cを備えている。直定規5は、ローラ6cを受け入れる凹状の案内溝5aを備えている。すなわち、ローラ6cは、案内溝5aに受け入れられた状態で、直定規5上を転動するようになっている。本実施形態では、直定規5の真直度として、案内溝5aの真直度が予め測定されて記録されている。なお、押圧部材6aの先端部は、例えば、円筒状以外の形状をなす転動体(例えば球状ローラ)や、直定規5上を摺動する非転動体(例えば球状部材や円筒状部材など)であってもよい。 As shown in FIG. 4, the pressing member 6a has a cylindrical roller 6c at its tip. The straight edge ruler 5 includes a concave guide groove 5a that receives the roller 6c. That is, the roller 6c rolls on the straight edge ruler 5 while being received in the guide groove 5a. In the present embodiment, as the straightness of the straightedge 5, the straightness of the guide groove 5a is measured and recorded in advance. The tip of the pressing member 6a is, for example, a rolling element having a shape other than a cylindrical shape (for example, a spherical roller) or a non-rolling element that slides on the straight ruler 5 (for example, a spherical member or a cylindrical member). It may be.
(寸法測定装置)
 図1に示すように、ガラス板測定装置1は、ガラス板GのX方向寸法およびY方向寸法を測定するための構成として、第一ピン7と、第二ピン8と、第一寸法測定計9と、第二寸法測定計10と、をテーブル2上に備えている。
(Dimension measuring device)
As shown in FIG. 1, the glass plate measuring device 1 has a first pin 7, a second pin 8 and a first size measuring instrument as a configuration for measuring the X-direction dimension and the Y-direction dimension of the glass plate G. 9 and the second dimension measuring device 10 are provided on the table 2.
 第一ピン7は、テーブル2の載置部2xに載置されたガラス板GのY方向と実質的に平行な端面Gcに接触するようになっている。第二ピン8は、テーブル2の載置部2xに載置されたガラス板GのX方向と実質的に平行な端面Gaに接触するようになっている。すなわち、第二ピン8は、第一ピン7が接触する端面Gcと略直角に交差する端面Gaと接触する。 The first pin 7 comes into contact with the end surface Gc of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the Y direction. The second pin 8 comes into contact with the end surface Ga of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the X direction. That is, the second pin 8 comes into contact with the end face Ga that intersects the end face Gc with which the first pin 7 comes into contact at a substantially right angle.
 第一寸法測定計9は、Y方向と実質的に平行な端面Gc,Gdの間の寸法、すなわち、ガラス板GのX方向寸法(第一寸法)を測定するようになっている。第二寸法測定計10は、X方向と実質的に平行な端面Ga,Gbの間の寸法、すなわち、ガラス板GのY方向寸法(第二寸法)を測定するようになっている。 The first dimension measuring device 9 measures the dimension between the end faces Gc and Gd substantially parallel to the Y direction, that is, the dimension (first dimension) of the glass plate G in the X direction. The second dimension measuring device 10 measures the dimension between the end faces Ga and Gb substantially parallel to the X direction, that is, the Y dimension (second dimension) of the glass plate G.
 第一寸法測定計9は、端面Gdと接触する接触子9aと、接触子9aをX方向に進退動可能に保持するスピンドル9bと、を備える接触式の距離計(例えばダイヤルゲージ)である。同様に、第二寸法測定計10は、端面Gbと接触する接触子10aと、接触子10aをY方向に進退動可能に保持するスピンドル10bと、を備える接触式の距離計(例えばダイヤルゲージ)である。本実施形態では、接触子9a,10aは円筒状の非転動体である。なお、接触子9a,10aは、例えば、円筒状以外の形状をなす非転動体(例えば球状部材や針状部材)や、転動体(例えば円筒状ローラや球状ローラ)であってもよい。 The first dimension measuring device 9 is a contact type distance meter (for example, a dial gauge) including a contactor 9a that comes into contact with the end surface Gd and a spindle 9b that holds the contactor 9a so that it can move back and forth in the X direction. Similarly, the second dimension measuring device 10 includes a contactor 10a that contacts the end surface Gb, and a spindle 10b that holds the contactor 10a so that it can move back and forth in the Y direction. Is. In this embodiment, the contacts 9a and 10a are cylindrical non-rolling elements. The contacts 9a and 10a may be, for example, non-rolling bodies (for example, spherical members or needle-shaped members) having shapes other than the cylindrical shape, or rolling bodies (for example, cylindrical rollers or spherical rollers).
 第一寸法測定計9は、そのX方向位置を調整可能な第一位置調整機構F上に設けられている。これにより、寸法の異なるガラス板Gを測定可能なように、第一寸法測定計9の位置を容易に変更できる。また、ガラス板Gの寸法以外の他の形状データを測定する際などに、第一寸法測定計9を邪魔にならない位置まで退避させることができる。第一位置調整機構Fは、第一寸法測定計9のX方向位置を調整可能であれば特に限定されるものではないが、本実施形態では、テーブル2上に設けられた第一レールFaと、第一レールFaに沿ってX方向に移動可能な第一スライダーFbと、を備えている。第一スライダーFbは、手動又は自動でX方向に移動可能である。第一スライダーFb上には、第一寸法測定計9が取り付けられている。 The first dimension measuring instrument 9 is provided on the first position adjusting mechanism F capable of adjusting the position in the X direction. As a result, the position of the first dimension measuring instrument 9 can be easily changed so that the glass sheets G having different dimensions can be measured. Further, when measuring other shape data other than the dimensions of the glass plate G, the first dimension measuring instrument 9 can be retracted to a position that does not interfere. The first position adjusting mechanism F is not particularly limited as long as it can adjust the position of the first dimension measuring instrument 9 in the X direction, but in the present embodiment, the first rail Fa provided on the table 2 and the first rail Fa. , A first slider Fb movable in the X direction along the first rail Fa. The first slider Fb can be moved in the X direction manually or automatically. A first dimension measuring meter 9 is attached on the first slider Fb.
 第二寸法測定計10は、そのY方向位置を調整可能な第二位置調整機構S上に設けられている。これにより、寸法の異なるガラス板Gを測定可能なように、第二寸法測定計10の位置を容易に変更できる。また、ガラス板Gの寸法以外の他の形状データを測定する際などに、第二寸法測定計10を邪魔にならない位置まで退避させることができる。第二位置調整機構Sは、第二寸法測定計10のY方向位置を調整可能であれば特に限定されるものではないが、本実施形態では、テーブル2上に設けられた第二レールSaと、第二レールSaに沿ってY方向に移動可能な第二スライダーSbと、を備えている。第二スライダーSbは、手動又は自動でY方向に移動可能である。第二スライダーSb上には、第二寸法測定計10が取り付けられている。 The second dimension measuring device 10 is provided on the second position adjusting mechanism S whose position in the Y direction can be adjusted. Thereby, the position of the second dimension measuring instrument 10 can be easily changed so that the glass plates G having different dimensions can be measured. Further, when measuring shape data other than the dimensions of the glass plate G, the second dimension measuring instrument 10 can be retracted to a position where it does not interfere. The second position adjusting mechanism S is not particularly limited as long as it can adjust the position of the second dimension measuring instrument 10 in the Y direction, but in the present embodiment, the second rail Sa provided on the table 2 and the second rail Sa are provided. , And a second slider Sb movable in the Y direction along the second rail Sa. The second slider Sb can be manually or automatically moved in the Y direction. The second dimension measuring instrument 10 is attached on the second slider Sb.
 第一ピン7および第一寸法測定計9は二組設けられると共に、第二ピン8および第二寸法測定計10は二組設けられている。すなわち、ガラス板GのX方向寸法およびY方向寸法のそれぞれが二箇所で測定されるようになっている。なお、X方向寸法およびY方向寸法は、二箇所の平均値としてもよい。 Two sets of the first pin 7 and the first dimension measuring instrument 9 are provided, and two sets of the second pin 8 and the second dimension measuring instrument 10 are provided. That is, the X-direction dimension and the Y-direction dimension of the glass plate G are measured at two locations. The X-direction dimension and the Y-direction dimension may be average values at two points.
 組をなす第一ピン7および第一寸法測定計9の接触子9aは、X方向で正対している。すなわち、組をなす第一ピン7および第一寸法測定計9の接触子9aは、Y方向位置が実質的に同じである。同様に、組をなす第二ピン8および第二寸法測定計10の接触子10aは、Y方向で正対している。すなわち、組をなす第二ピン8および第二寸法測定計10の接触子10aは、X方向位置が実質的に同じである。 The pair of the first pin 7 and the contactor 9a of the first dimension measuring device 9 face each other in the X direction. That is, the first pin 7 and the contactor 9a of the first dimension measuring instrument 9 forming the set have substantially the same Y-direction position. Similarly, the second pin 8 and the contactor 10a of the second dimension measuring instrument 10 forming a pair are directly opposed in the Y direction. That is, the second pin 8 and the contact 10a of the second dimension measuring instrument 10 forming the set have substantially the same X-direction position.
 第一ピン7および第二ピン8は、テーブル2に着脱可能に保持されている。本実施形態では、ピン7,8を保持するための係合孔(図示しない)がテーブル2上に設けられている。係合孔は、ガラス板Gのサイズが変更された場合に、ピン7,8の取り付け位置を調整できるように、テーブル2の複数箇所に設けられていることが好ましい。 The first pin 7 and the second pin 8 are detachably held on the table 2. In this embodiment, engagement holes (not shown) for holding the pins 7 and 8 are provided on the table 2. The engagement holes are preferably provided at a plurality of positions on the table 2 so that the mounting positions of the pins 7 and 8 can be adjusted when the size of the glass plate G is changed.
 なお、組をなす第一ピン7および第一寸法測定計9、並びに、組をなす第二ピン8および第二寸法測定計10のいずれか一方を省略し、第一寸法及び第二寸法のいずれか一方のみを測定する構成としてもよい。ガラス板Gの縦寸法及び横寸法を効率よく測定する観点では、組をなす第一ピン7および第一寸法測定計9、並びに、組をなす第二ピン8および第二寸法測定計10の両方を備えることが好ましい。 In addition, one of the first pin 7 and the first dimension measuring meter 9 forming the set, and the second pin 8 and the second dimension measuring meter 10 forming the pair is omitted, and either the first dimension or the second dimension is omitted. The configuration may be such that only one of them is measured. From the viewpoint of efficiently measuring the longitudinal dimension and the lateral dimension of the glass plate G, both the first pin 7 and the first dimension measuring instrument 9 forming a set, and the second pin 8 and the second dimension measuring instrument 10 forming the pair are both included. Is preferably provided.
(直角度測定装置)
 図1に示すように、ガラス板測定装置1は、ガラス板Gの端面Ga~Gdの直角度を測定するための構成として、第一ピン11と、第二ピン12と、距離計13と、をテーブル2上に備えている。なお、図中の符号14は、距離計13を校正するための校正用距離計である。
(Squarity measuring device)
As shown in FIG. 1, the glass plate measuring device 1 has a first pin 11, a second pin 12, a range finder 13, and a distance meter 13 as a configuration for measuring the squareness of the end surfaces Ga to Gd of the glass plate G. Is provided on the table 2. Reference numeral 14 in the figure is a calibration rangefinder for calibrating the rangefinder 13.
 第一ピン11は、テーブル2の載置部2xに載置されたガラス板GのY方向と実質的に平行な端面Gc(第一端面)に接触するようになっている。第二ピン12は、テーブル2の載置部2xに載置されたガラス板GのX方向と実質的に平行な端面Gb(第二端面)に接触するようになっている。すなわち、第一ピン11および第二ピン12は、直角度を測定する対象である角部G1で交差する端面Gc,Gbにそれぞれ接触するようになっている。 The first pin 11 is configured to come into contact with an end surface Gc (first end surface) of the glass plate G placed on the placing portion 2x of the table 2 substantially parallel to the Y direction. The second pin 12 comes into contact with an end surface Gb (second end surface) of the glass plate G mounted on the mounting portion 2x of the table 2 substantially parallel to the X direction. That is, the first pin 11 and the second pin 12 are respectively in contact with the end faces Gc, Gb intersecting at the corner G1 which is the target of measuring the squareness.
 第一ピン11は、Y方向に間隔を置いて設けられた一対のピンで構成されており、第二ピン12は、X方向に一つだけ設けられた単一のピンで構成されている。端面Gcは、一対の第一ピン11と接触することで、一対の第一ピン11の間を結ぶ直線と平行に保持される。すなわち、端面Gcが予め設定された所定の傾きで保持される。第二ピン12は、このような端面Gcの傾きを維持しつつ端面Gbと接触する。これにより、一対の第一ピン11、および第二ピン12の計三点によって、ガラス板Gが位置決めされる。 The first pin 11 is composed of a pair of pins provided at intervals in the Y direction, and the second pin 12 is composed of a single pin provided only in the X direction. The end surface Gc is held in parallel with the straight line connecting the pair of first pins 11 by coming into contact with the pair of first pins 11. That is, the end surface Gc is held with a predetermined inclination set in advance. The second pin 12 contacts the end surface Gb while maintaining such inclination of the end surface Gc. Thereby, the glass plate G is positioned by the total of three points of the pair of first pin 11 and second pin 12.
 第一ピン11および第二ピン12は、テーブル2に着脱可能に保持されている。本実施形態では、ピン11,12を保持するための係合孔(図示しない)がテーブル2上に設けられている。係合孔は、ガラス板Gのサイズが変更された場合に、ピン11,12の取り付け位置を調整できるように、テーブル2の複数箇所に設けられていることが好ましい。  The first pin 11 and the second pin 12 are detachably held on the table 2. In this embodiment, engagement holes (not shown) for holding the pins 11 and 12 are provided on the table 2. The engagement holes are preferably provided at a plurality of positions on the table 2 so that the mounting positions of the pins 11 and 12 can be adjusted when the size of the glass plate G is changed. ‥
 距離計13は、第一ピン11および第二ピン12によって位置決めされたガラス板Gについて、端面Gcと端面Gbとが直角である場合に端面Gbが位置する基準位置(図11の一点鎖線で示す位置を参照)に対する、実際の端面Gbの位置の変位(基準位置からのY方向のずれ)を測定するようになっている。 The range finder 13 has a reference position (indicated by a one-dot chain line in FIG. 11) where the end surface Gb is located when the end surface Gc and the end surface Gb of the glass plate G positioned by the first pin 11 and the second pin 12 are at right angles. The displacement of the actual position of the end surface Gb (refer to the position) (deviation in the Y direction from the reference position) is measured.
 距離計13は、端面Gbと接触する接触子13aと、接触子13aをY方向に進退動可能に保持するスピンドル13bと、を備える接触式の距離計(例えばダイヤルゲージ)である。本実施形態では、接触子13aは円筒状の非転動体である。なお、接触子13aは、例えば、円筒状以外の形状をなす非転動体(例えば球状部材や針状部材)や、転動体(例えば円筒状ローラや球状ローラ)であってもよい。 The distance meter 13 is a contact type distance meter (for example, a dial gauge) including a contactor 13a that contacts the end surface Gb and a spindle 13b that holds the contactor 13a so as to be movable back and forth in the Y direction. In the present embodiment, the contact 13a is a cylindrical non-rolling body. The contactor 13a may be, for example, a non-rolling element (for example, a spherical member or a needle-shaped member) having a shape other than a cylindrical shape, or a rolling element (for example, a cylindrical roller or a spherical roller).
 距離計13は、第二ピン12が端面Gbと接触する位置と異なる位置で、端面Gbと接触するようになっている。本実施形態では、距離計13は、第二ピン12が端面Gbと接触する位置と、端面Gbが端面Gcと交差する位置との間で、端面Gbと接触するようになっている。 The distance meter 13 contacts the end surface Gb at a position different from the position where the second pin 12 contacts the end surface Gb. In the present embodiment, the distance meter 13 contacts the end surface Gb between the position where the second pin 12 contacts the end surface Gb and the position where the end surface Gb intersects the end surface Gc.
 校正用距離計14も、距離計13と同様に、端面Gbと接触する接触子14aと、接触子14aをY方向に進退動可能に保持するスピンドル14bと、を備える接触式の距離計(例えばダイヤルゲージ)である。 Similarly to the distance meter 13, the calibration distance meter 14 also includes a contact type distance meter including a contactor 14a that contacts the end surface Gb and a spindle 14b that holds the contactor 14a so as to be movable back and forth in the Y direction (for example, Dial gauge).
 校正用距離計14は、第二ピン12および距離計13が端面Gbと接触する位置と異なる位置で、端面Gbと接触するようになっている。本実施形態では、校正用距離計14は、第二ピン12が端面Gbと接触する位置と、距離計13が端面Gbと接触する位置との間で、端面Gbと接触するようになっている。 The calibration distance meter 14 contacts the end surface Gb at a position different from the position where the second pin 12 and the distance meter 13 contact the end surface Gb. In the present embodiment, the calibration distance meter 14 contacts the end surface Gb between the position where the second pin 12 contacts the end surface Gb and the position where the distance meter 13 contacts the end surface Gb. ..
 距離計13,14は、保持機構(例えばスライド機構)によってY方向に移動可能に保持されている。これにより、ガラス板Gの直角度以外の他の形状データを測定する際に、距離計13,14を邪魔にならない位置まで退避させることができる。また、ガラス板Gのサイズが変更された場合に、距離計13,14の位置を容易に調整できる。 The distance meters 13 and 14 are held by a holding mechanism (for example, a slide mechanism) so as to be movable in the Y direction. Thereby, when measuring shape data other than the squareness of the glass plate G, the rangefinders 13 and 14 can be retracted to a position where they do not interfere. Further, when the size of the glass plate G is changed, the positions of the distance meters 13 and 14 can be easily adjusted.
(載置治具)
 図1に示すように、ガラス板測定装置1は、ガラス板Gをテーブル2の載置部2xに載置するための構成として、ガラス板Gを下方から支持する載置治具15を備えている。載置治具15は、テーブル2の凸条部2a,2bおよび突起部2cを挿通可能な開口部15aを備えた梯子状の部材である。載置治具15は、ガラス板Gを載置治具15から凸条部2a,2bおよび突起部2cに載せ替えた後、テーブル2上に載置される。なお、凸条部2a,2bおよび/又は突起部2cは、載置治具15と干渉しなければ、開口部15aの内側に加え、開口部15aの外側に設けられていてもよい。載置治具15は、例えば格子状の部材などでもよく、凸条部2a,2bおよび突起部2cを挿通可能な開口部を備えた任意の形状を取り得る。
(Mounting jig)
As shown in FIG. 1, the glass plate measuring apparatus 1 includes a mounting jig 15 that supports the glass plate G from below as a configuration for mounting the glass plate G on the mounting portion 2x of the table 2. There is. The mounting jig 15 is a ladder-shaped member having an opening 15a through which the ridges 2a and 2b and the protrusion 2c of the table 2 can be inserted. The mounting jig 15 is mounted on the table 2 after the glass plate G is transferred from the mounting jig 15 to the ridges 2a and 2b and the protrusion 2c. The ridges 2a and 2b and/or the protrusion 2c may be provided outside the opening 15a in addition to inside the opening 15a as long as they do not interfere with the mounting jig 15. The mounting jig 15 may be, for example, a lattice-shaped member, and may have any shape having an opening through which the protrusions 2a and 2b and the protrusion 2c can be inserted.
 次に、以上のように構成されたガラス板測定装置1を用いたガラス板測定方法を説明する。 Next, a glass plate measuring method using the glass plate measuring device 1 configured as described above will be described.
 本実施形態に係るガラス板測定方法は、ガラス板Gをテーブル2の載置部2xに載置する準備工程と、ガラス板Gの端面の真直度を測定する真直度測定工程と、ガラス板Gの縦横寸法を測定する寸法測定工程と、ガラス板Gの端面の直角度を測定する直角度測定工程と、をこの順に備えている。なお、例えば、寸法測定工程、真直度測定工程、直角度測定工程の順に行うなど、準備工程以降のこれら工程の順番は入れ替えてもよい。 The glass plate measuring method according to the present embodiment includes a preparatory step of mounting the glass plate G on the mounting portion 2x of the table 2, a straightness measuring step of measuring straightness of an end surface of the glass plate G, and a glass plate G. A dimension measurement step of measuring the vertical and horizontal dimensions of the and the squareness measurement step of measuring the squareness of the end surface of the glass sheet G are provided in this order. The order of these steps after the preparation step may be interchanged, for example, the dimension measuring step, the straightness measuring step, and the squareness measuring step may be performed in this order.
(準備工程)
 図5に示すように、準備工程では、まず、ガラス板Gを載置治具15に載置した状態でテーブル2の上方位置まで運ぶ(図中の鎖線で示す状態)。次に、この状態から載置治具15を降下させ、載置治具15の開口部15aに、テーブル2の載置部2xの凸条部2a,2bおよび突起部(球状ローラ)2cを挿通させる。この過程で、載置治具15に載置されたガラス板Gが凸条部2a,2bおよび突起部2cにより押し上げられ、ガラス板Gが載置治具15から凸条部2a,2bおよび突起部2cに載せ換えられる。なお、載置治具15は、テーブル2上に載置した状態で、凸条部2a,2bおよび突起部2cよりも低い。そのため、ガラス板Gを載置治具15から凸条部2a,2bおよび突起部2cに載せ換えた後、載置治具15をテーブル2上に載置して収容できる。
(Preparation process)
As shown in FIG. 5, in the preparation step, first, the glass plate G is placed on the placing jig 15 and carried to a position above the table 2 (a state indicated by a chain line in the figure). Next, the mounting jig 15 is lowered from this state, and the projections 2a and 2b and the protrusion (spherical roller) 2c of the mounting portion 2x of the table 2 are inserted into the opening 15a of the mounting jig 15. Let In this process, the glass plate G mounted on the mounting jig 15 is pushed up by the ridges 2a and 2b and the protrusion 2c, and the glass plate G is moved from the mounting jig 15 to the ridges 2a and 2b and the protrusions. It is transferred to the section 2c. The mounting jig 15 is lower than the ridges 2a and 2b and the protrusion 2c in a state of being mounted on the table 2. Therefore, after the glass plate G is transferred from the mounting jig 15 to the ridges 2a and 2b and the protrusion 2c, the mounting jig 15 can be mounted on the table 2 and accommodated.
(真直度測定工程)
 図6に示すように、真直度測定工程では、まず、載置部2xで支持されたガラス板Gの位置決めがなされる。本実施形態では、ガラス板Gの端面GaのX方向一端部とX方向他端部とが所定の基準位置に来るようにガラス板Gを位置決めする。具体的には、端面GaのX方向両端部を測定するための第一位置P1および第二位置P2で、距離計3により測定される基準位置からの変位が零になるようにガラス板Gを位置決めする。このようなガラス板Gの位置決め作業において、距離計3を第一位置P1と第二位置P2との間で移動させる際は、距離計3の接触子3aの損耗を防止するために、接触子3aをガラス板Gの端面Gaから退避させた状態とすることが好ましい。次に、ガラス板Gを位置決めした状態で、ガラス板Gが移動しないようにガラス板G上に錘16を載置する。その後、スケール4eで位置を確認しながら保持機構4により距離計3をX方向に所定距離ずつ移動させ、ガラス板Gの端面Gaの真直度を測定する。なお、錘16は、真直度測定工程が終了した段階で、ガラス板Gの上から取り除く。
(Straightness measurement process)
As shown in FIG. 6, in the straightness measuring step, first, the glass plate G supported by the mounting portion 2x is positioned. In the present embodiment, the glass plate G is positioned so that one end in the X direction and the other end in the X direction of the end surface Ga of the glass plate G are located at predetermined reference positions. Specifically, at the first position P1 and the second position P2 for measuring both ends of the end surface Ga in the X direction, the glass plate G is placed so that the displacement from the reference position measured by the distance meter 3 becomes zero. Position. In such positioning work of the glass plate G, when the rangefinder 3 is moved between the first position P1 and the second position P2, in order to prevent wear of the contactor 3a of the rangefinder 3, It is preferable that 3a is retracted from the end surface Ga of the glass plate G. Next, with the glass plate G positioned, the weight 16 is placed on the glass plate G so that the glass plate G does not move. After that, while checking the position with the scale 4e, the distance measuring device 3 is moved by a predetermined distance in the X direction by the holding mechanism 4, and the straightness of the end surface Ga of the glass plate G is measured. The weight 16 is removed from the glass plate G when the straightness measuring step is completed.
 図7に示すように、本実施形態では、ガラス板G上に載置される錘16は、ガラス板Gの端面Gaの近傍で、端面Ga(すなわち直定規5)に沿って配置される。テーブル2には、ガラス板Gの端面Gaの近傍で、端面Ga(すなわち直定規5)に沿って延び、ガラス板Gを介して錘16を支持する支持部材17が配置されている。これにより、真直度を測定するガラス板Gの端面Gaの近傍が、錘16の荷重によって下方に撓むのを防止している。 As shown in FIG. 7, in the present embodiment, the weight 16 placed on the glass plate G is arranged near the end surface Ga of the glass plate G and along the end surface Ga (that is, the straight edge 5). A support member 17 that extends along the end surface Ga (that is, the straight edge 5) and supports the weight 16 through the glass plate G is arranged on the table 2 near the end surface Ga of the glass plate G. As a result, the vicinity of the end surface Ga of the glass plate G whose straightness is measured is prevented from being bent downward by the load of the weight 16.
 なお、真直度測定工程では、ピン7,8,11,12はテーブル2から取り外すと共に、寸法測定計9,10および距離計13,14は邪魔にならない位置に退避させることが好ましい。寸法測定計9,10および距離計13,14の退避方法としては、例えば、寸法測定計9,10および距離計13,14の各々の全体を退避位置まで後退させる方法や、接触子9a,10a,13a,14aのみを退避位置まで後退させる方法(図6の状態)などが挙げられる。 In the straightness measuring step, it is preferable to remove the pins 7, 8, 11 and 12 from the table 2 and retract the dimension measuring instruments 9 and 10 and the distance measuring instruments 13 and 14 to positions that do not interfere. Examples of the retracting method of the dimension measuring instruments 9 and 10 and the distance measuring devices 13 and 14 include a method of retracting the entire dimension measuring instruments 9 and 10 and the distance measuring devices 13 and 14 to the retracted position, and contactors 9a and 10a. , 13a, 14a are retracted to the retracted position (state of FIG. 6).
 図8に示すように、距離計3の接触子3aは円筒状のローラであり、ガラス板Gの端面Gaと接触しながら転動する。このようにすれば、接触子3aの回転に伴って、接触子3aのうち、ガラス板Gの端面Gaと接触する部分が順に変化するため、接触子3aの摩耗を抑制できる。また、接触子3aが円筒状であるため、ガラス板Gの端面Gaが傾斜している場合でも、端面Gaの最突出部の変位が常に測定される。したがって、距離計3による真直度の測定誤差が小さくなる。なお、接触子3aの回転軸は、ガラス板Gの厚み方向(Z方向)と実質的に平行である。 As shown in FIG. 8, the contactor 3a of the distance meter 3 is a cylindrical roller and rolls while contacting the end surface Ga of the glass plate G. With this configuration, as the contactor 3a rotates, the portion of the contactor 3a that contacts the end surface Ga of the glass plate G sequentially changes, so that wear of the contactor 3a can be suppressed. Further, since the contactor 3a is cylindrical, even if the end surface Ga of the glass plate G is inclined, the displacement of the most protruding portion of the end surface Ga is always measured. Therefore, the measurement error of the straightness by the distance meter 3 becomes small. The rotation axis of the contactor 3a is substantially parallel to the thickness direction (Z direction) of the glass plate G.
 図6に示すように、距離計3のY方向の位置は、直定規5を基準として決定されるため、距離計3で測定されるガラス板Gの端面Gaの変位(真直度)は、直定規5の真直度の影響を受ける。そのため、測定されたガラス板Gの端面Gaの真直度S1と、既知の直定規5の真直度S2との差(S1-S2)が、最終的なガラス板Gの端面Gaの真直度として記録される。 As shown in FIG. 6, since the position of the rangefinder 3 in the Y direction is determined with the straightedge 5 as a reference, the displacement (straightness) of the end surface Ga of the glass plate G measured by the rangefinder 3 is a straight line. It is affected by the straightness of ruler 5. Therefore, the difference (S1-S2) between the measured straightness S1 of the end surface Ga of the glass plate G and the straightness S2 of the known straightedge 5 is recorded as the final straightness of the end surface Ga of the glass plate G. To be done.
 なお、ガラス板Gの端面Gaの真直度の測定後に、位置P1,P2で距離計3によりガラス板Gの端面Gaを再度測定し、ガラス板Gの位置ずれの有無を確認することが好ましい。すなわち、両方の位置P1,P2で距離計3により測定される基準位置からの変位が零であれば、測定前後でガラス板Gに位置ずれがないことが確認できる。 After the straightness of the end surface Ga of the glass plate G is measured, it is preferable to measure the end surface Ga of the glass plate G again with the range finder 3 at the positions P1 and P2 to check whether the glass plate G is displaced. That is, if the displacement from the reference position measured by the distance meter 3 at both positions P1 and P2 is zero, it can be confirmed that the glass plate G is not displaced before and after the measurement.
 上記ではガラス板Gの端面Gaの真直度を測定する場合を例示したが、ガラス板Gの四つの端面Ga~Gdのそれぞれの真直度を測定することが好ましい。この場合、ガラス板Gの端面Gaの真直度を測定した後に、載置治具15やその他の手段により、テーブル2に対するガラス板Gの向きを変更し、残りの端面Gb~Gdの真直度を同様の手順で測定する。ガラス板Gの四つの端面Ga~Gdのそれぞれの真直度を測定すれば、例えば、ガラス板Gの製造工程に含まれる端面加工工程において、ガラス板Gの各端面Ga~Gdの真直度に基づいて加工工具の位置を正確に調整できる。そのため、ガラス板Gの各端面Ga~Gdを一定研削量で加工し易くなる。なお、このような真直度に基づいて加工工具の位置を調整する方法は、定圧研削を実施する場合にも適用できる。 Although the case where the straightness of the end surface Ga of the glass plate G is measured has been illustrated above, it is preferable to measure the straightness of each of the four end surfaces Ga to Gd of the glass plate G. In this case, after measuring the straightness of the end surface Ga of the glass plate G, the orientation of the glass plate G with respect to the table 2 is changed by the mounting jig 15 or other means, and the straightness of the remaining end surfaces Gb to Gd is adjusted. Perform the same procedure. If the straightness of each of the four end faces Ga to Gd of the glass plate G is measured, for example, in the end face processing step included in the manufacturing process of the glass plate G, based on the straightness of each end face Ga to Gd of the glass plate G, The position of the processing tool can be adjusted accurately. Therefore, it becomes easy to process each of the end surfaces Ga to Gd of the glass plate G with a constant grinding amount. The method of adjusting the position of the working tool based on such straightness can also be applied to the case of performing constant pressure grinding.
(寸法測定工程)
 図9に示すように、寸法測定工程では、まず、第一ピン7および第二ピン8をガラス板Gの端面Ga,Gcに接触させ、載置部2xで支持されたガラス板Gを位置決めする。この状態で、寸法測定計9,10の接触子9a,10aをガラス板Gの端面Gb,Gdに接触させ、ガラス板GのX方向寸法およびY方向寸法を測定する。寸法測定計9,10の接触子9a,10aは円筒状であるため、距離計3の接触子3aと同様に、ガラス板Gの端面Gb,Gdの最突出部の位置が測定される。
(Dimension measurement process)
As shown in FIG. 9, in the dimension measuring step, first, the first pin 7 and the second pin 8 are brought into contact with the end surfaces Ga and Gc of the glass plate G to position the glass plate G supported by the mounting portion 2x. .. In this state, the contactors 9a, 10a of the dimension measuring instruments 9, 10 are brought into contact with the end faces Gb, Gd of the glass plate G, and the X-direction dimension and the Y-direction dimension of the glass plate G are measured. Since the contactors 9a and 10a of the dimension measuring instruments 9 and 10 are cylindrical, the positions of the most protruding portions of the end faces Gb and Gd of the glass plate G are measured, like the contactor 3a of the distance meter 3.
 ガラス板GのX方向寸法およびY方向寸法は、同時に測定してもよいし、別々に測定してもよい。別々に測定する場合には、例えば、第一ピン7をガラス板Gの端面Gcに接触させて、第一寸法測定計9によりガラス板GのX方向の寸法を測定した後に、第一ピン7および第一寸法測定計9とガラス板Gとの接触を解除すると共に、第二ピン8をガラス板Gの端面Gaに接触させて、第二寸法測定計10によりガラス板GのY方向の寸法を測定する。 The X-direction dimension and the Y-direction dimension of the glass plate G may be measured at the same time or separately. In the case of separately measuring, for example, the first pin 7 is brought into contact with the end surface Gc of the glass plate G, the dimension of the glass plate G in the X direction is measured by the first dimension measuring instrument 9, and then the first pin 7 is measured. The contact between the first dimension measuring instrument 9 and the glass sheet G is released, the second pin 8 is brought into contact with the end surface Ga of the glass sheet G, and the dimension of the glass sheet G in the Y direction is measured by the second dimension measuring instrument 10. To measure.
 なお、本実施形態では、X方向寸法およびY方向寸法のそれぞれを二箇所で測定しているが、ピンとこれに正対する寸法測定計の組数は、適宜変更可能である。すなわち、X方向寸法およびY方向寸法のそれぞれは、一箇所のみで測定してもよいし、三箇所以上で測定してもよい。 In the present embodiment, each of the X-direction dimension and the Y-direction dimension is measured at two points, but the number of pairs of pins and the dimension measuring device that faces them can be appropriately changed. That is, each of the X-direction dimension and the Y-direction dimension may be measured at only one place, or may be measured at three or more places.
 寸法測定工程では、距離計3,13,14を邪魔にならない位置に退避させることが好ましい。距離計3,13,14の退避方法としては、例えば、距離計3,13,14の各々の全体を退避位置まで後退させる方法や、接触子3a,13a,14aのみを退避位置まで後退させる方法(図9の状態)などが挙げられる。 In the dimension measurement process, it is preferable to retract the distance meters 3, 13, 14 to a position that does not interfere with them. Examples of the method of retracting the rangefinders 3, 13, 14 include a method of retracting the entire rangefinders 3, 13, 14 to the retracted position, or a method of retracting only the contacts 3a, 13a, 14a to the retracted position. (State of FIG. 9) and the like.
(直角度測定工程)
 図10に示すように、直角度測定工程では、まず、第一ピン11および第二ピン12をガラス板Gの端面Gb,Gcに接触させ、載置部2xで支持されたガラス板Gを位置決めする。この状態で、距離計13の接触子13aをガラス板Gの端面Gbに接触させ、端面Gbの基準位置からの変位(Y方向の変位)を測定する。距離計13の接触子13aは円筒状であるため、距離計3の接触子3aと同様に、ガラス板Gの端面Gaの最突出部の位置が測定される。
(Squareness measurement process)
As shown in FIG. 10, in the perpendicularity measuring step, first, the first pin 11 and the second pin 12 are brought into contact with the end faces Gb and Gc of the glass plate G to position the glass plate G supported by the mounting portion 2x. To do. In this state, the contact 13a of the distance meter 13 is brought into contact with the end surface Gb of the glass plate G, and the displacement (displacement in the Y direction) from the reference position of the end surface Gb is measured. Since the contactor 13a of the distance meter 13 has a cylindrical shape, the position of the most protruding portion of the end surface Ga of the glass plate G is measured, like the contactor 3a of the distance meter 3.
 距離計13によって測定された変位は、端面Gcの垂直面に対する端面Gbの傾きに換算され、この傾きは直角度を示す。図11に示すように、端面Gcの垂直面に対する端面Gbの傾き(直角度)は、例えば、端面Gcと端面Gbとが交差する位置から、端面Gbと端面Gbとが交差する位置までのY方向の変位M(=d1×d3/d2)、又は端面Gcの垂直面と端面Gbとのなす角θ(=tan-1(d1/d2))で表される。ここで、d1は距離計13により測定されたY方向の変位、d2は既知である距離計13と第二ピン12との間のX方向距離、d3は既知であるガラス板GのX方向寸法(設計値)である。端面Gcの垂直面に対する端面Gbの傾きは、例えば、距離計13で測定された変位から演算装置で自動演算するようにしてもよいし、距離計13で測定された変位を傾きに換算する換算表を予め作成しておき、その換算表から読み取るようにしてもよい。 The displacement measured by the distance meter 13 is converted into the inclination of the end surface Gb with respect to the vertical surface of the end surface Gc, and this inclination indicates the squareness. As shown in FIG. 11, the inclination (squareness) of the end surface Gb with respect to the vertical surface of the end surface Gc is, for example, Y from a position where the end surface Gc and the end surface Gb intersect to a position where the end surface Gb and the end surface Gb intersect. It is represented by a displacement M (=d1×d3/d2) in the direction or an angle θ (=tan −1 (d1/d2)) formed by the vertical surface of the end surface Gc and the end surface Gb. Here, d1 is the displacement in the Y direction measured by the distance meter 13, d2 is the distance in the X direction between the known distance meter 13 and the second pin 12, and d3 is the known X direction dimension of the glass plate G. (Design value). The inclination of the end surface Gb with respect to the vertical surface of the end surface Gc may be automatically calculated by a calculation device from the displacement measured by the distance meter 13, or may be converted into an inclination by the displacement measured by the distance meter 13. The table may be created in advance and read from the conversion table.
 このように直角度を測定し、製造されるガラス板Gの直角度を管理することで、例えば、加工・洗浄・検査などの各種工程(納入先の工程を含む)でガラス板Gのアライメント(位置決め)のずれが生じるのを防止できる。 By measuring the squareness in this way and controlling the squareness of the glass sheet G to be manufactured, for example, alignment of the glass sheet G in various processes (including the process of the delivery destination) such as processing, cleaning and inspection ( It is possible to prevent the deviation of (positioning).
 上記ではガラス板Gの角部G1で交差する端面の直角度を測定する場合を例示したが、ガラス板Gの四つの角部G1~G4のそれぞれで交差する端面の直角度を全て測定するようにしてもよい。この場合、ガラス板Gの角部G1で交差する端面の直角度を測定した後に、載置治具15やその他の手段により、テーブル2に対するガラス板Gの向きを変更し、残りの角部G2~G4で交差する端面の直角度を同様の手順で測定する。 In the above, the case of measuring the perpendicularity of the end faces intersecting at the corner G1 of the glass plate G has been illustrated, but the squareness of the end faces intersecting at each of the four corners G1 to G4 of the glass plate G should be measured. You can In this case, after measuring the squareness of the end faces intersecting at the corner G1 of the glass plate G, the orientation of the glass plate G with respect to the table 2 is changed by the mounting jig 15 or other means, and the remaining corners G2. The perpendicularity of the end faces intersecting at G4 is measured by the same procedure.
 なお、直角度測定工程では、ピン7,8はテーブル2から取り外すと共に、距離計3,14および寸法測定計9,10は邪魔にならない位置に退避させることが好ましい。距離計3,14および寸法測定計9,10の退避方法としては、例えば、距離計3,14および寸法測定計9,10の各々の全体を退避位置まで後退させる方法や、接触子3a,9a,10a,14aのみを退避位置まで後退させる方法(図10の状態)などが挙げられる。 In addition, in the perpendicularity measuring step, it is preferable to remove the pins 7 and 8 from the table 2 and retract the distance meters 3 and 14 and the dimension measuring meters 9 and 10 to positions that do not interfere. Examples of the retracting method of the distance meters 3, 14 and the dimension measuring instruments 9, 10 include, for example, a method of retracting the entire distance measuring instruments 3, 14 and the dimension measuring instruments 9, 10 to the retracted position, and the contactors 3a, 9a. , 10a, 14a are retracted to the retracted position (state of FIG. 10).
(校正工程)
 本実施形態に係るガラス板測定方法は、準備工程の前に、寸法測定工程で使用する寸法測定計9,10を校正する第一校正工程と、直角度測定で使用する距離計13を校正する第二校正工程と、を更に備えている。これら校正工程は、ガラス板Gの測定の度に毎回実施してもよいし、ガラス板Gの測定を所定回数又は所定時間行った後に実施してもよい。また、測定対象のガラス板Gのサイズが変わる場合に実施してもよい。もちろん、第一校正工程のみを実施してもよいし、第二校正工程のみを実施してもよい。
(Calibration process)
The glass plate measuring method according to the present embodiment calibrates the first calibrating step for calibrating the dimension measuring instruments 9 and 10 used in the dimension measuring step and the range finder 13 used for squareness measurement before the preparing step. And a second calibration step. These calibration steps may be performed every time the glass plate G is measured, or may be performed after the glass plate G is measured a predetermined number of times or a predetermined time. Moreover, you may implement when the size of the glass plate G of a measuring object changes. Of course, only the first calibration step may be performed, or only the second calibration step may be performed.
 図12及び図13に示すように、第一校正工程では、棒状の第一校正治具18を用いて第一寸法測定計9を校正し、棒状の第二校正治具19を用いて第二寸法測定計10を校正する。図12は、第一校正治具18を用いて第一寸法測定計9を校正する状態を実線で示し、第二校正治具19を用いて第二寸法測定計10を校正する状態を鎖線で示している。なお、第一寸法測定計9の校正と第二寸法測定計10の校正とは別々に実施される。 As shown in FIGS. 12 and 13, in the first calibration step, the rod-shaped first calibration jig 18 is used to calibrate the first dimension measuring instrument 9, and the rod-shaped second calibration jig 19 is used to perform the second calibration. Calibrate the dimension measuring instrument 10. FIG. 12 shows a state in which the first dimension measuring instrument 9 is calibrated by using the first calibration jig 18 by a solid line, and a state in which the second dimension measuring instrument 10 is calibrated by using the second calibration jig 19 is indicated by a chain line. Shows. The calibration of the first dimension measuring instrument 9 and the calibration of the second dimension measuring instrument 10 are performed separately.
 第一校正治具18および第二校正治具19の長さは既知である。本実施形態では、第一校正治具18の長さは、ガラス板GのX方向寸法の基準寸法(設計寸法)に設定されており、第二校正治具19の長さは、ガラス板GのY方向寸法の基準寸法(設計寸法)に設定されている。なお、校正治具18,19自体の校正も定期的(例えば年一回程度)に実施することが好ましい。 The lengths of the first calibration jig 18 and the second calibration jig 19 are known. In the present embodiment, the length of the first calibration jig 18 is set to the reference dimension (design dimension) of the X-direction dimension of the glass plate G, and the length of the second calibration jig 19 is the glass plate G. Is set to the reference dimension (design dimension) of the Y-direction dimension. The calibration jigs 18 and 19 themselves are preferably calibrated regularly (for example, about once a year).
 第一寸法測定計9の校正時には、第一校正治具18の一端を第一ピン7に接触させると共に、第一校正治具18の他端を第一寸法測定計9の接触子9aに接触させる。第二寸法測定計10の校正時には、第二校正治具19の一端を第二ピン8に接触させると共に、第二校正治具19の他端を第二寸法測定計10の接触子10aに接触させる。 During calibration of the first dimension measuring instrument 9, one end of the first calibration jig 18 is brought into contact with the first pin 7, and the other end of the first calibration jig 18 is brought into contact with the contact 9a of the first dimension measuring instrument 9. Let During calibration of the second dimension measuring instrument 10, one end of the second calibration jig 19 is brought into contact with the second pin 8 and the other end of the second calibration jig 19 is brought into contact with the contact 10a of the second dimension measuring instrument 10. Let
 第一寸法測定計9の基準位置(例えば零点)は、接触子9aが第一校正治具18と接触する位置に校正され、第二寸法測定計10の基準位置(例えば零点)は、接触子10aが第二校正治具19と接触する位置に校正される。 The reference position (for example, the zero point) of the first dimension measuring device 9 is calibrated to a position where the contact 9a contacts the first calibration jig 18, and the reference position (for example, the zero point) of the second dimension measuring device 10 is the contact member. 10a is calibrated at a position where it contacts the second calibration jig 19.
 本実施形態では、第一寸法測定計9は、ガラス板Gの端面Gdの基準位置からの変位を測定し、第二寸法測定計10は、ガラス板Gの端面Gbの基準位置からの変位を測定する。すなわち、各方向の基準寸法と測定された変位(基準寸法よりも短い場合が負の変位、基準寸法よりも長い場合が正の変位)との和が、ガラス板GのX方向寸法およびY方向寸法として記録される。したがって、上記のように寸法測定計9,10の基準位置を校正すれば、X方向寸法およびY方向寸法の測定精度が向上する。 In the present embodiment, the first dimension measuring instrument 9 measures the displacement of the end surface Gd of the glass plate G from the reference position, and the second dimension measuring instrument 10 measures the displacement of the end surface Gb of the glass sheet G from the reference position. taking measurement. That is, the sum of the reference dimension in each direction and the measured displacement (negative displacement when shorter than the reference dimension, positive displacement when longer than the reference dimension) is the dimension of the glass plate G in the X direction and the Y direction. Recorded as dimensions. Therefore, if the reference positions of the dimension measuring instruments 9 and 10 are calibrated as described above, the measurement accuracy of the X-direction dimension and the Y-direction dimension is improved.
 第一校正治具18は、小径部18aと、小径部18aよりも径が大きくなる大径部18bと、を備えている。同様に、第二校正治具19は、小径部19aと、小径部19aよりも径が大きくなる大径部19bと、を備えている。小径部18a,19aおよび大径部18b,19bの材質は特に限定されるものではないが、本実施形態では、小径部18a,19aは金属で形成されており、大径部18b,19bはゴムで形成されている。 The first calibration jig 18 includes a small diameter portion 18a and a large diameter portion 18b having a diameter larger than that of the small diameter portion 18a. Similarly, the second calibration jig 19 includes a small diameter portion 19a and a large diameter portion 19b having a diameter larger than that of the small diameter portion 19a. The material of the small diameter portions 18a, 19a and the large diameter portions 18b, 19b is not particularly limited, but in the present embodiment, the small diameter portions 18a, 19a are made of metal, and the large diameter portions 18b, 19b are made of rubber. Is formed by.
 テーブル2上には、第一校正治具18の大径部18bを支持する第一支持部20、および第二校正治具19の大径部19bを支持する第二支持部21が設けられている。支持部20,21の上面は、円筒状の大径部18b,19bを支持するために、半円筒状の凹溝が形成されている。校正治具18,19の大径部18b,19bを支持部20,21で支持することにより、校正治具18,19の高さが自動的に調整される。そのため、寸法測定計9,10の校正作業が容易になる。 On the table 2, a first support portion 20 that supports the large diameter portion 18b of the first calibration jig 18 and a second support portion 21 that supports the large diameter portion 19b of the second calibration jig 19 are provided. There is. Semi-cylindrical concave grooves are formed on the upper surfaces of the supporting portions 20 and 21 to support the cylindrical large diameter portions 18b and 19b. By supporting the large diameter portions 18b and 19b of the calibration jigs 18 and 19 with the support portions 20 and 21, the heights of the calibration jigs 18 and 19 are automatically adjusted. Therefore, the calibration work of the dimension measuring instruments 9 and 10 becomes easy.
 第一支持部20および第二支持部21は、テーブル2の載置部2x、すなわち凸条部2a,2bおよび突起部2cよりも低い。これにより、図14に示すように、校正作業を実施しないときに、これら支持部20,21が載置部2xに載置されたガラス板Gと接触することがない。 The first supporting portion 20 and the second supporting portion 21 are lower than the placing portion 2x of the table 2, that is, the protruding portions 2a and 2b and the protruding portion 2c. As a result, as shown in FIG. 14, the supporting portions 20 and 21 do not come into contact with the glass plate G placed on the placing portion 2x when the calibration work is not performed.
 図15及び図16に示すように、第二校正工程では、第一ピン11および第二ピン12と接触可能で、かつ、互いに直角をなす第一保証面22aおよび第二保証面22bを有する校正用治具(例えばスコヤ)22と、第一保証面22aを第一ピン11に接触させた状態で、第二保証面22bの位置の基準位置からの変位を測定する校正用距離計14と、を用いて、距離計13を校正する。なお、校正用治具22自体の校正も定期的(例えば年一回程度)に実施することが好ましい。 As shown in FIG. 15 and FIG. 16, in the second calibration step, the calibration having the first proof surface 22a and the second proof surface 22b which can be in contact with the first pin 11 and the second pin 12 and which are perpendicular to each other. Jig 22 (for example, a squarer), and a calibration rangefinder 14 that measures the displacement of the position of the second assurance surface 22b from the reference position with the first assurance surface 22a in contact with the first pin 11. Is used to calibrate the range finder 13. It is preferable that the calibration jig 22 itself is also calibrated regularly (for example, about once a year).
 距離計13の校正時に校正用治具22を正確に設置することは非常に難しく、その作業に熟練を要する。そこで、一対の第一ピン11に校正用治具22の第一保証面22aを接触させた状態で、校正用治具22の第二保証面22bに関する、距離計13および校正用距離計14の数値が一致していることを確認しながら、校正用治具22を第二ピン12側(Y方向)に移動させる。このようにすれば、校正用治具22を正しい姿勢に維持した状態で、校正用治具22の第二保証面22bを第二ピン12に接触させることができる。その結果、校正用治具22の設置を簡単かつ正確に行うことができる。そして、このように設置された校正用治具22の第二保証面22bの位置を距離計13で測定して基準位置(零点)を補正すれば、距離計13を正しく校正できる。 Accurately installing the calibration jig 22 when calibrating the range finder 13 is very difficult and requires skill to perform the work. Therefore, with the first assurance surface 22a of the calibration jig 22 being in contact with the pair of first pins 11, the distance meter 13 and the calibration distance meter 14 of the second assurance surface 22b of the calibration jig 22 are The calibration jig 22 is moved to the second pin 12 side (Y direction) while confirming that the numerical values match. With this configuration, the second assurance surface 22b of the calibration jig 22 can be brought into contact with the second pin 12 while the calibration jig 22 is maintained in the correct posture. As a result, the calibration jig 22 can be installed easily and accurately. The distance meter 13 can be correctly calibrated by measuring the position of the second assurance surface 22b of the calibration jig 22 thus installed with the distance meter 13 and correcting the reference position (zero point).
 なお、第二校正工程が終了した後は、校正用距離計14は、ガラス板Gの端面Gbと接触しない位置まで退避させることが好ましい。このようにすれば、距離計13でガラス板Gの端面Gbを測定する際に、校正用距離計14が距離計13の測定の邪魔にならない。この際、校正用距離計14は、上述した方法で退避させる以外に、テーブル2から取り外して退避させてもよい。 Note that it is preferable to evacuate the calibration rangefinder 14 to a position where it does not come into contact with the end surface Gb of the glass plate G after the second calibration process is completed. With this configuration, when the distance meter 13 measures the end surface Gb of the glass plate G, the calibration distance meter 14 does not interfere with the measurement of the distance meter 13. At this time, the calibration rangefinder 14 may be detached from the table 2 and retracted, instead of being retracted by the method described above.
 ここで、本実施形態に係るガラス板測定方法は、例えばガラス板製造工程の中で実施される。ガラス板製造工程は、ガラス板を成形する成形工程と、成形されたガラス板を所定サイズに切断する切断工程と、ガラス板の切断された端面に対して面取りなどの仕上げ加工を施す端面加工工程とを含む。ガラス板測定方法は、例えば、切断工程および/又は端面加工工程の後に実施される。この場合、ガラス板測定方法の測定試料として、製造途中のガラス板の中から一枚又は複数枚のガラス板を抜き取る。なお、抜き取られたガラス板(測定試料)は、形状データを測定した後に廃棄され、例えばカレットとして再利用される。 Here, the glass plate measuring method according to the present embodiment is carried out, for example, in the glass plate manufacturing process. The glass plate manufacturing process includes a forming process for forming a glass plate, a cutting process for cutting the formed glass plate into a predetermined size, and an end face processing process for performing a finishing process such as chamfering on the cut end face of the glass plate. Including and The glass plate measuring method is performed, for example, after the cutting step and/or the end surface processing step. In this case, as a measurement sample of the glass plate measuring method, one or more glass plates are extracted from the glass plates in the process of production. The drawn glass plate (measurement sample) is discarded after the shape data is measured and reused as, for example, cullet.
 以上のように、本実施形態に係るガラス板測定装置1によれば、高度な画像処理等を用いることなく、ガラス板Gの端面の真直度、縦横寸法、端面の直角度を含む形状データを簡単かつ確実に測定できる。また、ガラス板Gのこれら形状データは、載置部2x上で全て測定できるため、省スペース化を図ることができる。更に、ガラス板Gは、凸条部2a,2bおよび突起部2cにより支持されているため、ガラス板Gが大寸法の場合であっても、その位置決めを容易かつ低コストで実現できる。 As described above, according to the glass plate measuring apparatus 1 of the present embodiment, the shape data including the straightness of the end face, the vertical and horizontal dimensions, and the squareness of the end face of the glass plate G can be obtained without using advanced image processing or the like. Easy and reliable measurement. Further, since all of these shape data of the glass plate G can be measured on the mounting portion 2x, space saving can be achieved. Furthermore, since the glass plate G is supported by the ridges 2a and 2b and the protrusion 2c, even if the glass plate G has a large size, its positioning can be realized easily and at low cost.
 なお、本発明は上記の実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、更に種々なる形態で実施し得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be carried out in various forms without departing from the scope of the present invention.
 上記の実施形態では、テーブル2の載置部2xが、凸条部2a,2bと、球状ローラからなる突起部2cと、を備えている場合を説明したが、載置部2xの構成は特に限定されるものではなく、凸条部2a,2bおよび突起部2cのいずれか一方のみを備えた構成であってもよい。 In the above embodiment, the mounting portion 2x of the table 2 has been described as including the protruding portions 2a and 2b and the protruding portion 2c formed of a spherical roller. However, the mounting portion 2x is particularly configured. The present invention is not limited to this, and may have a configuration including only one of the protrusions 2a and 2b and the protrusion 2c.
 上記の実施形態では、ガラス板Gの端面の真直度を、端面の複数箇所で断続的に測定する場合を説明したが、端面で連続的に測定してもよい。同様に、ガラス板Gの寸法を一つの端面の二箇所で測定する場合を説明したが、ガラス板Gの寸法は端面の一箇所で測定してもよいし、三箇所以上あるいは端面に沿って連続的に測定してもよい。 In the above embodiment, the case where the straightness of the end face of the glass plate G is intermittently measured at a plurality of positions on the end face has been described, but the straightness may be continuously measured at the end face. Similarly, although the case where the dimension of the glass plate G is measured at two points on one end face has been described, the dimension of the glass plate G may be measured at one point on the end face, or at three or more points or along the end face. It may be measured continuously.
 上記の実施形態では、ガラス板Gの形状データとして、真直度、寸法および直角度を測定する場合を説明したが、形状データはこれに限定されない。例えば、形状データは、真直度のみでもよく、真直度に加えて寸法または直角度を含んでいてもよい。また、ガラス板Gの厚みや反り等の他のデータを含んでいてもよい。 In the above embodiment, the case where the straightness, the dimension and the squareness are measured as the shape data of the glass plate G has been described, but the shape data is not limited to this. For example, the shape data may include only straightness, or may include dimensions or squareness in addition to straightness. Further, other data such as the thickness and warpage of the glass plate G may be included.
 上記の実施形態において、距離計3,13,14や寸法測定計9,10は、光学式(例えばレーザー距離計)などの非接触式の距離計であってもよい。 In the above embodiment, the rangefinders 3, 13, 14 and the dimension measuring instruments 9, 10 may be non-contact type rangefinders such as an optical type (for example, a laser rangefinder).
1     ガラス板測定装置
2     テーブル
2x    載置部
2a    第一凸条部
2b    第二凸条部
2c    突起部(球状ローラ)
3     距離計(真直度測定用)
4     保持機構
5     直定規
6     倣い機構
7     第一ピン(寸法測定用)
8     第二ピン(寸法測定用)
9     第一寸法測定計
10    第二寸法測定計
11    第一ピン(直角度測定用)
12    第二ピン(直角度測定用)
13    距離計(直角度測定用)
14    校正用距離計
15    載置治具
16    錘
17    支持部材
18    第一校正治具(寸法測定用)
19    第二校正治具(寸法測定用)
20    第一支持部
21    第二支持部
22    校正用治具(直角度測定用)
G     ガラス板
Ga~Gd 端面
G1~G4 角部
F     第一位置調整機構
S     第二位置調整機構
 
DESCRIPTION OF SYMBOLS 1 Glass plate measuring device 2 Table 2x Mounting part 2a First ridge part 2b Second ridge part 2c Protrusion part (spherical roller)
3 Distance meter (for straightness measurement)
4 Holding mechanism 5 Straightedge 6 Copying mechanism 7 First pin (for dimension measurement)
8 Second pin (for dimension measurement)
9 First dimension measuring instrument 10 Second dimension measuring instrument 11 First pin (for squareness measurement)
12 Second pin (for squareness measurement)
13 Distance meter (for squareness measurement)
14 Calibration distance meter 15 Mounting jig 16 Weight 17 Support member 18 First calibration jig (for dimension measurement)
19 Second calibration jig (for dimension measurement)
20 1st support part 21 2nd support part 22 Calibration jig (for squareness measurement)
G glass plate Ga to Gd end faces G1 to G4 corner F first position adjusting mechanism S second position adjusting mechanism

Claims (8)

  1.  矩形状のガラス板の端面の真直度を測定するガラス板測定装置であって、
     前記ガラス板が載置される載置部を有するテーブルと、
     前記載置部に載置された前記ガラス板の測定対象の端面までの距離を測定する距離計と、
     前記距離計を、前記測定対象の端面から離間する第一方向および前記測定対象の端面に沿う第二方向に移動可能に保持する保持機構と、
     前記第二方向に沿って延びる直定規と、
     前記保持機構に保持された前記距離計を前記直定規に沿わせる倣い機構と、を備えていることを特徴とするガラス板測定装置。
    A glass plate measuring device for measuring the straightness of an end face of a rectangular glass plate,
    A table having a mounting portion on which the glass plate is mounted,
    A distance meter that measures the distance to the end surface of the measurement target of the glass plate placed on the placing unit,
    A holding mechanism that holds the rangefinder movably in a second direction along the first direction and the end surface of the measurement target, which is separated from the end surface of the measurement target,
    A straightedge extending along the second direction,
    A glass plate measuring device, comprising: a copying mechanism that allows the rangefinder held by the holding mechanism to follow the straight edge ruler.
  2.  前記距離計は、前記測定対象の端面と接触する接触子を備え、
     前記接触子が、円筒状のローラであることを特徴とする請求項1に記載のガラス板測定装置。
    The rangefinder includes a contactor that comes into contact with the end surface of the measurement target,
    The glass plate measuring device according to claim 1, wherein the contactor is a cylindrical roller.
  3.  前記ガラス板の移動を規制する錘を備えていることを特徴とする請求項1又は2に記載のガラス板測定装置。 The glass plate measuring device according to claim 1 or 2, further comprising a weight for restricting movement of the glass plate.
  4.  前記直定規に沿って延び、前記ガラス板を介して前記錘を支持する支持部材を備えていることを特徴とする請求項3に記載のガラス板測定装置。 The glass plate measuring device according to claim 3, further comprising a support member that extends along the straight edge and supports the weight through the glass plate.
  5.  前記保持機構は、前記測定対象の端面と前記直定規との間に位置し、
     前記倣い機構は、前記保持機構を前記直定規側に寄せる弾性体を備えていることを特徴とする請求項1~4のいずれか1項に記載のガラス板測定装置。
    The holding mechanism is located between the end surface of the measurement target and the straight edge,
    The glass plate measuring device according to any one of claims 1 to 4, wherein the copying mechanism includes an elastic body that moves the holding mechanism toward the straight edge.
  6.  前記距離計の前記第二方向の位置を示すスケールを備えている請求項1~5のいずれか1項に記載のガラス板測定装置。 The glass plate measuring device according to any one of claims 1 to 5, further comprising a scale indicating a position of the distance meter in the second direction.
  7.  矩形状のガラス板の形状データを測定するガラス板測定装置であって、
     前記ガラス板が載置される載置部を有するテーブルと、
     前記載置部に載置された前記ガラス板の端面の真直度を測定する真直度測定装置と、
     前記載置部に載置された前記ガラス板の寸法を測定する寸法測定装置と、
     前記載置部に載置された前記ガラス板の角部で交差する端面の直角度を測定する直角度測定装置と、を備えていることを特徴とするガラス板測定装置。
    A glass plate measuring device for measuring shape data of a rectangular glass plate,
    A table having a mounting portion on which the glass plate is mounted,
    A straightness measuring device for measuring the straightness of the end face of the glass plate placed on the placing part,
    A dimension measuring device for measuring the dimensions of the glass plate placed on the placing part,
    A squareness measuring device for measuring a squareness of an end face intersecting at a corner portion of the glass plate placed on the placing part, and a glass plate measuring device.
  8.  ガラス板の形状データを測定するガラス板測定装置であって、
     前記ガラス板の測定対象の端面までの距離を測定する距離計を備え、
     前記距離計が、前記測定対象の端面と接触する円筒状のローラからなる接触子を有することを特徴とするガラス板測定装置。
     
    A glass plate measuring device for measuring shape data of a glass plate,
    A rangefinder that measures the distance to the end surface of the measurement target of the glass plate is provided.
    The glass plate measuring device, wherein the range finder has a contact made of a cylindrical roller that comes into contact with the end surface of the measurement target.
PCT/JP2019/043423 2018-11-28 2019-11-06 Device for measuring glass sheet WO2020110634A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020558247A JPWO2020110634A1 (en) 2018-11-28 2019-11-06 Glass plate measuring device
CN201990001194.3U CN215447717U (en) 2018-11-28 2019-11-06 Glass plate measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222556 2018-11-28
JP2018222556 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110634A1 true WO2020110634A1 (en) 2020-06-04

Family

ID=70853969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043423 WO2020110634A1 (en) 2018-11-28 2019-11-06 Device for measuring glass sheet

Country Status (4)

Country Link
JP (1) JPWO2020110634A1 (en)
CN (1) CN215447717U (en)
TW (1) TW202028732A (en)
WO (1) WO2020110634A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046596B (en) * 2022-08-11 2022-11-01 江苏诚成节能玻璃有限公司 Glass performance detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117011A (en) * 1984-07-03 1986-01-25 Komatsu Ltd Measuring method of size in double housing machine tool
JPS6367903U (en) * 1986-10-24 1988-05-07
JPH08210803A (en) * 1995-02-08 1996-08-20 Hitachi Zosen Corp Straightness measuring instrument
JP2008096114A (en) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd Measuring apparatus
JP2014029291A (en) * 2012-07-31 2014-02-13 Nisshin Steel Co Ltd Flatness measuring method
JP2014190810A (en) * 2013-03-27 2014-10-06 Nihon Yamamura Glass Co Ltd Inspection equipment for trunk diameter failure of container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205724A (en) * 2006-01-30 2007-08-16 Central Glass Co Ltd Shape measuring device and measuring method of glass substrate
CN203224196U (en) * 2013-05-13 2013-10-02 旭硝子株式会社 Plate-shaped body checking device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117011A (en) * 1984-07-03 1986-01-25 Komatsu Ltd Measuring method of size in double housing machine tool
JPS6367903U (en) * 1986-10-24 1988-05-07
JPH08210803A (en) * 1995-02-08 1996-08-20 Hitachi Zosen Corp Straightness measuring instrument
JP2008096114A (en) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd Measuring apparatus
JP2014029291A (en) * 2012-07-31 2014-02-13 Nisshin Steel Co Ltd Flatness measuring method
JP2014190810A (en) * 2013-03-27 2014-10-06 Nihon Yamamura Glass Co Ltd Inspection equipment for trunk diameter failure of container

Also Published As

Publication number Publication date
TW202028732A (en) 2020-08-01
CN215447717U (en) 2022-01-07
JPWO2020110634A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
CA2929549C (en) Multi-instrument calibration standard
KR102013090B1 (en) How to Measure Floor Plans and Adjust Pin Height
CN109539988B (en) Square plate form and position tolerance measuring method
WO2020110634A1 (en) Device for measuring glass sheet
JP7328623B2 (en) Glass plate measuring device
WO2020110636A1 (en) Device for measuring glass sheet and merthod for manufacturing glass sheet
WO2020110635A1 (en) Table
US12018932B2 (en) Determining the orientation of at least one object and method for relatively orienting rollers
CN108180818A (en) A kind of high-precision detector for measuring L-type planeness of workpiece verticality
US11255652B2 (en) Methods and apparatus for determining a height of an edge portion of a product
KR102418946B1 (en) Apparatus for measuring flatness of plate workpiece
CN205981022U (en) Specific high inside width measuring tool of fork truck portal channel -section steel
JP7112880B2 (en) Standard scale and straightness measurement method
JP3956008B2 (en) Object moving device for comparing the dimensions of an object and a method for comparing dimensions using the device
CN215952416U (en) Positioning device based on visual guidance
CN102538633A (en) Method for measuring precision cone
CN106123740A (en) A kind of forklift door frame channel-section steel certain height inner width survey tool and measuring method thereof
TWM653844U (en) Ruler correction device
CN115727777A (en) Method for measuring radian of fan-shaped section of continuous casting machine
TWM259317U (en) Wafer holder calibration tool in semiconductor thermal process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888929

Country of ref document: EP

Kind code of ref document: A1