[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020110379A1 - 排ガス浄化触媒及びその製造方法 - Google Patents

排ガス浄化触媒及びその製造方法 Download PDF

Info

Publication number
WO2020110379A1
WO2020110379A1 PCT/JP2019/032177 JP2019032177W WO2020110379A1 WO 2020110379 A1 WO2020110379 A1 WO 2020110379A1 JP 2019032177 W JP2019032177 W JP 2019032177W WO 2020110379 A1 WO2020110379 A1 WO 2020110379A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
region
pore
catalyst
mid
Prior art date
Application number
PCT/JP2019/032177
Other languages
English (en)
French (fr)
Inventor
万陽 城取
禎憲 高橋
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to CN201980051093.1A priority Critical patent/CN112512687B/zh
Priority to JP2020558092A priority patent/JP7319293B2/ja
Publication of WO2020110379A1 publication Critical patent/WO2020110379A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to an exhaust gas purifying catalyst and a method for manufacturing the same.
  • Exhaust gas emitted from an internal combustion engine contains particulate matter (PM) containing carbon as the main component, ash containing non-combustible components, etc., and is known to cause air pollution.
  • PM particulate matter
  • the emission of particulate matter has been strictly regulated in diesel engines, which are relatively easier to emit particulate matter than in gasoline engines, but in recent years, emission regulations of particulate matter have also been regulated in gasoline engines. It is being strengthened.
  • a method of providing a particulate filter for depositing and collecting particulate matter in the exhaust gas passage of an internal combustion engine is known.
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • An introduction-side cell whose end on the exhaust-gas introduction side is open, and a discharge-side cell which is adjacent to the introduction-side cell and whose end on the exhaust-gas discharge side is open are wall-flow-type substrates defined by porous partition walls.
  • the properties such as the viscosity and the solid content of the slurry are adjusted, and one of the introduction side cell or the discharge side cell is pressurized to introduce the introduction side cell.
  • a method of adjusting the permeation of the catalyst slurry into the partition wall by creating a pressure difference between the cell and the discharge side cell see, for example, Patent Document 1).
  • the particulate filter as described in Patent Document 1 has a wall flow type structure from the viewpoint of removing particulate matter, and exhaust gas is configured to pass through the pores of the partition wall.
  • exhaust gas is configured to pass through the pores of the partition wall.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an exhaust gas purifying catalyst having improved NOx purification performance and a method for producing the same. It should be noted that the present invention is not limited to the purpose described here, and it is also possible to achieve the operational effects that are obtained by the respective configurations shown in the modes for carrying out the invention to be described later and are not obtained by the conventional technology. It can be positioned as another purpose.
  • the inventors of the present invention have earnestly studied how to improve the purification performance. As a result, they have found that the above problems can be solved by adjusting the pore size in the stretching direction of the partition walls on which the catalyst layer is formed, and have completed the present invention. That is, the present invention provides various specific embodiments shown below.
  • An exhaust gas purification catalyst for purifying exhaust gas emitted from an internal combustion engine An introduction-side cell having an open end on the exhaust-gas introduction side, and a discharge-side cell adjacent to the introduction-side cell and having an end on the exhaust-gas discharge side opened, and a wall-flow type substrate defined by a porous partition wall. , A catalyst layer formed in the partition wall, A first region in which the catalyst layer is formed from an end portion on the exhaust gas introduction side along the extending direction of the partition wall, and a second region formed from an end portion on the exhaust gas discharge side along the extending direction of the partition wall.
  • the ratio (D in /D mid ) of the pore diameter D in calculated from the pore distribution of the first area to the pore diameter D mid calculated from the pore distribution of the third area is 1.2 or more.
  • the ratio of the pore diameter D out which is calculated from the pore distribution of the second region with respect to the pore diameter D mid it is 1.2 or more, Exhaust gas purification catalyst.
  • Ratio (V in) of pore volume V in having a pore diameter of 1 ⁇ m or more calculated from the pore distribution of the first area to pore volume V mid having a pore diameter of 1 ⁇ m or more calculated from the pore distribution of the third area /V mid ) is 1.3 or more
  • the ratio (V out /V mid ) of the pore volume V out having a pore diameter of 1 ⁇ m or more calculated from the pore distribution of the second region with respect to the pore volume V mid is 1.3 or more.
  • [3] The difference between the pore diameter D in or the pore diameter D out and the pore diameter D mid is 2.5 to 10 ⁇ m, respectively.
  • the first region contains Pd, The exhaust gas purifying catalyst according to any one of [1] to [3].
  • the second region includes Rh, The exhaust gas purifying catalyst according to [4].
  • the first region includes Rh, The exhaust gas purifying catalyst according to any one of [1] to [3].
  • the second region contains Pd, The exhaust gas purifying catalyst according to [6].
  • the catalyst layer is formed in the thickness direction of the partition wall from the cell wall surface on the introduction side cell side to the cell wall surface on the discharge side cell side, The exhaust gas purifying catalyst according to any one of [1] to [7].
  • the formation range of the third region is 2 to 20% with respect to 100% of the total length of the partition wall in the stretching direction.
  • the internal combustion engine is a gasoline engine
  • a method for producing an exhaust gas purifying catalyst for purifying exhaust gas emitted from an internal combustion engine, An introduction-side cell whose end on the exhaust-gas introduction side is open, and a discharge-side cell which is adjacent to the introduction-side cell and whose end on the exhaust-gas discharge side is open are wall-flow-type base materials defined by porous partition walls.
  • a catalyst layer is applied by applying a catalyst slurry, and a catalyst layer forming step,
  • D in the ratio of (D in / D mid) is, is 1.2 or more, the ratio of the pore diameter D out which is calculated from the pore distribution of the second region with respect to the pore diameter D mid (D out / D mid ) Is for producing the exhaust gas purifying catalyst having the catalyst layer of 1.2 or more, Method for manufacturing exhaust gas purifying catalyst.
  • an exhaust gas purification catalyst with improved NOx purification performance and a method for producing the same.
  • the exhaust gas purifying catalyst can be effectively used as a gasoline particulate filter (GPF) carrying a catalyst, and an exhaust gas treatment system equipped with such a particulate filter can be further improved in performance.
  • GPF gasoline particulate filter
  • pore diameter refers to a diameter (mode diameter: maximum value of distribution) having the largest appearance ratio in the frequency distribution of pore diameters (hereinafter, also referred to as pore distribution).
  • the exhaust gas purifying catalyst of the present embodiment is an exhaust gas purifying catalyst 100 that purifies exhaust gas discharged from an internal combustion engine, and is adjacent to the introduction side cell 11 in which an end portion 11a on the exhaust gas introduction side is opened and the introduction side cell.
  • the discharge side cell 12 having an open end 12a on the exhaust gas discharge side has a wall flow type base material 10 defined by a porous partition wall 13, and a catalyst layer 21 formed in the partition wall 13. A first region in which the catalyst layer is formed along an extending direction of the partition wall from an end portion on the exhaust gas introduction side, and a second region formed along an extending direction of the partition wall from an end portion on the exhaust gas discharge side.
  • the ratio (D in /D mid ) of the calculated pore diameter D in is 1.2 or more
  • the ratio of the pore diameter D out calculated from the pore distribution of the second region to the pore diameter D mid is 1.2 or more.
  • the exhaust gas purification catalyst of this embodiment has a wall flow type structure.
  • the exhaust gas discharged from the internal combustion engine flows into the introduction side cell 11 from the exhaust gas introduction side end 11a (opening) and passes through the pores of the partition wall 13. Flow into the adjacent discharge side cells 12, and flow out from the exhaust gas discharge side end 12a (opening).
  • the particulate matter (PM) that is difficult to pass through the pores of the partition wall 13 is generally deposited on the partition wall 13 in the introduction side cell 11 and/or in the pores of the partition wall 13, and the deposited particulate matter is Depending on the catalytic function of the catalyst layer 21, or by burning at a predetermined temperature (for example, about 500 to 700° C.), it is removed. Further, the exhaust gas comes into contact with the catalyst layer 21 formed in the pores of the partition wall 13, whereby carbon monoxide (CO) and hydrocarbons (HC) contained in the exhaust gas are converted into water (H 2 O) and carbon dioxide ( CO 2 ), etc., nitrogen oxides (NOx) are reduced to nitrogen (N 2 ), and harmful components are purified (detoxified).
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • N 2 nitrogen
  • harmful components purified
  • the exhaust gas purifying catalyst of the present embodiment controls the flow of exhaust gas to improve the exhaust gas purifying performance and the soot collecting performance, and the catalyst layer 21 is arranged in the extending direction of the partition wall from the end portion on the exhaust gas introducing side.
  • the pore diameter D mid calculated from the pore distribution of the third area 21c is calculated as the fine diameter calculated from the pore diameter D in calculated from the pore distribution of the first area 21a and the pore distribution of the second area 21b. than the diameter D out, respectively, it is increased above a predetermined value.
  • the exhaust gas passes through the center of the partition wall.
  • the pore diameter of the third region 21c is made smaller than the pore diameters of the first region 21a and the second region 21b to make it difficult for the exhaust gas to pass, so that the exhaust gas also reaches the first region 21a and the second region 21b. Exhaust gas purification performance and soot collection performance are improved evenly.
  • the ratio (D in /D mid ) is 1.2 or more, preferably 1.3 or more, and more preferably 1.35 or more.
  • the upper limit of the ratio (D in /D mid ) is not particularly limited, but is preferably 3 or less, more preferably 2.8 or less, and further preferably 2.5 or less.
  • the ratio (D out /D mid ) is 1.2 or more, preferably 1.3 or more, and more preferably 1.35 or more.
  • the upper limit of the ratio (D out /D mid ) is not particularly limited, but is preferably 3 or less, more preferably 2.8 or less, and further preferably 2.5 or less.
  • the ratio (D in /D mid ) and the ratio (D out /D mid ) are respectively 1.2 or more, the exhaust gas flow becomes uniform in the stretching direction, and the exhaust gas purification performance and the soot collection performance are improved. To improve. Further, since the ratio (D in /D mid ) and the ratio (D out /D mid ) are respectively 3 or less, the inflow of exhaust gas to the third region 21c which is the central region of the partition wall and its vicinity is obstructed. If it is too much, it is possible to prevent the exhaust gas purification performance and the soot collecting performance from being deteriorated.
  • the pore size of the first region 21a is preferably 12 to 16 ⁇ m, more preferably 12.5 to 15 ⁇ m, and further preferably 13 to 14.5 ⁇ m.
  • the pore size of the third region 21c is preferably 4 to 13 ⁇ m, more preferably 5 to 11.5 ⁇ m, and further preferably 7 to 10.5 ⁇ m.
  • the pore size of the second region 21b is preferably 12 to 16 ⁇ m, more preferably 12.5 to 15 ⁇ m, and further preferably 13 to 14.5 ⁇ m.
  • the difference between the pore diameter D in of the first region 21a or the pore diameter D out of the second region 21b and the pore diameter D mid of the third region 21c is preferably 2.5 to 10 ⁇ m, respectively. , More preferably 3 to 8 ⁇ m, further preferably 3 to 6 ⁇ m.
  • Samples for measuring the pore diameter D in of the first region 21a, the pore diameter D out of the second region 21b, and the pore diameter D mid of the third region 21c are the first region 21a, the second region 21b, and the The three regions 21c are sampled from the portions located respectively in the middle in the extending direction of the partition wall 13.
  • the first region 21a and the second region 21b are end portions on the exhaust gas introduction side and the discharge side.
  • the third region 21c is formed with a length of 40% from each of 11a and 12a, and the third region 21c is between the first region 21a and the second region 21b, that is, a region of 20% at the center in the stretching direction of the wall flow type base material 10.
  • Exhaust gas purification catalysts such as those formed in 1.
  • samples for measuring the pore diameter D in of the first region 21a and the pore diameter D out of the second region 21b are measured from the end portions 11a, 12a on the exhaust gas introduction side and the discharge side.
  • the range in which the first area 21a, the second area 21b, and the third area 21c are formed is not particularly limited.
  • the first region 21a and the second region 21b are formed with the same coating length from the end portions 11a and 12a on the exhaust gas introduction side and the discharge side, respectively, and the third region 21c is centered in the extending direction of the partition wall 13.
  • the coating length of the second region 21b is shorter than the coating length of the first region 21a
  • the third region 21c is located closer to the end 12a on the exhaust gas discharge side than the center of the partition wall 13. Any of them may be used.
  • the range L 1 (coating length) in which the first region 21a is formed is the total length Lw (the coating length) of the wall flow type base material 10 in the stretching direction.
  • the total length of the partition walls 13 in the stretching direction) is 100%, preferably 20 to 80%, more preferably 25 to 75%, and further preferably 30 to 70%.
  • the range L 2 (coating length) in which the second region 21b is formed is preferably 20 with the total length L W (the total length of the partition walls 13 in the stretching direction) of the wall flow type substrate 10 in the stretching direction being 100%. It is -80%, more preferably 25-75%, still more preferably 30-70%.
  • the range L 3 (coating length) in which the third region 21c is formed is preferably 100% of the total length Lw in the stretching direction of the wall flow type base material 10 (the total length in the stretching direction of the partition wall 13). It is 1 to 35%, more preferably 3 to 25%, and further preferably 5 to 15%.
  • the catalyst layer 21 is formed from the cell wall surface on the introduction side cell 11 side to the cell wall surface on the discharge side cell 12 side in the thickness direction of the partition wall 13, and the catalyst layer 21 is formed in the thickness direction of the partition wall 13. It is preferable that they are not unevenly distributed on the introduction side cell 11 side or the discharge side cell 12 side. As a result, the soot collection performance and the exhaust gas purification performance can be further improved without improving the pressure loss.
  • “unevenly distributed” means that when the wall thickness Tw of the partition wall 13 is taken, the catalyst layer 21 is formed in the depth region T1 from the cell wall surface on the introduction side cell 11 side or the discharge side cell 12 side to Tw*5/10. It means that 60% or more of the total mass is present.
  • the pore volume V mid having a pore diameter of 1 ⁇ m or more calculated from the pore distribution of the third area 21c is calculated as the pore volume of 1 ⁇ m or more calculated from the pore distribution of the first area 21a.
  • the volume is set to be larger than a predetermined value by a pore volume V in and a pore volume V out having a pore diameter of 1 ⁇ m or more calculated from the pore distribution of the second region 21b.
  • the ratio (V in /V mid ) is preferably 1.3 or more, more preferably 1.35 or more, and further preferably 1.37 or more.
  • the upper limit of the ratio (V in /V mid ) is not particularly limited, but is preferably 2 or less, more preferably 1.8 or less, and further preferably 1.6 or less.
  • the ratio (V out /V mid ) is preferably 1.3 or more, more preferably 1.35 or more, and further preferably 1.37 or more.
  • the upper limit of the ratio (V out /V mid ) is not particularly limited, but is preferably 2 or less, more preferably 1.8 or less, and further preferably 1.6 or less.
  • the ratio (V in /V mid ) and the ratio (V out /V mid ) are 1.3 or more, the exhaust gas flow becomes uniform in the stretching direction, and the exhaust gas purification performance and the soot collection performance are improved. To improve. Further, since the ratio (V in /V mid ) and the ratio (V out /V mid ) are each 2 or less, the inflow of the exhaust gas into the third region 21c is excessively obstructed, so that the exhaust gas purification performance is rather increased. Also, it is possible to suppress the deterioration of the soot collecting performance.
  • the pore volume of 1 ⁇ m or more in the first region 21a is preferably 0.30 to 0.60 cc/g, more preferably 0.35 to 0.55 cc/g, and further preferably 0.40 to 0. It is 0.50 cc/g.
  • the pore size of the third region 21c is preferably 0.20 to 0.45 cc/g, more preferably 0.25 to 0.40 cc/g, and further preferably 0.30 to 0.35 cc. /G.
  • the pore size of the second region 21b is preferably 0.30 to 0.60 cc/g, more preferably 0.35 to 0.55 cc/g, and further preferably 0.40 to 0.50 cc. /G.
  • the respective pore diameters and pore volumes of the first region 21a, the third region 21c, and the second region 21b mean the values calculated by the mercury intrusion method under the conditions described in the examples below.
  • the method for adjusting the pore diameter and the pore volume of the first region 21a, the third region 21c, and the second region 21b to a predetermined range is not particularly limited, but for example, a catalyst layer formed in the third region 21c It is conceivable to increase the thickness of the.
  • the wall-flow type base material 10 is composed of an introduction-side cell 11 having an open end 11a on the exhaust-gas introduction side and a discharge-side cell 12 adjacent to the introduction-side cell 11 and having an open end 12a on the exhaust-gas discharge side. It has a wall flow type structure which is partitioned by high quality partition walls 13.
  • the base material 10 can be made of various materials and shapes that are conventionally used for this type of application.
  • the material of the base material is such that it is exposed to exhaust gas at a high temperature (for example, 400° C. or higher) generated when the internal combustion engine is operated under a high load condition, or when the particulate matter is burned and removed at a high temperature.
  • It is preferably made of a heat resistant material so that it can be dealt with.
  • the heat-resistant material include cordierite, mullite, aluminum titanate, and ceramics such as silicon carbide (SiC); alloys such as stainless steel.
  • the shape of the base material can be appropriately adjusted from the viewpoints of exhaust gas purification performance and suppression of pressure loss increase.
  • the outer shape of the base material can be a cylindrical shape, an elliptic cylinder shape, a polygonal cylinder shape, or the like.
  • the volume of the base material (total cell volume) is preferably 0.1 to 5 L, and more preferably 0.5 to 3 L, although it depends on the space into which it is incorporated.
  • the total length of the base material in the stretching direction (total length of the partition wall 13 in the stretching direction) is preferably 10 to 500 mm, more preferably 50 to 300 mm.
  • the introduction-side cells 11 and the discharge-side cells 12 are regularly arranged along the axial direction of the tubular shape, and adjacent cells have alternately one open end in the extending direction and the other open end. It is sealed.
  • the introduction-side cell 11 and the discharge-side cell 12 can be set to have appropriate shapes and sizes in consideration of the flow rate and components of the supplied exhaust gas.
  • the mouth shape of the introduction side cell 11 and the discharge side cell 12 can be a triangle; a rectangle such as a square, a parallelogram, a rectangle, and a trapezoid; another polygon such as a hexagon and an octagon; a circle. .. Further, it may have a High Ash Capacity (HAC) structure in which the cross-sectional area of the introduction side cell 11 and the cross-sectional area of the discharge side cell 12 are different.
  • HAC High Ash Capacity
  • the numbers of the introduction-side cells 11 and the discharge-side cells 12 can be appropriately set so as to promote the generation of turbulent flow of exhaust gas and suppress clogging due to fine particles contained in the exhaust gas, and are particularly limited. However, it is preferably 200 to 400 cpsi.
  • the thickness of the partition wall 13 (the length in the thickness direction orthogonal to the stretching direction) is preferably 6 to 12 mil, and more preferably 6 to 10 mil.
  • the partition wall 13 for partitioning adjacent cells is not particularly limited as long as it has a porous structure through which exhaust gas can pass, and the configuration thereof is such that exhaust gas purification performance, suppression of pressure loss increase, and mechanical strength of the base material. Can be appropriately adjusted from the viewpoint of improving
  • the pore diameter for example, the mode diameter (the pore diameter having the largest appearance ratio in the frequency distribution of the pore diameter (the maximum distribution)). Value)
  • the pore diameter or a large pore volume, the pores are less likely to be blocked by the catalyst layer 21, and the resulting exhaust gas purifying catalyst tends to have less increase in pressure loss, but traps particulate matter.
  • the collecting ability tends to decrease, and the mechanical strength of the substrate tends to decrease.
  • the pore diameter and the pore volume are small, the pressure loss tends to increase, but the ability to collect particulate matter tends to improve and the mechanical strength of the base material tends to improve.
  • the pore diameter (mode diameter) of the partition wall 13 of the wall flow type base material 10 before forming the catalyst layer 21 is preferably 8 to 25 ⁇ m, more preferably 10 to 22 ⁇ m, and It is preferably 13 to 20 ⁇ m.
  • the porosity of the partition wall 13 is preferably 20 to 80%, more preferably 40 to 70%, and further preferably 60 to 70%. When the porosity is at least the lower limit, the increase in pressure loss tends to be further suppressed. Further, when the porosity is at most the upper limit, the strength of the base material tends to be further improved.
  • the pore diameter (mode diameter) and the porosity mean values calculated by the mercury porosimetry under the conditions described in the examples below.
  • the catalyst layer 21 formed in the pores of the partition wall 13 will be described.
  • various types of conventional ones used for this type of application can be used.
  • a mode of the catalyst layer 21 there is a structure obtained by firing a catalyst slurry containing catalytic metal particles and carrier particles.
  • the catalyst layer 21 formed by firing the catalyst slurry containing various particles in this manner has a microporous structure in which the particles are bound to each other by firing.
  • the catalyst metal contained in the catalyst layer 21 is not particularly limited, and various metal species capable of functioning as an oxidation catalyst or a reduction catalyst can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os) can be mentioned.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • the catalyst layer 21 contains one or more kinds of catalyst metals in a mixed state. In particular, by using two or more kinds of catalytic metals in combination, a synergistic effect due to having different catalytic activities is expected.
  • the aspect of such a combination of the catalytic metals is not particularly limited, a combination of two or more types of catalytic metals having excellent oxidizing activity, a combination of two or more types of catalytic metals having excellent reducing activities, and a catalyst metal having excellent oxidizing activities and reduction.
  • a combination of catalytic metals having excellent activity can be mentioned.
  • a combination of a catalytic metal having an excellent oxidizing activity and a catalytic metal having an excellent reducing activity is preferable, and a combination containing at least Rh, Pd and Rh, or Pt and Rh is more preferable. With such a combination, the exhaust gas purification performance tends to be further improved.
  • the fact that the catalyst layer 21 contains the catalyst metal can be confirmed by a scanning electron microscope or the like of the cross section of the partition wall 13 of the exhaust gas purifying catalyst. Specifically, it can be confirmed by performing energy dispersive X-ray analysis in the field of view of the scanning electron microscope.
  • an inorganic compound conventionally used in this kind of exhaust gas purifying catalyst can be considered.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ), ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ). 2 ), oxides of silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ) and the like, and composite oxides containing these oxides as main components.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), it stores oxygen in the exhaust gas and when the air-fuel ratio of the exhaust gas is rich (That is, the atmosphere on the excess fuel side) releases the stored oxygen.
  • the formation range of the third region is preferably 2 to 20%, more preferably 3 to 15%, and further preferably 5 to 10% with respect to 100% of the entire length of the partition wall in the stretching direction.
  • the first region 21a preferably contains Pd and/or Rh, and more preferably contains Pd.
  • the second region 21b preferably contains Pd and/or Rh, and more preferably contains Rh. Since the first region 21a and the second region 21b have the catalyst metal, the exhaust gas purification performance tends to be further improved.
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 is an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, particularly a gasoline engine, and is particularly used for collecting particulate matter.
  • (Coating amount of catalyst layer excluding catalyst metal mass per 1 L of wall-flow type substrate) is preferably 20 to 110 g/L, more preferably 40 to 90 g/L, and further preferably 50 to 70 g. /L.
  • the porosity of the partition wall 13 of the exhaust gas purifying catalyst 100 with the catalyst layer 21 formed by the mercury injection method is preferably 20 to 80%, more preferably 30 to 70%, and preferably 35 to. 60%.
  • the manufacturing method of the present embodiment is a method for manufacturing an exhaust gas purifying catalyst 100 that purifies exhaust gas discharged from an internal combustion engine, and includes an introduction-side cell 11 having an end 11a on the exhaust-gas introduction side opened, and the introduction-side cell 11 And a discharge side cell 12 having an open end 12a on the exhaust gas discharge side, which is adjacent to, and a wall flow type base material 10 defined by a porous partition wall 13, and a partition wall of the wall flow type base material 10. 13 has a catalyst layer forming step S1 of forming a catalyst layer 21 by coating a catalyst slurry on at least a part of the surface of pores in the catalyst layer forming step S1.
  • the ratio of (D in / D mid) is, is 1.2 or more, the ratio of the pore diameter D out which is calculated from the pore distribution of the second area 21b against the pore diameter D mid (D out / D mid ) is,
  • the exhaust gas purifying catalyst 100 having the catalyst layer 21 of 1.2 or more is manufactured.
  • the wall flow type base material before forming the catalyst layer 21 is referred to as “base material 10"
  • the wall flow type base material after forming the catalyst layer 21 is referred to as “exhaust gas purifying catalyst 100”. ".
  • the catalyst slurry is applied to the pore surface of the partition wall 13, dried and baked to form the catalyst layer 21.
  • the method of applying the catalyst slurry is not particularly limited, but, for example, a method of impregnating a part of the base material 10 with the catalyst slurry and spreading it over the entire partition wall 13 of the base material 10, or an end portion on the exhaust gas introduction side is possible. 11a and the end part 12a on the exhaust gas discharge side are individually impregnated with the catalyst slurry.
  • the impregnation step S1a in which the end portion 11a on the exhaust gas introduction side is impregnated with the catalyst slurry, and the gas is introduced into the base material 10 from the end portion opposite to the end portion impregnated with the catalyst slurry.
  • a method having a discharging step S1b for discharging the excess catalyst slurry with which the base material 10 is impregnated can be mentioned.
  • the method of impregnating the catalyst slurry in the impregnation step S1a is not particularly limited, and examples thereof include a method of immersing the end portion of the base material 10 in the catalyst slurry. In this method, if necessary, the catalyst slurry may be pulled up by discharging (sucking) gas from the opposite end.
  • the end portion into which the catalyst slurry is impregnated may be either the exhaust gas introduction side end portion 11a or the exhaust gas discharge side end portion 12a.
  • the catalyst slurry is sucked up from the introduction side of the base material 10 to a predetermined position, and then gas is introduced into the base material 10 from the end opposite to the end impregnated with the catalyst slurry. By doing so, the surplus is discharged from the introduction side of the base material 10.
  • the catalyst slurry can be applied to the inside of the pores by passing the catalyst slurry inside the pores of the partition wall 13, and the catalyst slurry is applied to the partition walls up to the position where the catalyst slurry has been sucked up.
  • the catalyst slurry is applied to the third region 21c in an overlapping manner so that the pore size of the third region 21c is smaller than the pore sizes of the first region 21a and the second region 21b. be able to.
  • the coated catalyst slurry is dried.
  • the drying conditions in the drying step S1c are not particularly limited as long as the solvent volatilizes from the catalyst slurry.
  • the drying temperature is preferably 100 to 225°C, more preferably 100 to 200°C, and further preferably 125 to 175°C.
  • the drying time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
  • the catalyst slurry is fired to form the catalyst layer 21.
  • the firing conditions in the firing step S1d are not particularly limited as long as the catalyst layer 21 can be formed from the catalyst slurry.
  • the firing temperature is not particularly limited, but is preferably 400 to 650°C, more preferably 450 to 600°C, and further preferably 500 to 600°C.
  • the firing time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
  • the catalyst slurry for forming the catalyst layer 21 will be described.
  • the catalyst slurry contains catalyst powder and a solvent such as water.
  • the catalyst powder is a group of a plurality of catalyst particles including catalyst metal particles and carrier particles carrying the catalyst metal particles, and forms the catalyst layer 21 through a firing step described later.
  • the catalyst particles are not particularly limited and can be appropriately selected and used from known catalyst particles.
  • the solid content of the catalyst slurry is preferably 1 to 50% by mass, more preferably 15 to 40% by mass, and further preferably 20 to 20% by mass. It is 35% by mass. With such a solid content, the catalyst slurry tends to be easily applied to the introduction-side cell 11 side in the partition wall 13.
  • the catalyst metal contained in the catalyst slurry is not particularly limited, and various metal species capable of functioning as an oxidation catalyst or a reduction catalyst can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os) can be mentioned.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ), ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ). 2 ), oxides of silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ) and the like, and composite oxides containing these oxides as main components.
  • These may be complex oxides or solid solutions to which rare earth elements such as lanthanum and yttrium, transition metal elements, and alkaline earth metal elements are added.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), it stores oxygen in the exhaust gas and when the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere on the excess fuel side) releases the stored oxygen.
  • the specific surface area of the carrier particles contained in the catalyst slurry is preferably 10 to 500 m 2 /g, more preferably 30 to 200 m 2 /g.
  • a mixture containing oxygen and fuel gas is supplied to the internal combustion engine (engine), and the mixture is burned to convert combustion energy into mechanical energy.
  • the air-fuel mixture burned at this time becomes exhaust gas and is discharged to the exhaust system.
  • An exhaust gas purification apparatus including an exhaust gas purification catalyst is provided in the exhaust system, and harmful components (for example, carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx) contained in the exhaust gas by the exhaust gas purification catalyst are provided. )) is purified, and particulate matter (PM) contained in the exhaust gas is collected and removed.
  • the exhaust gas purification catalyst 100 of the present embodiment is preferably used for a gasoline particulate filter (GPF) capable of collecting and removing particulate matter contained in exhaust gas of a gasoline engine.
  • GPF gasoline particulate filter
  • Example 1 The alumina powder was impregnated with a rhodium nitrate aqueous solution and then calcined at 500° C. for 1 hour to obtain an Rh-supported powder.
  • 0.5 kg of the obtained Rh-supported powder, 2 kg of the ceria-zirconia composite oxide powder, 195 g of a 46% lanthanum nitrate aqueous solution, and ion-exchanged water were mixed, and the resulting mixture was put into a ball mill to obtain a catalyst powder. Milling was performed until a predetermined particle size distribution was obtained to obtain a catalyst slurry.
  • 183 g of barium hydroxide octahydrate and 60% nitric acid were mixed with the obtained catalyst slurry to obtain a catalyst slurry.
  • the alumina powder was impregnated with a palladium nitrate aqueous solution, and then baked at 500° C. for 1 hour to obtain a Pd-supported powder.
  • 0.5 kg of the obtained Pd-supported powder, 2 kg of the ceria-zirconia composite oxide powder, 195 g of a 46% lanthanum nitrate aqueous solution, and ion-exchanged water were mixed, and the resulting mixture was put into a ball mill to obtain a catalyst powder. Milling was performed until a predetermined particle size distribution was obtained to obtain a catalyst slurry.
  • 183 g of barium hydroxide octahydrate and 60% nitric acid were mixed with the obtained catalyst slurry to obtain a catalyst slurry.
  • a cordierite wall flow type honeycomb substrate (cell number/mil thickness: 300 cpsi/10 mil, diameter: 118.4 mm, total length: 127 mm, pore diameter (mode diameter): 16.4 ⁇ m, porosity: 65%) Prepared.
  • the end of the base material on the exhaust gas introduction side is dipped in the catalyst slurry containing Rh, and vacuum suction is applied from the opposite end side to impregnate and hold the catalyst slurry to the center of the base material, and the pore surface in the partition wall.
  • the catalyst slurry was applied to.
  • gas was caused to flow into the base material from the end portion on the exhaust gas discharge side, and excess catalyst slurry was blown off from the end portion on the exhaust gas introduction side of the base material.
  • the end of the base material on the exhaust gas discharge side is dipped in the catalyst slurry containing Pd, vacuum suction is applied from the end side on the opposite side, and the catalyst slurry is impregnated and held to the center of the base material, and the pores in the partition wall The catalyst slurry was applied to the surface. Then, gas was caused to flow into the base material from the end portion on the exhaust gas introduction side, and the excess catalyst slurry was blown off from the end portion on the exhaust gas discharge side of the base material.
  • the coating area of the catalyst slurry containing Pd and the coating area of the catalyst slurry containing Rh were applied so as to overlap by 2% with respect to the entire length in the stretching direction.
  • the base material coated with the catalyst slurry was dried at 150°C and then fired at 550°C in the air atmosphere to produce an exhaust gas purification catalyst.
  • the coating amount of the catalyst layer after firing was 57.8 g (excluding the weight of the platinum group metal) per 1 L of the substrate.
  • the catalyst layer made of the catalyst slurry containing Rh and the catalytic catalyst slurry containing Pd was formed in the thickness direction of the partition wall from the cell wall surface on the introduction side cell side to the cell wall surface on the discharge side cell side.
  • Example 2 Exhaust gas purifying catalyst produced in Example 1, except that the coating region of the catalyst slurry containing Pd and the coating region of the catalyst slurry containing Rh were coated so as to overlap by 7% with respect to the entire length in the stretching direction. A catalyst similar to the above was prepared.
  • Example 3 Exhaust gas purifying catalyst produced in Example 1, except that the coating area of the catalyst slurry containing Pd and the coating area of the catalyst slurry containing Rh overlap each other by 22% with respect to the entire length in the stretching direction. A catalyst similar to the above was prepared.
  • the end portion of the base material on the exhaust gas introduction side is immersed in the catalyst slurry prepared as described above, and vacuum suction is applied from the opposite end side to the base material end.
  • the part was kept impregnated with the catalyst slurry. Gas is allowed to flow into the base material from the end on the exhaust gas introduction side, and the catalyst slurry is applied to the pore surface in the partition walls, and excess catalyst slurry is blown off from the end on the exhaust gas discharge side of the base material.
  • An exhaust gas purifying catalyst was produced in the same manner as in Example 6 except that the gas inflow was stopped.
  • the coating amount of the catalyst layer after firing was 58.8 g (excluding the weight of the platinum group metal) per 1 L of the substrate.
  • Comparative example 2 The catalyst slurry prepared in Comparative Example 1 was used in place of the catalyst slurry containing Rh and the catalyst slurry containing Pd, respectively, from the coating area of the catalyst slurry immersed from the end on the exhaust gas introduction side and the end on the exhaust gas discharge side.
  • An exhaust gas purification catalyst was produced in the same manner as in Example 1 except that the coating was performed so that it did not overlap the coating area of the immersed catalyst slurry.
  • the coating amount of the catalyst layer after firing was 58.8 g (excluding the weight of the platinum group metal) per 1 L of the substrate.
  • the pore distribution was measured by a mercury porosimetry method using a mercury porosimeter (trade name: PASCAL140 and PASCAL440 manufactured by Thermo Fisher Scientific).
  • PASCAL140 the low pressure region (0 to 400 Kpa) was measured by PASCAL140
  • PASCAL440 the high pressure region (0.1 Mpa to 400 Mpa) was measured by PASCAL440.
  • the pore diameter (mode diameter) was determined from the obtained pore distribution, and the pore volume in pores with a pore diameter of 1 ⁇ m or more was calculated.
  • the exhaust gas purifying catalyst of the present invention can be widely and effectively used as an exhaust gas purifying catalyst because it removes particulate matter contained in the exhaust gas of a gasoline engine. Further, the exhaust gas purifying catalyst of the present invention can be effectively used not only as a gasoline engine, but also as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of jet engines, boilers, gas turbines, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

内燃機関から排出される排ガスを浄化する排ガス浄化触媒であって、排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、前記隔壁内に形成された触媒層と、を有し、前記触媒層が、前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である。

Description

排ガス浄化触媒及びその製造方法
 本発明は、排ガス浄化触媒及びその製造方法に関する。
 内燃機関から排出される排ガスには、炭素を主成分とする粒子状物質(PM)、不燃成分からなるアッシュなどが含まれ、大気汚染の原因となることが知られている。従来より、ガソリンエンジンよりも比較的に粒子状物質を排出しやすいディーゼルエンジンでは、粒子状物質の排出量が厳しく規制されていたが、近年、ガソリンエンジンにおいても粒子状物質の排出量の規制が強化されつつある。
 粒子状物質の排出量を低減するための手段としては、内燃機関の排ガス通路に粒子状物質を堆積させ捕集することを目的としたパティキュレートフィルタを設ける方法が知られている。特に、近年では、搭載スペースの省スペース化等の観点から、粒子状物質の排出抑制と、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等の有害成分の除去を同時に行うために、パティキュレートフィルタに触媒スラリーを塗工し、これを焼成することで触媒層を設けることが検討されている。
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を備えるパティキュレートフィルタに対して、このような触媒層を形成する方法としては、スラリーの粘度や固形分率などの性状を調整し、導入側セル又は排出側セルの一方を加圧して、導入側セルと排出側セルに圧力差を生じさせることにより、触媒スラリーの隔壁内への浸透を調整する方法が知られている(例えば、特許文献1参照)。
WO2016/060048
 特許文献1に記載されるようなパティキュレートフィルタは、粒子状物質の除去の観点からウォールフロー型構造を有し、排ガスが隔壁の気孔内を通過するように構成される。しかしながら、スス捕集性能、圧力損失、及び排ガス浄化性能に関して、依然として改善の余地がある。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、NOx浄化性能が高められた排ガス浄化触媒及びその製造方法を提供することにある。なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。
 本発明者らは、浄化性能の向上方法について鋭意検討を重ねた。その結果、触媒層が形成された隔壁の延伸方向における細孔径を調整することにより上記課題を解決し得ることを見出し、本発明を完成するに至った。すなわち、本発明は、以下に示す種々の具体的態様を提供する。
〔1〕
 内燃機関から排出される排ガスを浄化する排ガス浄化触媒であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
 前記隔壁内に形成された触媒層と、を有し、
 前記触媒層が、前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、
 前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、
 前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である、
 排ガス浄化触媒。
〔2〕
 前記第3領域の細孔分布から算出される細孔径1μm以上の細孔容積Vmidに対する前記第1領域の細孔分布から算出される細孔径1μm以上の細孔容積Vinの比(Vin/Vmid)が、1.3以上であり、
 前記細孔容積Vmidに対する前記第2領域の細孔分布から算出される細孔径1μm以上の細孔容積Voutの比(Vout/Vmid)が、1.3以上である、
 〔1〕に記載の排ガス浄化触媒。
〔3〕
 前記細孔径Din又は前記細孔径Doutと、前記細孔径Dmidとの差が、それぞれ、2.5~10μmである、
 〔1〕又は〔2〕に記載の排ガス浄化触媒。
〔4〕
 前記第1領域が、Pdを含む、
 〔1〕~〔3〕のいずれか一項に記載の排ガス浄化触媒。
〔5〕
 前記第2領域が、Rhを含む、
 〔4〕に記載の排ガス浄化触媒。
〔6〕
 前記第1領域が、Rhを含む、
 〔1〕~〔3〕のいずれか一項に記載の排ガス浄化触媒。
〔7〕
 前記第2領域が、Pdを含む、
 〔6〕に記載の排ガス浄化触媒。
〔8〕
 前記触媒層が、前記隔壁の厚さ方向において、前記導入側セル側のセル壁面から前記排出側セル側のセル壁面にかけて形成されている、
 〔1〕~〔7〕のいずれか一項に記載の排ガス浄化触媒。
〔9〕
 前記第3領域の形成範囲が、前記隔壁の延伸方向の全長100%に対して、2~20%である、
 〔1〕~〔8〕のいずれか一項に記載の排ガス浄化触媒。
〔10〕
 前記内燃機関が、ガソリンエンジンである、
 〔1〕~〔9〕のいずれか一項に記載の排ガス浄化触媒。
〔11〕
 内燃機関から排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
 前記ウォールフロー型基材の前記隔壁内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層を形成する触媒層形成工程と、を有し、
 該触媒層形成工程において、
 前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である前記触媒層を有する前記排ガス浄化触媒を製造する、
 排ガス浄化触媒の製造方法。
 本発明によれば、NOx浄化性能が高められた排ガス浄化触媒及びその製造方法を提供することができる。そして、この排ガス浄化触媒は、触媒を担持したガソリンパティキュレートフィルタ(GPF)として有効に利用することができ、このようなパティキュレートフィルタを搭載した排ガス処理システムの一層の高性能化が図られる。
本実施形態の排ガス浄化触媒の一態様を模式的に示す断面図である。 実施例及び比較例における、NOx浄化性能を示すグラフである。 実施例及び比較例における、NOx浄化性能とスス捕集率とのバランスを示す図である。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。本明細書において、「細孔径」とは、細孔径の頻度分布(以下、細孔分布ともいう。)における出現比率がもっとも大きい径(モード径:分布の極大値)をいう。また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
[排ガス浄化触媒]
 本実施形態の排ガス浄化触媒は、内燃機関から排出される排ガスを浄化する排ガス浄化触媒100であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セルに隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10と、隔壁13内に形成された触媒層21と、を有し、前記触媒層が、前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上であることを特徴とする。
 以下、図1に示す、本実施形態の排ガス浄化触媒を模式的に示す断面図を参照しつつ、各構成について説明する。本実施形態の排ガス浄化触媒はウォールフロー型構造を有する。このような構造を有する排ガス浄化触媒100では、内燃機関から排出される排ガスが、排ガス導入側の端部11a(開口)から導入側セル11内へと流入し、隔壁13の気孔内を通過して隣接する排出側セル12内へ流入し、排ガス排出側の端部12a(開口)から流出する。この過程において、隔壁13の気孔内を通り難い粒子状物質(PM)は、一般に、導入側セル11内の隔壁13上及び/又は隔壁13の気孔内に堆積し、堆積した粒子状物質は、触媒層21の触媒機能によって、或いは所定の温度(例えば500~700℃程度)で燃焼し、除去される。また、排ガスは、隔壁13の気孔内に形成された触媒層21と接触し、これによって排ガスに含まれる一酸化炭素(CO)や炭化水素(HC)は水(HO)や二酸化炭素(CO)などへ酸化され、窒素酸化物(NOx)は窒素(N)へ還元され、有害成分が浄化(無害化)される。なお、本明細書においては、粒子状物質の除去及び一酸化炭素(CO)等の有害成分の浄化をまとめて「排ガス浄化性能」ともいう。以下、各構成についてより詳細に説明する。
 (細孔径)
 隔壁の延伸方向において細孔径に違いを生じさせることにより、排ガスの流れやすいところと流れにくいところが生じ、排ガスの流れを制御することができる。これにより、排ガス浄化触媒を通過する排ガスを、より効果的に触媒と接触させることができ、排ガス浄化性能の向上や、ススの捕集性能の向上が期待できる。本実施形態の排ガス浄化触媒は、排ガスの流れを制御することにより、排ガス浄化性能及びスス捕集性能を向上させるという観点から、触媒層21を、排ガス導入側の端部から隔壁の延伸方向に沿って形成される第1領域21aと、排ガス排出側の端部から隔壁の延伸方向に沿って形成される第2領域21bと、第1領域21aと第2領域21bとが重なる第3領域21cを有するように形成する。そして、第3領域21cの細孔分布から算出される細孔径Dmidを、第1領域21aの細孔分布から算出される細孔径Din及び第2領域21bの細孔分布から算出される細孔径Doutよりも、それぞれ、所定値以上の大きくする。排ガスが端部11a(開口)から端部12a(開口)へ最短距離で抜けるためには隔壁中央を通過することになる。この際、第3領域21cの細孔径を第1領域21aと第2領域21bの細孔径よりも小さくし、少し排ガスを通りにくくすることで、排ガスが第1領域21aと第2領域21bにも均等にいきわたり、排ガス浄化性能及びスス捕集性能がより向上する。
 具体的には、比(Din/Dmid)は、1.2以上であり、好ましくは1.3以上であり、より好ましくは1.35以上である。また、比(Din/Dmid)の上限は、特に制限されないが、好ましくは3以下であり、より好ましくは2.8以下であり、さらに好ましくは2.5以下である。また、比(Dout/Dmid)は、1.2以上であり、好ましくは1.3以上であり、より好ましくは1.35以上である。また、比(Dout/Dmid)の上限は、特に制限されないが、好ましくは3以下であり、より好ましくは2.8以下であり、さらに好ましくは2.5以下である。比(Din/Dmid)及び比(Dout/Dmid)が、それぞれ、1.2以上であることにより、延伸方向において排ガスの流れが一様となり、排ガス浄化性能及びスス捕集性能がより向上する。また、比(Din/Dmid)及び比(Dout/Dmid)が、それぞれ、3以下であることにより、隔壁の中央領域である第3領域21c及びその付近への排ガスの流入が阻害されすぎることにより、かえって排ガス浄化性能及びスス捕集性能が低下することを抑制することができる。
 第1領域21aの細孔径は、好ましくは12~16μmであり、より好ましくは12.5~15μmであり、さらに好ましくは13~14.5μmである。また、第3領域21cの細孔径は、好ましくは4~13μmであり、より好ましくは5~11.5μmであり、さらに好ましくは7~10.5μmである。さらに、第2領域21bの細孔径は、好ましくは12~16μmであり、より好ましくは12.5~15μmであり、さらに好ましくは13~14.5μmである。各々の細孔径が上記範囲内であることにより、排ガス浄化性能及びスス捕集性能がより向上する傾向にある。
 上記観点から、第1領域21aの細孔径Din又は第2領域21bの細孔径Doutと、第3領域21cの細孔径Dmidとの差は、それぞれ、好ましくは2.5~10μmであり、より好ましくは3~8μmであり、さらに好ましくは3~6μmである。
 第1領域21aの細孔径Din、第2領域21bの細孔径Dout、及び第3領域21cの細孔径Dmidを測定するためのサンプルは、第1領域21a、第2領域21b、及び第3領域21cの、隔壁13の延伸方向におけるそれぞれ真ん中に位置する部分から採取する。例えば、ウォールフロー型基材10の延伸方向の全長L(隔壁13の延伸方向の全長)を100%としたとき、第1領域21a及び第2領域21bが排ガス導入側及び排出側の端部11a,12aからそれぞれ40%の長さで形成されており、第3領域21cが第1領域21a及び第2領域21bの間、すなわちウォールフロー型基材10の延伸方向の中央の20%の領域に形成されているような排ガス浄化触媒を想定する。このような排ガス浄化触媒の場合は、第1領域21aの細孔径Din及び第2領域21bの細孔径Doutを測定するためのサンプルは、排ガス導入側及び排出側の端部11a,12aからそれぞれ20%(=40%/2)に位置する部分から採取し、第3領域21cの細孔径Dmidを測定するためのサンプルは、排ガス導入側の端部11aから50%(=40%+20%/2)に位置する部分から採取する。
 第1領域21a、第2領域21b、及び第3領域21cの形成される範囲は特に制限されない。例えば、第1領域21a及び第2領域21bが排ガス導入側及び排出側の端部11a,12aからそれぞれ同程度の塗工長さで形成され、第3領域21cが隔壁13の延伸方向において中心に位置するような態様、第1領域21aの塗工長さが第2領域21bの塗工長さよりも短く、第3領域21cが隔壁13の中心よりも排ガス導入側の端部11a寄りに位置するような態様、第2領域21bの塗工長さが第1領域21aの塗工長さよりも短く、第3領域21cが隔壁13の中心よりも排ガス排出側の端部12a寄りに位置するような態様など、いずれであってもよい。
 具体的には、隔壁13の延伸方向(長さ方向)において、第1領域21aが形成されている範囲L(塗工長さ)は、ウォールフロー型基材10の延伸方向の全長Lw(隔壁13の延伸方向の全長)を100%として、好ましくは20~80%であり、より好ましくは25~75%であり、さらに好ましくは30~70%である。また。第2領域21bが形成されている範囲L(塗工長さ)は、ウォールフロー型基材10の延伸方向の全長LW(隔壁13の延伸方向の全長)を100%として、好ましくは20~80%であり、より好ましくは25~75%であり、さらに好ましくは30~70%である。さらに、第3領域21cが形成されている範囲L(塗工長さ)は、ウォールフロー型基材10の延伸方向の全長Lw(隔壁13の延伸方向の全長)を100%として、好ましくは1~35%であり、より好ましくは3~25%であり、さらに好ましくは5~15%である。
 触媒層21が、隔壁13の厚さ方向において、導入側セル11側のセル壁面から排出側セル12側のセル壁面にかけて形成されており、また、触媒層21が、隔壁13の厚さ方向において、導入側セル11側又は排出側セル12側に偏在していないことが好ましい。これにより、圧力損失を向上させることなく、スス捕集性能及び排ガス浄化性能をより向上させることができる。なお、「偏在」とは、隔壁13の壁厚Twとしたとき、導入側セル11側又は排出側セル12側のセル壁面からTw*5/10までの深さ領域T1に、触媒層21の総質量の60%以上が存在することをいう。
 (細孔容積)
 細孔径と同様の観点から、第3領域21cの細孔分布から算出される細孔径1μm以上の細孔容積Vmidを、第1領域21aの細孔分布から算出される細孔径1μm以上の細孔容積Vin及び第2領域21bの細孔分布から算出される細孔径1μm以上の細孔容積Voutよりも、それぞれ、所定値以上の大きくする。
 具体的には、比(Vin/Vmid)は、好ましくは1.3以上であり、より好ましくは1.35以上であり、さらに好ましくは1.37以上である。また、比(Vin/Vmid)の上限は、特に制限されないが、好ましくは2以下であり、より好ましくは1.8以下であり、さらに好ましくは1.6以下である。また、比(Vout/Vmid)は、好ましくは1.3以上であり、より好ましくは1.35以上であり、さらに好ましくは1.37以上である。また、比(Vout/Vmid)の上限は、特に制限されないが、好ましくは2以下であり、より好ましくは1.8以下であり、さらに好ましくは1.6以下である。比(Vin/Vmid)及び比(Vout/Vmid)が、それぞれ、1.3以上であることにより、延伸方向において排ガスの流れが一様となり、排ガス浄化性能及びスス捕集性能がより向上する。また、比(Vin/Vmid)及び比(Vout/Vmid)が、それぞれ、2以下であることにより、第3領域21cへの排ガスの流入が阻害されすぎることにより、かえって排ガス浄化性能及びスス捕集性能が低下することを抑制することができる。
 第1領域21aの1μm以上の細孔容積は、好ましくは0.30~0.60cc/gであり、より好ましくは0.35~0.55cc/gであり、さらに好ましくは0.40~0.50cc/gである。また、第3領域21cの細孔径は、好ましくは0.20~0.45cc/gであり、より好ましくは0.25~0.40cc/gであり、さらに好ましくは0.30~0.35cc/gである。さらに、第2領域21bの細孔径は、好ましくは0.30~0.60cc/gであり、より好ましくは0.35~0.55cc/gであり、さらに好ましくは0.40~0.50cc/gである。各々の1μm以上の細孔容積が上記範囲内であることにより、スス捕集性能及び排ガス浄化性能がより向上する傾向にある。
 なお、第1領域21a、第3領域21c、及び第2領域21bの各細孔径及び細孔容積は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。
 第1領域21a、第3領域21c、及び第2領域21bの各細孔径及び細孔容積を所定の範囲に調整する方法としては、特に制限されないが、例えば、第3領域21cに形成する触媒層の厚さを厚くすることなどが考えられる。
 (基材)
 ウォールフロー型基材10は、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13によって仕切られているウォールフロー型構造を有する。
 基材10としては、従来のこの種の用途に用いられる種々の材質及び形体のものが使用可能である。例えば、基材の材質は、内燃機関が高負荷条件で運転された際に生じる高温(例えば400℃以上)の排ガスに曝された場合や、粒子状物質を高温で燃焼除去する場合などにも対応可能なように、耐熱性素材からなるものが好ましい。耐熱性素材としては、例えば、コージェライト、ムライト、チタン酸アルミニウム、及び炭化ケイ素(SiC)等のセラミック;ステンレス鋼などの合金が挙げられる。また、基材の形体は、排ガス浄化性能及び圧力損失上昇抑制等の観点から適宜調整することが可能である。例えば、基材の外形は、円筒形状、楕円筒形状、又は多角筒形状等とすることができる。また、組み込む先のスペースなどにもよるが、基材の容量(セルの総体積)は、好ましくは0.1~5Lであり、より好ましくは0.5~3Lである。また、基材の延伸方向の全長(隔壁13の延伸方向の全長)は、好ましくは10~500mm、より好ましくは50~300mmである。
 導入側セル11と排出側セル12は、筒形状の軸方向に沿って規則的に配列されており、隣り合うセル同士は延伸方向の一の開口端と他の一の開口端とが交互に封止されている。導入側セル11及び排出側セル12は、供給される排ガスの流量や成分を考慮して適当な形状および大きさに設定することができる。例えば、導入側セル11及び排出側セル12の口形状は、三角形;正方形、平行四辺形、長方形、及び台形等の矩形;六角形及び八角形等のその他の多角形;円形とすることができる。また、導入側セル11の断面積と、排出側セル12の断面積とを異ならせたHigh Ash Capacity(HAC)構造を有するものであってもよい。
 なお、導入側セル11及び排出側セル12の個数は、排ガスの乱流の発生を促進し、かつ、排ガスに含まれる微粒子等による目詰まりを抑制できるように適宜設定することができ、特に限定されないが、好ましくは200cpsi~400cpsiである。また、隔壁13の厚み(延伸方向に直交する厚さ方向の長さ)は、好ましくは6~12milであり、より好ましくは6~10milである。
 隣り合うセル同士を仕切る隔壁13は、排ガスが通過可能な多孔質構造を有するものであれば特に制限されず、その構成については、排ガス浄化性能や圧力損失の上昇抑制、基材の機械的強度の向上等の観点から適宜調整することができる。例えば、後述する触媒スラリーを用いて該隔壁13内の気孔表面に触媒層21を形成する場合、細孔径(例えば、モード径(細孔径の頻度分布における出現比率がもっとも大きい細孔径(分布の極大値)))や細孔容積が大きい場合には、触媒層21による気孔の閉塞が生じにくく、得られる排ガス浄化触媒は圧力損失が上昇しにくいものとなる傾向にあるが、粒子状物質の捕集能力が低下し、また、基材の機械的強度も低下する傾向にある。一方で、細孔径や細孔容積が小さい場合には、圧力損失が上昇しやすいものとなるが、粒子状物質の捕集能力は向上し、基材の機械的強度も向上する傾向にある。
 このような観点から、触媒層21を形成する前のウォールフロー型基材10の隔壁13の細孔径(モード径)は、好ましくは8~25μmであり、より好ましくは10~22μmであり、さらに好ましくは13~20μmである。また、隔壁13の気孔率は、好ましくは20~80%であり、より好ましくは40~70%であり、さらに好ましくは60~70%である。気孔率が下限以上であることにより、圧力損失の上昇がより抑制される傾向にある。また、気孔率が上限以下であることにより、基材の強度がより向上する傾向にある。なお、細孔径(モード径)、及び気孔率は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。
 (触媒層)
 次に、隔壁13の気孔内に形成された触媒層21について説明する。触媒層21は、従来のこの種の用途に用いられる種々の態様のものが使用可能である。例えば、触媒層21の態様として、触媒金属粒子と担体粒子とを含む触媒スラリーを焼成してなるものが挙げ有られる。このように各種粒子を含む触媒スラリーを焼成して形成される触媒層21は、焼成により粒子同士が結着した微多孔構造を有する。
 触媒層21に含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。本実施形態においては、上記のとおり一種以上の触媒金属を混合された状態で含有する触媒層21を有する。特に二種以上の触媒金属の併用により、異なる触媒活性を有することによる相乗的な効果が期待される。
 このような触媒金属の組み合わせの態様は、特に制限されず、酸化活性に優れる二種以上の触媒金属の組み合わせ、還元活性に優れる二種以上の触媒金属の組み合わせ、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが挙げられる。このなかでも、相乗効果の一つの態様として、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが好ましく、Rh、Pd及びRh、または、Pt及びRhを少なくとも含む組合せがより好ましい。このような組み合わせとすることにより、排ガス浄化性能がより向上する傾向にある。
 なお、触媒層21が触媒金属を含有することは、排ガス浄化触媒の隔壁13の断面の走査型電子顕微鏡などにより確認することができる。具体的には、走査型電子顕微鏡の視野においてエネルギー分散型X線分析を行うことにより確認することができる。
 触媒層21に含まれ、触媒金属を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。
 第3領域の形成範囲は、隔壁の延伸方向の全長100%に対して、好ましくは2~20%であり、より好ましくは3~15%であり、さらに好ましくは5~10%である。これにより、排ガスが第1領域21aと第2領域21bにも均等にいきわたり、排ガス浄化性能及びスス捕集性能がより向上する傾向にある。
 また、触媒層が延伸方向に沿って異なる触媒金属により形成される複数の領域を有する場合、第1領域21aはPd及び/又はRhを含むことが好ましく、Pdを含むことがより好ましい。一方で、第2領域21bはPd及び/又はRhを含むことが好ましく、Rhを含むことがより好ましい。第1領域21a及び第2領域21bが上記触媒金属を有することにより、排ガス浄化性能がより向上する傾向にある。
 なお、内燃機関、特にガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒であって、特に、粒子状物質の捕集用途に用いられるという観点から、排ガス浄化触媒100の触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)は、好ましくは20~110g/Lであり、より好ましくは40~90g/Lであり、さらに好ましくは50~70g/Lである。また、触媒層21が形成された状態の排ガス浄化触媒100の水銀圧入法による隔壁13の気孔率は、好ましくは20~80%であり、より好ましくは30~70%であり、好ましくは35~60%である。
[排ガス浄化触媒の製造方法]
 本実施形態の製造方法は、内燃機関から排出される排ガスを浄化する排ガス浄化触媒100の製造方法であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10を準備する工程S0と、ウォールフロー型基材10の隔壁13内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層21を形成する触媒層形成工程S1と、を有し、該触媒層形成工程S1において、排ガス導入側の端部11aから隔壁13の延伸方向に沿って形成される第1領域21aと、排ガス排出側の端部12aから隔壁13の延伸方向に沿って形成される第2領域21bと、第1領域21aと第2領域21bとが重なる第3領域21cと、を有し、第3領域21cの細孔分布から算出される細孔径Dmidに対する第1領域21aの細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、細孔径Dmidに対する第2領域21bの細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である触媒層21を有する排ガス浄化触媒100を製造することを特徴とする。
 以下、各工程について説明する。なお、本明細書においては、触媒層21を形成する前のウォールフロー型基材を「基材10」と表記し、触媒層21を形成した後のウォールフロー型基材を「排ガス浄化触媒100」と表記する。
<準備工程>
 この準備工程S0では、基材として、上記排ガス浄化触媒100において述べたウォールフロー型基材10を準備する。
<触媒層形成工程>
 この触媒層形成工程S1では、隔壁13の気孔表面に触媒スラリーを塗工して、乾燥させ、焼成することで、触媒層21を形成する。触媒スラリーの塗工方法は、特に制限されないが、例えば、基材10の一部に触媒スラリーを含浸させて、それを基材10の隔壁13全体に広げる方法のほか、排ガス導入側の端部11aと排ガス排出側の端部12aを個別に触媒スラリーに含浸させる方法が挙げられる。より具体的には、排ガス導入側の端部11aに触媒スラリーを含侵させる含浸工程S1aと、触媒スラリーを含浸させた端部と反対側の端部から基材10内に気体を導入させることにより、基材10に含浸した余剰の触媒スラリーを排出する排出工程S1bを有する方法が挙げられる。
 含浸工程S1aにおける触媒スラリーの含浸方法としては、特に制限されないが、例えば、触媒スラリーに基材10の端部を浸漬させる方法が挙げられる。この方法においては、必要に応じて、反対側の端部から気体を排出(吸引)させることにより触媒スラリーを引き上げてもよい。触媒スラリーを含浸させる端部は、排ガス導入側の端部11a又は排ガス排出側の端部12aのどちらでもよい。
 また、排出工程S1bでは、触媒スラリーは、基材10の導入側から所定の位置まで吸い上げられ、その後、触媒スラリーを含浸させた端部と反対側の端部から基材10内に気体を導入させることにより、基材10の導入側から余剰分を排出する。その過程において、隔壁13の気孔内部を触媒スラリーが通過することで、気孔内部に触媒スラリーを塗工することができ、触媒スラリーを吸い上げた位置まで隔壁に触媒スラリーが塗工される。このような方法を用い、例えば、第3領域21cに重複して触媒スラリーを塗工することにより、第3領域21cの細孔径を第1領域21aと第2領域21bの細孔径よりも小さくすることができる。
 乾燥工程S1cでは、塗工した触媒スラリーを乾燥させる。乾燥工程S1cにおける乾燥条件は、触媒スラリーから溶媒が揮発するような条件であれば特に制限されない。例えば、乾燥温度は、好ましくは100~225℃であり、より好ましくは100~200℃であり、さらに好ましくは125~175℃である。また、乾燥時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。
 焼成工程S1dでは、触媒スラリーを焼成して、触媒層21を形成する。焼成工程S1dにおける焼成条件は、触媒スラリーから触媒層21が形成できるような条件であれば特に制限されない。例えば、焼成温度は、特に制限されないが、好ましくは400~650℃であり、より好ましくは450~600℃であり、さらに好ましくは500~600℃である。また、焼成時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。
 (触媒スラリー)
 触媒層21を形成するための触媒スラリーについて説明する。触媒スラリーは、触媒粉体と、水などの溶剤とを含む。触媒粉体は、触媒金属粒子と該触媒金属粒子を担持する担体粒子とを含む、複数の触媒粒子の集団であり、後述する焼成工程を経て、触媒層21を形成する。触媒粒子は、特に限定されず、公知の触媒粒子から適宜選択して用いることができる。なお、隔壁13の気孔内への塗工性の観点から、触媒スラリーの固形分率は、好ましくは1~50質量%であり、より好ましくは15~40質量%であり、さらに好ましくは20~35質量%である。このような固形分率とすることにより、触媒スラリーを隔壁13内の導入側セル11側に塗工しやすくなる傾向にある。
 触媒スラリーに含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。
 触媒金属粒子を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。なお、排ガス浄化性能の観点から、触媒スラリーに含まれる担体粒子の比表面積は、好ましくは10~500m/g、より好ましくは30~200m/gである。
[用途]
 内燃機関(エンジン)には、酸素と燃料ガスとを含む混合気が供給され、この混合気が燃焼されて、燃焼エネルギーが力学的エネルギーに変換される。このときに燃焼された混合気は排ガスとなって排気系に排出される。排気系には、排ガス浄化触媒を備える排ガス浄化装置が設けられており、排ガス浄化触媒により排ガスに含まれる有害成分(例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx))が浄化されるとともに、排ガスに含まれる粒子状物質(PM)が捕集され、除去される。特に、本実施形態の排ガス浄化触媒100は、ガソリンエンジンの排ガスに含まれる粒子状物質を捕集し、除去できるガソリンパティキュレートフィルタ(GPF)に用いられるものであることが好ましい。
 以下に試験例、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
(実施例1)
 アルミナ粉末に、硝酸ロジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Rh担持粉末を得た。得られたRh担持粉末0.5kgと、セリアジルコニア複合酸化物粉末2kgと、46%硝酸ランタン水溶液195gと、イオン交換水とを混合し、得られた混合物をボールミルに投入し、触媒粉体が所定の粒子径分布になるまでミリングし、触媒スラリーを得た。得られた触媒スラリーに、水酸化バリウム八水和物183gと、60%硝酸とを混合し、触媒スラリーを得た。
 また、アルミナ粉末に、硝酸パラジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Pd担持粉末を得た。得られたPd担持粉末0.5kgと、セリアジルコニア複合酸化物粉末2kgと、46%硝酸ランタン水溶液195gと、イオン交換水とを混合し、得られた混合物をボールミルに投入し、触媒粉体が所定の粒子径分布になるまでミリングし、触媒スラリーを得た。得られた触媒スラリーに、水酸化バリウム八水和物183gと、60%硝酸とを混合し、触媒スラリーを得た。
 次いで、コージェライト製のウォールフロー型ハニカム基材(セル数/ミル厚:300cpsi/10mil、直径:118.4mm、全長:127mm、細孔径(モード径):16.4μm、気孔率:65%)を用意した。この基材の排ガス導入側の端部をRhを含む触媒スラリーに浸漬させ、反対側の端部側から減圧吸引して、基材の中心まで触媒スラリーを含浸保持させて、隔壁内の気孔表面に触媒スラリーを塗工した。その後、排ガス排出側の端部から基材内へ気体を流入させて、基材の排ガス導入側の端部から過剰分の触媒スラリーを吹き払った。
 また、基材の排ガス排出側の端部をPdを含む触媒スラリーに浸漬させ、反対側の端部側から減圧吸引して、基材の中心まで触媒スラリーを含浸保持させて、隔壁内の気孔表面に触媒スラリーを塗工した。その後、排ガス導入側の端部から基材内へ気体を流入させて、基材の排ガス排出側の端部から過剰分の触媒スラリーを吹き払った。なお、Pdを含む触媒スラリーの塗工領域とRhを含む触媒スラリーの塗工領域とが、延伸方向の全長に対し2%重複するように塗工した。
 その後、触媒スラリーを塗工した基材を150℃で乾燥させた後、大気雰囲気下、550℃で焼成して、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり57.8g(白金族金属の重量を除く)であった。また、Rhを含む触媒スラリーおよびPdを含む触触媒スラリーによる触媒層は、隔壁の厚さ方向において、導入側セル側のセル壁面から排出側セル側のセル壁面にかけて形成されていた。
(実施例2)
 Pdを含む触媒スラリーの塗工領域とRhを含む触媒スラリーの塗工領域とが、延伸方向の全長に対し7%重複するように塗工したこと以外は、実施例1で作製した排ガス浄化触媒と同様の触媒を作製した。
(実施例3)
 Pdを含む触媒スラリーの塗工領域とRhを含む触媒スラリーの塗工領域とが、延伸方向の全長に対し22%重複するように塗工したこと以外は、実施例1で作製した排ガス浄化触媒と同様の触媒を作製した。
(比較例1)
 上記Rh担持粉末0.5kgと、上記Pd担持粉末0.5kgと、セリアジルコニア複合酸化物粉末2kgと、46%硝酸ランタン水溶液195gと、イオン交換水とを混合し、得られた混合物をボールミルに投入し、触媒粉体が所定の粒子径分布になるまでミリングし、触媒スラリーを得た。得られた触媒スラリーに、水酸化バリウム八水和物183gと、60%硝酸とを混合し、触媒スラリーを得た。
 基材への触媒スラリーの塗工方法において、基材の排ガス導入側の端部を上記のようにして調製した触媒スラリーに浸漬させ、反対側の端部側から減圧吸引して、基材端部に触媒スラリーを含浸保持させた。排ガス導入側の端部から基材内へ気体を流入させて、隔壁内の気孔表面に触媒スラリーを塗工するとともに、基材の排ガス排出側の端部から過剰分の触媒スラリーを吹き払って、気体の流入を停止したこと以外は、実施例6と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり58.8g(白金族金属の重量を除く)であった。
(比較例2)
 Rhを含む触媒スラリーおよびPdを含む触媒スラリーそれぞれに代えて、比較例1において調製した触媒スラリーを用い、排ガス導入側の端部から浸漬した触媒スラリーの塗工領域と排ガス排出側の端部から浸漬した触媒スラリーの塗工領域とは、重複しないように塗工したこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり58.8g(白金族金属の重量を除く)であった。
[細孔径及び細孔容積の算出]
 実施例及び比較例で作製した排ガス浄化触媒の隔壁の、第1領域21a、第2領域21b、及び第3領域21cの、隔壁13の延伸方向におけるそれぞれ真ん中に位置する部分から、細孔径(モード径)及び細孔容積の測定用サンプル(1cm)をそれぞれ採取した。また、触媒スラリーを塗工する前の基材については、実施例及び比較例で作製した排ガス浄化触媒においてそれぞれサンプル採取した同位置の部分から、細孔径(モード径)及び細孔容積の測定用サンプル(1cm)をそれぞれ採取した。なお、この際、各領域から10点以上、合計で1cmとなるように測定用サンプルを採取した。測定用サンプルを乾燥後、水銀ポロシメーター(Thermo Fisher Scientific社製、商品名:PASCAL140及びPASCAL440)を用いて、水銀圧入法により気孔分布を測定した。この際、PASCAL140により低圧領域(0~400Kpa)を測定し、PASCAL440により高圧領域(0.1Mpa~400Mpa)を測定した。得られた気孔分布から、細孔径(モード径)を求め、また、細孔径1μm以上の気孔における細孔容積を算出した。
 次いで、気孔率の算出は下記式により行った。これらの結果の一部を、下記表3に示す。
 排ガス浄化触媒の気孔率(%)=触媒層が形成された隔壁の細孔容積(cc/g)÷基材の細孔容積(cc/g)×基材の気孔率(%)
 基材の気孔率(%)=65%
[車両NOx浄化性能評価]
 市販のフロースルー型三元触媒をコンバーターに格納後、格納した三元触媒の後段に実施例及び比較例で作製した排ガス浄化触媒をコンバーターに格納し、ガソリンエンジンの排気口の後流にコンバーターを装着した。その後、定常、減速、加速のサイクルを10時間繰り返した。温度は定常時950℃となるよう設定し、熱耐久処理を行った。
 その後、耐久処理後の市販のフロースルー型三元触媒と、実施例及び比較例で作製した排ガス浄化触媒をコンバーターに格納し、欧州仕様の排気量1.5Lの直噴ターボエンジンを搭載するガソリン車を用いて、WLTCモードにて触媒の排ガス浄化性能を調べた。
[スス捕集性能の測定]
 実施例及び比較例で作製した排ガス浄化触媒を、1.5L直噴ターボエンジン搭載車に取り付け、固体粒子数測定装置(堀場製作所製、商品名:MEXA-2100 SPCS)を用いて、WLTCモード走行時のスス排出数量(PNtest)を測定した。なお、ススの捕集率は、排ガス浄化触媒を搭載せずに上記試験を行った際に測定したスス量(PNblank)からの減少率として、下記式により算出した。その結果を図3に示す。
 ススの捕集率(%)=(PNblank-PNtest)/PNblank × 100(%)
Figure JPOXMLDOC01-appb-T000001
 以上より、実施例においては、細孔径を調整することにより、ススの捕集率を高く維持しつつ、排ガス浄化性能の向上が達成されており、比較例においては、隔壁の延伸方向において細孔径が比較的均一であることによりススの捕集率が低く、また排ガス浄化性能も低下していた。
 本出願は、2018年11月28日に日本国特許庁へ出願された日本特許出願(特願2018-222097)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の排ガス浄化触媒は、ガソリンエンジンの排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒として広く且つ有効に利用することができる。また、本発明の排ガス浄化触媒は、ガソリンエンジンのみならず、ジェットエンジン、ボイラー、ガスタービン等の排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒としても有効に利用可能である。
 10 ・・・ウォールフロー型基材
 11 ・・・導入側セル
 11a・・・排ガス導入側の端部
 12 ・・・排出側セル
 12a・・・排ガス排出側の端部
 13 ・・・隔壁
 21 ・・・触媒層
 21a・・・第1領域
 21b・・・第2領域
 21c・・・第3領域
100 ・・・排ガス浄化触媒

Claims (11)

  1.  内燃機関から排出される排ガスを浄化する排ガス浄化触媒であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
     前記隔壁内に形成された触媒層と、を有し、
     前記触媒層が、前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、
     前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、
     前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である、
     排ガス浄化触媒。
  2.  前記第3領域の細孔分布から算出される細孔径1μm以上の細孔容積Vmidに対する前記第1領域の細孔分布から算出される細孔径1μm以上の細孔容積Vinの比(Vin/Vmid)が、1.3以上であり、
     前記細孔容積Vmidに対する前記第2領域の細孔分布から算出される細孔径1μm以上の細孔容積Voutの比(Vout/Vmid)が、1.3以上である、
     請求項1に記載の排ガス浄化触媒。
  3.  前記細孔径Din又は前記細孔径Doutと、前記細孔径Dmidとの差が、それぞれ、2.5~10μmである、
     請求項1又は2に記載の排ガス浄化触媒。
  4.  前記第1領域が、Pdを含む、
     請求項1~3のいずれか一項に記載の排ガス浄化触媒。
  5.  前記第2領域が、Rhを含む、
     請求項4に記載の排ガス浄化触媒。
  6.  前記第1領域が、Rhを含む、
     請求項1~3のいずれか一項に記載の排ガス浄化触媒。
  7.  前記第2領域が、Pdを含む、
     請求項6に記載の排ガス浄化触媒。
  8.  前記触媒層が、前記隔壁の厚さ方向において、前記導入側セル側のセル壁面から前記排出側セル側のセル壁面にかけて形成されている、
     請求項1~5のいずれか一項に記載の排ガス浄化触媒。
  9.  前記第3領域の形成範囲が、前記隔壁の延伸方向の全長100%に対して、2~20%である、
     請求項1~8のいずれか一項に記載の排ガス浄化触媒。
  10.  前記内燃機関が、ガソリンエンジンである、
     請求項1~9のいずれか一項に記載の排ガス浄化触媒。
  11.  内燃機関から排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
     前記ウォールフロー型基材の前記隔壁内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層を形成する触媒層形成工程と、を有し、
     該触媒層形成工程において、
     前記排ガス導入側の端部から前記隔壁の延伸方向に沿って形成される第1領域と、前記排ガス排出側の端部から前記隔壁の延伸方向に沿って形成される第2領域と、前記第1領域と前記第2領域とが重なる第3領域と、を有し、前記第3領域の細孔分布から算出される細孔径Dmidに対する前記第1領域の細孔分布から算出される細孔径Dinの比(Din/Dmid)が、1.2以上であり、前記細孔径Dmidに対する前記第2領域の細孔分布から算出される細孔径Doutの比(Dout/Dmid)が、1.2以上である前記触媒層を有する前記排ガス浄化触媒を製造する、
     排ガス浄化触媒の製造方法。
PCT/JP2019/032177 2018-11-28 2019-08-16 排ガス浄化触媒及びその製造方法 WO2020110379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980051093.1A CN112512687B (zh) 2018-11-28 2019-08-16 废气净化催化剂及其制造方法
JP2020558092A JP7319293B2 (ja) 2018-11-28 2019-08-16 排ガス浄化触媒及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222097 2018-11-28
JP2018-222097 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110379A1 true WO2020110379A1 (ja) 2020-06-04

Family

ID=70852794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032177 WO2020110379A1 (ja) 2018-11-28 2019-08-16 排ガス浄化触媒及びその製造方法

Country Status (3)

Country Link
JP (1) JP7319293B2 (ja)
CN (1) CN112512687B (ja)
WO (1) WO2020110379A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136232A1 (ja) * 2007-04-27 2008-11-13 Ngk Insulators, Ltd. ハニカムフィルタ
JP2009160547A (ja) * 2008-01-09 2009-07-23 Toyota Motor Corp 排ガス浄化用触媒とその製造方法
JP2010167366A (ja) * 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
WO2016060048A1 (ja) * 2014-10-16 2016-04-21 株式会社キャタラー 排ガス浄化用触媒
WO2016133087A1 (ja) * 2015-02-17 2016-08-25 株式会社キャタラー 排ガス浄化用触媒
JP2017185464A (ja) * 2016-04-07 2017-10-12 株式会社キャタラー 排ガス浄化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940242B2 (en) * 2009-04-17 2015-01-27 Basf Corporation Multi-zoned catalyst compositions
CN104812462B (zh) * 2012-12-03 2016-10-12 丰田自动车株式会社 排气净化过滤器
JP6279368B2 (ja) * 2014-03-18 2018-02-14 日本碍子株式会社 排ガス浄化装置
JP6293638B2 (ja) * 2014-10-17 2018-03-14 株式会社キャタラー 排ガス浄化装置
JP6386697B1 (ja) * 2017-03-23 2018-09-05 株式会社キャタラー 排ガス浄化用触媒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136232A1 (ja) * 2007-04-27 2008-11-13 Ngk Insulators, Ltd. ハニカムフィルタ
JP2009160547A (ja) * 2008-01-09 2009-07-23 Toyota Motor Corp 排ガス浄化用触媒とその製造方法
JP2010167366A (ja) * 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
WO2016060048A1 (ja) * 2014-10-16 2016-04-21 株式会社キャタラー 排ガス浄化用触媒
WO2016133087A1 (ja) * 2015-02-17 2016-08-25 株式会社キャタラー 排ガス浄化用触媒
JP2017185464A (ja) * 2016-04-07 2017-10-12 株式会社キャタラー 排ガス浄化装置

Also Published As

Publication number Publication date
JP7319293B2 (ja) 2023-08-01
CN112512687A (zh) 2021-03-16
CN112512687B (zh) 2023-09-22
JPWO2020110379A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US10086363B2 (en) Exhaust gas purification device
JP7228065B2 (ja) 触媒塗工ガソリンパティキュレートフィルター及びその製造方法
JP7051186B2 (ja) 排ガス浄化触媒
JP6526847B1 (ja) 排ガス浄化触媒及びその製造方法
CN112218719B (zh) 废气净化催化剂
WO2019221217A1 (ja) 排ガス浄化触媒
WO2019221214A1 (ja) 排ガス浄化触媒
JP6523496B1 (ja) 排ガス浄化触媒及びその製造方法
CN112041065B (zh) 废气净化催化剂的制造方法
WO2019221212A1 (ja) 排ガス浄化触媒及びその製造方法
CN112218718B (zh) 废气净化催化剂
JP6581262B1 (ja) 排ガス浄化触媒の製造方法
WO2020110379A1 (ja) 排ガス浄化触媒及びその製造方法
JP7075282B2 (ja) 排ガス浄化触媒
JP2020131181A (ja) ハニカム構造体
JP6526846B1 (ja) 排ガス浄化触媒及びその製造方法
US20240011420A1 (en) Fine particle filter, method for removing particulate matter from exhaust gas of internal combustion engine, and method for producing fine particle filter
WO2021059883A1 (ja) 排ガス浄化触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888431

Country of ref document: EP

Kind code of ref document: A1