[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020107991A1 - 自动驾驶规划的方法、设备及系统 - Google Patents

自动驾驶规划的方法、设备及系统 Download PDF

Info

Publication number
WO2020107991A1
WO2020107991A1 PCT/CN2019/104196 CN2019104196W WO2020107991A1 WO 2020107991 A1 WO2020107991 A1 WO 2020107991A1 CN 2019104196 W CN2019104196 W CN 2019104196W WO 2020107991 A1 WO2020107991 A1 WO 2020107991A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
segmented
travel path
path
driving
Prior art date
Application number
PCT/CN2019/104196
Other languages
English (en)
French (fr)
Inventor
殷佳欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020107991A1 publication Critical patent/WO2020107991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
    • G08G1/096822Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard where the segments of the route are transmitted to the vehicle at different locations and times
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This application relates to the field of communication technology, and in particular, to a method, equipment, and system for automatic driving planning.
  • Automated driving refers to a method in which a vehicle (Vehicle) gets its perception of the surrounding environment through its own sensors and other means when it is unmanned, and then controls the vehicle to travel on the road through a computer.
  • SAE Society of Automotive Engineers
  • autonomous driving is divided into 6 levels, including L0 no automation, L1 assisted driving, L2 partial automation, L3 conditional automation, L4 High automation, and L5 fully automated.
  • L0 no automation L1 assisted driving
  • L2 partial automation L3 conditional automation
  • L4 High automation L5 fully automated.
  • L5 the capabilities of each driving level are different.
  • the higher the driving level of automatic driving the more dimensions the system undertakes. Matching it is that the system itself has higher requirements, and the system has higher requirements for the surrounding environment perception.
  • ADAS automated driving assistance systems
  • V2X vehicle to vehicle
  • LTE-Uu long term evolution
  • QoS quality of service
  • Changes in the QoS of the communication network will directly affect the QoS of the communication network
  • the V2X server delivers high-precision map information or road dynamic information to the vehicle, such as delay, reliability, bandwidth, packet loss rate, or jitter.
  • the V2X server sends high-precision map information or road dynamic information to the vehicle, and the change of the QoS of the communication network will affect the automatic driving of the vehicle.
  • the vehicle cannot determine its own lane information, or cannot perceive the obstacle information on the road, etc., which may cause the automatic driving of the vehicle to fail to proceed smoothly or to degrade the driving level of the vehicle.
  • this switching of driving levels due to network quality requires a certain amount of advancement.
  • a L4 driving level vehicle because the network status changes, the vehicle can no longer receive road dynamic information, the driver needs to do environmental monitoring assistance, so the level needs to be switched to L2 driving level. At this time, the vehicle needs to prompt the driver to return his attention to the road to complete the switching of the driving level. If the driver's attention has not returned to the road and the vehicle has suddenly completed the switching of the driving level, it may cause serious traffic accidents.
  • the embodiments of the present application provide a method, equipment, and system for automatic driving planning, so that the first terminal can dynamically adjust the automatic driving strategy of the first terminal according to different QoS conditions of the communication network, and the first terminal cannot automatically change the QoS of the communication terminal. A driving accident at a terminal, thereby enabling safe driving.
  • a method for automatic driving planning includes: a server receives path planning information from a first terminal, and the path planning information includes information about a target driving path of the first terminal; Information, segment the target travel path of the first terminal to obtain N segment travel paths, where N is a positive integer greater than 1; for any of the N segment travel paths, follow the following Process for the first segmented travel path: the server predicts the QoS of the communication network on the first segmented travel path in the first time period to obtain the first QoS prediction result, and the first time period is the first terminal The time period when traveling on the first segmented travel path; the server sends the first segmented travel path information and the first QoS prediction result to the first terminal, where the first QoS prediction result is used to determine the first The automatic driving strategy when the terminal is driving on the first segmented driving path.
  • the server After receiving the path planning information from the first terminal, the server segments the target travel path of the first terminal according to the target travel path information. For each segmented travel path, the server predicts the time period when the first terminal passes through the segmented travel path, and the QoS of the communication network on the segmented travel path. After obtaining the corresponding QoS prediction result, the server The information and the corresponding QoS prediction result are sent to the first terminal, and the first terminal determines the automatic driving strategy when the first terminal travels on the segmented travel path according to the information of the segmented travel path and the corresponding QoS prediction result.
  • the first terminal can dynamically adjust the automatic driving strategy of the first terminal according to different QoS conditions of the communication network, and will not cause a driving accident of the first terminal due to the change in the communication network QoS Thus, safe driving can be achieved.
  • the path planning information further includes speed information when the first terminal is traveling on the target travel path; the method further includes: the server according to the speed information, the first time period. Based on this solution, the server may determine the time period during which the first terminal passes through the first segmented travel path.
  • the path planning information further includes a target QoS, which is a communication network QoS index required when the first terminal uses the first driving level to travel on the target driving path;
  • the method further includes: if the first QoS prediction result does not satisfy the target QoS, the server determines the communication on the first segmented travel path The network QoS is not up to standard; the server determines the recommended information corresponding to the first segmented travel path; the server sends the recommended information to the first terminal, and the recommended information is used to determine the Autonomous driving strategy.
  • the first terminal may determine the automatic driving strategy when the first terminal travels on the first segmented travel path according to the recommendation information sent by the server.
  • the server determines the recommendation information corresponding to the first segmented travel path, including: if the first period of time, the reason why the QoS of the communication network on the first segmented travel path does not meet the standard is a temporary reason, The server determines that the recommended information corresponding to the first segmented travel path includes: estimated recovery time.
  • the server determines the recommended information corresponding to the first segmented travel path, including: if the first period of time, the reason why the QoS of the communication network on the first segmented travel path does not meet the standard is not a temporary reason, The server determines that the recommendation information corresponding to the first segmented travel path includes one or more of the following: If the first terminal signs up with the second mobile network operator MNO, and there is a first segment travel path that can provide the first terminal with Serving the network of the second MNO, so that when the network of the second MNO provides services for the first terminal, the QoS of the communication network on the first segment of the travel path in the first time period is predicted to obtain the second QoS If the prediction result meets the target QoS, the recommendation information includes: the network identifier of the second MNO, where the network identifier of the second MNO is used to switch the first terminal from the network of the first MNO to the network of the second MNO , The network of the first MNO is the network of the MNO
  • the method further includes: the server sending a formation request to the second terminal, the formation request is used to request the second terminal and the first terminal Form a formation to travel through this first segment.
  • the second terminal can learn that there is a request and the first terminal that forms a formation, and then can form a formation with the first terminal.
  • the automatic driving strategy includes: entering the first segmented driving path after the estimated recovery time is reached.
  • the automatic driving strategy includes: switching the first terminal from the network of the first MNO to the network of the second MNO and then entering the first segmented travel path.
  • the automatic driving strategy includes: switching the first terminal from the first segmented travel path to the second segmented travel path.
  • the automatic driving strategy includes: after successfully forming a formation with the second terminal, following the second terminal to enter the first segmented driving path, and after passing the first segmented driving path, and The second terminal cancels the formation relationship.
  • the automatic driving strategy includes: continuing to enter the first segmented driving path.
  • the automatic driving strategy includes: lowering the driving level of the first terminal to enter the first segmented driving path.
  • the route planning information further includes the amount of advance notice required when the first terminal travels on the target travel path; the server performs the target travel path of the first terminal according to the target travel path information Segmentation, including: the server segments the target travel path of the first terminal according to the information of the target travel path and the notification advance, where the segmentation result satisfies that the time for the first terminal to pass each segmented travel path is greater than Or equal to the notice advance.
  • the first terminal can have a certain time to prepare for the automatic driving strategy update.
  • the notification advance amount is greater than or equal to the maximum time required for the first terminal to switch between different driving levels. Based on this solution, in the case where the first terminal needs to reduce the driving level, the first terminal can be reserved with sufficient time to respond well.
  • a method for automatic driving planning includes: a first terminal sends path planning information to a server, where the path planning information includes information about a target travel path of the first terminal, wherein the target travel path information It is used to segment the target driving path of the first terminal to obtain N segmented driving paths, where N is a positive integer greater than 1; for any segmented driving path of the N segmented driving paths, follow the following Process for the first segmented travel path: the first terminal receives the first segmented travel path information from the server and the first quality of service QoS prediction result, where the first QoS prediction result is for the first time Segment, obtained by predicting the QoS of the communication network on the first segmented travel path, the first time segment is the time period when the first terminal is traveling on the first segmented travel path; A QoS prediction result determines the automatic driving strategy of the first terminal when driving on the first segmented driving path.
  • the server After receiving the path planning information from the first terminal, the server segments the target travel path of the first terminal according to the target travel path information. For each segmented travel path, the server predicts the time period when the first terminal passes through the segmented travel path, and the QoS of the communication network on the segmented travel path. After obtaining the corresponding QoS prediction result, the server The information and the corresponding QoS prediction result are sent to the first terminal, and the first terminal determines the automatic driving strategy when the first terminal travels on the segmented travel path according to the information of the segmented travel path and the corresponding QoS prediction result.
  • the first terminal can dynamically adjust the automatic driving strategy of the first terminal according to different QoS conditions of the communication network, and will not cause a driving accident of the first terminal due to the change in the communication network QoS Thus, safe driving can be achieved.
  • the path planning information further includes a target QoS, which is a communication network QoS index required when the first terminal uses the first driving level to drive on the target driving path;
  • the method further includes: the first terminal receives a recommendation corresponding to the first segmented travel path from the server Information; correspondingly, the first terminal determines the automatic driving strategy when the first terminal is driving on the first segmented driving path according to the first QoS prediction result and the first prediction accuracy, including: if the first QoS prediction If the result does not meet the target QoS, the first terminal determines that the QoS of the communication network on the first segment travel path does not meet the standard during the first time period; the first terminal determines that the first terminal is traveling in the first segment based on the recommendation information Automated driving strategy while driving on the route. Based on this solution, the first terminal may determine the automatic driving strategy when the first terminal travels on the first segment
  • the recommendation information includes an estimated recovery time; correspondingly, the first terminal determines the automatic driving strategy when the first terminal is driving on the first segmented driving path according to the recommendation information, including: According to the recommendation information, a terminal determines that the first terminal's automatic driving strategy when traveling on the first segmented travel path is to enter the first segmented travel path after the expected recovery time has been reached.
  • the recommendation information includes: a network identifier of a second mobile network operator MNO, where the network of the second MNO is an MNO capable of serving the first terminal on the first segmented travel path
  • the first terminal determines the automatic driving strategy of the first terminal when driving on the first segmented driving path according to the recommendation information, including: the first terminal determines that the first terminal is in the The automatic driving strategy when driving on the first segmented driving path is to switch the first terminal from the network of the first MNO to the network of the second MNO and enter the first segmented driving path, the network of the first MNO is The network of the MNO currently serving the first terminal.
  • the recommended information includes: information of a second segmented travel path, where the second segmented travel path is a segment of the travel path on the alternative path of the target travel path, and the target travel path
  • the starting position of is the same as the starting position of the alternative route
  • the ending position of the target driving route is the same as the ending position of the alternative route; accordingly, the first terminal determines that the first terminal is in the
  • the automatic driving strategy when driving on a segmented driving path includes: according to the recommendation information, the first terminal determines that the automatic driving strategy when the first terminal is driving on the first segmented driving path is: remove the first terminal from the The first segment travel path is switched to travel on the second segment travel path.
  • the recommendation information includes: an identifier of the second terminal; correspondingly, the first terminal determines the automatic driving strategy when the first terminal is driving on the first segmented travel path according to the recommendation information, Including: according to the recommendation information, the first terminal determines that the automatic driving strategy of the first terminal when driving on the first segmented driving path is: after successfully forming a formation with the second terminal, following the second terminal to enter the first The segmented travel path, after passing the first segmented travel path, cancels the formation relationship with the second terminal.
  • the first terminal determines the automatic driving strategy of the first terminal when driving on the first segmented travel path, including: if the first QoS prediction result meets the For target QoS, the first terminal determines that the communication network on the first segmented travel path meets the QoS standard for the first period of time; the first terminal determines that the automatic driving strategy of the first terminal when traveling on the first segmented travel path is: Continue to enter the first segmented driving path.
  • the first terminal determines the automatic driving strategy of the first terminal when driving on the first segmented travel path, including: if the first QoS prediction result is not satisfied For the target QoS, the first terminal determines that the QoS of the communication network on the first segmented travel path does not meet the standard for the first time period; the first terminal determines the automatic driving strategy when the first terminal travels on the first segmented travel path To: enter the first segmented driving path after lowering the driving level of the first terminal.
  • the path planning information further includes a notice advance required by the first terminal to travel on the target travel path; wherein the notice advance is used to segment the target travel path of the first terminal , Where the segmentation result satisfies that the time for the first terminal to pass each segmented travel path is greater than or equal to the notification advance.
  • the notification advance amount is greater than or equal to the maximum time required for the first terminal to switch between different driving levels. Based on this solution, in the case where the first terminal needs to reduce the driving level, the first terminal can be reserved with sufficient time to respond well.
  • a server having the function of implementing the method described in the first aspect.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a server including: a processor and a memory; the memory is used to store computer-executed instructions, and when the server is running, the processor executes the computer-executed instructions stored in the memory to cause the server to execute The method of automatic driving planning as described in any one of the above-mentioned first aspects.
  • a server including: a processor; the processor is configured to couple with a memory and read an instruction in the memory, and then execute the instruction according to any one of the first aspects according to the instruction according to the instruction Automated driving planning method.
  • a computer-readable storage medium having instructions stored therein, which when run on a computer, enables the computer to perform the automatic driving described in any one of the above-mentioned first aspects Planning method.
  • a computer program product containing instructions, which when run on a computer, enables the computer to execute the method for automatic driving planning as described in any one of the above-mentioned first aspects.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor for supporting a server to implement the functions mentioned in the first aspect, for example, according to the information of the target driving path, Segment the target travel path of the first terminal.
  • the device further includes a memory for storing necessary program instructions and data of the server.
  • the device When the device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a first terminal is provided, and the first terminal has a function of implementing the method described in the second aspect.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a first terminal including: a processor and a memory; the memory is used to store computer-executed instructions, and when the first terminal is running, the processor executes the computer-executed instructions stored in the memory, to The method for causing the first terminal to execute the automatic driving planning as described in any one of the above-mentioned second aspects.
  • a first terminal including: a processor; the processor is configured to couple with a memory and read an instruction in the memory, and execute any one of the foregoing second aspects according to the instruction The method of automatic driving planning.
  • a computer-readable storage medium having instructions stored therein, which when run on a computer, enables the computer to perform the automatic described in any one of the second aspects above Driving planning method.
  • a computer program product containing instructions, which when run on a computer, enables the computer to execute the method of automatic driving planning as described in any one of the above-mentioned second aspects.
  • an apparatus for example, the apparatus may be a chip system
  • the apparatus includes a processor for supporting the first terminal to implement the functions involved in the second aspect, for example, according to the first QoS prediction
  • the device further includes a memory for storing necessary program instructions and data of the first terminal.
  • the device When the device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a communication system includes the server according to any one of the above aspects and one or more first terminals according to any one of the above aspects.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a method for automatic driving planning provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a driving route plan provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of segmenting a target driving path and a schematic diagram of segment prediction results provided by an embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a process for a server to provide recommendation information corresponding to a first segmented travel path according to an embodiment of the present application
  • FIG. 7 is a schematic diagram 1 of a driving route provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an automatic driving strategy when the vehicle 1 provided in the embodiment of the present application determines to travel on the first segmented travel path;
  • FIG. 9 is a schematic diagram 2 of a driving route provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 3 of a driving route provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 4 of a driving route provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a server provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a first terminal provided by an embodiment of this application.
  • At least one of the following or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • the words “first” and “second” are used to distinguish the same or similar items that have substantially the same functions and functions. Those skilled in the art may understand that the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean different.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the communication system 10 includes a server 101 and one or more terminals 102 connected to the server 101.
  • the first terminal 102 is configured to send path planning information to the server 101, where the path planning information includes information about the target travel path of the first terminal 102.
  • the server 101 is configured to receive path planning information from the first terminal 102 and segment the target travel path of the first terminal 102 to obtain N segmented travel paths, where N is a positive integer greater than 1.
  • the first terminal 102 and the server 101 also process the first segmented travel route as follows:
  • the first terminal 102 is configured to send path planning information to the server, where the path planning information includes information about the target travel path of the first terminal.
  • the server 101 is also used to receive path planning information from the first terminal 102, and according to the target travel path information, predict the QoS of the communication network on the first time segment and the first segment travel path to obtain the first QoS prediction After the result, the first segment 102 and the first QoS prediction result are sent to the first terminal 102.
  • the first terminal 102 is also used to receive the first segment travel path information and the first QoS prediction result from the server 101, and determine that the first terminal 102 is traveling on the first segment travel path according to the first QoS prediction result Driving strategy at the time.
  • the server Based on the communication system provided by the embodiment of the present application, because in the embodiment of the present application, after receiving the path planning information from the first terminal, the server segments the target travel path of the first terminal according to the target travel path information. For each segmented travel path, the server predicts the time period when the first terminal passes through the segmented travel path, and the QoS of the communication network on the segmented travel path. After obtaining the corresponding QoS prediction result, the server The information and the corresponding QoS prediction result are sent to the first terminal, and the first terminal determines the automatic driving strategy when the first terminal travels on the segmented travel path according to the information of the segmented travel path and the corresponding QoS prediction result.
  • the first terminal can dynamically adjust the automatic driving strategy of the first terminal according to different QoS conditions of the communication network, and will not cause a driving accident of the first terminal due to a change in the QoS of the communication network.
  • safe driving can be achieved.
  • the server in the embodiment of the present application may be, for example, a vehicle-to-everything (V2X) server, or a server operated by a mobile network operator (mobile network operator, MNO), or an original equipment manufacturer (original) of a vehicle company Entrusted manufacturers (OEM) or servers operated by road operators (road operators) are not specifically limited in the embodiments of the present application.
  • V2X vehicle-to-everything
  • MNO mobile network operator
  • OEM original equipment manufacturer
  • roads operators road operators
  • the terminal in the embodiment of the present application may be a vehicle; it may also be an in-vehicle terminal installed on the vehicle to assist the driving of the vehicle.
  • the vehicle-mounted terminal may be a 5th generation (5G) network or a user equipment (UE), access terminal, and terminal unit in a public land mobile network (PLMN) that will evolve in the future , Terminal station, mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal agent or terminal device, etc.
  • 5G 5th generation
  • UE user equipment
  • PLMN public land mobile network
  • Access terminals can be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (personal digital assistant (PDA), wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial wireless terminal in control) or wireless terminal in self-driving (self-driving), etc.
  • the in-vehicle terminal may be mobile or fixed.
  • related functions of the terminal 102 and the server 101 in FIG. 1 in the embodiment of the present application may be implemented by one device, or may be implemented by multiple devices together, or may be implemented by one or more function modules in one device This is not specifically limited in the embodiments of the present application. It can be understood that the above-mentioned functions may be network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • a platform for example, a cloud platform
  • FIG. 2 is a schematic structural diagram of a communication device 200 provided by an embodiment of the present application.
  • the communication device 200 includes one or more processors 201, a communication line 202, and at least one communication interface (FIG. 2 is only exemplary to include the communication interface 204 and a processor 201 as an example).
  • the communication device 200 may further include a memory 203.
  • the processor 201 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more of which are used to control the execution of the program program of this application integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path for connecting between different components.
  • the communication interface 204 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, wireless access network (RAN), wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 204 may also be a transceiver circuit located in the processor 201 to implement signal input and signal output of the processor.
  • the memory 203 may be a device having a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored.
  • ROM read-only memory
  • RAM random access memory
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage ( (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures and can be stored by the computer Any other media, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer execution instructions for executing the solution of the present application, and the processor 201 controls execution.
  • the processor 201 is used to execute computer-executed instructions stored in the memory 203, so as to implement the automatic driving planning method provided in the embodiments of the present application.
  • the processor 201 may also perform processing-related functions in the method of automatic driving planning provided in the following embodiments of the present application, and the communication interface 204 is responsible for communicating with other devices or communication networks This is not specifically limited in the embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 208 in FIG. 2. Each of these processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 200 may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in various ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 206 communicates with the processor 201 and can receive user input in various ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned communication device 200 may sometimes be referred to as a communication device, which may be a general-purpose device or a dedicated device.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, the above terminal device, the above network device, or 2. Equipment of similar structure.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the automatic driving planning method includes the following steps S301-S305:
  • the first terminal sends path planning information to the server.
  • the server receives the path planning information from the first terminal.
  • the route planning information includes information of the target driving route of the first terminal.
  • Server target travel path information segment the target travel path of the first terminal to obtain N segment travel paths, where N is a positive integer greater than 1.
  • the first terminal and the server also process the first segmented travel route as follows:
  • the server predicts the QoS of the communication network on the first segment travel path in the first time period to obtain a first QoS prediction result.
  • the first time period is the time when the first terminal travels on the first segment travel path segment.
  • the server sends the first segment travel path information and the first QoS prediction result to the first terminal.
  • the first terminal receives the first segment travel path information and the first QoS prediction result from the server.
  • the first terminal determines an automatic driving strategy when the first terminal travels on the first segmented travel path according to the first QoS prediction result.
  • the vehicle 1 Before the start of the journey, the vehicle 1 sends the route planning information of the vehicle 1 to the server, and the route planning information includes the information of the target travel path of the vehicle 1.
  • the information of the target travel path of the vehicle 1 includes the target travel path of the vehicle 1.
  • the information of the target travel path of the vehicle 1 may further include the start position of the target travel path of the vehicle 1 (also may be understood as the current position of the vehicle 1) and the end position (also may be understood as the destination of the vehicle 1) .
  • the above-mentioned target travel route indicates which route the vehicle 1 will choose to reach the destination. For example, as shown in FIG. 4, from the start position A to the end position B, there may be multiple paths, such as path 1 and path 2 in FIG. 4. Of course, since different paths pass through different areas, the QoS of the communication network on different paths at the same time may be different.
  • the above start position and end position both represent coordinates on the map, which may be absolute coordinates like latitude and longitude, or relative coordinates.
  • vehicle 1 is located in XX municipal government, or vehicle 1 is located at 100 km of GXX highway.
  • the path planning information in the embodiment of the present application may also include speed information when the vehicle 1 is driving on the target travel path, and the speed information indicates that the vehicle 1 is traveling on different sections of the target travel path as planned speed.
  • the speed of the planned vehicle 1 when traveling on different sections of the target travel path may be the same or different, which is not specifically limited in the embodiment of the present application.
  • the target driving path of the vehicle 1 is the route 1 in FIG. 3, the road segment 1, the road segment 2, and the road segment 3 in the road 1 may correspond to different speed information, and the result may be shown in Table 1.
  • Section information Pace information Section 1 30km/h Section 2 40km/h Section 3 45km/h ... ...
  • the path planning information in the embodiment of the present application may further include a target QoS, which is a communication network QoS index required when the vehicle 1 uses the first driving level to drive on the target driving path.
  • the target QoS refers to the QoS condition of the communication network that needs to be guaranteed in order to maintain the first driving level.
  • the target QoS may include a threshold value of one or more QoS parameters and a minimum prediction accuracy (may also be referred to as a minimum confidence level).
  • the one or more QoS parameters may include, for example, one or more of delay, jitter, bandwidth, reliability, or network type.
  • the above minimum prediction accuracy indicates the probability that the prediction result required for the QoS prediction of the communication network is accurate, and is expressed as a percentage. For example, the server predicts that the region's delay will become 100 kpbs after 5 minutes. This prediction accuracy is 50%, indicating that there is a 50% probability that the delay after 5 minutes will become 100 kbps.
  • different driving levels have different requirements for QoS parameters. For example, if vehicle 1 is at L0 driving level or L1 driving level, since the operation of vehicle 1 is performed by the driver, the information the network needs to provide to the driver includes sudden road information (congestion, vehicle breakdown, road closure construction, etc.), As long as it is pushed to the driver 5-10 minutes in advance, in order to let the driver decide whether to re-plan the route, the amount of data to be pushed is relatively small, so the bandwidth, delay or reliability provided by the network is relatively low . For example, the delay is 10s or the bandwidth is 100kbps.
  • the network needs to push high-precision map information in addition to road information to make the vehicle know whether it is in the correct lane and direction. Therefore, there is a higher guarantee requirement for the bandwidth, delay, or reliability provided by the network. For example, the delay is 100ms and the bandwidth is 1Mbps.
  • the path planning information in the embodiment of the present application may further include the first driving level adopted when the vehicle 1 is driving on the target driving path.
  • the first driving level refers to what driving level the vehicle 1 plans to pass through, such as the L0-L5 driving level defined by SAE or other driving levels defined in the future.
  • the path planning information in the embodiment of the present application may further include the amount of advance notice required when the vehicle 1 travels on the target travel path.
  • the notification advance amount indicates that if the predicted communication network QoS will change, the vehicle 1 requires at least how long to notify the vehicle 1 in advance.
  • the vehicle 1 sends the route planning information of the vehicle 1 to the server, which includes the notice advance, which is used to inform the server how long in advance the vehicle 1 should be notified of the QoS prediction result, so that the vehicle 1 According to this QoS prediction result, if it is determined that the driving level needs to be reduced, sufficient time can be reserved for the vehicle to cope with it.
  • the notification advance in the embodiment of the present application is greater than or equal to the maximum time required for the vehicle 1 to switch between different driving levels, such as the time required for the vehicle 1 to switch from the L5 driving level to the L0 driving level.
  • the notification advance in the embodiment of the present application is greater than or equal to the maximum time required for the vehicle 1 to switch from the first driving level to any other driving level lower than the first driving level, such as The first driving level corresponds to the L3 driving level, and then the notice advancement is greater than or equal to the time required for the vehicle 1 to switch from the L3 driving level to the L0 driving level.
  • one or more of path planning information, speed information, target QoS, first driving level, or advance notice amount are sent by the vehicle 1 to the server as an example for description.
  • one or more of the above path planning information, speed information, target QoS, first driving level, or notification advance in the embodiment of the present application may not be sent by the vehicle 1 to the server, but the server Obtained from other network devices or other servers, this embodiment of the present application does not specifically limit this.
  • the server may segment the target driving route according to the information of the target driving route in the route planning information.
  • the server may segment the target travel path according to the information of the target travel path in combination with the notification advance in the path planning information.
  • the segmentation result satisfies that the time for the vehicle 1 to pass through each segmented travel path is greater than or equal to the notice advancement.
  • the server may segment the target travel path according to the information of the target travel path, combined with the deployment of the access network device (for example, a base station) in the network. For example, assuming that a certain path on the target driving path is in an area where access network equipment deployment is relatively dense (which can be regarded as a good QoS of the communication network), the path can be divided into a segmented driving path.
  • the access network device for example, a base station
  • the server may segment the target travel path in an equidistant manner, or may segment the target travel path in an equitime manner, which is not specifically limited in the embodiment of the present application.
  • the server may segment the target travel path according to the information of the target travel path, combined with the advance notice in the path planning information and the deployment of the access network device (for example, a base station) in the network.
  • the access network device for example, a base station
  • the path can be divided into a segmented driving path.
  • the segmentation result satisfies that the time for the vehicle 1 to pass through each segmented travel path is greater than or equal to the notice advancement.
  • the server may combine the advance notice in the path planning information to segment the target travel path in an equidistant manner, or may combine the advance notice in the path planning information to follow the target travel path in an equal time manner Perform segmentation.
  • the segmentation result satisfies that the time for the vehicle 1 to pass through each segmented travel path is greater than or equal to the notice advancement.
  • the entire journey corresponding to the target travel path may be as shown in (5a) in FIG. 5.
  • the target driving path is segmented in an equal time manner, and the segmentation result can be as shown in (5b) in FIG. 5.
  • (5b) exemplarily divides the entire journey corresponding to the target travel path into 10 segments, and t0, t1, t2, ..., t10 represent the time when the vehicle passes the point.
  • the server can determine the time period when the vehicle 1 is traveling on the first segment travel path (ie, the time period when the vehicle 1 passes through the first segment travel path, which is denoted as the first time period for convenience of explanation here), and then the first During the time period, the QoS of the communication network on the first segment of the travel path is predicted to obtain the first QoS prediction result. That is to say, when the server performs QoS prediction of the communication network, it performs time and geographic location in two dimensions. For example, after segmenting the entire journey corresponding to the target travel path shown in (5a) in FIG. 5, after obtaining the geographic location of each segmented travel path shown in (5b) in FIG. 5, you also need to determine The time period during which the vehicle 1 passes through each segmented travel path.
  • the server may determine the time period during which the vehicle 1 passes each segmented travel path according to the speed information of the vehicle 1 when traveling on the target travel path. No specific restrictions.
  • the first QoS prediction result includes the predicted value and prediction accuracy of one or more QoS parameters.
  • the relevant description of one or more QoS parameters reference may be made to the description in step S301, and details are not repeated here.
  • the server may collect other information from the Internet that may affect the QoS of the communication network (such as city activities) based on the network data collected from the MNO (such as time delay, bandwidth, jitter, or reliability). , Weather, people flow, etc.), and the path planning information maintained by itself, to predict the QoS of the communication network on the first segment of the first segment of the travel path in the first period of time to obtain the first QoS prediction result.
  • the first QoS prediction result is a result of speculation based on historical data in which these data affect the QoS of the communication network. For example, in the past month, the historical data of the QoS of the communication network have occurred every time with the same traffic, similar weather conditions, and approximately the same time period.
  • the relevant implementation of the prediction of the QoS of the communication network on a certain path can refer to the existing implementation mode, which will not be described in detail here.
  • the QoS of each segmented travel path in the corresponding time period in (5b) shown in FIG. 5 is predicted, and the prediction result may be as shown in (5c), (5d), or (5e) in FIG. 5.
  • the segmented travel path filled with the pattern represents the segmented travel path whose QoS prediction result does not meet the target QoS; the segmented travel path not filled with the pattern represents the segmented travel path whose QoS prediction result meets the target QoS.
  • the t2-t3 segment travel path, t3-t4 segment travel path, t4-t5 segment travel path, t5-t6 segment travel path, t7-t8 segment travel
  • the route, the t8-t9 segmented driving route, and the t9-t10 segmented driving route are segmented driving routes whose QoS prediction results do not meet the target QoS; and the t0-t1 segmented driving route, t1-t2 segmented driving route, and
  • the t6-t7 segmented travel path is the segmented travel path whose QoS prediction result meets the target QoS.
  • the situation in (5d) and (5e) in FIG. 5 is similar to the situation in (5c) above, and will not be described in detail here.
  • m is any integer from 0 to 9, which is described here in a unified manner and will not be described in detail below.
  • the t0-t1 segmented travel path refers to a section where the position at time t0 is the starting position and the position at time t1 is the ending position.
  • the QoS prediction result does not meet the target QoS, it is considered that the communication network QoS does not meet the standard; if the QoS prediction result meets the target QoS, the communication network is deemed to meet the QoS standard.
  • the QoS prediction result meets the target QoS means that the predicted value of the QoS parameter meets the threshold value requirement of the QoS parameter in the target QoS, and the prediction accuracy is not less than the minimum prediction accuracy in the target QoS Otherwise, it is considered that the QoS prediction result does not meet the target QoS.
  • the way that the server determines that the predicted value of the QoS parameter meets the threshold value requirement of the QoS parameter in the target QoS is that the predicted value of the QoS parameter that requires the threshold value requirement in the target QoS meets the threshold value requirement of the corresponding QoS parameter .
  • the wireless network coverage bandwidth is required to be at least 1Mbps, the delay is within 100ms, other parameters are not required, and the prediction accuracy is required to be greater than 70% (that is, the minimum prediction accuracy is 70%).
  • the server determining whether the QoS of the communication network meets the standard includes determining that the wireless network coverage bandwidth in the predicted value of the QoS parameter can reach at least 1 Mbps, the delay is within 100 ms, and the prediction accuracy is not less than 70%.
  • the server determines whether the predicted value of the QoS parameter meets the threshold value requirement of the QoS parameter in the target QoS the prediction result obtained locally is multi-dimensional, for example, for t 0 -t in (5b) shown in FIG.
  • the result of QoS prediction in the next 1 minute is bandwidth 2Mbps, delay 100ms, reliability 99.9%, packet loss rate 98%, etc. But as long as the server determines the predicted value of the QoS parameters, the wireless network coverage bandwidth can reach at least 1Mbps With a delay of less than 100ms, it can be determined that the predicted value of the QoS parameter meets the threshold value requirement of the QoS parameter in the target QoS.
  • the server may also determine recommended information corresponding to the first segmented travel path.
  • the recommended information corresponding to the first segmented travel path may include, for example, the estimated recovery time, the network identifier of the second MNO, the information of the second segmented travel path, the identification of the vehicle 2, and the like.
  • the estimated recovery time is used for the vehicle 1 to select to enter the first segment travel path after the estimated recovery time ends.
  • the network identifier of the second MNO is used for the vehicle 1 to enter the first segmented travel path after switching from the first MNO to the second MNO.
  • the network of the first MNO is the network of the MNO currently serving the vehicle 1.
  • the information of the second segment travel path is used for the vehicle 1 to select the first segment travel path to switch to the second segment travel path, where the second segment travel path is a segment on the alternative path of the target travel path
  • the starting position of the target driving route is the same as the starting position of the alternative route
  • the ending position of the target driving route is the same as the ending position of the alternative route.
  • the target driving route is route 1 in FIG. 4 and the alternative route is route 2 in FIG. 4
  • the second segmented driving route here may be a certain route on route 2.
  • the starting position of the bypass section usually selected is usually not later than the starting position of the section of the communication network QoS not reaching the standard, and the ending position of the selected bypass section is usually not earlier than the end position of the section of the communication network QoS not reaching the standard.
  • the server determines the recommendation information corresponding to the first segmented travel path, as shown in FIG. 6, including the following steps:
  • the server determines that the QoS of the communication network on the first-segment travel path does not meet the standard during the first time period.
  • step S601 For the relevant description of step S601, reference may be made to the description parts shown in (5a) to (5e) in FIG. 5, which will not be repeated here.
  • the server determines whether the reason why the QoS of the communication network on the first segment travel path does not meet the standard during the first time period is a temporary cause or a non-temporary cause (that is, a long-term cause).
  • the reason why the QoS of the communication network does not meet the standard is a temporary cause.
  • the main method for judging whether the reason why the communication network QoS does not meet the standard is a temporary reason is that the server judges according to the historical communication network QoS. It is only now that the QoS of the communication network is not satisfied for a short time to determine the temporary cause.
  • the reason why the QoS of the communication network fails to meet the standard is a non-temporary cause such as a tunnel, poor coverage of the operator, an underground garage, and the like. Among them, if the reason why the QoS of the communication network does not reach the standard is a non-temporary reason, the QoS of the communication network cannot be expected to be restored in a short time.
  • the significance of distinguishing whether the reason why the QoS of the communication network fails to meet the standard is a temporary cause or a non-temporary cause is that, if it is a temporary problem, the vehicle 1 may choose to slow down or wait for the communication network QoS to meet the requirements before passing the road section. If it is not a temporary cause, the vehicle 1 can only pass through the road section by other means. Specifically, if it is a temporary cause, the following step S603 may be performed; if it is not a temporary cause, the following step S604, step S606, or step S608 may be performed.
  • the server analyzes the first time period, the temporary cause of the non-compliance of the QoS of the communication network on the first segment travel path, and estimates the estimated recovery time, and determines the recommended information corresponding to the first segment travel path as the estimated recovery time.
  • the expected recovery time required is that the communication network QoS obtained by the server based on comprehensive judgment of the network environment and the like recovers to the level of the target QoS required by the vehicle 1.
  • the estimated recovery time may be relative time or absolute time.
  • the estimated recovery time at this time is the end time of the event, for example, the estimated recovery time is several hours.
  • the QoS of the communication network is reduced due to the failure of the base station, and the estimated recovery time is the troubleshooting time arranged by the operator or the time when the emergency communication vehicle is put into service. hour.
  • the estimated recovery time is usually the time when the thunderstorm ends. For example, if the thunderstorm is expected to end in 10 minutes, the estimated recovery time is about 10 minutes.
  • the server determines whether there is a network of the second MNO so that the QoS of the communication network reaches the standard.
  • the server determining whether there is a network of the second MNO so that the QoS meets the standard includes: the server determining whether the vehicle 1 signs a contract with the second MNO, and there is a network of the second MNO capable of providing service for the vehicle 1 on the first segment travel path, so that When the network of the second MNO provides services for the vehicle 1, it predicts the QoS of the communication network on the first segment of the travel path in the first time period, and the obtained second QoS prediction result meets the above target QoS.
  • the service area determines that there is a network of the second MNO that the communication network QoS meets the standard, it continues to perform the following step S605.
  • the server determines that the recommendation information corresponding to the first segmented travel path is the network identifier of the second MNO.
  • the server may carry the network identifier of the MNO in the recommendation information for vehicle 1 to choose.
  • the signal strength of mobile operator A may be higher than that of mobile operator B. If the current network serving vehicle 1 is mobile operator B Network, then the server here can recommend that vehicle 1 switch the network to the network of mobile operator A.
  • the server determines whether there is a second segmented travel path so that the QoS of the communication network reaches the standard.
  • the server determining whether there is a second segmented travel path such that the communication network QoS meets the standard includes: the server determining whether there is a second segmented travel path such that the communication network QoS on the second segmented travel path is performed for the second time period It is predicted that the obtained third QoS prediction result conforms to the above-mentioned target QoS, where the second time period is the time period when the vehicle 1 is traveling on the second segment travel path.
  • the second segmented travel path is a section of the travel path on the alternative path of the target travel path, the start position of the target travel path is the same as the start position of the alternative path, the end position of the target travel path and the end position of the alternative path the same.
  • Step S607 if the server determines that there is a second segmented travel path such that the QoS of the communication network on the second segmented travel path is predicted for the second time period, and the third QoS prediction result obtained is consistent with the above target QoS, then continue to execute the following Step S607.
  • the server determines that the recommended information corresponding to the first segmented travel path is information of the second segmented travel path.
  • the server determines that there are other segmented driving paths with the same start position and end position in a certain period of time, the communication network QoS is better, it may consider switching the segmented driving path without increasing or reducing the driving distance as much as possible , That is, the recommended information is the information of the second segmented travel path for the vehicle 1 to select.
  • the communication network QoS corresponding to route 1 and route 2 may be different at the same time period. Assuming that the first segmented travel path is route 1 in FIG. 4, if the QoS of the communication network of route 1 does not meet the standard and the QoS of the communication network of route 2 meets the standard during the same time period, the server may determine the recommended information as route 2.
  • the server determines whether the vehicle 2 exists so that the QoS of the communication network reaches the standard.
  • the server determines whether there is a vehicle 2 to achieve the QoS of the communication network, including: the server determines whether the vehicle 2 and the vehicle 1 pass through the first segmented driving path at the same time, and the first QoS prediction result is consistent with the vehicle 2 adopting the second driving level The QoS index of the communication network required for driving on the first segmented driving path.
  • the server may establish a map locally to manage the relationship between the path planning information of multiple vehicles, so that two vehicles may be found at the time and Road segments shared on location. For example, as shown in FIG. 7, there are shared road sections of vehicle 1 and vehicle 2.
  • the head car in the process of formation driving, the head car is more responsible for driving environment monitoring and handling of abnormal events than the vehicles following it. Therefore, the requirements for rear vehicle environment monitoring and exception handling are much lower. If the head car is driven by a driver or a low-driving level automatic driving, the requirements on the network are not particularly high, and the communication network QoS can generally be met.
  • the server determines that the vehicle 2 exists so that the QoS of the communication network meets the standard, it continues to perform the following step S609.
  • the server determines that the recommendation information corresponding to the first segmented travel path is the identifier of the vehicle 2.
  • the vehicle can only be driven at the L4 driving level.
  • the L4 driving level can't receive road dynamic information when the QoS of the communication network does not meet the requirements, and can only stop waiting in place. However, if at the same time, there are other vehicles that are less dependent on the QoS of the communication network through the same road segment.
  • the vehicle 2 with the L2 driving level passes through the same road segment, and the server may determine that the vehicle 1 and the vehicle 2 form a formation, that is, the recommendation information is the identification of the vehicle 2 for the vehicle 1 to select.
  • vehicle 1 and vehicle 2 pass through the same road segment. If vehicle 1 can only pass through the shared road segment with L4 driving level, and vehicle 2 is manual driving or L2 driving level, the server may recommend the identification of vehicle 2 Give the vehicle 1. The vehicle 1 can wait in place, and when the vehicle 2 passes by, the vehicle 2 forms a temporary formation.
  • the server may send the recommendation information to the vehicle 1.
  • the server sends a formation request to the vehicle 2, the formation request is used to request the vehicle 2 and the vehicle 1 to form a formation through the first segment travel path.
  • the server may send a recommendation information cancellation notification to the vehicle 1, which is not specifically limited in this embodiment of the present application.
  • the server may send a formation request to the vehicle 2 after determining that the recommended information corresponding to the first segmented travel path is the identifier of the vehicle 2, the formation request is used to request the vehicle 2 and the vehicle 1 Form a formation through the first segmented travel path, and after the vehicle 2 agrees to form a formation, the server sends recommendation information to the vehicle 1, which is not specifically limited in the embodiment of the present application.
  • the server when determining the recommendation information corresponding to the first segmented travel path, may perform one or more steps in the above step S604, step S606, or step S608. This embodiment of the present application This is not specifically limited.
  • the server may also adjust in advance if it can know the reason why the first QoS prediction result does not meet the standard. For example, suppose that the communication network QoS of each segmented travel path in (5b) shown in FIG. 5 at the corresponding time period is predicted, and the predicted result is shown in (5c) in FIG. 5, for the segment t2-t3 travel Routes, t3-t4 segmented driving routes, t4-t5 segmented driving routes or t5-t6 segmented driving routes, etc. The server can adjust the QoS of the communication network on these segmented driving routes according to the actual situation. For example, adding an emergency communication vehicle, increasing the base station transmission power, or conducting traffic guidance, etc., the embodiments of the present application do not specifically limit this.
  • the server may also send the recommended information corresponding to the first segmented travel path to the vehicle 1, which is not specifically limited in this embodiment of the present application.
  • the vehicle 1 After the vehicle 1 receives the first segment travel path information and the first QoS prediction result from the server, if the first QoS prediction result meets the target QoS, that is, the first time period, the communication network on the first segment travel path If the QoS is up to the standard, it can be determined that the automatic driving strategy when the vehicle 1 is driving on the first segment travel path is: continue to enter the first segment travel path; otherwise, the vehicle 1 needs to determine other automatic driving through the first segment travel path Strategy.
  • the automatic driving strategy when the vehicle 1 is traveling on the first segment travel path for example, the vehicle 1 has There is no driver, what the driver is doing, the running status of the vehicle's advanced driver assistance systems (ADAS), surrounding lighting conditions, high-precision map coverage, whether there are pedestrians around, the environment, etc.
  • ADAS advanced driver assistance systems
  • different car manufacturers may have different strategies to deal with different external environmental impacts. Therefore, the implementation of the automatic driving strategy when determining that the vehicle 1 is traveling on the first segmented travel path is relatively complicated.
  • the recommendation information sent by the server to the vehicle 1 is other information that the sensor of the vehicle 1 cannot sense, and it has a very important role for the vehicle 1 to make a decision.
  • the vehicle 1 For example, for a vehicle 1 driving at the L4 driving level, the vehicle 1 must first determine whether there is a driver on the vehicle. If there is a driver, the vehicle has the ability to switch to the L3 driving level or the L2 driving level. When the QoS of the communication network on the first segment driving path does not meet the standard, the driving level can be degraded to pass the road segment. If the vehicle 1 is not equipped with a driver, it means that the vehicle 1 can only perform L4 automatic driving. At this time, the vehicle 1 can combine the recommendation information sent by the server. In the case where the expected recovery time is short, the vehicle 1 can choose to wait for the QoS recovery of the communication network on the first segmented travel path in the nearest safe parking area.
  • the server finds a route that meets the QoS standard of another communication network or an operator network that meets the QoS standard of the other communication network, and the vehicle 1 can actively switch the network or switch the route.
  • the server does not find other available carrier networks or switchable routes, but finds other vehicles with shared paths, it is recommended that the vehicle 1 form a formation through the first segment of the road that does not meet the QoS standard of the communication network.
  • poor network coverage makes it impossible to receive road dynamic information, so there is no way to use the L4 driving level to drive through the road section.
  • the server may recommend that the vehicle 1 and the manually driven vehicle 2 form a formation and follow the manually driven vehicle 2 through the tunnel. After passing through the tunnel, switch back to the L4 automatic driving state.
  • the manner in which the vehicle 1 determines the automatic driving strategy when driving on the first segmented driving path may be as shown in FIG. 8 and includes the following steps:
  • the vehicle 1 receives the recommendation information corresponding to the first segment travel path from the server.
  • the vehicle 1 determines whether the QoS of the communication network on the first segment travel path reaches the standard in the first time period.
  • the vehicle 1 determines the first time period, whether the communication network QoS on the first segment travel path meets the standard can refer to the server in step S303 to determine the first time period, whether the communication network QoS on the first segment travel path The way of achieving the standard will not be repeated here.
  • step S803 if the vehicle 1 determines that the communication network QoS on the first segment travel path reaches the first time period, the following step S803 is continued; otherwise, the following step S804 is continued.
  • the vehicle 1 determines that the communication network on the first segment travel path meets the QoS standard in the first time period, it is determined that the automatic driving strategy when the vehicle 1 is traveling on the first segment travel path is: continue driving and enter the first Sectional driving path.
  • vehicle 1 can enter t0 -t1 segmented driving path.
  • the vehicle 1 determines that the QoS of the communication network on the first segment travel path does not meet the standard during the first period of time, the vehicle 1 needs to determine how to pass the first segment travel path according to specific circumstances. In this example, the vehicle 1 can first confirm the driving level currently adopted by itself.
  • the vehicle 1 determines that the automatic driving strategy when driving on the first segment travel path is to enter the first segment travel path after being reduced to the L1 driving level.
  • vehicle 1 may use the current The driving mode of the L2 driving level enters the t0-t1 segmented driving path.
  • the communication network QoS on the t1-t2 segmented travel path does not meet the standard.
  • the driver must respond to the abnormal situation.
  • the vehicle 1 should issue an alarm to make the driver advance Be prepared to drive at the L1 driving level. Therefore, the duration corresponding to the t0-t1 segmented travel path should not be less than the time required for the vehicle 1 to switch from the L2 driving level to the L1 driving level.
  • the vehicle 1 If the vehicle 1 is driven at or above the L3 driving level, it means that the driver's attention may not be on the road or there may be no driver. The vehicle 1 preferentially tries to continue to pass the communication network QoS under-standard section in the way of the current driving level. Therefore, the vehicle 1 first determines whether the recommendation information sent by the server includes the information of the second segmented travel path or the network identification of the second MNO.
  • the vehicle 1 determines that the recommendation information sent by the server includes the information of the second segment travel path or the network identifier of the second MNO, the vehicle 1 determines that the automatic driving strategy when driving on the first segment travel path is: The vehicle 1 switches from the first segment travel path to the second segment travel path; or, after switching the vehicle 1 from the network of the first MNO to the network of the second MNO, the vehicle enters the first segment travel path.
  • the vehicle 1 determines that the recommendation information sent by the server does not include the information of the second segment travel path or the network identifier of the second MNO, and the vehicle 1 is currently driving at the L3 driving level, the vehicle 1 determines to travel in the first segment
  • the automatic driving strategy when driving on the route is to enter the first segment driving route after reducing to the L2 driving level.
  • the communication network QoS of each segmented travel path in (5b) shown in FIG. 5 at a corresponding time period is predicted.
  • the predicted result is shown in (5d) in FIG.
  • the driving level of the position t0 in 5) is the L3 driving level
  • the vehicle 1 can enter the t0-t1 segmented driving path by driving in the current L3 driving level.
  • the communication network QoS on the t1-t2 segmented travel path does not meet the standard.
  • the driver has to respond to abnormal conditions.
  • the vehicle 1 should issue an alarm to make the driver do well in advance Ready to drive at L2 driving level. Therefore, the duration corresponding to the t0-t1 segmented travel path should not be less than the time required for the vehicle 1 to switch from the L3 driving level to the L2 driving level.
  • the communication network QoS on the first segment travel path cannot guarantee that the vehicle 1 is driving at the L2 driving level (that is, during the first time period, the vehicle 1 travels through the first segment traveling path in the L2 driving level In the first time period, the QoS of the communication network on the first segment travel path is predicted, and the obtained QoS prediction result also does not meet the target QoS).
  • Vehicle 1 can be switched to the L1 driving level.
  • the driver's preparation time is longer, that is, the time corresponding to the t0-t1 segmented travel path should not be less than the time required for the vehicle 1 to switch from the L3 driving level to the L1 driving level.
  • the vehicle 1 determines that the recommendation information sent by the server does not include the information of the second segmented driving path and the network identifier of the second MNO, and the vehicle 1 is currently driving at or above the L4 driving level, the vehicle 1 Determine whether there is a driver.
  • the vehicle 1 determines that there is a driver, the vehicle 1 determines that the automatic driving strategy when driving on the first segment travel path is to enter the first segment travel path after being reduced to the L3 driving level.
  • the vehicle 1 should issue an alarm to make the driver do well in advance Ready for driving at L3 driving level. Therefore, the duration corresponding to the t0-t1 segmented travel path should not be less than the time required for the vehicle 1 to switch from the L4 driving level to the L3 driving level.
  • the QoS status of the communication network on the first segment driving path cannot guarantee that the vehicle 1 is driving at the L3 driving level (that is, during the first time period, the vehicle 1 uses the L3 driving level driving mode to pass the first segment driving path In the first time period, the QoS of the communication network on the first segment of the travel path is predicted, and the obtained QoS prediction result does not meet the target QoS).
  • the vehicle 1 can be switched to the L2 driving level or the L1 driving level. In this case, the driver's preparation time is longer, that is, the time corresponding to the t0-t1 segmented travel path should not be less than the time required for the vehicle 1 to switch from the L4 driving level to the L1 driving level or the L2 driving level.
  • the vehicle 1 determines whether the recommended recovery time sent by the server includes the estimated recovery time, and whether the estimated recovery time is shorter.
  • the vehicle 1 determines that the automatic driving strategy when driving on the first segment travel path is: entering the first segment travel path after the estimated recovery time has been reached.
  • vehicle 1 may choose to Temporarily stop in the safe area, and then enter the segmented t0-t1 driving route after the expected recovery time ends.
  • the vehicle 1 determines whether the recommendation information sent by the server includes the identifier of the vehicle 2.
  • vehicle 1 determines that the recommendation information sent by the server includes the identifier of vehicle 2, vehicle 1 determines that the automatic driving strategy when driving on the first segmented driving path is: after successfully forming a formation with vehicle 2, follow vehicle 2 to enter After passing the first segment travel path, the first segment travel path cancels the formation relationship with the vehicle 2.
  • the vehicle 1 may be selected in a safe area Temporary parking, after detecting vehicle 2 and forming a formation with vehicle 2, follow vehicle 2 and enter the t0-t1 segment travel path. After segmenting the travel path through t0-t1, the formation relationship with the vehicle 2 is cancelled.
  • the vehicle 1 determines that the recommendation information sent by the server does not include the identifier of the vehicle 2, the vehicle 1 determines that the automatic driving strategy when driving on the first segmented driving path is: return to the safe area and wait for the next action.
  • next action here may be to continue driving after the communication network QoS is restored for a long period of time, or the travel service provider sends a driver to drive the vehicle through, or other methods, which is not specifically limited in the embodiments of the present application.
  • FIG. 8 is merely an example to provide a specific implementation of an automatic driving strategy when the vehicle 1 determines to travel on the first segmented travel path.
  • the vehicle 1 may also determine the automatic driving strategy when driving on the first segmented driving path in other ways. For example, regardless of the current driving level, after determining that the communication network QoS on the first segment travel path does not meet the standard in the first period of time, the vehicle 1 first determines whether the recommendation information sent by the server includes the second segment travel path Information or the network identifier of the second MNO. When the recommendation information sent by the server does not include the information of the second segmented driving path and the network identifier of the second MNO, whether to reduce the driving level or the formation driving is considered, which is not specifically limited in the embodiment of the present application.
  • step S301-S305 are combined with the segmentation results shown in (5b) in FIG. 5 and the segment prediction results shown in (5c), (5d), or (5e) in FIG. 5 as examples, and given A method of autonomous driving planning.
  • vehicle 1 reaches the position at time t1 through the segmented travel path t0-t1 according to the above-mentioned automatic driving planning method, then vehicle 1 continues to use the position at time t1 as the start of the entire journey (that is, the target travel path) Position, the position at time t2 is taken as the starting position of the whole journey (that is, the target driving route), and the subsequent automatic driving planning is carried out again according to the automatic driving planning method provided in steps S301-S305, which will not be repeated here.
  • the target driving path can be recorded as the target driving path 1;
  • the target travel path at the end position can be recorded as the target travel path 2, then the segmentation result obtained by segmenting the target travel path 2 may be different from the t1-t10 part shown in (5b) in FIG. 5
  • the segment results may be different, and because the vehicle 1 is traveling on the t0-t1 segment travel path, the server may perform QoS on the communication network on the path between the location from t1 to the location at t10 according to the actual situation.
  • the QoS of the communication network on the path between the location at time t1 and the location at time t10 may be constantly changing dynamically, so after segmenting the target driving path 2, the location of the server at time t1 .
  • the prediction result obtained by predicting the communication network QoS of the vehicle 1 on each segmented travel path may also be the same as after segmenting the target travel path 1, the location of the server at time t0, and driving the vehicle 1 in each segment
  • the prediction results obtained by predicting the QoS of the communication network on the path are different, and are described here in a unified manner, and will not be described in detail below.
  • the server since in the embodiment of the present application, after receiving the path planning information from the first terminal, the server drives the target of the first terminal according to the information of the target driving path The path is segmented. For each segmented travel path, the server predicts the time period when the first terminal passes through the segmented travel path, and the QoS of the communication network on the segmented travel path. After obtaining the corresponding QoS prediction result, the server The information and the corresponding QoS prediction result are sent to the first terminal, and the first terminal determines the automatic driving strategy when the first terminal travels on the segmented travel path according to the information of the segmented travel path and the corresponding QoS prediction result.
  • the first terminal can dynamically adjust the automatic driving strategy of the first terminal according to different QoS conditions of the communication network, and will not cause a driving accident of the first terminal due to the change in the communication network QoS Thus, safe driving can be achieved.
  • the actions of the server in the above steps S301 to S305, or the above steps S601 to S609 can be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application program code stored in the memory 203. There are no restrictions.
  • the actions of the first terminal in the above steps S301 to S305, or the above steps S801 to S815 can be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application program code stored in the memory 203, this embodiment There are no restrictions on this.
  • the vehicle 1 plans to travel from the starting point to the destination by driving at the L4 driving level.
  • the L4 driving level requires a bandwidth of 2Mbps, a delay of 100ms, and a minimum prediction accuracy of 80%.
  • the preparation time for switching the vehicle 1 from the L4 driving level to the L3 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L2 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L1 driving level is 12s.
  • Step 1 the vehicle 1 sends the route planning information 1 to the server before departure, the route planning information 1 includes the current position of the vehicle 1 as the coordinate point (1, 0), the destination as the coordinate point (7, 7), and the target driving path 1 as shown in Figure 9.
  • the speed used is 40km/h.
  • the advance notice is 12s.
  • the L4 driving level is used throughout.
  • Step 2 after receiving the path planning information 1 sent by the vehicle 1, the server segments the target driving path 1 according to the notice advance amount of 12s, and the segmentation result meets that the time for the vehicle 1 to pass each segment at the current speed is at least 12s .
  • the time for the vehicle to pass through each side of the grid is 15s.
  • the path is segmented according to each edge of the grid, which is divided into 14 segments.
  • the passing time of each road segment is (0s-15s), (15s-30s), (30s-45s), ..., and so on.
  • the server predicts the QoS of each segmented communication network and obtains the QoS prediction result.
  • the bandwidth of the segmented driving path 1 corresponding to the coordinate points (0,0) to (1,0) in (0s-15s) is 2Mbps
  • the delay is 100ms
  • the prediction accuracy is 80%, which means segmented driving
  • the communication network QoS of Path 1 is up to standard.
  • the bandwidth of the segmented driving path 2 corresponding to the coordinate points (1,0) to (2,0) in (15s-30s) is 1Mbps
  • the delay is 200ms
  • the prediction accuracy is 90%, which means segmented driving
  • the communication network QoS of Path 2 does not meet the standard.
  • the server can predict the time period during which the vehicle 1 passes through other segmented travel paths, and the QoS of the communication network on the other segmented travel paths and obtain the corresponding QoS prediction result.
  • Step 3 because the communication network QoS of the segmented travel path 2 does not meet the standard, and the server does not find other available operator networks, paths, or vehicles that can form a fleet, the server sends each segmented travel path information to the vehicle 1 and Corresponding QoS prediction results, no recommendation information is sent to the vehicle 1.
  • step 4 the vehicle 1 normally drives at the L4 driving level on the segmented driving path 1, and at the same time decides how to pass the segmented driving path 2. Since the server does not return the recommendation information to the vehicle 1, and the vehicle 1 is equipped with a driver, the vehicle 1 receives the information of each segmented travel path and the corresponding QoS prediction result sent by the server at the coordinate point (0, 0). Immediately notify the driver to be seated and prepare to drive on the segmented driving path 2 according to the L3 driving level or the L2 driving level or the L1 driving level.
  • step 5 the vehicle 1 switches the driving level when it reaches the coordinate point (1, 0), such as switching the driving level to the L1 driving level.
  • L1 driving level requires a bandwidth of 100kbps, a delay of 3s, and a minimum prediction accuracy of 50%.
  • vehicle 1 sends path planning information 2 to the server.
  • the current position in the route planning information 2 sent this time is the coordinate point (1, 0)
  • the destination is the coordinate point (7, 7)
  • the target travel route 2 is shown in FIG. 9 (and the coordinate point in the target travel route 1
  • the path from (1, 0) to the coordinate point (7, 7) overlaps).
  • the segmented driving path 2 corresponding to the coordinate points (1, 0) to (2, 0) is the L1 driving level, and the rest of the description is similar to step 1 in this example, and will not be repeated here.
  • the subsequent process is executed cyclically in steps 2 to 5 in this example until the vehicle 1 reaches the destination.
  • vehicle 1 plans to travel at the L4 driving level from the starting point to the destination.
  • the L4 driving level requires a bandwidth of 2Mbps, a delay of 100ms, and a minimum prediction accuracy of 80%.
  • the preparation time for switching the vehicle 1 from the L4 driving level to the L3 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L2 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L1 driving level is 12s.
  • Step 1 is the same as Step 1 of Example 1 above, and Step 2 is the same as Step 2 of Example 1 above, where the target travel path 1 is shown as route 1 in FIG. 10.
  • Step 3 as shown in FIG. 10, there is a route 2 that can bypass the segmented driving path 2 corresponding to the coordinate points (1, 0) to (2, 0), and at the position of the coordinate point (2, 2) and the original Route 1 coincides.
  • the server may send recommendation information to the vehicle 1, the recommendation information includes information of another driving path from the coordinate point (1, 0) to the coordinate point (7, 7), as shown in FIG. 7
  • the route on the route 2 from the coordinate point (1, 0) to the coordinate point (7, 7) is shown.
  • step 4 the vehicle 1 normally drives at the L4 driving level on the segmented driving path 1, and at the same time decides how to pass the segmented driving path 2. Since the server sends recommendation information to the vehicle 1, the recommendation information includes information on another driving route from the coordinate point (1, 0) to the coordinate point (7, 7), so the vehicle 1 can perform the automatic driving route locally at this time. Update.
  • Step 5 when the vehicle 1 reaches the coordinate point (1, 0), it sends path planning information 2 to the server.
  • the current position in the route planning information 2 sent this time is the coordinate point (1, 0), and the destination is the coordinate point (7, 7).
  • the target driving path is as shown in the route 2 in FIG. 10 from the coordinate point (1, 0) ) To the coordinate point (7, 7). The rest of the description is similar to step 1 in this example and will not be repeated here.
  • the subsequent process is executed cyclically in steps 2 to 5 in this example until the vehicle 1 reaches the destination.
  • vehicle 1 plans to travel at the L4 driving level from the starting point to the destination.
  • the L4 driving level requires a bandwidth of 2Mbps, a delay of 100ms, and a minimum prediction accuracy of 80%.
  • the preparation time for switching the vehicle 1 from the L4 driving level to the L3 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L2 driving level is 10s
  • the preparation time for switching from the L4 driving level to the L1 driving level is 12s.
  • Step 1 is the same as Step 1 of Example 1 above, and Step 2 is the same as Step 2 of Example 1 above, where the target travel path 1 is shown as route 1 in FIG. 11.
  • Step 3 assuming that the driving route of the vehicle 2 is as shown in route 2, as shown in FIG. 11, the server can determine that the vehicle 2 is on the segmented driving path 2 corresponding to the coordinate points (1, 0) to (2, 0) and The path of vehicle 1 is the same, except that its departure time is later than that of vehicle 1, and vehicle 1 needs to wait a little on the segmented travel path 1 corresponding to the coordinate points (0, 0) to (1, 0) or enter the segmented travel path 2 Wait a little bit before.
  • the server may send recommendation information to the vehicle 1, the recommendation information including the identification of the vehicle 2.
  • step 4 the vehicle 1 normally drives at the L4 driving level on the segmented driving path 1, and at the same time decides how to pass the segmented driving path 2. Since the server sends the recommendation information to the vehicle 1, the recommendation information includes the identifier of the vehicle 2, so at this time, the vehicle 1 may determine to form a formation on the segmented travel path 2 and the vehicle 2, and follow the formation.
  • the vehicle 1 After the vehicle 1 determines to receive the above recommendation information, it can send a response to the server to indicate acceptance of the recommendation information.
  • the server may send a notification message to the vehicle 2.
  • the notification message is used to notify the vehicle 2 that the vehicle 1 and the vehicle 1 will form a formation in the segmented travel path 2 and need to cooperate in driving.
  • the vehicle 1 waits for the vehicle 2 before reaching the position of the coordinate point (1, 0). After confirming that vehicle 2 has arrived nearby, it will form a formation with vehicle 2.
  • Step 5 the vehicle forms a formation with the vehicle 2 at the position of the coordinate point (1, 0), and sends path planning information 2 to the server.
  • the current position in the route planning information 2 sent this time is the coordinate point (1, 0)
  • the destination is the coordinate point (7, 7)
  • the target driving path is as shown in the route 2 in FIG. 11 from the coordinate point (1, 0) )
  • the following road sections will continue to drive in the L4 driving mode. The rest of the description is similar to step 1 in this example and will not be repeated here.
  • the subsequent process is executed cyclically in steps 2 to 5 in this example until the vehicle 1 reaches the destination.
  • the server or the first terminal includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the function modules of the server or the first terminal according to the above method examples.
  • each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 12 shows a schematic structural diagram of a server 120.
  • the server 120 includes a transceiver module 1202 and a processing module 1201.
  • the transceiver module 1202 is used to receive path planning information from the first terminal, and the path planning information includes information on the target travel path of the first terminal;
  • the processing module 1201 is used to target the target travel of the first terminal according to the target travel path information
  • the route is segmented to obtain N segmented driving paths, and N is a positive integer greater than 1; for any segmented driving path among the N segmented driving paths, the following steps are performed for the first segmented driving path Processing:
  • the processing module 1201 is also used to predict the QoS of the communication network on the first segment of the travel path in the first time period to obtain a first QoS prediction result, where the first time period is the first terminal in the first The time period when driving on the segment travel path; the transceiver module 1202 is also used to send the first segment travel path information and the
  • the path planning information further includes speed information when the first terminal is traveling on the target travel path; the processing module 1201 is further configured to determine the first time period according to the speed information.
  • the path planning information further includes a target QoS, which is a communication network QoS index required when the first terminal uses the first driving level to drive on the target driving path; the processing module 1201 is also used to determine the first QoS If the prediction result does not meet the target QoS, it is determined that the QoS of the communication network on the first segment travel path is not up to standard; the processing module 1201 is also used to determine the recommendation information corresponding to the first segment travel path; the transceiver module 1202 is also used to A terminal sends recommendation information, and the recommendation information is used to determine an automatic driving strategy when the first terminal travels on the first segmented travel path.
  • a target QoS which is a communication network QoS index required when the first terminal uses the first driving level to drive on the target driving path
  • the processing module 1201 is also used to determine the first QoS If the prediction result does not meet the target QoS, it is determined that the QoS of the communication network on the first segment travel path is not up to standard
  • the processing module 1201 is used to determine the recommendation information corresponding to the first segmented travel path, including: if the cause of the non-compliance of the QoS of the communication network on the first segmented travel path is a temporary cause during the first time period,
  • the recommended information corresponding to the determination of the first segmented driving path includes: estimated recovery time.
  • the processing module 1201 is used to determine the recommendation information corresponding to the first segmented travel path, including: if the first period of time, the reason why the communication network QoS on the first segmented travel path does not meet the standard is not a temporary reason
  • the recommendation information corresponding to the first segmented driving path includes one or more of the following:
  • the recommendation information includes: a network identifier of the second MNO, where the network identifier of the second MNO is used to The first terminal switches from the network of the first MNO to the network of the second MNO, and the network of the first MNO is the network of the MNO currently serving the first terminal.
  • the recommended information includes: The information of the segmented travel path, where the information of the second segmented travel path is used to switch the first terminal from the first segmented travel path to the second segmented travel path, where the second time period is the first The time period when the terminal travels on the second segmented travel path.
  • the second segmented travel path is a segment of the travel path on the alternative path of the target travel path.
  • the start position of the target travel path and the start position of the alternative path Similarly, the end position of the target travel path is the same as the end position of the alternative path.
  • the recommended information includes: the identifier of the second terminal, where the identifier of the second terminal is used to form the formation of the first terminal and the second terminal.
  • the transceiver module 1202 is also used to send a formation request to the second terminal.
  • the formation request is used to request the second terminal and the first terminal to form a formation through the first segmented travel path .
  • the route planning information further includes the amount of advance notice required when the first terminal travels on the target travel path;
  • the processing module 1201 is configured to segment the target travel path of the first terminal according to the information of the target travel path, Including: used to segment the target travel path of the first terminal according to the information of the target travel path and the notice advance, where the segmentation result satisfies that the time for the first terminal to pass each segment travel path is greater than or equal to the notice advance the amount.
  • the server 120 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions.
  • the server 120 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may call the computer stored in the memory 203 to execute instructions, so that the server 120 executes the method of automatic driving planning in the foregoing method embodiment.
  • the functions/implementation processes of the transceiver module 1202 and the processing module 1201 in FIG. 12 can be implemented by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203.
  • the function/implementation process of the processing module 1201 in FIG. 12 can be implemented by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203, and the function/implementation process of the transceiver module 1202 in FIG. 2 to achieve the communication interface 204.
  • server 120 provided in this embodiment can execute the above-mentioned automatic driving planning method, the technical effects that can be obtained can refer to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides an apparatus (for example, the apparatus may be a chip system), and the apparatus includes a processor for supporting the server to implement the above-mentioned automatic driving planning method, for example, according to the information of the target driving path To segment the target travel path of the first terminal.
  • the device also includes a memory.
  • the memory is used to store necessary program instructions and data of the server.
  • the memory may not be in the device.
  • the device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • FIG. 13 shows a schematic structural diagram of a first terminal 130.
  • the first terminal 130 includes: a processing module 1301 and a transceiver module 1302;
  • the transceiver module 1302 is configured to send path planning information to the server, where the path planning information includes information about the target travel path of the first terminal, where the information about the target travel path is used to segment the target travel path of the first terminal to obtain N segmented travel paths, where N is a positive integer greater than 1; for any segmented travel path among the N segmented travel paths, all are processed in the following manner for the first segmented travel path: transceiver module 1302, It is also used to receive the first segment travel path information and the first QoS prediction result from the server, where the first QoS prediction result is obtained by predicting the QoS of the communication network on the first segment travel path in the first time period The first time period is the time period when the first terminal is traveling on the first segmented travel path.
  • the processing module 1301 is configured to determine an automatic driving strategy when the first terminal is driving on the first segmented driving path according to the first QoS prediction result.
  • the path planning information further includes a target QoS
  • the target QoS is a communication network QoS index required when the first terminal uses the first driving level to drive on the target driving path.
  • the transceiver module 1302 is also used to receive the recommendation information corresponding to the first segment travel path from the server; correspondingly, the processing module 1301 is used to determine that the first terminal is traveling on the first segment travel path according to the first QoS prediction result
  • the automatic driving strategy at the time includes: if the first QoS prediction result does not meet the target QoS, determine the first time period, the communication network QoS on the first segment of the driving path does not meet the standard; according to the recommended information, determine that the first terminal is Automated driving strategy when driving on the first segmented driving path.
  • the recommendation information includes an estimated recovery time; correspondingly, the processing module 1301 is configured to determine, according to the recommendation information, an automatic driving strategy when the first terminal is driving on the first segmented travel path, including According to the recommendation information, it is determined that the first terminal's automatic driving strategy when traveling on the first segmented travel path is to enter the first segmented travel path after the estimated recovery time has been reached.
  • the recommendation information includes: a network identifier of the second MNO, where the network of the second MNO is an MNO network that can provide services to the first terminal on the first segmented travel path; corresponding ,
  • the processing module 1301 is used to determine the automatic driving strategy when the first terminal is driving on the first segmented driving path according to the recommendation information, including: used to determine that the first terminal is driving on the first segmented driving path according to the recommendation information
  • the automatic driving strategy at the time is: after switching the first terminal from the network of the first MNO to the network of the second MNO, the first segmented driving path is entered, and the network of the first MNO is the network of the MNO currently serving the first terminal .
  • the recommendation information includes: information of the second segmented travel path, where the second segmented travel path is a segment of the travel path on the alternative path of the target travel path, and the start of the target travel path
  • the starting position is the same as the starting position of the alternative route
  • the ending position of the target driving route is the same as the ending position of the alternative route
  • the processing module 1301 is used to determine that the first terminal is on the first segmented driving route according to the recommendation information
  • the automatic driving strategy when driving up includes: used to determine, according to the recommendation information, the automatic driving strategy when the first terminal is driving on the first segmented driving path is: switch the first terminal from the first segmented driving path to the first Driving on the second-stage driving path.
  • the recommendation information includes: an identifier of the second terminal; correspondingly, the processing module 1301 is configured to determine an automatic driving strategy when the first terminal travels on the first segmented travel path according to the recommendation information , Including: used to determine the automatic driving strategy when the first terminal is driving on the first segment travel path according to the recommendation information: after successfully forming a formation with the second terminal, following the second terminal to enter the first segment travel path, After passing the first segmented travel path, the formation relationship with the second terminal is cancelled.
  • the processing module 1301 is configured to determine an automatic driving strategy when the first terminal is driving on the first segmented driving path according to the first QoS prediction result, including: if the first QoS prediction result meets the target QoS, determine In the first time period, the communication network QoS on the first segment travel path reaches the standard; it is determined that the automatic driving strategy when the first terminal is traveling on the first segment travel path is: continue to enter the first segment travel path.
  • the processing module 1301 is configured to determine an automatic driving strategy when the first terminal is driving on the first segmented driving path according to the first QoS prediction result, including: if the first QoS prediction result does not meet the target QoS, It is determined that the QoS of the communication network on the first segment travel path does not meet the standard during the first time period; the automatic driving strategy when determining that the first terminal is traveling on the first segment travel path is: after reducing the level of the first terminal's driving level Enter the first segment of the driving path.
  • the first terminal 130 is presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions.
  • the first terminal 130 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may call the computer stored in the memory 203 to execute instructions, so that the first terminal 130 executes the method of automatic driving planning in the foregoing method embodiment.
  • the functions/implementation processes of the transceiver module 1302 and the processing module 1301 in FIG. 13 can be implemented by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203.
  • the function/implementation process of the processing module 1301 in FIG. 13 can be implemented by the processor 201 in FIG. 2 calling the computer execution instructions stored in the memory 203, and the function/implementation process of the transceiver module 1302 in FIG. 13 can be implemented through the diagram 2 to achieve the communication interface 204.
  • the first terminal 130 provided in this embodiment can execute the above-mentioned automatic driving planning method, the technical effects that can be obtained can refer to the above-mentioned method embodiments, which will not be repeated here.
  • an embodiment of the present application further provides an apparatus (for example, the apparatus may be a chip system), and the apparatus includes a processor for supporting the method for the first terminal to implement the above-mentioned automatic driving planning, for example, according to the first QoS The prediction result determines the automatic driving strategy when the first terminal is traveling on the first segmented travel path.
  • the device also includes a memory.
  • the memory is used to store necessary program instructions and data of the first terminal. Of course, the memory may not be in the device.
  • the device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种自动驾驶规划的方法、设备及系统,可以实现安全驾驶。该方法包括:服务器接收来自第一终端的路径规划信息,该路径规划信息包括第一终端的目标行驶路径的信息(S301);服务器根据该目标行驶路径的信息,对第一终端的目标行驶路径进行分段,得到N个分段行驶路径(S302);对于该N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:服务器对第一时间段,第一分段行驶路径上的服务质量QoS进行预测,得到第一QoS预测结果,第一时间段为第一终端在所述第一分段行驶路径上行驶时的时间段(S303);服务器向第一终端发送该第一分段行驶路径的信息和该第一QoS预测结果(S304),其中,该第一QoS预测结果用于确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略(S305)。

Description

自动驾驶规划的方法、设备及系统
本申请要求于2018年11月26日提交中国国家知识产权局、申请号为201811418859.9、申请名称为“自动驾驶规划的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及自动驾驶规划的方法、设备及系统。
背景技术
自动驾驶是指车辆(Vehicle)在无人驾驶的情况下,通过自身携带的传感器以及通过其他手段获得对周边环境的感知,进而通过计算机控制车辆在道路行驶的方法。按照机动车工程师协会(society of automotive engineers,SAE)对自动驾驶等级的定义,自动驾驶一共分为6个等级,包括从L0无自动化、L1辅助驾驶、L2部分自动化、L3有条件的自动化、L4高自动化、以及L5完全自动化。根据车辆操控、环境监测、异常处理和适用环境等维度的区别,每个驾驶等级的能力有所不同。越是高驾驶等级的自动驾驶,由系统所承接的维度越多。与之相匹配的,是对系统本身的要求更高,以及系统对周边环境感知的要求也越高。
自动驾驶的先决条件是能够对车辆周边的环境获得实时正确的感知,一般车辆依赖自己搭载的自动驾驶辅助系统(advanced driver assistant systems,ADAS),通过摄像头、雷达、激光雷达、或毫米波雷达等对周边的环境进行感知。但是ADAS并不能做到对环境百分之百的感知。为了实现自动驾驶,车辆还需要其他信息的辅助,例如高精度地图信息或道路动态信息等。这些信息一般依赖网络通过车联网(vehicle to everything,V2X)服务器直接下发给车辆。进而车辆本地将这些信息和ADAS的传感信息结合起来,以决定车辆的驾驶行为。
然而,这些信息都是通过长期演进(long term evolution,LTE)-Uu口进行下发的。LTE-Uu因为涉及空中接口以及多个网元之间的转发,所以对这些信息的传输受网络拥塞、物理链路冲突、以及连接数的影响,从而造成通信网络服务质量(quality of service,QoS)可能发生变化。通信网络QoS的变化会直接影响V2X服务器对车辆下发高精度地图信息或道路动态信息的通信网络QoS,例如影响时延、可靠性、带宽、丢包率、或抖动等。而V2X服务器对车辆下发高精度地图信息或道路动态信息的通信网络QoS的变化,会影响车辆的自动行驶。例如车辆无法确定自己的车道信息,或者无法对道路上的障碍信息有所感知等,进而可能造成车辆的自动驾驶不能顺利进行或者需要对车辆的驾驶等级进行降级。但是,这种因为网络质量造成的驾驶等级的切换需要一定的提前量。例如一个L4驾驶等级的车辆,因为网络状态的变化,车辆不再能接收道路动态信息,则需要由驾驶员做环境监测的辅助,所以等级需要切换成L2驾驶等级。此时,车辆需要提示驾驶员把注意力恢复到道路上之后才能完成驾驶等级的切换。若驾驶员的注意力还未回到道路而车辆突然就完成了驾驶等级的切换,可能会造成严重的交通事故。
然而,如何使得车辆在行驶过程中进行自动驾驶规划,从而可以实现安全驾驶,是目前亟待解决的问题。
发明内容
本申请实施例提供自动驾驶规划的方法、设备及系统,使得第一终端可以根据不同的通信网络QoS情况,对第一终端的自动驾驶策略进行动态调整,不会因为通信网络QoS发生变 化导致第一终端的行驶事故,从而可以实现安全驾驶。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种自动驾驶规划的方法,该方法包括:服务器接收来自第一终端的路径规划信息,该路径规划信息包括第一终端的目标行驶路径的信息;服务器根据该目标行驶路径的信息,对第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;对于该N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:服务器对第一时间段,第一分段行驶路径上的通信网络服务质量QoS进行预测,得到第一QoS预测结果,第一时间段为第一终端在第一分段行驶路径上行驶时的时间段;服务器向第一终端发送该第一分段行驶路径的信息和该第一QoS预测结果,其中,该第一QoS预测结果用于确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。基于该方案,由于服务器在接收来自第一终端的路径规划信息之后,根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段。对于每个分段行驶路径,服务器对第一终端通过该分段行驶路径的时间段,该分段行驶路径上的通信网络QoS进行预测,得到对应的QoS预测结果之后,将分段行驶路径的信息以及对应的QoS预测结果发送给第一终端,由第一终端根据分段行驶路径的信息以及对应的QoS预测结果确定第一终端在该分段行驶路径上行驶时的自动驾驶策略。也就是说,本申请实施例中,第一终端可以根据不同的通信网络QoS情况,对第一终端的自动驾驶策略进行动态调整,不会因为通信网络QoS发生变化导致第一终端的行驶事故,从而可以实现安全驾驶。
在一种可能的设计中,该路径规划信息还包括第一终端在该目标行驶路径上行驶时的配速信息;该方法还包括:服务器根据该配速信息,上述第一时间段。基于该方案,服务器可以确定第一终端通过第一分段行驶路径的时间段。
在一种可能的设计中,该路径规划信息还包括目标QoS,该目标QoS为该第一终端采用第一驾驶等级在该目标行驶路径上行驶时所需的通信网络QoS指标;在服务器对第一时间段,该第一分段行驶路径上的通信网络QoS进行预测之后,该方法还包括:若该第一QoS预测结果不满足该目标QoS,服务器确定该第一分段行驶路径上的通信网络QoS不达标;服务器确定该第一分段行驶路径对应的推荐信息;服务器向第一终端发送该推荐信息,该推荐信息用于确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。基于该方案,第一终端可以根据服务器发送的推荐信息确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。
在一种可能的设计中,服务器确定该第一分段行驶路径对应的推荐信息,包括:若第一时间段,该第一分段行驶路径上的通信网络QoS不达标的原因为临时原因,服务器确定该第一分段行驶路径对应的推荐信息包括:预计恢复时间。
在一种可能的设计中,服务器确定该第一分段行驶路径对应的推荐信息,包括:若第一时间段,该第一分段行驶路径上的通信网络QoS不达标的原因不是临时原因,服务器确定该第一分段行驶路径对应的推荐信息包括如下一项或多项:若第一终端签约第二移动网络运营商MNO,且该第一分段行驶路径上存在能够为第一终端提供服务的该第二MNO的网络,使得该第二MNO的网络为第一终端提供服务时,对第一时间段,该第一分段行驶路径上的通信网络QoS进行预测,得到的第二QoS预测结果满足该目标QoS,则该推荐信息包括:该第二MNO的网络标识,其中,该第二MNO的网络标识用于将第一终端从第一MNO的网络切换到该第二MNO的网络,该第一MNO的网络为当前为第一终端提供服务的MNO的网络;或者,若存在第二分段行驶路径,使得对第二时间段,该第二分段行驶路径上的通信网络QoS进行预测,得 到的第三QoS预测结果符合该目标QoS,则该推荐信息包括:该第二分段行驶路径的信息,其中,该第二分段行驶路径的信息用于将第一终端从该第一分段行驶路径切换到该第二分段行驶路径上行驶,其中,第二时间段为该第一终端在该第二分段行驶路径上行驶时的时间段,该第二分段行驶路径为该目标行驶路径的备选路径上的一段行驶路径,该目标行驶路径的起始位置与该备选路径的起始位置相同,该目标行驶路径的结束位置与该备选路径的结束位置相同;或者,若存在第二终端和第一终端同时通过该第一分段行驶路径,且该第一QoS预测结果符合第二终端采用第二驾驶等级在该第一分段行驶路径上行驶时所需的通信网络QoS指标,则该推荐信息包括:该第二终端的标识,其中,该第二终端的标识用于第一终端和该第二终端组成编队。
在一种可能的设计中,若该推荐信息包括该第二终端的标识,则该方法还包括:服务器向该第二终端发送编队请求,该编队请求用于请求该第二终端和第一终端组成编队通过该第一分段行驶路径。基于该方案,第二终端可以获知存在请求与其组成编队的第一终端,进而可以和第一终端组成编队。
在一种可能的设计中,该自动驾驶策略包括:在预计恢复时间到达之后进入该第一分段行驶路径。
在一种可能的设计中,该自动驾驶策略包括:将第一终端从第一MNO的网络切换到该第二MNO的网络之后进入该第一分段行驶路径。
在一种可能的设计中,该自动驾驶策略包括:将第一终端从该第一分段行驶路径切换到该第二分段行驶路径上行驶。
在一种可能的设计中,该自动驾驶策略包括:成功和该第二终端组成编队之后,跟随该第二终端进入该第一分段行驶路径,在通过该第一分段行驶路径之后,和该第二终端取消编队关系。
在一种可能的设计中,该自动驾驶策略包括:继续进入该第一分段行驶路径。
在一种可能的设计中,该自动驾驶策略包括:降低第一终端的驾驶等级之后进入该第一分段行驶路径。
在一种可能的设计中,该路径规划信息还包括第一终端在该目标行驶路径上行驶时所需的通知提前量;服务器根据该目标行驶路径的信息,对第一终端的目标行驶路径进行分段,包括:服务器根据该目标行驶路径的信息和该通知提前量,对第一终端的目标行驶路径进行分段,其中,分段结果满足第一终端通过每段分段行驶路径的时间大于或者等于该通知提前量。基于该方案,可以在第一终端进行自动驾驶策略更新时,使得第一终端可以有一定的时间做好自动驾驶策略更新的准备。
在一种可能的设计中,该通知提前量大于或者等于第一终端在不同驾驶等级之间切换所需的最长时间。基于该方案,在第一终端需要降低驾驶等级的情况下,可以给第一终端预留充足的时间做好应对。
第二方面,提供一种自动驾驶规划的方法,该方法包括:第一终端向服务器发送路径规划信息,该路径规划信息包括第一终端的目标行驶路径的信息,其中,该目标行驶路径的信息用于对第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;对于该N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:第一终端接收来自服务器的该第一分段行驶路径的信息和第一服务质量QoS预测结果,其中,该第一QoS预测结果是对第一时间段,该第一分段行驶路径上的通信网络QoS进行预测得到的,该第一时间段为该第一终端在该第一分段行驶路径上行驶时的时间段;第 一终端根据该第一QoS预测结果,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。基于该方案,由于服务器在接收来自第一终端的路径规划信息之后,根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段。对于每个分段行驶路径,服务器对第一终端通过该分段行驶路径的时间段,该分段行驶路径上的通信网络QoS进行预测,得到对应的QoS预测结果之后,将分段行驶路径的信息以及对应的QoS预测结果发送给第一终端,由第一终端根据分段行驶路径的信息以及对应的QoS预测结果确定第一终端在该分段行驶路径上行驶时的自动驾驶策略。也就是说,本申请实施例中,第一终端可以根据不同的通信网络QoS情况,对第一终端的自动驾驶策略进行动态调整,不会因为通信网络QoS发生变化导致第一终端的行驶事故,从而可以实现安全驾驶。
在一种可能的设计中,该路径规划信息还包括目标QoS,该目标QoS为第一终端采用第一驾驶等级在该目标行驶路径上行驶时所需的通信网络QoS指标;在第一终端根据该第一QoS预测结果,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略之前,该方法还包括:第一终端接收来自服务器的该第一分段行驶路径对应的推荐信息;相应的,第一终端根据该第一QoS预测结果和第一预测准确度,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:若该第一QoS预测结果不满足该目标QoS,第一终端确定第一时间段,该第一分段行驶路径上的通信网络QoS不达标;第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。基于该方案,第一终端可以根据服务器发送的推荐信息确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略。
在一种可能的设计中,该推荐信息包括预计恢复时间;相应的,第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:在该预计恢复时间到达之后进入该第一分段行驶路径。
在一种可能的设计中,该推荐信息包括:第二移动网络运营商MNO的网络标识,其中,该第二MNO的网络为能够在该第一分段行驶路径为第一终端提供服务的MNO的网络;相应的,第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:将第一终端从第一MNO的网络切换到该第二MNO的网络之后进入该第一分段行驶路径,该第一MNO的网络为当前为第一终端提供服务的MNO的网络。
在一种可能的设计中,该推荐信息包括:第二分段行驶路径的信息,其中,该第二分段行驶路径为该目标行驶路径的备选路径上的一段行驶路径,该目标行驶路径的起始位置与该备选路径的起始位置相同,该目标行驶路径的结束位置与该备选路径的结束位置相同;相应的,第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:将第一终端从该第一分段行驶路径切换到该第二分段行驶路径上行驶。
在一种可能的设计中,该推荐信息包括:第二终端的标识;相应的,第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:第一终端根据该推荐信息,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:成功和该第二终端组成编队之后,跟随该第二终端进入该第一分段行驶路径,在通过该第一分段行驶路径之后,和该第二终端取消编队关系。
在一种可能的设计中,第一终端根据该第一QoS预测结果,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:若该第一QoS预测结果满足该目标QoS,第一终 端确定第一时间段,该第一分段行驶路径上的通信网络QoS达标;第一终端确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:继续进入该第一分段行驶路径。
在一种可能的设计中,第一终端根据该第一QoS预测结果,确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略,包括:若该第一QoS预测结果不满足该目标QoS,第一终端确定第一时间段,该第一分段行驶路径上的通信网络QoS不达标;第一终端确定第一终端在该第一分段行驶路径上行驶时的自动驾驶策略为:降低第一终端的驾驶等级之后进入该第一分段行驶路径。
在一种可能的设计中,该路径规划信息还包括第一终端在该目标行驶路径上行驶所需的通知提前量;其中,该通知提前量用于对第一终端的目标行驶路径进行分段,其中,分段结果满足第一终端通过每段分段行驶路径的时间大于或者等于该通知提前量。基于该方案,可以在第一终端进行自动驾驶策略更新时,使得第一终端可以有一定的时间做好自动驾驶策略更新的准备。
在一种可能的设计中,该通知提前量大于或者等于第一终端在不同驾驶等级之间切换所需的最长时间。基于该方案,在第一终端需要降低驾驶等级的情况下,可以给第一终端预留充足的时间做好应对。
第三方面,提供了一种服务器,该服务器具有实现上述第一方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供了一种服务器,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该服务器运行时,该处理器执行该存储器存储的该计算机执行指令,以使该服务器执行如上述第一方面中任一项所述的自动驾驶规划的方法。
第五方面,提供了一种服务器,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第一方面中任一项所述的自动驾驶规划的方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的自动驾驶规划的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一项所述的自动驾驶规划的方法。
第八方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持服务器实现上述第一方面中所涉及的功能,例如根据该目标行驶路径的信息,对第一终端的目标行驶路径进行分段。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存服务器必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第八方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供了一种第一终端,该第一终端具有实现上述第二方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十方面,提供了一种第一终端,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该第一终端运行时,该处理器执行该存储器存储的该计算机执行指令,以使该第 一终端执行如上述第二方面中任一项所述的自动驾驶规划的方法。
第十一方面,提供了一种第一终端,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述第二方面中任一项所述的自动驾驶规划的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的自动驾驶规划的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任一项所述的自动驾驶规划的方法。
第十四方面,提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第一终端实现上述第二方面中所涉及的功能,例如根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存第一终端必要的程序指令和数据。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第九方面至第十四方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十五方面,提供了一种通信系统,该通信系统包括上述任一方面所述的服务器以及一个或多个上述任一方面所述的第一终端。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的通信设备的结构示意图;
图3为本申请实施例提供的自动驾驶规划的方法流程示意图;
图4为本申请实施例提供的一种行驶路线规划示意图;
图5为本申请实施例提供的一种对目标行驶路径进行分段的示意图,以及分段预测结果示意图;
图6为本申请实施例提供的服务器确定第一分段行驶路径对应的推荐信息的流程示意图;
图7为本申请实施例提供的行驶路线示意图一;
图8为本申请实施例提供的车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略的流程示意图;
图9为本申请实施例提供的行驶路线示意图二;
图10为本申请实施例提供的行驶路线示意图三;
图11为本申请实施例提供的行驶路线示意图四;
图12为本申请实施例提供的服务器的结构示意图;
图13为本申请实施例提供的第一终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情 况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请实施例提供的一种通信系统10。该通信系统10包括服务器101,以及与该服务器101连接的一个或多个终端102。
以图1所示的服务器101与一个或多个终端102中的任意一个终端,如第一终端交互为例,则:
第一终端102,用于向服务器101发送路径规划信息,该路径规划信息包括第一终端102的目标行驶路径的信息。
服务器101,用于接收来自第一终端102的路径规划信息,并对第一终端102的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数。
对于N个分段行驶路径中的任意分段行驶路径,第一终端102和服务器101还按照下述针对第一分段行驶路径的方式进行处理:
第一终端102,用于向服务器发送路径规划信息,该路径规划信息包括第一终端的目标行驶路径的信息。
服务器101,还用于接收来自第一终端102的路径规划信息,并根据目标行驶路径的信息,对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到第一QoS预测结果之后,向第一终端102发送第一分段行驶路径的信息和第一QoS预测结果。
第一终端102,还用于接收来自服务器101的第一分段行驶路径的信息和第一QoS预测结果,并根据第一QoS预测结果,确定第一终端102在第一分段行驶路径上行驶时的自动驾驶策略。
基于本申请实施例提供的通信系统,由于本申请实施例中,服务器在接收来自第一终端的路径规划信息之后,根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段。对于每个分段行驶路径,服务器对第一终端通过该分段行驶路径的时间段,该分段行驶路径上的通信网络QoS进行预测,得到对应的QoS预测结果之后,将分段行驶路径的信息以及对应的QoS预测结果发送给第一终端,由第一终端根据分段行驶路径的信息以及对应的QoS预测结果确定第一终端在该分段行驶路径上行驶时的自动驾驶策略。也就是说,本申请实施例中,第一终端可以根据不同的通信网络QoS情况,对第一终端的自动驾驶策略进行动态调整,不会因为通信网络QoS发生变化导致第一终端的行驶事故,从而可以实现安全驾驶。
可选的,本申请实施例中的服务器例如可以是车联网(vehicle to everything,V2X)服务器,或者移动网络运营商(mobile network operator,MNO)运营的服务器,或者车企原始设备制造商(original entrusted manufacture,OEM)或者道路运营商(road operator) 运营的服务器等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端可以是车辆(vehicle);也可以是安装在车辆上用于辅助车辆行驶的车载终端。其中,该车载终端可以是第五代(5th generation,5G)网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端或无人驾驶(self driving)中的无线终端等。该车载终端可以是移动的,也可以是固定的。
可选的,本申请实施例图1中的终端102和服务器101的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例图1中的终端102和服务器101的功能可以通过图2中的通信设备200来实现。图2所示为本申请实施例提供的通信设备200的结构示意图。该通信设备200包括一个或多个处理器201,通信线路202,以及至少一个通信接口(图2中仅是示例性的以包括通信接口204,以及一个处理器201为例进行说明)。可选的,该通信设备200还可以包括存储器203。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,用于连接不同组件之间。
通信接口204,可以是收发模块用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,通信接口204也可以是位于处理器201内的收发电路,用以实现处理器的信号输入和信号输出。
存储器203可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请实施例中 提供的自动驾驶规划的方法。
或者,可选的,本申请实施例中,也可以是处理器201执行本申请下述实施例提供的自动驾驶规划的方法中的处理相关的功能,通信接口204负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图2中的处理器201和处理器208。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备200有时也可以称为通信装置,其可以是一个通用设备或者是一个专用设备。例如通信设备200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备、上述终端设备,上述网络设备、或具有图2中类似结构的设备。本申请实施例不限定通信设备200的类型。
下面将结合图1或图2对本申请实施例提供的自动驾驶规划的方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图1所示的服务器101与一个或多个终端102中的任意一个终端,如第一终端交互为例,如图3所示,为本申请实施例提供的一种自动驾驶规划的方法,该自动驾驶规划的方法包括如下步骤S301-S305:
S301、第一终端向服务器发送路径规划信息。相应的,服务器接收来自第一终端的路径规划信息。
其中,该路径规划信息包括第一终端的目标行驶路径的信息。
S302、服务器目标行驶路径的信息,对第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数。
对于N个分段行驶路径中的任意分段行驶路径,第一终端和服务器还按照下述针对第一分段行驶路径的方式进行处理:
S303、服务器对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到第一QoS预测结果,第一时间段为第一终端在第一分段行驶路径上行驶时的时间段。
S304、服务器向第一终端发送第一分段行驶路径的信息和第一QoS预测结果。相应的,第一终端接收来自服务器的第一分段行驶路径的信息和第一QoS预测结果。
S305、第一终端根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。
下面将以第一终端为车辆1为例,对上述步骤S301-S305进行示例性说明。
在上述步骤S301中:
车辆1在行程开始之前,向服务器发送车辆1的路径规划信息,该路径规划信息包括车辆1的目标行驶路径的信息。
其中,车辆1的目标行驶路径的信息包括车辆1的目标行驶路径。可选的,车辆1的目标行驶路径的信息还可以包括车辆1的目标行驶路径的起始位置(也可以理解为车辆1的当前位置)和结束位置(也可以理解为车辆1的目的地)。
上述目标行驶路径表示车辆1将选择什么路径到达目的地。比如,如图4所示,同样的从起始位置A到结束位置B,可能存在多条路径,如图4中的路径1和路径2。当然,由于不同的路径经过不同的区域,因此同一时间不同路径上的通信网络QoS可能不同。
上述起始位置和结束位置均表示地图上的坐标,可能是类似经纬度的绝对坐标,也可能是相对坐标,例如车辆1位于XX市政府,或者车辆1位于GXX高速100公里处。
可选的,本申请实施例中的路径规划信息还可以包括车辆1在目标行驶路径上行驶时的配速信息,该配速信息表示按计划车辆1在目标行驶路径的不同路段上行驶时的速度。其中,按计划车辆1在目标行驶路径的不同路段上行驶时的速度可以相同,也可以不相同,本申请实施例对此不作具体限定。比如,假设车辆1的目标行驶路径为图3中的路径1,则路径1中的路段1、路段2和路段3可以对应不同的配速信息,结果可以如表一所示。
表一
路段信息 配速信息
路段1 30km/h
路段2 40km/h
路段3 45km/h
…… ……
可选的,本申请实施例中的路径规划信息还可以包括目标QoS,该目标QoS为车辆1采用第一驾驶等级在目标行驶路径上行驶时所需的通信网络QoS指标。该目标QoS是指为了保持第一驾驶等级,需要保障的通信网络QoS条件。其中,该目标QoS可以包括一个或多个QoS参数的门限值以及最小预测准确度(也可以称之为最小可信度)。一个或多个QoS参数例如可以包括时延、抖动、带宽、可靠性或者网络类型中的一个或多个。
上述最小预测准确度表示通信网络QoS预测所需的预测结果准确的可能性,用百分比来表示。例如,服务器预测5分钟后区域的时延变成100kpbs,这个预测准确度为50%,表示有50%的概率在5分钟以后的时延变为100kbps。
本申请实施例中,不同驾驶等级对QoS参数的要求也不相同。例如,若车辆1为L0驾驶等级或者L1驾驶等级,由于车辆1的操作由驾驶员来完成,网络需要提供给驾驶员的信息包括突发道路信息(拥堵、车辆抛锚、道路封闭施工等),只要提前5-10分钟推送给驾驶员即可,以便让驾驶员决定是否要重新规划路线,所需推送的数据量比较少,因此对网络提供的带宽、时延或可靠性等要求相对较低。比如,时延为10s或带宽为100kbps等。或者,例如,若车辆1为L2驾驶等级,因为需要对车辆1进行控制,网络除了推送道路信息之外,还需要推送高精度地图信息以便让车辆清楚自己是否在正确的车道和方向。因此对网络提供的带宽、时延、或可靠性有更高的保障需求。例如,时延为100ms,带宽为1Mbps等。
可选的,本申请实施例中的路径规划信息还可以包括车辆1在目标行驶路径上行驶时采用的第一驾驶等级。该第一驾驶等级是指车辆1计划以什么样的驾驶等级通过路段,例如SAE 定义的L0-L5驾驶等级或者未来定义的其他驾驶等级。
可选的,本申请实施例中的路径规划信息还可以包括车辆1在目标行驶路径上行驶时所需的通知提前量。该通知提前量表示若预测的通信网络QoS将会发生变化,车辆1要求至少提前多长时间通知给车辆1。
可选的,考虑到因为车辆1在应对通信网络QoS发生变化所导致的驾驶等级切换时需要的时间不同,因此需要不同的通知提前量以保证有充足的时间做好准备。例如,L2驾驶等级的车辆因为驾驶员的注意力还是保持在道路和驾驶方面,所以从L2驾驶等级切换为L0或L1驾驶等级可能只需要不到5秒。但是L3驾驶等级的车辆,因为驾驶员的注意力允许不在道路上而去做其他事情例如阅读或者交谈,因此从L3驾驶等级切换为L2驾驶等级的时间可能需要1分钟。而对于L4驾驶等级的车辆或者L4驾驶等级以上(如L5驾驶等级)的车辆,因为车上可能没有驾驶员或者驾驶员不在驾驶位,因此其切换为L3驾驶等级、L2驾驶等级、L1驾驶等级或者L0驾驶等级的时间可能差别很大。因此,车辆1在行程开始之前,向服务器发送车辆1的路径规划信息中包括通知提前量,该通知提前量用于告知服务器应该提前多长时间将QoS预测结果通知给车辆1,以使得车辆1根据该QoS预测结果,确定需要降低驾驶等级的情况下,可以给车辆预留充足的时间做好应对。
可选的,本申请实施例中的通知提前量大于或者等于车辆1在不同驾驶等级之间切换所需的最长时间,如车辆1从L5驾驶等级切换为L0驾驶等级时所需的时间。
或者,可选的,本申请实施例中的通知提前量大于或者等于车辆1从第一驾驶等级切换到其他任意驾驶等级低于第一驾驶等级的其他驾驶等级时所需的最长时间,如第一驾驶等级对应L3驾驶等级,则通知提前量大于或者等于车辆1从L3驾驶等级切换为L0驾驶等级时所需的时间。
可选的,本申请实施例以路径规划信息,配速信息,目标QoS,第一驾驶等级,或者通知提前量中的一个或多个是由车辆1发送给服务器的为例进行说明。当然,本申请实施例中的上述路径规划信息,配速信息,目标QoS,第一驾驶等级,或者通知提前量中的一个或多个也可以不是由车辆1发送给服务器的,而是服务器从其他网络设备或者其他服务器中获取的,本申请实施例对此不作具体限定。
在上述步骤S302中:
服务器接收来车辆1的路径规划信息之后,可以根据路径规划信息中的目标行驶路径的信息,对目标行驶路径进行分段。
可选的,服务器可以根据目标行驶路径的信息,结合路径规划信息中的通知提前量对目标行驶路径进行分段。其中,分段结果满足车辆1通过每段分段行驶路径的时间大于或者等于通知提前量。
或者,可选的,服务器可以根据目标行驶路径的信息,结合网络中接入网设备(例如可以是基站)的部署情况对目标行驶路径进行分段。比如,假设目标行驶路径上的某段路径在接入网设备部署比较密集的区域内(可以视为通信网络QoS较好),则可以将该段路径划分在一个分段行驶路径内。
或者,可选的,服务器可以按照等距离方式对目标行驶路径进行分段,也可以按照等时间方式对目标行驶路径进行分段,本申请实施例对此不作具体限定。
或者,可选的,服务器可以根据目标行驶路径的信息,结合路径规划信息中的通知提前量以及网络中接入网设备(例如可以是基站)的部署情况对目标行驶路径进行分段。比如,假设目标行驶路径上的某段路径在接入网设备部署比较密集的区域内(可以视为通信网络QoS 较好),则可以将该段路径划分在一个分段行驶路径内。其中,分段结果满足车辆1通过每段分段行驶路径的时间大于或者等于通知提前量。
或者,可选的,服务器可以结合路径规划信息中的通知提前量,按照等距离方式对目标行驶路径进行分段,也可以结合路径规划信息中的通知提前量,按照等时间方式对目标行驶路径进行分段。其中,分段结果满足车辆1通过每段分段行驶路径的时间大于或者等于通知提前量。
示例性的,目标行驶路径对应的行程全程可以如图5中的(5a)所示。按照等时间方式对目标行驶路径进行分段,分段结果可以如图5中的(5b)所示。其中,(5b)中示例性的将目标行驶路径对应的行程全程分成10段,t0,t1,t2,……,t10表示车辆通过该点的时刻。
在上述步骤S303中:
服务器可以确定车辆1在第一分段行驶路径上行驶时的时间段(即车辆1通过第一分段行驶路径的时间段,这里为方便说明,记作第一时间段),进而对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到第一QoS预测结果。也就是说,服务器在进行通信网络QoS预测时,按照时间和地理位置两个维度进行。例如,对图5中的(5a)所示的目标行驶路径对应的行程全程进行分段,得到如图5中的(5b)所示的每个分段行驶路径的地理位置之后,还需要确定车辆1通过每个分段行驶路径的时间段。
可选的,一种可能的实现方式中,服务器可以根据上述车辆1在目标行驶路径上行驶时的配速信息,确定车辆1通过每个分段行驶路径的时间段,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第一QoS预测结果包括一个或多个QoS参数的预测值以及预测准确度。其中,一个或多个QoS参数的相关描述可参考步骤S301中的描述,在此不再赘述。
可选的,本申请实施例中,服务器可以根据从MNO收集的网络数据(如时延、带宽、抖动或可靠性等数据),从互联网收集的其他可能影响通信网络QoS的信息(如城市活动、天气、人流等信息),以及自己维护的路径规划信息,对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到第一QoS预测结果。该第一QoS预测结果是按照这些数据对通信网络的QoS产生影响的历史数据进行推测得出的结果。例如,过去一个月以来,每次出现相同人流量、类似天气情况、大约相同的时间段,通信网络的QoS的历史数据。如果在未来10分钟,会有相似的人流向、天气情况等出现,就可以推测其通信网络的QoS的预测值也大约会是相同的结果。并且会得出出现大致相同结果的概率是多少,这个概率即是预测准确度。具体的,对某个时间段,某个路径上的通信网络QoS进行预测的相关实现可参考现有的实现方式,在此不予详细赘述。
示例性的,对图5所示的(5b)中各分段行驶路径在相应时间段的QoS进行预测,预测结果可以如图5中的(5c)、(5d)或(5e)所示。其中,采用图案进行填充的分段行驶路径表示QoS预测结果不满足目标QoS的分段行驶路径;未采用图案进行填充的分段行驶路径表示QoS预测结果满足目标QoS的分段行驶路径。例如,在图5中的(5c)中,t2-t3分段行驶路径、t3-t4分段行驶路径、t4-t5分段行驶路径、t5-t6分段行驶路径、t7-t8分段行驶路径、t8-t9分段行驶路径、以及t9-t10分段行驶路径为QoS预测结果不满足目标QoS的分段行驶路径;而t0-t1分段行驶路径、t1-t2分段行驶路径、以及t6-t7分段行驶路径为QoS预测结果满足目标QoS的分段行驶路径。在图5中的(5d)和(5e)中的情况与上述(5c)中的情况类似,在此不再详细阐述。
需要说明的是,本申请实施例中,tm-tn分段行驶路径是指以tm时刻所在的位置为起始位置,以tn时刻所在的位置为结束位置为一段路径,n=m+1,m的取值为0至9中的任意整 数,在此统一说明,以下不再赘述。例如,t0-t1分段行驶路径是指以t0时刻所在的位置为起始位置,以t1时刻所在的位置为结束位置为一段路径。
可选的,本申请实施例中,QoS预测结果不满足目标QoS视为通信网络QoS不达标;QoS预测结果满足目标QoS视为通信网络QoS达标。
可选的,本申请实施例中,QoS预测结果满足目标QoS是指,QoS参数的预测值满足目标QoS中QoS参数的门限值要求,并且预测准确度不小于目标QoS中的最小预测准确度;否则,视为QoS预测结果不满足目标QoS。其中,服务器确定QoS参数的预测值满足目标QoS中QoS参数的门限值要求的方式为,要求目标QoS中存在门限值要求的QoS参数的预测值均满足对应的QoS参数的门限值要求。例如,对于L3驾驶等级,要求无线网络覆盖带宽至少能达到1Mbps,时延在100ms以内,其他参数不做要求,而且要求预测准确度大于70%(即最小预测准确度为70%)。则服务器确定通信网络QoS是否达标包括:确定QoS参数的预测值中无线网络覆盖带宽至少能达到1Mbps,时延在100ms以内,并且预测准确度不小于70%。其中,服务器在确定QoS参数的预测值是否满足目标QoS中QoS参数的门限值要求时,本地得到的预测结果是多维度的,例如对于图5所示的(5b)中的t 0-t 1路段,未来1分钟QoS预测的结果是带宽2Mbps、时延100ms、可靠性为99.9%、丢包率为98%等,但是只要服务器确定QoS参数的预测值中无线网络覆盖带宽至少能达到1Mbps,时延在100ms以内,即可确定QoS参数的预测值满足目标QoS中QoS参数的门限值要求。
可选的,本申请实施例中,若服务器确定第一分段行驶路径上的通信网络QoS不达标,服务器还可以确定第一分段行驶路径对应的推荐信息。该第一分段行驶路径对应的推荐信息例如可以包括:预计恢复时间、第二MNO的网络标识、第二分段行驶路径的信息、车辆2的标识等。
其中,预计恢复时间用于车辆1选择在该预计恢复时间结束后进入第一分段行驶路径。
第二MNO的网络标识用于车辆1选择从第一MNO切换到第二MNO之后进入第一分段行驶路径,第一MNO的网络为当前为车辆1提供服务的MNO的网络。
第二分段行驶路径的信息用于车辆1选择从第一分段行驶路径切换到第二分段行驶路径上行驶,其中,第二分段行驶路径为目标行驶路径的备选路径上的一段行驶路径,目标行驶路径的起始位置与备选路径的起始位置相同,目标行驶路径的结束位置与备选路径的结束位置相同。比如,假设目标行驶路径为图4中的路线1,备选路径为图4中的路线2,则此处的第二分段行驶路径可以为路线2上的某一段路径。
可选的,考虑到实际的交通环境中,不可能恰好能绕开一段通信网络QoS不达标的路段。因此通常选择的绕开路段的起始位置通常不晚于通信网络QoS不达标路段的起始位置,而选择的绕开路段的结束位置通常不早于通信网络QoS不达标路段的结束位置,在此统一说明,以下不再赘述。
下面示例性的提供一种服务器确定第一分段行驶路径对应的推荐信息的具体实现,如图6所示,包括如下步骤:
S601、服务器确定第一时间段,第一分段行驶路径上的通信网络QoS不达标。
其中,步骤S601的相关描述可参考图5中的(5a)至(5e)所示的描述部分,在此不再赘述。
S602、服务器确定第一时间段,第一分段行驶路径上的通信网络QoS不达标的原因是临时原因还是非临时原因(即长期原因)。
示例性的,通信网络QoS不达标的原因是临时原因的情况例如周边有大型活动,造成暂 时区域内连接数过多;或者,短时间有雷雨天气,造成信号接收出现问题;或者,区域内基站因为故障造成通讯问题等。其中,判断通信网络QoS不达标的原因是否是临时原因的主要方法是服务器根据历史通信网络QoS进行判断,如果第一时间段,历史上该第一分段行驶路径上的通信网络QoS一直正常,只是在现在短暂出现通信网络QoS不满足的情况,即可以确定是临时原因。
示例性的,通信网络QoS不达标的原因是非临时原因的情况例如隧道、运营商覆盖度较差、地下车库等情况。其中,通信网络QoS不达标的原因是非临时原因的情况下,通信网络QoS不能预期可以在短时间内恢复。
本申请实施例中,区分通信网络QoS不达标的原因是临时原因还是非临时原因的意义在于,若是临时问题,车辆1可能可以选择减速或者等待的方式等通信网络QoS满足要求以后再通过路段。若是非临时原因,车辆1只能通过其他方式通过路段。具体的,若是临时原因,可以执行下述步骤S603;若是非临时原因,可以执行下述步骤S604、步骤S606或步骤S608。
S603、服务器分析第一时间段,第一分段行驶路径上的通信网络QoS不达标的临时原因,并估计预计恢复时间,确定第一分段行驶路径对应的推荐信息为该预计恢复时间。
其中,对于临时原因造成的通信网络QoS不达标,通信网络的QoS可能在短时间内恢复。所需的预计恢复时间是服务器根据网络环境等综合判断得出的通信网络QoS恢复到车辆1要求的目标QoS的水平。该预计恢复时间可以是相对时间,也可以是绝对时间。
例如,区域内有大型活动召开,导致连接数过多,从而造成通信网络QoS下降,此时的预计恢复时间就是活动结束时间,比如预计恢复时间为若干小时。或者,基站故障造成的通信网络QoS下降,预计恢复时间就是运营商安排的故障排除时间或者安排的应急通信车投入使用时间,例如应急通讯车将在30分钟抵达现象,则预计恢复时间也就是半小时。或者,雷雨天气造成的QoS问题,预计恢复时间通常为雷雨结束的时间,比如,雷雨预计10分钟结束,则预计恢复时间大概为10分钟。
S604、服务器确定是否存在第二MNO的网络使得通信网络QoS达标。
具体的,服务器确定是否存在第二MNO的网络使得QoS达标包括:服务器确定车辆1是否签约第二MNO,且第一分段行驶路径上存在能够为车辆1提供服务的第二MNO的网络,使得第二MNO的网络为车辆1提供服务时,对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到的第二QoS预测结果满足上述目标QoS。
其中,若服务区确定存在第二MNO的网络使得通信网络QoS达标,则继续执行下述步骤S605。
S605、服务器确定第一分段行驶路径对应的推荐信息为第二MNO的网络标识。
也就是说,假设车辆1同时和多个MNO维护签约关系,服务器在检测到有其他MNO的通信网络QoS更好时,可以在推荐信息中携带该MNO的网络标识,以供车辆1选择。
示例性的,同一个区域,因为基站选址和部署密度的原因,A移动运营商的信号强度可能高于B移动运营商的信号强度,若当前为车辆1提供服务的网络为B移动运营商的网络,则此处服务器可以推荐车辆1将网络切换为A移动运营商的网络。
S606、服务器确定是否存在第二分段行驶路径使得通信网络QoS达标。
具体的,服务器确定是否存在第二分段行驶路径使得通信网络QoS达标包括:服务器确定是否存在第二分段行驶路径,使得对第二时间段,第二分段行驶路径上的通信网络QoS进行预测,得到的第三QoS预测结果符合上述目标QoS,其中,第二时间段为车辆1在第二分段行驶路径上行驶时的时间段。第二分段行驶路径为目标行驶路径的备选路径上的一段行驶 路径,目标行驶路径的起始位置与备选路径的起始位置相同,目标行驶路径的结束位置与备选路径的结束位置相同。
其中,若服务器确定存在第二分段行驶路径使得对第二时间段,第二分段行驶路径上的通信网络QoS进行预测,得到的第三QoS预测结果符合上述目标QoS,则继续执行下述步骤S607。
S607、服务器确定第一分段行驶路径对应的推荐信息为第二分段行驶路径的信息。
也就是说,由于不同区域各个移动运营商的通信网络QoS不同,或者不同区域连接数不同,因此可能存在相同起始位置和结束位置的情况下,同一时间段,不同分段行驶路径对应的通信网络QoS不相同的情况。若服务器确定存在相同起始位置和结束位置的其他分段行驶路径在某个时间段的通信网络QoS更好时,可以考虑在不增加或者尽量少增加行驶里程的前提下,切换分段行驶路径,即推荐信息为第二分段行驶路径的信息,以供车辆1选择。
比如,如图4所示,同一时间段,路线1和路线2对应的通信网络QoS可能不相同。假设第一分段行驶路径为图4中的路线1,则同一时间段,若路线1的通信网络QoS不达标,而路线2的通信网络QoS达标,此时服务器可以确定推荐信息为路线2。
S608、服务器确定是否存在车辆2使得通信网络QoS达标。
具体的,服务器确定是否存在车辆2使得通信网络QoS达标,包括:服务器确定是否存在车辆2和车辆1同时通过第一分段行驶路径,且第一QoS预测结果符合车辆2采用第二驾驶等级在第一分段行驶路径上行驶时所需的通信网络QoS指标。
其中,第二驾驶等级的相关描述可参考上述第一驾驶等级,在此不再赘述。
可选的,本申请实施例中,服务器接收到多个车辆的路径规划信息之后,可在本地建立地图,管理多个车辆的路径规划信息之间的关系,从而可能发现两个车辆在时间和地点上共享的路段。比如,如图7所示,存在车辆1和车辆2的共享路段。
其中,在编队行驶过程中,头车对于驾驶环境监测和异常事件处理负有的责任大于后面追随的车辆。所以对后车环境监测、异常处理等的要求要低很多。如果头车是驾驶员驾驶或者低驾驶等级自动驾驶,其对网络的要求并不是特别高,通信网络QoS一般可以满足。
其中,若服务器确定存在车辆2使得通信网络QoS达标,则继续执行下述步骤S609。
S609、服务器确定第一分段行驶路径对应的推荐信息为车辆2的标识。
示例性的,对于L4驾驶等级的车辆1,可能因为车上没有配置驾驶员,所以只能采用L4驾驶等级行驶。L4驾驶等级在通信网络QoS不满足要求的情况下,因为不能接收道路动态信息,而只能原地停止等待。但是如果同一时间,恰好有其他对通信网络QoS依赖较弱的车辆通过相同路段。例如存在L2驾驶等级的车辆2经过相同路段,服务器可以确定将车辆1和车辆2组成编队,即推荐信息为车辆2的标识,以供车辆1选择。
比如,如图7所示,车辆1和车辆2经过同一路段,如果车辆1只能通过L4驾驶等级通过共享路段,而车辆2是手动驾驶或者L2驾驶等级,则服务器可以将车辆2的标识推荐给车辆1。使得车辆1可以原地等待,等车辆2经过时和车辆2组成一个临时编队。
可选的,本申请实施例中,服务器在确定第一分段行驶路径对应的推荐信息为车辆2的标识之后,即可以向车辆1发送推荐信息。同时,服务器向车辆2发送编队请求,该编队请求用于请求车辆2和车辆1组成编队通过第一分段行驶路径。此时,若车辆2拒绝该编队请求,则服务器可以向车辆1发送推荐信息取消通知,本申请实施例对此不作具体限定。
或者,可选的,本申请实施例中,服务器可以在确定第一分段行驶路径对应的推荐信息为车辆2的标识之后,向车辆2发送编队请求,该编队请求用于请求车辆2和车辆1组成编 队通过第一分段行驶路径,在车辆2同意组成编队以后服务器再向车辆1发送推荐信息,本申请实施例对此不作具体限定。
需要说明的是,上述步骤S604、步骤S606或步骤S608之间没有必然的执行先后顺序,可以先执行三个步骤中的任意一个步骤或者两个步骤,再执行其他步骤;也可以是同时执行这三个步骤,本申请实施例对此不作具体限定。
此外,可选的,本申请实施例中,服务器在确定第一分段行驶路径对应的推荐信息时,可以执行上述步骤S604、步骤S606或步骤S608中的一个或者多个步骤,本申请实施例对此不作具体限定。
可选的,本申请实施例中,服务器在确定第一QoS预测结果不达标之后,若可以获知第一QoS预测结果不达标的原因,也可以进行提前调整。比如,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进行预测,预测结果如图5中的(5c)所示,则对于t2-t3分段行驶路径、t3-t4分段行驶路径、t4-t5分段行驶路径或者t5-t6分段行驶路径等,服务器可以根据实际情况对这些分段行驶路径上的通信网络QoS进行调节。例如增加应急通信车、增加基站发射功率或者进行交通疏导等等,本申请实施例对此不作具体限定。
在上述步骤S304中:
若步骤S303中服务器确定第一分段行驶路径对应的推荐信息,则服务器还可以向车辆1发送第一分段行驶路径对应的推荐信息,本申请实施例对此不作具体限定。
在上述步骤S305中:
车辆1在接收到来自服务器的第一分段行驶路径的信息和第一QoS预测结果之后,若第一QoS预测结果满足目标QoS,即第一时间段,第一分段行驶路径上的通信网络QoS达标,则可以确定车辆1在第一分段行驶路径上行驶时的自动驾驶策略为:继续进入第一分段行驶路径;否则,车辆1需要确定通过第一分段行驶路径的其他自动驾驶策略。
其中,在第一时间段,第一分段行驶路径上的通信网络QoS不达标的情况下,确定车辆1在第一分段行驶路径上行驶时的自动驾驶策略的因素很多,例如车辆1有没有司机、司机正在做什么、车辆的自动驾驶辅助系统(advanced driver assistant systems,ADAS)运行状况、周边的光照情况、高精度地图覆盖情况、周边是否有行人、所处的环境等等。而且,不同车厂在处理不同的外部环境影响的策略也可能不同。因此,确定车辆1在第一分段行驶路径上行驶时的自动驾驶策略的实现比较复杂。本申请实施例中,服务器向车辆1发送的推荐信息,是车辆1本身的传感器不能感知的其他信息,对于车辆1进行决策有非常重要的作用。
例如,对于采用L4驾驶等级行驶的车辆1,车辆1要首先确定车上有没有驾驶员,如果存在驾驶员,说明车辆具备切换为L3驾驶等级或者L2驾驶等级的能力,车辆1在第一时间段,第一分段行驶路径上的通信网络QoS不达标的情况下可以降级驾驶等级通过路段。如果车辆1上没有配备驾驶员,说明车辆1只能进行L4自动驾驶。此时车辆1可以结合服务器发送的推荐信息,在预期恢复时间较短的情况下,车辆1可以选择在最近的安全停车区域等待第一分段行驶路径上的通信网络QoS恢复。或者在预期恢复时间较长的情况下,服务器发现了其他通信网络QoS达标的路线或者其他通信网络QoS达标的运营商网络,车辆1可以主动切换网络或者切换路线。当服务器没有发现其他可用的运营商网络或者可切换的路线,但是发现了其他有共享路径的其他车辆,则推荐车辆1通过组成编队的方式通过通信网络QoS不达标的第一分段行驶路段。例如对于一个隧道,网络覆盖不好造成不能接收道路动态信息,从而没有办法采用L4驾驶等级行驶的方式通过该路段。如果有车辆2也要通过隧道,该车辆 是人工驾驶的,则服务器可以推荐车辆1和该人工驾驶车辆2组成编队,跟在人工驾驶车辆2的后面通过隧道。通过隧道以后再切换回L4自动驾驶状态。
示例性的,车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略的方式可以如图8所示,包括如下步骤:
S801、车辆1接收来自服务器的第一分段行驶路径对应的推荐信息。
其中,第一分段行驶路径对应的推荐信息的相关描述可参考上述步骤S303,在此不再赘述。
S802、车辆1确定第一时间段,第一分段行驶路径上的通信网络QoS是否达标。
其中,车辆1确定第一时间段,第一分段行驶路径上的通信网络QoS是否达标的方式可参考上述步骤S303中服务器确定第一时间段,第一分段行驶路径上的通信网络QoS是否达标的方式,在此不再赘述。
其中,若车辆1确定第一时间段,第一分段行驶路径上的通信网络QoS达标,继续执行下述步骤S803;否则,继续执行下述步骤S804。
S803、若车辆1确定第一时间段,第一分段行驶路径上的通信网络QoS达标,则确定车辆1在第一分段行驶路径上行驶时的自动驾驶策略为:继续行驶,进入第一分段行驶路径。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进行预测,预测结果如图5中的(5c)所示,则车辆1可以进入t0-t1分段行驶路径。
S804、若车辆1确定第一时间段,第一分段行驶路径上的通信网络QoS不达标,则车辆1需要根据具体情况确定如何通过第一分段行驶路径。本示例中,车辆1可以首先确认当前自己采用的驾驶等级。
S805、若车辆1采用L2驾驶等级行驶,则说明肯定有驾驶员,而且驾驶员处于随时待命的状态。则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:降低为L1驾驶等级之后进入第一分段行驶路径。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进行预测,预测结果如图5中的(5d)所示,则车辆1可以采用当前的L2驾驶等级行驶的方式进入t0-t1分段行驶路径。但是由于车辆1通过t1-t2分段行驶路径的时间段,t1-t2分段行驶路径上的通信网络QoS不达标,考虑到L2驾驶等级情况下,驾驶员因为要对异常情况做出响应,所以驾驶员依然保持在驾驶位上,但是注意力可能不完全在路面,因此在进入t1-t2分段行驶路径之前(比如在t0时刻所在的位置),车辆1应该发出报警,使得驾驶员提前做好采用L1驾驶等级行驶的准备。因此,t0-t1分段行驶路径对应的时长应该不小于车辆1从L2驾驶等级切换为L1驾驶等级所需的时间。
S806、若车辆1采用L3驾驶等级或L3驾驶等级以上的驾驶等级行驶,说明驾驶员的注意力有可能不在道路上或者有可能没有驾驶员。车辆1优先尝试继续以当前驾驶等级的方式通过通信网络QoS不达标路段。因此,车辆1首先确定服务器发送的推荐信息中是否包括第二分段行驶路径的信息或者第二MNO的网络标识。
S807、若车辆1确定服务器发送的推荐信息中包括第二分段行驶路径的信息或者第二MNO的网络标识,则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:将车辆1从第一分段行驶路径切换到第二分段行驶路径上行驶;或者,将车辆1从第一MNO的网络切换到第二MNO的网络之后进入第一分段行驶路径。
S808、若车辆1确定服务器发送的推荐信息中不包括第二分段行驶路径的信息或者第二MNO的网络标识,且车辆1当前采用L3驾驶等级行驶,则车辆1确定在第一分段行驶路径上 行驶时的自动驾驶策略为:降低为L2驾驶等级之后进入第一分段行驶路径。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进行预测,预测结果如图5中的(5d)所示,车辆1当前(即图5中的t0位置)的驾驶等级为L3驾驶等级,则车辆1可以采用当前的L3驾驶等级行驶的方式进入t0-t1分段行驶路径。但是由于车辆1通过t1-t2分段行驶路径的时间段,t1-t2分段行驶路径上的通信网络QoS不达标,考虑到L3驾驶等级情况下,驾驶员因为要对异常情况做出响应,所以驾驶员依然保持在驾驶位上,但是注意力可能不在路面,因此在进入t1-t2分段行驶路径之前(比如在t0时刻所在的位置),车辆1应该发出报警,使得驾驶员提前做好采用L2驾驶等级行驶的准备。因此,t0-t1分段行驶路径对应的时长应该不小于车辆1从L3驾驶等级切换为L2驾驶等级所需的时间。
可选的,若第一分段行驶路径上的通信网络QoS也无法保证车辆1在L2驾驶等级行驶(即第一时间段,车辆1采用L2驾驶等级行驶的方式通过第一分段行驶路径时,对第一时间段内,第一分段行驶路径上的通信网络QoS进行预测,得到的QoS预测结果也不满足目标QoS),车辆1可切换为L1驾驶等级。这种情况下驾驶员的准备时间更长,也就是说,t0-t1分段行驶路径对应的时长应该不小于车辆1从L3驾驶等级切换为L1驾驶等级所需的时间。
S809、若车辆1确定服务器发送的推荐信息中不包括第二分段行驶路径的信息和第二MNO的网络标识,且车辆1当前采用L4驾驶等级或者L4驾驶等级以上的驾驶等级行驶,则车辆1确定是否有驾驶员。
S810、若车辆1确定有驾驶员,则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:降低为L3驾驶等级之后进入第一分段行驶路径。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进行预测,预测结果如图5中的(5d)所示,车辆1当前(即图5中的t0位置)采用L4驾驶等级行驶,则车辆1可以采用当前的L4驾驶等级行驶的方式进入t0-t1分段行驶路径。但是由于车辆1通过t1-t2分段行驶路径的时间段,t1-t2分段行驶路径上的通信网络QoS不达标,考虑到L4驾驶等级情况下,驾驶员因为要对异常情况做出响应,所以驾驶员依然保持在驾驶位上,但是注意力可能不在路面,因此在进入t1-t2分段行驶路径之前(比如在t0时刻所在的位置),车辆1应该发出报警,使得驾驶员提前做好采用L3驾驶等级行驶的准备。因此,t0-t1分段行驶路径对应的时长应该不小于车辆1从L4驾驶等级切换为L3驾驶等级所需的时间。
可选的,若第一分段行驶路径上的通信网络QoS状态也无法保证车辆1在L3驾驶等级行驶(即第一时间段,车辆1采用L3驾驶等级行驶的方式通过第一分段行驶路径时,对第一时间段内,第一分段行驶路径上的通信网络QoS进行预测,得到的QoS预测结果也不满足目标QoS),车辆1可切换为L2驾驶等级或者L1驾驶等级。这种情况下驾驶员的准备时间更长,也就是说,t0-t1分段行驶路径对应的时长应该不小于车辆1从L4驾驶等级切换为L1驾驶等级或者L2驾驶等级所需的时间。
S811、若车辆1确定没有驾驶员,车辆1只能采用当前的L4驾驶等级行驶的方式进入第一分段行驶路径。此时,车辆1确定服务器发送的推荐信息中是否包括预计恢复时间,且预计恢复时间是否较短。
S812、若预计恢复时间较短,则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:预计恢复时间到达之后进入第一分段行驶路径。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的通信网络QoS进 行预测,预测结果如图5中的(5e)所示,则车辆1可以选择在安全区域临时停车,在预计恢复时间结束之后再进入t0-t1分段行驶路径。
S813、若预计恢复时间较长,车辆1确定服务器发送的推荐信息中是否包括车辆2的标识。
S814、若车辆1确定服务器发送的推荐信息中包括车辆2的标识,则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:成功和车辆2组成编队之后,跟随车辆2进入第一分段行驶路径,在通过第一分段行驶路径之后,和车辆2取消编队关系。
示例性的,假设对图5所示的(5b)中各分段行驶路径在相应时间段的QoS进行预测,预测结果如图5中的(5e)所示,则车辆1可以选择在安全区域临时停车,在检测到车辆2,和车辆2组成编队之后,跟随车辆2再进入t0-t1分段行驶路径。在通过t0-t1分段行驶路径之后,和车辆2取消编队关系。
S815、若车辆1确定服务器发送的推荐信息中不包括车辆2的标识,则车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略为:返回安全区域等待下一步动作。
其中,这里的下一步动作可能是经过较长时间通信网络QoS恢复以后继续行驶,或者是出行服务提供商派驾驶员来驾驶车辆通过,或者其他方式等,本申请实施例对此不作具体限定。
需要说明的是,图8仅是示例性的提供了一种车辆1确定在第一分段行驶路径上行驶时的自动驾驶策略的具体实现。当然,车辆1还可以通过其他方式确定在第一分段行驶路径上行驶时的自动驾驶策略。比如,不论当前是哪个驾驶等级,在确定第一时间段,第一分段行驶路径上的通信网络QoS不达标之后,车辆1均首先确定服务器发送的推荐信息中是否包括第二分段行驶路径的信息或者第二MNO的网络标识。在服务器发送的推荐信息中不包括第二分段行驶路径的信息和第二MNO的网络标识的情况下,才考虑是否降低驾驶等级或者编队行驶等,本申请实施例对此不作具体限定。
上述步骤S301-S305结合图5中的(5b)所示的分段结果和图5中的(5c)、(5d)或(5e)所示的分段预测结果为例进行说明,给出了一种自动驾驶规划的方法。其中,假设车辆1根据上述自动驾驶规划的方法通过t0-t1分段行驶路径,到达t1时刻所在的位置,则车辆1继续将t1时刻所在的位置作为行驶全程(即目标行驶路径)的起始位置,t2时刻所在的位置作为行驶全程(即目标行驶路径)的起始位置,重新按照上述步骤S301-S305提供的自动驾驶规划的方法进行后续的自动驾驶规划,在此不再赘述。
需要说明的是,假设以t0时刻所在的位置为起始位置,t10时刻所在的位置为结束位置的目标行驶路径可以记为目标行驶路径1;以t1时刻所在的位置为起始位置,t10时刻所在的位置为结束位置的目标行驶路径可以记为目标行驶路径2,则对目标行驶路径2进行分段后获得的分段结果可能与图5中(5b)所示的t1-t10部分的分段结果可能并不相同,而且由于车辆1在t0-t1分段行驶路径上行驶时,服务器可能根据实际情况对t1时刻所在的位置至t10时刻所在的位置之间的路径上的通信网络QoS进行了调节,或者,t1时刻所在的位置至t10时刻所在的位置之间的路径上的通信网络QoS可能是不断动态变化的,因此对目标行驶路径2进行分段之后,服务器在t1时刻所在的位置,对车辆1在各个分段行驶路径上的通信网络QoS进行预测得到的预测结果也可能与对目标行驶路径1进行分段之后,服务器在t0时刻所在的位置,对车辆1在各个分段行驶路径上的通信网络QoS进行预测得到的预测结果不相同,在此统一说明,以下不再赘述。
综上,基于本申请实施例提供的自动驾驶规划的方法,由于本申请实施例中,服务器在 接收来自第一终端的路径规划信息之后,根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段。对于每个分段行驶路径,服务器对第一终端通过该分段行驶路径的时间段,该分段行驶路径上的通信网络QoS进行预测,得到对应的QoS预测结果之后,将分段行驶路径的信息以及对应的QoS预测结果发送给第一终端,由第一终端根据分段行驶路径的信息以及对应的QoS预测结果确定第一终端在该分段行驶路径上行驶时的自动驾驶策略。也就是说,本申请实施例中,第一终端可以根据不同的通信网络QoS情况,对第一终端的自动驾驶策略进行动态调整,不会因为通信网络QoS发生变化导致第一终端的行驶事故,从而可以实现安全驾驶。
其中,上述步骤S301至步骤S305、或者上述步骤S601至S609中服务器的动作可以由图2所示的通信设备200中的处理器201调用存储器203中存储的应用程序代码来执行,本实施例对此不作任何限制。
其中,上述步骤S301至步骤S305、或者上述步骤S801至S815中第一终端的动作可以由图2所示的通信设备200中的处理器201调用存储器203中存储的应用程序代码来执行,本实施例对此不作任何限制。
下面将给出几个自动驾驶规划的示例如下。
示例一、降低驾驶等级
假设车辆1计划以采用L4驾驶等级行驶的方式从出发点到目的地。L4驾驶等级要求带宽为2Mbps,时延为100ms,最小预测准确度为80%。车辆1上有驾驶员,在极端情况下,可以从L4驾驶等级切换到L1驾驶等级。其中,车辆1从L4驾驶等级切换到L3驾驶等级的准备时间是10s,从L4驾驶等级切换到L2驾驶等级的准备时间是10s,从L4驾驶等级切换到L1驾驶等级的准备时间是12s。则:
步骤1,车辆1在出发前向服务器发送路径规划信息1,该路径规划信息1包括车辆1的当前位置为坐标点(1,0),目的地为坐标点(7,7),目标行驶路径1如图9所示。采用的配速为40km/h。目标QoS为带宽>=2Mbps,时延<=100ms,预测准确度>=80%。通知提前量为12s。全程采用L4驾驶等级行驶。
步骤2,服务器收到车辆1发送的路径规划信息1之后,对目标行驶路径1按照通知提前量12s进行分段,分段结果满足车辆1按照目前速度通过每个分段的时间都至少是12s。如图9所示,假设车辆通过方格的每条边的时间是15s。则按照方格的每条边对路径进行分段,共分为14段。每个路段的通过时间为(0s-15s),(15s-30s),(30s-45s),……,以此递增。服务器对每个分段的通信网络QoS进行预测,得到QoS预测结果。
例如,坐标点(0,0)到(1,0)对应的分段行驶路径1在(0s-15s)的带宽为2Mbps,时延为100ms,预测准确度为80%,则说明分段行驶路径1的通信网络QoS达标。
例如,坐标点(1,0)到(2,0)对应的分段行驶路径2在(15s-30s)的带宽为1Mbps,时延为200ms,预测准确度为90%,则说明分段行驶路径2的通信网络QoS不达标。
类似的,服务器可以对车辆1通过其它分段行驶路径的时间段,其它分段行驶路径上的通信网络QoS进行预测并得到对应的QoS预测结果。
步骤3,因为分段行驶路径2的通信网络QoS不达标,而且服务器没有发现其他可用的运营商网络、路径或者可以组成编队的车辆,因此服务器向车辆1发送每个分段行驶路径的信息以及对应的QoS预测结果,不向车辆1发送推荐信息。
步骤4,车辆1在分段行驶路径1正常采用L4驾驶等级行驶,同时决策应该如何通过分段行驶路径2。由于服务器未向车辆1返回推荐信息,而且车辆1配备了驾驶员,因此车辆1 在坐标点(0,0)接收到服务器发送的每个分段行驶路径的信息以及对应的QoS预测结果之后,立即通知驾驶员就位,准备在分段行驶路径2按照L3驾驶等级或者L2驾驶等级或者L1驾驶等级行驶。
步骤5,车辆1在到达坐标点(1,0)时切换驾驶等级,如将驾驶等级切换为L1驾驶等级。L1驾驶等级要求带宽为100kbps,时延为3s,最小预测准确度为50%,同时,车辆1向服务器发送路径规划信息2。此次发送的路径规划信息2中的当前位置为坐标点(1,0),目的地为坐标点(7,7),目标行驶路径2如图9所示(与目标行驶路径1中坐标点(1,0)至坐标点(7,7)之间的路径重叠)。坐标点(1,0)到(2,0)对应的分段行驶路径2为L1驾驶等级,其余描述与本示例中的步骤1类似,在此不再赘述。
后续过程按照本示例中的步骤2至步骤5的方式循环执行,直至车辆1到达目的地。
示例二、切换路线
假设车辆1计划采用L4驾驶等级行驶的方式从出发点到目的地。L4驾驶等级要求带宽为2Mbps,时延为100ms,最小预测准确度为80%。车辆1上有驾驶员,在极端情况下,可以从L4驾驶等级切换到L1驾驶等级。其中,车辆1从L4驾驶等级切换到L3驾驶等级的准备时间是10s,从L4驾驶等级切换到L2驾驶等级的准备时间是10s,从L4驾驶等级切换到L1驾驶等级的准备时间是12s。则:
步骤1与上述示例一的步骤1相同,步骤2与上述示例一的步骤2相同,其中,目标行驶路径1如图10中的路线1所示。
步骤3,假设如图10所示,存在路线2可以绕过坐标点(1,0)到(2,0)对应的分段行驶路径2,并在坐标点(2,2)位置和原有路线1重合。此时,服务器可以向车辆1发送推荐信息,该推荐信息包括从坐标点(1,0)到坐标点(7,7)的另外一条行驶路径的信息,该另外一条行驶路径如图7中的路线2上从坐标点(1,0)到坐标点(7,7)中的路径所示。
步骤4,车辆1在分段行驶路径1正常采用L4驾驶等级行驶,同时决策应该如何通过分段行驶路径2。由于服务器向车辆1发送了推荐信息,推荐信息包括从坐标点(1,0)到坐标点(7,7)的另外一条行驶路径的信息,因此此时车辆1可以在本地进行自动驾驶路线的更新。
步骤5,车辆1在到达坐标点(1,0)时,向服务器发送路径规划信息2。此次发送的路径规划信息2中的当前位置为坐标点(1,0),目的地为坐标点(7,7),目标行驶路径如图10中的路线2上从坐标点(1,0)到坐标点(7,7)中的路径所示。其余描述与本示例中的步骤1类似,在此不再赘述。
后续过程按照本示例中的步骤2至步骤5的方式循环执行,直至车辆1到达目的地。
示例三、跟随编队
假设车辆1计划采用L4驾驶等级行驶的方式从出发点到目的地。L4驾驶等级要求带宽为2Mbps,时延为100ms,最小预测准确度为80%。车辆1上有驾驶员,在极端情况下,可以从L4驾驶等级切换到L1驾驶等级。其中,车辆1从L4驾驶等级切换到L3驾驶等级的准备时间是10s,从L4驾驶等级切换到L2驾驶等级的准备时间是10s,从L4驾驶等级切换到L1驾驶等级的准备时间是12s。则:
步骤1与上述示例一的步骤1相同,步骤2与上述示例一的步骤2相同,其中,目标行驶路径1如图11中的路线1所示。
步骤3,假设如图11所示,车辆2的行驶路线如路线2所示,则服务器可以确定车辆2在坐标点(1,0)到(2,0)对应的分段行驶路径2上和车辆1的路径相同,只是其出发时 间晚于车辆1,需要车辆1在坐标点(0,0)到(1,0)对应的分段行驶路径1上稍作等待或者在进入分段行驶路径2之前稍作等待。此时,服务器可以向车辆1发送推荐信息,该推荐信息包括车辆2的标识。
步骤4,车辆1在分段行驶路径1正常采用L4驾驶等级行驶,同时决策应该如何通过分段行驶路径2。由于服务器向车辆1发送了推荐信息,推荐信息包括车辆2的标识,因此此时车辆1可以确定在分段行驶路径2和车辆2组成编队,跟随编队行驶。
其中,车辆1确定接收上述推荐信息以后,可以给服务器发送响应表示接受该推荐信息。服务器可以给车辆2发送通知消息,该通知消息用于通知车辆2在分段行驶路径2会有车辆1和他组成编队,需要其配合行驶。车辆1到达坐标点(1,0)位置之前,等待车辆2。确认车辆2到达附近以后,即和车辆2组成编队。
步骤5,车辆在坐标点(1,0)位置和车辆2组成编队,并向服务器发送路径规划信息2。此次发送的路径规划信息2中的当前位置为坐标点(1,0),目的地为坐标点(7,7),目标行驶路径如图11中的路线2上从坐标点(1,0)到坐标点(7,7)中的路径所示,其中,在坐标点(1,0)到(2,0)对应的分段行驶路径2上为编队驾驶,坐标点(2,0)以后的路段为采用L4驾驶等级行驶的方式继续行驶。其余描述与本示例中的步骤1类似,在此不再赘述。
后续过程按照本示例中的步骤2至步骤5的方式循环执行,直至车辆1到达目的地。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述服务器或第一终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对服务器或第一终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图12示出了一种服务器120的结构示意图。该服务器120包括:收发模块1202和处理模块1201。收发模块1202,用于接收来自第一终端的路径规划信息,路径规划信息包括第一终端的目标行驶路径的信息;处理模块1201,用于根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;对于N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:处理模块1201,还用于对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到第一QoS预测结果,其中,第一时间段为第一终端在第一分段行驶路径上行驶时的时间段;收发模块1202,还用于向第一终端发送第一分段行驶路径的信息和第一QoS预测结果,其中,第一QoS预测结果用于确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。
可选的,路径规划信息还包括第一终端在目标行驶路径上行驶时的配速信息;处理模块1201,还用于根据该配速信息,确定上述第一时间段。
可选的,路径规划信息还包括目标QoS,该目标QoS为第一终端采用第一驾驶等级在目标行驶路径上行驶时所需的通信网络QoS指标;处理模块1201,还用于若第一QoS预测结果不满足目标QoS,确定第一分段行驶路径上的通信网络QoS不达标;处理模块1201,还用于确定第一分段行驶路径对应的推荐信息;收发模块1202,还用于向第一终端发送推荐信息,推荐信息用于确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。
可选的,处理模块1201用于确定第一分段行驶路径对应的推荐信息,包括:用于若第一时间段,第一分段行驶路径上的通信网络QoS不达标的原因为临时原因,确定第一分段行驶路径对应的推荐信息包括:预计恢复时间。
可选的,处理模块1201用于确定第一分段行驶路径对应的推荐信息,包括:用于若第一时间段,第一分段行驶路径上的通信网络QoS不达标的原因不是临时原因,确定第一分段行驶路径对应的推荐信息包括如下一项或多项:
若第一终端签约第二MNO,且第一分段行驶路径上存在能够为第一终端提供服务的第二MNO的网络,使得第二MNO的网络为第一终端提供服务时,对第一时间段,第一分段行驶路径上的通信网络QoS进行预测,得到的第二QoS预测结果满足目标QoS,则推荐信息包括:第二MNO的网络标识,其中,第二MNO的网络标识用于将第一终端从第一MNO的网络切换到第二MNO的网络,第一MNO的网络为当前为第一终端提供服务的MNO的网络。
或者,若存在第二分段行驶路径,使得对第二时间段,第二分段行驶路径上的通信网络QoS进行预测,得到的第三QoS预测结果符合目标QoS,则推荐信息包括:第二分段行驶路径的信息,其中,第二分段行驶路径的信息用于将第一终端从第一分段行驶路径切换到第二分段行驶路径上行驶,其中,第二时间段为第一终端在第二分段行驶路径上行驶时的时间段,第二分段行驶路径为目标行驶路径的备选路径上的一段行驶路径,目标行驶路径的起始位置与备选路径的起始位置相同,目标行驶路径的结束位置与备选路径的结束位置相同。
或者,若存在第二终端和第一终端同时通过第一分段行驶路径,且第一QoS预测结果符合第二终端采用第二驾驶等级在第一分段行驶路径上行驶时所需的通信网络QoS指标,则推荐信息包括:第二终端的标识,其中,第二终端的标识用于第一终端和第二终端组成编队。
可选的,若推荐信息包括第二终端的标识,收发模块1202,还用于向第二终端发送编队请求,编队请求用于请求第二终端和第一终端组成编队通过第一分段行驶路径。
可选的,路径规划信息还包括第一终端在目标行驶路径上行驶时所需的通知提前量;处理模块1201用于根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段,包括:用于根据目标行驶路径的信息和通知提前量,对第一终端的目标行驶路径进行分段,其中,分段结果满足第一终端通过每段分段行驶路径的时间大于或者等于通知提前量。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该服务器120以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该服务器120可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得服务器120执行上述方法实施例中的自动驾驶规划的方法。
具体的,图12中的收发模块1202和处理模块1201的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图12中的处理模块1201 的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图12中的收发模块1202的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的服务器120可执行上述的自动驾驶规划的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持服务器实现上述自动驾驶规划的方法,例如根据目标行驶路径的信息,对第一终端的目标行驶路径进行分段。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存服务器必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
或者,比如,以采用集成的方式划分各个功能模块的情况下,图13示出了一种第一终端130的结构示意图。该第一终端130包括:处理模块1301和收发模块1302;
收发模块1302,用于向服务器发送路径规划信息,该路径规划信息包括第一终端的目标行驶路径的信息,其中,目标行驶路径的信息用于对第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;对于N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:收发模块1302,还用于接收来自服务器的第一分段行驶路径的信息和第一QoS预测结果,其中,第一QoS预测结果是对第一时间段,第一分段行驶路径上的通信网络QoS进行预测得到的,第一时间段为第一终端在第一分段行驶路径上行驶时的时间段。处理模块1301,用于根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。
可选的,路径规划信息还包括目标QoS,目标QoS为第一终端采用第一驾驶等级在目标行驶路径上行驶时所需的通信网络QoS指标。收发模块1302,还用于接收来自服务器的第一分段行驶路径对应的推荐信息;相应的,处理模块1301用于根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于若第一QoS预测结果不满足目标QoS,确定第一时间段,第一分段行驶路径上的通信网络QoS不达标;根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。
一种可能的实现方式中,推荐信息包括预计恢复时间;相应的,处理模块1301用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略为:在预计恢复时间到达之后进入第一分段行驶路径。
或者,一种可能的实现方式中,推荐信息包括:第二MNO的网络标识,其中,第二MNO的网络为能够在第一分段行驶路径为第一终端提供服务的MNO的网络;相应的,处理模块1301用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略为:将第一终端从第一MNO的网络切换到第二MNO的网络之后进入第一分段行驶路径,第一MNO的网络为当前为第一终端提供服务的MNO的网络。
或者,一种可能的实现方式中,推荐信息包括:第二分段行驶路径的信息,其中,第二分段行驶路径为目标行驶路径的备选路径上的一段行驶路径,目标行驶路径的起始位置与备选路径的起始位置相同,目标行驶路径的结束位置与备选路径的结束位置相同;相应的,处理模块1301用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略 为:将第一终端从第一分段行驶路径切换到第二分段行驶路径上行驶。
或者,一种可能的实现方式中,推荐信息包括:第二终端的标识;相应的,处理模块1301用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于根据推荐信息,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略为:成功和第二终端组成编队之后,跟随第二终端进入第一分段行驶路径,在通过第一分段行驶路径之后,和第二终端取消编队关系。
可选的,处理模块1301用于根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于若第一QoS预测结果满足目标QoS,确定第一时间段,第一分段行驶路径上的通信网络QoS达标;确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略为:继续进入第一分段行驶路径。
可选的,处理模块1301用于根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略,包括:用于若第一QoS预测结果不满足目标QoS,确定第一时间段,第一分段行驶路径上的通信网络QoS不达标;确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略为:降低第一终端的驾驶等级的等级之后进入第一分段行驶路径。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一终端130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一终端130可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得第一终端130执行上述方法实施例中的自动驾驶规划的方法。
具体的,图13中的收发模块1302和处理模块1301的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图13中的处理模块1301的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图13中的收发模块1302的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的第一终端130可执行上述的自动驾驶规划的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种装置(例如,该装置可以是芯片系统),该装置包括处理器,用于支持第一终端实现上述自动驾驶规划的方法,例如根据第一QoS预测结果,确定第一终端在第一分段行驶路径上行驶时的自动驾驶策略。在一种可能的设计中,该装置还包括存储器。该存储器,用于保存第一终端必要的程序指令和数据。当然,存储器也可以不在该装置中。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线 (digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种自动驾驶规划的方法,其特征在于,所述方法包括:
    服务器接收来自第一终端的路径规划信息,所述路径规划信息包括所述第一终端的目标行驶路径的信息;
    所述服务器根据所述目标行驶路径的信息,对所述第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;
    对于所述N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:
    所述服务器对第一时间段内,所述第一分段行驶路径上的通信网络服务质量QoS进行预测,得到第一QoS预测结果,所述第一时间段为所述第一终端在所述第一分段行驶路径上行驶时的时间段;
    所述服务器向所述第一终端发送所述第一分段行驶路径的信息和所述第一QoS预测结果,其中,所述第一QoS预测结果用于确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  2. 根据权利要求1所述的方法,其特征在于,所述路径规划信息还包括所述第一终端在所述目标行驶路径上行驶时的配速信息;所述方法还包括:
    所述服务器根据所述配速信息,确定所述第一时间段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述路径规划信息还包括目标QoS,所述目标QoS为所述第一终端采用第一驾驶等级在所述目标行驶路径上行驶时所需的通信网络QoS指标;在所述服务器对第一时间段内,所述第一分段行驶路径上的通信网络QoS进行预测之后,所述方法还包括:
    若所述第一QoS预测结果不满足所述目标QoS,所述服务器确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;
    所述服务器确定所述第一分段行驶路径对应的推荐信息;
    所述服务器向所述第一终端发送所述推荐信息,所述推荐信息用于确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  4. 根据权利要求3所述的方法,其特征在于,所述服务器确定所述第一分段行驶路径对应的推荐信息,包括:
    若所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标的原因为临时原因,所述服务器确定所述第一分段行驶路径对应的推荐信息包括:预计恢复时间。
  5. 根据权利要求3所述的方法,其特征在于,所述服务器确定所述第一分段行驶路径对应的推荐信息,包括:
    若所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标的原因不是临时原因,所述服务器确定所述第一分段行驶路径对应的推荐信息包括如下一项或多项:
    若所述第一终端签约第二移动网络运营商MNO,且所述第一分段行驶路径上存在能够为所述第一终端提供服务的所述第二MNO的网络,使得所述第二MNO的网络为所述第一终端提供服务时,对所述第一时间段,所述第一分段行驶路径上的通信网络QoS进行预测,得到的第二QoS预测结果满足所述目标QoS,则所述推荐信息包括:所述第二MNO的网络标识,其中,所述第二MNO的网络标识用于将所述第一终端从第一MNO的网络切换到所述第二MNO的网络,所述第一MNO的网络为当前为所述第一终端提供服务的MNO的网络;
    或者,若存在第二分段行驶路径,使得对第二时间段,所述第二分段行驶路径上的通信 网络QoS进行预测,得到的第三QoS预测结果符合所述目标QoS,则所述推荐信息包括:所述第二分段行驶路径的信息,其中,所述第二分段行驶路径的信息用于将所述第一终端从所述第一分段行驶路径切换到所述第二分段行驶路径上行驶,其中,所述第二时间段为所述第一终端在所述第二分段行驶路径上行驶时的时间段,所述第二分段行驶路径为所述目标行驶路径的备选路径上的一段行驶路径,所述目标行驶路径的起始位置与所述备选路径的起始位置相同,所述目标行驶路径的结束位置与所述备选路径的结束位置相同;
    或者,若存在第二终端和所述第一终端同时通过所述第一分段行驶路径,且所述第一QoS预测结果符合所述第二终端采用第二驾驶等级在所述第一分段行驶路径上行驶时所需的通信网络QoS指标,则所述推荐信息包括:所述第二终端的标识,其中,所述第二终端的标识用于所述第一终端和所述第二终端组成编队。
  6. 根据权利要求5所述的方法,其特征在于,若所述推荐信息包括所述第二终端的标识,则所述方法还包括:
    所述服务器向所述第二终端发送编队请求,所述编队请求用于请求所述第二终端和所述第一终端组成编队通过所述第一分段行驶路径。
  7. 根据权利要求4所述的方法,其特征在于,所述自动驾驶策略包括:在所述预计恢复时间到达之后进入所述第一分段行驶路径。
  8. 根据权利要求5所述的方法,其特征在于,所述自动驾驶策略包括:将所述第一终端从第一MNO的网络切换到所述第二MNO的网络之后进入所述第一分段行驶路径;
    或者,所述自动驾驶策略包括:将所述第一终端从所述第一分段行驶路径切换到所述第二分段行驶路径上行驶;
    或者,所述自动驾驶策略包括:成功和所述第二终端组成编队之后,跟随所述第二终端进入所述第一分段行驶路径,在通过所述第一分段行驶路径之后,和所述第二终端取消编队关系。
  9. 根据权利要求1或2所述的方法,其特征在于,所述自动驾驶策略包括:继续进入所述第一分段行驶路径;
    或者,所述自动驾驶策略包括:降低所述第一终端的驾驶等级之后进入所述第一分段行驶路径。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述路径规划信息还包括所述第一终端在所述目标行驶路径上行驶时所需的通知提前量;
    所述服务器根据所述目标行驶路径的信息,对所述第一终端的目标行驶路径进行分段,包括:
    所述服务器根据所述目标行驶路径的信息和所述通知提前量,对所述第一终端的目标行驶路径进行分段,其中,分段结果满足所述第一终端通过每段分段行驶路径的时间大于或者等于所述通知提前量。
  11. 根据权利要求10所述的方法,其特征在于,所述通知提前量大于或者等于所述第一终端在不同驾驶等级之间切换所需的最长时间。
  12. 一种自动驾驶规划的方法,其特征在于,所述方法包括:
    第一终端向服务器发送路径规划信息,所述路径规划信息包括所述第一终端的目标行驶路径的信息,其中,所述目标行驶路径的信息用于对所述第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于的正整数;
    对于所述N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径 的方式进行处理:
    所述第一终端接收来自所述服务器的所述第一分段行驶路径的信息和第一服务质量QoS预测结果,其中,所述第一QoS预测结果是对第一时间段,所述第一分段行驶路径上的通信网络QoS进行预测得到的,所述第一时间段为所述第一终端在所述第一分段行驶路径上行驶时的时间段;
    所述第一终端根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  13. 根据权利要求12所述的方法,其特征在于,所述路径规划信息还包括目标QoS,所述目标QoS为所述第一终端采用第一驾驶等级在所述目标行驶路径上行驶时所需的通信网络QoS指标;在所述第一终端根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略之前,所述方法还包括:
    所述第一终端接收来自所述服务器的所述第一分段行驶路径对应的推荐信息;
    相应的,所述第一终端根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    若所述第一QoS预测结果不满足所述目标QoS,所述第一终端确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;
    所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  14. 根据权利要求13所述的方法,其特征在于,所述推荐信息包括预计恢复时间;
    相应的,所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:在所述预计恢复时间到达之后进入所述第一分段行驶路径。
  15. 根据权利要求13所述的方法,其特征在于,所述推荐信息包括:第二移动网络运营商MNO的网络标识,其中,所述第二MNO的网络为能够在所述第一分段行驶路径为所述第一终端提供服务的MNO的网络;
    相应的,所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:将所述第一终端从第一MNO的网络切换到所述第二MNO的网络之后进入所述第一分段行驶路径,所述第一MNO的网络为当前为所述第一终端提供服务的MNO的网络。
  16. 根据权利要求13所述的方法,其特征在于,所述推荐信息包括:第二分段行驶路径的信息,其中,所述第二分段行驶路径为所述目标行驶路径的备选路径上的一段行驶路径,所述目标行驶路径的起始位置与所述备选路径的起始位置相同,所述目标行驶路径的结束位置与所述备选路径的结束位置相同;
    相应的,所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:将所述第一终端从所述第一分段行驶路径切换到所述第二分段行驶路径上行驶。
  17. 根据权利要求13所述的方法,其特征在于,所述推荐信息包括:第二终端的标识;
    相应的,所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    所述第一终端根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:成功和所述第二终端组成编队之后,跟随所述第二终端进入所述第一分段行驶路径,在通过所述第一分段行驶路径之后,和所述第二终端取消编队关系。
  18. 根据权利要求12所述的方法,其特征在于,所述第一终端根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    若所述第一QoS预测结果满足所述目标QoS,所述第一终端确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS达标;
    所述第一终端确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:继续进入所述第一分段行驶路径。
  19. 根据权利要求12所述的方法,其特征在于,所述第一终端根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶的自动驾驶策略,包括:
    若所述第一QoS预测结果不满足所述目标QoS,所述第一终端确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;
    所述第一终端确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:降低所述第一终端的驾驶等级的等级之后进入所述第一分段行驶路径。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述路径规划信息还包括所述第一终端在所述目标行驶路径上行驶所需的通知提前量;其中,所述通知提前量用于对所述第一终端的目标行驶路径进行分段,分段结果满足所述第一终端通过每段分段行驶路径的时间大于或者等于所述通知提前量。
  21. 根据权利要求20所述的方法,其特征在于,所述通知提前量大于或者等于所述第一终端在不同驾驶等级之间切换所需的最长时间。
  22. 一种服务器,其特征在于,所述服务器包括:收发模块和处理模块;
    所述收发模块,用于接收来自第一终端的路径规划信息,所述路径规划信息包括所述第一终端的目标行驶路径的信息;
    所述处理模块,用于根据所述目标行驶路径的信息,对所述第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;
    对于所述N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:
    所述处理模块,还用于对第一时间段,所述第一分段行驶路径上的通信网络服务质量QoS进行预测,得到第一QoS预测结果,所述第一时间段为所述第一终端在所述第一分段行驶路径上行驶时的时间段;
    所述收发模块,还用于向所述第一终端发送所述第一分段行驶路径的信息和所述第一QoS预测结果,其中,所述第一QoS预测结果用于确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  23. 根据权利要求22所述的服务器,所述路径规划信息还包括所述第一终端在所述目标行驶路径上行驶时的配速信息;
    所述处理模块,还用于根据所述配速信息,确定所述第一时间段。
  24. 根据权利要求22或23所述的服务器,其特征在于,所述路径规划信息还包括目标QoS,所述目标QoS为所述第一终端采用第一驾驶等级在所述目标行驶路径上行驶时所需的通 信网络QoS指标;
    所述处理模块,还用于若所述第一QoS预测结果不满足所述目标QoS,确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;
    所述处理模块,还用于确定所述第一分段行驶路径对应的推荐信息;
    所述收发模块,还用于向所述第一终端发送所述推荐信息,所述推荐信息用于确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  25. 根据权利要求24所述的服务器,其特征在于,所述处理模块用于确定所述第一分段行驶路径对应的推荐信息,包括:
    用于若所述第一时间段,所述第一分段行驶路径上的QoS不达标的原因为临时原因,确定所述第一分段行驶路径对应的推荐信息包括:预计恢复时间。
  26. 根据权利要求24所述的服务器,其特征在于,所述处理模块用于确定所述第一分段行驶路径对应的推荐信息,包括:
    用于若所述第一分段行驶路径上的通信网络QoS不达标的原因不是临时原因,确定所述第一分段行驶路径对应的推荐信息包括如下一项或多项:
    若所述第一终端签约第二移动网络运营商MNO,且所述第一分段行驶路径上存在能够为所述第一终端提供服务的所述第二MNO的网络,使得所述第二MNO的网络为所述第一终端提供服务时,对所述第一时间段,所述第一分段行驶路径上行驶时的通信网络QoS进行预测,得到的第二QoS预测结果满足所述目标QoS,则所述推荐信息包括:所述第二MNO的网络标识,其中,所述第二MNO的网络标识用于将所述第一终端从第一MNO的网络切换到所述第二MNO的网络,所述第一MNO的网络为当前为所述第一终端提供服务的MNO的网络;
    或者,若存在第二分段行驶路径,使得对第二时间段,所述第二分段行驶路径上的QoS进行预测,得到的第三QoS预测结果符合所述目标QoS,则所述推荐信息包括:所述第二分段行驶路径的信息,其中,所述第二分段行驶路径的信息用于将所述第一终端从所述第一分段行驶路径切换到所述第二分段行驶路径上行驶,其中,所述第二时间段为所述第一终端在所述第二分段行驶路径上行驶时的时间段,所述第二分段行驶路径为所述目标行驶路径的备选路径上的一段行驶路径,所述目标行驶路径的起始位置与所述备选路径的起始位置相同,所述目标行驶路径的结束位置与所述备选路径的结束位置相同;
    或者,若存在第二终端和所述第一终端同时通过所述第一分段行驶路径,且所述第一QoS预测结果符合所述第二终端采用第二驾驶等级在所述第一分段行驶路径上行驶时所需的通信网络QoS指标,则所述推荐信息包括:所述第二终端的标识,其中,所述第二终端的标识用于所述第一终端和所述第二终端组成编队。
  27. 根据权利要求26所述的服务器,其特征在于,若所述推荐信息包括所述第二终端的标识,
    所述收发模块,还用于向所述第二终端发送编队请求,所述编队请求用于请求所述第二终端和所述第一终端组成编队通过所述第一分段行驶路径。
  28. 根据权利要求22-27任一项所述的服务器,其特征在于,所述路径规划信息还包括所述第一终端在所述目标行驶路径上行驶时所需的通知提前量;
    所述处理模块用于根据所述目标行驶路径的信息,对所述第一终端的目标行驶路径进行分段,包括:
    用于根据所述目标行驶路径的信息和所述通知提前量,对所述第一终端的目标行驶路径进行分段,其中,分段结果满足所述第一终端通过每段分段行驶路径的时间大于或者等于所 述通知提前量。
  29. 一种第一终端,其特征在于,所述第一终端包括:处理模块和收发模块;
    所述收发模块,用于向服务器发送路径规划信息,所述路径规划信息包括所述第一终端的目标行驶路径的信息,其中,所述目标行驶路径的信息用于对所述第一终端的目标行驶路径进行分段,得到N个分段行驶路径,N为大于1的正整数;
    对于所述N个分段行驶路径中的任意分段行驶路径,均按照下述针对第一分段行驶路径的方式进行处理:
    所述收发模块,还用于接收来自所述服务器的所述第一分段行驶路径的信息和第一服务质量QoS预测结果,其中,所述第一QoS预测结果是对第一时间段,所述第一分段行驶路径上的通信网络QoS进行预测得到的,所述第一时间段为所述第一终端在所述第一分段行驶路径上行驶时的时间段;
    所述处理模块,用于根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  30. 根据权利要求29所述的第一终端,其特征在于,所述路径规划信息还包括目标QoS,所述目标QoS为所述第一终端采用第一驾驶等级在所述目标行驶路径上行驶时所需的通信网络QoS指标;
    所述收发模块,还用于接收来自所述服务器的所述第一分段行驶路径对应的推荐信息;
    相应的,所述处理模块用于根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于若所述第一QoS预测结果不满足所述目标QoS,确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略。
  31. 根据权利要求30所述的第一终端,其特征在于,所述推荐信息包括预计恢复时间;
    相应的,所述处理模块用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:在所述预计恢复时间到达之后进入所述第一分段行驶路径。
  32. 根据权利要求30所述的第一终端,其特征在于,所述推荐信息包括:第二移动网络运营商MNO的网络标识,其中,所述第二MNO的网络为能够在所述第一分段行驶路径为所述第一终端提供服务的MNO的网络;相应的,所述处理模块用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:将所述第一终端从第一MNO的网络切换到所述第二MNO的网络之后进入所述第一分段行驶路径,所述第一MNO的网络为当前为所述第一终端提供服务的MNO的网络。
  33. 根据权利要求30所述的第一终端,其特征在于,所述推荐信息包括:第二分段行驶路径的信息,其中,所述第二分段行驶路径为所述目标行驶路径的备选路径上的一段行驶路径,所述目标行驶路径的起始位置与所述备选路径的起始位置相同,所述目标行驶路径的结束位置与所述备选路径的结束位置相同;相应的,所述处理模块用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:将所述第一终端从所述第一分段行驶路径切换到所述第二分段行驶路径上行驶。
  34. 根据权利要求30所述的第一终端,其特征在于,所述推荐信息包括:第二终端的标识;相应的,所述处理模块用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于根据所述推荐信息,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:成功和所述第二终端组成编队之后,跟随所述第二终端进入所述第一分段行驶路径,在通过所述第一分段行驶路径之后,和所述第二终端取消编队关系。
  35. 根据权利要求29所述的第一终端,其特征在于,所述处理模块用于根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于若所述第一QoS预测结果满足所述目标QoS,确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS达标;确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:继续进入所述第一分段行驶路径。
  36. 根据权利要求29所述的第一终端,其特征在于,所述处理模块用于根据所述第一QoS预测结果,确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略,包括:
    用于若所述第一QoS预测结果不满足所述目标QoS,确定所述第一时间段,所述第一分段行驶路径上的通信网络QoS不达标;确定所述第一终端在所述第一分段行驶路径上行驶时的自动驾驶策略为:降低所述第一终端的驾驶等级之后进入所述第一分段行驶路径。
PCT/CN2019/104196 2018-11-26 2019-09-03 自动驾驶规划的方法、设备及系统 WO2020107991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811418859.9A CN111223321A (zh) 2018-11-26 2018-11-26 自动驾驶规划的方法、设备及系统
CN201811418859.9 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020107991A1 true WO2020107991A1 (zh) 2020-06-04

Family

ID=70832007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104196 WO2020107991A1 (zh) 2018-11-26 2019-09-03 自动驾驶规划的方法、设备及系统

Country Status (2)

Country Link
CN (1) CN111223321A (zh)
WO (1) WO2020107991A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020208996A1 (de) 2020-07-17 2022-01-20 Denso Corporation Verfahren und Apparat für ein Managen einer Konnektivität eines Fahrzeugs
CN114697865A (zh) * 2020-12-31 2022-07-01 南京福佑在线电子商务有限公司 货运定位方法、装置及系统
DE102021000246A1 (de) 2021-01-19 2022-07-21 Mercedes-Benz Group AG Steuerungsverfahren zum automatischen Aufbau oder zur automatischen Umschaltung einer Fahrzeugkommunikation zum Datenaustausch zwischen einem Fahrzeug und einer Gegenstelle
US11751131B2 (en) 2020-11-24 2023-09-05 Volkswagen Aktiengesellschaft Vehicle, network node, apparatus, computer program, and method for selecting a mobile communications system for a mobile communications service
WO2024182875A1 (en) * 2023-03-06 2024-09-12 Huawei Technologies Canada Co., Ltd. Systems and methods for a connected frenet frame cav planning platform
US12137377B1 (en) * 2020-11-24 2024-11-05 Yournavi, Llc Measuring wireless network quality of service on mobile devices

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783859A (zh) * 2020-06-19 2020-10-16 深圳市天一智联科技有限公司 tyRTC相同轨迹确认方法、装置、存储介质及设备
CN112422659A (zh) * 2020-11-06 2021-02-26 腾讯科技(深圳)有限公司 一种业务数据处理方法、设备及可读存储介质
CN113965907B (zh) * 2021-11-17 2024-06-07 交控科技股份有限公司 业务配置方法用于轨道交通应用场景的、核心网设备以及存储介质
CN116456388A (zh) * 2022-01-06 2023-07-18 腾讯科技(深圳)有限公司 网联式自动驾驶方法、设备、存储介质及程序产品
CN117104253B (zh) * 2022-05-17 2024-09-06 腾讯科技(深圳)有限公司 远程驾驶控制方法、装置、计算机设备及存储介质
CN115297454A (zh) * 2022-07-18 2022-11-04 东风汽车集团股份有限公司 一种基于无线网络的远程挪车系统和方法
CN115493610A (zh) * 2022-09-30 2022-12-20 重庆长安汽车股份有限公司 一种车道级导航方法及装置、电子设备、存储介质
WO2024098393A1 (zh) * 2022-11-11 2024-05-16 华为技术有限公司 一种控制方法、装置、车辆、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070021879A1 (en) * 2005-07-25 2007-01-25 Lockheed Martin Corporation System for intelligently controlling a team of vehicles
CN105588572A (zh) * 2014-10-02 2016-05-18 财团法人资讯工业策进会 路径规划系统、路径规划方法、行车信息更新方法
CN106604356A (zh) * 2015-10-15 2017-04-26 华为终端(东莞)有限公司 无线通信接入方法、装置、处理器和无线终端
CN106796114A (zh) * 2016-11-03 2017-05-31 深圳达闼科技控股有限公司 路径规划的方法、装置、服务器及机器人
CN108292474A (zh) * 2015-11-04 2018-07-17 祖克斯有限公司 派遣和维护自主车辆的车队的协调

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052114A1 (de) * 2010-11-20 2012-05-24 Bayerische Motoren Werke Aktiengesellschaft Navigationssystem
EP2645196B1 (en) * 2012-03-30 2018-12-12 The Boeing Company Network of unmanned vehicles
CN103384181B (zh) * 2012-05-04 2018-04-20 华为技术有限公司 数据包的传输方法和设备
DE102015010178B4 (de) * 2015-08-04 2019-03-21 Audi Ag Verfahren zum fahrerlosen Betrieb eines zur vollautomatischen Führung eines Kraftfahrzeugs ausgebildeten Fahrzeugsystems und Kraftfahrzeug
DE102015216900A1 (de) * 2015-09-03 2017-03-09 Robert Bosch Gmbh Kraftfahrzeug und Parkplatz für Kraftfahrzeuge sowie Kommunikationssystem
EP4180893A1 (en) * 2015-11-04 2023-05-17 Zoox, Inc. Teleoperation system and method for trajectory modification of autonomous vehicles
WO2017107169A1 (zh) * 2015-12-25 2017-06-29 华为技术有限公司 导航系统中切换路侧导航单元的方法和设备
CN105679068B (zh) * 2016-02-26 2018-10-12 重庆邮电大学 一种与智能停车场协同的智能车辆自动驾驶系统和方法
CN108352110A (zh) * 2016-06-30 2018-07-31 华为技术有限公司 控制车辆编队行驶的方法、集中控制设备和车辆
US20180012197A1 (en) * 2016-07-07 2018-01-11 NextEv USA, Inc. Battery exchange licensing program based on state of charge of battery pack
EP3322204B1 (en) * 2016-11-11 2019-03-13 Bayerische Motoren Werke Aktiengesellschaft Driver assistance system and method
WO2018161358A1 (zh) * 2017-03-10 2018-09-13 深圳前海达闼云端智能科技有限公司 一种导航方法、装置以及终端设备
KR20180112949A (ko) * 2017-04-05 2018-10-15 현대자동차주식회사 차량의 자율 주행 제어 시스템 및 그를 이용한 자율 주행 제어방법
CN107770740A (zh) * 2017-09-30 2018-03-06 蔚来汽车有限公司 车载数据传输方法、接收方法、及相应的系统
CN108875998A (zh) * 2018-04-20 2018-11-23 北京智行者科技有限公司 一种自动驾驶车辆规划方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070021879A1 (en) * 2005-07-25 2007-01-25 Lockheed Martin Corporation System for intelligently controlling a team of vehicles
CN105588572A (zh) * 2014-10-02 2016-05-18 财团法人资讯工业策进会 路径规划系统、路径规划方法、行车信息更新方法
CN106604356A (zh) * 2015-10-15 2017-04-26 华为终端(东莞)有限公司 无线通信接入方法、装置、处理器和无线终端
CN108292474A (zh) * 2015-11-04 2018-07-17 祖克斯有限公司 派遣和维护自主车辆的车队的协调
CN106796114A (zh) * 2016-11-03 2017-05-31 深圳达闼科技控股有限公司 路径规划的方法、装置、服务器及机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020208996A1 (de) 2020-07-17 2022-01-20 Denso Corporation Verfahren und Apparat für ein Managen einer Konnektivität eines Fahrzeugs
US11751131B2 (en) 2020-11-24 2023-09-05 Volkswagen Aktiengesellschaft Vehicle, network node, apparatus, computer program, and method for selecting a mobile communications system for a mobile communications service
US12137377B1 (en) * 2020-11-24 2024-11-05 Yournavi, Llc Measuring wireless network quality of service on mobile devices
CN114697865A (zh) * 2020-12-31 2022-07-01 南京福佑在线电子商务有限公司 货运定位方法、装置及系统
DE102021000246A1 (de) 2021-01-19 2022-07-21 Mercedes-Benz Group AG Steuerungsverfahren zum automatischen Aufbau oder zur automatischen Umschaltung einer Fahrzeugkommunikation zum Datenaustausch zwischen einem Fahrzeug und einer Gegenstelle
WO2022156953A1 (de) 2021-01-19 2022-07-28 Mercedes-Benz Group AG Steuerungsverfahren zum automatischen aufbau oder zur automatischen umschaltung einer fahrzeugkommunikation zum datenaustausch zwischen einem fahrzeug und einer gegenstelle
WO2024182875A1 (en) * 2023-03-06 2024-09-12 Huawei Technologies Canada Co., Ltd. Systems and methods for a connected frenet frame cav planning platform

Also Published As

Publication number Publication date
CN111223321A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020107991A1 (zh) 自动驾驶规划的方法、设备及系统
US20220412764A1 (en) Navigation method and apparatus
US9761136B2 (en) Methods and software for managing vehicle priority in a self-organizing traffic control system
US20200312133A1 (en) Express Lane Planning Method and Unit
JP5930026B2 (ja) 通信装置、送信間隔制御装置、位置情報送信方法、位置情報の送信間隔制御方法およびプログラム
US20230030446A1 (en) Remote driving method, apparatus, and system, device, and medium
EP3800903B1 (en) Internet of things platoon communication method
CN110503843B (zh) 车辆行驶路线分析方法、装置、服务器和存储介质
US20200401959A1 (en) Emergency traffic management system using mobile device
US11645913B2 (en) System and method for location data fusion and filtering
CN111866941B (zh) 一种网络资源调度方法及相关设备
US20230008967A1 (en) Methods of communication in traffic intersection management
JP2019219845A (ja) 車両管理システムおよび車両管理方法
WO2022079980A1 (ja) 電波マップ更新装置、及び通信品質特定装置
TW202133643A (zh) 車聯網(v2x)輔助的局域導航
EP3857862B1 (en) A mechanism to determine cellular signal reputation of a location and intelligently manage lack of connectivity
CN114858175A (zh) 一种车辆出行方法、装置、设备及存储介质
CN114727273A (zh) 常开移动性即服务连接性
JP6658292B2 (ja) 走行支援装置
CN111612389A (zh) 信息处理装置、信息处理方法和非瞬时性存储介质
WO2023062673A1 (ja) 管理システム、管理装置、及び管理方法
US11778586B2 (en) Connected vehicle data offload management
US11821745B2 (en) Traveling route determination system, traveling route determination method, and computer program
US11507082B2 (en) Quality of experience (QoE) management for vehicle control systems
CN117795579A (zh) 一种数据融合方法、装置、设备、存储介质、车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889577

Country of ref document: EP

Kind code of ref document: A1