WO2020107826A1 - 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 - Google Patents
一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 Download PDFInfo
- Publication number
- WO2020107826A1 WO2020107826A1 PCT/CN2019/088446 CN2019088446W WO2020107826A1 WO 2020107826 A1 WO2020107826 A1 WO 2020107826A1 CN 2019088446 W CN2019088446 W CN 2019088446W WO 2020107826 A1 WO2020107826 A1 WO 2020107826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flue gas
- dust
- heat
- foam metal
- heat pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2455—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
Definitions
- the invention relates to the recovery of waste heat from dust-containing flue gas purification, in particular to a graded purification waste heat recovery system from dust-containing flue gas and a dust-removing heat storage device.
- Heat pipes have the characteristics of high efficiency heat exchange and strong adaptability to working conditions, and are widely used in integrated waste heat recovery devices.
- the planned service life of the heat pipe waste heat recovery equipment is 5-8 years.
- non-combustible or unburned substances and fly ash formed after the condensation of molten metal salts are common in the low-temperature and high-dust flue gas emitted by high-energy industrial production Particles, these fly ash particles scour the wall of the heat pipe with the flue gas.
- the friction of the particles against the wall of the heat pipe is easy to wear the metal on the heated surface.
- the accumulation of wear makes the heat pipe burst and cause the heat exchange equipment to fail. Eventually, it needs to be shut down for maintenance.
- designing a system and device for the integration of dusty flue gas purification and waste heat recovery, selecting a heat pipe with high heat exchange capacity, and at the same time solving the problem of wear and thermal fatigue of the heat pipe, will improve the energy utilization rate of high energy-consuming enterprises.
- the improvement has a decisive role, and it is also helpful to improve China's energy utilization rate and promote sustainable development of society.
- the technical problem to be solved by the present invention is to provide a dust-containing flue gas graded purification waste heat recovery system and a dust-removing heat storage device.
- a dust-containing flue gas graded purification waste heat recovery system includes a housing, the housing is an inner rectangular solid structure, and a partition is provided in the middle of the housing.
- the plate divides the housing into two chambers, the upper and lower chambers are flue gas channels, and the upper chamber is a cooling medium channel;
- the flue gas channel is provided with a flue gas inlet at the left end and a right end
- the cooling fluid channel is provided with a cooling fluid outlet at the left end, and a first cooling fluid inlet is provided at the right end;
- the dust storage heat exchange device is composed of a number of dust storage heat exchange units arranged side by side in parallel;
- the dust removal heat storage unit includes a foam metal block, a filter screen and a number of three-dimensional rib heat pipes;
- the three-dimensional ribbed heat pipes are arranged side by side
- the invention is a three-dimensional expanded surface-based flue gas classification purification, heat storage, and high-efficiency heat exchange system; its structural design is reasonable, and a three-dimensional rib heat pipe is provided as a heat transfer medium for flue gas and cooling medium; a filter screen and foam are provided
- the metal block removes fly ash in the flue gas and reduces heat pipe wear; the foam metal block has a heat storage function, which can release heat when the temperature of the flue gas changes to make the system work stably and prevent the material from thermal fatigue.
- foam metal blocks By arranging foam metal blocks outside the heat pipe evaporation section, it is helpful to increase the flue gas flow disturbance and expand the heat exchange area, and improve the heat exchange performance outside the pipe in the evaporation section.
- the cooling working fluid channel is also provided with a plurality of foam metal blocks in the condensation section arranged side by side in parallel; the heat pipe condensation section is inserted through The condensed section is inside the foam metal block.
- a foam metal block is provided to cover the condensation section of the heat pipe to achieve the purpose of expanding the heat exchange surface.
- the foam metal block is set to different porosities along the flue gas flow direction, and the foam metal block porosity is set to be along the flue gas inlet It gradually decreases toward the flue gas outlet.
- the filter mesh is set to different meshes along the flue gas flow direction, and the mesh of the filter mesh is set to smoke along the flue gas inlet The direction of the gas outlet gradually increases.
- the fly ash with different particle sizes is evenly intercepted by the dust storage heat exchange units at all levels, which can prevent the fly ash from being exchanged at the first level of dust storage Centralized deposition at the thermal unit reduces the operating frequency of cleaning.
- the filter screen is a thin-porosity foam metal thin layer or wire mesh.
- the top of the housing is provided with a low-temperature working fluid outlet and a second cooling working fluid inlet.
- the second technical solution of the present invention is a dust-removing heat storage device for a dust-containing flue gas graded purification waste heat recovery system, characterized in that the dust-removing heat storage device is provided in the flue gas channel and consists of several It consists of a dust-removing heat-storage unit arranged in parallel along the horizontal direction; the dust-removing heat-storage unit includes a foam metal block, a filter, and a number of three-dimensional rib heat pipes; the three-dimensional rib heat pipes are arranged in parallel in the longitudinal direction, and each three-dimensional rib heat pipe is inserted In the foam metal block; the left side of the foam metal block is provided with a filter screen; the upper end of the three-dimensional ribbed heat pipe passes through the partition into the cooling medium channel and extends upwards as a heat pipe condensation section; in the flue gas channel
- the three-dimensional ribbed heat pipe serves as a heat pipe evaporation section; the three-dimensional ribbed heat pipe is hollow inside and sealed at both ends, and a working fluid
- the foam metal block is set to different porosities along the flue gas flow direction, and the foam metal block The porosity is set to gradually decrease from the flue gas inlet to the flue gas outlet.
- the filter screen is set to different meshes along the flue gas flow direction, and the mesh of the filter mesh It is set to gradually increase from the flue gas inlet to the flue gas outlet.
- the cooling working fluid channel is also provided with a plurality of condensed section foam metal blocks arranged side by side in parallel ;
- the condensation section of the heat pipe is inserted into the foam metal block of the condensation section.
- the present invention reduces the wear of the heat pipe by arranging the filter screen and the foam metal block to reduce the wear of the heat pipe; and through the high specific heat capacity storage of the foam metal block to reduce the thermal fatigue of the material caused by flue gas temperature fluctuations; increase Flue gas flow disturbs and expands heat exchange area to improve heat exchange performance.
- the filter mesh and foam metal block that constitute the dust storage and heat exchange unit can be set to different meshes and porosities along the flue gas flow direction to achieve the purpose of graded filtration of different particle sizes, thereby reducing the cleaning frequency.
- the present invention can simultaneously realize enhanced heat exchange between the flue gas and the cooling medium side, realize the integration of dust removal and heat storage, and has good reliability and stability, and has the characteristics of environmental friendliness and low operating cost.
- the invention is widely applicable to waste heat recovery of various industrial flue gases.
- FIG. 1 is a schematic structural diagram of a dust-containing flue gas graded purification waste heat recovery system according to the present invention.
- FIG. 2 is a schematic diagram of a dust-containing flue gas graded purification waste heat recovery system according to the present invention.
- FIG. 3 is a partially enlarged schematic view at I in FIG. 1.
- Fig. 4 is a cross-sectional view taken along line A-A in Fig. 1.
- Fig. 5 is a schematic structural view of a three-dimensional ribbed heat pipe.
- FIG. 6 is a schematic diagram of a multi-stage arrangement of cooling medium.
- a dust-containing flue gas graded purification waste heat recovery system includes a housing 11, the housing 11 is an inner rectangular solid structure, a partition 12 is provided in the middle of the housing 11, The partition 12 divides the housing 11 into two upper and lower chambers, the lower chamber is a flue gas channel 11a, and the upper chamber is a cooling medium channel 11b; the left end of the flue gas channel 11a is provided with a flue gas inlet 2.
- the right end is provided with a flue gas outlet 4, and the lower end is provided with a stepped ash removal port 8;
- the cooling working fluid channel 11b is provided with a cooling working fluid outlet 1 on the left end, and a first cooling working fluid inlet 3 is provided on the right end;
- the flue gas channel 11a is provided with a dust-removing heat storage device and a dust remover 28;
- the dust-removing heat storage device is composed of a plurality of dust-removing heat storage units arranged side by side in the lateral direction;
- the dust-removing heat storage unit includes foam metal Block 7, filter 18 and a number of three-dimensional ribbed heat pipes 5;
- the three-dimensional ribbed heat pipes 5 are arranged side by side in the longitudinal direction, and each three-dimensional ribbed heat pipe 5 is inserted into the foam metal block 7;
- the left end of the foam metal block 7 is provided with Screen 18;
- the upper end of the three-dimensional ribbed heat pipe 5 passes through the partition 12 into the cooling medium channel 11b,
- the three-dimensional ribbed heat pipes 5 in different dust-removing heat storage units can use different substances as the working fluid in the pipe to realize the gradual utilization of the waste heat.
- the flue gas temperature is 400-600°C
- the flue gas temperature is 150-400°C
- the flue gas temperature is 40-150°C
- the partition 12 provided can adjust the aperture and the spacing between holes to suit different heat pipe diameters and arrangements; the three-dimensional ribbed heat pipe can be changed by changing the height, width and axial direction of the inner and outer rib fins Spacing and circumferential spacing to achieve the best heat transfer performance and reduce fly ash deposition.
- the cooling working fluid channel 11 b is also provided with a plurality of condensed section foam metal blocks 27 arranged side by side in the lateral direction; the heat pipe condensed section 20 is inserted into the condensed section foam metal block 27.
- the foam metal block 7 is an aluminum-silicon alloy foam metal block.
- the foam metal block 7 is set to different porosities along the flue gas flow direction, and the porosity of the foam metal block 7 is set to gradually decrease along the flue gas inlet 2 toward the flue gas outlet 4.
- the porosity near the side of the flue gas inlet 2 can be selected from 80% to 90%.
- the minimum porosity near the side of the flue gas outlet 4 can reach 30%.
- the porosity between the side of the flue gas inlet 2 and the side of the flue gas outlet 4 is 80% to 30% gradually decreased.
- the mesh 18 is set to different meshes in the flue gas flow direction, and the mesh number of the mesh 18 is set to gradually increase from the flue gas inlet 2 to the flue gas outlet 4.
- the number of meshes near the side of the flue gas inlet 2 can be selected from 40-50 mesh
- the number of meshes near the side of the flue gas outlet 4 can be selected from 250-300 mesh
- the number of meshes between the inlet side 2 and the outlet side 4 is from 50 mesh to 250 mesh gradually increased.
- the filter screen 18 is a thin foam metal thin layer or wire mesh.
- the top of the housing is provided with a low-temperature working fluid outlet 26 and a second cooling working fluid inlet 23.
- the passage between the first cooling working fluid inlet 3 and the low-temperature working fluid outlet 26 is a low-temperature waste heat recovery section 22, and the passage between the second cooling working fluid inlet 23 and the cooling working fluid outlet 1 is a medium-temperature waste heat recovery section 21.
- the dust cleaner 28 is installed on the end plates on the left and right sides of the flue gas channel 11a, and the fly ash deposited on the filter screen 18 and the foam metal unit 7 is removed to the dust removal port 8 by sound waves or vibration.
- the tube inner wall of the heat pipe evaporation section 19 is provided with a number of three-dimensional inner fins 17, and the tube outer wall is provided with a number of three-dimensional outer fins 16; the tube inner wall of the heat pipe condensation section 20 is provided with a number of three-dimensional inner fins 17 .
- the three-dimensional inner ribs in the heat pipe evaporation section serve to increase the vaporization core and enhance boiling heat transfer, and the condensing section three-dimensional inner ribs serve to increase the heat transfer area and promote the formation of bead condensation, and finally strengthen the condensation heat transfer; It is beneficial to improve the heat exchange performance of the evaporation section and the condensation section.
- the three-dimensional external fins 16 outside the condensation section of the heat pipe By processing the three-dimensional external fins 16 outside the condensation section of the heat pipe, it is used to interrupt the development of the boundary layer and play a role in strengthening the convective heat exchange with the cooling working medium. It is beneficial to increase the disturbance of the cooling working medium, expand the heat exchange area, and improve the heat transfer in the condensation section.
- a positioning ring 14 is sleeved in the middle of the three-dimensional rib heat pipe 5 for positioning the three-dimensional rib heat pipe 5 in the height direction.
- a sealing ring 15 is provided between the three-dimensional ribbed heat pipe 5 and the partition plate 12 for sealing between the three-dimensional ribbed heat pipe 5 and the partition plate 12 to prevent convection of flue gas and cooling medium; the foam metal block 7 and the partition plate
- a metal elastic washer 13 is provided between the 12 and the dust accumulation can be shaken down to the dust removal port through vibration.
- a ceiling ring 9 is provided on the top plate 6 of the housing 11, and a plurality of brackets 10 are provided below the housing 11 to facilitate installation.
- the cooling working medium outlet 1 and the flue gas inlet 2 have a trapezoidal structure with a small front end and a large rear end
- the cooling working medium inlet 3 and the flue gas outlet 4 have a trapezoidal structure with a large front end and a small rear end.
- Embodiment 2 A dust-removing heat storage device for a dust-containing flue gas graded purification waste heat recovery system, the dust-removing heat storage device is provided in the flue gas channel 11a, and is composed of a plurality of dust-removing heat storage devices arranged side by side in parallel Unit composition;
- the dust storage heat exchange unit includes a foam metal block 7, a filter 18 and a number of three-dimensional rib heat pipes 5;
- the three-dimensional rib heat pipes 5 are arranged side by side in the longitudinal direction, each three-dimensional rib heat pipe 5 is inserted into the foam metal block 7 Medium;
- the left end of the foam metal block 7 is provided with a stainless steel screen 18;
- the upper end of the three-dimensional ribbed heat pipe 5 passes through the separator 12 into the cooling medium channel 11b, and extends upwards, as the heat pipe condensation section 20;
- the three-dimensional ribbed heat pipe 5 in the flue gas channel 11a serves as the heat pipe evaporation section 20;
- the foam metal block 7 is set to different porosities along the flue gas flow direction, and the porosity of the foam metal block 7 is set to gradually decrease along the flue gas inlet 2 toward the flue gas outlet 4.
- the porosity near the side of the flue gas inlet 2 can be selected from 80% to 90%, the minimum porosity near the side of the flue gas outlet 4 can reach 30%, and the porosity between the inlet side 2 and the outlet side 4 is from 80% to 30 %slowing shrieking.
- the mesh 18 is set to different meshes in the flue gas flow direction, and the mesh number of the mesh 18 is set to gradually increase from the flue gas inlet 2 to the flue gas outlet 4.
- the number of meshes near the side of the flue gas inlet 2 can be selected from 40-50 mesh
- the number of meshes near the side of the flue gas outlet 4 can be selected from 250-300 mesh
- the number of meshes between the inlet side 2 and the outlet side 4 is from 50 mesh to 250 mesh gradually increased.
- the cooling working fluid channel 11 b is also provided with a plurality of condensed section foam metal blocks 27 arranged side by side in the lateral direction; the heat pipe condensed section 20 is inserted into the condensed section foam metal block 27.
- the foam metal block is an aluminum silicon alloy foam metal block.
- the filter screen 18 is a thin foam metal thin layer or wire mesh.
- the three-dimensional ribbed heat pipes 5 in different dust-removing heat storage units can use different substances as the working fluid in the pipe to realize the gradual utilization of the waste heat.
- the flue gas temperature is 400-600°C
- the flue gas temperature is 150-400°C
- the flue gas temperature is 40-150°C
- the partition 12 provided can adjust the aperture and the spacing between holes to suit different heat pipe diameters and arrangements; the three-dimensional ribbed heat pipe can be changed by changing the height, width and axial direction of the inner and outer rib fins Spacing and circumferential spacing to achieve the best heat transfer performance and reduce fly ash deposition.
- Embodiment 3 The method for recovering waste heat with dust-containing flue gas by graded purification waste heat recovery system is that industrial dust-containing flue gas flows into the flue gas channel from the flue gas inlet 2 and flows through the first-stage dust storage In the heat exchange unit, the fly ash particles with a larger particle size are removed by the large pore filter and the metal foam block, and the flue gas transfers heat to the metal foam block with a large specific heat capacity and the three-dimensional ribbed heat pipe.
- the flue gas sequentially passes through the multi-stage dust storage heat exchange unit, and the fly ash particles in the flue gas are removed by the filter nets 18 and metal foam blocks at various levels, and the residual heat of the flue gas is absorbed by the working fluid in the heat pipe evaporation section.
- the purified low-temperature flue gas is discharged from the flue gas outlet. Because the filter screen blocks most of the fly ash particles, and the metal foam block has a compact structure, it can effectively intercept the fly ash particles and reduce the chance of the fly ash particles hitting the wall of the tube, thereby slowing down the rate of wear and protecting the heat pipe.
- the foam metal block also has a large specific heat capacity, which makes it have a strong heat storage capacity.
- the foam metal block When the flue gas temperature changes greatly, it can absorb or release heat in time, so that the system can work stably and prevent the heat pipe material from Thermal fatigue, in addition, the foam metal block also has a high thermal conductivity, which helps to transfer heat to the heat pipe evaporation section.
- the cooling working fluid flows into the cooling working fluid channel from the cooling working fluid inlet, and flows through the heat pipe condensation section in a sweeping manner.
- the steam of the working fluid in the heat pipe releases heat to the cooling working medium in the condensation section.
- the cooling working fluid flows through the condensation section of the multi-stage heat pipe and is heated, and flows out from the cooling working fluid outlet.
- the working fluid in the heat pipe absorbs the heat of the flue gas in the heat pipe evaporation section and evaporates into steam. Due to the pressure difference, the steam gradually rises to the condensation section of the heat pipe and condenses into a liquid state, transferring the heat to the cooling medium.
- the working fluid is returned to the evaporation section of the heat pipe under the influence of gravity, so as to realize the circulation inside the heat pipe.
- the dust cleaner When the fly ash deposits to a certain amount in the filter screen and foam metal block, after the pressure drop in the flue gas channel reaches a certain threshold, the dust cleaner can be started, and the dust cleaner removes the deposited fly ash through sound waves or shocks and is removed The fly ash drops into the cleaning port and is discharged to the outside of the system from the cleaning port.
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
一种含尘烟气分级净化余热回收系统及除尘蓄换热装置,包括壳体(11),壳体(11)为内空的长方体结构,壳体(11)中部设置有隔板(12),隔板(12)将壳体(11)分隔为上下二个腔室,位于下方的腔室为烟气通道(11a),位于上方的腔室为冷却工质通道(11b);烟气通道(11a)左端设置有烟气入口(2),右端设置有烟气出口(4),下端设置有呈阶台形的清灰口(8);冷却工质通道(11b)左端设置有冷却工质出口(1),右端设置有第一冷却工质进口(3);烟气通道(11a)内设置有除尘蓄换热装置和清灰器(28);除尘蓄换热装置由若干沿横向并列布置的除尘蓄换热单元组成;除尘蓄换热单元包括泡沫金属块(7)、滤网(18)和若干三维肋热管(5);系统及装置可广泛适用于工业烟气的余热回收。
Description
本发明涉及含尘烟气净化余热回收,特别涉及一种含尘烟气分级净化余热回收系统及除尘蓄换热装置。
目前,我国单位产品的能耗与发达国家有较大差距,能源利用水平仍落后于国际先进水平。造成这一问题的一个重要的原因在于冶金、化工、建材等高耗能行业的中低温废气的直接排放,这些中低温高含尘气体的直接排放不仅导致严重的环境污染,还会造成大量余热资源的浪费。据统计,烟气余热占我国余能的35%,相当于3.4亿吨标准煤,然而我国工业烟气余热回收效率仅有30%,较发达国家平均水平低15%~20%。可见,提高余热回收率是工业产业转型升级的必经之路。
当前工业中低温高含尘烟气的尘粒净化与余热回收通常为分离式进行,这一形式需要更大的设备体积和占地面积,并且增大流动距离即沿程阻力,导致了风机功耗的增加。并且,分离式净化及余热回收还存在散热严重和连接处烟气泄露的问题,这进一步降低了余热回收率。因此,除尘与换热一体化余热回收装置的开发对于节能减排和提高能量利用效率意义重大。
热管具有高效换热和工况适应性强的特点,被广泛应用于一体化余热回收装置中。通常热管余热回收设备的计划使用寿命为5-8年,然而,高能耗工业生产所排放的中低温高含尘烟气中普遍存在不燃或未燃尽物质以 及熔融金属盐冷凝后形成的飞灰颗粒,这些飞灰颗粒随烟气冲刷热管壁面,颗粒摩擦撞击管壁容易使受热面金属发生磨损,而磨损的积累使得热管爆管引起换热设备失效,最终需要停机维护。此外,冶金等行业由于生产的需要,其排放的含尘烟气存在温度波动大的特点,烟温波动引起热管频繁地启停,这不利于热管的长期使用。上述问题导致热管换热器在实际应用中寿命只有2-3年,而一旦热管大量损坏必须及时更换,这极大的增加了设备及操作成本。
此外,在传统的光管重力热管的基础上,人们设计开发了各类强化换热技术以进一步提高换热效率,例如在热管内部烧结颗粒、金属网和加工微槽等,在热管外加工螺旋肋片、H型肋片和锯齿肋片等。上述管内结构的生产及加工比较复杂成本相对较高,而管外肋片的加工采用的焊接或胀接产生较大的接触热阻,不利于热量传递,此外还有成本较高和生产周期长的问题。可见,经济高效的重力热管的选择与开发对于高效余热回收至关重要。
综上所述,设计一种针对含尘烟气净化与余热回收一体化的系统及装置,选择高效换热能力的热管,同时解决热管的磨损和热疲劳问题,将对高能耗企业能量利用率的提高具有决定性作用,更是有助于提高我国能源利用率,推动社会可持续发展。
发明内容
本发明所要解决的技术问题是提供一种含尘烟气分级净化余热回收系统及除尘蓄换热装置。
为了解决上述技术问题,根据本发明的技术方案,一种含尘烟气分级净化余热回收系统,包括壳体,所述壳体为内空的长方体结构,壳体中部设置有隔板,该隔板将壳体分隔为上下二个腔室,其特征在于:位于下方的腔室为烟气通道,位于上方的腔室为冷却工质通道;该烟气通道左端设 置有烟气入口,右端设置有烟气出口,下端设置有呈阶台形的清灰口;所述冷却工质通道左端设置有冷却工质出口,右端设置有第一冷却工质进口;所述烟气通道内设置有除尘蓄换热装置和清灰器;所述除尘蓄换热装置由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块、滤网和若干三维肋热管;所述三维肋热管沿纵向并列布置,每个三维肋热管均穿插入泡沫金属块中;所述泡沫金属块的左端外侧设置有滤网;所述三维肋热管的上端穿过隔板进入冷却工质通道中,并向上延伸,作为热管冷凝段;在烟气通道内的三维肋热管作为热管蒸发段;所述三维肋热管的内部中空且两端密封,所述三维肋热管内添加有工作液。
本发明是一种基于三维拓展表面的烟气分级净化、蓄热、高效换热系统;其结构设计合理,通过设置三维肋热管作为烟气与冷却工质的传热媒介;设置滤网和泡沫金属块脱除烟气中的飞灰且减少热管磨损;该泡沫金属块具有蓄热作用,能够在烟气温度变化时释放热量使系统稳定工作并起到防止材料热疲劳的作用。通过在热管蒸发段外设置泡沫金属块,有利于增加烟气流动扰动和拓展换热面积,提高蒸发段段管外换热性能。
根据本发明所述的一种含尘烟气分级净化余热回收系统的优选方案,所述冷却工质通道内也设置有若干沿横向并列布置的冷凝段泡沫金属块;所述热管冷凝段穿插入该冷凝段泡沫金属块内。设置泡沫金属块包覆热管冷凝段,以达到拓展换热表面的目的。
根据本发明所述的一种含尘烟气分级净化余热回收系统的优选方案,所述泡沫金属块沿烟气流动方向设置为不同孔隙率,且泡沫金属块的孔隙率设置为沿烟气入口向烟气出口方向逐渐减小。
根据本发明所述的一种含尘烟气分级净化余热回收系统的优选方案,所述滤网沿烟气流动方向设置为不同目数,且滤网的目数设置为沿烟气入口向烟气出口方向逐渐增大。
通过沿烟气流向设置不同目数的滤网和不同孔隙率的泡沫金属块,使得不同粒径的飞灰被各级除尘蓄换热单元均匀拦截,可避免飞灰在第一级除尘蓄换热单元处集中沉积,减少清灰的操作频率。
根据本发明所述的一种含尘烟气分级净化余热回收系统的优选方案,所述滤网为小孔隙率泡沫金属薄层或金属丝网。
根据本发明所述的一种含尘烟气分级净化余热回收系统的优选方案,所述壳体的顶部设置有低温工质出口和第二冷却工质进口。通过设置多个冷却工质进出口,通过与不同段不同温度的烟气换热来获得不同温度的冷却工质,可实现对烟气余热的分级回收,达到余热最大化利用。
本发明的第二个技术方案是,一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置,其特征在于:所述除尘蓄换热装置设置在烟气通道内,由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块、滤网和若干三维肋热管;所述三维肋热管沿纵向并列布置,每个三维肋热管均穿插入泡沫金属块中;所述泡沫金属块的左端外侧设置有滤网;所述三维肋热管的上端穿过隔板进入冷却工质通道中,并向上延伸,作为热管冷凝段;在烟气通道内的三维肋热管作为热管蒸发段;所述三维肋热管的内部中空且两端密封,所述三维肋热管内添加有工作液。
根据本发明所述的一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置的优选方案,所述泡沫金属块沿烟气流动方向设置为不同孔隙率,且泡沫金属块的孔隙率设置为沿烟气入口向烟气出口方向逐渐减小。
根据本发明所述的一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置的优选方案,所述滤网沿烟气流动方向设置为不同目数,且滤网的目数设置为沿烟气入口向烟气出口方向逐渐增大。
根据本发明所述的一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置的优选方案,所述冷却工质通道内也设置有若干沿横向并列布置 的冷凝段泡沫金属块;所述热管冷凝段穿插入该冷凝段泡沫金属块内。
本发明所述的一种含尘烟气分级净化余热回收系统及除尘蓄换热装置的有益效果是:
第一、本发明通过布置滤网和泡沫金属块阻挡飞灰,达到减少热管磨损;并且通过泡沫金属块的高比热容蓄能减少烟气温度波动带来的材料热疲劳;通过设置泡沫金属块增加烟气流动扰动和拓展换热面积,提高换热性能。
第二、构成除尘蓄换热单元的滤网和泡沫金属块可沿烟气流向设置为不同目数和孔隙率,以达到不同颗粒粒径分级过滤的目的,从而减少清灰频率。
第三、通过在热管内部加工内肋提高蒸发段和冷凝段的换热性能;通过在热管冷凝段外加工三维外肋片增加冷却工质扰动和拓展换热面积提高冷凝段传热。
第四、通过设置多个冷却工质进出口可实现余热分级回收利用。
第五、本发明可同时实现烟气和冷却工质侧强化换热,实现除尘与蓄换热一体化,具有较好的可靠性、稳定性,具有环境友好和运行成本低的特点。本发明广泛适用于各类工业烟气的余热回收。
图1是本发明所述的一种含尘烟气分级净化余热回收系统结构示意图。
图2是本发明所述的一种含尘烟气分级净化余热回收系统外形示意图。
图3是图1中Ⅰ处的局部放大示意图。
图4是图1的A-A向剖视图。
图5是三维肋热管结构示意图。
图6是冷却工质多级布置示意图。
其中,1-冷却工质出口;2-烟气入口;3-第一冷却工质进口;4-烟气 出口;5-三维肋热管;6-顶板;7-泡沫金属块;8-清灰口;9-顶盖吊环;10-支架;11-壳体;11a-烟气通道;11b-冷却工质通道;12-隔板;13-金属弹性垫圈;14-定位环;15-密封环;16-三维外肋片;17-三维内肋片;18-滤网;19-热管蒸发段;20-热管冷凝段;21-中温余热回收段;22-低温余热回收段;23-第二冷却工质进口;26-低温工质出口;27-冷凝段泡沫金属块;28-清灰器。
实施例1:参见图1至图6,一种含尘烟气分级净化余热回收系统,包括壳体11,所述壳体11为内空的长方体结构,壳体11中部设置有隔板12,该隔板12将壳体11分隔为上下二个腔室,位于下方的腔室为烟气通道11a,位于上方的腔室为冷却工质通道11b;该烟气通道11a左端设置有烟气入口2,右端设置有烟气出口4,下端设置有呈阶台形的清灰口8;所述冷却工质通道11b左端设置有冷却工质出口1,右端设置有第一冷却工质进口3;所述烟气通道11a内设置有除尘蓄换热装置和清灰器28;所述除尘蓄换热装置由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块7、滤网18和若干三维肋热管5;所述三维肋热管5沿纵向并列布置,每个三维肋热管5均穿插入泡沫金属块7中;所述泡沫金属块7的左端外侧设置有滤网18;所述三维肋热管5的上端穿过隔板12进入冷却工质通道11b中,并向上延伸,作为热管冷凝段20;在烟气通道11a内的三维肋热管5作为热管蒸发段20;即隔板12将三维肋热管5分隔为热管蒸发段19和热管冷凝段20,所述热管蒸发段19位于烟气通道11a内,热管冷凝段20位于冷却工质通道11b内;所述三维肋热管5的内部中空且两端密封,所述三维肋热管5内添加有工作液。
在具体实施例中,根据余热温度的不同,不同除尘蓄换热单元内的三维肋热管5可以选用不同物质作为管内工作液,以实现余热分级利用。当 烟气温度为400-600℃范围时选择钠或钾作为工作液,烟气温度在150-400℃范围时选择萘或汞作为工作液,烟气温度40-150℃范围时选择水作为工作液。
在具体实施例中,所设置的隔板12可以根据需要调整孔径和孔间距,以适应不同热管管径和布置方式;所采用的三维肋热管可以通过改变内外肋肋片高度、宽度、轴向间距和周向间距等方式,达到最佳换热性能和减少飞灰沉积。
在具体实施例中,所述冷却工质通道11b内也设置有若干沿横向并列布置的冷凝段泡沫金属块27;所述热管冷凝段20穿插入该冷凝段泡沫金属块27内。
在具体实施例中,泡沫金属块7为铝硅合金泡沫金属块。
在具体实施例中,所述泡沫金属块7沿烟气流动方向设置为不同孔隙率,且泡沫金属块7的孔隙率设置为沿烟气入口2向烟气出口4方向逐渐减小。靠近烟气入口2侧的孔隙率可选为80%-90%,靠近烟气出口4侧的孔隙率最小可达30%,烟气入口2侧与烟气出口4侧之间的孔隙率由80%到30%逐渐减小。
在具体实施例中,所述滤网18沿烟气流动方向设置为不同目数,且滤网18的目数设置为沿烟气入口2向烟气出口4方向逐渐增大。靠近烟气入口2侧的目数可选为40-50目,靠近烟气出口4侧的目数可选为250-300目,入口侧2与出口侧4之间的目数由50目到250目逐渐增大。
在具体实施例中,所述滤网18为小孔隙率泡沫金属薄层或金属丝网。
在具体实施例中,所述壳体的顶部设置有低温工质出口26和第二冷却工质进口23。在第一冷却工质进口3与低温工质出口26之间的通道为低温余热回收段22,在第二冷却工质进口23与冷却工质出口1之间的通道为中温余热回收段21。
在具体实施例中,清灰器28安装于烟气通道11a左右两侧的端板上,通过声波或震荡将沉积于滤网18和泡沫金属单元7的飞灰清除到清灰口8。
在具体实施例中,所述热管蒸发段19的管内壁设置有若干三维内肋片17,管外壁设置有若干三维外肋片16;热管冷凝段20的管内壁设置有若干三维内肋片17。在热管蒸发段的三维内肋起到增加汽化核心强化沸腾传热的作用,冷凝段的三维内肋则起到增大换热面积和促进珠状凝结形成,最终强化凝结换热的作用;有利于提高蒸发段和冷凝段的换热性能。通过在热管冷凝段外加工三维外肋片16,用以打断边界层发展,起到强化与冷却工质对流换热的作用。有利于增加冷却工质扰动和拓展换热面积,提高冷凝段传热。
在具体实施例中,所述三维肋热管5的中部套设有定位环14,用于对三维肋热管5的高度方向定位。所述三维肋热管5与隔板12之间设置有密封环15,用于实现三维肋热管5与隔板12之间的密封,防止烟气与冷却工质对流;泡沫金属块7与隔板12之间设置有金属弹性垫圈13,可以通过震动实现将积灰震落至清灰口。
在具体实施例中,所述壳体11的顶板6上设置有顶盖吊环9,所述壳体11下方设置有若干支架10,以利于安装。所述冷却工质出口1和烟气入口2为前端小后端大的梯台形结构,冷却工质进口3和烟气出口4为前端大后端小的梯台形结构。
实施例2:一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置,所述除尘蓄换热装置设置在烟气通道11a内,由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块7、滤网18和若干三维肋热管5;所述三维肋热管5沿纵向并列布置,每个三维肋热管5均穿插入泡沫金属块7中;所述泡沫金属块7的左端外侧设置有不锈钢滤网18;所述三维肋热管5的上端穿过隔板12进入冷却工质通道11b中,并 向上延伸,作为热管冷凝段20;在烟气通道11a内的三维肋热管5作为热管蒸发段20;所述三维肋热管5的内部中空且两端密封,所述三维肋热管5内添加有工作液。
在具体实施例中,所述泡沫金属块7沿烟气流动方向设置为不同孔隙率,且泡沫金属块7的孔隙率设置为沿烟气入口2向烟气出口4方向逐渐减小。靠近烟气入口2侧的孔隙率可选为80%-90%,靠近烟气出口4侧的孔隙率最小可达30%,入口侧2与出口侧4之间的孔隙率由80%到30%逐渐减小。
在具体实施例中,所述滤网18沿烟气流动方向设置为不同目数,且滤网18的目数设置为沿烟气入口2向烟气出口4方向逐渐增大。靠近烟气入口2侧的目数可选为40-50目,靠近烟气出口4侧的目数可选为250-300目,入口侧2与出口侧4之间的目数由50目到250目逐渐增大。
在具体实施例中,所述冷却工质通道11b内也设置有若干沿横向并列布置的冷凝段泡沫金属块27;所述热管冷凝段20穿插入该冷凝段泡沫金属块27内。
泡沫金属块为铝硅合金泡沫金属块。
在具体实施例中,所述滤网18为小孔隙率泡沫金属薄层或金属丝网。
在具体实施例中,根据余热温度的不同,不同除尘蓄换热单元内的三维肋热管5可以选用不同物质作为管内工作液,以实现余热分级利用。当烟气温度为400-600℃范围时选择钠或钾作为工作液,烟气温度在150-400℃范围时选择萘或汞作为工作液,烟气温度40-150℃范围时选择水作为工作液。
在具体实施例中,所设置的隔板12可以根据需要调整孔径和孔间距,以适应不同热管管径和布置方式;所采用的三维肋热管可以通过改变内外肋肋片高度、宽度、轴向间距和周向间距等方式,达到最佳换热性能和减 少飞灰沉积。
实施例3、利用含尘烟气分级净化余热回收系统进行含尘烟气分级净化余热回收的方法为,工业含尘烟气由烟气入口2流入烟气通道,在流经第一级除尘蓄换热单元时,较大粒径的飞灰颗粒被大孔隙滤网和金属泡沫块脱除,烟气将热量传递于大比热容的金属泡沫块和三维肋热管。此后,烟气依次经过多级除尘蓄换热单元,并由各级滤网18和金属泡沫块将烟气中的飞灰颗粒清除,而烟气余热由热管蒸发段内工质蒸发吸收,最终净化后的低温烟气由烟气出口排出。由于滤网阻挡了大部分飞灰颗粒,且金属泡沫块结构紧凑,能够有效地拦截飞灰颗粒,降低飞灰颗粒撞击管壁的几率,从而减缓了磨损的速率,起到保护热管的作用。所述的泡沫金属块还具有较大的比热容,使其具有很强的蓄热能力,当烟气温度出现较大幅度变化时,能够及时吸收或放出热量,使系统稳定工作并防止热管材料的热疲劳,此外泡沫金属块也具有较高的热导率,有助于将热量传导至热管蒸发段。
在本发明中,冷却工质由冷却工质入口流入冷却工质通道,以横掠的方式流经热管冷凝段,热管内的工作液的蒸汽在冷凝段放出热量给冷却工质。冷却工质流经多级热管冷凝段后被加热,并从冷却工质出口处流出。
当系统工作时,热管内的工作液在热管蒸发段吸收烟气热量蒸发为蒸汽,由于压力差的作用,蒸汽逐渐上升至热管冷凝段并凝结为液态,将热量传递至冷却工质。工作液受重力影响回流至热管蒸发段,从而实现热管内部的循环。
当飞灰在滤网和泡沫金属块中沉积到一定量时,烟气通道内压降达到一定阈值后,可启动清灰器,清灰器通过声波或震荡将沉积的飞灰清除,被清除的飞灰下落至清灰口中,由清灰口排放到系统外部。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以 理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (10)
- 一种含尘烟气分级净化余热回收系统,包括壳体(11),所述壳体(11)为内空的长方体结构,壳体(11)中部设置有隔板(12),该隔板(12)将壳体(11)分隔为上下二个腔室,其特征在于:位于下方的腔室为烟气通道(11a),位于上方的腔室为冷却工质通道(11b);该烟气通道(11a)左端设置有烟气入口(2),右端设置有烟气出口(4),下端设置有清灰口(8);所述冷却工质通道(11b)左端设置有冷却工质出口(1),右端设置有第一冷却工质进口(3);所述烟气通道(11a)内设置有除尘蓄换热装置和清灰器(28);所述除尘蓄换热装置由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块(7)、滤网(18)和若干三维肋热管(5);所述三维肋热管(5)沿纵向并列布置,每个三维肋热管(5)均穿插入泡沫金属块(7)中;所述泡沫金属块(7)的左端外侧设置有滤网(18);所述三维肋热管(5)的上端穿过隔板(12)进入冷却工质通道(11b)中,并向上延伸,作为热管冷凝段(20);所述三维肋热管(5)的内部中空且两端密封,所述三维肋热管(5)内添加有工作液。
- 根据权利要求1所述的一种含尘烟气分级净化余热回收系统,其特征在于:所述冷却工质通道(11b)内也设置有若干沿横向并列布置的冷凝段泡沫金属块(27);所述热管冷凝段(20)穿插入该冷凝段泡沫金属块(27)内。
- 根据权利要求1或2所述的一种含尘烟气分级净化余热回收系统,其特征在于:所述泡沫金属块(7)沿烟气流动方向设置为不同孔隙率,且泡沫金属块(7)的孔隙率设置为沿烟气入口(2)向烟气出口(4)方向逐渐减小。
- 根据权利要求1或2所述的一种含尘烟气分级净化余热回收系统, 其特征在于:所述滤网(18)沿烟气流动方向设置为不同目数,且滤网(18)的目数设置为沿烟气入口(2)向烟气出口(4)方向逐渐增大。
- 根据权利要求4所述的一种含尘烟气分级净化余热回收装置,其特征在于:所述滤网(18)为小孔隙率泡沫金属薄层或金属丝网。
- 根据权利要求1所述的一种含尘烟气分级净化余热回收系统,其特征在于:所述壳体的顶部设置有低温工质出口(26)和第二冷却工质进口(23)。
- 一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置,其特征在于:所述除尘蓄换热装置设置在烟气通道(11a)内,由若干沿横向并列布置的除尘蓄换热单元组成;所述除尘蓄换热单元包括泡沫金属块(7)、滤网(18)和若干三维肋热管(5);所述三维肋热管(5)沿纵向并列布置,每个三维肋热管(5)均穿插入泡沫金属块(7)中;所述泡沫金属块(7)的左端外侧设置有滤网(18);所述三维肋热管(5)的上端穿过隔板(12)进入冷却工质通道(11b)中,并向上延伸,作为热管冷凝段(20);所述三维肋热管(5)的内部中空且两端密封,所述三维肋热管(5)内添加有工作液。
- 根据权利要求7所述的一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置,其特征在于:所述泡沫金属块(7)沿烟气流动方向设置为不同孔隙率,且泡沫金属块(7)的孔隙率设置为沿烟气入口(2)向烟气出口(4)方向逐渐减小。
- 根据权利要求7或8所述的一种用于含尘烟气分级净化余热回收系统的除尘蓄换热装置,其特征在于:所述滤网(18)沿烟气流动方向设置为不同目数,且滤网(18)的目数设置为沿烟气入口(2)向烟气出口(4)方向逐渐增大。
- 根据权利要求7所述的一种用于含尘烟气分级净化余热回收系统 的除尘蓄换热装置,其特征在于:所述冷却工质通道(11b)内也设置有若干沿横向并列布置的冷凝段泡沫金属块(27);所述热管冷凝段(20)穿插入该冷凝段泡沫金属块(27)内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811427347.9 | 2018-11-27 | ||
CN201811427347.9A CN109489460A (zh) | 2018-11-27 | 2018-11-27 | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020107826A1 true WO2020107826A1 (zh) | 2020-06-04 |
Family
ID=65697815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088446 WO2020107826A1 (zh) | 2018-11-27 | 2019-05-25 | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109489460A (zh) |
WO (1) | WO2020107826A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109489460A (zh) * | 2018-11-27 | 2019-03-19 | 重庆大学 | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 |
CN112577347A (zh) * | 2020-12-28 | 2021-03-30 | 思安新能源股份有限公司 | 一种基于热管的卧式并列布置储热装置及其工作方法 |
CN113446882A (zh) * | 2021-06-24 | 2021-09-28 | 中国科学院广州能源研究所 | 一种蓄热型高效紧凑换热器 |
CN113532169B (zh) * | 2021-07-23 | 2023-08-08 | 福建龙净环保股份有限公司 | 一种热管烟气换热器 |
CN114719372A (zh) * | 2022-04-29 | 2022-07-08 | 北京理工大学 | 一种呼吸式建筑新风能量即时存储与交换装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080115923A1 (en) * | 2005-04-04 | 2008-05-22 | Denso Corporation | Exhaust heat recovering device |
CN101338985A (zh) * | 2008-01-09 | 2009-01-07 | 南京工业大学 | 热管式多孔泡沫金属换热器 |
CN202229633U (zh) * | 2011-06-22 | 2012-05-23 | 华东理工大学 | 管泡式换热器 |
CN205825084U (zh) * | 2016-07-11 | 2016-12-21 | 北京众诚永源节能环保技术有限公司 | 一种锅炉烟气余热回收器 |
CN108716689A (zh) * | 2018-06-20 | 2018-10-30 | 芜湖乐知智能科技有限公司 | 一种锅炉烟气余热回收器及其余热回收方法 |
CN109357278A (zh) * | 2018-11-27 | 2019-02-19 | 重庆大学 | 基于三维拓展表面的含尘烟气除尘蓄换热装置及系统 |
CN109489460A (zh) * | 2018-11-27 | 2019-03-19 | 重庆大学 | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970014549U (ko) * | 1995-09-15 | 1997-04-28 | 공기조화기의 필터장치 | |
CN202836293U (zh) * | 2012-09-14 | 2013-03-27 | 上海骄英能源科技有限公司 | 复合型相变储热装置 |
CN204535498U (zh) * | 2015-04-03 | 2015-08-05 | 成都萨伯电子应用科技有限公司 | 新型泡沫金属热管散热器 |
CN106247808B (zh) * | 2016-07-21 | 2018-11-13 | 苏州必信空调有限公司 | 具有垂直低阻力热管的加热炉余热发电系统 |
CN207478233U (zh) * | 2017-09-30 | 2018-06-12 | 广州市鑫衡运科技有限公司 | 一种废气回收装置 |
-
2018
- 2018-11-27 CN CN201811427347.9A patent/CN109489460A/zh active Pending
-
2019
- 2019-05-25 WO PCT/CN2019/088446 patent/WO2020107826A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080115923A1 (en) * | 2005-04-04 | 2008-05-22 | Denso Corporation | Exhaust heat recovering device |
CN101338985A (zh) * | 2008-01-09 | 2009-01-07 | 南京工业大学 | 热管式多孔泡沫金属换热器 |
CN202229633U (zh) * | 2011-06-22 | 2012-05-23 | 华东理工大学 | 管泡式换热器 |
CN205825084U (zh) * | 2016-07-11 | 2016-12-21 | 北京众诚永源节能环保技术有限公司 | 一种锅炉烟气余热回收器 |
CN108716689A (zh) * | 2018-06-20 | 2018-10-30 | 芜湖乐知智能科技有限公司 | 一种锅炉烟气余热回收器及其余热回收方法 |
CN109357278A (zh) * | 2018-11-27 | 2019-02-19 | 重庆大学 | 基于三维拓展表面的含尘烟气除尘蓄换热装置及系统 |
CN109489460A (zh) * | 2018-11-27 | 2019-03-19 | 重庆大学 | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109489460A (zh) | 2019-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020107826A1 (zh) | 一种含尘烟气分级净化余热回收系统及除尘蓄换热装置 | |
CN109357278A (zh) | 基于三维拓展表面的含尘烟气除尘蓄换热装置及系统 | |
CN108373930A (zh) | 一种组合式液化分离器 | |
CN202246731U (zh) | 余热回收及布袋除尘系统 | |
CN106731330B (zh) | 一种对高温含尘烟气的除尘换热一体化处理装置及方法 | |
CN101619376B (zh) | 一种转炉煤气显热回收系统 | |
CN210292884U (zh) | 一种淬火油回收炉烟气回收装置 | |
CN203170448U (zh) | 一种高效热管换热式旋风除尘器 | |
CN203639490U (zh) | 高温烟气余热回收装置 | |
CN110715557A (zh) | 一种炉窑烟气余热回收换热器 | |
CN201059772Y (zh) | 锅炉余热回收及除尘装置 | |
CN104501199A (zh) | 一种具有冷凝水收集功能的斜管节能器 | |
CN108626734B (zh) | 一种锅炉压力容器排污余热回收装置 | |
CN102304603A (zh) | 余热回收及布袋除尘系统 | |
CN207294699U (zh) | 一种新型粉煤气化高温除尘间冷工艺系统 | |
CN209470193U (zh) | 一种高效循环流化床燃煤锅炉省煤器 | |
CN107388215A (zh) | 防止积灰的烟气余热锅炉 | |
CN203586175U (zh) | 利用对流管束冷却煤气的余热锅炉 | |
CN209512606U (zh) | 基于梯度蜂巢体和三维肋管的除尘换热一体化装置 | |
CN111744297A (zh) | 一种尾气除尘余热回收系统 | |
CN207230498U (zh) | 一种防止积灰的烟气余热锅炉 | |
CN111623642B (zh) | 矾土矿高温除尘换热一体化设备 | |
CN111928482B (zh) | 一种冷凝式燃气热锅炉 | |
CN201106841Y (zh) | 锅炉省煤器 | |
CN219841552U (zh) | 一种冷凝式热水锅炉烟气余热深度回收装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890423 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890423 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890423 Country of ref document: EP Kind code of ref document: A1 |