WO2020105749A1 - 차량에 구비되는 장치 및 그 제어 방법 - Google Patents
차량에 구비되는 장치 및 그 제어 방법Info
- Publication number
- WO2020105749A1 WO2020105749A1 PCT/KR2018/014348 KR2018014348W WO2020105749A1 WO 2020105749 A1 WO2020105749 A1 WO 2020105749A1 KR 2018014348 W KR2018014348 W KR 2018014348W WO 2020105749 A1 WO2020105749 A1 WO 2020105749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- soc
- application
- unit
- driving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000004044 response Effects 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 description 56
- 238000001514 detection method Methods 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 9
- 239000000725 suspension Substances 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- ASXGJMSKWNBENU-UHFFFAOYSA-N 8-OH-DPAT Chemical compound C1=CC(O)=C2CC(N(CCC)CCC)CCC2=C1 ASXGJMSKWNBENU-UHFFFAOYSA-N 0.000 description 2
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 2
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000848 angular dependent Auger electron spectroscopy Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/10—Interpretation of driver requests or demands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/10—Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/21—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
- B60K35/22—Display screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/25—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using haptic output
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/26—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using acoustic output
- B60K35/265—Voice
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/80—Arrangements for controlling instruments
- B60K35/81—Arrangements for controlling instruments for controlling displays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/4401—Bootstrapping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5033—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering data affinity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K2360/00—Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
- B60K2360/11—Instrument graphical user interfaces or menu aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K2360/00—Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
- B60K2360/11—Instrument graphical user interfaces or menu aspects
- B60K2360/111—Instrument graphical user interfaces or menu aspects for controlling multiple devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/146—Display means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/503—Resource availability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/509—Offload
Definitions
- the present invention relates to a device provided in a vehicle and a control method therefor. More specifically, the present invention relates to a method for distributing workload between a plurality of SoCs (System on Chip) controlling a display provided in a vehicle.
- SoCs System on Chip
- ADAS Advanced Driver Assistance System
- ICE in-car entertainment
- IVI in-vehicle infotainment
- ICE or IVI can be considered automotive hardware and software that provides audio or video entertainment.
- IVI includes car navigation systems, video players, USB and Bluetooth connections, carputers, in-vehicle internet and WiFi.
- a technical problem to be achieved in the present invention is to provide a method for distributing workload between a display provided in a vehicle and a plurality of SoCs (System on Chip) controlling the display.
- SoCs System on Chip
- the technical problem to be achieved in the present invention is to solve this problem of the prior art.
- the technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems not mentioned will be clearly understood by a person having ordinary knowledge in the technical field to which the present invention belongs from the following description.
- At least one application is executed, a plurality of SoCs (System on Chip) connected through a predetermined input / output interface and the vehicle, and the at least one application
- An apparatus provided in a vehicle including a display for outputting an execution screen is provided.
- the first SoC among the plurality of SoCs requests a second SoC to execute a specific application among the at least one application based on the resource status of the first SoC, and from the second SoC in response to the request
- the execution result of the specific application may be received.
- the first SoC may request the second SoC to execute the specific application.
- the first SoC may terminate any one of the at least one application based on a predetermined priority.
- the at least one application may be any one of a base application executed during boot-up of a device provided in the vehicle and a normal application executed by a user request. .
- the first SoC may transmit a user's touch input related to the specific application to the second SoC.
- the display may include at least one of HUD (Head Up Display), Cluster, Head Unit, RSE (Rear Seat Entertainment), Co-Driver display and / or E-Mirror.
- HUD Head Up Display
- Cluster Cluster
- Head Unit Head Unit
- RSE Rear Seat Entertainment
- Co-Driver display and / or E-Mirror.
- the predetermined input / output interface may be PCIe (Peripheral Component Interconnect express).
- an apparatus provided in a vehicle according to an aspect of the present invention is advantageous in terms of hardware upgrade and replacement, and is advantageous in terms of workload distribution among a plurality of SoCs utilizing resources.
- FIG. 1 is a view showing the appearance of a vehicle according to an aspect of the present invention.
- FIG. 2 is a view of a vehicle according to an aspect of the present invention viewed from various angles outside.
- 3 to 4 are views showing the interior of a vehicle according to an aspect of the present invention.
- 5 to 6 are views referred to for describing an object according to an aspect of the present invention.
- FIG. 7 is a block diagram referred to for describing a vehicle according to an aspect of the present invention.
- FIG. 8 is a view showing a domain control system according to the prior art.
- FIG. 9 is a block diagram of a Cockpit Domain Controller (CDC) in a workload distribution scenario between SoCs according to an aspect of the present invention.
- CDC Cockpit Domain Controller
- FIG. 10 shows a detailed configuration of a Cockpit Domain Controller system based on PCIe interconnection in a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 11 shows a detailed configuration of a Cockpit Domain Controller system based on PCIe interconnection in a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 12 is a view for explaining a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 13 is a view for explaining a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 14 is a view for explaining component initialization in a workload distribution scenario between SoCs according to an aspect of the present invention.
- 15 is a view for explaining application execution in a workload distribution scenario between SoCs according to an aspect of the present invention.
- 16 is a view for explaining data sharing in a workload distribution scenario between SoCs according to an aspect of the present invention.
- 17 is a view for explaining the operation of the fault manager in a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 18 is a view for explaining a resource table in a workload distribution scenario between SoCs according to an aspect of the present invention.
- 19 is a view for explaining a touch interaction in a workload distribution scenario between SoCs according to an aspect of the present invention.
- the vehicle described herein may be a concept including an automobile and a motorcycle.
- a vehicle is mainly described for a vehicle.
- the vehicle described in this specification may be a concept including both an internal combustion engine vehicle having an engine as a power source, a hybrid vehicle having an engine and an electric motor as a power source, an electric vehicle having an electric motor as a power source, and the like.
- the left side of the vehicle means the left side of the driving direction of the vehicle
- the right side of the vehicle means the right side of the driving direction of the vehicle.
- FIG. 1 is a view showing the appearance of a vehicle according to an embodiment of the present invention.
- FIG. 2 is a view of a vehicle according to an embodiment of the present invention viewed from various angles outside.
- 3 to 4 are views showing the interior of a vehicle according to an embodiment of the present invention.
- 5 to 6 are views referred to for describing an object according to an embodiment of the present invention.
- FIG. 7 is a block diagram referred to for describing a vehicle according to an embodiment of the present invention.
- the vehicle 100 may include a wheel rotated by a power source and a steering input device 510 for adjusting the traveling direction of the vehicle 100.
- the vehicle 100 may be an autonomous vehicle.
- the vehicle 100 may be switched to an autonomous driving mode or a manual mode based on a user input.
- the vehicle 100 may be switched from the manual mode to the autonomous driving mode or the autonomous driving mode to the manual mode based on the received user input through the user interface device 200.
- the vehicle 100 may be switched to an autonomous driving mode or a manual mode based on driving situation information.
- the driving situation information may include at least one of object information, navigation information, and vehicle status information outside the vehicle.
- the vehicle 100 may be switched from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on the driving situation information generated by the object detection device 300.
- the vehicle 100 may be switched from the manual mode to the autonomous driving mode, or may be switched from the autonomous driving mode to the manual mode based on the driving situation information received through the communication device 400.
- the vehicle 100 may be switched from a manual mode to an autonomous driving mode based on information, data, and signals provided from an external device, or may be switched from an autonomous driving mode to a manual mode.
- the autonomous vehicle 100 may be driven based on the driving system 700.
- the autonomous vehicle 100 may be driven based on information, data, or signals generated by the driving system 710, the exit system 740, and the parking system 750.
- the autonomous vehicle 100 may receive a user input for driving through the driving manipulation device 500.
- the vehicle 100 may be driven based on a user input received through the driving manipulation apparatus 500.
- the full-length direction L is a direction that is a reference for measuring the full-length of the vehicle 100
- the full-width direction W is a direction that is a reference for the full-width measurement of the vehicle 100
- the front direction H is the vehicle It may mean a direction that is a reference for measuring the height of the (100).
- the vehicle 100 includes a user interface device 200, an object detection device 300, a communication device 400, a driving operation device 500, a vehicle driving device 600, and a driving system 700, a navigation system 770, a sensing unit 120, an interface unit 130, a memory 140, a control unit 170, and a power supply unit 190.
- the vehicle 100 may further include other components in addition to the components described in this specification, or may not include some of the components described.
- the sensing unit 120 is in a state of a vehicle Can sense.
- the sensing unit 120 includes a posture sensor (for example, a yaw sensor, a roll sensor, a pitch sensor), a collision sensor, a wheel sensor, a speed sensor, and an inclination Sensor, weight sensor, heading sensor, gyro sensor, position module, vehicle forward / reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor by steering wheel, vehicle It may include an internal temperature sensor, a vehicle internal humidity sensor, an ultrasonic sensor, an illuminance sensor, an accelerator pedal position sensor, a brake pedal position sensor, and the like.
- the sensing unit 120 includes vehicle attitude information, vehicle collision information, vehicle direction information, vehicle location information (GPS information), vehicle angle information, vehicle speed information, vehicle acceleration information, vehicle tilt information, vehicle forward / reverse information, battery Acquire sensing signals for information, fuel information, tire information, vehicle lamp information, vehicle interior temperature information, vehicle interior humidity information, steering wheel rotation angle, vehicle exterior roughness, pressure applied to the accelerator pedal, and pressure applied to the brake pedal. can do.
- the sensing unit 120 includes, in addition, an accelerator pedal sensor, a pressure sensor, an engine speed sensor, an air flow sensor (AFS), an intake air temperature sensor (ATS), a water temperature sensor (WTS), and a throttle position sensor (TPS), a TDC sensor, a crank angle sensor (CAS), and the like.
- an accelerator pedal sensor a pressure sensor
- an engine speed sensor an air flow sensor (AFS)
- an intake air temperature sensor ATS
- WTS water temperature sensor
- TPS throttle position sensor
- TDC sensor crank angle sensor
- the sensing unit 120 may generate vehicle state information based on the sensing data.
- the vehicle status information may be information generated based on data sensed by various sensors provided inside the vehicle.
- the vehicle state information includes vehicle attitude information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle direction information, vehicle battery information, vehicle fuel information, vehicle tire pressure information, It may include steering information of the vehicle, vehicle interior temperature information, vehicle interior humidity information, pedal position information, and vehicle engine temperature information.
- the interface unit 130 may serve as a passage with various types of external devices connected to the vehicle 100.
- the interface unit 130 may be provided with a port connectable to the mobile terminal, and may be connected to the mobile terminal through the port. In this case, the interface unit 130 may exchange data with the mobile terminal.
- the interface unit 130 may serve as a passage for supplying electrical energy to the connected mobile terminal.
- the interface unit 130 may provide the mobile terminal with electric energy supplied from the power supply unit 190.
- the memory 140 is electrically connected to the control unit 170.
- the memory 140 may store basic data for the unit, control data for controlling the operation of the unit, and input / output data.
- the memory 140 may be various storage devices such as ROM, RAM, EPROM, flash drive, hard drive, and the like in hardware.
- the memory 140 may store various data for the overall operation of the vehicle 100, such as a program for processing or controlling the control unit 170.
- the memory 140 may be integrally formed with the control unit 170 or may be implemented as a lower component of the control unit 170.
- the control unit 170 may control the overall operation of each unit in the vehicle 100.
- the control unit 170 may be referred to as an electronic control unit (ECU).
- the power supply unit 190 may supply power required for the operation of each component under the control of the control unit 170.
- the power supply unit 190 may receive power from a battery or the like inside the vehicle.
- processors and control units 170 included in the vehicle 100 include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and field programmable fields (FPGAs). gate arrays, processors, controllers, micro-controllers, microprocessors, and other electrical units for performing functions.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable fields
- gate arrays processors, controllers, micro-controllers, microprocessors, and other electrical units for performing functions.
- the vehicle driving device 600, the driving system 700 and the navigation system 770 may have separate processors or be integrated into the control unit 170.
- the user interface device 200 is a device for communication between the vehicle 100 and a user.
- the user interface device 200 may receive user input and provide information generated in the vehicle 100 to the user.
- the vehicle 100 may implement User Interfaces (UI) or User Experience (UX) through the user interface device 200.
- UI User Interfaces
- UX User Experience
- the user interface device 200 may include an input unit 210, an internal camera 220, a biometric sensing unit 230, an output unit 250, and a processor 270. Each component of the user interface device 200 may be structurally and functionally separated or integrated with the aforementioned interface unit 130.
- the user interface device 200 may further include other components in addition to the components described, or may not include some of the components described.
- the input unit 210 is for receiving information from a user, and data collected by the input unit 210 may be analyzed by the processor 270 and processed by a user's control command.
- the input unit 210 may be disposed inside the vehicle.
- the input unit 210 includes a region of a steering wheel, a region of an instrument panel, a region of a seat, a region of each pillar, and a door One area of the door, one area of the center console, one area of the head lining, one area of the sun visor, one area of the windshield or one of the windows It may be arranged in one area.
- the input unit 210 may include a voice input unit 211, a gesture input unit 212, a touch input unit 213, and a mechanical input unit 214.
- the voice input unit 211 may convert a user's voice input into an electrical signal.
- the converted electrical signal may be provided to the processor 270 or the control unit 170.
- the voice input unit 211 may include one or more microphones.
- the gesture input unit 212 may convert a user's gesture input into an electrical signal.
- the converted electrical signal may be provided to the processor 270 or the control unit 170.
- the gesture input unit 212 may include at least one of an infrared sensor and an image sensor for sensing a user's gesture input.
- the gesture input unit 212 may detect a user's 3D gesture input.
- the gesture input unit 212 may include a light output unit outputting a plurality of infrared light or a plurality of image sensors.
- the gesture input unit 212 may detect a user's 3D gesture input through a time of flight (TOF) method, a structured light method, or a disparity method.
- TOF time of flight
- the touch input unit 213 may convert a user's touch input into an electrical signal.
- the converted electrical signal may be provided to the processor 270 or the controller 170.
- the touch input unit 213 may include a touch sensor for detecting a user's touch input.
- the touch input unit 213 may be integrally formed with the display unit 251 to implement a touch screen.
- the touch screen may provide an input interface and an output interface between the vehicle 100 and a user.
- the mechanical input unit 214 may include at least one of a button, a dome switch, a jog wheel, and a jog switch.
- the electrical signal generated by the mechanical input unit 214 may be provided to the processor 270 or the control unit 170.
- the mechanical input unit 214 may be disposed on a steering wheel, a center fascia, a center console, a cockpit module, a door, and the like.
- the processor 270 starts a learning mode of the vehicle 100 in response to user input to at least one of the voice input unit 211, the gesture input unit 212, the touch input unit 213, and the mechanical input unit 214 described above. can do.
- the vehicle 100 may perform driving path learning and surrounding environment learning of the vehicle 100.
- the learning mode will be described in detail below in the parts related to the object detection device 300 and the driving system 700.
- the internal camera 220 may acquire an image inside the vehicle.
- the processor 270 may detect a user's state based on an image inside the vehicle.
- the processor 270 may acquire the user's gaze information from the image inside the vehicle.
- the processor 270 may detect a gesture of the user from the image inside the vehicle.
- the biometric sensing unit 230 may acquire biometric information of the user.
- the biometric sensing unit 230 includes a sensor capable of acquiring the user's biometric information, and may acquire the user's fingerprint information, heartbeat information, and the like using the sensor. Biometric information may be used for user authentication.
- the output unit 250 is for generating output related to vision, hearing, or tactile sense.
- the output unit 250 may include at least one of a display unit 251, an audio output unit 252, and a haptic output unit 253.
- the display unit 251 may display graphic objects corresponding to various information.
- the display unit 251 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible). display), a three-dimensional display (3D display), an electronic ink display (e-ink display).
- the display unit 251 forms a mutual layer structure with the touch input unit 213 or is integrally formed, thereby realizing a touch screen.
- the display unit 251 may be implemented as a head up display (HUD).
- the display unit 251 may include a projection module to output information through a wind shield or an image projected on the window.
- the display unit 251 may include a transparent display. The transparent display can be attached to a wind shield or window.
- the transparent display can display a predetermined screen while having a predetermined transparency.
- Transparent display to have transparency, the transparent display is a transparent thin film electroluminescent (TFEL), transparent organic light-emitting diode (OLED), transparent liquid crystal display (LCD), transmissive transparent display, transparent LED (light emitting diode) display It may include at least one of.
- the transparency of the transparent display can be adjusted.
- the user interface device 200 may include a plurality of display units 251a to 251g.
- the display unit 251 includes one region of the steering wheel, one region 251a, 251b, and 251e of the instrument panel, one region 251d of the seat, one region 251f of each filler, and one region of the door ( 251g), one area of the center console, one area of the head lining, one area of the sun visor, or one area 251c of the wind shield or one area 251h of the window.
- the audio output unit 252 converts and outputs an electrical signal provided from the processor 270 or the controller 170 into an audio signal.
- the sound output unit 252 may include one or more speakers.
- the haptic output unit 253 generates a tactile output.
- the haptic output unit 253 may operate by vibrating the steering wheel, seat belt, and seats 110FL, 110FR, 110RL, 110RR, so that the user can recognize the output.
- the processor 270 may control the overall operation of each unit of the user interface device 200.
- the user interface device 200 may include a plurality of processors 270 or may not include a processor 270.
- the user interface device 200 may be operated under the control of the processor or control unit 170 of another device in the vehicle 100. Meanwhile, the user interface device 200 may be referred to as a vehicle display device. The user interface device 200 may be operated under the control of the control unit 170.
- the object detection device 300 is a device for detecting an object located outside the vehicle 100.
- the object detection device 300 may generate object information based on the sensing data.
- the object information may include information about the presence or absence of the object, location information of the object, distance information between the vehicle 100 and the object, and relative speed information between the vehicle 100 and the object.
- the object may be various objects related to the operation of the vehicle 100.
- the object O is a lane OB10, another vehicle OB11, a pedestrian OB12, a two-wheeled vehicle OB13, traffic signals OB14, OB15, light, road, structure, It may include a speed bump, terrain, and animals.
- the lane OB10 may be a driving lane, a side lane next to the driving lane, or a lane through which an opposed vehicle travels.
- the lane OB10 may be a concept including left and right lines forming a lane.
- the other vehicle OB11 may be a vehicle driving around the vehicle 100.
- the other vehicle may be a vehicle located within a predetermined distance from the vehicle 100.
- the other vehicle OB11 may be a vehicle that precedes or follows the vehicle 100.
- the pedestrian OB12 may be a person located around the vehicle 100.
- the pedestrian OB12 may be a person located within a predetermined distance from the vehicle 100.
- the pedestrian OB12 may be a person located on a sidewalk or a road.
- the two-wheeled vehicle OB13 may be a vehicle that is located around the vehicle 100 and moves using two wheels.
- the two-wheeled vehicle OB13 may be a vehicle having two wheels positioned within a predetermined distance from the vehicle 100.
- the two-wheeled vehicle OB13 may be a motorcycle or a bicycle located on a sidewalk or a road.
- the traffic signal may include a traffic light OB15, a traffic sign OB14, a pattern or text drawn on the road surface.
- the light may be light generated from a lamp provided in another vehicle.
- Light can be light generated from street lights.
- the light can be sunlight.
- Roads may include slopes, such as road surfaces, curves, uphills, downhills, and the like.
- the structure may be an object located around the road and fixed to the ground.
- the structure may include street lights, street trees, buildings, power poles, traffic lights, and bridges. Terrain can include mountains, hills, and the like.
- the object may be classified into a moving object and a fixed object.
- the moving object may be a concept including other vehicles and pedestrians.
- the fixed object may be a concept including traffic signals, roads, and structures.
- the object detection device 300 may include a camera 310, a radar 320, a lidar 330, an ultrasonic sensor 340, an infrared sensor 350, and a processor 370. Each component of the object detection device 300 may be structurally and functionally separated or integrated with the sensing unit 120 described above.
- the object detection apparatus 300 may further include other components in addition to the components described, or may not include some of the components described.
- the camera 310 may be located at an appropriate location outside the vehicle in order to acquire an image outside the vehicle.
- the camera 310 may be a mono camera, a stereo camera 310a, an AVM (Around View Monitoring) camera 310b, or a 360 degree camera.
- the camera 310 may acquire position information of an object, distance information of an object, or relative speed information of an object using various image processing algorithms.
- the camera 310 may acquire distance information and relative speed information with an object based on a change in object size over time in the acquired image.
- the camera 310 may acquire distance information and relative speed information with an object through a pin hole model, road surface profiling, and the like.
- the camera 310 may obtain distance information and relative speed information with an object based on disparity information in the stereo image obtained from the stereo camera 310a.
- the camera 310 may be disposed close to the front windshield, in the interior of the vehicle, to obtain an image in front of the vehicle.
- the camera 310 may be disposed around the front bumper or radiator grille.
- the camera 310 may be disposed close to the rear glass, in the interior of the vehicle, in order to acquire an image behind the vehicle.
- the camera 310 may be disposed around the rear bumper, trunk, or tail gate.
- the camera 310 may be disposed close to at least one of the side windows in the interior of the vehicle in order to acquire an image of the vehicle side.
- the camera 310 may be disposed around a side mirror, fender, or door.
- the camera 310 may provide the obtained image to the processor 370.
- the radar 320 may include an electromagnetic wave transmitting unit and a receiving unit.
- the radar 320 may be implemented in a pulse radar method or a continuous wave radar method in accordance with the principle of radio wave launch.
- the radar 320 may be implemented by a FMCW (Frequency Modulated Continuous Wave) method or a FSK (Frequency Shift Keying) method according to a signal waveform among continuous wave radar methods.
- FMCW Frequency Modulated Continuous Wave
- FSK Frequency Shift Keying
- the radar 320 detects an object based on a time of flight (TOF) method or a phase-shift method via an electromagnetic wave, and the position of the detected object, the distance from the detected object, and a relative speed Can be detected.
- TOF time of flight
- phase-shift method via an electromagnetic wave
- the radar 320 may be disposed at an appropriate location outside the vehicle to detect objects located in front, rear, or side of the vehicle.
- the lidar 330 may include a laser transmitter and a receiver.
- the lidar 330 may be implemented by a time of flight (TOF) method or a phase-shift method.
- TOF time of flight
- the lidar 330 may be implemented in a driving type or a non-driving type. When implemented in a driving type, the lidar 330 is rotated by a motor and can detect objects around the vehicle 100. When implemented in a non-driven manner, the rider 330 may detect an object located within a predetermined range based on the vehicle 100 by optical steering.
- the vehicle 100 may include a plurality of non-driven lidars 330.
- the lidar 330 detects an object based on a time of flight (TOF) method or a phase-shift method using laser light, and the position of the detected object, the distance to the detected object, and Relative speed can be detected.
- the lidar 330 may be disposed at an appropriate location outside the vehicle in order to detect objects located in the front, rear, or side of the vehicle.
- the ultrasonic sensor 340 may include an ultrasonic transmitter and a receiver.
- the ultrasonic sensor 340 may detect an object based on ultrasonic waves and detect a position of the detected object, a distance from the detected object, and a relative speed.
- the ultrasonic sensor 340 may be disposed at an appropriate location outside the vehicle in order to sense an object located in front, rear, or side of the vehicle.
- the infrared sensor 350 may include an infrared transmitter and a receiver.
- the infrared sensor 340 may detect an object based on infrared light, and detect a position of the detected object, a distance from the detected object, and a relative speed.
- the infrared sensor 350 may be disposed at an appropriate location outside the vehicle in order to sense an object located in front, rear, or side of the vehicle.
- the processor 370 may control the overall operation of each unit of the object detection device 300.
- the processor 370 compares the data sensed by the camera 310, the radar 320, the lidar 330, the ultrasonic sensor 340, and the infrared sensor 350 with pre-stored data to detect or classify the object. can do.
- the processor 370 may detect and track an object based on the acquired image.
- the processor 370 may perform operations such as calculating a distance to the object and calculating a relative speed with the object through an image processing algorithm.
- the processor 370 may obtain distance information and relative speed information with an object based on a change in object size over time in the acquired image.
- the processor 370 may obtain distance information and relative speed information with an object through a pin hole model, road surface profiling, and the like.
- the processor 370 may obtain distance information and relative speed information with an object based on disparity information in the stereo image obtained from the stereo camera 310a.
- the processor 370 may detect and track the object based on the reflected electromagnetic wave from which the transmitted electromagnetic wave is reflected and returned.
- the processor 370 may perform operations such as calculating a distance from the object and calculating a relative speed with the object based on electromagnetic waves.
- the processor 370 may detect and track the object based on the reflected laser light from which the transmitted laser is reflected and returned.
- the processor 370 may perform operations such as calculating the distance to the object and calculating the relative speed with the object, based on the laser light.
- the processor 370 may detect and track the object based on the reflected ultrasonic waves from which the transmitted ultrasonic waves are reflected and returned.
- the processor 370 may perform operations such as calculating the distance to the object and calculating the relative speed with the object, based on ultrasound.
- the processor 370 may detect and track the object based on the reflected infrared light from which the transmitted infrared light is reflected and returned.
- the processor 370 may perform operations such as calculating the distance to the object and calculating the relative speed with the object based on infrared light.
- the processor 370 when the learning mode of the vehicle 100 is initiated in response to a user input to the input unit 210, the processor 370 includes a camera 310, a radar 320, a lidar 330, and an ultrasonic sensor Data sensed by the 340 and infrared sensor 350 may be stored in the memory 140.
- the object detection device 300 may include a plurality of processors 370, or may not include a processor 370.
- each of the camera 310, the radar 320, the lidar 330, the ultrasonic sensor 340, and the infrared sensor 350 may individually include a processor.
- the object detection device 300 may be operated under the control of the processor or control unit 170 of the device in the vehicle 100.
- the object detection device 300 may be operated under the control of the control unit 170.
- the communication device 400 is a device for performing communication with an external device.
- the external device may be another vehicle, a mobile terminal, or a server.
- the communication device 400 may include at least one of a transmitting antenna, a receiving antenna, a radio frequency (RF) circuit capable of implementing various communication protocols, and an RF element to perform communication.
- RF radio frequency
- the communication device 400 includes a local area communication unit 410, a location information unit 420, a V2X communication unit 430, an optical communication unit 440, a broadcast transmission / reception unit 450, an Intelligent Transport Systems (ITS) communication unit 460, and a processor. 470.
- the communication device 400 may further include other components in addition to the components described, or may not include some of the components described.
- the short-range communication unit 410 is a unit for short-range communication.
- the short-range communication unit 410 includes Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near Field Communication (NFC), and Wireless Wi-Fi -Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technology can be used to support short-range communication.
- the short-range communication unit 410 may form short-range wireless communication networks (Wireless Area Networks) to perform short-range communication between the vehicle 100 and at least one external device.
- the location information unit 420 is a unit for obtaining location information of the vehicle 100.
- the location information unit 420 may include a Global Positioning System (GPS) module or a Differential Global Positioning System (DGPS) module.
- GPS Global Positioning System
- DGPS Differential Global Positioning System
- the V2X communication unit 430 is a unit for performing wireless communication with a server (V2I: Vehicle to Infra), another vehicle (V2V: Vehicle to Vehicle), or a pedestrian (V2P: Vehicle to Pedestrian).
- the V2X communication unit 430 may include an RF circuit capable of implementing communication (V2I) with an infrastructure, communication between vehicles (V2V), and communication with a pedestrian (V2P).
- the optical communication unit 440 is a unit for performing communication with an external device via light.
- the optical communication unit 440 may include an optical transmitter that converts an electrical signal into an optical signal and transmits it to the outside, and an optical receiver that converts the received optical signal into an electrical signal.
- the light emitting unit may be formed integrally with a lamp included in the vehicle 100.
- the broadcast transmission / reception unit 450 is a unit for receiving a broadcast signal from an external broadcast management server through a broadcast channel or transmitting a broadcast signal to the broadcast management server.
- the broadcast channel may include a satellite channel and a terrestrial channel.
- the broadcast signal may include a TV broadcast signal, a radio broadcast signal, and a data broadcast signal.
- the ITS communication unit 460 can exchange information, data, or signals with the traffic system.
- the ITS communication unit 460 may provide information and data obtained to the transportation system.
- the ITS communication unit 460 may receive information, data, or signals from the traffic system.
- the ITS communication unit 460 may receive road traffic information from the traffic system and provide it to the control unit 170.
- the ITS communication unit 460 may receive a control signal from the traffic system and provide it to the controller 170 or a processor provided inside the vehicle 100.
- the processor 470 may control the overall operation of each unit of the communication device 400.
- the communication device 400 may include a plurality of processors 470 or may not include a processor 470.
- the communication device 400 may be operated under the control of the processor or control unit 170 of another device in the vehicle 100.
- the communication device 400 may implement a vehicle display device together with the user interface device 200.
- the vehicle display device may be referred to as a telematics device or an audio video navigation (AVN) device.
- the communication device 400 may be operated under the control of the control unit 170.
- the driving operation device 500 is a device that receives a user input for driving. In the manual mode, the vehicle 100 may be driven based on a signal provided by the driving manipulation apparatus 500.
- the driving manipulation device 500 may include a steering input device 510, an acceleration input device 530, and a brake input device 570.
- the steering input device 510 may receive an input of a traveling direction of the vehicle 100 from a user.
- the steering input device 510 is preferably formed in a wheel shape to enable steering input by rotation.
- the steering input device may be formed in the form of a touch screen, a touch pad, or a button.
- the acceleration input device 530 may receive an input for acceleration of the vehicle 100 from a user.
- the brake input device 570 may receive an input for deceleration of the vehicle 100 from a user.
- the acceleration input device 530 and the brake input device 570 are preferably formed in the form of a pedal. According to an embodiment, the acceleration input device or the brake input device may be formed in the form of a touch screen, a touch pad or a button.
- the driving operation apparatus 500 may be operated under the control of the control unit 170.
- the vehicle driving device 600 is a device that electrically controls driving of various devices in the vehicle 100.
- the vehicle driving device 600 includes a power train driving part 610, a chassis driving part 620, a door / window driving part 630, a safety device driving part 640, a lamp driving part 650 and an air conditioning driving part 660. Can be.
- the vehicle driving apparatus 600 may further include other components in addition to the components described, or may not include some of the components described.
- the vehicle driving apparatus 600 may include a processor. Each unit of the vehicle driving apparatus 600 may individually include a processor.
- the power train driver 610 may control the operation of the power train device.
- the power train driving unit 610 may include a power source driving unit 611 and a transmission driving unit 612.
- the power source driving unit 611 may control the power source of the vehicle 100.
- the power source driving unit 610 may perform electronic control of the engine. Thereby, the output torque of an engine, etc. can be controlled.
- the power source driving unit 611 can adjust the engine output torque under the control of the control unit 170.
- the power source driving unit 610 may perform control for the motor.
- the power source driving unit 610 may adjust the rotational speed, torque, and the like of the motor under the control of the control unit 170.
- the transmission driver 612 may perform control of the transmission.
- the transmission drive unit 612 can adjust the state of the transmission.
- the transmission drive unit 612 can adjust the state of the transmission to forward (D), reverse (R), neutral (N), or parking (P).
- the transmission drive unit 612 can adjust the engagement state of the gear in the forward (D) state.
- the chassis driver 620 may control the operation of the chassis device.
- the chassis driving unit 620 may include a steering driving unit 621, a brake driving unit 622, and a suspension driving unit 623.
- the steering driving unit 621 may perform electronic control of a steering apparatus in the vehicle 100.
- the steering driving unit 621 may change the traveling direction of the vehicle.
- the brake driving unit 622 may perform electronic control of a brake apparatus in the vehicle 100. For example, by controlling the operation of the brake disposed on the wheel, the speed of the vehicle 100 can be reduced.
- the brake driving unit 622 can individually control each of the plurality of brakes.
- the brake driving unit 622 may control braking forces applied to the plurality of wheels differently.
- the suspension driving unit 623 may perform electronic control of a suspension apparatus in the vehicle 100.
- the suspension driving unit 623 may control the suspension device to control vibration of the vehicle 100 when the road surface is curved, by controlling the suspension device. Meanwhile, the suspension driving unit 623 can individually control each of the plurality of suspensions.
- the door / window driving unit 630 may perform electronic control of a door apparatus or window apparatus in the vehicle 100.
- the door / window driving unit 630 may include a door driving unit 631 and a window driving unit 632.
- the door driving unit 631 may perform control of the door device.
- the door driver 631 can control opening and closing of a plurality of doors included in the vehicle 100.
- the door driver 631 may control opening or closing of a trunk or tail gate.
- the door driving unit 631 may control opening or closing of a sunroof.
- the window driver 632 may perform electronic control of a window apparatus. The opening or closing of a plurality of windows included in the vehicle 100 may be controlled.
- the safety device driver 640 may perform electronic control of various safety devices in the vehicle 100.
- the safety device driving unit 640 may include an airbag driving unit 641, a seat belt driving unit 642, and a pedestrian protection device driving unit 643.
- the airbag driving unit 641 may perform electronic control of an airbag apparatus in the vehicle 100.
- the airbag driving unit 641 may control the airbag to be deployed when a danger is detected.
- the seat belt driving unit 642 may perform electronic control of a seatbelt apparatus in the vehicle 100.
- the seat belt driving unit 642 may control the passenger to be fixed to the seats 110FL, 110FR, 110RL, and 110RR using the seat belt when the danger is detected.
- the pedestrian protection device driver 643 may perform electronic control of the hood lift and the pedestrian airbag.
- the pedestrian protection device driver 643 may control a hood lift-up and a pedestrian airbag to be deployed upon collision detection with a pedestrian.
- the lamp driving unit 650 may perform electronic control of various lamp apparatuses in the vehicle 100.
- the air conditioning driving unit 660 may perform electronic control of an air conditioner in the vehicle 100. For example, when the temperature inside the vehicle is high, the air conditioning driving unit 660 may control the air conditioning device to operate so that cold air is supplied into the vehicle.
- the vehicle driving apparatus 600 may include a processor. Each unit of the vehicle driving apparatus 600 may individually include a processor. The vehicle driving apparatus 600 may be operated under the control of the control unit 170.
- the operation system 700 is a system that controls various operations of the vehicle 100.
- the driving system 700 may be operated in an autonomous driving mode.
- the driving system 700 may include a driving system 710, an exit system 740, and a parking system 750. Depending on the embodiment, the driving system 700 may further include other components in addition to the components described, or may not include some of the components described. Meanwhile, the driving system 700 may include a processor. Each unit of the driving system 700 may individually include a processor.
- the driving system 700 may control the driving of the autonomous driving mode based on learning.
- a learning mode and an operation mode on the premise that learning is completed may be performed.
- a method in which the processor of the driving system 700 performs a learning mode and an operating mode will be described below.
- the learning mode can be performed in the manual mode described above.
- the processor of the driving system 700 may perform driving route learning and surrounding environment learning of the vehicle 100.
- the driving route learning may include generating map data for a route through which the vehicle 100 travels.
- the processor of the driving system 700 may generate map data based on information detected through the object detection device 300 while the vehicle 100 is traveling from the origin to the destination.
- Learning about the surrounding environment may include storing and analyzing information about the surrounding environment of the vehicle 100 in a driving process and a parking process of the vehicle 100.
- the processor of the driving system 700 the information detected through the object detection device 300 in the parking process of the vehicle 100, for example, the location information, size information, fixed (or non-fixed) of the parking space Based on information such as obstacle information, information about the surrounding environment of the vehicle 100 may be stored and analyzed.
- the operation mode may be performed in the autonomous driving mode described above.
- the operation mode will be described on the premise that learning the driving route or learning the surrounding environment is completed through the learning mode.
- the operation mode may be performed in response to a user input through the input unit 210, or may be automatically performed when the vehicle 100 reaches a driving path and a parking space where learning is completed.
- the operation mode is a semi-autonomous operating mode that partially requires the user's manipulation of the driving manipulation apparatus 500 and a full-autonomous operation that does not require any manipulation by the user of the driving manipulation apparatus 500.
- Mode (fully autonomous operating mode).
- the processor of the driving system 700 may control the driving system 710 in the operation mode to drive the vehicle 100 along the learning route.
- the processor of the driving system 700 may control the exit system 740 in the operation mode to unload the parked vehicle 100 from the learning-completed parking space.
- the processor of the driving system 700 may control the parking system 750 in the operation mode to park the vehicle 100 from the current location to the completed parking space.
- the driving system 700 When the driving system 700 is implemented in software, it may be a sub-concept of the control unit 170.
- the driving system 700 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving operation device 500, a vehicle driving device 600, and a navigation system (770), it may be a concept including at least one of the sensing unit 120 and the control unit 170.
- the driving system 710 may perform driving of the vehicle 100.
- the driving system 710 may receive navigation information from the navigation system 770 and provide a control signal to the vehicle driving device 600 to perform driving of the vehicle 100.
- the driving system 710 may receive object information from the object detection device 300 and provide a control signal to the vehicle driving device 600 to perform driving of the vehicle 100.
- the driving system 710 may receive a signal from an external device through the communication device 400 and provide a control signal to the vehicle driving device 600 to perform driving of the vehicle 100.
- the driving system 710 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving operation device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( 120) and a control unit 170, it may be a system concept for performing driving of the vehicle 100.
- the driving system 710 may be referred to as a vehicle driving control device.
- the unloading system 740 may perform unloading of the vehicle 100.
- the unloading system 740 may receive navigation information from the navigation system 770 and provide a control signal to the vehicle driving apparatus 600 to perform the unloading of the vehicle 100.
- the unloading system 740 may receive object information from the object detection device 300 and provide a control signal to the vehicle driving device 600 to perform the unloading of the vehicle 100.
- the unloading system 740 may receive a signal from an external device through the communication device 400, provide a control signal to the vehicle driving apparatus 600, and perform the unloading of the vehicle 100.
- the exit system 740 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving operation device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( 120) and at least one of the control unit 170, it may be a system concept for performing the unloading of the vehicle 100.
- the unloading system 740 may be referred to as a vehicle unloading control device.
- the parking system 750 may perform parking of the vehicle 100.
- the parking system 750 may receive the navigation information from the navigation system 770 and provide a control signal to the vehicle driving apparatus 600 to perform parking of the vehicle 100.
- the parking system 750 may receive object information from the object detection device 300 and provide a control signal to the vehicle driving device 600 to perform parking of the vehicle 100.
- the parking system 750 may receive a signal from an external device through the communication device 400, provide a control signal to the vehicle driving apparatus 600, and perform parking of the vehicle 100.
- the parking system 750 includes a user interface device 270, an object detection device 300 and a communication device 400, a driving operation device 500, a vehicle driving device 600, a navigation system 770, and a sensing unit ( 120) and a control unit 170, it may be a system concept for performing parking of the vehicle 100.
- the parking system 750 may be referred to as a vehicle parking control device.
- the navigation system 770 may provide navigation information.
- the navigation information may include at least one of map information, set destination information, route information according to the destination setting, information on various objects on the route, lane information, and current location information of the vehicle.
- the navigation system 770 may include a memory and a processor.
- the memory can store navigation information.
- the processor can control the operation of the navigation system 770.
- the navigation system 770 may receive information from an external device through the communication device 400 and update pre-stored information. According to an embodiment, the navigation system 770 may be classified as a sub-component of the user interface device 200.
- FIG. 8 is a view showing a domain control system according to the prior art.
- the display 810 to 880 shown in FIG. 8 includes one region of the steering wheel, one region 251a, 251b, and 251e of the instrument panel, one region 251d of the sheet, and each filler described above in FIGS. 3 to 4.
- One area 251f, one area 251g of the door, one area of the center console, one area of the headlining, one area of the sun visor, one area 251c of the wind shield or one area 251h of the window It may be any one of the display unit 251.
- ECUs control each of the displays 810 to 880.
- HUD 811
- Cluster 821
- Head Unit 831
- Touch 841
- RSE Rear Seat Entertainment
- RSE # 1 851
- RSE # 2 861
- Co-Driver 861
- E-Mirror 881 controls each of the displays 810 to 880.
- a consolidation system that provides instrument cluster, head-unit, and head-up display functions through 3 to 4 displays based on a single ECU has been introduced.
- FIG. 9 is a block diagram of a Cockpit Domain Controller (CDC) in a workload distribution scenario between SoCs according to an aspect of the present invention.
- CDC Cockpit Domain Controller
- the present invention proposes a Multiple ECU-based Cockpit Domain Controller (CDC) system through Domain Centralization.
- the CDC system may be referred to as an SoC system or a device provided in a vehicle.
- SoC # 1 may be referred to as a first SoC
- SoC # 2 may be referred to as a second SoC.
- a plurality of SoCs (System on Chip, 910 to 920) are connected through a PCIe switch 930 to be domain centralized, and each of (for example, four) displays can be controlled.
- the displays 901 to 908 of FIG. 9 may be the displays 810 to 880 of FIG. 8.
- the PCIe (Peripheral Component Interconnect express) switch 930 may be a high-speed serial computer expansion bus standard (SPI) or a switch for implementing the same.
- PCIe is designed to replace the existing PCI, PCI-X and Accelerated Graphics Port (AGP) bus standards.
- the PCIe switch 930 illustrated in FIG. 9 is exemplary and does not limit the scope of the present invention. That is, a predetermined input / output interface existing between the CPU and the input / output device and enabling data transfer therebetween can replace the PCIe switch 930.
- a device provided in a vehicle according to an aspect of the present invention that is, a Cockpit Domain Controller (CDC) system (i) lacks HW Headroom for adding an ECU supporting a new function, and (ii) high performance requirements, especially a number of It can solve the problem that can not control the display of Single ECU based.
- CDC Cockpit Domain Controller
- the CDC system proposed by the present invention is advantageous in terms of HW Upgrade and Exchange, and is advantageous for Workload distribution using resources (for example, Workload distribution in Infotainment Domain and Workload distribution with ADAS Domain).
- resources for example, Workload distribution in Infotainment Domain and Workload distribution with ADAS Domain.
- FIG. 10 shows a detailed configuration of a Cockpit Domain Controller system based on PCIe interconnection in a workload distribution scenario between SoCs according to an aspect of the present invention.
- the CDC system includes a plurality of SoCs (1010, 1020), GPUs (Graphics Processing Unit, 1040), NVMe (Non) having a PCIe Switch 1030 and a PCIe interface 1031, 1032, 1033, 1034 -Volatile Memory express, 1050), FPGA (Field-Programmable Gate Array) Device (not shown).
- SoCs 1010, 1020
- GPUs Graphics Processing Unit, 1040
- NVMe Non
- PCIe Switch 1030 and a PCIe interface 1031, 1032, 1033, 1034 -Volatile Memory express, 1050
- FPGA Field-Programmable Gate Array
- the SoCs 1010 and 1020 may control a plurality of displays, respectively, as described above with reference to FIG. 9, and may be composed of a CPU, cache, memory, host-PCI bridge, and PCI device. Meanwhile, one or more of the above-described components may be omitted, and a configuration (not shown) may be added to the SoCs 1010 and 1020.
- the PCI Switch (1030) is composed of a plurality of PCI-PCI Bridges, and can be connected via SoC (1010, 1020), External GPU (1040), NVMe (1050) and multiple PCIe interfaces (1031, 1032, 1033, 1034). Can be. Meanwhile, according to an aspect of the present invention, the plurality of PCIe interfaces 1031, 1032, 1033, and 1034 may be wired interfaces.
- FIG. 11 shows a detailed configuration of a Cockpit Domain Controller system based on PCIe interconnection in a workload distribution scenario between SoCs according to an aspect of the present invention.
- an EP device eg, NVMe, External GPU connected to a PCIe switch can operate in an assigned SoC system.
- Agent 1101 checks the resource usage of Neighbor Node and Self Node by launching the application, and is distributed and parallel to Local / Remote, and can operate as Server / Client respectively considering Node Topology. It is characterized by running Container-based Application to support the platform on other models.
- Resource Manager 1102 measures and manages resources such as CPU / Memory / GPU / DSP, and manages / resources runtime resources of Server / Client and manages running App information.
- the Data Sharing Manager (1103) enables a connection between applications of different nodes using a PCIe interconnection supporting the Socket / SISCI method, and performs a function of sharing data.
- information such as IP and port in the case of Socket and adapter number, node ID, segment ID in case of SISCI in the Server Side without knowing the specific node location accessible from the Client Side It is characterized in that it is possible to connect to each other by creating and managing a unique key.
- the PCIe Communication SW 1104 performs a PCIe Socket / SISCI communication role through NT / DMA Transfer control of the PCIe Switch.
- Fault Manager (1105) detects application faults, monitors PCIe NT Link errors and Host Failover status, and acts as a reporting agent for error handling.
- FIG. 12 is a view for explaining a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 12 is a diagram for explaining a method for a CDC system according to an aspect of the present invention to operate an App using Available Resources of SoC # 2 in a Resource Full state of SoC # 1.
- SoC # 1 controls two displays, that is, Cluster 1210 and CID (Central Information Display, 1220), and SoC # 2 controls two displays, RSE # 1 (1230) and RSE # 2 (1240).
- CID Central Information Display, 1220
- SoC # 2 controls two displays, RSE # 1 (1230) and RSE # 2 (1240).
- RSE # 1 Central Information Display
- the first application 1221, the second application 1222, and the third application 1223 are executed through SoC # 1 and output from the CID 1220.
- the first to third applications may be, for example, Media application, Navigation application, Algorithm computing application.
- SoC # 1 may become a resource full state. Therefore, SoC # 1 requests execution of the fourth application 1224 to SoC # 2. In addition, SoC # 2 may share the screen executed by the fourth application 1224 to SoC # 1. Finally, SoC # 1 outputs the execution screen of the shared fourth Application 1224 through the CID 1220.
- SoC # 1 when the resource state of SoC # 1 is the Resource full state and the resource state of SoC # 2 is not the Resource full state, SoC # 1 requests SoC # 2 to execute a specific application. Can be designed.
- SoC # 1 when both the resource states of SoC # 1 and SoC # 2 are in the Resource full state, SoC # 1 may be controlled to terminate any one of the at least one application based on a predetermined priority. In this regard, it will be described later in FIG. 14.
- FIG. 13 is a view for explaining a workload distribution scenario between SoCs according to an aspect of the present invention. Referring to Figure 13 will be described for the steps performed by the above-described SoC (for example, SoC # 1 and SoC # 2) for Workload distribution.
- SoC # 1 and SoC # 2 for Workload distribution.
- Component initialization-SoC # 1 and SoC # 2 can run the agent for application execution and resource gathering. SoC # 1 and SoC # 2 can initialize PCIe software (SW) for PCIe connection between SoCs and drive data sharing. SoC # 1 and SoC # 2 can drive the Fault Manager for Fault Detection.
- SW PCIe software
- Application Execution-SoC # 1 can decide whether to run the application on Local (eg, SoC # 1) or Remote (eg, SoC # 2). In particular, this can be determined based on Available Resources of SoC # 1 and SoC # 2.
- step iii) Data Sharing-If it is determined in step ii) that the application is to be operated in the Remote (eg, SoC # 2), AV, Surface Sharing, and Computation sharing may be performed between SoC # 1 and SoC # 2. Meanwhile, the above-described steps will be described in more detail with reference to FIGS. 14 to 16 below.
- FIG. 14 is a view for explaining component initialization in a workload distribution scenario between SoCs according to an aspect of the present invention.
- SoC # 1 executes the Fault Manager to initialize the PCIe Communication SW and monitor the PCIe NT Link Error and Host Failover status (S1420). In addition, Fault Detection of the application may be performed at this stage.
- Soc # 1 executes Data Sharing Manager to perform Socket / PCIe connection between SoCs (S1430). At this time, Server-Client relationship can be formed between SoC # 1 and SoC # 2, and Server can create and manage IP / Port and PCIe DMA channel information predefined by Topology.
- SoC # 1 runs Agent (or Agent Server) (S1440), and runs Resource Manager (S1450).
- the Resource Manager of SoC # 1 activates the Application List DB to be executed (S1460).
- the agent server uses this information to execute the base application to be executed locally (S1470) and waits for the user to execute the application (S1480).
- Agent Client connects to Agent Server and waits for Agent Server requests.
- the Application can be divided into (i) Base Application that should be executed at BootUp and (ii) Normal Application that is executed by user request.
- Normal Applications what can be executed on the client can be managed by each Resource Manager DB. Can be.
- Resource Manager can also manage priority (for example, level 1 to level 5, level 5 has the lowest priority) for forced termination.
- priority for example, level 1 to level 5, level 5 has the lowest priority
- the Resource Manager may force the Agent to terminate the normal application with low priority.
- the Resource Manager can collect information of itself and Remote (Client) using the Socket / PCIe connection information of the agent (S1490). That is, the Resource Manager can collect Local and Remote resources, and manage and store Available Resource information of At moment / Average (N seconds).
- 15 is a view for explaining application execution in a workload distribution scenario between SoCs according to an aspect of the present invention.
- SoC # 1 checks the resource status of the remote (S1540), generates a UniqueID for communication between apps and grants it to the data sharing manager (S1550).
- the Data Sharing Manger updates the Unique ID to be used for the App in the Data Sharing Manager Client (S1560, S1565).
- Agent requests to run the Application to AgentClient (S1570).
- SoC # 2 waits for an execution request from the server (S1575). SoC # 2 receiving the application execution request executes the application using the updated UniqueID (S1580).
- SoC # 1 terminates the App in consideration of the priority and background execution of the preset Normal Application and tries to execute the application again (S1590).
- 16 is a view for explaining data sharing in a workload distribution scenario between SoCs according to an aspect of the present invention.
- SoC # 1 requests application execution (Launch) to SoC # 2 (S1610).
- the Normal Application is an AV (Audio Video) or Surface Sharing capable application (S1620)
- the Agent Server prepares to receive the AV or Surface receiving Application by executing and switching (S1630).
- the application performs connection with the application of SoC # 2 through the Socket / PCIe Connection information obtained through uniqueID (S1640).
- AgentClient (SoC # 2), if the Normal Application is an AV or Surface Sharing application, delivers the Rendering Data to the AV, Surface receiving App of the AgentServer (SoC # 1) (S1650). In addition, in response to the rendering data transmission, AgentServer (SoC # 1) may transmit Touch Input to AgentClient (SoC # 2) (S1660).
- the computing result may be transmitted through a connected channel (S1670).
- Type may include Touch input, Audio, Video, Surface, Command (Launch / Exit), Computing Result, and Data may include length and value of values used in Type.
- 17 is a view for explaining the operation of the fault manager in a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 17 is a view for explaining the operation of the Fault Manager described above in FIG. 11 in more detail. That is, the components shown in FIG. 17 may be included in one SoC (eg, SoC # 1).
- SoC SoC # 1
- the Fault Detector 1710 When the application is executed, the Fault Detector 1710 is attached to the Fault Detection Manager 1720 to register the Signal Action. Thereafter, when a Fault occurs, the Fault Detector 1710 may deliver it to the Fault Manager 1730.
- the fault manager 1730 shown in FIG. 17 may receive not only Application Fault, but also PCIe NT Link Error and Host Failover status, and may perform Error Reporting so that the Agent can handle the error. Furthermore, the fault manager 1730 illustrated in FIG. 17 may detect a PCIe NT Link Error and Host Failover using an interrupt providing a PCIe driver.
- FIG. 18 is a view for explaining a resource table in a workload distribution scenario between SoCs according to an aspect of the present invention.
- FIG. 18 shows the structure of a resource table for resource management by the resource manager described above in FIG. 14.
- Required Resource & Threshold for decision is information required for application execution and is a field related to resource information required for driving an App.
- Base is the type executed at BootUp
- Local is the type executed only in its own SoC
- Global means the type that can be executed in other SoCs as well as its own SoC.
- Priority is a field related to the priority policy terminated when resources are insufficient
- Running is a field indicating the currently running SoC Node.
- the Resource Manager may collect information of itself and the Remote (Client). That is, the Resource Manager can collect Local and Remote resources, and manage and store Available Resource information of At moment / Average (N seconds).
- the Resource Manager manages information including gathering information, CPU / Memory, DSP, GPU, At Moment / Average (N seconds) as shown in the table structure shown in FIG. 18 (b). can do. Furthermore, the information in FIG. 18 (b) can be used to determine which Node will be executed for Workload distribution.
- FIG. 19 is a view for explaining a touch interaction in a workload distribution scenario between SoCs according to an aspect of the present invention. Specifically, the embodiment illustrated in FIG. 19 may be referred to as a more specific embodiment of steps S1640 to S1660 of FIG. 16.
- SoC # 1 and SoC # 2 are connected through PCIe Switch interconnection.
- Each SoC executes Local Launch Application and outputs the execution screen through HUD / Cluster / CID / RSE.
- SoC # 1 can output its Local Launch Application in any one of HUD, Cluster and CID.
- SoC # 2 can output its Local Launch Application from any one of RSE # 1, RSE # 2 and Co-Driver.
- SoC # 1 When the resource load of SoC # 1 is high (e.g., resource full state), when the user requests execution of the application connected to SoC # 1 through the Touch input, the Agent of SoC # 1 receives the Touch input. It can receive and send an execution command to SoC # 2.
- SoC # 1 When the resource load of SoC # 1 is high (e.g., resource full state), when the user requests execution of the application connected to SoC # 1 through the Touch input, the Agent of SoC # 1 receives the Touch input. It can receive and send an execution command to SoC # 2.
- SoC # 2 can transfer the executed screen to SoC # 1 through the PCIe Switch.
- SoC # 1 can transfer the user's touch input related to the application to SoC # 2 through PCIe Interconnection.
- the screen that has been computed and rendered in SoC # 2 can be transferred from SoC # 2 to SoC # 1 again.
- the completed screen may be output from the CID.
- the interface between the display and the SoC may be low-voltage differential signaling (LVDS), and the LVDS may include a display output and a touch input signal.
- LVDS low-voltage differential signaling
- embodiments of the present invention can be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to embodiments of the present invention includes one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
- the software code can be stored in a memory unit and driven by a processor.
- the memory unit is located inside or outside the processor, and can exchange data with the processor by various known means.
- the present invention described above can be embodied as computer readable codes on a medium on which a program is recorded.
- the computer-readable medium includes all types of recording devices in which data readable by a computer system is stored. Examples of computer-readable media include a hard disk drive (HDD), solid state disk (SSD), silicon disk drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical data storage device. This includes, and is also implemented in the form of a carrier wave (eg, transmission over the Internet).
- the computer may include a control unit 180 of the terminal. Accordingly, the above detailed description should not be construed as limiting in all respects, but should be considered illustrative. The scope of the invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Traffic Control Systems (AREA)
Abstract
차량에 구비되는 장치 및 그 제어 방법을 제안한다. 구체적으로, 적어도 하나의 애플리케이션을 실행하며, 소정의 입출력 인터페이스를 통해 연결되는 복수의 SoC (System on Chip) 및 상기 차량 내에 구비되며, 상기 적어도 하나의 애플리케이션의 실행 화면을 출력하는 디스플레이를 포함하는 차량에 구비되는 장치를 제안한다. 나아가, 상기 복수의 SoC 중 제 1 SoC는 상기 제 1 SoC의 자원 상태에 기초하여 상기 적어도 하나의 애플리케이션 중 특정 애플리케이션의 실행을 제 2 SoC에 요청하고, 상기 요청에 대한 응답으로 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신하는 것을 제안한다.
Description
본 발명은 차량에 구비되는 장치 및 그 제어 방법에 관한 것이다. 보다 구체적으로, 본 발명은 차량에 구비되는 디스플레이를 제어하는 복수의 SoC (System on Chip) 간의 workload 분산 방법에 관한 것이다.
차량은 전통적으로 사용자의 이동 수단으로 기능하지만, 사용자의 편의를 위해 각종 센서와 전자 장치 등을 구비하여 사용자의 운전 편의를 제공하고 있다. 특히 사용자의 운전 편의를 위한 운전자 보조 시스템(ADAS: Advanced Driver Assistance System) 및 더 나아가 자율주행차량(Autonomous Vehicle)에 대한 개발이 활발하게 이루어 지고 있다.
최근의 운전자 보조 시스템 및 자율주행차량은 사용자의 운전 편의뿐만 아니라 승객의 편의를 위한 다양한 디스플레이 장치를 제공하고 있다. 이를 일컬어 차량 내 엔터테인먼트 (In-car entertainment, ICE) 또는 차량 내 인포테인먼트 (In-vehicle Infotainment, IVI)라고 한다. ICE 또는 IVI는 오디오 또는 비디오 엔터테인먼트를 제공하는 자동차 하드웨어 및 소프트웨어라고 할 수 있다. 특히, IVI는 자동차 내비게이션 시스템, 비디오 플레이어, USB 및 Bluetooth 연결, Carputers, 차량 내 인터넷 및 WiFi를 포함한다.
이처럼 차량 내 인포테인먼트 도메인에 고해상도를 지원하는 디스플레이가 추가됨으로써, 디스플레이 및 이를 제어하는 도메인 컨트롤 시스템의 성능에 대한 요구사항이 증가하고 있는 상황이다. 그러나 종래 기술에 따른 도메인 컨트롤 시스템에 따르면, 새로운 기능을 지원하는 ECU를 추가하기 위한 HW Headroom 부족한 문제점과 Single ECU로는 고성능 요구사항, 특히 다수의 Display를 제어할 수 없다는 문제점이 있다.
전술한 문제점을 해결하기 위하여, 본 발명에서 이루고자 하는 기술적 과제는 차량에 구비되는 디스플레이 및 상기 디스플레이를 제어하는 복수의 SoC (System on Chip) 간의 workload 분산 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제는 이러한 종래 기술의 문제를 해결하는 것이다. 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에서는 적어도 하나의 애플리케이션을 실행하며, 소정의 입출력 인터페이스를 통해 연결되는 복수의 SoC (System on Chip) 및 상기 차량 내에 구비되며, 상기 적어도 하나의 애플리케이션의 실행 화면을 출력하는 디스플레이를 포함하는 차량에 구비되는 장치를 제공한다. 특히, 상기 복수의 SoC 중 제 1 SoC는 상기 제 1 SoC의 자원 상태에 기초하여 상기 적어도 하나의 애플리케이션 중 특정 애플리케이션의 실행을 제 2 SoC에 요청하고, 상기 요청에 대한 응답으로 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신할 수 있다.
상기 제 1 SoC의 자원 상태가 Resource full 상태이고, 상기 제 2 SoC의 자원 상태가 Resource full 상태가 아닌 경우에, 상기 제 1 SoC는 상기 제 2 SoC에 상기 특정 애플리케이션의 실행을 요청할 수 있다.
상기 제 1 SoC 및 상기 제 2 SoC의 자원 상태가 모두 Resource full 상태인 경우, 상기 제 1 SoC는 기설정된 우선순위에 기초하여 상기 적어도 하나의 애플리케이션 중 어느 하나를 종료할 수 있다.
상기 적어도 하나의 애플리케이션은 상기 차량에 구비되는 장치의 부트-업 (Boot-Up) 시에 실행되는 베이스 애플리케이션 (base application) 및 사용자 요청에 의해 실행되는 노멀 애플리케이션 (normal application) 중 어느 하나일 수 있다.
상기 제 1 SoC는 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신함에 따라, 상기 특정 애플리케이션과 관련된 사용자의 터치 입력을 상기 제 2 SoC로 전송할 수 있다.
상기 디스플레이는 HUD (Head Up Display), Cluster, Head Unit, RSE (Rear Seat Entertainment), Co-Driver display 및/또는 E-Mirror 중 적어도 하나를 포함할 수 있다.
상기 소정의 입출력 인터페이스는 PCIe (Peripheral Component Interconnect express)일 수 있다.
본 발명의 일 측면에서는 전술한 종래기술의 문제 즉, 새로운 기능을 지원하는 ECU를 추가하기 위한 HW Headroom 부족한 문제점과, 고성능 요구사항, 특히 다수의 Display를 Single ECU 기반으로 제어할 수 없다는 문제점을 해결할 수 있다. 구체적으로, 본 발명의 일 측면에 따른 차량에 구비되는 장치는 하드웨어 업그레이드 및 교체 측면에서 유리하고, 자원을 활용하는 복수의 SoC간의 Workload 분산 측면에서 유리하다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 일 측면에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 일 측면에 따른 차량을 외부의 다양한 각도에서 본 도면이다.
도 3 내지 도 4는 본 발명의 일 측면에 따른 차량의 내부를 도시한 도면이다.
도 5 내지 도 6은 본 발명의 일 측면에 따른 오브젝트를 설명하는데 참조되는 도면이다.
도 7은 본 발명의 일 측면에 따른 차량을 설명하는데 참조되는 블록도이다.
도 8은 종래 기술에 따른 도메인 컨트롤 시스템을 나타낸 도면이다.
도 9는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Cockpit Domain Controller (CDC)의 블록도를 나타낸 도면이다.
도 10은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 PCIe interconnection을 기반으로 하는 Cockpit Domain Controller 시스템의 세부 구성을 나타낸다.
도 11은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 PCIe interconnection을 기반으로 하는 Cockpit Domain Controller 시스템의 세부 구성을 나타낸다.
도 12는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오를 설명하기 위한 도면이다.
도 13은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오를 설명하기 위한 도면이다.
도 14는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 component 초기화를 설명하기 위한 도면이다.
도 15는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Application 실행을 설명하기 위한 도면이다.
도 16은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 data sharing을 설명하기 위한 도면이다.
도 17은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 fault manager의 동작을 설명하기 위한 도면이다.
도 18은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 resource table을 설명하기 위한 도면이다.
도 19는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Touch Interaction을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 기술되는 차량은, 자동차, 오토바이를 포함하는 개념일 수 있다. 이하에서는, 차량에 대해 자동차를 위주로 기술한다. 본 명세서에서 기술되는 차량은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량 등을 모두 포함하는 개념일 수 있다. 이하의 설명에서 차량의 좌측은 차량의 주행 방향의 좌측을 의미하고, 차량의 우측은 차량의 주행 방향의 우측을 의미한다.
도 1은 본 발명의 실시예에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 차량을 외부의 다양한 각도에서 본 도면이다.
도 3 내지 도 4는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 5 내지 도 6은 본 발명의 실시예에 따른 오브젝트를 설명하는데 참조되는 도면이다.
도 7은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블록도이다.
도 1 내지 도 7을 참조하면, 차량(100)은 동력원에 의해 회전하는 바퀴, 차량(100)의 진행 방향을 조절하기 위한 조향 입력 장치(510)를 포함할 수 있다.
차량(100)은 자율 주행 차량일 수 있다. 차량(100)은, 사용자 입력에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 예를 들면, 차량(100)은, 사용자 인터페이스 장치(200)를 통해, 수신되는 사용자 입력에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 주행 상황 정보에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 주행 상황 정보는, 차량 외부의 오브젝트 정보, 내비게이션 정보 및 차량 상태 정보 중 적어도 어느 하나를 포함할 수 있다.
예를 들면, 차량(100)은, 오브젝트 검출 장치(300)에서 생성되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다. 예를 들면, 차량(100)은, 통신 장치(400)를 통해 수신되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 외부 디바이스에서 제공되는 정보, 데이터, 신호에 기초하여 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)이 자율 주행 모드로 운행되는 경우 자율 주행 차량(100)은 운행 시스템(700)에 기초하여 운행될 수 있다. 예를 들면, 자율 주행 차량(100)은, 주행 시스템(710), 출차 시스템(740), 주차 시스템(750)에서 생성되는 정보, 데이터 또는 신호에 기초하여 운행될 수 있다.
차량(100)이 메뉴얼 모드로 운행되는 경우, 자율 주행 차량(100)은, 운전 조작 장치(500)를 통해 운전을 위한 사용자 입력을 수신할 수 있다. 운전 조작 장치(500)를 통해 수신되는 사용자 입력에 기초하여, 차량(100)은 운행될 수 있다.
전장(overall length)은 차량(100)의 앞부분에서 뒷부분까지의 길이, 전폭(width)은 차량(100)의 너비, 전고(height)는 바퀴 하부에서 루프까지의 길이를 의미한다. 이하의 설명에서, 전장 방향(L)은 차량(100)의 전장 측정의 기준이 되는 방향, 전폭 방향(W)은 차량(100)의 전폭 측정의 기준이 되는 방향, 전고 방향(H)은 차량(100)의 전고 측정의 기준이 되는 방향을 의미할 수 있다.
도 7에 예시된 바와 같이, 차량(100)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 운행 시스템(700), 내비게이션 시스템(770), 센싱부(120), 인터페이스부(130), 메모리(140), 제어부(170) 및 전원 공급부(190)를 포함할 수 있다.
실시예에 따라, 차량(100)은, 본 명세서에서 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.센싱부(120)는, 차량의 상태를 센싱할 수 있다. 센싱부(120)는, 자세 센서(예를 들면, 요 센서(yaw sensor), 롤 센서(roll sensor), 피치 센서(pitch sensor)), 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 자이로 센서(gyro sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 초음파 센서, 조도 센서, 가속 페달 포지션 센서, 브레이크 페달 포지션 센서, 등을 포함할 수 있다.
센싱부(120)는, 차량 자세 정보, 차량 충돌 정보, 차량 방향 정보, 차량 위치 정보(GPS 정보), 차량 각도 정보, 차량 속도 정보, 차량 가속도 정보, 차량 기울기 정보, 차량 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 차량 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 스티어링 휠 회전 각도, 차량 외부 조도, 가속 페달에 가해지는 압력, 브레이크 페달에 가해지는 압력 등에 대한 센싱 신호를 획득할 수 있다.
센싱부(120)는, 그 외, 가속페달센서, 압력센서, 엔진 회전 속도 센서(engine speed sensor), 공기 유량 센서(AFS), 흡기 온도 센서(ATS), 수온 센서(WTS), 스로틀 위치 센서(TPS), TDC 센서, 크랭크각 센서(CAS), 등을 더 포함할 수 있다.
센싱부(120)는, 센싱 데이터를 기초로, 차량 상태 정보를 생성할 수 있다. 차량 상태 정보는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다.
예를 들면, 차량 상태 정보는, 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다.
인터페이스부(130)는, 차량(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행할 수 있다. 예를 들면, 인터페이스부(130)는 이동 단말기와 연결 가능한 포트를 구비할 수 있고, 상기 포트를 통해, 이동 단말기와 연결할 수 있다. 이 경우, 인터페이스부(130)는 이동 단말기와 데이터를 교환할 수 있다.
한편, 인터페이스부(130)는 연결된 이동 단말기에 전기 에너지를 공급하는 통로 역할을 수행할 수 있다. 이동 단말기가 인터페이스부(130)에 전기적으로 연결되는 경우, 제어부(170)의 제어에 따라, 인터페이스부(130)는 전원 공급부(190)에서 공급되는 전기 에너지를 이동 단말기에 제공할 수 있다.
메모리(140)는, 제어부(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기 일 수 있다. 메모리(140)는 제어부(170)의 처리 또는 제어를 위한 프로그램 등, 차량(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 실시예에 따라, 메모리(140)는, 제어부(170)와 일체형으로 형성되거나, 제어부(170)의 하위 구성 요소로 구현될 수 있다.
제어부(170)는, 차량(100) 내의 각 유닛의 전반적인 동작을 제어할 수 있다. 제어부(170)는 ECU(Electronic Control Unit)로 명명될 수 있다. 전원 공급부(190)는, 제어부(170)의 제어에 따라, 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다. 특히, 전원 공급부(190)는, 차량 내부의 배터리 등으로부터 전원을 공급받을 수 있다.
차량(100)에 포함되는 하나 이상의 프로세서 및 제어부(170)는 ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
또한, 센싱부(120), 인터페이스부(130), 메모리(140) 전원 공급부(190), 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 운행 시스템(700) 및 내비게이션 시스템(770)은 개별적인 프로세서를 갖거나 제어부(170)에 통합될 수 있다.
사용자 인터페이스 장치(200)는, 차량(100)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(100)에서 생성된 정보를 제공할 수 있다. 차량(100)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interfaces) 또는 UX(User Experience)를 구현할 수 있다.
사용자 인터페이스 장치(200)는, 입력부(210), 내부 카메라(220), 생체 감지부(230), 출력부(250) 및 프로세서(270)를 포함할 수 있다. 사용자 인터페이스 장치(200)의 각 구성요소는 전술한 인터페이스부(130)와 구조적, 기능적으로 분리되거나 통합될 수 있다.
실시예에 따라, 사용자 인터페이스 장치(200)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수도 있다.
입력부(210)는, 사용자로부터 정보를 입력받기 위한 것으로, 입력부(210)에서 수집한 데이터는, 프로세서(270)에 의해 분석되어, 사용자의 제어 명령으로 처리될 수 있다.
입력부(210)는, 차량 내부에 배치될 수 있다. 예를 들면, 입력부(210)는, 스티어링 휠(steering wheel)의 일 영역, 인스투루먼트 패널(instrument panel)의 일 영역, 시트(seat)의 일 영역, 각 필러(pillar)의 일 영역, 도어(door)의 일 영역, 센타 콘솔(center console)의 일 영역, 헤드 라이닝(head lining)의 일 영역, 썬바이저(sun visor)의 일 영역, 윈드 쉴드(windshield)의 일 영역 또는 윈도우(window)의 일 영역 등에 배치될 수 있다.
입력부(210)는, 음성 입력부(211), 제스쳐 입력부(212), 터치 입력부(213) 및 기계식 입력부(214)를 포함할 수 있다.
음성 입력부(211)는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 음성 입력부(211)는, 하나 이상의 마이크로 폰을 포함할 수 있다.
제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다.
실시예에 따라, 제스쳐 입력부(212)는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부(212)는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다. 제스쳐 입력부(212)는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다.
터치 입력부(213)는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 터치 입력부(213)는, 사용자의 터치 입력을 감지하기 위한 터치 센서를 포함할 수 있다. 실시예에 따라, 터치 입력부(213)는 디스플레이부(251)와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 차량(100)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다.
기계식 입력부(214)는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 기계식 입력부(214)에 의해 생성된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다. 기계식 입력부(214)는, 스티어링 휠(steering wheel), 센터페시아(center fascia), 센터 콘솔(center console), 콕핏 모듈(cockpit module), 도어 등에 배치될 수 있다.
프로세서(270)는 앞서 설명한 음성 입력부(211), 제스쳐 입력부(212), 터치 입력부(213) 및 기계식 입력부(214) 중 적어도 하나에 대한 사용자 입력에 반응하여, 차량(100)의 학습 모드를 개시할 수 있다. 학습 모드에서 차량(100)은 차량(100)의 주행 경로 학습 및 주변 환경 학습을 수행할 수 있다. 학습 모드에 관해서는 이하 오브젝트 검출 장치(300) 및 운행 시스템(700)과 관련된 부분에서 상세히 설명하도록 한다.
내부 카메라(220)는, 차량 내부 영상을 획득할 수 있다. 프로세서(270)는, 차량 내부 영상을 기초로, 사용자의 상태를 감지할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 시선 정보를 획득할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 제스쳐를 감지할 수 있다.
생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있다. 생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있는 센서를 포함하고, 센서를 이용하여, 사용자의 지문 정보, 심박동 정보 등을 획득할 수 있다. 생체 정보는 사용자 인증을 위해 이용될 수 있다.
출력부(250)는, 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것이다. 출력부(250)는, 디스플레이부(251), 음향 출력부(252) 및 햅틱 출력부(253) 중 적어도 어느 하나를 포함할 수 있다.
디스플레이부(251)는, 다양한 정보에 대응되는 그래픽 객체를 표시할 수 있다. 디스플레이부(251)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
디스플레이부(251)는 터치 입력부(213)와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 디스플레이부(251)는 HUD(Head Up Display)로 구현될 수 있다. 디스플레이부(251)가 HUD로 구현되는 경우, 디스플레이부(251)는 투사 모듈을 구비하여 윈드 쉴드 또는 윈도우에 투사되는 이미지를 통해 정보를 출력할 수 있다. 디스플레이부(251)는, 투명 디스플레이를 포함할 수 있다. 투명 디스플레이는 윈드 쉴드 또는 윈도우에 부착될 수 있다.
투명 디스플레이는 소정의 투명도를 가지면서, 소정의 화면을 표시할 수 있다. 투명 디스플레이는, 투명도를 가지기 위해, 투명 디스플레이는 투명 TFEL(Thin Film Electroluminescent), 투명 OLED(Organic Light-Emitting Diode), 투명 LCD(Liquid Crystal Display), 투과형 투명디스플레이, 투명 LED(Light Emitting Diode) 디스플레이 중 적어도 하나를 포함할 수 있다. 투명 디스플레이의 투명도는 조절될 수 있다.
한편, 사용자 인터페이스 장치(200)는, 복수의 디스플레이부(251a 내지 251g)를 포함할 수 있다.
디스플레이부(251)는, 스티어링 휠의 일 영역, 인스투루먼트 패널의 일 영역(251a, 251b, 251e), 시트의 일 영역(251d), 각 필러의 일 영역(251f), 도어의 일 영역(251g), 센타 콘솔의 일 영역, 헤드 라이닝의 일 영역, 썬바이저의 일 영역에 배치되거나, 윈드 쉴드의 일영역(251c), 윈도우의 일영역(251h)에 구현될 수 있다.
음향 출력부(252)는, 프로세서(270) 또는 제어부(170)로부터 제공되는 전기 신호를 오디오 신호로 변환하여 출력한다. 이를 위해, 음향 출력부(252)는, 하나 이상의 스피커를 포함할 수 있다.
햅틱 출력부(253)는, 촉각적인 출력을 발생시킨다. 예를 들면, 햅틱 출력부(253)는, 스티어링 휠, 안전 벨트, 시트(110FL, 110FR, 110RL, 110RR)를 진동시켜, 사용자가 출력을 인지할 수 있게 동작할 수 있다.
프로세서(270)는, 사용자 인터페이스 장치(200)의 각 유닛의 전반적인 동작을 제어할 수 있다. 실시예에 따라, 사용자 인터페이스 장치(200)는, 복수의 프로세서(270)를 포함하거나, 프로세서(270)를 포함하지 않을 수도 있다.
사용자 인터페이스 장치(200)에 프로세서(270)가 포함되지 않는 경우, 사용자 인터페이스 장치(200)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다. 한편, 사용자 인터페이스 장치(200)는, 차량용 디스플레이 장치로 명명될 수 있다. 사용자 인터페이스 장치(200)는, 제어부(170)의 제어에 따라 동작될 수 있다.
오브젝트 검출 장치(300)는, 차량(100) 외부에 위치하는 오브젝트를 검출하기 위한 장치이다. 오브젝트 검출 장치(300)는, 센싱 데이터에 기초하여, 오브젝트 정보를 생성할 수 있다.
오브젝트 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(100)과 오브젝트와의 거리 정보 및 차량(100)과 오브젝트와의 상대 속도 정보를 포함할 수 있다. 오브젝트는, 차량(100)의 운행과 관련된 다양한 물체들일 수 있다.
도 5 내지 도 6을 참조하면, 오브젝트(O)는, 차선(OB10), 타 차량(OB11), 보행자(OB12), 이륜차(OB13), 교통 신호(OB14, OB15), 빛, 도로, 구조물, 과속 방지턱, 지형물, 동물 등을 포함할 수 있다.
차선(Lane)(OB10)은, 주행 차선, 주행 차선의 옆 차선, 대향되는 차량이 주행하는 차선일 수 있다. 차선(Lane)(OB10)은, 차선(Lane)을 형성하는 좌우측 선(Line)을 포함하는 개념일 수 있다.
타 차량(OB11)은, 차량(100)의 주변에서 주행 중인 차량일 수 있다. 타 차량은, 차량(100)으로부터 소정 거리 이내에 위치하는 차량일 수 있다. 예를 들면, 타 차량(OB11)은, 차량(100)보다 선행 또는 후행하는 차량일 수 있다.
보행자(OB12)는, 차량(100)의 주변에 위치한 사람일 수 있다. 보행자(OB12)는, 차량(100)으로부터 소정 거리 이내에 위치하는 사람일 수 있다. 예를 들면, 보행자(OB12)는, 인도 또는 차도상에 위치하는 사람일 수 있다.
이륜차(OB13)는, 차량(100)의 주변에 위치하고, 2개의 바퀴를 이용해 움직이는 탈것을 의미할 수 있다. 이륜차(OB13)는, 차량(100)으로부터 소정 거리 이내에 위치하는 2개의 바퀴를 가지는 탈 것일 수 있다. 예를 들면, 이륜차(OB13)는, 인도 또는 차도상에 위치하는 오토바이 또는 자전거일 수 있다.
교통 신호는, 교통 신호등(OB15), 교통 표지판(OB14), 도로 면에 그려진 문양 또는 텍스트를 포함할 수 있다. 빛은, 타 차량에 구비된 램프에서 생성된 빛일 수 있다. 빛은, 가로등에서 생성된 빛을 수 있다. 빛은 태양광일 수 있다. 도로는, 도로면, 커브, 오르막, 내리막 등의 경사 등을 포함할 수 있다. 구조물은, 도로 주변에 위치하고, 지면에 고정된 물체일 수 있다. 예를 들면, 구조물은, 가로등, 가로수, 건물, 전봇대, 신호등, 다리를 포함할 수 있다. 지형물은, 산, 언덕, 등을 포함할 수 있다.
한편, 오브젝트는, 이동 오브젝트와 고정 오브젝트로 분류될 수 있다. 예를 들면, 이동 오브젝트는, 타 차량, 보행자를 포함하는 개념일 수 있다. 예를 들면, 고정 오브젝트는, 교통 신호, 도로, 구조물을 포함하는 개념일 수 있다.
오브젝트 검출 장치(300)는, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340), 적외선 센서(350) 및 프로세서(370)를 포함할 수 있다. 오브젝트 검출 장치(300)의 각 구성요소는 전술한 센싱부(120)와 구조적, 기능적으로 분리되거나 통합될 수 있다.
실시예에 따라, 오브젝트 검출 장치(300)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
카메라(310)는, 차량 외부 영상을 획득하기 위해, 차량의 외부의 적절한 곳에 위치할 수 있다. 카메라(310)는, 모노 카메라, 스테레오 카메라(310a), AVM(Around View Monitoring) 카메라(310b) 또는 360도 카메라일 수 있다.
카메라(310)는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 스테레오 카메라(310a)에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라(310)는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
카메라(310)는, 획득된 영상을 프로세서(370)에 제공할 수 있다.
레이다(320)는, 전자파 송신부, 수신부를 포함할 수 있다. 레이다(320)는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다(320)는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keying) 방식으로 구현될 수 있다.
레이다(320)는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
레이다(320)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
라이다(330)는, 레이저 송신부, 수신부를 포함할 수 있다. 라이다(330)는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다.
라이다(330)는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다(330)는, 모터에 의해 회전되며, 차량(100) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다(330)는, 광 스티어링에 의해, 차량(100)을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다(330)를 포함할 수 있다.
라이다(330)는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다(330)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
초음파 센서(340)는, 초음파 송신부, 수신부를 포함할 수 있다. 초음파 센서(340)은, 초음파를 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 초음파 센서(340)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
적외선 센서(350)는, 적외선 송신부, 수신부를 포함할 수 있다. 적외선 센서(340)는, 적외선 광을 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 적외선 센서(350)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
프로세서(370)는, 오브젝트 검출 장치(300)의 각 유닛의 전반적인 동작을 제어할 수 있다. 프로세서(370)는, 카메라(310, 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350)에 의해 센싱된 데이터와 기 저장된 데이터를 비교하여, 오브젝트를 검출하거나 분류할 수 있다.
프로세서(370)는, 획득된 영상에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 영상 처리 알고리즘을 통해, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
예를 들면, 프로세서(370)는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 프로세서(370)는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 프로세서(370)는, 스테레오 카메라(310a)에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
프로세서(370)는, 송신된 전자파가 오브젝트에 반사되어 되돌아오는 반사 전자파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 전자파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 레이저가 오브젝트에 반사되어 되돌아오는 반사 레이저 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 레이저 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 초음파가 오브젝트에 반사되어 되돌아오는 반사 초음파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 초음파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 적외선 광이 오브젝트에 반사되어 되돌아오는 반사 적외선 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 적외선 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
앞서 설명한 바와 같이, 입력부(210)에 대한 사용자 입력에 반응하여 차량(100)의 학습 모드가 개시되면, 프로세서(370)는 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350)에 의해 센싱된 데이터를 메모리(140)에 저장할 수 있다.
저장된 데이터의 분석을 기초로 한 학습 모드의 각 단계와 학습 모드에 후행하는 동작 모드에 대해서는 이하 운행 시스템(700)과 관련된 부분에서 상세히 설명하도록 한다.실시예에 따라, 오브젝트 검출 장치(300)는, 복수의 프로세서(370)를 포함하거나, 프로세서(370)를 포함하지 않을 수도 있다. 예를 들면, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350) 각각은 개별적으로 프로세서를 포함할 수 있다.
오브젝트 검출 장치(300)에 프로세서(370)가 포함되지 않는 경우, 오브젝트 검출 장치(300)는, 차량(100)내 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다. 오브젝트 검출 장치(300)는, 제어부(170)의 제어에 따라 동작될 수 있다.
통신 장치(400)는, 외부 디바이스와 통신을 수행하기 위한 장치이다. 여기서, 외부 디바이스는, 타 차량, 이동 단말기 또는 서버일 수 있다. 통신 장치(400)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
통신 장치(400)는, 근거리 통신부(410), 위치 정보부(420), V2X 통신부(430), 광통신부(440), 방송 송수신부(450), ITS(Intelligent Transport Systems) 통신부(460) 및 프로세서(470)를 포함할 수 있다. 실시예에 따라, 통신 장치(400)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
근거리 통신부(410)는, 근거리 통신(Short range communication)을 위한 유닛이다. 근거리 통신부(410)는, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다. 근거리 통신부(410)는, 근거리 무선 통신망(Wireless Area Networks)을 형성하여, 차량(100)과 적어도 하나의 외부 디바이스 사이의 근거리 통신을 수행할 수 있다.
위치 정보부(420)는, 차량(100)의 위치 정보를 획득하기 위한 유닛이다. 예를 들면, 위치 정보부(420)는, GPS(Global Positioning System) 모듈 또는 DGPS(Differential Global Positioning System) 모듈을 포함할 수 있다.
V2X 통신부(430)는, 서버(V2I : Vehicle to Infra), 타 차량(V2V : Vehicle to Vehicle) 또는 보행자(V2P : Vehicle to Pedestrian)와의 무선 통신 수행을 위한 유닛이다. V2X 통신부(430)는, 인프라와의 통신(V2I), 차량간 통신(V2V), 보행자와의 통신(V2P) 프로토콜이 구현 가능한 RF 회로를 포함할 수 있다.
광통신부(440)는, 광을 매개로 외부 디바이스와 통신을 수행하기 위한 유닛이다. 광통신부(440)는, 전기 신호를 광 신호로 전환하여 외부에 발신하는 광발신부 및 수신된 광 신호를 전기 신호로 전환하는 광수신부를 포함할 수 있다. 실시예에 따라, 광발신부는, 차량(100)에 포함된 램프와 일체화되게 형성될 수 있다.
방송 송수신부(450)는, 방송 채널을 통해, 외부의 방송 관리 서버로부터 방송 신호를 수신하거나, 방송 관리 서버에 방송 신호를 송출하기 위한 유닛이다. 방송 채널은, 위성 채널, 지상파 채널을 포함할 수 있다. 방송 신호는, TV 방송 신호, 라디오 방송 신호, 데이터 방송 신호를 포함할 수 있다.
ITS 통신부(460)는, 교통 시스템과 정보, 데이터 또는 신호를 교환할 수 있다. ITS 통신부(460)는, 교통 시스템에 획득한 정보, 데이터를 제공할 수 있다. ITS 통신부(460)는, 교통 시스템으로부터, 정보, 데이터 또는 신호를 제공받을 수 있다. 예를 들면, ITS 통신부(460)는, 교통 시스템으로부터 도로 교통 정보를 수신하여, 제어부(170)에 제공할 수 있다. 예를 들면, ITS 통신부(460)는, 교통 시스템으로부터 제어 신호를 수신하여, 제어부(170) 또는 차량(100) 내부에 구비된 프로세서에 제공할 수 있다.
프로세서(470)는, 통신 장치(400)의 각 유닛의 전반적인 동작을 제어할 수 있다. 실시예에 따라, 통신 장치(400)는, 복수의 프로세서(470)를 포함하거나, 프로세서(470)를 포함하지 않을 수도 있다. 통신 장치(400)에 프로세서(470)가 포함되지 않는 경우, 통신 장치(400)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다.
한편, 통신 장치(400)는, 사용자 인터페이스 장치(200)와 함께 차량용 디스플레이 장치를 구현할 수 있다. 이 경우, 차량용 디스플레이 장치는, 텔레 매틱스(telematics) 장치 또는 AVN(Audio Video Navigation) 장치로 명명될 수 있다. 통신 장치(400)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운전 조작 장치(500)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(100)은, 운전 조작 장치(500)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(500)는, 조향 입력 장치(510), 가속 입력 장치(530) 및 브레이크 입력 장치(570)를 포함할 수 있다.
조향 입력 장치(510)는, 사용자로부터 차량(100)의 진행 방향 입력을 수신할 수 있다. 조향 입력 장치(510)는, 회전에 의해 조향 입력이 가능하도록 휠 형태로 형성되는 것이 바람직하다. 실시예에 따라, 조향 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
가속 입력 장치(530)는, 사용자로부터 차량(100)의 가속을 위한 입력을 수신할 수 있다. 브레이크 입력 장치(570)는, 사용자로부터 차량(100)의 감속을 위한 입력을 수신할 수 있다. 가속 입력 장치(530) 및 브레이크 입력 장치(570)는, 페달 형태로 형성되는 것이 바람직하다. 실시예에 따라, 가속 입력 장치 또는 브레이크 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
운전 조작 장치(500)는, 제어부(170)의 제어에 따라 동작될 수 있다.
차량 구동 장치(600)는, 차량(100)내 각종 장치의 구동을 전기적으로 제어하는 장치이다. 차량 구동 장치(600)는, 파워 트레인 구동부(610), 샤시 구동부(620), 도어/윈도우 구동부(630), 안전 장치 구동부(640), 램프 구동부(650) 및 공조 구동부(660)를 포함할 수 있다. 실시예에 따라, 차량 구동 장치(600)는, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다. 한편, 차량 구동 장치(600)는 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
파워 트레인 구동부(610)는, 파워 트레인 장치의 동작을 제어할 수 있다. 파워 트레인 구동부(610)는, 동력원 구동부(611) 및 변속기 구동부(612)를 포함할 수 있다.
동력원 구동부(611)는, 차량(100)의 동력원에 대한 제어를 수행할 수 있다. 예를 들면, 화석 연료 기반의 엔진이 동력원인 경우, 동력원 구동부(610)는, 엔진에 대한 전자식 제어를 수행할 수 있다. 이에 의해, 엔진의 출력 토크 등을 제어할 수 있다. 동력원 구동부(611)는, 제어부(170)의 제어에 따라, 엔진 출력 토크를 조정할 수 있다.
예를 들면, 전기 에너지 기반의 모터가 동력원인 경우, 동력원 구동부(610)는, 모터에 대한 제어를 수행할 수 있다. 동력원 구동부(610)는, 제어부(170)의 제어에 따라, 모터의 회전 속도, 토크 등을 조정할 수 있다.
변속기 구동부(612)는, 변속기에 대한 제어를 수행할 수 있다. 변속기 구동부(612)는, 변속기의 상태를 조정할 수 있다. 변속기 구동부(612)는, 변속기의 상태를, 전진(D), 후진(R), 중립(N) 또는 주차(P)로 조정할 수 있다. 한편, 엔진이 동력원인 경우, 변속기 구동부(612)는, 전진(D) 상태에서, 기어의 물림 상태를 조정할 수 있다.
샤시 구동부(620)는, 샤시 장치의 동작을 제어할 수 있다. 샤시 구동부(620)는, 조향 구동부(621), 브레이크 구동부(622) 및 서스펜션 구동부(623)를 포함할 수 있다.
조향 구동부(621)는, 차량(100) 내의 조향 장치(steering apparatus)에 대한 전자식 제어를 수행할 수 있다. 조향 구동부(621)는, 차량의 진행 방향을 변경할 수 있다.
브레이크 구동부(622)는, 차량(100) 내의 브레이크 장치(brake apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 바퀴에 배치되는 브레이크의 동작을 제어하여, 차량(100)의 속도를 줄일 수 있다.
한편, 브레이크 구동부(622)는, 복수의 브레이크 각각을 개별적으로 제어할 수 있다. 브레이크 구동부(622)는, 복수의 휠에 걸리는 제동력을 서로 다르게 제어할 수 있다.
서스펜션 구동부(623)는, 차량(100) 내의 서스펜션 장치(suspension apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 서스펜션 구동부(623)는 도로 면에 굴곡이 있는 경우, 서스펜션 장치를 제어하여, 차량(100)의 진동이 저감되도록 제어할 수 있다. 한편, 서스펜션 구동부(623)는, 복수의 서스펜션 각각을 개별적으로 제어할 수 있다.
도어/윈도우 구동부(630)는, 차량(100) 내의 도어 장치(door apparatus) 또는 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 도어/윈도우 구동부(630)는, 도어 구동부(631) 및 윈도우 구동부(632)를 포함할 수 있다.
도어 구동부(631)는, 도어 장치에 대한 제어를 수행할 수 있다. 도어 구동부(631)는, 차량(100)에 포함되는 복수의 도어의 개방, 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 트렁크(trunk) 또는 테일 게이트(tail gate)의 개방 또는 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 썬루프(sunroof)의 개방 또는 폐쇄를 제어할 수 있다.
윈도우 구동부(632)는, 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 차량(100)에 포함되는 복수의 윈도우의 개방 또는 폐쇄를 제어할 수 있다.
안전 장치 구동부(640)는, 차량(100) 내의 각종 안전 장치(safety apparatus)에 대한 전자식 제어를 수행할 수 있다. 안전 장치 구동부(640)는, 에어백 구동부(641), 시트벨트 구동부(642) 및 보행자 보호 장치 구동부(643)를 포함할 수 있다.
에어백 구동부(641)는, 차량(100) 내의 에어백 장치(airbag apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 에어백 구동부(641)는, 위험 감지시, 에어백이 전개되도록 제어할 수 있다.
시트벨트 구동부(642)는, 차량(100) 내의 시트벨트 장치(seatbelt apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 시트벨트 구동부(642)는, 위험 감지 시, 시트 벨트를 이용해 탑승객이 시트(110FL, 110FR, 110RL, 110RR)에 고정되도록 제어할 수 있다.
보행자 보호 장치 구동부(643)는, 후드 리프트 및 보행자 에어백에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 보행자 보호 장치 구동부(643)는, 보행자와의 충돌 감지 시, 후드 리프트 업 및 보행자 에어백 전개되도록 제어할 수 있다.
램프 구동부(650)는, 차량(100) 내의 각종 램프 장치(lamp apparatus)에 대한 전자식 제어를 수행할 수 있다.
공조 구동부(660)는, 차량(100) 내의 공조 장치(air conditioner)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 공조 구동부(660)는, 차량 내부의 온도가 높은 경우, 공조 장치가 동작하여, 냉기가 차량 내부로 공급되도록 제어할 수 있다.
차량 구동 장치(600)는, 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다. 차량 구동 장치(600)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운행 시스템(700)은, 차량(100)의 각종 운행을 제어하는 시스템이다. 운행 시스템(700)은, 자율 주행 모드에서 동작될 수 있다.
운행 시스템(700)은, 주행 시스템(710), 출차 시스템(740) 및 주차 시스템(750)을 포함할 수 있다. 실시예에 따라, 운행 시스템(700)은, 설명되는 구성 요소 외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다. 한편, 운행 시스템(700)은, 프로세서를 포함할 수 있다. 운행 시스템(700)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
한편, 운행 시스템(700)은 학습에 기초한 자율 주행 모드의 운행을 제어할 수 있다. 이러한 경우에는 학습 모드 및 학습이 완료됨을 전제로 한 동작 모드가 수행될 수 있다. 운행 시스템(700)의 프로세서가 학습 모드(learning mode) 및 동작 모드(operating mode)를 수행하는 방법에 대하여 이하 설명하도록 한다.
학습 모드는 앞서 설명한 메뉴얼 모드에서 수행될 수 있다. 학습 모드에서 운행 시스템(700)의 프로세서는 차량(100)의 주행 경로 학습 및 주변 환경 학습을 수행할 수 있다.
주행 경로 학습은 차량(100)이 주행하는 경로에 대한 맵 데이터를 생성하는 단계를 포함할 수 있다. 특히, 운행 시스템(700)의 프로세서는 차량(100)이 출발지로부터 목적지까지 주행하는 동안 오브젝트 검출 장치(300)를 통해 검출된 정보에 기초하여 맵 데이터를 생성할 수 있다.
주변 환경 학습은 차량(100)의 주행 과정 및 주차 과정에서 차량(100)의 주변 환경에 대한 정보를 저장하고 분석하는 단계를 포함할 수 있다. 특히, 운행 시스템(700)의 프로세서는 차량(100)의 주차 과정에서 오브젝트 검출 장치(300)를 통해 검출된 정보, 예를 들면 주차 공간의 위치 정보, 크기 정보, 고정된(또는 고정되지 않은) 장애물 정보 등과 같은 정보에 기초하여 차량(100)의 주변 환경에 대한 정보를 저장하고 분석할 수 있다.
동작 모드는 앞서 설명한 자율 주행 모드에서 수행될 수 있다. 학습 모드를 통하여 주행 경로 학습 또는 주변 환경 학습이 완료된 것을 전제로 동작 모드에 대하여 설명한다.
동작 모드는 입력부(210)를 통한 사용자 입력에 반응하여 수행되거나, 학습이 완료된 주행 경로 및 주차 공간에 차량(100)이 도달하면 자동으로 수행될 수 있다.
동작 모드는 운전 조작 장치(500)에 대한 사용자의 조작을 일부 요구하는 반-자율 동작 모드(semi autonomous operating mode) 및 운전 조작 장치(500)에 대한 사용자의 조작을 전혀 요구하지 않는 완전-자율 동작 모드(fully autonomous operating mode)를 포함할 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 주행 시스템(710)을 제어하여 학습이 완료된 주행 경로를 따라 차량(100)을 주행시킬 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 출차 시스템(740)을 제어하여 학습이 완료된 주차 공간으로부터 주차된 차량(100)을 출차 시킬 수 있다.
한편, 실시예에 따라 운행 시스템(700)의 프로세서는 동작 모드에서 주차 시스템(750)을 제어하여 현재 위치로부터 학습이 완료된 주차 공간으로 차량(100)을 주차 시킬 수 있다.한편, 실시예에 따라, 운행 시스템(700)이 소프트웨어적으로 구현되는 경우, 제어부(170)의 하위 개념일 수도 있다.
한편, 실시예에 따라, 운행 시스템(700)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하는 개념일 수 있다.
주행 시스템(710)은, 차량(100)의 주행을 수행할 수 있다. 주행 시스템(710)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다. 주행 시스템(710)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 주행을 수행하는 시스템 개념일 수 있다. 이러한, 주행 시스템(710)은, 차량 주행 제어 장치로 명명될 수 있다.
출차 시스템(740)은, 차량(100)의 출차를 수행할 수 있다. 출차 시스템(740)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 출차를 수행하는 시스템 개념일 수 있다.
이러한, 출차 시스템(740)은, 차량 출차 제어 장치로 명명될 수 있다.
주차 시스템(750)은, 차량(100)의 주차를 수행할 수 있다. 주차 시스템(750)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 사용자 인터페이스 장치(270), 오브젝트 검출 장치(300) 및 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 내비게이션 시스템(770), 센싱부(120) 및 제어부(170) 중 적어도 어느 하나를 포함하여, 차량(100)의 주차를 수행하는 시스템 개념일 수 있다.
이러한, 주차 시스템(750)은, 차량 주차 제어 장치로 명명될 수 있다.
내비게이션 시스템(770)은, 내비게이션 정보를 제공할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다.
내비게이션 시스템(770)은, 메모리, 프로세서를 포함할 수 있다. 메모리는 내비게이션 정보를 저장할 수 있다. 프로세서는 내비게이션 시스템(770)의 동작을 제어할 수 있다.
실시예에 따라, 내비게이션 시스템(770)은, 통신 장치(400)를 통해, 외부 디바이스로부터 정보를 수신하여, 기 저장된 정보를 업데이트 할 수 있다. 실시예에 따라, 내비게이션 시스템(770)은, 사용자 인터페이스 장치(200)의 하위 구성 요소로 분류될 수도 있다.
도 8은 종래 기술에 따른 도메인 컨트롤 시스템을 나타낸 도면이다.
도 8에 도시된 Display (810 내지 880)는 도 3 내지 도 4에서 전술한 스티어링 휠의 일 영역, 인스트루먼트 패널의 일 영역(251a, 251b, 251e), 시트의 일 영역(251d), 각 필러의 일 영역(251f), 도어의 일 영역(251g), 센타 콘솔의 일 영역, 헤드 라이닝의 일 영역, 썬바이저의 일 영역, 윈드 쉴드의 일영역(251c) 또는 윈도우의 일영역(251h)에 배치되는 디스플레이부(251) 중 어느 하나일 수 있다.
도 8을 참조하면, 종래 기술에 따른 도메인 컨트롤 시스템에서는 개별 ECU가 Display (810 내지 880) 각각을 제어한다. 예를 들면, HUD (811), Cluster (821), Head Unit (831), Touch (841), RSE (Rear Seat Entertainment) #1 (851), RSE #2 (861), Co-Driver (871) 및 E-Mirror (881)이 Display (810 내지 880) 각각을 제어한다. 또는, 도 8에 도시된 것과 달리, Single ECU 기반으로 3개 내지 4개의 Display를 통해 Instrument Cluster, Head-Unit, Head-Up Display 기능을 제공하는 Consolidation 시스템이 소개된 바도 있다.
한편, 최근에는 차량 내 인포테인먼트 도메인에 고해상도를 지원하는 디스플레이가 추가됨으로써, 디스플레이 및 이를 제어하는 도메인 컨트롤 시스템의 성능에 대한 요구사항이 증가하고 있는 상황이다. 그러나 종래 기술에 따른 도메인 컨트롤 시스템에 따르면, (i) 새로운 기능을 지원하는 ECU를 추가하기 위한 HW Headroom 부족한 문제점과 (ii) Single ECU로는 고성능 요구사항, 특히 다수의 Display를 제어할 수 없다는 문제점이 있다.
도 9는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Cockpit Domain Controller (CDC)의 블록도를 나타낸 도면이다.
도 9를 참조하면, 본 발명은 Domain Centralization를 통한 Multiple ECU 기반의 Cockpit Domain Controller (CDC) 시스템을 제안한다. 이하에서 CDC 시스템은 SoC 시스템 또는 차량에 구비되는 장치로 명명될 수 있다. 또한, SoC #1은 제 1 SoC로 명명되고, SoC #2는 제 2 SoC로 명명될 수 있다.
보다 구체적으로, 도 9에서 복수의 SoC (System on Chip, 910 내지 920)은 PCIe switch (930)를 통해 연결되어 Domain Centralization 되고, 각각 복수 (예를 들면, 4개) 의 Display를 제어할 수 있다. 한편, 도 9의 Display (901 내지 908)은 도 8의 Display (810 내지 880)일 수 있다.
PCIe (Peripheral Component Interconnect express) switch (930)는 고속 직렬 컴퓨터 확장 버스에 관한 표준 (high-speed serial computer expansion bus standard) 또는 이를 구현하기 위한 스위치일 수 있다. PCIe는 기존의 PCI, PCI-X 및 AGP (Accelerated Graphics Port) 버스 표준을 대체하기 위해 설계되었다. 한편, 도 9에 도시된 PCIe switch (930)는 예시적인 것이고 본 발명의 범위를 제한하지 않는다. 즉, CPU와 입출력 장치 사이에 존재하고 이들 사이의 데이터 전송을 가능하게 하는 소정의 입출력 인터페이스가 PCIe switch (930)을 대체할 수 있다.
본 발명의 일 측면에 따른 차량에 구비되는 장치 즉, Cockpit Domain Controller (CDC) 시스템은 (i) 새로운 기능을 지원하는 ECU를 추가하기 위한 HW Headroom 부족한 문제점과, (ii) 고성능 요구사항, 특히 다수의 Display를 Single ECU 기반으로 제어할 수 없는 문제점을 해결할 수 있다.
보다 구체적으로, 본 발명이 제안하는 CDC 시스템은 HW Upgrade 및 Exchange 측면에서 유리하고, Resource를 활용한 Workload 분산 (예를 들면, Infotainment Domain 내의 Workload 분산 및 ADAS Domain과의 Workload 분산)에 유리하다. 도 9에 도시된 SoC (910, 920) 및 PCIe switch (930)에 대해서는 이하 구체적으로 설명하도록 한다.
도 10은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 PCIe interconnection을 기반으로 하는 Cockpit Domain Controller 시스템의 세부 구성을 나타낸다.
본 발명의 일 측면에 따른 CDC 시스템은 PCIe Switch (1030)와 PCIe 인터페이스 (1031, 1032, 1033, 1034)를 갖는 복수의 SoC (1010, 1020), GPU (Graphics Processing Unit, 1040), NVMe (Non-Volatile Memory express, 1050), FPGA (Field-Programmable Gate Array) Device (미도시) 등으로 구성될 수 있다.
SoC (1010, 1020)는 도 9에서 전술한 바와 같이 각각 복수 개의 Display를 제어할 수 있고, CPU, Cache, Memory, Host-PCI Bridge, PCI device로 구성될 수 있다. 한편, 전술한 구성 요소들 중 하나 이상이 생략될 수 있으며, 도시되지 않은 구성이 SoC (1010, 1020)에 추가될 수 있다.
PCI Switch (1030)는 복수 개의 PCI-PCI Bridge로 구성되며, SoC (1010, 1020), External GPU (1040) 및 NVMe (1050)과 복수의 PCIe interface (1031, 1032, 1033, 1034)를 통해 연결될 수 있다. 한편, 본 발명의 일 측면에 따르면, 복수의 PCIe interface (1031, 1032, 1033, 1034)는 유선 인터페이스 일 수 있다.
도 9 내지 도 10을 통해 제안된 본 발명의 CDC 시스템에 따르면, 계산 성능 (Computing Performance) 증대 또는 스토리지 (Storage) 확장과 같은 새로운 Feature에 대응하는 것이 가능하다. 또한, Grade별 성능 요구 사항은 PCIe 인터페이스를 통해서 각각 Device를 Attach 함으로써 만족될 수 있다. 예를 들면, GPU 성능이 모자라는 경우 SoC 업그레이드 또는 GPU 추가 장착으로 성능 요구 사항 만족이 가능하다.
도 11은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 PCIe interconnection을 기반으로 하는 Cockpit Domain Controller 시스템의 세부 구성을 나타낸다.
본 발명의 일 측면에 따른 차량에 구비되는 장치 (예를 들면, SoC 시스템 또는 CDC 시스템)은 Workload 분산 및 Graphics/Data Sharing 기능을 제공하기 위해, Agent (1101), Resource Manager (1102), Data Sharing Manager (1103), PCIe Communication SW (1104) 및 Fault Manager (1105)을 포함할 수 있다. 한편, PCIe switch에 연결된 EP Device (예를 들면, NVMe, External GPU)는 할당된 SoC 시스템에서 동작할 수 있다.
Agent (1101)는 Application의 Launch를 Neighbor Node와 Self Node의 Resource Usage를 체크하여, Local/Remote로 분산, 병렬 행하는 것을 특징으로 하며, Node Topology를 고려하여 Server/Client로 각각 동작할 수 있으며, 서로 다른 기종에 플랫폼을 지원하기 위한 Container-based Application을 실행하는 것을 특징으로 한다.
Resource Manager (1102)는 CPU/Memory/GPU/DSP 와 같은 Resource를 측정하여 관리하는 역할을 수행하며, Server/Client의 Runtime Resource 계산/관리 및 실행중인 App정보를 관리한다.
Data Sharing Manager (1103)는 Socket/SISCI 방식을 지원하는 PCIe interconnection을 이용해 서로 다른 노드의 Application간 연결을 가능하게 하고, Data를 공유하는 기능을 수행한다. Client / Server 기능 분리를 통해, Data sharing하는데 있어서 Client Side에서는 접근할 수 있는 특정 노드 위치를 알지 못 해도 Server Side에서 Socket 의 경우 IP 와 port, SISCI 의 경우 adaptor number, node ID, segment ID 등의 정보를 생성 및 관리하여, Unique Key 만으로 서로 간의 연결이 가능한 것이 특징이다.
PCIe Communication SW (1104)는 PCIe Switch의 NT/DMA Transfer 컨트롤을 통해, PCIe Socket/SISCI 통신 역할을 수행한다.
Fault Manager (1105)는 Application의 Fault를 Detection하고, PCIe NT Link 에러와 Host Failover 상태를 모니터링 하여, Agent에서 Error Handling을 할 수 있도록 Reporting하는 역할을 수행한다.
도 12는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오를 설명하기 위한 도면이다.
구체적으로, 도 12는 본 발명의 일 측면에 따른 CDC 시스템이 SoC #1의 Resource Full 상태에서 SoC #2의 Available Resource를 사용하여 App을 구동하는 방법을 설명하기 위한 도면이다. 우선, SoC#1이 두 개의 Display 즉, Cluster (1210)와 CID (Central Information Display, 1220)를 제어하고, SoC#2가 두 개의 Display 즉, RSE#1 (1230)과 RSE#2 (1240)를 제어한다고 가정하자.
도 12를 참조하면, 제 1 Application (1221), 제 2 Application (1222) 및 제 3 Application (1223) 이 SoC#1을 통해 실행되고, CID (1220)에서 출력되고 있다. 제 1 내지 제 3 Application은 예를 들면, Media application, Navigation application, Algorithm computing application일 수 있다.
계속하여, 제 4 Application (1224)을 실행하고자 할 경우, SoC#1은 Resource full 상태가 될 수 있다. 따라서, SoC#1은 SoC#2에 제 4 Application (1224)의 실행을 요청한다. 그리고, SoC#2는 제 4 Application (1224)를 실행한 화면을 SoC#1에게 공유할 수 있다. 마지막으로, SoC#1은 공유된 제 4 Application (1224)의 실행 화면을 CID (1220)를 통해 출력한다.
본 발명의 일 측면에 따르면, SoC #1의 자원 상태가 Resource full 상태이고, SoC #2의 자원 상태가 Resource full 상태가 아닌 경우에, SoC #1이 SoC #2에 특정 애플리케이션의 실행을 요청하도록 설계될 수 있다. 또는, SoC #1 및 SoC #2의 자원 상태가 모두 Resource full 상태인 경우, SoC #1은 기설정된 우선순위에 기초하여 적어도 하나의 애플리케이션 중 어느 하나를 종료시키도록 제어할 수도 있다. 이와 관련하여, 이하 도 14에서 후술하도록 한다.
도 13은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오를 설명하기 위한 도면이다. 도 13을 참조하여 전술한 SoC들 (예를 들면, SoC #1 및 SoC #2)이 Workload 분산을 위해 수행하는 단계들에 대해 설명하도록 한다.
i) Component 초기화 - SoC #1 및 SoC #2는 애플리케이션 실행을 위해 Agent를 구동하고, Resource Gathering을 구동할 수 있다. SoC #1 및 SoC #2는 SoC간 PCIe Connection을 위해 PCIe 소프트웨어 (SW)를 초기화하고, Data Sharing을 구동할 수 있다. SoC #1 및 SoC #2는 Fault Detection 위해 Fault Manager를 구동할 수 있다.
ii) Application 실행 - SoC #1은 애플리케이션을 Local (예를 들면, SoC #1)에서 구동할 지 Remote (예를 들면, SoC #2)에서 구동할 지 결정할 수 있다. 특히, 이는 SoC #1 및 SoC #2의 Available Resource에 기초하여 결정될 수 있다.
iii) Data Sharing - 상기 단계 ii)에서 애플리케이션을 Remote (예를 들면, SoC #2)에서 구동하는 것으로 결정되면, SoC #1 및 SoC #2 간에는 AV, Surface Sharing, Computation sharing이 수행될 수 있다. 한편, 전술한 단계들에 대하여 이하 도 14 내지 도 16을 통해 보다 구체적으로 설명하도록 한다.
도 14는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 component 초기화를 설명하기 위한 도면이다.
Component들이 초기화 되면 (S1410), SoC#1은 Fault Manager를 실행하여 PCIe Communication SW를 초기화하고, PCIe NT Link Error, Host Failover 상태를 모니터링 한다 (S1420). 또한, 이 단계에서 Application의 Fault Detection이 수행될 수도 있다.
Soc#1은 Data Sharing Manager를 실행하여 SoC간에 Socket / PCIe 연결을 수행한다 (S1430). 이 때, SoC#1과 SoC#2 간에 Server-Client 관계가 형성될 수 있으며, Server는 Topology에서 사전 정의된 IP/Port, PCIe DMA 채널 정보를 생성 및 관리할 수 있다.
SoC#1은 Agent (또는 Agent Server)를 실행하고 (S1440), Resource Manager를 구동한다 (S1450). SoC#1의 Resource Manager는 실행할 Application List DB를 활성화한다 (S1460). Agent Server는 이 정보를 이용해 Local에서 실행할 Base Application을 실행하고 (S1470), 사용자의 Application 실행을 기다린다 (S1480). Agent Client 는 Agent Server와 연결되어 Agent Server의 요청을 기다린다.
한편, Application은 (i) BootUp 시에 실행되어야 하는 Base Application과 (ii) 사용자 요청에 의해 실행되는 Normal Application으로 구분될 수 있는데, Normal Application 중에서 Client에서 실행 가능한 것은 각 Resource Manager의 DB에 의해 관리될 수 있다.
Resource Manager는 강제 종료를 위한 우선 순위 (예를 들면, level 1 내지 level 5, level 5가 우선 순위가 가장 낮음) 정보도 관리할 수 있다. 또한, Resource Manager는 Local/Remote 모두 Available Resource가 없을 때, Agent가 우선 순위 낮은 Normal Application을 강제 종료할 수도 있다.
나아가, Resource Manager는 Agent의 Socket/PCIe 연결 정보를 이용하여 자신과 Remote(Client)의 정보를 수집할 수 있다 (S1490). 즉, Resource Manager는 Local, Remote의 Resource를 수집하고, At moment/Average (N초)의 Available Resource 정보를 관리 및 저장할 수 있다.
도 15는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Application 실행을 설명하기 위한 도면이다.
도 14의 각 단계에 따라 Component 초기화가 완료된 것을 전제하고 설명하도록 한다. 사용자로부터 Normal Application의 실행이 요청되면, Agent는 Resource Manager에 사용 가능한 Resource를 요청한다 (s1510). Resource Manager는 Local에 사용 가능한 Resource를 판단한다 (S1520).
SoC #1의 Local에 사용 가능한 Resource가 있는 경우, Local에서 Normal App을 실행한다 (S1530).
SoC #1의 Local에 사용 가능한 Resource가 없는 경우, SoC #1은 Remote의 Resource 상태를 확인하고 (S1540), App간 통신을 위한 UniqueID를 생성해 Data sharing Manager에 부여한다 (S1550). Data Sharing Manger는 Data Sharing Manager Client에 App에 사용할 Unique ID를 업데이트한다 (S1560, S1565). Agent는 AgentClient에 Application 실행을 요청한다 (S1570).
SoC #2는 Server로부터의 실행 요청을 기다린다 (S1575). Application 실행 요청을 수신한 SoC #2는 업데이트된 UniqueID를 이용하여 Application 을 실행한다 (S1580).
한편, Local/Remote 모두 Application 실행이 불가능한 경우, SoC #1은 기설정된 Normal Application의 우선 순위와 Background 실행을 고려하여 App을 종료하고, 다시 Application 실행을 시도한다 (S1590).
도 16은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 data sharing을 설명하기 위한 도면이다.
도 15의 각 단계에 따라 Application 실행 요청이 완료된 것을 전제하고 설명하도록 한다. SoC #1은 Application 실행 (Launch)을 SoC #2에 요청한다 (S1610). Normal Application이 AV (Audio Video) 또는 Surface Sharing 가능한 Application인 경우 (S1620), Agent Server는 AV 또는 Surface 수신 Application을 실행 및 전환하여 수신할 준비를 한다 (S1630). Application은 uniqueID를 통해 얻은 Socket/PCIe Connection 정보를 통해서, SoC #2의 Application과 Connection을 수행한다 (S1640).
AgentClient (SoC #2)는 Normal Application이 AV 또는 Surface Sharing되는 Application이면, Rendering Data를 AgentServer (SoC #1)의 AV, Surface 수신 App으로 전달한다 (S1650). 또한, 상기 Rendering Data 전달에 반응하여, AgentServer (SoC #1)는 Touch Input을 AgentClient (SoC #2)로 전달할 수도 있다 (S1660).
한편, Normal Application이 AV 또는 Surface Sharing 가능한 Application이 아닌 경우, Connection 된 채널을 통해 Computing 결과가 전달될 수 있다 (S1670).
송수신되는 데이터의 구조는 Type과 Data로 구성될 수 있다. Type은 Touch input, Audio, Video, Surface, Command(Launch/Exit), Computing Result를 포함할 수 있고, Data는 Type에서 사용되는 값의 길이 (length) 및 값 (value)을 포함할 수 있다.
도 17은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 fault manager의 동작을 설명하기 위한 도면이다.
도 17은 도 11에서 전술한 Fault Manager의 동작을 보다 구체적으로 설명하기 위한 도면이다. 즉, 도 17에 도시된 구성 요소들은 하나의 SoC (예를 들면, SoC #1) 내에 포함될 수 있다.
Application이 실행되면, Fault Detector (1710)는 Fault Detection Manager (1720)에 Attach되어 Signal Action을 등록한다. 이 후, Fault가 발생하면 Fault Detector (1710)는 Fault Manager (1730)에 이를 전달할 수 있다.
도 17에 도시된 fault manager (1730)는 Application Fault뿐만 아니라, PCIe NT Link Error 및 Host Failover 상태를 수신하고, Agent가 Error Handling을 할 수 있도록 Error Reporting 을 할 수도 있다. 나아가, 도 17에 도시된 fault manager (1730)는 PCIe Driver를 제공하는 Interrupt를 이용하여 PCIe NT Link Error 및 Host Failover를 검출할 수도 있다.
도 18은 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 resource table을 설명하기 위한 도면이다.
보다 구체적으로, 도 18은 도 14에서 전술한 Resource Manager가 자원을 관리하기 위한 자원 테이블 (Resource Table)의 구조를 나타낸다.
도 18 (a)를 참조하면, (i) Required Resource & Threshold for decision은 Application 실행에 필요한 정보로 App 구동에 필요한 Resource 정보와 관련된 필드이다. (ii) Launch Type에서 Base는 BootUp시 실행되는 타입이고, Local은 자신의 SoC에서만 실행되는 타입이고, Global은 자신의 SoC 뿐만 아니라 타 SoC에서도 실행 가능한 타입을 의미한다. 한편, (iii) Priority는 Resource 부족 시 종료 (terminated)되는 우선 순위 Policy와 관련된 필드이고, (iv) Running은 현재 실행중인 SoC Node를 나타내는 필드이다.
도 14에서 전술한 바와 같이, Resource Manager는 자신과 Remote(Client)의 정보를 수집할 수 있다. 즉, Resource Manager는 Local, Remote의 Resource를 수집하고, At moment/Average (N초)의 Available Resource 정보를 관리 및 저장할 수 있다. 도 18 (b)는 이와 관련된 것으로, Resource Manager는 Gathering 정보, CPU/Memory, DSP, GPU, At Moment/Average (N초)를 포함하는 정보를 도 18 (b)에 도시된 테이블 구조와 같이 관리할 수 있다. 나아가, 도 18 (b)의 정보는 Workload 분산을 위해 어느 Node에서 실행될 지 판단하기 위해 이용될 수 있다.
도 19는 본 발명의 일 측면에 따른 SoC간의 workload 분산 시나리오에서 Touch Interaction을 설명하기 위한 도면이다. 구체적으로, 도 19에 도시된 실시예는 도 16의 단계 S1640 내지 단계 S1660 에 대한 보다 구체적인 실시예라고 할 수 있다.
i) 시스템 Boot Up 이후, PCIe Switch interconnection을 통해 두 개의 SoC (SoC #1 및 SoC #2)가 연결된다.
ii) 각 SoC는 Local Launch Application을 실행하여, HUD/Cluster/CID/RSE 를 통해 실행 화면을 출력한다. 예를 들면, SoC #1은 자신의 Local Launch Application을 HUD, Cluster 및 CID 중 어느 하나에서 출력할 수 있다. SoC #2는 자신의 Local Launch Application을 RSE #1, RSE #2 및 Co-Driver 중 어느 하나에서 출력할 수 있다.
iii) SoC #1의 Resource Load가 높은 상태 (예를 들면, resource full 상태)에서, 사용자가 Touch 입력을 통해 SoC #1에 연결된 Application의 실행을 요청하면, SoC #1의 Agent는 상기 Touch 입력을 수신하여 SoC #2에게 실행 명령을 전달할 수 있다.
iv) SoC #2는 실행한 화면을 PCIe Switch을 통해 SoC #1으로 전달할 수 있다.
v) SoC #1는 Application과 관련된 사용자의 터치 입력을 PCIe Interconnection을 통해 SoC #2로 전달할 수 있다. SoC #2에서 연산 및 Rendering이 완료된 화면은 다시 SoC #2에서 SoC #1으로 전달될 수 있다. 나아가 상기 완료된 화면은 CID에서 출력될 수 있다. 한편, 본 발명의 일 측면에 따르면, Display - SoC 간 인터페이스는 LVDS (Low-voltage differential signaling) 일 수 있고, LVDS에는 Display 출력과 Touch 입력 신호가 포함될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 이상에서는 본 명세서의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 명세서의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 명세서의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
그리고 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수 있다.
발명의 실시를 위한 다양한 형태가 상기 발명의 실시를 위한 최선의 형태에서 설명되었다.
상기 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 단말기의 제어부(180)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
Claims (14)
- 차량에 구비되는 장치에 있어서,적어도 하나의 애플리케이션을 실행하며, 소정의 입출력 인터페이스를 통해 연결되는 복수의 SoC (System on Chip); 및상기 차량 내에 구비되며, 상기 적어도 하나의 애플리케이션의 실행 화면을 출력하는 디스플레이를 포함하고,상기 복수의 SoC 중 제 1 SoC는 상기 제 1 SoC의 자원 상태에 기초하여 상기 적어도 하나의 애플리케이션 중 특정 애플리케이션의 실행을 제 2 SoC에 요청하고, 상기 요청에 대한 응답으로 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신하는, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 제 1 SoC의 자원 상태가 Resource full 상태이고, 상기 제 2 SoC의 자원 상태가 Resource full 상태가 아닌 경우에, 상기 제 1 SoC는 상기 제 2 SoC에 상기 특정 애플리케이션의 실행을 요청하는, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 제 1 SoC 및 상기 제 2 SoC의 자원 상태가 모두 Resource full 상태인 경우, 상기 제 1 SoC는 기설정된 우선순위에 기초하여 상기 적어도 하나의 애플리케이션 중 어느 하나를 종료하는, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 적어도 하나의 애플리케이션은 상기 차량에 구비되는 장치의 부트-업 (Boot-Up) 시에 실행되는 베이스 애플리케이션 (base application) 및 사용자 요청에 의해 실행되는 노멀 애플리케이션 (normal application) 중 어느 하나인, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 제 1 SoC는 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신함에 따라, 상기 특정 애플리케이션과 관련된 사용자의 터치 입력을 상기 제 2 SoC로 전송하는, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 디스플레이는 HUD (Head Up Display), Cluster, Head Unit, RSE (Rear Seat Entertainment), Co-Driver display 및/또는 E-Mirror 중 적어도 하나를 포함하는, 차량에 구비되는 장치.
- 제 1 항에 있어서,상기 소정의 입출력 인터페이스는 PCIe (Peripheral Component Interconnect express)인, 차량에 구비되는 장치.
- 차량에 구비되는 장치의 제어 방법에 있어서,적어도 하나의 애플리케이션을 실행하며, 소정의 입출력 인터페이스를 통해 연결되는 복수의 SoC를 초기화하는 단계;상기 복수의 SoC 중 제 1 SoC에서 상기 제 1 SoC의 자원 상태에 기초하여 상기 적어도 하나의 애플리케이션 중 특정 애플리케이션의 실행을 제 2 SoC에 요청하는 단계;상기 요청에 대한 응답으로 상기 제 2 SoC로부터 상기 특정 애플리케이션의 실행 결과를 수신하는 단계를 포함하는, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 제 1 SoC의 자원 상태가 Resource full 상태이고, 상기 제 2 SoC의 자원 상태가 Resource full 상태가 아닌 경우에 상기 제 2 SoC에 상기 특정 애플리케이션의 실행이 요청되는, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 제 1 SoC 및 상기 제 2 SoC의 자원 상태가 모두 Resource full 상태인 경우, 기설정된 우선순위에 기초하여 상기 적어도 하나의 애플리케이션 중 어느 하나를 종료하는 단계를 더 포함하는, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 적어도 하나의 애플리케이션은 상기 차량에 구비되는 장치의 부트-업 (Boot-Up) 시에 실행되는 베이스 애플리케이션 (base application) 및 사용자 요청에 의해 실행되는 노멀 애플리케이션 (normal application) 중 어느 하나인, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 특정 애플리케이션의 실행 결과를 수신함에 따라, 상기 특정 애플리케이션과 관련된 사용자의 터치 입력을 상기 제 2 SoC로 전송하는 단계를 더 포함하는, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 디스플레이는 HUD (Head Up Display), Cluster, Head Unit, RSE (Rear Seat Entertainment), Co-Driver display 및/또는 E-Mirror 중 적어도 하나를 포함하는, 차량에 구비되는 장치의 제어 방법.
- 제 8 항에 있어서,상기 소정의 입출력 인터페이스는 PCIe (Peripheral Component Interconnect express)인, 차량에 구비되는 장치의 제어 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/014348 WO2020105749A1 (ko) | 2018-11-21 | 2018-11-21 | 차량에 구비되는 장치 및 그 제어 방법 |
CN201880099697.9A CN113165664B (zh) | 2018-11-21 | 2018-11-21 | 设置于车辆的装置及其控制方法 |
US17/296,084 US20220009513A1 (en) | 2018-11-21 | 2018-11-21 | Device provided to vehicle and control method therefor |
EP18940791.9A EP3885225A4 (en) | 2018-11-21 | 2018-11-21 | DEVICE PROVIDED TO A VEHICLE AND METHOD OF OPERATING IT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/014348 WO2020105749A1 (ko) | 2018-11-21 | 2018-11-21 | 차량에 구비되는 장치 및 그 제어 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105749A1 true WO2020105749A1 (ko) | 2020-05-28 |
Family
ID=70774512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/014348 WO2020105749A1 (ko) | 2018-11-21 | 2018-11-21 | 차량에 구비되는 장치 및 그 제어 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220009513A1 (ko) |
EP (1) | EP3885225A4 (ko) |
CN (1) | CN113165664B (ko) |
WO (1) | WO2020105749A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240192780A1 (en) * | 2022-12-09 | 2024-06-13 | Snap Inc. | Multi-soc hand-tracking platform |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100662471B1 (ko) * | 2005-10-11 | 2007-01-02 | 엘지전자 주식회사 | 시스템 온 칩 구조 및 데이터 전송 방법 |
US20070139898A1 (en) * | 2005-12-16 | 2007-06-21 | Inventec Corporation | System motherboard having expansibility and variability |
KR20080047792A (ko) * | 2006-11-27 | 2008-05-30 | 엘지전자 주식회사 | 수면 모드를 지원하는 멀티 코어 시스템 온 칩 |
KR20110031715A (ko) * | 2009-09-21 | 2011-03-29 | 엘지전자 주식회사 | 워치독 기능을 수행하는 디스플레이 기기의 제어 방법 및 그 방법을 채용한디스플레이 기기 |
KR20170121056A (ko) * | 2016-04-22 | 2017-11-01 | 캐비엄, 인코포레이티드 | 동적 VSoC를 위한 방법 및 장치 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4377028B2 (ja) * | 1999-05-06 | 2009-12-02 | パナソニック株式会社 | リソース管理システム |
US6988161B2 (en) * | 2001-12-20 | 2006-01-17 | Intel Corporation | Multiple port allocation and configurations for different port operation modes on a host |
US7640547B2 (en) * | 2002-02-08 | 2009-12-29 | Jpmorgan Chase & Co. | System and method for allocating computing resources of a distributed computing system |
WO2014160186A1 (en) * | 2013-03-13 | 2014-10-02 | Bosch Automotive Service Solutions Llc | Vehicle measurement apparatus having a system-on-a-chip device, a sensor and a wireless adapter |
US9268948B2 (en) * | 2013-06-24 | 2016-02-23 | Intel Corporation | Secure access enforcement proxy |
US9720797B2 (en) * | 2015-06-30 | 2017-08-01 | Nxp Usa, Inc. | Flash memory controller, data processing system with flash memory controller and method of operating a flash memory controller |
DE102016117299A1 (de) * | 2015-09-17 | 2017-03-23 | Hyundai Motor Company | Nutzerschnittstellenvorrichtung eines Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems und Steuerverfahren der Nutzerschnittstellenvorrichtung des Ungleichmäßiger-Hubraum- Verbrennungsmotor-Steuersystems |
DE102016125793A1 (de) * | 2016-05-18 | 2017-11-23 | Google Inc. | Anzeigen von Grafiken in einer Fahrzeuganzeige |
KR102667564B1 (ko) * | 2016-11-07 | 2024-05-22 | 삼성전자주식회사 | 칩 시스템 및 데이터 처리 방법 |
US20190308630A1 (en) * | 2018-04-10 | 2019-10-10 | GM Global Technology Operations LLC | Battery state estimation based on open circuit voltage and calibrated data |
-
2018
- 2018-11-21 WO PCT/KR2018/014348 patent/WO2020105749A1/ko unknown
- 2018-11-21 CN CN201880099697.9A patent/CN113165664B/zh active Active
- 2018-11-21 EP EP18940791.9A patent/EP3885225A4/en active Pending
- 2018-11-21 US US17/296,084 patent/US20220009513A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100662471B1 (ko) * | 2005-10-11 | 2007-01-02 | 엘지전자 주식회사 | 시스템 온 칩 구조 및 데이터 전송 방법 |
US20070139898A1 (en) * | 2005-12-16 | 2007-06-21 | Inventec Corporation | System motherboard having expansibility and variability |
KR20080047792A (ko) * | 2006-11-27 | 2008-05-30 | 엘지전자 주식회사 | 수면 모드를 지원하는 멀티 코어 시스템 온 칩 |
KR20110031715A (ko) * | 2009-09-21 | 2011-03-29 | 엘지전자 주식회사 | 워치독 기능을 수행하는 디스플레이 기기의 제어 방법 및 그 방법을 채용한디스플레이 기기 |
KR20170121056A (ko) * | 2016-04-22 | 2017-11-01 | 캐비엄, 인코포레이티드 | 동적 VSoC를 위한 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP3885225A4 (en) | 2022-07-06 |
CN113165664A (zh) | 2021-07-23 |
EP3885225A1 (en) | 2021-09-29 |
CN113165664B (zh) | 2023-11-07 |
US20220009513A1 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020116694A1 (ko) | 차량용 장치 및 제어 방법 | |
WO2020145432A1 (ko) | Multi soc 시스템을 통해 차량을 제어하는 방법 | |
WO2020004767A1 (ko) | 차량에 구비되는 텔레매틱스 시스템 및 이를 제어하는 방법 | |
WO2021141142A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020105751A1 (ko) | 탑승자 모니터링 방법 및 이를 위한 장치 | |
WO2018097465A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2018070646A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2020166749A1 (ko) | 차량을 이용한 정보 표시 방법 및 시스템 | |
WO2022154299A1 (ko) | 디지털 사이니지 플랫폼 제공 장치와 동작방법, 및 이를 포함하는 시스템 | |
WO2021157760A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2021141143A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
EP3545380A1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
WO2020080566A1 (ko) | 전자 제어 장치 및 통신 장치 | |
WO2017171124A1 (ko) | 외장형 모듈 및 이와 연결되는 차량 | |
WO2020017677A1 (ko) | 영상 출력 장치 | |
WO2021230387A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020149427A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020040324A1 (ko) | 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법 | |
WO2021025216A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2020138515A1 (ko) | 경로 제공 장치 및 그것의 경로 제공 방법 | |
WO2021002487A1 (ko) | 차량 제어 장치 및 그것을 포함하는 차량 | |
WO2020213772A1 (ko) | 차량 제어 장치 및 그 장치의 제어 방법 | |
WO2020226192A1 (ko) | 자율 주행 차량을 위한 보험 안내 시스템 및 방법 | |
WO2020145442A1 (ko) | 자율 주행 차량의 제어 권한 이양 장치 및 방법 | |
WO2021091041A1 (ko) | 차량용 디스플레이 장치 및 그 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018940791 Country of ref document: EP Effective date: 20210621 |