[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020105441A1 - 水性顔料分散体の製造方法 - Google Patents

水性顔料分散体の製造方法

Info

Publication number
WO2020105441A1
WO2020105441A1 PCT/JP2019/043609 JP2019043609W WO2020105441A1 WO 2020105441 A1 WO2020105441 A1 WO 2020105441A1 JP 2019043609 W JP2019043609 W JP 2019043609W WO 2020105441 A1 WO2020105441 A1 WO 2020105441A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
composition
mass
pigment dispersion
aqueous
Prior art date
Application number
PCT/JP2019/043609
Other languages
English (en)
French (fr)
Inventor
耕平 早川
兼司 菅生
佐藤 義浩
裕太郎 上田
大湊 弘之
岡田 真一
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US17/295,175 priority Critical patent/US20210387149A1/en
Priority to JP2020515989A priority patent/JPWO2020105441A1/ja
Publication of WO2020105441A1 publication Critical patent/WO2020105441A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/90Mixers with rotating receptacles with stirrers having planetary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/02Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles without inserted separating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/001Pigment pastes, e.g. for mixing in paints in aqueous medium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/003Pigment pastes, e.g. for mixing in paints containing an organic pigment

Definitions

  • the present invention relates to a method for producing an aqueous pigment dispersion that can be used for producing ink, for example.
  • the inkjet printing method is a method for producing a printed matter by ejecting ink from an ejection nozzle and landing it on the surface of a recording medium such as paper or cloth. Therefore, the ink is required to have ejection stability in which the ejection nozzle is unlikely to be clogged with time and the ejection volume and direction of the ink do not change with time.
  • the ink for inkjet printing is generally manufactured by supplying a binder resin, a water-soluble solvent, an aqueous medium, and the like, as necessary, to an aqueous pigment dispersion in which a pigment is previously dispersed in an aqueous medium, and mixing them. Therefore, in order to impart good ejection stability to the ink, it is possible to reduce the generation of coarse particles that may cause clogging of the ejection nozzle, and to prevent sedimentation of the pigment or the like over time. It is important to use a dispersion.
  • an aqueous pigment dispersion capable of reducing the generation of the coarse particles and preventing sedimentation of a pigment or the like over time
  • a mixture containing at least an anionic group-containing resin, a pigment, and a basic compound is kneaded in a closed system.
  • An aqueous pigment dispersion liquid is known in which a solid or semi-solid kneaded product is kneaded in an apparatus (see, for example, Patent Document 1).
  • the miniaturized and high-density ink discharge nozzle that can be used for the production of high-definition printed matter causes clogging and abnormal ink discharge due to the influence of very small coarse particles and precipitates in the ink. In some cases, streaks or the like may occur on the printed matter as a result.
  • the inkjet printing method with a single-pass method using a line head generally causes deterioration in image quality due to clogging of ejection nozzles, etc., as compared with the inkjet printing method with a so-called multi-pass method (scan method). There were cases.
  • violet, orange, and green colors are known in addition to the so-called basic colors of yellow, magenta, cyan, and black.
  • the violet pigment examples include C.I. I. Pigment Violet 23 is known, but such a pigment has a feature that a pigment dispersant such as a styrene-acrylic acid-based pigment dispersion resin is easily released, as compared with a pigment used for a basic color. Therefore, the C.I. I. Even if the conventional ink containing the pigment violet 23 is left for about 1 week and then ejected using an inkjet printing apparatus, there are cases where an abnormality occurs in the ejection direction, clogging of the ejection nozzle, or the like.
  • a pigment dispersant such as a styrene-acrylic acid-based pigment dispersion resin
  • examples of the orange pigment include C.I. I. Pigment Orange 43 is known, but since such a pigment is hydrophobic as compared with the pigment used in the basic color, it cannot be stably dispersed in an aqueous medium and forms a precipitate over time. There was a case to do.
  • examples of the green pigment include C.I. I. Pigment Green 36 is known, but since such a pigment has a large specific gravity as compared with other pigments, it cannot be stably dispersed in an aqueous medium and a precipitate may be formed over time. It was Also, C.I. I. Since the pigment green 36 tends to increase the viscosity of the ink relatively easily, the ejection direction may be abnormal when the ink is used in the inkjet recording method.
  • the dispersibility and storage stability of the ink and the aqueous pigment dispersion used for the production thereof are often due to the interaction between the pigment type and the dispersion resin. Therefore, even when the pigment dispersion resin used in the pigment dispersion of the basic color is used in combination with the pigment for the special color, it is not always possible to express good dispersibility immediately. In order to improve the dispersibility of the body, it may be accompanied by considerable trial and error by those skilled in the art.
  • the problem to be solved by the present invention is to prevent the generation of coarse particles over time, and to have a level of dispersion stability that can prevent the occurrence of sedimentation of pigments over time, and excellent discharge stability. It is an object of the present invention to provide a method for producing an aqueous pigment dispersion that can be used for producing an ink having properties.
  • the present inventor kneads by kneading a composition (a1) having a nonvolatile content of 50% by mass or more containing a pigment and a resin containing at least one selected from the group consisting of violet pigments, green pigments and orange pigments.
  • the above problem is solved by a method for producing an aqueous pigment dispersion, which comprises a step [3] of performing a centrifugal separation treatment within a range of 30 ° C to 70 ° C.
  • the aqueous pigment dispersion obtained by the production method of the present invention even when using a pigment containing at least one selected from the group consisting of violet pigments, green pigments and orange pigments, their coarseness over time It has dispersion stability that can prevent the generation of particles and the occurrence of sedimentation over time.
  • the aqueous pigment dispersion can be suitably used for producing an inkjet printing ink having excellent ejection stability.
  • the method for producing an aqueous pigment dispersion of the present invention is a composition (a1) having a nonvolatile content of 50% by mass or more containing a resin and a pigment containing at least one member selected from the group consisting of violet pigments, green pigments and orange pigments.
  • [1] for producing a kneaded product (a2) by kneading the above at least a step [2] for producing a composition (a3) by mixing the kneaded product (a2) with an aqueous medium, and
  • the composition (a3) is characterized by having a step [3] of subjecting the composition (a3) to a centrifugal treatment within a range of 30 ° C to 70 ° C.
  • step [1] the composition (a1) having a nonvolatile content of 50% by mass or more containing a pigment and a resin containing at least one selected from the group consisting of a violet pigment, a green pigment and an orange pigment is kneaded. This is a step of producing the kneaded product (a2).
  • composition (a1) it is possible to use a composition containing a pigment, a resin and, if necessary, a basic compound, a solvent such as an aqueous medium, a pigment derivative, and an optional component such as a surfactant.
  • the composition (a1) used in the step [1] preferably has a nonvolatile content of 50% by mass or more, more preferably 50 to 90% by mass, and more preferably 50 to 90% by mass. It is particularly preferable to use 85% by mass.
  • the nonvolatile content the composition of about 1 g (a1), under reduced pressure of 3 hPa, and the mass 1 of the remaining ingredients after heating for 4 hours at 175 ° C., before heating the composition (a1 ) Mass 0 and the value calculated based on the formula [mass 1 / mass 0 ] ⁇ 100.
  • the viscosity of the kneaded material (a2) during kneading is maintained at an appropriate level, and the share of the kneaded material (a2) from the kneading device is increased.
  • Examples of the pigment that can be used in the composition (a1) include pigments containing at least one selected from the group consisting of violet pigments, green pigments and orange pigments.
  • the above pigments may be used alone or in combination of two or more.
  • the above-mentioned pigment may be used in combination with a pigment other than those described above (for example, pigments such as yellow, magenta, cyan, and black).
  • Examples of the violet pigment include C.I. I. Pigment Violet 1, 3, 5: 1, 16, 19, 23, 38 and the like can be used, and in order to achieve both excellent color development and light resistance, C.I. I. Pigment Violet 23 is preferably used.
  • Pigment Violet 23 is an inkjet pigment that is excellent in color development and light resistance and assists the four basic colors of black, cyan, magenta, and yellow.
  • the violet pigment such as Pigment Violet 23
  • the violet pigment is preferably used in the range of 60 to 99 mass% with respect to the total amount of the pigment, and 80 to 99 mass%. It is more preferable to use the above range.
  • green pigment examples include C.I. I. Pigment Green 1, 4, 7, 8, 10, 17, 18, 36, 50, 58, 76 or the like can be used, and C.I. I. Pigment Green 36 is preferably used.
  • pigment green 36 those having a primary particle diameter of 150 nm or less are preferably used, those having a primary particle diameter of 10 to 100 nm are more preferably used, and those having a primary particle diameter of 10 to 70 nm are most preferable. ..
  • the measurement of the primary particle size for example, the value of the particle size measured using a transmission electron microscope (TEM) can be adopted.
  • TEM transmission electron microscope
  • the green pigment is preferably used in the range of 60 to 99% by mass with respect to the total amount of the pigment, and 80 to 99% by mass. It is more preferable to use the above range.
  • orange pigment examples include C.I. I. Pigment Orange 5, 13, 16, 17, 34, 36, 43, 51, 64, 71 or the like can be used, and Pigment Orange 34 or Pigment Orange 43 has good light resistance. It is preferable for obtaining a highly saturated printed matter.
  • the orange pigment of Pigment Orange 34 it is possible to use a pigment having a primary particle diameter of 100 nm or less, which has a level of dispersibility comparable to that of the ink of the basic color or the aqueous pigment dispersion, and can suppress changes in physical properties over time. It is preferable for achieving a level of storage stability.
  • the C.I. I. Pigment Orange 34 preferably has an orange pigment with a primary particle diameter of 30 to 100 nm, more preferably 40 to 80 nm in order to further improve storage stability. ..
  • the orange pigment of Pigment Orange 43 it is possible to use a pigment having a primary particle diameter of 150 nm or less, which has a level of dispersibility comparable to that of the ink of the basic color or the aqueous pigment dispersion, and can suppress changes in physical properties over time. It is preferable for achieving a level of storage stability.
  • the C.I. I. Pigment Orange 43 or the like whose primary particle diameter of orange pigment is 50 to 130 nm is preferably used, and that of 65 to 120 nm is more preferable in order to further improve the storage stability. preferable.
  • the value of the primary particle diameter was measured with the following equipment and conditions.
  • any 1000 of the measurement samples were observed with a scanning transmission electron microscope (STEM, JSM-7500FA, manufactured by JEOL Ltd., accelerating voltage: 30 kv), and the average value of the major axis was determined as the primary particle diameter.
  • STEM scanning transmission electron microscope
  • the violet pigment, the green pigment, and the orange pigment each having a particle diameter adjusted to the above-mentioned range by performing, for example, dry pulverization, wet pulverization, solvent salt milling, or the like.
  • solvent salt milling since the metal beads are used in the dry crushing and the wet crushing, the metal is highly likely to be mixed as an impurity. Therefore, as the above method, it is preferable to employ solvent salt milling with a low metal content.
  • Solvent salt milling is a method in which a mixture containing at least a crude pigment, an inorganic salt and an organic solvent is kneaded and ground using a kneader such as a kneader, a two-roll mill, a three-roll mill, trimix, or an attritor. Is.
  • the inorganic salt that can be used in the solvent salt milling it is preferable to use a water-soluble inorganic salt, for example, sodium chloride, potassium chloride, sodium sulfate or the like.
  • a water-soluble inorganic salt for example, sodium chloride, potassium chloride, sodium sulfate or the like.
  • the inorganic salt it is more preferable to use an inorganic salt having a primary particle diameter of 0.5 to 50 ⁇ m.
  • the amount of the inorganic salt used is preferably 3 to 20 parts by mass, and more preferably 5 to 15 parts by mass, relative to 1 part by mass of the crude pigment.
  • a water-soluble organic solvent can be preferably used, for example, diethylene glycol, glycerin, Ethylene glycol, propylene glycol, liquid polyethylene glycol, liquid polypropylene glycol, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol monomethyl ether, diethylene Glucol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monomethyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monomethyl ether Ether, dipropylene glycol and the like can be used.
  • the amount of the organic solvent is preferably 0.01 to 5 parts by mass with respect to 1 part by mass of the crude pigment.
  • the temperature at the time of kneading and milling with the solvent salt milling is preferably 30 to 150 ° C.
  • the time for kneading and milling is preferably 2 to 20 hours.
  • a mixture of the pigment having a primary particle size of 150 nm or less, the inorganic salt, and the organic solvent can be obtained by the above method.
  • the inorganic salt and the organic solvent may be washed and filtered, if necessary, and then dried and pulverized. ..
  • washing and filtering step either washing with water or washing with hot water can be adopted. Further, it may be washed with an acid, an alkali or a solvent so as not to change the crystal state of the pigment.
  • the washing can be repeated 1 to 5 times.
  • the water-soluble inorganic salt and the water-soluble organic solvent are used as the inorganic salt and the organic solvent, the water-soluble inorganic salt and the water-soluble organic solvent can be easily removed by the washing.
  • a batch-type or continuous-type drying method in which the pigment is dehydrated and / or the solvent is removed by heating at 80 to 120 ° C. by a heating source installed in a dryer can be performed.
  • a heating source installed in a dryer for example, a box dryer, a band dryer, a spray dryer or the like can be used.
  • the pulverization step is not a step for increasing the specific surface area of the pigment or for further reducing the primary particle size, and for example, when using a box dryer or a band dryer, the pigment has a lamp-like shape. This is a step that may be carried out in order to disintegrate and turn into powder.
  • a mortar, juicer, hammer mill, disc mill, pin mill, jet mill, etc. can be used.
  • the pigment obtained by the solvent salt milling is contained in an amount of 70 to 100 parts by mass based on the total amount of the pigment in order to obtain an aqueous pigment dispersion having further excellent storage stability, and 100 parts by mass. The closer to, the more preferable.
  • pigment used in the present invention in addition to the violet pigment, the green pigment, and the orange pigment, those containing a combination of other pigments can be used if necessary.
  • the other pigments include carbon black produced by known methods such as iron oxide, contact method, furnace method, thermal method, inorganic pigments such as titanium oxide, azo pigments, (monoazo pigments, disazo pigments, pyrazolones). Insoluble azo pigments such as pigments, benzimidazolone pigments, beta-naphthol pigments, naphthol AS pigments, condensed azo pigments and the like), polycyclic pigments (for example, quinacridone pigments, perylene pigments, perinone pigments, anthraquinone pigments, dioxazine pigments, Thioindigo pigment, isoindolinone pigment, isoindoline pigment, quinophthalone pigment, diketopyrrolopyrrole pigment, etc.), phthalocyanine pigment, dye chelate (for example, basic dye type chelate, acid dye type chelate, etc.), nitro pigment, nitroso pigment, Organic pigments such as aniline black can be used
  • the pigment if it is carbon black, No. manufactured by Mitsubishi Chemical Co., Ltd. 2300, No. 2200B, No. 995, No. 990, No. 900, No. 960, No. 980, No. 33, No. 40, No. 45, No. 45L, No. 52, HCF88, MA7, MA8, MA100, etc., Columbia Raven 5750, Raven 5250, Raven 5000, Raven 3500, Raven 1255, Raven 700, Cabot's Regal 400R, Regal 800R, Regal 700R, Mogul 700L, Mogul. , Monarch900, Monarch1000, Monarch1100, Monarch1300, Monarch1400, etc., manufactured by Orion Engineered Carbons Co., Ltd.
  • Magenta pigments such as 213, 269, 282 can be used.
  • C.I. I. Pigment Blue 1 2, 3, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 63, 66 and the like can be used.
  • a dry powder state or a wet cake state can be used.
  • a mixture or solid solution containing two or more kinds can be used.
  • the pigment is preferably used in an amount of 30 to 80% by mass, and preferably 35 to 75% by mass, based on the total amount of the composition (a1), in order to keep the viscosity of the kneaded product (a2) at an appropriate level.
  • a pigment dispersion resin As the resin usable in the composition (a1), for example, a pigment dispersion resin can be used.
  • a pigment-dispersed resin a conventionally known one can be used.
  • a radical polymer can be used, a radical polymer having an aromatic cyclic structure or a heterocyclic structure is preferably used, and a radical polymer having an acid value of 60 to 300 mgKOH / g is used.
  • Aqueous solution that can prevent the generation of coarse particles over time, has dispersion stability that can prevent the occurrence of sedimentation of pigments with time, and can be used for the production of inks with excellent ejection stability. It is more preferable for obtaining a pigment dispersion.
  • a radical polymer having an anionic group is used as the pigment-dispersing resin
  • aromatic cyclic structure or the heterocyclic structure a ring introduced into the radical polymer by using a monomer having an aromatic cyclic structure or a monomer having a heterocyclic structure described below.
  • the structure is mentioned.
  • a benzene ring structure is preferably used, and a structure derived from styrene is more preferable.
  • a pigment-dispersed resin that is a radical polymer having an aromatic cyclic structure or a heterocyclic structure, it is possible to enhance the adsorptivity of the pigment-dispersed resin to the pigment, and as a result, Aqueous pigment dispersion that can prevent the generation of coarse particles and has dispersion stability that can prevent the occurrence of sedimentation of pigments and the like over time, and that can be used for the production of an ink having excellent ejection stability. Can be efficiently obtained.
  • the use of an acid value of 60 to 300 mgKOH / g as the pigment-dispersing resin can improve the adsorptivity of the pigment-dispersing resin to the pigment, and as a result suppress the generation of coarse particles over time. And, because it is possible to obtain an aqueous pigment dispersion that can be used in the production of an ink having a level of excellent dispersion stability and ejection stability that can both prevent the occurrence of sedimentation of the pigment and the like over time. Particularly preferred.
  • the pigment-dispersed resin having an acid value within the above range is wholly or partially dissolved in the water-soluble organic solvent described later in the step [1], or is easily swelled by the water-soluble organic solvent.
  • the above-mentioned acid value is an acid value derived from an anionic group such as a carboxy group, a sulfo group and a phosphoric acid group.
  • the acid value is preferably in the range of 80 to 250 mgKOH / g, and in the range of 100 to 200 mgKOH / g, it is possible to prevent the generation of coarse particles with time, and to settle the pigment and the like with time. It is particularly preferable for obtaining an aqueous pigment dispersion that can be used for producing an ink having dispersion stability capable of preventing the occurrence of the above and having excellent ejection stability.
  • the acid value is the same as that of Japanese Industrial Standard “K0070: 1992. Acid value, saponification value, ester value, iodine value, hydroxyl value and insolubility of chemical products except that tetrahydrofuran is used as a solvent instead of diethyl ether. And the amount of potassium hydroxide (mg) required to completely neutralize 1 g of the resin.
  • radical polymer usable for the pigment dispersion resin for example, a polymer obtained by radical polymerization of various monomers can be used.
  • a monomer having an aromatic cyclic structure can be used if an aromatic cyclic structure is introduced into the pigment dispersion resin, and a heterocyclic structure is introduced. If so, a monomer having a heterocyclic structure can be used.
  • Examples of the monomer having an aromatic cyclic structure include styrene, p-tert-butyldimethylsiloxystyrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, p-tert-butoxystyrene, m-tert-butoxystyrene, p-tert- (1-ethoxymethyl) styrene, m-chlorostyrene, p-chlorostyrene, p-fluorostyrene, ⁇ -methylstyrene, p-methyl- ⁇ -methylstyrene, vinylnaphthalene , Vinyl anthracene, etc. can be used.
  • vinyl pyridine-based monomers such as 2-vinyl pyridine and 4-vinyl pyridine can be used.
  • the monomer is a monomer having an aromatic cyclic structure and a monomer having a heterocyclic structure.
  • the bodies can be used in combination.
  • a radical polymer having an aromatic cyclic structure as the pigment dispersion resin
  • a monomer having an aromatic cyclic structure as the monomer. More preferably, styrene, ⁇ -methylstyrene and tert-butylstyrene are used.
  • the monomer having an aromatic cyclic structure or a heterocyclic structure is used in an amount of 20% by mass or more based on the total amount of the monomer in order to further enhance the adsorptivity of the pigment dispersion resin to the pigment. It is preferable to use 40 mass% or more, more preferably 95 mass% or less.
  • a monomer having an anionic group can be used as the monomer in producing a radical polymer having an acid value in the above-mentioned specific range.
  • the monomer having an anionic group for example, a monomer having an anionic group such as a carboxy group, a sulfo group or a phosphoric acid group can be used.
  • the monomer having an anionic group is easily available, and it is possible to use a monomer having a carboxy group to prevent the generation of coarse particles over time, and to prevent precipitation of pigments over time. It is preferable to obtain an aqueous pigment dispersion that has dispersion stability capable of preventing generation and that can be used for producing an ink having excellent ejection stability, and it is more preferable to use acrylic acid or methacrylic acid. ..
  • the monomer having an anionic group is preferably used in the range of 5% by mass to 80% by mass with respect to the total amount of the monomer that can be used for producing the pigment-dispersed resin, and 5% by mass to It is more preferable to use 60% by mass in order to obtain a radical polymer having an acid value in the above-mentioned predetermined range.
  • the monomer that can be used for producing the pigment-dispersed resin other than the above-mentioned monomers, other monomers can be used if necessary.
  • Examples of the other monomer include, for example, methyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl ( (Meth) acrylate, 2-ethylbutyl (meth) acrylate, 1,3-dimethylbutyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, ethyl (meth) acrylate, n -Butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate, nonyl (meth) acrylate, 3-ethoxypropyl (me
  • the pigment dispersion resin a polymer having a linear structure formed by radical polymerization of the monomer, a polymer having a branched (grafted) structure, a polymer having a crosslinked structure Can be used.
  • the monomer sequence is not particularly limited, and a random type or block type polymer can be used.
  • the polymer having the crosslinked structure can be produced by using a monomer having a crosslinkable functional group as the monomer.
  • Examples of the monomer having a crosslinkable functional group include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, poly (oxyethyleneoxypropylene) glycol di (meth ) Acrylics, poly (meth) acrylates of polyhydric alcohols such as tri (meth) acrylates of alkylene oxide adducts of glycerin; glycidyl (meth) acrylates, divinylbenzene and the like can be used.
  • the pigment-dispersed resin used in the present invention may be a polymer of the above-mentioned monomers, but only a monomer having an anionic group and a monomer having an aromatic cyclic structure or a heterocyclic structure. It is preferable to use a polymer obtained by polymerizing.
  • Examples of the pigment-dispersing resin used in the present invention include styrene structural units such as styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid ester- (meth) acrylic acid polymer, among others. It is preferable to use a polymer having a (meth) acrylic acid structural unit, and among them, it is more effective to use a polymer having an acid value in the above-mentioned preferable range to generate coarse particles over time.
  • Aqueous pigment that can be used for the production of an ink that has excellent dispersion stability and dispersion stability that can more effectively prevent the occurrence of sedimentation of the pigment and the like over time. It is preferable for obtaining a dispersion.
  • any of a styrene-acrylic acid copolymer, a styrene-methacrylic acid copolymer, and a styrene-acrylic acid-methacrylic acid copolymer can be used.
  • the use of the acid-methacrylic acid copolymer improves the copolymerizability of the above-mentioned monomer, and as a result, it is possible to more effectively prevent the generation of coarse particles over time, and to prevent It is preferable because it is possible to obtain an aqueous pigment dispersion that can be used for the production of an ink that has dispersion stability that can more effectively prevent the occurrence of sedimentation over time, and that also has excellent ejection stability.
  • styrene- (meth) acrylic acid copolymer one having a total amount of styrene, acrylic acid, and methacrylic acid of 80% by mass to 100% by mass based on the total amount of monomers used for the production thereof is used. It is preferable to use one having a content of 90% by mass to 100% by mass.
  • the radical polymer can be produced, for example, by radically polymerizing the above-mentioned monomer by a method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method or an emulsion polymerization method.
  • radical polymer When producing the radical polymer, known and conventional polymerization initiators, chain transfer agents (polymerization degree modifiers), surfactants and defoaming agents can be used, if necessary.
  • polymerization initiator examples include 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile). ), Benzoyl peroxide, dibutyl peroxide, butyl peroxybenzoate and the like.
  • the polymerization initiator is preferably used in the range of 0.1% by mass to 10% by mass based on the total amount of the monomers used for producing the radical polymer.
  • the pigment-dispersed resin it is preferable to use one having a weight average molecular weight in the range of 2,000 to 40,000, more preferably in the range of 5,000 to 30,000, and more preferably in the range of 5,000 to 20,000.
  • An aqueous pigment that can prevent the generation of coarse particles over time and can prevent the occurrence of sedimentation of pigments over time, and that can be used for the production of an ink having more excellent dispersion stability and ejection stability Particularly preferred for obtaining a dispersion.
  • the weight average molecular weight is a value measured by a GPC (gel permeation chromatography) method, and is a value converted into the molecular weight of polystyrene used as a standard substance.
  • the pigment dispersion resin is dried after removing the solvent contained in the radical polymer solution obtained by the solution polymerization method. It is possible to use crushed and finely divided particles.
  • the pigment-dispersed resin which is the finely divided radical polymer, is wholly or partially dissolved in the water-soluble organic solvent described below in the step [1] or is easily swelled by the water-soluble organic solvent, resulting in the pigment.
  • pigment-dispersed resin one classified by a mesh-like sieve may be used, and it is preferable to use one having a particle diameter of about 1 mm or less.
  • composition (a1) it is preferable to use a composition in which the weight ratio of the pigment dispersion resin to the pigment is in the range of 5% by mass to 200% by mass, and in the range of 10% by mass to 100% by mass. It is possible to knead the kneaded material (a2) with an appropriate viscosity in the step [1] by using a certain material, and the pigment-dispersed resin can be easily adsorbed to the pigment, resulting in the formation of coarse particles over time. Since it is possible to obtain an aqueous pigment dispersion that can be used for the production of an ink that has both excellent dispersion stability and ejection stability that can both prevent generation and prevent precipitation of pigments over time, preferable.
  • a binder resin or the like may be used, if necessary, in addition to the pigment dispersion resin.
  • composition (a1) used in the step [1] a composition containing a basic compound, if necessary, in addition to the pigment and the pigment dispersion resin can be used.
  • the basic compound neutralizes the anionic group.
  • the affinity of the pigment adsorbed by the pigment dispersion resin for the aqueous medium is increased.
  • the dispersed state of the pigment particles in the aqueous pigment dispersion becomes more stable, the generation of coarse particles over time can be more effectively prevented, and the occurrence of sedimentation of the pigment or the like over time is even more effective. Will be prevented.
  • an inorganic basic compound or an organic basic compound can be used as the basic compound.
  • salts inorganic basic compounds such as ammonium hydroxide, aminoalcohols such as triethanolamine, N, N-dimethanolamine, N-ethylethanolamine, dimethylethanolamine, N-butyldiethanolamine, morpholine, N- Examples thereof include morpholines such as methylmorpholine and N-ethylmorpholine, and organic basic compounds such as piperazine such as N- (2-hydroxyethyl) piperazine and piperazine hexahydrate.
  • inorganic basic compounds such as ammonium hydroxide, aminoalcohols such as triethanolamine, N, N-dimethanolamine, N-ethylethanolamine, dimethylethanolamine, N-butyldiethanolamine, morpholine, N- Examples thereof include morpholines such as methylmorpholine and N-ethylmorpholine, and organic basic compounds such as piperazine such as N- (2-hydroxyethyl) piperazine and piperazine hexahydrate.
  • potassium hydroxide sodium hydroxide
  • sodium hydroxide it is possible to use an alkali metal hydroxide typified by lithium hydroxide, because of excellent neutralization efficiency of the pigment dispersion resin, the pigment This is preferable because the dispersion stability of the pigment adsorbed by the dispersion resin in an aqueous medium is improved, and potassium hydroxide is particularly preferable.
  • the basic compound has an anionic group as the pigment-dispersing resin
  • the affinity of the pigment-dispersed resin for the aqueous medium is increased, and as a result, the dispersion stability of the pigment adsorbed by the pigment-dispersed resin in water is improved, which is preferable.
  • Neutralization rate (%) ((mass of basic compound (g) x 56 x 1000) / (acid value of pigment dispersion resin x equivalent of basic compound x mass of pigment dispersion resin (g))) x 100
  • composition (a1) used in the step [1] in addition to the above-mentioned composition, a composition containing a solvent such as a water-soluble organic solvent or an aqueous medium can be used if necessary.
  • the water-soluble organic solvent easily dissolves or swells part or all of the pigment-dispersed resin, and as a result, the pigment-dispersed resin is easily adsorbed on the pigment. This makes it possible to obtain an aqueous pigment dispersion that can be used in the production of an ink having more excellent dispersion stability and ejection stability.
  • water-soluble organic solvent examples include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, polyethylene glycol and polypropylene glycol; diols such as butanediol, pentanediol and hexanediol; lauric acid.
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, polyethylene glycol and polypropylene glycol
  • diols such as butanediol, pentanediol and hexanediol
  • lauric acid examples of the water-soluble organic solvent.
  • Glycol esters such as propylene glycol; diethylene glycol monoethyl, diethylene glycol monobutyl, diethylene glycol monohexyl, carbitol and other diethylene glycol ethers; glycol ethers such as cellosolve including propylene glycol ether, dipropylene glycol ether, and triethylene glycol ether; Alcohols such as methanol, ethanol, isopropyl alcohol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, butyl alcohol and pentyl alcohol; lactones such as sulfolane, ester, ketone and ⁇ -butyrolactone, N- ( Examples thereof include lactams such as 2-hydroxyethyl) pyrrolidone, glycerin and polyalkylene oxide adducts thereof, and other various solvents known as aqueous organic solvents. These aqueous organic solvents can be used alone or in combination of two or more.
  • the water-soluble organic solvent it is preferable to use a high boiling point which functions as a wetting agent, a low volatility, a polyhydric alcohol having a high surface tension, and a derivative of glycerin, particularly diethylene glycol and triethylene. It is preferable to use glycols such as ethylene glycol and polyoxyalkylene adducts of glycerin such as polyethylene oxide adducts of glycerin.
  • the water-soluble organic solvent is preferably used in the range of 10% by mass to 200% by mass, and is used in the range of 15% by mass to 150% by mass with respect to the mass of the pigment. It is more preferable to obtain an aqueous pigment dispersion that can be used in the production of an ink having more excellent dispersion stability and ejection stability.
  • composition (a1) used in the step [1] it is possible to use a composition containing a pigment derivative, if necessary, in addition to the resin such as the pigment or the pigment dispersion resin.
  • the pigment derivative imparts dispersion stability to the aqueous pigment dispersion of the present invention and the ink using the same, which makes it possible to prevent the generation of coarse particles over time and the precipitation of pigments over time. be able to.
  • the pigment derivative a pigment in which a specific functional group described later is introduced can be used.
  • the pigment include phthalocyanine pigments, azo pigments, anthraquinone pigments, quinacridone pigments, and diketopyrrolopyrrole pigments.
  • the functional group include a carboxy group, a sulfo group, an amino group, a nitro group, an acid amide group, a carbonyl group, a carbamoyl group, a phthalimido group, and a sulfonyl group.
  • water used for a part or all of the above-mentioned solvent pure water such as ion-exchanged water, ultrafiltered water, reverse osmosis water, distilled water, or ultrapure water can be used.
  • water it is possible to use water that has been sterilized by ultraviolet irradiation, hydrogen peroxide addition, or the like to prevent the generation of mold or bacteria when the aqueous pigment dispersion or ink using the same is stored for a long period of time. This is preferable because it can be performed.
  • a kneading machine that can be used for kneading the composition (a1)
  • a Henschel mixer, a pressure kneader, a Banbury mixer, a Trimix, a planetary mixer or the like can be used as a kneading machine.
  • a planetary mixer in particular, to impart a strong shearing force to the composition (a1) having a nonvolatile content of 50% by mass or more. It is preferable because the ease of adsorption of the dispersion resin to the pigment can be increased.
  • the planetary mixer enhances the easiness of pulverizing the aggregate of the pigment and adsorbing the pigment-dispersed resin to the pigment, even if the viscosity of the composition (a1) is wide. It is preferable because it is possible.
  • the planetary mixer is preferable because it can continuously perform the step [2] of supplying an aqueous medium into the mixer after the step [1] is completed.
  • the temperature of the composition (a1) at the time of kneading the composition (a1) in the step [1] is such that the glass transition of the pigment-dispersed resin is such that a sufficient shearing force is applied to the composition (a1). It is preferable to make an appropriate adjustment in consideration of temperature characteristics such as points.
  • the upper limit of the temperature of the composition (a1) during the kneading is preferably the glass transition temperature (Tg) of the pigment-dispersed resin.
  • the lower limit of the temperature of the composition (a1) during the kneading is preferably 60 ° C. lower than the glass transition temperature of the pigment-dispersed resin.
  • composition (a1) By kneading the composition (a1) within the above temperature range, it is possible to give a sufficient shearing force to the composition (a1), and as a result, pulverize aggregates of the pigment and the pigment It is preferable because the ease of adsorption of the dispersion resin to the pigment can be increased.
  • the viscosity of the composition (a1) may be significantly lowered due to the temperature rise.
  • an aqueous medium described later may be added during the process. It may be added and the composition (a1) may be intentionally cooled.
  • the glass transition temperature (Tg) of the pigment-dispersed resin is a value calculated using the FOX formula based on the glass-transition temperature of the homopolymer of each monomer used in the production of the pigment-dispersed resin. Point to.
  • Tgn a glass transition temperature (K) of a homopolymer of each monomer used for producing the pigment-dispersed resin
  • Wn is a mass fraction of the monomer
  • a closed kneading device is preferably used as the kneading device.
  • the closed kneading device it is possible to prevent the content of the water-soluble organic solvent from significantly changing in the step [1], and as a result, to further improve the production efficiency of the aqueous pigment dispersion.
  • the “significant change” means that the ratio of the mass of the kneaded product (a2) obtained after the end of the step [1] to the mass of the composition (a1) is less than 90 mass%.
  • a kneading device for example, a kneading device provided with a stirring tank and a uniaxial or multiaxial stirring blade can be used.
  • the closed type kneading device it is preferable to use one having two or more stirring blades in order to obtain a high kneading effect.
  • the kneaded material (a2) obtained in the step [1] has a semi-solid or solid state at room temperature in which the pigment dispersion resin is adsorbed on the atomized pigment in which the pigment aggregates are crushed. belongs to.
  • step [2] constituting the method for producing an aqueous pigment dispersion of the present invention
  • the kneaded product (a2) obtained in the step [1] is mixed with an aqueous medium and, if necessary, other components.
  • a step of producing the composition (a3) is a step of producing the composition (a3).
  • the aqueous medium or the like may be supplied to and mixed with the kneaded material (a2), or the kneaded material (a2) may be supplied and mixed with the aqueous medium or the like.
  • a closed type kneading device such as a planetary mixer
  • the dispersion efficiency of the product (a2) in the aqueous medium and the production efficiency of the composition (a3) As the aqueous medium, it is preferable to use water at 25 ° C. to 65 ° C. in order to suppress a significant decrease in the temperature of the kneaded product (a2).
  • a method of supplying the aqueous medium to the kneaded product (a2) a method of supplying all at once and a method of supplying continuously or intermittently can be mentioned.
  • a method of supplying the aqueous medium a method of continuously or intermittently supplying is adopted, whereby the kneaded material (a2) can be efficiently dispersed in the aqueous medium, and the aqueous pigment dispersion This is preferable because the time required for production can be shortened.
  • aqueous medium for example, water, a water-soluble organic solvent that is easily mixed with water, or a mixture of water and a water-soluble organic solvent can be used.
  • water-soluble organic solvent the same ones as those exemplified as usable in the step [1] can be used alone or in combination of two or more kinds.
  • composition (a3) obtained by going through the steps [1] and [2] is a liquid in which the pigment adsorbed by the pigment dispersion resin is dispersed in an aqueous medium.
  • the composition (a3) preferably has a nonvolatile content of 10% by mass to 30% by mass, more preferably 12% by mass to 25% by mass, based on the total amount of the composition (a3).
  • the composition (a3) obtained in the step [2] may be subjected to a dispersion treatment using a dispersion device, if necessary, before the step [3].
  • a dispersion device for example, a paint shaker, a ball mill, an attritor, a basket mill, a sand mill, a sand grinder, a dyno mill, a dispermat, an SC mill, a spike mill, an agitator mill or the like can be used, which uses a medium. It is possible to use an ultrasonic homogenizer, a high-pressure homogenizer, a nanomizer, a dissolver, a disper, a high-speed impeller disperser, etc. without using a medium.
  • the composition (a3) obtained in the step [2] is treated before the step [3].
  • inkjet printing method due to a rapid temperature rise inside the nozzle when ejecting ink, on the surface of the heating resistance element inside the nozzle, an aggregate of a resin such as a pigment dispersion resin and a polyvalent metal ion, or the polyvalent metal A phenomenon called kogation may occur in which aggregates such as polyvalent metal salts derived from ions are deposited. Since the agglomerates cause ejection failure of the ink, it is strongly desired to reduce polyvalent metal ions in the inkjet recording ink.
  • a method of reducing the polyvalent metal ion for example, a method of removing polyvalent metal by bringing particles or fibrous resin having a chelate-forming group into contact with an aqueous pigment ink or an aqueous pigment dispersion can be mentioned.
  • the composition (a3) obtained through at least the step [1] and the step [2] is treated at 30 ° C. This is a step of centrifuging in the range of 70 ° C.
  • the composition (a3) may be a cause of unpulverized aggregates of the pigment, undissolved pigment dispersion resin, and coarse particles of the pigment not sufficiently adsorbed by the pigment dispersion resin.
  • the ingredients may remain very slightly. Therefore, reduction of the content of the above-mentioned components has been studied in the industrial world.
  • the miniaturized and highly densified ink discharge nozzle that can be used for the production of high-definition printed matter is subject to clogging and ink discharge direction due to the influence of very small coarse particles and precipitates in the ink. Abnormalities are likely to occur, and as a result, streaks or the like may occur on the printed matter.
  • the single-pass inkjet printing method using a line head is more likely to cause deterioration in image quality due to clogging of ejection nozzles, etc., as compared with the so-called multi-pass inkjet printing method (scan method). There were cases.
  • the composition (a3) is produced, it is subjected to centrifugal separation treatment under a predetermined condition, so that the ink ejection nozzle is applied even if it is applied to a fine and high density ink ejection nozzle.
  • aqueous pigment dispersion that can be used for the production of inks that does not cause clogging of ink.
  • the coarse particles referred to in the present invention refer to particles having a diameter of 0.5 ⁇ m or more measured using a particle size distribution meter (Accusizer 780 APS) by a number counting method manufactured by Particle Sizing Systems.
  • step [3] it is not necessary to simply perform the centrifugal separation treatment, but the centrifugal separation treatment is performed in the range of 30 ° C to 70 ° C.
  • the step [3] is performed at a temperature lower than 30 ° C.
  • the viscosity of the composition (a3) becomes high, and it may be difficult to remove coarse particles efficiently and practically sufficiently. is there.
  • the step [3] is performed at a temperature higher than 70 ° C., water easily evaporates from the composition (a3), the viscosity tends to increase, and the coarse particles are efficiently and practically sufficiently formed. It can be difficult to remove.
  • step [3] it is more preferable to perform centrifugation at a temperature in the range of 40 ° C to 65 ° C in order to remove coarse particles efficiently and practically.
  • the said temperature points out the temperature of the said composition (a3) centrifuged.
  • the composition (a3) may be preliminarily adjusted to a temperature of 30 ° C. to 70 ° C. by using, for example, a heat exchange device before being supplied to the centrifugal separator, and has a temperature setting function as a centrifugal separator. When used, it may be adjusted to the above temperature range after being supplied to the centrifugal separator.
  • the composition (a3) By lowering the viscosity of the heated composition (a3), centrifugation efficiency is improved, and coarse particles can be removed efficiently. Further, by controlling the composition (a3) within the above temperature range, the composition is less affected by the outside air temperature, and the aqueous pigment dispersion containing few coarse particles can be stably produced.
  • composition (a3) to be subjected to the centrifugation treatment it is preferable to use a composition having a viscosity at 25 ° C. of 13 mPa ⁇ s or less, in which coarse particles are more efficiently produced from the composition (a3), and It is preferable because it can be removed practically sufficiently.
  • the composition (a3) preferably has a viscosity at 25 ° C. of 10.5 mPa ⁇ s or less, and 2 mPa ⁇ s. It is more preferable that it is ⁇ 10.5 mPa ⁇ s since coarse particles can be removed from the composition (a3) more efficiently and practically sufficiently.
  • centrifuge it is effective to use a centrifuge having a cylindrical rotor shape, which effectively reduces the efficiency of centrifugation due to the accumulation of clay-like sludge containing coarse particles in the rotor. It is preferable because it can be suppressed.
  • the composition (a3) obtained through the step [1] and the step [2] has various types such as coarse particles of the pigment, unpulverized product of the pigment, or undissolved product of the pigment dispersion resin. It tends to contain coarse particles of a large size.
  • the above coarse particles can be efficiently and continuously removed without impairing the productivity, and as a result, the coarse particles over time can be removed. It is possible to obtain excellent dispersion stability that can both suppress the occurrence of the above and prevent the precipitation of the pigment and the like over time.
  • the composition (a3) is supplied to a rotor provided in the cylindrical centrifuge, and the temperature of the composition (a3) is maintained within a range of 30 ° C to 70 ° C. It is preferable that the step is carried out in step 1 because stable centrifugal separation efficiency can be stably maintained for a long period of time, and coarse particles can be more efficiently and sufficiently removed from the composition (a3).
  • the ratio of the supply amount (volume) of the composition (a3) to the volume of the rotor [supply amount (volume) of the composition (a3) / volume of the rotor] ⁇ 100 is 1000% to 8000%. It is preferable that the content is 2000 to 7000%, while it is possible to suppress the removal of components such as pigments that are not coarse particles, but it is possible to more efficiently remove coarse particles from the composition (a3). Therefore, it is more preferable.
  • the centrifugal acceleration of the centrifugal separator is preferably in the range of 8000G to 20000G, and in the range of 9000 to 20000G, it is possible to prevent the pigment-dispersed resin from being peeled off from the pigment, and the composition. It is more preferable because coarse particles can be efficiently removed from (a3).
  • the centrifugal acceleration means relative centrifugal acceleration and is defined by the following formula.
  • Centrifugal acceleration (G) r ⁇ (2 ⁇ N / 60) 2 / g (In the formula, N is the number of revolutions per minute (rpm), r is the radius of rotation (m), g is the gravitational acceleration (9.8 m / s 2 ), and ⁇ is the circular constant).
  • the aqueous pigment dispersion obtained by passing through at least the step [1], the step [2], and the step [3] can prevent the generation of coarse particles over time, and can also prevent a pigment or the like. It is an aqueous pigment dispersion that has dispersion stability capable of preventing the occurrence of sedimentation with time and can be used for producing an ink having excellent ejection stability.
  • the aqueous pigment dispersion can be used as an ink by diluting it to a desired concentration.
  • Examples of the ink include paints for automobiles and building materials, printing inks such as offset inks, gravure inks, flexo inks, silk screen inks, and ink jet printing inks.
  • the above ink is used as an ink for inkjet recording, it is preferable to use a pigment having a pigment concentration of 1% by mass to 10% by mass with respect to the total amount of the ink.
  • the ink includes the aqueous pigment dispersion of the present invention, a solvent such as a water-soluble organic solvent or water, if necessary, a resin such as an acrylic resin or a polyurethane resin as a binder, a drying inhibitor, a penetrant, and an interface. It can be produced by mixing with an additive such as an activator, an antiseptic, a viscosity adjusting agent, a pH adjusting agent, a chelating agent, a plasticizer, an antioxidant and an ultraviolet absorber.
  • the ink may be subjected to a centrifugal separation treatment or a filtration treatment after being manufactured by the above method.
  • the water-soluble organic solvent can be used to prevent the ink from drying and to adjust the viscosity and the concentration of the ink within a suitable range.
  • the water-soluble organic solvent examples include lower alcohols such as ethanol and isopropyl alcohol; and ethylene oxide adducts of alkyl alcohols such as ethylene glycol hexyl ether and diethylene glycol butyl ether in order to enhance the permeability of the ink into the recording medium.
  • the water-soluble organic solvent examples include lower alcohols such as ethanol and isopropyl alcohol; and ethylene oxide adducts of alkyl alcohols such as ethylene glycol hexyl ether and diethylene glycol butyl ether in order to enhance the permeability of the ink into the recording medium.
  • examples thereof include propylene oxide adducts of alkyl alcohols such as propylene glycol propyl ether.
  • the anti-drying agent examples include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, triethylene glycol mono-n-butyl ether, polyethylene glycol having a molecular weight of 2000 or less, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3 -Propylene glycol, isopropylene glycol, isobutylene glycol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, mesoerythritol, pentaerythritol and the like.
  • the use of glycerin or triethylene glycol as the anti-drying agent can provide an ink that has safety, is hard to dry, and has excellent ejection performance.
  • the above-mentioned anti-drying agent may be the same compound as the above-mentioned water-soluble organic solvent used in the aqueous pigment dispersion. Therefore, when a water-soluble organic solvent is already used in the aqueous pigment dispersion, it can also serve as a drying inhibitor.
  • the penetrant can be used for the purpose of improving the penetrability into the recording medium and adjusting the dot diameter on the recording medium.
  • penetrants examples include lower alcohols such as ethanol and isopropyl alcohol; glycol monoethers of alkyl alcohols such as ethylene glycol hexyl ether, diethylene glycol butyl ether and propylene glycol propyl ether.
  • the content of the penetrant in the ink is preferably 0.01 to 10% by mass.
  • the surfactant can be used to adjust ink properties such as surface tension.
  • the surfactant is not particularly limited, and includes various anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, and the like. Surfactants and nonionic surfactants are preferred.
  • anionic surfactant examples include alkylbenzene sulfonate, alkylphenyl sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, higher fatty acid ester sulfate ester salt, higher fatty acid ester sulfonate, and higher alcohol ether.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and glycerin fatty acid ester.
  • Polyoxyethylene glycerin fatty acid ester Polyglycerin fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, fatty acid alkylolamide, alkylalkanolamide, acetylene glycol, oxyethylene adduct of acetylene glycol, Examples thereof include polyethylene glycol polypropylene glycol block copolymers, among which polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester.
  • Sorbitan fatty acid ester polyoxyethylene sorbitan fatty acid ester, fatty acid alkylolamide, acetylene glycol, oxyethylene adduct of acetylene glycol, and polyethylene glycol polypropylene glycol block copolymer are preferable.
  • surfactants include silicone-based surfactants such as polysiloxane oxyethylene adducts; fluorine-based surfactants such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and oxyethylene perfluoroalkyl ethers. Spiculisporic acid, rhamnolipid, biosurfactants such as lysolecithin, and the like can also be used.
  • the surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is preferably 0.001% by mass to 2% by mass, and more preferably 0.001% by mass to 1.5% by mass, based on the total mass of the ink.
  • the range of 0.01% by mass to 1% by mass is more preferable in order to prevent bleeding of the printed image more effectively.
  • the ink obtained by the above method can be suitably used as an inkjet recording ink.
  • the inkjet recording method include a continuous jet type (charge control type, spray type, etc.), an on-demand type (piezo type, thermal type, electrostatic suction type, etc.).
  • a general inkjet recording method compared with the inkjet printing method of the multi-pass method (scan method), the inkjet in the single-pass method by the line head that is more likely to cause the deterioration of the image quality due to the clogging of the discharge nozzle.
  • a printing method or a printing method in which a recording method is selected and used in combination with the ink of the present invention is less likely to cause deterioration in image quality due to clogging of the ejection nozzles, etc. It is preferable for obtaining it.
  • Pigment dispersion resin As the pigment-dispersed resin A, a polymer of 77 parts by mass of styrene, 10 parts by mass of acrylic acid, and 13 parts by mass of methacrylic acid (weight average molecular weight 11,000, acid value 150 mgKOH / g, based on glass transition temperature of homopolymer, FOX formula) The calculated glass transition temperature (Tg) 113 ° C. calculated from the above was used.
  • pigment dispersion resin B a polymer of 83 parts by mass of styrene, 7 parts by mass of acrylic acid, and 10 parts by mass of methacrylic acid (weight average molecular weight 11,000, acid value 120 mgKOH / g, calculated glass transition temperature (Tg) calculated from the above formula. 110 ° C.) was used.
  • pigment dispersion resin C a polymer of 72 parts by mass of styrene, 12 parts by mass of acrylic acid, and 16 parts by mass of methacrylic acid (weight average molecular weight 11,000, acid value 180 mgKOH / g, calculated glass transition temperature (Tg) calculated from the above formula. 116 ° C) was used.
  • Tg glass transition temperature
  • the weight average molecular weight of the pigment dispersion resins A to C is a value measured by GPC (gel permeation chromatography) method, and is a value converted into a polystyrene molecular weight.
  • the measurement conditions are as follows.
  • Liquid delivery pump LC-9A
  • System controller SLC-6B Auto injector: S1L-6B Detector: RID-6A Data processing software manufactured by Shimadzu Corporation: Sic480II Data Station (manufactured by System Instruments).
  • Elution solvent Tetrahydrofuran (THF) Elution flow rate: 2 mL / min. Column temperature: 35 ° C
  • the viscosity of the aqueous pigment dispersion was measured with a Viscometer TVE-22L (manufactured by Toki Sangyo Co., Ltd.) using the aqueous pigment dispersion that was thermostatted at 25 ° C. as a sample.
  • Example 1 A 50 L jacketed tank of a planetary mixer (PLM-50 manufactured by Inoue Seisakusho Co., Ltd.) was charged with 3.0 parts by mass of the pigment dispersion resin A and 10.0 parts by mass of C.I. I. Pigment Violet 23 is sequentially charged, the temperature of the jacketed tank is heated to 60 ° C., and then 5.0 parts by mass of triethylene glycol and 1.3 parts by mass of 34% by mass potassium hydroxide aqueous solution are sequentially processed. To give composition (a1-1). The nonvolatile content of the composition (a1-1) was 69.6% by mass.
  • composition (a1-1) was stirred and kneaded at a rotation speed of 30 rpm and a revolution speed of 10 rpm for 10 minutes while keeping the temperature of the tank with a jacket at 60 ° C., and then the rotation speed was 51 rpm and the revolution speed. By kneading at 17 rpm for 60 minutes, a solid kneaded material (a2-1) was obtained.
  • the composition (a3-1) was heated to 60 ° C. by a heat exchange device (manufactured by TALV Co., Ltd., vacuum steam heating system), and then a cylindrical centrifuge (ultracentrifuge ASM260FH, rotor volume 7.7 L). (Manufactured by Tomoe Kogyo Co., Ltd.) at a liquid feeding rate of 1.0 L / min and continuously centrifuged at a centrifugal acceleration of 20000 G to obtain an aqueous pigment dispersion (a4-1).
  • the ratio of the supply amount (volume) of the composition (a3-1) to the volume of the rotor [supply amount (volume) of the composition (a3-1) / volume of the rotor] ⁇ 100 was 2700%.
  • Example 2 Aqueous solution was prepared in the same manner as in Example 1 except that the temperature for heating the composition (a3-1) in a heat exchange device (manufactured by TALB Co., Ltd., vacuum steam heating system) was changed from 60 ° C to 40 ° C. A pigment dispersion (a4-2) was obtained.
  • Example 1 Aqueous solution was prepared in the same manner as in Example 1 except that the temperature for heating the composition (a3-1) in a heat exchange device (a vacuum steam heating system manufactured by TLV Co., Ltd.) was changed from 60 ° C to 20 ° C. A pigment dispersion (a4-1 ') was obtained.
  • a heat exchange device a vacuum steam heating system manufactured by TLV Co., Ltd.
  • Example 2 The temperature for heating the composition (a3-1) by a heat exchange device (a vacuum steam heating system manufactured by T.V. Co., Ltd.) was changed from 60 ° C. to 20 ° C., and a cylindrical centrifuge (ultracentrifuge) was used. 0.25L using a centrifuge (H-600S, rotor volume 2.0L, manufactured by Kokusan Co., Ltd.) having a truncated cone-shaped rotor instead of ASM260FH, rotor volume 7.7L, manufactured by Tomoe Industry Co., Ltd. A water-based pigment dispersion (a4-2 ') was obtained in the same manner as in Example 1 except that the solution was supplied at a liquid feeding rate of 1 / min and the centrifugal separation treatment was continuously performed.
  • a heat exchange device a vacuum steam heating system manufactured by T.V. Co., Ltd.
  • Example 3 In a tank with a 50 L jacket of a planetary mixer (PLM-50 manufactured by Inoue Seisakusho Co., Ltd.), 2.5 parts by mass of pigment dispersion resin B and 10.0 parts by mass of C.I. I. Pigment Orange 43 is sequentially charged, and the temperature of the jacketed tank is heated to 60 ° C., and then 3.4 parts by mass of triethylene glycol and 0.9 parts by mass of 34% by mass aqueous potassium hydroxide solution are sequentially served. To obtain a composition (a1-3). The nonvolatile content of the composition (a1-3) was 76.3% by mass.
  • composition (a1-3) was agitated and kneaded at a rotation speed of 30 rpm and a revolution speed of 10 rpm for 10 minutes while keeping the temperature of the jacketed tank at 60 ° C., and then the rotation speed was 51 rpm and the revolution speed. By kneading at 17 rpm for 60 minutes, a solid kneaded material (a2-3) was obtained.
  • the composition (a3-3) was heated to 60 ° C. with a heat exchange device (manufactured by TALV Co., Ltd., a vacuum steam heating system), and then a cylindrical centrifuge (ultracentrifuge ASM260FH, rotor volume 7.7 L). (Manufactured by Tomoe Kogyo Co., Ltd.) at a liquid feeding rate of 1.6 L / min and continuously centrifuged at a centrifugal acceleration of 20000 G to obtain an aqueous pigment dispersion (a4-3).
  • the ratio of the supply amount (volume) of the composition (a3-3) to the volume of the rotor [supply amount (volume) of the composition (a3-3) / volume of the rotor] ⁇ 100 was 2500%.
  • composition (a1-3 ′) was stirred for 10 minutes at a rotation speed of 30 rpm and a revolution speed of 10 rpm in a state where the temperature of the tank with a jacket was kept at 60 ° C., and thereafter, a rotation speed of 51 rpm and a revolution speed of 17 rpm. By kneading for 60 minutes, a solid kneaded product (a2-3 ′) was obtained.
  • composition (a3-3 ′) was heated to 60 ° C. by a heat exchange device (manufactured by TALV Co., Ltd., vacuum steam heating system), and then a cylindrical centrifuge (ultracentrifuge ASM260FH, rotor volume 7. 7 L, manufactured by Tomoe Kogyo Co., Ltd.) at a liquid feeding rate of 1.6 L / min and continuously centrifuged at a centrifugal acceleration of 20000 G to obtain an aqueous pigment dispersion (a4-3 ′).
  • a heat exchange device manufactured by TALV Co., Ltd., vacuum steam heating system
  • a cylindrical centrifuge ultracentrifuge ASM260FH, rotor volume 7. 7 L, manufactured by Tomoe Kogyo Co., Ltd.
  • Example 4 In a 50 L jacketed tank of a planetary mixer (PLM-50 manufactured by Inoue Seisakusho Co., Ltd.), 3.0 parts by mass of the pigment dispersion resin C and 10.0 parts by mass of C.I. I. Pigment Orange 34 is sequentially charged, the temperature of the jacketed tank is heated to 60 ° C., and then 3.0 parts by mass of triethylene glycol and 1.6 parts by mass of a 34% by mass potassium hydroxide aqueous solution are sequentially added. To obtain a composition (a1-4). The nonvolatile content of the composition (a1-4) was 65.8% by mass.
  • composition (a1-4) was stirred at a rotation speed of 30 rpm and a revolution speed of 10 rpm for 10 minutes while keeping the temperature of the jacketed tank at 60 ° C., and then at a rotation speed of 51 rpm and a revolution speed of 17 rpm. By kneading for 60 minutes, a solid kneaded material (a2-4) was obtained.
  • the composition (a3-4) was heated to 60 ° C. by a heat exchange device (manufactured by TALV Co., Ltd., vacuum steam heating system), and then a cylindrical centrifuge (ultracentrifuge ASM260FH, rotor volume 7.7 L). (Manufactured by Tomoe Kogyo Co., Ltd.) at a liquid feeding rate of 1.6 L / min and continuously centrifuged at a centrifugal acceleration of 20000 G to obtain an aqueous pigment dispersion (a4-4).
  • the ratio of the supply amount (volume) of the composition (a3-4) to the volume of the rotor [supply amount (volume) of the composition (a3-4) / volume of the rotor] ⁇ 100 was 2500%.
  • Example 5 An aqueous pigment dispersion (a4-5) was obtained in the same manner as in Example 4, except that the centrifugal acceleration in the step [3] of the composition (a3-4) was changed from 20000G to 9000G.
  • Example 6 In a tank with a 50 L jacket of a planetary mixer (PLM-50 manufactured by Inoue Seisakusho Co., Ltd.), 2.0 parts by mass of pigment dispersion resin C and 10.0 parts by mass of C.I. I. Pigment Green 36 is sequentially charged, the temperature of the tank with a jacket is heated to 60 ° C., and then 3.1 parts by mass of triethylene glycol and 1.1 parts by mass of 34% by mass potassium hydroxide aqueous solution are sequentially processed. To obtain a composition (a1-6).
  • composition (a1-6) was stirred at a rotation speed of 30 rpm and a revolution speed of 10 rpm for 10 minutes while maintaining the temperature of the jacketed tank at 60 ° C., and then at a rotation speed of 51 rpm and a revolution speed of 17 rpm. By kneading for 60 minutes, a solid kneaded material (a2-6) was obtained.
  • composition (a3-6) heated to 60 ° C. with a heat exchange device (a vacuum steam heating system manufactured by TLV Co., Ltd.) was used as a cylindrical centrifuge (ultracentrifuge ASM260FH, rotor volume 7.7 L, Tomoe Kogyo). (Manufactured by Co., Ltd.) at a liquid feed rate of 0.8 L / min and continuously subjected to centrifugal separation at a centrifugal acceleration of 20000 G to obtain an aqueous pigment dispersion (a4-6).
  • the ratio of the supply amount (volume) of the composition (a3-6) to the volume of the rotor [supply amount (volume) of the composition (a3-6) / volume of the rotor] ⁇ 100 was 2100%.
  • Example 7 Ratio of the supply amount (volume) of the composition (a3-4) to the volume of the rotor in the step [3] of the composition (a3-6) [supply amount (volume) of the composition (a3-6) / rotor The volume] ⁇ 100 was changed from 2100% to 5700% to obtain an aqueous pigment dispersion (a4-7) in the same manner as in Example 6.
  • the aqueous pigment dispersions obtained in Examples and Comparative Examples were diluted with ion-exchanged water to be used as measurement samples.
  • the number of coarse particles having a diameter of 0.5 ⁇ m or more contained in the measurement sample was measured using a number counting type particle size distribution meter (manufactured by Particle Sizing Systems: Accusizer 780APS).
  • the number of coarse particles contained in 1 mL of the aqueous pigment dispersions of Examples and Comparative Examples was calculated by multiplying the number of coarse particles measured by the method by the dilution ratio.
  • the dilution ratio of the aqueous pigment dispersion was such that the number of coarse particles having a particle diameter of 0.5 ⁇ m or more passing through the detector per second was 1000 to 4000 particles / ml.
  • the aqueous pigment dispersion was sealed in a polypropylene container and allowed to stand at 60 ° C. for 4 weeks.
  • the number of coarse particles contained in the aqueous pigment dispersion after standing was measured by the method described above.
  • the change rate (%) of the number of coarse particles before and after the standing was calculated as [(the number of coarse particles contained in the aqueous pigment dispersion after the standing) / (coarse particles contained in the aqueous pigment dispersion immediately after production). The number of particles) ⁇ 100], and evaluated according to the following criteria.
  • the change rate is less than 10% ⁇
  • the change rate is 10% or more and less than 20% ⁇
  • the change rate is 20% or more
  • the water-based ink for ink jet printing was sealed in a polypropylene container and allowed to stand at 60 ° C. for 4 weeks.
  • the rate of change (%) of the number of coarse particles before and after the standing was included in [(the number of coarse particles contained in the aqueous ink for inkjet printing after standing) / (in the aqueous ink for inkjet printing immediately after production) It is calculated based on the number of coarse particles) ⁇ 100] and evaluated according to the following criteria.
  • the change rate is less than 10% ⁇
  • the change rate is 10% or more and less than 20% ⁇
  • the change rate is 20% or more
  • the number of print pattern defects confirmed by the second nozzle check test pattern was 1 to 5 more than the number of print pattern defects confirmed by the first nozzle check test pattern.
  • the number of print pattern defects confirmed by the second nozzle check test pattern was 6 or more than the number of print pattern defects confirmed by the first nozzle check test pattern.
  • the number of print pattern defects confirmed in the first nozzle check test pattern was the same as the number of print pattern defects confirmed in the second nozzle check test pattern.
  • the number of print pattern defects confirmed by the second nozzle check test pattern was 1 to 5 more than the number of print pattern defects confirmed by the first nozzle check test pattern.
  • the number of print pattern defects confirmed by the second nozzle check test pattern was 6 or more than the number of print pattern defects confirmed by the first nozzle check test pattern.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Centrifugal Separators (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本発明が解決しようとする課題は、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体の製造方法を提供することである。本発明は、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料と樹脂とを含有する不揮発分50質量%以上の組成物を所定の条件で混練し、遠心分離処理することを特徴とする水性顔料分散体の製造方法に関するものである。

Description

水性顔料分散体の製造方法
 本発明は、例えばインクの製造に使用可能な水性顔料分散体の製造方法に関するものである。
 インクジェット印刷法は、様々な印刷物の製造場面で採用されている。インクジェット印刷法は、通常、吐出ノズルからインクを吐出させ、紙や布帛等の被記録媒体の表面に着弾させることによって印刷物を製造する方法である。そのため、インクには、経時的に吐出ノズルの目詰まりを引き起こしにくく、また、経時的にインクの吐出体積及び方向が変化しない吐出安定性が求められている。
 前記インクジェット印刷用インクは、一般に、予め顔料が水性媒体に分散された水性顔料分散体に、必要に応じてバインダー樹脂や水溶性溶剤や水性媒体等を供給し混合することによって製造される。そのため、前記インクに良好な吐出安定性を付与するためには、前記吐出ノズルの目詰まりの原因となりうる粗大粒子の発生を低減でき、また、顔料等の経時的な沈降を防止可能な水性顔料分散体を使用することが重要である。
 前記粗大粒子の発生を低減でき、顔料等の経時的な沈降を防止可能な水性顔料分散体としては、例えば少なくともアニオン性基を有する樹脂、顔料、及び塩基性化合物を含む混合物を閉鎖系の混練装置で混練し、固体もしくは半固体状の混練物を用いた水性顔料分散液が知られている(例えば特許文献1参照。)。
 しかし、高精細な印刷物の製造に使用可能な、微細化されかつ高密度化されたインク吐出ノズルは、インク中の極僅かな粗大粒子や沈殿物の影響によって目詰まりやインクの吐出異常を発生させやすく、その結果、印刷物にスジ等を発生させる場合があった。
 とりわけ、一般にラインヘッドによるシングルパス方式でのインクジェット印刷法では、いわゆるマルチパス方式(スキャン方式)でのインクジェット印刷法と比較して、吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしやすい場合があった。
 以上のとおり、高精細な印刷物の製造に使用可能な微細化されたインク吐出ノズルの目詰まり等の原因となるインク中の粗大粒子や沈降物の経時的な発生を効果的に抑制できることが産業界から求められているものの、従来技術ではその要求性能にあと一歩及ばない場合があった。
 ところで、前記水性顔料分散体で使用される顔料としては、いわゆる基本色といわれるイエロー色、マゼンタ色、シアン色、ブラック色のほかに、バイオレット色やオレンジ色やグリーン色が知られている。
 前記バイオレット顔料としては、例えばC.I.ピグメントバイオレット23が知られているが、かかる顔料は基本色で使用される顔料と比較して、スチレン-アクリル酸系顔料分散樹脂をはじめとする顔料分散剤を脱離させやすいという特徴を有する。そのため、前記C.I.ピグメントバイオレット23を含有する従来のインクを約1週間程度放置した後、インクジェット印刷装置を用い吐出しようとしても、吐出方向の異常が生じたり、吐出ノズルの詰まり等を引き起こす場合があった。
 また、前記オレンジ顔料としては、例えばC.I.ピグメントオレンジ43が知られているが、かかる顔料は基本色で使用される顔料と比較して疎水性であるため、水性媒体中に安定して分散させることできず、経時的に沈降物を形成する場合があった。
 また、前記グリーン顔料としては、例えばC.I.ピグメントグリーン36が知られているが、かかる顔料は、他の顔料と比較して比重が大きいため、水性媒体中に安定して分散させることできず、経時的に沈降物を形成する場合があった。また、C.I.ピグメントグリーン36はインクを比較的高粘度化しやすいため、かかるインクをインクジェット記録法で使用した場合に、吐出方向の異常が生じる場合があった。
 以上のように、インクやその製造に使用される水性顔料分散体の分散性や保存安定性は、顔料の種類と分散樹脂との相互作用に起因する場合が多い。よって、基本色の顔料分散体で使用した顔料分散樹脂を、前記特色用の顔料と組合せ使用した場合であっても、ただちに良好な分散性を発現できるとは限らないため、特色用の顔料分散体の分散性を向上させるためには、当業者の相当の試行錯誤を伴う場合があった。
特開2003-226832号公報
 本発明が解決しようとする課題は、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能なレベルの分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体の製造方法を提供することである。
 本発明者は、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料と樹脂とを含有する不揮発分50質量%以上の組成物(a1)を、混練することによって混練物(a2)を製造する工程[1]、少なくとも前記混練物(a2)と水性媒体とを混合することによって組成物(a3)を製造する工程[2]、及び、前記組成物(a3)を30℃~70℃の範囲内で遠心分離処理する工程[3]を有することを特徴とする水性顔料分散体の製造方法によって前記課題を解決した。
 本発明の製造方法で得られた水性顔料分散体は、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料を使用した場合であっても、それらの経時的な粗大粒子の発生や経時的な沈降の発生を防止可能な分散安定性を備える。前記水性顔料分散体は、吐出安定性に優れたインクジェット印刷用インクの製造に好適に使用することができる。
 本発明の水性顔料分散体の製造方法は、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料と樹脂とを含有する不揮発分50質量%以上の組成物(a1)を、混練することによって混練物(a2)を製造する工程[1]、少なくとも前記混練物(a2)と水性媒体とを混合することによって組成物(a3)を製造する工程[2]、及び、前記組成物(a3)を30℃~70℃の範囲内で遠心分離処理する工程[3]を有することを特徴とする。
 (工程[1]の説明)
 工程[1]は、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料と樹脂とを含有する不揮発分50質量%以上の組成物(a1)を、混練することによって混練物(a2)を製造する工程である。
 前記組成物(a1)としては、顔料と樹脂と、必要に応じて塩基性化合物、水性媒体等の溶媒、顔料誘導体、界面活性剤等の任意成分とを含有するものを使用することができる。
 前記工程[1]で使用する組成物(a1)としては、その不揮発分が50%質量以上のものを使用することが好ましく、50~90質量%のものを使用することがより好ましく、50~85質量%のものを使用することが特に好ましい。
 ここで、前記不揮発分とは、約1gの前記組成物(a1)を、3hPaの減圧条件下、175℃で4時間加熱した後に残存した成分の質量と、加熱前の前記組成物(a1)の質量と、式[質量/質量]×100に基づいて算出された値を指す。
 前記不揮発分が50質量%以上の前記組成物(a1)を使用することによって、混練中の前記混練物(a2)の粘度を適度に保ち、混練装置から混練物(a2)にかかるシェアを大きくすることで、前記顔料の凝集物の粉砕と、前記樹脂の前記顔料への吸着とを効率よく並行して進行させることができ、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降発生の防止とを両立可能な優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができる。
 (顔料)
 前記組成物(a1)に使用可能な顔料としては、バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料が挙げられ、前記した顔料を単独または2種以上組み合わせ使用してもよく、前記した顔料と、前記以外の顔料(例えばイエロー、マゼンタ、シアン、ブラック等の顔料)とを組み合わせ使用してもよい。
 前記バイオレット顔料としては、例えばC.I.ピグメントバイオレット1、3、5:1、16、19、23、38等を使用することができ、より一層優れた発色性と耐光性とを両立するうえでC.I.ピグメントバイオレット23を使用することが好ましい。
 前記C.I.ピグメントバイオレット23は、発色性と耐光性に優れており、ブラック、シアン、マゼンタ及びイエローの基本4色を補助するインクジェット用顔料である。
 前記C.I.ピグメントバイオレット23等のバイオレット顔料としては、電子顕微鏡観察により得られる平均粒径が200nm以下であるものを使用することが好ましく、100nm以下であるものを使用することが、吐出安定性に優れ、高光沢の印刷物の製造に使用可能な水性顔料分散体を得ることができるためより好ましい。
 前記水性顔料分散体として、水性バイオレット顔料分散体を製造する場合であれば、前記バイオレット顔料は、前記顔料の全量に対し60~99質量%の範囲で使用することが好ましく、80~99質量%の範囲で使用することがより好ましい。
 前記グリーン顔料としては、例えばC.I.ピグメントグリーン1、4、7、8、10、17、18、36、50、58、76等を使用することができ、より一層優れた発色性を付与するうえでC.I.ピグメントグリーン36を使用することが好ましい。
 前記C.I.ピグメントグリーン36としては、その一次粒子径が150nm以下であるものを使用することが好ましく、10~100nmであるものを使用することがより好ましく、10~70nmであるものを使用することが最も好ましい。なお、上記一次粒子径の測定は、例えば透過型電子顕微鏡(TEM)を使用して測定した粒子径の値を採用することができる。
 前記水性顔料分散体として、水性グリーン顔料分散体を製造する場合であれば、前記グリーン顔料は、前記顔料の全量に対し60~99質量%の範囲で使用することが好ましく、80~99質量%の範囲で使用することがより好ましい。
 前記オレンジ顔料としては、例えばC.I.ピグメントオレンジ5、13、16、17、34、36、43、51、64、71等のオレンジ顔料を使用することができ、ピグメントオレンジ34またはピグメントオレンジ43を使用することが、耐光性が良好で高彩度の印刷物を得るうえで好ましい。
 前記C.I.ピグメントオレンジ34のオレンジ顔料としては、一次粒子径が100nm以下のものを使用することが、基本色のインクや水性顔料分散体に匹敵するレベルの分散性や、経時での物性変化を抑制可能なレベルの保存安定性を実現するうえで好ましい。また、前記C.I.ピグメントオレンジ34のオレンジ顔料の一次粒子径が30~100nmであるものを使用することが好ましく、40~80nmの範囲であるものを使用することが、保存安定性をより一層向上させるうえでより好ましい。
 前記C.I.ピグメントオレンジ43のオレンジ顔料としては、一次粒子径が150nm以下のものを使用することが、基本色のインクや水性顔料分散体に匹敵するレベルの分散性や、経時での物性変化を抑制可能なレベルの保存安定性を実現するうえで好ましい。また、前記C.I.ピグメントオレンジ43等のオレンジ顔料の一次粒子径が50~130nmであるものを使用することが好ましく、65~120nmの範囲であるものを使用することが、保存安定性をより一層向上させるうえでより好ましい。なお、上記一次粒子径の値は、以下の装置及び条件で測定した。
 はじめに、顔料(A)1質量部とエタノール99質量部とを混合したものを、コロジオン膜付きメッシュに滴下し乾燥させたものを測定試料とした。
 次に、前記測定試料の任意の1000個を、走査透過型電子顕微鏡(STEM、JSM-7500FA、日本電子株式会社製、加速電圧:30kv)を用いて観察し、長径の平均値を一次粒子径とした。
 前記バイオレット顔料、グリーン顔料及びオレンジ顔料は、いずれも、例えば乾式粉砕、湿式粉砕、ソルベントソルトミリング等を行うことによって前記した範囲に粒子径を調整したものを使用することが好ましい。しかし、乾式粉砕や湿式粉砕は、金属製のビーズを用いるため、不純物として金属が混入する可能性が高い。そこで、前記方法としては、金属の混入が低いソルベントソルトミリングを採用するのが好ましい。
 ソルベントソルトミリングとは、粗顔料と、無機塩と、有機溶剤とを少なくとも含む混合物を、ニーダー、2本ロールミル、3本ロールミル、トリミックス、アトライター等の混練機を用いて混練摩砕する方法である。
 前記ソルベントソルトミリングで使用可能な無機塩としては、水溶性無機塩を使用することが好ましく、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム等を用いることが好ましい。前記無機塩としては、一次粒子径0.5~50μmの無機塩を用いることがより好ましい。当該無機塩の使用量は、粗顔料1質量部に対して3~20質量部とするのが好ましく、5~15質量部とするのがより好ましい。
 前記ソルベントソルトミリングで使用可能な有機溶剤としては、結晶成長を抑制し得る有機溶剤を使用することが好ましく、このような有機溶剤としては水溶性有機溶剤が好適に使用でき、例えばジエチレングリコール、グリセリン、エチレングリコール、プロピレングリコール、液体ポリエチレングルコール、液体ポリプロピレングリコール、2-(メトキシメトキシ)エタノール、2-ブトキシエタノール、2-(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコールモノメチルエーテル、ジエチレングルコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコール等を用いることができる。
 前記有機溶剤は、粗顔料1質量部に対して0.01~5質量部が好ましい。
 前記ソルベントソルトミリングで混練摩砕する際の温度は、30~150℃であることが好ましい。混練摩砕する時間は、2時間から20時間であることが好ましい。
 以上の方法によって、一次粒子径が150nm以下である顔料と前記無機塩と前記有機溶剤との混合物を得ることができる。前記混合物を用いて本発明の水性顔料分散体及びインクを製造する際には、必要に応じて前記無機塩と前記有機溶剤を洗浄濾別した後、乾燥、粉砕したものを使用することができる。
 前記洗浄濾別工程では、水洗、湯洗のいずれも採用できる。また、前記顔料の結晶状態を変化させないように、酸やアルカリや溶剤を用いて洗浄してもよい。前記洗浄は、1~5回の範囲で繰り返し行うこともできる。前記無機塩及び有機溶剤として水溶性無機塩及び水溶性有機溶剤を用いた場合であれば、前記洗浄によって容易に水溶性無機塩及び水溶性有機溶剤を除去することが出来る。
 前記乾燥工程では、例えば、乾燥機に設置した加熱源による80~120℃の加熱等により、顔料の脱水及び/又は脱溶剤をする回分式あるいは連続式の乾燥方法を行うことが出来る。前記乾燥機としては、箱型乾燥機、バンド乾燥機、スプレードライヤー等を使用することができる。
 前記粉砕工程は、前記顔料の比表面積を大きくしたり一次粒子径をより一層小さくしたりするための工程ではなく、例えば箱型乾燥機やバンド乾燥機を用いた際に、前記顔料がランプ状等になったものを解して粉末化するために行ってもよい工程である。
 前記粉砕工程では、例えば、乳鉢、ジューサー、ハンマーミル、ディスクミル、ピンミル、ジェットミル等を使用することができる。
 前記ソルベントソルトミリングで得られた顔料は、前記顔料全体に対して70~100質量部含まれることが、より一層優れた保存安定性を備えた水性顔料分散体を得るうえで好ましく、100質量部に近いほどより好ましい。
 本発明で使用する顔料としては、前記バイオレット顔料、グリーン顔料及びオレンジ顔料の他に、必要に応じてその他の顔料を組み合わせ含有するものを使用することができる。
 前記その他の顔料としては、例えば、酸化鉄、コンタクト法、ファーネス法、サーマル法等の公知の方法によって製造されたカーボンブラック、酸化チタン等の無機顔料、アゾ顔料、(モノアゾ顔料、ジスアゾ顔料、ピラゾロン顔料等の不溶性アゾ顔料やベンズイミダゾロン顔料、ベータナフトール顔料、ナフトールAS顔料、縮合アゾ顔料などを含む)、多環式顔料(例えば、キナクリドン顔料、ペリレン顔料、ペリノン顔料、アントラキノン顔料、ジオキサジン顔料、チオインジゴ顔料、イソインドリノン顔料、イソインドリン顔料、キノフタロン顔料、ジケトピロロピロール顔料など)、フタロシアニン顔料、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレートなど)、ニトロ顔料、ニトロソ顔料、アニリンブラックなど有機顔料を使用することができる。前記顔料としては、単独または2種以上組み合わせ使用することができる。
 前記顔料としては、カーボンブラックであれば三菱ケミカル株式会社製のNo.2300、No.2200B、No.995、No.990、No.900、No.960、No.980、No.33、No.40、No,45、No.45L、No.52、HCF88、MA7、MA8、MA100等、コロンビア社製のRaven5750、Raven5250、Raven5000、Raven3500、Raven1255、Raven700等、キャボット社製のRegal 400R、Regal 330R、Regal 660R、Mogul L、Mogul 700、Monarch800、Monarch880、Monarch900、Monarch1000、Monarch1100、Monarch1300、Monarch1400等、オリオン・エンジニアドカーボンズ株式会社製のColor Black FW1、Color Black FW2、Color Black FW2V、Color Black FW18、Color Black FW200、Color Black S150、Color Black S160、Color Black S170、Printex 35、Printex U、Printex V、Printex 1400U、Special Black 6、Special Black 5、Special Black 4、Special Black 4A、NIPEX150、NIPEX160、NIPEX170、NIPEX180、NIPEX95、NIPEX90、NIPEX85、NIPEX80、NIPEX75等を使用することができる。
 前記顔料としては、C.I.ピグメントイエロー1、2、12、13、14、16、17、73、74、75、83、93、95、97、98、109、110、114、120、128、129、138、150、151、154、155、174、180、185等のイエロー顔料を使用することができる。
 前記顔料としては、C.I.ピグメントレッド5、7、12、48(Ca)、48(Mn)、57(Ca)、57:1、112、122、123、146、149、150、168、176、184、185、202、209、213、269、282等のマゼンタ顔料を使用することができる。
 前記顔料としては、C.I.ピグメントブルー1、2、3、15、15:1、15:2、15:3、15:4、15:6、16、22、60、63、66等のシアン顔料を使用することができる。
 前記顔料としては、ドライパウダーの状態のものや、ウェットケーキの状態のものを使用することができる。前記顔料としては、2種以上を含む混合物や固溶体を使用することができる。
 前記顔料は、前記組成物(a1)の全量に対して30~80質量%使用することが好ましく、35~75質量%使用することが、前記混練物(a2)の粘度を適度に保ち、混練装置から前記混練物(a2)にかかるシェアを大きくすることで、前記顔料の凝集物の粉砕と、前記樹脂の前記顔料への吸着とを効率よく並行して進行させることができ、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降発生の防止とを両立可能な優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができるため特に好ましい。
 (樹脂)
 前記組成物(a1)に使用可能な樹脂としては、例えば顔料分散樹脂を使用することができる。前記顔料分散樹脂としては、従来知られたものを使用できる。例えばラジカル重合体を使用することができ、芳香族環式構造または複素環式構造を有するラジカル重合体を使用することが好ましく、酸価60~300mgKOH/gのラジカル重合体を使用することが、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえでより好ましい。
 前記顔料分散樹脂としてアニオン性基を有するラジカル重合体を使用する場合には、後述するアニオン性基の一部または全部が塩基性化合物によって中和されたもの(中和物)を使用することが、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえで好ましい。
 前記芳香族環式構造または複素環式構造としては、後述する芳香族環式構造を有する単量体または複素環式構造を有する単量体を使用することによって前記ラジカル重合体に導入される環構造が挙げられる。
 前記芳香族環式構造としては、ベンゼン環構造を使用することが好ましく、スチレン由来の構造であることがより好ましい。
 前記芳香族環式構造または複素環式構造を有するラジカル重合体である顔料分散樹脂を使用することによって、前記顔料分散樹脂の前記顔料への吸着性を高めることができ、その結果、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を効率よく得ることが可能となる。
 また、前記顔料分散樹脂としては、酸価60~300mgKOH/gのものを使用することが、前記顔料分散樹脂の前記顔料への吸着性を向上でき、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降の発生の防止とを両立可能なレベルの優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができるため特に好ましい。具体的には、前記範囲の酸価を有する顔料分散樹脂は、前記工程[1]において後述する水溶性有機溶剤に全部溶解または一部溶解したり、水溶性有機溶剤によって膨潤しやすく、その結果、後述する塩基性化合物と塩(中和物)を形成しやすい。このような顔料分散樹脂が顔料に吸着することで顔料の親水性が著しく向上し、その結果、より一層優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができる。
 前記酸価は、カルボキシ基、スルホ基、リン酸基等のアニオン性基に由来する酸価である。前記酸価は、80~250mgKOH/gの範囲であることが好ましく、100~200mgKOH/gの範囲であることが、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえで特に好ましい。
 なお、前記酸価は、溶剤としてジエチルエーテルの代わりにテトラヒドロフランを用いること以外は、日本工業規格「K0070:1992. 化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」にしたがって測定された数値であり、樹脂1gを完全に中和するのに必要な水酸化カリウムの量(mg)を指す。
 前記顔料分散樹脂に使用可能な前記ラジカル重合体としては、例えば各種単量体をラジカル重合することによって得られた重合体を使用することができる。
 前記単量体としては、前記顔料分散樹脂に芳香族環式構造を導入する場合であれば芳香族環式構造を有する単量体を使用することができ、複素環式構造を導入する場合であれば複素環式構造を有する単量体を使用することができる。
 前記芳香族環式構造を有する単量体としては、例えばスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン、p-tert-(1-エトキシメチル)スチレン、m-クロロスチレン、p-クロロスチレン、p-フロロスチレン、α-メチルスチレン、p-メチル-α-メチルスチレン、ビニルナフタレン、ビニルアントラセン等を使用することができる。
 前記複素環式構造を有する単量体としては、例えば2-ビニルピリジン、4-ビニルピリジン等のビニルピリジン系単量体を使用することができる。
 前記ラジカル重合体として芳香族環式構造及び複素環式構造の両方を有するものを使用する場合、前記単量体として、芳香族環式構造を有する単量体及び複素環式構造を有する単量体を組合せ使用することができる。
 本発明では、前記顔料分散樹脂として芳香族環式構造を有するラジカル重合体を使用することが好ましいことから、前記単量体としても芳香族環式構造を有する単量体を使用することが好ましく、スチレン、α-メチルスチレン、tert-ブチルスチレンを使用することがより好ましい。
 前記芳香族環式構造または複素環式構造を有する単量体は、前記顔料分散樹脂の前記顔料への吸着性をより一層高めるうえで、前記単量体の全量に対して20質量%以上使用することが好ましく、40質量%以上使用することがより好ましく、更に95質量%以下の範囲で使用することがより好ましい。
 また、前記顔料分散樹脂としては、前記した特定範囲の酸価を有するラジカル重合体を製造するうえで、前記単量体としてアニオン性基を有する単量体を使用することができる。
 前記アニオン性基を有する単量体としては、例えばカルボキシ基、スルホ基またはリン酸基等のアニオン性基を有する単量体を使用することができる。
 前記アニオン性基を有する単量体としては、入手しやすく、カルボキシ基を有する単量体を使用することが、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえで好ましく、アクリル酸またはメタクリル酸を使用することがより好ましい。
 前記アニオン性基を有する単量体は、前記顔料分散樹脂の製造に使用可能な前記単量体の全量に対して5質量%~80質量%の範囲で使用することが好ましく、5質量%~60質量%で使用することが、前記した所定範囲の酸価を有するラジカル重合体を得るうえでより好ましい。
 また、前記顔料分散樹脂の製造に使用可能な単量体としては、前記したもの以外に、必要に応じてその他の単量体を使用することができる。
 前記その他の単量体としては、例えばメチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、1,3-ジメチルブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、3-エトキシプロピル(メタ)アクリレート、3-エトキシブチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、エチル-α-(ヒドロキシメチル)(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、グリセリン(メタ)アクリレート、ビスフェノールA(メタ)アクリレート、マレイン酸ジメチル、マレイン酸ジエチル、酢酸ビニル等を単独または2種以上組合せ使用することができる。なお、上記「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを指す。したがって実施の使用に際しては、アクリル酸エステル系単量体をそれぞれ単独で用いても良いし、あるいはこれらを任意の割合で混合して用いても良い。
 また、前記顔料分散樹脂としては、前記単量体のラジカル重合によって形成される構造が線状(リニア)である重合体、分岐(グラフト)した構造を有する重合体、架橋した構造を有する重合体を使用することができる。それぞれの重合体において、モノマー配列は特に限定することはなく、ランダム型やブロック型配列の重合体を使用することができる。
 前記架橋構造を有する重合体は、前記単量体として架橋性官能基を有する単量体を使用することによって製造することができる。
 前記架橋性官能基を有する単量体としては、例えばエチレングリコールジ(メタ)アクリレート、プロピレングルコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリ(オキシエチレンオキシプロピレン)グリコールジ(メタ)アクリレート、グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート等の多価アルコールのポリ(メタ)アクリレート;グリシジル(メタ)アクリレート、ジビニルベンゼン等を使用することができる。
 本発明で使用する前記顔料分散樹脂としては、前記した単量体の重合体を使用できるが、アニオン性基を有する単量体及び芳香族環式構造または複素環式構造を有する単量体のみを重合して得られる重合体を使用することが好ましい。
 本発明で使用する顔料分散樹脂としては、前記したなかでも、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸系エステル-(メタ)アクリル酸重合体等のスチレン構造単位と(メタ)アクリル酸構造単位とを有する重合体を使用することが好ましく、それらのうち、前記した好ましい範囲の酸価を有するものを使用することが、経時的な粗大粒子の発生をより一層効果的に防止でき、かつ、顔料等の経時的な沈降の発生をより一層効果的に防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえで好ましい。
 前記スチレン-(メタ)アクリル酸共重合体としては、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-アクリル酸-メタクリル酸共重合体のいずれも使用できるが、スチレン-アクリル酸-メタクリル酸共重合体を使用することが、前記単量体の共重合性が向上して、その結果、経時的な粗大粒子の発生をより一層効果的に防止でき、かつ、顔料等の経時的な沈降の発生をより一層効果的に防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体が得られるため好ましい。
 前記スチレン-(メタ)アクリル酸共重合体としては、その製造に使用する単量体の全量に対するスチレンとアクリル酸とメタクリル酸との合計量が80質量%~100質量%であるものを使用することが好ましく、90質量%~100質量%のものを使用することがさらに好ましい。
 前記ラジカル重合体は、例えば前記した単量体を、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の方法でラジカル重合することによって製造することができる。
 前記ラジカル重合体を製造する際には、必要に応じて公知慣用の重合開始剤、連鎖移動剤(重合度調整剤)、界面活性剤及び消泡剤を使用することができる。
 前記重合開始剤としては、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、ベンゾイルパーオキサイド、ジブチルパーオキサイド、ブチルパーオキシベンゾエート等が挙げられる。前記重合開始剤は、前記ラジカル重合体の製造に使用する単量体の全量に対して0.1質量%~10質量%の範囲で使用することが好ましい。
 前記顔料分散樹脂としては、その重量平均分子量が2000~40000の範囲内であるものを使用することが好ましく、5000~30000の範囲内にあることがより好ましく、5000~20000範囲内にあることが、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能なより一層優れた分散安定性及び吐出安定性を備えたインクの製造に使用可能な水性顔料分散体を得るうえで特に好ましい。
なお、前記重量平均分子量とはGPC(ゲル浸透クロマトグラフィー)法で測定される値であり、標準物質として使用するポリスチレンの分子量に換算した値である。
 前記顔料分散樹脂として前記溶液重合法で得られたラジカル重合体を使用する場合、前記顔料分散樹脂としては、前記溶液重合法で得られたラジカル重合体溶液に含まれる溶媒を除去した後、乾燥、粉砕し微粒子化したものを使用することができる。
 前記微粒子化されたラジカル重合体である顔料分散樹脂は、前記工程[1]において後述する水溶性有機溶剤に全部溶解または一部溶解したり、水溶性有機溶剤によって膨潤しやすく、その結果、顔料に吸着しやすくなることで、より一層優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができる。
 前記顔料分散樹脂としては、メッシュ状のふるいにより分級したものを使用してもよく、その粒子径が概ね1mm以下であるものを使用することが好ましい。
 前記組成物(a1)としては、前記顔料に対する前記顔料分散樹脂の重量比率が、5質量%~200質量%の範囲であるものを使用することが好ましく、10質量%~100質量%の範囲であるものを使用することが、前記工程[1]において、前記混練物(a2)を適正な粘度で混練でき、前記顔料分散樹脂を前記顔料に吸着させやすく、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降発生の防止とを両立可能な優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができるためより好ましい。
 本発明で使用する樹脂としては、前記顔料分散樹脂のほかに、必要に応じてバインダー樹脂等を使用することもできる。
 また、前記工程[1]で使用する前記組成物(a1)としては、前記顔料及び前記顔料分散樹脂の他に必要に応じて塩基性化合物を含有するものを使用することができる。
 前記塩基性化合物は、前記顔料分散樹脂がアニオン性基を有する場合に、そのアニオン性基を中和する。前記顔料分散樹脂が前記塩基性化合物によって中和されることで、前記顔料分散樹脂が吸着した前記顔料の水媒体への親和性が高まる。その結果、前記水性顔料分散体中の顔料粒子の分散状態がより安定となり、経時的な粗大粒子の発生をより効果的に防止でき、かつ、顔料等の経時的な沈降の発生をより一層効果的に防止となる。
 前記塩基性化合物としては、例えば無機系塩基性化合物、有機系塩基性化合物を使用することができる。
 前記塩基性化合物としては、公知のものを使用でき、例えばカリウム、ナトリウムなどのアルカリ金属の水酸化物;カリウム、ナトリウムなどのアルカリ金属の炭酸塩;カルシウム、バリウムなどのアルカリ土類金属などの炭酸塩;水酸化アンモニウム等の無機系塩基性化合物や、トリエタノールアミン、N,N-ジメタノールアミン、N-エチルエタノールアミン、ジメチルエタノールアミン、N-ブチルジエタノールアミンなどのアミノアルコール類、モルホリン、N-メチルモルホリン、N-エチルモルホリンなどのモルホリン類、N-(2-ヒドロキシエチル)ピペラジン、ピペラジンヘキサハイドレートなどのピペラジン等の有機系塩基性化合物が挙げられる。なかでも、前記塩基性化合物としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウムに代表されるアルカリ金属水酸化物を使用することが、前記顔料分散樹脂の中和効率に優れるため、前記顔料分散樹脂が吸着した前記顔料の水性媒体に対する分散安定性が向上するため好ましく、特に水酸化カリウムが好ましい。
 前記塩基性化合物は、前記顔料分散樹脂としてアニオン性基を有するものを使用する場合であれば、前記顔料分散樹脂の中和率が80%~120%となる範囲で使用することが、中和された前記顔料分散樹脂の水性媒体に対する親和性を高め、その結果、前記顔料分散樹脂が吸着した前記顔料の水中での分散安定性が向上するため好ましい。
 中和率(%)=((塩基性化合物の質量(g)×56×1000)/(顔料分散樹脂の酸価×塩基性化合物の当量×顔料分散樹脂の質量(g)))×100
 また、前記工程[1]で使用する前記組成物(a1)としては、前記したものの他に、必要に応じて水溶性有機溶剤や水性媒体等の溶媒を含有するものを使用することができる。
 前記水溶性有機溶剤は、前記工程[1]において、前記顔料分散樹脂の一部もしくは全部を溶解または膨潤させやすく、その結果、前記顔料分散樹脂が前記顔料に吸着しやすくなる。これにより、より一層優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得ることができる。
 前記水溶性有機溶剤としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール類;ブタンジオール、ペンタンジオール、ヘキサンジオールなどのジオール類;ラウリン酸プロピレングリコールなどのグリコールエステル;ジエチレングリコールモノエチル、ジエチレングリコールモノブチル、ジエチレングリコールモノヘキシル、カルビトールなどのジエチレングリコールエーテル類;プロピレングリコールエーテル、ジプロピレングリコールエーテル、およびトリエチレングリコールエーテルを含むセロソルブなどのグリコールエーテル類;メタノール、エタノール、イソプロピルアルコール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、ブチルアルコール、ペンチルアルコールなどのアルコール類;スルホラン、エステル、ケトン、γ-ブチロラクトンなどのラクトン類、N-(2-ヒドロキシエチル)ピロリドンなどのラクタム類、グリセリンおよびそのポリアルキレンオキサイド付加物など、水性有機溶剤として知られる他の各種の溶剤などを挙げることができる。これらの水性有機溶剤は、単独または2種以上組み合わせて使用することができる。
 なかでも、前記水溶性有機溶剤としては、湿潤剤として機能する高沸点、低揮発性で、高表面張力の多価アルコール類、及び、グリセリンの誘導体類を使用することが好ましく、特にジエチレングリコール、トリエチレングリコール等のグリコール類、及び、グリセリンのポリエチレンオキサイド付加物等のグリセリンのポリオキシアルキレン付加物を使用することが好ましい。
 前記水溶性有機溶剤は、前記工程[1]において、前記顔料の質量に対して、10質量%~200質量%の範囲で使用することが好ましく、15質量%~150質量%の範囲で使用することが、より一層優れた分散安定性と吐出安定性とを備えたインクの製造に使用可能な水性顔料分散体を得るうえでより好ましい。
 また、前記工程[1]で使用する前記組成物(a1)としては、前記顔料や前記顔料分散樹脂等の樹脂の他に必要に応じて顔料誘導体を含有するものを使用することができる。
 前記顔料誘導体は、本発明の水性顔料分散体およびそれを用いたインクに、経時的な粗大粒子の発生防止と、顔料等の経時的な沈降の発生防止を可能にする分散安定性を付与することができる。
 前記顔料誘導体としては、顔料に後述する特定の官能基を導入したものを使用することができる。前記顔料としては、フタロシアニン系顔料、アゾ系顔料、アントラキノン系顔料、キナクリドン系顔料、ジケトピロロピロール系顔料が挙げられる。前記官能基としては、カルボキシ基、スルホ基、アミノ基、ニトロ基、酸アミド基、カルボニル基、カルバモイル基、フタルイミド基、スルホニル基が挙げられる。
 前記溶媒の一部または全部に使用する水としては、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水、または超純水を用いることができる。また、前記水としては、紫外線照射または過酸化水素添加等によって滅菌された水を用いることが、水性顔料分散体やそれを使用したインク等を長期保存する場合に、カビまたはバクテリアの発生を防止することができるため好適である。
 前記工程[1]において、前記組成物(a1)の混練に使用可能な混練機としては、例えばヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、トリミックス、プラネタリーミキサー等を使用することができる。前記混練機としては、特にプラネタリーミキサーを使用することが、不揮発分50質量%以上の前記組成物(a1)に強いせん断力を与えることができ、前記顔料の凝集物の粉砕と、前記顔料分散樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
 また、前記プラネタリーミキサーは、前記組成物(a1)の粘度が広範なものであっても、前記顔料の凝集物の粉砕と、前記顔料分散樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
 また、前記プラネタリーミキサーは、前記工程[1]終了後に、前記ミキサー内に水性媒体を供給する工程[2]を引き続き行うことができるため好ましい。
 前記工程[1]において前記組成物(a1)を混練する際の前記組成物(a1)の温度は、前記組成物(a1)に十分な剪断力が加わるように、前記顔料分散樹脂のガラス転移点等の温度特性を考慮して適宜調整することが好ましい。具体的には、前記混練する際の前記組成物(a1)の温度の上限は、好ましくは前記顔料分散樹脂のガラス転移温度(Tg)である。一方、前記混練する際の前記組成物(a1)の温度の下限は、好ましくは前記顔料分散樹脂のガラス転移温度よりも60℃低い温度である。前記組成物(a1)の混練を前記温度範囲内で行うことによって、前記組成物(a1)に十分なせん断力を与えることが可能となり、その結果、前記顔料の凝集物の粉砕と、前記顔料分散樹脂の前記顔料への吸着のしやすさを高めることができるため好ましい。
 また、前記工程[1]では、前記組成物(a1)の温度上昇による著しい粘度の低下を引き起こす場合がある。前記組成物(a1)の粘度が低下すると、前記組成物(a1)に十分なせん断力を加えることができない場合があるため、前記工程[1]では、その途中で、後述する水性媒体等を添加し、意図的に前記組成物(a1)を冷却してもよい。
 なお、前記顔料分散樹脂のガラス転移温度(Tg)は、前記顔料分散樹脂の製造に使用された各単量体の単独重合体のガラス転移温度に基づきFOXの式を用いて算出された値を指す。
 1/Tg=W1/Tg1+W2/Tg2+W3/Tg3・・・・・+Wn/Tgn
(式中、Tgnは前記顔料分散樹脂の製造に使用された各単量体の単独重合体のガラス転移温度(K)、Wnは単量体の質量分率)
 前記混練装置としては、閉鎖型混練装置を使用することが好ましい。前記閉鎖型混練装置を使用することによって、水溶性有機溶剤の含有量が前記工程[1]中で著しく変化することを防止でき、その結果、水性顔料分散体の生産効率をより一層向上することができる。
 なお、前記「著しく変化」とは、前記組成物(a1)の質量に対する、工程[1]終了後に得られた前記混練物(a2)の質量の割合が90質量%未満となる状態を指す。
 前記閉鎖型混練装置としては、例えば撹拌槽と、一軸または多軸の撹拌羽根を備えた混練装置を使用することができる。
 前記閉鎖型混練装置としては、高い混練作用を得るうえで、二つ以上の攪拌羽根を有するものを使用することが好ましい。
 前記工程[1]で得られた前記混練物(a2)は、前記顔料の凝集体が解砕され、微粒化した前記顔料に前記顔料分散樹脂が吸着した、常温条件下で半固形または固形状態のものである。
 (工程[2]の説明)
 本発明の水性顔料分散体の製造方法を構成する前記工程[2]は、前記工程[1]で得られた前記混練物(a2)と水性媒体と、必要に応じてその他の成分とを混合することによって前記組成物(a3)を製造する工程である。
 前記工程[2]では、前記混練物(a2)に前記水性媒体等を供給し混合してもよく、前記水性媒体等に前記混練物(a2)を供給し混合してもよい。
 前記工程[1]においてプラネタリーミキサー等の閉鎖型混練装置を用いた場合には、前記混練物(a2)を含む前記混練装置に、水性媒体等を供給し混合することが、水性顔料分散体の製造効率を向上するうえで好ましい。この場合、前記混練装置が稼動した状態(前記混練物(a2)の撹拌が継続された状態)で、前記混練物(a2)の温度が低下する前に水性媒体を供給することが、前記混練物(a2)の前記水性媒体中への分散効率と前記組成物(a3)の生産効率を向上させるうえで好ましい。前記水性媒体としては、前記混練物(a2)の温度の著しい低下を抑制するうえで、25℃~65℃の水を使用することが好ましい。
 また、前記混練物(a2)に前記水性媒体を供給する方法としては、一括して供給する方法や、連続的または断続的に供給する方法が挙げられる。前記水性媒体を供給する方法としては、連続的または断続的に供給する方法を採用することが、前記水性媒体への前記混練物(a2)の分散を効率的に行え、前記水性顔料分散体の製造に要する時間を短縮できるため好ましい。
 前記水性媒体としては、例えば水、水と容易に混ざり合う水溶性有機溶剤、または、水と水溶性有機溶剤との混合物を使用することができる。前記水溶性有機溶剤としては、前記工程[1]で使用可能なものとして例示したものと同様のものを1種または2種以上組み合わせ使用することができる。
 前記工程[1]及び[2]を経ることによって得られた前記組成物(a3)は、前記顔料分散樹脂が吸着した前記顔料が、水性媒体中に分散した液体状のものである。
 前記組成物(a3)は、前記組成物(a3)の全量に対する不揮発分が10質量%~30質量%であることが好ましく、12質量%~25質量%であることがより好ましい。
 本発明では、前記工程[2]で得られた前記組成物(a3)を、前記工程[3]の前に、必要に応じて、分散装置を用いて分散処理を行ってもよい。前記分散装置としては、例えば、メディアを用いたものとして、ペイントシェーカー、ボールミル、アトライター、バスケットミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、SCミル、スパイクミル、アジテーターミル等を使用することができ、メディアを用いないものとして超音波ホモジナイザー、高圧ホモジナイザー、ナノマイザー、デゾルバー、ディスパー、高速インペラー分散機等を使用することができる。
 また、前記組成物(a3)中に多価金属イオン等の不純物が含まれる場合、本発明では、前記工程[2]で得られた前記組成物(a3)を、前記工程[3]の前に、必要に応じて、キレート樹脂を用いて不純物を除去する処理を行うことが好ましい。
 インクジェット印刷方式としては、ピエゾ方式とサーマル方式とが知られている。特にサーマル方式では、インクを吐出する際のノズル内部の急激な温度上昇により、ノズル内部の発熱抵抗素子表面に、顔料分散樹脂等の樹脂と多価金属イオンとの凝集物や、前記多価金属イオン由来の多価金属塩などの凝集物が堆積するコゲーションという現象が発生する場合がある。前記凝集物は、インクの吐出不良の原因となるため、インクジェット記録用インクには、多価金属イオンの低減が強く望まれている。
 前記多価金属イオンを低減する方法としては、例えば、水性顔料インクや水性顔料分散体にキレート形成基を持つ粒子又は繊維状樹脂を接触させて多価金属を取り除く方法が挙げられる。
 (工程[3]の説明)
 本発明の水性顔料分散体の製造方法を構成する前記工程[3]は、少なくとも前記工程[1]及び前記工程[2]を経ることによって得られた前記組成物(a3)を、30℃~70℃の範囲内で遠心分離処理する工程である。
 前記組成物(a3)には、前記顔料の凝集体の未粉砕物や前記顔料分散樹脂の未溶解物や、前記顔料分散樹脂が十分吸着していない顔料等の前記粗大粒子等の原因となりうる成分が、ごくわずかに残留する場合がある。そのため、産業界では、前記成分の含有量の低減が検討されていた。
 しかし、高精細な印刷物の製造に使用可能な微細化され、かつ、高密度化されたインク吐出ノズルは、インク中の極僅かな粗大粒子や沈殿物の影響によって目詰まりやインクの吐出方向の異常を発生させやすく、その結果、印刷物にスジ等が発生させる場合があった。とりわけ、一般にラインヘッドによるシングルパス方式でのインクジェット印刷法では、いわゆるマルチパス方式(スキャン方式)でのインクジェット印刷法と比較して、吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしやすい場合があった。
 本発明では、前記組成物(a3)を製造した後に、所定の条件下で遠心分離処理することによって、微細化されかつ高密度化されたインク吐出ノズルに適用した場合であってもインク吐出ノズルの目詰まり等を引き起こさないインクの製造に使用可能な水性顔料分散体を見出した。
 ここで、本発明でいう粗大粒子は、Particle Sizing Systems社製の個数カウント方式による粒度分布計(Accusizer 780 APS)を用いて測定された粒子径が直径0.5μm以上のものを指す。
 前記工程[3]では、単に遠心分離処理をすればよいわけではなく、30℃~70℃の範囲で遠心分離処理する。30℃未満の温度下で前記工程[3]を行った場合、前記組成物(a3)の粘度が高くなり、効率よく、かつ、実用上十分に粗大粒子を除去することが困難な可能性がある。また、70℃を超える温度下で前記工程[3]を行った場合、前記組成物(a3)から水が蒸発しやすくなり粘度が高くなりやすく、効率よく、かつ、実用上十分に粗大粒子を除去することが困難な可能性がある。
 前記工程[3]では、40℃~65℃の範囲で遠心分離処理することが、効率よく、かつ、実用上十分に粗大粒子を除去するうえでより好ましい。なお、前記温度は、遠心分離される前記組成物(a3)の温度を指す。
 前記組成物(a3)は、遠心分離装置に供給される前に、例えば熱交換装置等を用いて予め30℃~70℃に温度調整されていてもよく、遠心分離装置として温度設定機能を有するものを使用する場合には、遠心分離装置に供給された後、前記温度範囲に調整されてもよい。
 加温された前記組成物(a3)は、低粘度化されることによって、遠心分離効率が向上し、効率良く粗大粒子を取り除くことができる。また、前記組成物(a3)を上記の温度範囲で制御することにより、外気温による影響が受けにくくなり、粗大粒子の少ない水性顔料分散体を安定的に製造することができる。
 前記遠心分離処理される前記組成物(a3)としては、25℃での粘度が13mPa・s以下であるものを使用することが、前記組成物(a3)から粗大粒子を一層効率よく、かつ、実用上十分に取り除くことができるため好ましい。
 とりわけ、遠心分離装置として、後述する円筒型の遠心分離装置を使用する場合には、前記組成物(a3)として25℃での粘度が10.5mPa・s以下であることが好ましく、2mPa・s~10.5mPa・sであるものことが、前記組成物(a3)から粗大粒子をより一層効率よく、かつ、実用上十分に取り除くことができるためより好ましい。
 前記遠心分離装置としては、ローターの形状が円筒型の遠心分離装置を使用することが、前記粗大粒子を含む粘土状のスラッジがローター内に堆積したことに起因する遠心分離効率の低下を効果的に抑制できるため好ましい。
 前記工程[1]及び前記工程[2]を経て得られた前記組成物(a3)は、前記顔料の粗大粒子、前記顔料の未粉砕物、または前記顔料分散樹脂の未溶解物等のさまざまな大きさの粗大粒子が含まれやすい。前記円筒型遠心分離装置を用いて前記工程[3]を行うことによって、生産性を損ねることなく、上記の粗大粒子を効率よく、かつ、継続的に除去でき、その結果、経時的な粗大粒子の発生抑止と、顔料等の経時的な沈降発生の防止とを両立可能な優れた分散安定性を得ることができる。
 また、前記工程[3]は、前記円筒型遠心分離機が備えるローターに前記組成物(a3)を供給し、前記組成物(a3)の温度を30℃~70℃の範囲内に維持した状態で行う工程であることが、安定的に好適な遠心分離効率を長期間維持でき、前記組成物(a3)から粗大粒子をより一層効率的かつ十分に取り除くことができるため好ましい。その際、前記ローターの容積に対する前記組成物(a3)の供給量(体積)の比率[組成物(a3)の供給量(体積)/ローターの容積]×100は、1000%~8000%であることが好ましく、2000~7000%であることが、粗大粒子ではない顔料等の成分が取り除かれることを抑制できる一方で、前記組成物(a3)から粗大粒子をより一層効率的に取り除くことができためより好ましい。
 前記遠心分離装置の遠心加速度は、8000G~20000Gの範囲であることが好ましく、9000~20000Gの範囲であることが、前記顔料分散樹脂が顔料から引き剥がされることを防止でき、かつ、前記組成物(a3)から粗大粒子を効率良く取り除くことができるためより好ましい。
 なお、前記遠心加速度は、相対遠心加速度を意味し、下記式により定義される。
 遠心加速度(G)=r×(2πN/60)/g
(式中、Nは1分当たりの回転数(rpm)、rは回転半径(m)、gは重力加速度(9.8m/s)、πは円周率を指す)
 以上のとおり、少なくとも前記工程[1]、前記工程[2]及び前記工程[3]を経ることによって得られた水性顔料分散体は、経時的な粗大粒子の発生を防止でき、かつ、顔料等の経時的な沈降の発生を防止可能な分散安定性を備え、かつ、優れた吐出安定性を備えたインクの製造に使用可能な水性顔料分散体である。
 前記水性顔料分散体は、所望の濃度に希釈することによってインクとして使用することができる。
 前記インクとしては、例えば自動車や建材用の塗料や、オフセットインキ、グラビアインキ、フレキソインキ、シルクスクリーンインキ等の印刷インキ、あるいはインクジェット印刷用インク等が挙げられる。
 前記インクをインクジェット記録用インクとして使用する場合には、インク全量に対する顔料の濃度が1質量%~10質量%であるものを使用することが好ましい。
 前記インクは、本発明の水性顔料分散体と、必要に応じて水溶性有機溶剤や水等の溶媒と、バインダーとしてアクリル系樹脂やポリウレタン系樹脂等の樹脂と、乾燥抑止剤、浸透剤、界面活性剤、防腐剤、粘度調整剤、pH調整剤、キレート剤、可塑剤、酸化防止剤、紫外線吸収剤等の添加剤とを混合することによって製造することができる。前記インクは、前記方法で製造した後に、遠心分離処理やろ過処理を施してもよい。
 前記水溶性有機溶剤は、前記インクの乾燥を防止し、インクの粘度や濃度を好適な範囲に調整するうえで使用することができる。
 前記水溶性有機溶剤としては、前記水性顔料分散体の前記工程[1]で使用可能なものとして例示したものと同様のものを使用することができる。なかでも、水溶性有機溶剤としては、被記録媒体へのインクの浸透性を高めるうえで、例えばエタノール、イソプロピルアルコールなどの低級アルコール;エチレングリコールヘキシルエーテル、ジエチレングリコールブチルエーテルなどのアルキルアルコールのエチレンオキシド付加物;プロピレングリコールプロピルエーテルなどのアルキルアルコールのプロピレンオキシド付加物などが挙げられる。
 前記乾燥防止剤としては、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリエチレングリコールモノ-n-ブチルエーテル、分子量2000以下のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロピレングリコール、イソプロピレングリコール、イソブチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、メソエリスリトール、ペンタエリスリトール等が挙げられる。なかでも、前記乾燥防止剤としては、グリセリン、トリエチレングリコールを使用することが、安全性を有し、かつインクが乾燥しにくく、吐出性能に優れたインクを得ることができる。
 なお、前記乾燥防止剤は、水性顔料分散体で使用する前述の水溶性有機溶剤と同じ化合物を使用することができる。従って水性顔料分散体に既に水溶性有機溶剤を使用している場合、乾燥防止剤としての役割を兼ねることできる。
 前記浸透剤は、記録媒体への浸透性改良や記録媒体上でのドット径調整を目的として使用することができる。
 浸透剤としては、例えばエタノール、イソプロピルアルコール等の低級アルコール;エチレングリコールヘキシルエーテル、ジエチレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のアルキルアルコールのグリコールモノエーテルが挙げられる。インク中の浸透剤の含有量は0.01~10質量%であることが好ましい。
 前記界面活性剤は、表面張力等のインク特性を調整するために使用することができる。界面活性剤としては、特に限定されるものではなく、各種のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などが挙げられ、これらの中では、アニオン性界面活性剤、ノニオン性界面活性剤が好ましい。
 アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルフェニルスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルの硫酸エステル塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩及びスルホン酸塩、高級アルキルスルホコハク酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩等が挙げられ、これらの具体例として、ドデシルベンゼンスルホン酸塩、イソプロピルナフタレンスルホン酸塩、モノブチルフェニルフェノールモノスルホン酸塩、モノブチルビフェニルスルホン酸塩、ジブチルフェニルフェノールジスルホン酸塩などを挙げることができる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、脂肪酸アルキロールアミド、アルキルアルカノールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマー等を挙げることができ、これらの中では、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルキロールアミド、アセチレングリコール、アセチレングリコールのオキシエチレン付加物、ポリエチレングリコールポリプロピレングリコールブロックコポリマーが好ましい。
 その他の界面活性剤として、ポリシロキサンオキシエチレン付加物のようなシリコーン系界面活性剤;パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、オキシエチレンパーフルオロアルキルエーテルのようなフッ素系界面活性剤;スピクリスポール酸、ラムノリピド、リゾレシチンのようなバイオサーファクタント等も使用することができる。
 前記界面活性剤は、単独または2種類以上を組み合わせ使用することができる。前記界面活性剤の使用量は、前記インクの全質量に対し0.001質量%~2質量%の範囲であることが好ましく、0.001質量%~1.5質量%の範囲であることがより好ましく、0.01質量%~1質量%の範囲であることが、印刷画像のにじみ等をより効果的に防止するうえでさらに好ましい。
 上記方法で得られたインクは、インクジェット記録用インクとして好適に用いることができる。インクジェット記録方式としては、連続噴射型(荷電制御型、スプレー型など)、オンデマンド型(ピエゾ方式、サーマル方式、静電吸引方式など)などが挙げられる。なかでも、インクジェット記録方式として、一般に、マルチパス方式(スキャン方式)のインクジェット印刷法と比較して吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしやすいラインヘッドによるシングルパス方式でのインクジェット記録方式を選択し、本発明のインクと組み合わせ使用する印刷方法や印刷物の製造方法が、吐出ノズルの目詰まり等に起因した画像品質の低下を引き起こしにくく、スジ等の発生が抑制された印刷物を得るうえで好ましい。
 以下、本発明を実施例により具体的に説明する。
 (顔料分散樹脂)
 顔料分散樹脂Aとして、スチレン77質量部とアクリル酸10質量部とメタクリル酸13質量部との重合体(重量平均分子量11000、酸価150mgKOH/g、単独重合体のガラス転移温度に基づきFOXの式から算出した計算ガラス転移温度(Tg)113℃)を使用した。
 顔料分散樹脂Bとして、スチレン83質量部とアクリル酸7質量部とメタクリル酸10質量部との重合体(重量平均分子量11000、酸価120mgKOH/g、上記式から算出した計算ガラス転移温度(Tg)110℃)を使用した。
 顔料分散樹脂Cとして、スチレン72質量部とアクリル酸12質量部とメタクリル酸16質量部との重合体(重量平均分子量11000、酸価180mgKOH/g、上記式から算出した計算ガラス転移温度(Tg)116℃)を使用した。
 前記顔料分散樹脂の製造に使用した各単量体の単独重合体のガラス転移温度(Tg)は、POLYMER HANDBOOK THIRD EDITION(A WILEY-INTERSCIENCE PUBLICATION)に収録された下記値を使用した。スチレンホモポリマー(Tg:100℃)、メタクリル酸ホモポリマー(Tg:228℃)、アクリル酸ホモポリマー(Tg:106℃)。
 顔料分散樹脂A~Cの重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)法で測定した値であり、ポリスチレン分子量に換算した値である。測定条件は以下の通りである。
送液ポンプ:LC-9A
システムコントローラー:SLC-6B
オートインジェクター:S1L-6B
検出器:RID-6A
 以上 (株)島津製作所製
データ処理ソフト:Sic480IIデータステーション(システムインスツルメンツ 社製)。
カラム:GL-R400(ガードカラム)+GL-R440+GL-R450+GL-R400M(日立化成工業(株)製)
溶出溶媒:テトラヒドロフラン(THF)
溶出流量:2mL/min.
カラム温度:35℃
 酸価は、溶剤としてジエチルエーテルの代わりにテトラヒドロフランを用いること以外は日本工業規格「K0070:1992. 化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」にしたがって測定した。
 水性顔料分散体の粘度は、25℃に恒温した水性顔料分散体を試料とし、ViscometerTVE-22L(東機産業(株)製)を用いて測定した。
 (実施例1)
 プラネタリーミキサー(株式会社井上製作所製PLM-50)の50Lジャケット付タンクに、3.0質量部の顔料分散樹脂Aと、10.0質量部のC.I.ピグメントバイオレット23を順番に投入し、ジャケット付タンクの温度を60℃に加温した後、5.0質量部のトリエチレングリコールと、1.3質量部の34質量%の水酸化カリウム水溶液を順番に供給することによって組成物(a1-1)を得た。組成物(a1-1)の不揮発分は69.6質量%であった。
 (工程[1])
 ジャケット付タンクの温度を60℃に保温した状態で、前記組成物(a1-1)を、自転回転数30rpm、公転回転数10rpmで10分間撹拌、混練した後、自転回転数51rpm、公転回転数17rpmで60分間混練することによって、固形状の混練物(a2-1)を得た。
 (工程[2])
 前記混練物(a2-1)に、60℃に加温したイオン交換水を少量ずつ添加し撹拌することで顔料濃度を15.2質量%に調整した後、さらに60℃に加温したイオン交換水で希釈したトリエチレングリコールを供給し、混合することによって、顔料濃度が14.7質量%、トリエチレングリコール濃度が14.7質量%、不揮発分が19.5質量%の組成物(a3-1)を得た。前記組成物(a3-1)の25℃における粘度は、4.0mPa・sであった。
 (工程[3])
 前記組成物(a3-1)を、熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で60℃に加温した後、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)に1.0L/分の送液速度で供給し、20000Gの遠心加速度で連続的に遠心分離処理を行うことによって、水性顔料分散体(a4-1)を得た。前記ローターの容積に対する前記組成物(a3-1)の供給量(体積)の比率[組成物(a3-1)の供給量(体積)/ローターの容積]×100は、2700%であった。
 (実施例2)
 前記組成物(a3-1)を熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で加温する温度を60℃から40℃に変更したこと以外は、実施例1と同様の方法で水性顔料分散体(a4-2)を得た。
 (比較例1)
 前記組成物(a3-1)を熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で加温する温度を60℃から20℃に変更したこと以外は、実施例1と同様の方法で水性顔料分散体(a4-1‘)を得た。
 (比較例2)
 前記組成物(a3-1)を熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で加温する温度を60℃から20℃に変更し、かつ、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)の代わりに円錐台の形状のローターを有する遠心分離機(H-600S、ローター容積2.0L、株式会社コクサン製)を用い、0.25L/分の送液速度で供給して連続的に遠心分離処理を行ったこと以外は、実施例1と同様の方法で水性顔料分散体(a4-2‘)を得た。
 (実施例3)
 プラネタリーミキサー(株式会社井上製作所製PLM-50)の50Lジャケット付タンクに、2.5質量部の顔料分散樹脂Bと、10.0質量部のC.I.ピグメントオレンジ43を順番に投入し、ジャケット付タンクの温度を60℃に加温した後、3.4質量部のトリエチレングリコールと、0.9質量部の34質量%の水酸化カリウム水溶液を順番に供給することによって、組成物(a1-3)を得た。組成物(a1-3)の不揮発分は76.3質量%であった。
 (工程[1])
 ジャケット付タンクの温度を60℃に保温した状態で、前記組成物(a1-3)を、自転回転数30rpm、公転回転数10rpmで10分間撹拌し混練した後、自転回転数51rpm、公転回転数17rpmで60分間混練を行うことによって、固形状の混練物(a2-3)を得た。
 (工程[2])
 前記混練物(a2-3)に、60℃に加温したイオン交換水を添加し撹拌することで顔料濃度を16.0質量%に調整した後、さらに60℃に加温したイオン交換水で希釈したトリエチレングリコールを供給し、混合することによって、顔料濃度が15.6質量%、トリエチレングリコール濃度が15.6質量%、不揮発分が19.9質量%の組成物(a3-3)を得た。前記組成物(a3-3)の25℃における粘度は、4.0mPa・sであった。
 (工程[3])
 前記組成物(a3-3)を、熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で60℃に加温した後、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)に1.6L/分の送液速度で供給し、20000Gの遠心加速度で連続的に遠心分離処理を行うことによって、水性顔料分散体(a4-3)を得た。前記ローターの容積に対する前記組成物(a3-3)の供給量(体積)の比率[組成物(a3-3)の供給量(体積)/ローターの容積]×100は、2500%であった。
 (比較例3)
 プラネタリーミキサー(株式会社井上製作所製PLM-50)の50Lジャケット付タンクに、2.5質量部の顔料分散樹脂Cと、10.0質量部のC.I.ピグメントオレンジ43を順番に投入し、ジャケット付タンクの温度を60℃に加温した後、10質量部のトリエチレングリコール、1.3質量部の34質量%の水酸化カリウム水溶液と、2.3質量部のイオン交換水を順番に供給することによって、組成物(a1-3‘)を得た。組成物(a1-3‘)の不揮発分は49.6質量%であった。
 (工程[1])
 ジャケット付タンクの温度を60℃に保温した状態で、前記組成物(a1-3‘)を、自転回転数30rpm、公転回転数10rpmで10分間撹拌した後、自転回転数51rpm、公転回転数17rpmで60分間混練を行うことによって、固形状の混練物(a2-3‘)を得た。
 (工程[2])
 前記混練物(a2-3‘)に、60℃に加温したイオン交換水を添加し撹拌することによって、顔料濃度を16.5質量%に調整した後、さらに60℃に加温したイオン交換水で希釈したトリエチレングリコールを供給し、混合することによって、顔料濃度が16.2質量%、トリエチレングリコール濃度が16.2質量%、不揮発分が21.0質量%の組成物(a3-3‘)を得た。前記組成物(a3-3‘)の25℃における粘度は、13.5mPa・sであった。
 (工程[3])
 前記組成物(a3-3‘)を、熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で60℃に加温した後、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)に1.6L/分の送液速度で供給し、20000Gの遠心加速度で連続的に遠心分離処理を行うことによって、水性顔料分散体(a4-3‘)を得た。前記ローターの容積に対する前記組成物(a3-3‘)の供給量(体積)の比率[組成物(a3-3‘)の供給量(体積)/ローターの容積]×100は、2500%であった。
 (実施例4)
 プラネタリーミキサー(株式会社井上製作所製PLM-50)の50Lジャケット付タンクに、3.0質量部の顔料分散樹脂Cと、10.0質量部のC.I.ピグメントオレンジ34を順番に投入し、ジャケット付タンクの温度を60℃に加温した後、3.0質量部のトリエチレングリコールと、1.6質量部の34質量%の水酸化カリウム水溶液を順番に供給することによって、組成物(a1-4)を得た。組成物(a1-4)の不揮発分は65.8質量%であった。
 (工程[1])
 ジャケット付タンクの温度を60℃に保温した状態で、前記組成物(a1-4)を、自転回転数30rpm、公転回転数10rpmで10分間撹拌した後、自転回転数51rpm、公転回転数17rpmで60分間混練を行うことによって、固形状の混練物(a2-4)を得た。
 (工程[2])
 前記混練物(a2-4)に、60℃に加温したイオン交換水を添加し撹拌することによって、顔料濃度を16.0質量%に調整した後、さらに60℃に加温したイオン交換水で希釈したトリエチレングリコールを供給し、混合することによって、顔料濃度が15.6質量%、トリエチレングリコール濃度が15.6質量%、不揮発分が19.9質量%の組成物(a3-4)を得た。前記組成物(a3-4)の25℃における粘度は、4.0mPa・sであった。
 (工程[3])
 前記組成物(a3-4)を、熱交換装置(株式会社テイエルブイ製、真空蒸気加熱システム)で60℃に加温した後、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)に1.6L/分の送液速度で供給し、20000Gの遠心加速度で連続的に遠心分離処理を行うことによって、水性顔料分散体(a4-4)を得た。前記ローターの容積に対する前記組成物(a3-4)の供給量(体積)の比率[組成物(a3-4)の供給量(体積)/ローターの容積]×100は、2500%であった。
 (実施例5)
 前記組成物(a3-4)の工程[3]の遠心加速度を、20000Gから9000Gに変更したこと以外は、実施例4と同様の方法で水性顔料分散体(a4-5)を得た。
 (実施例6)
 プラネタリーミキサー(株式会社井上製作所製PLM-50)の50Lジャケット付タンクに、2.0質量部の顔料分散樹脂Cと、10.0質量部のC.I.ピグメントグリーン36を順番に投入し、ジャケット付タンクの温度を60℃に加温した後、3.1質量部のトリエチレングリコールと、1.1質量部の34質量%の水酸化カリウム水溶液を順番に供給することによって、組成物(a1-6)を得た。
 (工程[1])
 ジャケット付タンクの温度を60℃に保温した状態で、前記組成物(a1-6)を、自転回転数30rpm、公転回転数10rpmで10分間撹拌した後、自転回転数51rpm、公転回転数17rpmで60分間混練を行うことによって、固形状の混練物(a2-6)を得た。
 (工程[2])
 前記混練物(a2-6)に、60℃に加温したイオン交換水を添加し撹拌することによって、顔料濃度を18.1質量%に調整した後、さらに60℃に加温したイオン交換水で希釈したトリエチレングリコールを供給し、混合することによって、顔料濃度が17.7質量%、トリエチレングリコール濃度が17.7質量%、不揮発分が21.9質量%の組成物(a3-6)を得た。前記組成物(a3-6)の25℃における粘度は、3.6mPa・sであった。
 (工程[3])
 熱交換装置(株式会社テイエルブイ製真空蒸気加熱システム)で60℃に加温した前記組成物(a3-6)を、円筒型遠心分離機(超遠心分離機ASM260FH、ローター容積7.7L、巴工業株式会社製)に0.8L/分の送液速度で供給し、20000Gの遠心加速度で連続的に遠心分離処理を行い、水性顔料分散体(a4-6)を得た。前記ローターの容積に対する組成物(a3-6)の供給量(体積)の比率[組成物(a3-6)の供給量(体積)/ローターの容積]×100は、2100%で行った。
 (実施例7)
 前記組成物(a3-6)の工程[3]のローターの容積に対する前記組成物(a3-4)の供給量(体積)の比率[組成物(a3-6)の供給量(体積)/ローターの容積]×100を2100%から5700%に変更したこと以外は、実施例6と同様の方法で水性顔料分散体(a4-7)を得た。
 (インクジェット印刷用水性インクの製造方法)
 実施例及び比較例で得られた各水性顔料分散体とイオン交換水と混合することによって、顔料濃度が6質量%の水性顔料分散体の希釈液を得た。
 次に、8.0質量部の2-ピロリジノン、8.0質量部のトリエチレングリコールモノ-n-ブチルエーテル、3.0質量部のグリセリン、0.5質量部のサーフィノール440(エアープロダクツ社製)、30.5質量部のイオン交換水を含む混合液と、前記水性顔料分散体の希釈液50質量部とを混合撹拌することによって、顔料濃度が3質量%のインクジェット印刷用水性インクを得た。
 〔体積平均粒子径の測定方法〕
 実施例及び比較例で得られた水性顔料分散体をイオン交換水で下記の倍率で希釈したものを測定試料とした。前記測定試料の25℃における体積平均粒子径を、粒度分布測定装置(日機装株式会社製:Microtracモデル名Nanotrac-UPA150)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 〔粗大粒子数の測定方法〕
 実施例及び比較例で得られた水性顔料分散体をイオン交換水で希釈したものを測定試料とした。前記測定試料に含まれる直径0.5μm以上の粗大粒子の数を、個数カウント方式粒度分布計(Particle Sizing  Systems社製:アキュサイザー780APS)を用いて測定した。前記方法で測定された粗大粒子の数に、前記希釈倍率を乗じることによって、実施例及び比較例の水性顔料分散体1mLに含まれる粗大粒子数を算出した。なお、水性顔料分散体の希釈倍率は、毎秒当たりに検出器を通過する粒子径0.5μm以上の粗大粒子数が1000~4000個/mlとなるように希釈を行った。
 〔水性顔料分散体の経時的な粗大粒子の発生の有無の評価方法(保存安定性)〕
 製造直後の水性顔料分散体に含まれる粗大粒子の数を、上記した方法で測定した。
 次に、前記水性顔料分散体をポリプロピレン容器に密封し60℃条件下に4週間静置した。
次に、前記静置後の水性顔料分散体に含まれる粗大粒子の数を、上記した方法で測定した。
 次に、前記静置前後の粗大粒子数の変化率(%)を、[(前記静置後の水性顔料分散体に含まれる粗大粒子数)/(製造直後の水性顔料分散体に含まれる粗大粒子数)×100]に基づき算出し、下記基準にしたがって評価した。
 ○ 前記変化率が10%未満
 △ 前記変化率が10%以上20%未満
 × 前記変化率が20%以上
 〔インクジェット印刷用水性インクの経時的な粗大粒子の発生の有無の評価方法(保存安定性)〕
 製造直後のインクジェット印刷用水性インクに含まれる粗大粒子の数を、上記した方法で測定した。
 次に、前記インクジェット印刷用水性インクをポリプロピレン容器に密封し60℃条件下に4週間静置した。
 次に、前記静置後のインクジェット印刷用水性インクに含まれる粗大粒子の数を、上記した方法で測定した。
 次に、前記静置前後の粗大粒子数の変化率(%)を、[(前記静置後のインクジェット印刷用水性インクに含まれる粗大粒子数)/(製造直後のインクジェット印刷用水性インクに含まれる粗大粒子数)×100]に基づき算出し、下記基準にしたがって評価した。
 ○ 前記変化率が10%未満
 △ 前記変化率が10%以上20%未満
 × 前記変化率が20%以上
 〔インクジェット印刷用水性インクに含まれる顔料等の経時的な沈降の有無の評価方法(沈降性)〕
 実施例及び比較例で得たインクジェット印刷用水性インクを10mL容量のガラスバイアルに入れ、密封して25℃の条件下に2週間静置した。
 前記静置後、前記ガラスバイアルを倒置した際に、前記ガラスバイアルの壁面に前記顔料等の沈降物の付着を目視で観察し、下記基準にしたがって評価した。
 ○ ガラスバイアルの壁面に顔料等の沈降物の付着が確認できなかった。
 △ ガラスバイアルの壁面に顔料等の沈降物の付着が認められた。
 × ガラスバイアルの壁面に顔料等の沈降物の付着が顕著に認められた。
 〔インクジェット印刷用水性インクの初期吐出安定性〕
 製造直後のインクジェット印刷用水性インクの吐出安定性を、市販のインクジェットプリンターENVY4500(HP社製)を用いて評価した。前記インクジェット印刷用水性インクを、ブラックカートリッジに充填し、ノズルチェック用パターンを印刷した(1回目)。次に、モノクロモードでA4用紙1枚の340cmの範囲に、印刷濃度設定100%でベタ印刷をした。次に、ノズルチェックテスト用パターンを再度印刷した(2回目)。前記1回目と2回目のノズルチェックテスト用パターンを比較することによって、インク吐出ノズルの目詰まり状態を評価した。
 ◎ 1回目及び2回目のノズルチェックテスト用パターンのいずれにおいても、印刷パターンの欠けが発生しなかった
 ○ 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数と、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数とが同一であった。
 △ 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数よりも、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数の方が1~5個多かった。
 × 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数よりも、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数の方が6個以上多かった。
 〔インクジェット印刷用水性インクの経時吐出安定性〕
 製造直後のインクジェット印刷用水性インクを、ブラックカートリッジに充填し、常温下で4週間静置した。
 次に、市販のインクジェットプリンターENVY4500(HP社製)を用いて評価した。前記インクジェット印刷用水性インクを、ブラックカートリッジに充填し、ノズルチェック用パターンを印刷した(1回目)。次に、モノクロモードでA4用紙1枚の340cmの範囲に、印刷濃度設定100%でベタ印刷をした。次に、ノズルチェックテスト用パターンを再度印刷した(2回目)。前記1回目と2回目のノズルチェックテスト用パターンを比較することによって、インク吐出ノズルの目詰まり状態を評価した。
 ◎ 1回目及び2回目のノズルチェックテスト用パターンのいずれにおいても、印刷パターンの欠けが発生しなかった。
 ○ 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数と、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数とが同一であった。
 △ 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数よりも、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数の方が1~5個多かった。
 × 1回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数よりも、2回目のノズルチェックテスト用パターンで確認された印刷パターンの欠けの数の方が6個以上多かった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1. バイオレット顔料、グリーン顔料及びオレンジ顔料からなる群より選ばれる1種以上を含む顔料と樹脂とを含有する不揮発分50質量%以上の組成物(a1)を、混練することによって混練物(a2)を製造する工程[1]、少なくとも前記混練物(a2)と水性媒体とを混合することによって組成物(a3)を製造する工程[2]、及び、前記組成物(a3)を30℃~70℃の範囲内で遠心分離処理する工程[3]を有することを特徴とする水性顔料分散体の製造方法。
  2. 前記工程[3]が円筒型遠心分離装置を用いる工程である請求項1に記載の水性顔料分散体の製造方法。
  3. 前記工程[3]は、前記組成物(a3)である25℃での粘度が13mPa・s以下の組成物を、円筒型遠心分離装置で、遠心分離処理する工程である請求項1に記載の水性顔料分散体の製造方法。
  4. 前記工程[3]は、前記円筒型遠心分離装置が備えるローターに前記組成物(a3)を供給し、前記組成物(a3)の温度を30℃~70℃の範囲内に維持して行う工程であって、前記ローターの容積に対する前記組成物(a3)の供給量(体積)の比率[組成物(a3)の供給量(体積)/ローターの容積]×100が1000%~8000%であり、かつ、前記円筒型遠心分離装置の遠心加速度が8000G~20000Gの範囲である請求項2または3に記載の水性顔料分散体の製造方法。
  5. 前記工程[1]で使用する混練装置が、閉鎖型混練装置である請求項1~4のいずれか1項に記載の水性顔料分散体の製造方法。
  6. 前記混練装置がプラネタリーミキサーである請求項5に記載の水性顔料分散体の製造方法。
  7. 前記工程[2]は、前記混練物(a2)に対して前記水性媒体を供給し不揮発分を10質量%~30質量%の範囲に調整する工程である請求項1~6のいずれか1項に記載の水性顔料分散体の製造方法。
  8. 前記組成物(a1)が少なくとも顔料と樹脂と塩基性化合物と水溶性有機溶剤とを含有するものである請求項1~7のいずれか1項に記載の水性顔料分散体の製造方法。
PCT/JP2019/043609 2018-11-22 2019-11-07 水性顔料分散体の製造方法 WO2020105441A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/295,175 US20210387149A1 (en) 2018-11-22 2019-11-07 Method for producing aqueous pigment dispersion
JP2020515989A JPWO2020105441A1 (ja) 2018-11-22 2019-11-07 水性顔料分散体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-219376 2018-11-22
JP2018219376 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020105441A1 true WO2020105441A1 (ja) 2020-05-28

Family

ID=70773603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043609 WO2020105441A1 (ja) 2018-11-22 2019-11-07 水性顔料分散体の製造方法

Country Status (3)

Country Link
US (1) US20210387149A1 (ja)
JP (1) JPWO2020105441A1 (ja)
WO (1) WO2020105441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022126586A1 (en) * 2020-12-18 2022-06-23 Dic Corporation Ink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351075B (zh) * 2021-06-23 2022-12-13 安徽开盛津城建设有限公司 一种建筑墙体防水剂加工装置及其加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097753A1 (fr) * 2002-05-16 2003-11-27 Seiko Epson Corporation Dispersion contenant un pigment et composition d'encre pour impression par jet d'encre
JP2006233211A (ja) * 2005-01-31 2006-09-07 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
JP2007146152A (ja) * 2005-10-31 2007-06-14 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク
WO2008015998A1 (fr) * 2006-07-31 2008-02-07 Dic Corporation Procédé de production d'une dispersion aqueuse de pigment et encre pour impression par jet d'encre
JP2008111061A (ja) * 2006-10-31 2008-05-15 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
JP2008222980A (ja) * 2007-03-15 2008-09-25 Ricoh Co Ltd インクジェット用原材料あるいはインクジェット用インク及びそれらの製造方法
JP2011140646A (ja) * 2009-12-11 2011-07-21 Dic Corp 水性顔料分散液及びインクジェット記録用インク組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325548B2 (ja) * 2008-11-26 2013-10-23 花王株式会社 インクジェット記録用水分散体の製造方法
JP5763895B2 (ja) * 2010-07-06 2015-08-12 花王株式会社 カラーフィルター用顔料分散体の製造方法
JP5715373B2 (ja) * 2010-10-18 2015-05-07 花王株式会社 インクジェット記録用水系顔料分散体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097753A1 (fr) * 2002-05-16 2003-11-27 Seiko Epson Corporation Dispersion contenant un pigment et composition d'encre pour impression par jet d'encre
JP2006233211A (ja) * 2005-01-31 2006-09-07 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
JP2007146152A (ja) * 2005-10-31 2007-06-14 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク
WO2008015998A1 (fr) * 2006-07-31 2008-02-07 Dic Corporation Procédé de production d'une dispersion aqueuse de pigment et encre pour impression par jet d'encre
JP2008111061A (ja) * 2006-10-31 2008-05-15 Dainippon Ink & Chem Inc 水性顔料分散液及びインクジェット記録用インク組成物
JP2008222980A (ja) * 2007-03-15 2008-09-25 Ricoh Co Ltd インクジェット用原材料あるいはインクジェット用インク及びそれらの製造方法
JP2011140646A (ja) * 2009-12-11 2011-07-21 Dic Corp 水性顔料分散液及びインクジェット記録用インク組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022126586A1 (en) * 2020-12-18 2022-06-23 Dic Corporation Ink

Also Published As

Publication number Publication date
JPWO2020105441A1 (ja) 2021-02-15
US20210387149A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
KR101426968B1 (ko) 수성 안료 분산액의 제조 방법 및 잉크 젯 기록용 잉크
KR101323984B1 (ko) 수성 안료 분산액 및 잉크 젯 기록용 잉크, 및 수성 안료 분산액의 제조 방법
WO2020105441A1 (ja) 水性顔料分散体の製造方法
WO2018235609A1 (ja) 水性顔料分散体
WO2005012443A1 (ja) インクジェット記録用水性顔料分散液、インクジェット記録用インク組成物およびその製造方法
WO2021075333A1 (ja) 顔料組成物の製造方法
JP5146720B2 (ja) 水性顔料分散液及びインクジェット記録用インク
JP7318278B2 (ja) 水性顔料分散体及びその製造方法
JP6863399B2 (ja) 顔料混練物及び水性顔料分散体の製造方法
WO2019230415A1 (ja) 顔料混練物及び水性顔料分散体の製造方法
JP6769513B2 (ja) 水性顔料分散体の製造方法
JP7395969B2 (ja) 顔料混練物の製造方法及び水性顔料分散体の製造方法
JP7346803B2 (ja) 水性顔料分散体及び水性顔料分散体の製造方法
JP2011140646A (ja) 水性顔料分散液及びインクジェット記録用インク組成物
JP2007146152A (ja) 水性顔料分散液及びインクジェット記録用インク
WO2021100468A1 (ja) 顔料組成物の製造方法
JP7040679B2 (ja) 水性顔料分散体、顔料混練物及び水性顔料分散体の製造方法
JP7404830B2 (ja) 水性顔料分散体及び水性顔料分散体の製造方法
JP7363290B2 (ja) 水性顔料分散体及び水性顔料分散体の製造方法
JP7423175B2 (ja) 水性顔料分散体及び水性顔料分散体の製造方法
JP2022014582A (ja) 顔料組成物
JP2022014583A (ja) 顔料組成物の製造方法
JP2022014584A (ja) 顔料組成物の製造方法
JP2007137989A (ja) 水系インクの製造方法
JP2021059691A (ja) インクジェット印刷水性インク用水性顔料分散体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515989

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887683

Country of ref document: EP

Kind code of ref document: A1