WO2020105151A1 - 設備保守点検支援システム及び点検順序決定方法 - Google Patents
設備保守点検支援システム及び点検順序決定方法Info
- Publication number
- WO2020105151A1 WO2020105151A1 PCT/JP2018/043037 JP2018043037W WO2020105151A1 WO 2020105151 A1 WO2020105151 A1 WO 2020105151A1 JP 2018043037 W JP2018043037 W JP 2018043037W WO 2020105151 A1 WO2020105151 A1 WO 2020105151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- equipment
- inspection
- data
- facility
- maintenance
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
Definitions
- the present invention relates to a facility maintenance and inspection support system that optimizes the inspection sequence of wide-area facilities.
- condition-based maintenance the equipment whose condition has deteriorated is inspected with priority.
- State-based maintenance increases the probability that inspections, inspections, and repairs will be carried out before a failure, so that it is possible to prevent a decrease in reliability and to suppress repair costs and compensation costs due to a failure. Therefore, in recent years, it is necessary to shift from time-based maintenance to state-based maintenance.
- Patent Document 1 Japanese Patent Laid-Open No. 2002-1422464 discloses a communication base for providing a patrol route for a maintenance service and a trouble response service for the plurality of communication base stations in which various devices are installed.
- a center for determining the patrol route is provided, and each of the communication base stations detects an operating state of the installed device and an environmental condition of the communication base station.
- Each communication based on communication means for receiving data, a maintenance database in which maintenance data regarding equipment of each communication base station is stored, and monitoring data received by the communication means and maintenance data read from the maintenance database
- a communication base station characterized by comprising a circuit route determining means for calculating a service requirement for a base station and determining a circuit route of each communication base station according to the calculated service requirement.
- a service patrol route providing system is described (see claim 1).
- Patent Document 2 Japanese Patent Laid-Open No. 2009-3517 discloses a maintenance management support device for inspecting a deterioration state of equipment constituting a plant and formulating a maintenance plan, and a degree of coincidence with a plurality of evaluation items.
- An input unit for receiving a calculation condition including a signal input unit for measuring and inputting a state signal in the plant, and estimating a deterioration state of a device based on the state signal, and performing maintenance by the deterioration state and the calculation condition.
- a calculation unit that evaluates the plurality of evaluation items with respect to a countermeasure plan including work content and implementation time, and corrects and recalculates the countermeasure plan when the evaluation result is out of the range of the degree of coincidence, and the countermeasure.
- An assisting device is described (see claim 1).
- the inspection order In order to carry out state-based maintenance, it is necessary to understand the state of each facility and formulate an optimal inspection and maintenance / inspection order (hereinafter referred to as the inspection order).
- the inspection order When a sensor for measuring the condition of the equipment is attached to the equipment, the sensor data can be analyzed to grasp the condition.
- a large number of facilities are installed over a wide area for a long period of time such as a distribution facility represented by a pole transformer, it is costly to attach a sensor to each facility and monitor the state.
- many facilities are installed outdoors and are directly affected by the environment and weather such as sunlight, wind and rain. Therefore, when the condition-based maintenance is applied to wide area equipment, in addition to equipment information such as the installation location and age of the equipment, information about the installation environment of the equipment is required.
- Patent Document 1 since the condition of the device and the environmental condition are used, it is necessary to attach sensors such as temperature, humidity, and air volume to the device itself. When the technique described in Patent Document 1 is applied to power distribution equipment, a large number of sensors are required, and the installation cost and maintenance cost of the sensors are high, which is not realistic.
- the number of open data observation stations is smaller than that of the equipment, and the observation data associated with the equipment may differ from the actual installation environment of the equipment depending on the distance between the equipment and the observation stations. Also, due to the circumstances of the observation station, observation may not be performed, and the average, maximum, and minimum observed values may differ from the actual values. Therefore, it is necessary to evaluate the reliability of the open data associated with the equipment.
- the Japan Meteorological Agency publishes open data with quality information. From the above, it is necessary to evaluate the reliability of the observation data associated with each facility and formulate the inspection sequence in consideration of it.
- Patent Document 2 proposes a method for determining a maintenance plan based on the current failure stop probability of equipment.
- the condition of the equipment may suddenly deteriorate within a few years after the inspection is performed, but the failure probability after a few years is not taken into consideration in formulating the maintenance plan. Therefore, by predicting the future equipment state and formulating the inspection order in consideration of the present and future equipment states, the probability that the inspection and maintenance / inspection can be performed before the failure is improved.
- the object of the present invention is to optimize the inspection order based on the estimated equipment status and the reliability of data when performing patrol, inspection, and maintenance of wide area equipment based on status standard maintenance.
- a facility maintenance inspection support system that determines the inspection order in the maintenance work of the equipment, an input unit that accepts conditions for determining the inspection order, environmental data related to the environment in which the equipment is installed, and the inspection target
- a data collection unit that collects equipment data including equipment information and inspection results, and current and future equipment soundness is calculated based on the collected data, and the uncertainty of the data used to calculate the equipment soundness Calculation unit that determines the inspection order based on the calculated facility soundness and the calculated uncertainty, and the result of the determined inspection order and the improvement status by the determined inspection order
- an output unit for displaying that determines the inspection order in the maintenance work of the equipment, an input unit that accepts conditions for determining the inspection order, environmental data related to the environment in which the equipment is installed, and the inspection target
- a data collection unit that collects equipment data including equipment information and inspection results, and current and future equipment soundness is calculated based on the collected data, and the uncertainty of the data used to calculate the equipment soundness Calculation unit that determines the inspection order based on the calculated facility sound
- the inspection order can be optimized. Problems, configurations and effects other than those described above will be clarified by the following description of the embodiments.
- Example 1 First, as a first embodiment of the present invention, an example in which the equipment maintenance and inspection support system of the present invention is applied to formulate an inspection sequence of power distribution equipment will be described.
- 1A is a schematic configuration diagram of an equipment maintenance and inspection support system.
- the facility maintenance and inspection support system includes an input device 101, a data collection device 102, a calculation device 103, and an output device 104.
- FIG. 1A illustrates a configuration in which the input device 101, the data collection device 102, the calculation device 103, and the output device 104 are different computers, the input device 101, the data collection device 102, the calculation device 103, and the output device 104 are the same. It may be implemented in one computer.
- the input device 101 is a computer used by the inspection planner, and the number of facilities that can be inspected in a year is input by the inspection planner in consideration of resources such as the number of inspection workers and the number of work vehicles. Further, the inspection planner inputs the inspection cycle set when the time-based maintenance is carried out to the input device 101.
- the data collection device 102 is a computer that collects open data indicating the environment in which the equipment is installed and data of the equipment, and stores the data in the environment information database 105 and the equipment maintenance database 106, respectively.
- the arithmetic unit 103 is a computer that uses the data stored in the data collecting unit 102 to execute the main processing of the facility maintenance and inspection support system of the present embodiment.
- the output device 104 is a computer that outputs an inspection plan and is installed at an inspection work site. The inspection worker inspects the power distribution equipment according to the inspection plan output from the output device 104.
- the environmental information database 105 stores data used for analysis as open data, and includes meteorological data 108, atmospheric data 109, and geographical data 110.
- the meteorological data 108 is periodically acquired by the automatic data collection unit 107 from the past meteorological data download site of the Meteorological Agency. Since monthly values are used in this embodiment, the meteorological data may be acquired once a month when the data is updated.
- the automatic data collection unit 107 acquires it from the environmental numerical database of the National Institute for Environmental Studies once a month.
- the geographic data 110 is provided by the Geospatial Information Authority of Japan, and since it rarely changes and the update frequency is low, the data may be manually updated once every several years.
- the equipment maintenance database 106 includes equipment data 111 and inspection history data 112.
- the facility data 111 is automatically collected by the automatic data collection unit 107 from the facility ledger of the power distribution company at regular intervals.
- the automatic data collection unit 107 automatically collects inspection result data in which the electric power distribution company stores the inspection results of the inspection workers.
- FIG. 1B is a block diagram showing the physical configuration of a computer that constitutes the facility maintenance and inspection support system.
- the computer constituting the system of this embodiment has a processor (CPU) 1, a memory 2, an auxiliary storage device 3 and a communication interface 4.
- the calculator may have an input interface 5 and an output interface 8.
- the processor 1 is a computing device that executes a program stored in the memory 2.
- the various functions of the computer are realized by the processor 1 executing various programs. Note that a part of the processing performed by the processor 1 by executing the program may be executed by another computing device (for example, FPGA or ASIC).
- the memory 2 includes a ROM which is a non-volatile storage element and a RAM which is a volatile storage device.
- the ROM stores an immutable program (for example, BIOS) and the like.
- the RAM is a high-speed and volatile storage device such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 1 and data used when the program is executed.
- the auxiliary storage device 3 is a large-capacity and non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD). Further, the auxiliary storage device 3 stores data used by the processor 1 when executing the program and the program executed by the processor 1. That is, the program realizes each function of the computer by being read from the auxiliary storage device 3, loaded into the memory 2, and executed by the processor 1.
- HDD magnetic storage device
- SSD flash memory
- the communication interface 4 is a network interface device that controls communication with other devices according to a predetermined protocol.
- the input interface 5 is an interface to which input devices such as a keyboard 6, a mouse 7 and a touch panel (not shown) are connected and which receives an input from an operator.
- the output interface 8 is an interface to which an output device such as a display device 9 and a printer (not shown) is connected and which outputs the execution result of the program in a format that can be visually recognized by the operator.
- the program executed by the processor 1 is provided to the computer via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in the non-volatile auxiliary storage device 3 which is a non-transitory storage medium. Therefore, the computer may have an interface for reading data from the removable medium.
- the data collection device 102 and the arithmetic device 103 are a computer system configured on a single computer physically or on a plurality of logically or physically configured computers, and on a plurality of physical computer resources. It may operate on a virtual machine built in.
- the meteorological data 108 of the environment information database 105 holds observation items, latitude and longitude of observation stations, observation station names, observation dates, observation values, quality information, and the like.
- the quality information may be, for example, a ratio of the number of times the observed value is obtained in a predetermined period.
- the Japan Meteorological Agency also publishes open data with quality information.
- 3A and 3B are diagrams showing examples of data items collected and held by the data collection device 102.
- the equipment health level (VHI: Virtual Health Index) of equipment varies depending on the number of years since installation and the environment in which it is installed. Therefore, the equipment information and the information indicating the environment in which the equipment is installed are used to calculate the VHI.
- open data such as meteorological data 108 published by the Japan Meteorological Agency, atmospheric data 109 published by the National Institute for Environmental Studies, and geographic data (national land numerical information) 110 published by the Geographical Survey Institute are converted into VHI. It is used to calculate.
- the open data used in this embodiment can be obtained from the websites of the Meteorological Agency, National Institute for Environmental Studies, and Geographical Survey Institute.
- FIG. 3A is a diagram showing some of the data items stored in the facility maintenance database 106
- FIG. 3B is a diagram showing some of the data items stored in the environment information database 105.
- the items for which monthly values can be acquired as the meteorological data 108 are measured values such as temperature, precipitation, sunshine / solar radiation, snow / snowfall, wind, humidity / pressure, cloud amount / weather, and the like. For each item, it is possible to obtain statistically processed numerical values. For example, as the statistically processed temperature, the maximum temperature, the minimum temperature, the average temperature of the month, the number of days satisfying a certain condition of the month, and the like can be acquired.
- the observation items that can be acquired as the atmospheric data 109 are measured values of SO2, NO, NO2, NOX, CO, OX, NMHC, CH4, THC, SPM, SP, PM2.5, etc.
- the actual values can be downloaded as monthly values. Atmospheric data observation items can also be downloaded as a result of statistically processing the actual values.
- the geographic data 110 elevation, slope, land use, main road, coastline, lake, river data, etc. are used from the national numerical information of the Geographical Survey Institute.
- the format of national numerical information varies depending on the data.
- the altitude and the gradient are mesh data, and each mesh has an average altitude, a maximum altitude, a minimum altitude, an average inclination angle, a maximum inclination angle, a minimum inclination angle, a maximum inclination direction, and a minimum inclination direction.
- the area of use division such as rice fields, other agricultural land, forests, wastelands, building land, roads, railways, other land, rivers and lakes, beaches, seawater areas, golf courses, etc.
- the coastline and river data can be acquired in the shapefile format.
- the arithmetic device 103 includes a data processing unit 113, a VHI calculation model creation unit 114, a VHI calculation unit 115, a storage unit 116, and an inspection order determination unit 117.
- the data processing unit 113 associates and cleanses the data collected by the data collection device 102.
- VHI can be accurately calculated by excluding abnormal values and data collected only for a short period of time in the cleansing process.
- the VHI calculator 115 calculates VHI from the processed data.
- VHI is a numerical index that indicates the soundness of the equipment to be maintained. The higher the value, the better the sound, and the lower the value, the worse the deterioration.
- the VHI shows the highest value at the time of manufacture, and may be normalized by setting the value at the time of manufacture to 1 and the value at the time of failure to 0.
- VHI is a value calculated for each facility. For example, since a power pole, a switch, and a transformer have different materials and deterioration mechanisms, different VHI calculation models are created and VHI is calculated.
- the storage unit 116 stores the processed data and the calculated VHI.
- the inspection order determination unit 117 optimizes the inspection order based on the calculated VHI and the reliability of the data used for the VHI calculation. The optimized inspection sequence and the effect of the optimization are displayed on the screen of the output device 104.
- FIG. 4 is a flowchart of the inspection order determination processing executed by the data processing unit 113, the VHI calculation unit 115, and the inspection order determination unit 117 when the arithmetic device 103 calculates the current VHI.
- the data processing unit 113 converts the data stored in the environment information database 105 and the equipment maintenance database 106 into data suitable for analysis, and executes a data processing process for associating (401).
- Two types of data conversion are implemented.
- the first is the conversion of equipment data.
- the date-related data is converted into the number of days elapsed up to the present.
- the construction date described in the equipment data is converted into the number of elapsed days up to the present.
- the second is the processing of open data. In the processing of open data, first, open data is converted into an analyzable format and associated with each facility.
- the amount of precipitation and the amount of snowfall are significant to the monthly added value obtained by accumulating the daily observed values, and the temperature and wind speed are significant to the monthly average value, maximum value, minimum value, etc. of the daily observed values.
- the equipment data, the inspection history data, and the open data are associated with the equipment ID as a key item.
- the open data of the observation point closest to the facility data is associated. The above processing / calculation results are held in the storage unit 116 of the arithmetic device 103.
- the VHI calculation step 402 is executed by the VHI calculation model creation unit 114 and the VHI calculation unit 115.
- the VHI calculation model creation unit 114 creates a VHI calculation model in advance using past data.
- the data items used when creating the VHI calculation model and the model creating method will be described.
- the characteristic amount (explanatory variable) at the time of creating the VHI calculation model the same items as the data created at step 401 are used, and the inspection history data is used as the objective variable.
- the feature amount is weather data, atmospheric data, geographical data, facility data, etc. before the model was created. Wide-area equipment installed over a wide area is not equipped with a sensor that individually measures the equipment status.
- the inspection history data set as the objective variable is "OK", "NG” even if the equipment status is evaluated numerically. You may evaluate by the two values of ".
- the equipment status is recorded numerically, the current equipment status can be predicted numerically by setting the inspection result as the objective variable when the model was created.
- the method of indicating the equipment status as a numerical value is adopted by using as.
- the distance from the boundary surface to the “OK” side is good, the condition of the equipment is good, and if it is far from the “NG” side, the condition of the equipment is bad.
- the distance from the boundary surface on the “NG” side is given a negative value to set it as VHI, and the higher the VHI value, the higher the soundness, and the smaller the VHI value, the lower the soundness, indicating that the condition requires immediate inspection and repair. ..
- the VHI calculation method that evaluates the state of equipment by two values can adopt methods other than those described above.
- the importance of each feature amount used for predicting the target variable (magnitude of contribution to the target variable) can be acquired at the time of creating the VHI calculation model by a method such as SVM. It is possible to know the feature amount that has a large influence on the objective variable by the importance of the feature amount.
- the inspection result is evaluated in multiple stages such as five stages, the VHI can be calculated using the estimated certainty of each stage. Even in the case of evaluation in multiple stages, it is difficult to determine the order in which the equipment judged in each stage should be inspected and inspected.
- the data stored in the environment information database 105 and the past data stored in the facility maintenance database 106 are used as inputs in the same manner as in the two-level “OK” “NG” evaluation.
- the VHI is calculated using the certainty assigned to each deterioration stage evaluation calculated by the VHI calculation model.
- FIG. 5 is a diagram showing an example of a deterioration stage evaluation table indicating a numerical value of the probability assigned to each deterioration stage evaluation when the inspection result is evaluated in a plurality of stages.
- VHI is calculated by deterioration stage evaluation and a weighted average of its certainty.
- the VHI calculation formula is shown below.
- the probability estimated to be the deterioration evaluation stage n is pn.
- the VHI calculation method for evaluating the state of the equipment in multiple stages is not limited to this.
- the VHI calculation unit 115 of the arithmetic unit 103 executes the VHI calculation process of step 402.
- the data created by the data processing of step 401 is input to the model calculated by the VHI calculation model creation unit 114, and the current VHI is calculated as a numerical index.
- the degree of importance of the feature amount is output and stored in the storage unit 116 of the arithmetic device 103.
- FIG. 11 shows an example of a table showing the degree of importance held. The importance of the feature amount is used in the inspection order optimization process in step 403. Details of each item will be described later.
- the VHI of each facility is calculated as the execution result of the VHI calculation processing in step 402.
- the VHI of each equipment is held in the storage unit 116 of the arithmetic device 103 as the VHI output data shown in FIG. 6, and is output (for example, displayed as a list) from the output device 104.
- the inspection order optimization processing of step 403 the optimum inspection inspection order of the equipment is determined based on the VHI calculated by the VHI calculation processing of step 402.
- FIG. 7 is a flowchart of a detailed procedure of the inspection order optimization process of step 403 of FIG.
- the equipment is rearranged in order from the one having the lowest VHI output as a result of the VHI calculation processing in step 401 to create an equipment inspection order list.
- step 702 the uncertainty of the data associated with each facility is calculated from the importance of each feature amount used when creating the model and the quality information of the data. Details of the process of step 702 will be described later.
- the equipment inspection order list rearranged in step 701 is divided into segments (for example, divided into a predetermined number of segments from the top), and the degree of uncertainty within the segment is calculated.
- As a method of dividing the segments there are a method of dividing the value of VHI by a certain numerical value and a method of dividing by the number of facilities that can be inspected in a predetermined period such as one year.
- the method of dividing the segment is set by the administrator using the keyboard or mouse of the input device 101. Since the number of workers and inspection costs are limited when conducting inspections and inspections of equipment, the number of equipment that can be inspected in one year is limited. Therefore, scheduled inspection years are set in order from the top of the equipment inspection order list.
- step 704 the feature amount converted into future data is input to the model created in step 402 of FIG. 4 to calculate the future VHI.
- step 705 the difference between the VHI for the scheduled inspection date and the current VHI is calculated, and the equipment whose equipment condition significantly deteriorates by the scheduled inspection date is extracted, and the inspection is completed before the equipment deterioration occurs. Reorder the inspection order list as you would. Details of the future VHI calculation process will be described later.
- Confidence level is calculated from the distance between the equipment and the data observation station and the quality information of the open data used for the features when calculating VHI.
- the data quality information is a value indicating the reliability of the data itself, and in this embodiment, the accuracy of open data (quality information) and the update frequency of the inspection result (degradation evaluation stage n) input as an objective variable. To use.
- FIG. 8 is a flowchart of the detailed procedure of the uncertainty calculation processing in step 702.
- the distance to the observation station associated with the equipment is calculated.
- the distance between the equipment and the observation station is the location information of the equipment stored in the equipment data 111 of the equipment maintenance database 106, and the location information of the observation station stored in each data 108, 109, 110 of the environment information database 105. And is stored in the storage unit 116 of the arithmetic device 103.
- the observation station closest to the equipment 001 shown in FIG. 9 is the observation station 1.
- the distance between the equipment 001 and the observation station 1 is d 11 .
- not all data items used for analysis are observed by one observation station.
- the observation station 3 and the equipment 001 having the shortest distance among the observation stations having the precipitation amount are also observed.
- Must be associated In this way, data of a plurality of observation stations may be associated with one piece of equipment.
- the distance to each observation station associated with the equipment is stored in the storage unit 116. In this way, one piece of equipment is associated with one or a plurality of observation stations, and the table illustrated in FIG. 12 is created by the processing of step 801 in FIG.
- the uncertainty is calculated using the distance between the facility and the observation station calculated in step 801.
- the degree of uncertainty R d_1 is calculated by a weighted average using the importance of the feature quantity associated with the distance between the equipment and the observation station.
- FIG. 11 is a diagram showing an example of a table in which feature amounts used in the uncertainty calculation process of step 802 of FIG. 8, importance of each feature amount, and data acquisition sources are associated.
- FIG. 12 shows a table recording the observation station, the equipment-observation station distance, and the quality information, which are the feature quantities (observation values) associated with the equipment input to the uncertainty calculation processing in step 802. It is a figure. These tables are stored in the storage unit 116.
- 1 is recorded when the characteristic amount is recorded in the environment information database 105
- 2 is recorded when the characteristic amount is recorded in the facility maintenance database 106.
- the degree of uncertainty can be calculated using either the data collected by the observation station stored in the environment information database 105 or the data stored in the facility maintenance database 106.
- the degree of uncertainty is calculated using the data stored in the environment information database 105 (the data quality of each observation item and the number of observation days)
- the non-confidence R Q_1 using quality information of the data used to VHI calculation facility 001
- the uncertainty level R q — 1 is calculated by the weighted average.
- the non-confidence R Q_1 based on non confidence R d_1 and quality information based on the distance to calculate the non-confidence R1 equipment 001 by the following equation.
- the weights w distance and w quality used in the calculation may be set to appropriate values according to the policy of the electric power company.
- the calculated uncertainties are converted into deterioration stages with reference to the table of FIG. 5, and stored in the storage unit 116 in the inspection order list shown in FIG. Note that by adjusting the weights w distance and w quality , the uncertainty may be calculated using the quality information without using the distance.
- the degree of uncertainty may be calculated using the equipment inspection interval. For example, if the inspection interval is long, the degree of uncertainty is increased, and if it is short (for example, 3 months), the degree of uncertainty is decreased. This is because the equipment with an inspection interval of 5 years is considered to have a large gap between the estimated equipment status and the actual equipment status with the passage of time after the inspection. This is because the degree of uncertainty increases.
- the degree of uncertainty may be increased if the elapsed period from the previous inspection date recorded in the inspection information 112 (equipment maintenance database 106) is long, and may be decreased if the period is short.
- quality information the data quality of each observation item, the number of observation days, the inspection interval, and the elapsed time since the previous inspection were illustrated, but other quality information of observation items that contribute to deterioration depending on the type of equipment is used. Of course, any one or more of these may be used.
- FIG. 13 is a flowchart of the detailed procedure of the inspection order rearrangement process based on the uncertainty in step 703 of FIG.
- step 1301 the inspection order list, which is the output result of step 701 in FIG. 7, is divided into a plurality of segments in order from the top.
- a method of dividing into segments there are a method of dividing by VHI value and a method of dividing by a predetermined number, and the inspection planner selects a method and a numerical value suitable for the facility management policy and purpose.
- the equipment inspection order list is rearranged within the segment divided at step 1301 based on the uncertainty level calculated at step 702 of FIG. 7.
- equipment with low uncertainty is arranged in the order of higher inspection.
- the equipment having a high degree of uncertainty is arranged in the order of higher inspection. The degree of uncertainty makes it possible to evaluate the data reliability of open data.
- the equipment of the inspection order list shown in FIG. 14 is sorted based on the degree of uncertainty, and then stored in the storage unit 116.
- FIG. 15 is a flowchart of detailed procedures of future VHI calculation processing in step 704 of FIG.
- step 705 the inspection order list is rearranged based on the future VHI calculated in step 704.
- the policy differs depending on the power distribution company, but in the case of time-based maintenance, where maintenance is performed on a time basis, all facilities are inspected once every few years.
- the cycle set when time-based maintenance is introduced is M years.
- the planner inputs the cycle set by the time base maintenance from the keyboard.
- the data up to the current time is used to calculate the VHI at the current time, but in step 704, the future VHI is calculated, so that it is necessary to create data up to M years later.
- step 1501 of FIG. 15 open data is created for each year from now to M years later. Although it is considered that the altitude and distance from the coastline do not change significantly after M years, the total value is calculated by adding M years worth of precipitation and sunshine. In addition, since it is difficult to obtain detailed weather forecasts up to M years later, multiple patterns are assumed and created based on long-term weather scenarios and past weather data. For example, if it is assumed that the average climate will continue, by adding the average values of precipitation and sunshine for the past several years to calculate the meteorological data for each year, until M years later The weather data suitable for the analysis of each year can be acquired.
- step 1502 equipment data for each year up to M years after is created and updated.
- step 1502 the number of years elapsed in each year from the installation of the equipment to M years after is calculated.
- step 1503 using the VHI calculation model created by the VHI calculation model creation unit 114, the data created in steps 1501 and 1502 and the data that does not change in the year referenced from the environment information database 105 and the equipment maintenance database 106 are used. As an explanatory variable, the VHI of each year up to M years later is calculated. The calculated VHI for each year is stored in the storage unit 116.
- step 1504 scheduled inspection years are set in order from the top of the inspection sequence list based on the number of facilities that can be inspected in a year and input by the input device 101.
- FIG. 16 is a flowchart of a detailed procedure of the rearrangement process based on the scheduled inspection year VHI in step 705 of FIG.
- the future VHI calculated in step 704 of FIG. 7 and the current VHI calculated in step 402 of FIG. 4 are used. Even if the current VHI does not indicate a dangerous value close to a failure, the VHI may decrease rapidly by the scheduled inspection year determined based on the current VHI. Therefore, the inspection order is changed for the equipment in which VHI is expected to be significantly deteriorated, and the inspection order is optimized.
- the current VHI value and the future VHI value stored in the storage unit 116 are referred to, and the difference between the scheduled inspection year VHI and the current VHI is calculated for each facility. After the VHI difference is calculated, the screen shown in FIG. 17 is presented to the inspection plan creator.
- FIG. 17 is a diagram showing an example of a screen for the inspection planner to confirm the change in VHI of the equipment scheduled to be inspected in a certain year and the feature amount affecting the change in VHI.
- the screen example 1701 shown in FIG. 17 includes an average VHI temporal change display area 1702, a VHI difference display area 1703, and a feature amount display area 1704 that influences equipment state estimation.
- the average VHI temporal change display area 1702 the average VHI of the equipment scheduled to be inspected after N years calculated in step 704 of FIG. 7 and step 1601 of FIG. 16 and the difference between the current VHI and the VHI after N years have passed.
- a graph showing the change in the average VHI over time is displayed for the equipment where is above the threshold. According to the average VHI temporal change display area 1702, the improvement status of the average VHI can be confirmed.
- VHI difference display area 1703 a facility ID, a current VHI, and a VHI value after N years are displayed in a list format for a facility in which the difference between the current VHI and the VHI after N years is larger than a threshold value.
- feature amount display area 1704 feature amounts that have affected the deterioration of the equipment state are displayed in a list format. By checking the feature amount display area 1704, the inspection planner can instruct the inspection person about the target equipment, the points of interest during inspection, and the countermeasures against deterioration.
- step 1602 of FIG. 16 the result of rearrangement based on the degree of uncertainty in step 703 of FIG. 7 is divided into a plurality of segments.
- the segments may be divided by year of scheduled inspection, such as yearly, or may be divided by range of VHI values.
- step 1603 of FIG. 16 the equipment having the VHI difference calculated in step 1601 of FIG. 16 larger than the threshold value t1 is rearranged to the higher rank in the segment.
- step 1603 the data is rearranged within the segment, but when the difference in VHI is large, it is appropriate to move to another segment. Therefore, in step 1604, the VHI average value for each year up to M years later is calculated for each segment. calculate.
- step 1605 the VHI for the scheduled inspection year and the average VHI for the scheduled inspection years of other segments are compared for the equipment sorted in the higher order in the segment in step 1603.
- step 1605 If the condition of step 1605 is satisfied, the process proceeds to step 1606 and the segment to which the record belongs does not change. On the other hand, if the condition of step 1605 is not satisfied, the process proceeds to step 1607, and the record is moved to the segment having the closest average value.
- step 1608 the scheduled inspection year is updated to the scheduled inspection year of the segment after movement.
- step 1609 the equipment is rearranged in the segment after the movement in the order of VHI in the scheduled inspection year.
- FIG. 18 is a diagram showing an example of a screen for the inspection plan creator to confirm the effect of the inspection order optimization as a result of executing the processing shown in FIG.
- the screen example 1800 shown in FIG. 18 includes a graph 1801 on the left side of the screen and a table 1802 on the right side of the screen.
- the planned inspection year is the horizontal axis
- the VHI for each year up to M years calculated in step 704 of FIG. 7 is the vertical axis
- the equipment not inspected by a certain year inspection Display the average VHI of unimplemented equipment.
- the graph 1801 the case where the inspection is performed in order from the lowest VHI and the case where the inspection order is optimized according to the present invention are compared and displayed.
- the inspection plan creator can confirm from the graph 1801 that deterioration of the average VHI can be suppressed even for the equipment in the latter half of the planned inspection year by the optimization by the equipment maintenance and inspection support system.
- a table 1802 on the right side of the screen displays the planned inspection year and the equipment inspection order before and after the optimization. It can be confirmed from the table 1802 that the order of equipment IDs to be inspected is different before and after the inspection order is optimized.
- the inspection plan creator can make an inspection plan in which inspection and inspection are performed in the order of the equipment IDs after the optimization.
- the planner of the inspection plan may input the inspection order proposal optimized based on the equipment state into the system for optimizing the inspection order considering the equipment position.
- the power distribution equipment is shown as an example of the wide area equipment inspection, but the scope of application of the system of the present invention is not limited to this, and communication and gas having a wide area equipment, inspection and maintenance of gas, water, etc. It is applicable to order optimization.
- the equipment maintenance / inspection support system includes an input unit (input device 101) that receives a condition for determining the inspection order, and environmental data ( An environmental information database 105), a data collection unit (data collection device 102) that collects equipment data (equipment maintenance database 106) including information on the equipment to be inspected and inspection results, and the current and current data based on the collected data.
- the future equipment soundness is calculated, the uncertainty level of the data used to calculate the equipment soundness degree is calculated, and the inspection order is determined based on the calculated equipment soundness degree and the calculated uncertainty level.
- the estimated equipment state and data can be optimized based on reliability. Further, the inspection plan creator can receive the proposal of the inspection sequence optimized in consideration of the reliability of the data used when predicting the equipment state, and confirm the effect. Further, by optimizing the inspection sequence, it is possible to suppress the number of equipment failures that occur before the inspection.
- the inspection order can be determined based on the latest information without knowing the update timing of the information. .
- the calculation unit 103 associates the collected environment data 105 with the equipment data 106 and converts the data into an analysis data, and a model for calculating the equipment soundness from the processed analysis data.
- a VHI calculation model creation unit 114 to be created a VHI calculation unit 115 that calculates equipment soundness from the analysis data using the created model, and an uncertainty level of data used to calculate the equipment soundness
- an inspection order determination unit 117 that determines an inspection order based on the calculated equipment soundness and the calculated uncertainty level. Therefore, based on the estimated equipment state and the reliability of the data.
- the inspection order can be optimized.
- the VHI calculation model creation unit 114 calculates the degree of importance of the contribution of each data input as a feature amount to the model to the equipment soundness calculated using the created model. Therefore, it is possible to understand the data that has affected the deterioration of the equipment condition, and to examine the target equipment, the points of interest at the time of inspection, and the countermeasures against deterioration.
- the inspection order determination unit 117 a first rearrangement processing 701 that rearranges the equipment having the calculated poor equipment soundness into a higher inspection order, and an uncertainty calculation processing 702 that calculates the uncertainty.
- a second rearrangement process 703 for rearranging the inspection order of the facilities a future VHI calculation process 704 for calculating a future facility soundness, and the calculated future facility soundness based on the calculated uncertainty. Since the third rearrangement process 705 for rearranging the inspection order of the equipment is executed based on the above, the proper inspection order can be created.
- the inspection order determination unit 117 calculates the uncertainty level based on the quality of each data input to the model and the calculated importance level in the uncertainty level calculation processing 702. The degree of uncertainty can be calculated considering the contribution, and an appropriate inspection order can be created.
- the inspection order determination unit 117 calculates the uncertainty in the uncertainty calculation processing 702 based on the importance of the observation included in the environmental data
- the inspection order determination unit 117 calculates the uncertainty of each observation included in the environmental data. The degree of uncertainty can be calculated considering the contribution, and an appropriate inspection order can be created.
- the inspection order determination unit 117 in the uncertainty calculation process 702, the observation station calculated using the position information of the equipment included in the equipment data 106 and the position information of the observation station included in the environment data 105. Since the degree of uncertainty is calculated based on the distance between the equipment and the facility, the degree of uncertainty can be calculated in consideration of the deviation of the observed values due to the distance, and an appropriate inspection order can be created.
- the inspection order determination unit 117 calculates the quality of the data from the inspection interval of the inspection result included in the equipment data 106 in the uncertainty calculation process 702, the degree of uncertainty in consideration of the length of the inspection interval. Can be calculated and an appropriate inspection sequence can be created.
- the inspection order determination unit 117 rearranges the inspection order of the equipment in the divided segments based on the calculated uncertainties in the second rearrangement process 703, and therefore considers the uncertainties.
- the proper inspection sequence can be created.
- the inspection order determination unit 117 in the future VHI calculation processing 704, creates environmental data for each year from the present to the end of the predetermined maintenance cycle (1501), and from the present to the end of the maintenance cycle.
- Facility data for each year is created (1502)
- future facility soundness is calculated using the created environment data for each year and the created facility data for each year (1503)
- Since the scheduled inspection year is set based on the future facility soundness (1504), the future facility soundness can be accurately calculated and an appropriate inspection sequence can be created.
- the inspection order determination unit 117 sets the scheduled inspection year of the facility based on the number of facilities that can be inspected in one year in the third rearrangement process 705, and the calculated current facility for each facility.
- the difference between the soundness and the calculated soundness of the facility for the planned inspection year is calculated (1601), the equipment arranged in a predetermined order is divided into segments (1602), and the difference in the soundness of the equipment is predetermined.
- the equipment larger than the threshold value is rearranged to the higher rank in the segment (1603), the average of the equipment soundness of each segment is calculated (1604), and the average value of the equipment soundness of the scheduled inspection year of the segment to which the equipment belongs is It is judged whether or not the facility soundness is closest to the facility inspection year (1605), and if the VHI average value of the scheduled inspection year of the segment to which the facility belongs is not the closest to the VHI of the facility inspection scheduled year, the average value is determined.
- the scheduled inspection year of the equipment is updated to the closest scheduled inspection year (1608), and the equipment is sorted in the segment in ascending order of the soundness of the equipment (1609). Therefore, it is appropriate to consider the future soundness of the equipment. You can create an inspection sequence.
- the output unit 104 is a screen that displays a graph showing an average value of the equipment soundness for each inspection time of the equipment before and after the inspection order is determined, and a list of the inspection order after the inspection order is determined. Since data is output, the effect of optimizing the inspection sequence can be presented in an easy-to-understand manner.
- the present invention is not limited to the above-described embodiments, but includes various modifications and equivalent configurations within the scope of the appended claims.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the configurations described.
- part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
- the configuration of another embodiment may be added to the configuration of one embodiment.
- a part of the configuration of each embodiment may be added / deleted / replaced with another configuration.
- each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized by hardware, for example, by designing a part or all of them with an integrated circuit, and a processor realizes each function. It may be realized by software by interpreting and executing the program.
- Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
- SSD Solid State Drive
- control lines and information lines are shown to be necessary for explanation, and not all the control lines and information lines necessary for implementation are shown. In reality, it can be considered that almost all configurations are connected to each other.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
設備の保守業務における点検順序を決定する設備保守点検支援システムであって、点検順序を決定するための条件を受け付ける入力部と、設備が設置されている環境に関する環境データと、点検対象の設備の情報及び点検結果を含む設備データを収集するデータ収集部と、前記収集されたデータに基づいて現在及び将来の設備健全度を算出し、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する演算部と、前記決定された点検順序の結果及び前記決定された点検順序による改善状況を表示する出力部とを備える。
Description
本発明は、広域設備の点検順序を適正化する設備保守点検支援システムに関する。
限られたリソース(点検作業員数、作業に使用する機材など)で広域に設置された設備を点検保守する場合、効率的かつ適切な時期に巡視や点検・保守を行うように点検順序を策定し、設備に故障や事故を発生させないことが重要である。設備点検順序策定の考え方として、主に時間基準保全と状態基準保全の2通りが知られている。時間基準保全では、設備状態によらず周期的に点検が行われる。時間基準保全では、点検や修理が必要な設備の点検順序が点検リストの最後尾に配置される場合がある。また、直ちに点検が必要のない状態の設備を点検することになり、件費がかかる。
一方、状態基準保全では、設備状態が劣化している設備を優先的に点検する。状態基準保全によれば、故障前に巡視や点検・修理が実施される確率が高くなるため、信頼性の低下を防止でき、さらに故障による修理対応費や補償費の発生を抑制できる。そこで、近年、時間基準保全から状態基準保全への移行が必要とされている。
この技術分野の背景技術として、以下の先行技術がある。特許文献1(特開2002-142244号公報)には、種々の機器が設置された複数の通信基地局を対象として、前記機器の保守サービスおよび不具合対応サービスのための巡回経路を提供する通信基地局のサービス巡回経路提供システムにおいて、前記巡回経路を決定するセンタが設けられ、前記各通信基地局は、設置された前記機器の動作状態を検出する動作状態検出手段および当該通信基地局の環境状態を検出する環境状態検出手段の少なくとも一方の検出手段と、この検出手段により検出された状態を監視データとして前記センタに送信する通信手段とを備え、前記センタは、前記各通信基地局から前記監視データを受信する通信手段と、前記各通信基地局の機器に関する保守データが格納された保守データベースと、前記通信手段により受信した監視データと前記保守データベースから読み出した保守データとに基づいて前記各通信基地局に対するサービス必要度を算出し、その算出したサービス必要度に応じて各通信基地局の巡回経路を決定する巡回経路決定手段とを備えて構成されていることを特徴とする通信基地局のサービス巡回経路提供システムが記載されている(請求項1参照)。
また、特許文献2(特開2009-3517号公報)には、プラントを構成する機器の劣化状態を検査し、保守計画の策定を行う保守管理支援装置であって、複数の評価項目に対する一致度を含む計算条件を受け付ける入力部と、前記プラント内の状態信号を計測し入力する信号入力部と、前記状態信号に基づいて機器の劣化状態を推定し、該劣化状態と前記計算条件により、保守作業の内容および実施時期を含む対策案について前記複数の評価項目に対する評価を行い、評価結果が前記一致度の範囲外である場合は前記対策案を修正して再計算する計算部と、前記対策案についての計算結果を表示する出力部と、を備え、前記出力部に、前記対策案及び修正した対策案の各々に対し前記複数の評価項目の評価結果を表示することを特徴とする保守管理支援装置が記載されている(請求項1参照)。
状態基準保全の実施には各設備の状態を把握し、最適な巡視や保守・点検順序(以下、点検順序と称する)を策定する必要がある。設備の状態を測定するセンサが設備に取り付けられている場合には、センサデータを分析して状態を把握できる。しかし、柱上変圧器に代表される配電設備のように、多数の設備が広域に長期間わたって設置される場合には、各設備にセンサを取り付けて状態を監視するとコストが必要になる。また、多くの設備は屋外に設置されており日光や風雨など環境や天候による影響を直接受ける。従って、広域設備へ状態基準保全を適用する際には、設備の設置位置や年数などの設備情報に加えて設備の設置環境の情報が必要となる。特許文献1では、機器の状態及び環境状態を使用するため、機器自体に温度、湿度、風量などのセンサを取り付ける必要がある。特許文献1に記載された技術を配電設備に適用する場合には、多数のセンサが必要となり、センサの設置コストやメンテナンスコストがかかるため現実的ではない。
そこで、一般に公開されているオープンデータを活用して設備の状態を把握することが考えられる。しかし、オープンデータの観測局は設備に比べて少なく、設備と観測局との距離によって、設備に関連付けられた観測データが実際の設備設置位置の環境と異なる可能性がある。また、観測局側の事情により、観測が行われない場合があり、観測値の平均値、最高値、最低値が実際とは異なる場合がある。そこで、設備に関連付けられたオープンデータの信頼性を評価する必要がある。例えば、日本の気象庁は、品質情報が付されたオープンデータを公開している。以上より、各設備に関連付けられた観測データの信頼性を評価し、それを考慮して点検順序の策定する必要がある。
また、多数の設備に対して点検作業員数は限られているため、点検を一度に行うことはできない。現在の設備状態順に点検を行う場合、点検予定日が数年後となることがある。特許文献2では、現在の設備の故障停止確率に基づいて保守計画を決定する方法を提案している。しかし、設置環境によっては、点検が実施される数年後までの間に設備の状態が急激に悪化することも考えられが、保守計画の策定において数年後の故障確率は考慮されていない。そこで、将来の設備状態を予測し、現在及び将来の設備状態を考慮して点検順序を策定することによって、故障前に巡視や保守・点検を実施できる確率が向上する。
本発明の目的は、広域設備を状態基準保全に基づいて巡視や点検・保守する場合に、推定された設備状態及びデータの信頼性に基づいて点検順序を適正化することである。
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、設備の保守業務における点検順序を決定する設備保守点検支援システムであって、点検順序を決定するための条件を受け付ける入力部と、設備が設置されている環境に関する環境データと、点検対象の設備の情報及び点検結果を含む設備データを収集するデータ収集部と、前記収集されたデータに基づいて現在及び将来の設備健全度を算出し、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する演算部と、前記決定された点検順序の結果及び前記決定された点検順序による改善状況を表示する出力部とを備えることを特徴とする。
本発明の一態様によれば、点検順序を適正化できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
以下、実施例を図面を用いて説明する。
<実施例1>
まず、本発明の実施例1として、本発明の設備保守点検支援システムを配電設備の点検順序策定に適用した例について説明する。
まず、本発明の実施例1として、本発明の設備保守点検支援システムを配電設備の点検順序策定に適用した例について説明する。
図1Aは、設備保守点検支援システムの概略構成図である。
設備保守点検支援システムは、入力装置101、データ収集装置102、演算装置103及び出力装置104から構成される。図1Aでは、入力装置101、データ収集装置102、演算装置103及び出力装置104が別の計算機である構成を図示したが、入力装置101、データ収集装置102、演算装置103及び出力装置104が一つの計算機に実装されてもよい。
入力装置101は、点検計画立案者が使用する計算機であり、点検計画立案者が点検作業員数、作業車数などのリソースを考慮して策定した年間に点検可能な設備数が入力される。また、点検計画立案者は、時間基準保全を実施した際に設定された点検周期を入力装置101に入力する。データ収集装置102は、設備が設置されている環境を示すオープンデータ及び設備のデータを収集し、それぞれ環境情報データベース105及び設備保守データベース106にデータを格納する計算機である。演算装置103は、データ収集装置102に格納されたデータを用いて、本実施例の設備保守点検支援システムの主たる処理を実行する計算機である。出力装置104は、点検計画を出力する計算機であり、点検作業拠点に設置される。点検作業者は、出力装置104から出力される点検計画に従って配電設備を点検する。
環境情報データベース105は、オープンデータとして分析に利用するデータを格納し、気象データ108、大気データ109及び地理データ110を含む。気象データ108は、気象庁の過去の気象データ・ダウンロードサイトから定期的に自動データ収集部107が取得する。本実施例では月別値を使用するため、気象データは一か月に一度データが更新されるタイミングで取得すればよい。同様に大気データ109も月別値を利用するため、一か月に一度、国立環境研究所の環境数値データベースから自動データ収集部107が取得する。地理データ110は、国土地理院が提供しており、変化が少なく更新頻度が低いため数年に一度、手作業でデータを更新すればよい。
設備保守データベース106は、設備データ111及び点検履歴データ112を含む。設備データ111は、配電事業者の設備台帳から定期的に自動データ収集部107により自動的に収集する。点検履歴データ112は、配電事業者が点検作業員の点検結果を格納する点検結果データを、自動データ収集部107で自動的に収集する。
図1Bは、設備保守点検支援システムを構成する計算機の物理的な構成を示すブロック図である。
本実施例のシステムを構成する計算機は、プロセッサ(CPU)1、メモリ2、補助記憶装置3及び通信インターフェース4有する。計算機は、入力インターフェース5及び出力インターフェース8を有してもよい。
プロセッサ1は、メモリ2に格納されたプログラムを実行する演算デバイスである。プロセッサ1が、各種プログラムを実行することによって、計算機の各種機能が実現される。なお、プロセッサ1がプログラムを実行して行う処理の一部を、他の演算デバイス(例えば、FPGAやASIC)で実行してもよい。
メモリ2は、不揮発性の記憶素子であるROM及び揮発性の記憶デバイスであるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶デバイスであり、プロセッサ1が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。
補助記憶装置3は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶デバイスである。また、補助記憶装置3は、プロセッサ1がプログラムの実行時に使用するデータ及びプロセッサ1が実行するプログラムを格納する。すなわち、プログラムは、補助記憶装置3から読み出されて、メモリ2にロードされて、プロセッサ1によって実行されることによって、計算機の各機能を実現する。
通信インターフェース4は、所定のプロトコルに従って、他の装置との通信を制御するネットワークインターフェース装置である。
入力インターフェース5は、キーボード6、マウス7、タッチパネル(図示省略)などの入力装置が接続され、オペレータからの入力を受けるインターフェースである。出力インターフェース8は、ディスプレイ装置9やプリンタ(図示省略)などの出力装置が接続され、プログラムの実行結果をオペレータが視認可能な形式で出力するインターフェースである。
プロセッサ1が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して計算機に提供され、非一時的記憶媒体である不揮発性の補助記憶装置3に格納される。このため、計算機は、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。
データ収集装置102及び演算装置103は、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。
各データに含まれる主なデータ項目については後述する。例えば、図2に示すように、環境情報データベース105の気象データ108は、観測項目、観測局の緯度及び経度、観測局名、観測年月、観測値、及び品質情報などを保持する。品質情報は、例えば、所定期間に観測値が得られた回数の割合でもよい。また、日本の気象庁は、品質情報が付されたオープンデータを公開している。
図3A及び図3Bは、データ収集装置102が収集し、保持するデータ項目の例を示す図である。
設備の設備健全度(VHI:Virtual Health Index)は、設置されてからの経過年数や、設置されている環境によって異なる。このため、VHIの算出には設備情報と設備が設置されている環境を示す情報を使用する。本実施例では、気象庁が公開している気象データ108、国立環境研究所が公開している大気データ109、国土地理院が公開している地理データ(国土数値情報)110などのオープンデータをVHIの算出に使用する。本実施例で使用するオープンデータは、気象庁、国立環境研究所、国土地理院のウェブサイトから取得できる。
図3Aは、設備保守データベース106に格納されるデータ項目の一部を示し、図3Bは、環境情報データベース105に格納されるデータ項目の一部を示す図である。
気象データ108として月別の値が取得可能な項目は、気温、降水、日照/日射、積雪/降雪、風、湿度/気圧、雲量/天気などの実測値である。各項目は月別に統計処理された数値が取得可能である。例えば、統計的に処理された気温として、月の最高気温、最低気温、平均気温、月のうちある条件を満たす日数などが取得できる。
大気データ109として取得可能な観測項目は、SO2、NO、NO2、NOX、CO、OX、NMHC、CH4、THC、SPM、SP、PM2.5などの実測値である。それぞれ実績値を月間値としてダウンロード可能である。大気データの観測項目も実績値を統計処理した結果としてダウンロード可能である。
地理データ110は、国土地理院の国土数値情報から標高、傾斜度、土地利用、幹線道路、海岸線、湖沼、河川データなどを使用する。国土数値情報はデータにより形式が異なる。例えば、標高及び傾斜度はメッシュデータで、各メッシュの平均標高、最高標高、最低標高、平均傾斜角度、最大傾斜角度、最低傾斜角度、最大傾斜方向、最小傾斜方向を持つ。土地利用は、各メッシュについて、田、その他の農用地、森林、荒地、建物用地、道路、鉄道、その他の用地、河川地及び湖沼、海浜、海水域、ゴルフ場などの利用区分の面積を平方メートル単位で持つ。海岸線、河川データはシェープファイル形式で取得できる。
演算装置103は、データ加工部113、VHI算出モデル作成部114、VHI計算部115、記憶部116及び点検順序決定部117から構成される。データ加工部113は、データ収集装置102が収集したデータの関連付けやクレンジングを行う。クレンジング処理で、異常値や、短期間しか収集されていないデータを除外することによって、VHIを正確に算出できる。VHI計算部115では加工済みデータからVHIを算出する。
VHIは、保守対象の設備の健全度を示す数値指標であり、値が高いほど健全であり、値が低いほど劣化が進んでいることを示す。VHIは、製造時が最も高い値を示すもので、製造時の値を1、故障時の値を0として正規化してもよい。VHIは、設備ごとに算出される値であり、例えば、電柱、開閉器、変圧器では素材や劣化メカニズムが異なるため、それぞれ別のVHI算出モデルを作成し、VHIを算出する。
記憶部116は、加工済みデータ、及び算出されたVHIを格納する。点検順序決定部117は、算出されたVHIとVHI算出に使用したデータの信頼性に基づいて、点検順序を適正化する。適正化された点検順序と、適正化による効果は、出力装置104の画面に表示される。
図4は、演算装置103が現在のVHIを算出する際の、データ加工部113、VHI計算部115及び点検順序決定部117が実行する点検順序決定処理のフローチャートである。
データ加工部113は、環境情報データベース105と設備保守データベース106に格納したデータを分析に適したデータに変換し、関連付けを行うデータ加工処理を実行する(401)。データの変換は二種類実施する。一つ目は設備データの変換である。現在のVHIを算出する場合、設備データの変換では、日付に関するデータを現在までの経過日数に変換する。例えば、工事年月日は設備データに記載されている工事年月日を現在までの経過日数に変換する。二つ目はオープンデータの加工である。オープンデータの加工では、まず、オープンデータを分析可能な形式に変換し、各設備に関連付ける。分析可能な形式への変換として、各メッシュにおける各土地利用面積が記載されている土地利用データから各メッシュにおける土地利用割合への変換がある。また、海岸線や工業用地、河川・湖沼海岸線データ、幹線道路データはシェープファイルであり、それぞれの設備が存在する位置を示す。VHIの算出では設備の劣化に影響する特徴量を入力データとして利用するため、各設備から海岸線、工業用地、河川、湖沼までの距離を算出する。さらに気象データついては、設備が設置されてから現在までの加算値、平均値、最大値、最小値などを算出する。例えば、降水量や降雪量は日々の観測値を累積した月間の加算値に意味があり、気温や風速は日々の観測値の月間の平均値、最大値、最小値等に意味がある。各データを加工後、設備IDをキー項目として設備データと、点検履歴データと、オープンデータとを関連付ける。本実施例では、設備データとの距離が最も近い観測点のオープンデータを関連付ける。以上の加工・算出結果は演算装置103の記憶部116に保持される。
VHI計算ステップ402は、VHI算出モデル作成部114及びVHI計算部115で実行される。まず、VHI算出モデル作成部114では過去のデータを使用して事前にVHI算出モデルを作成する。ここでVHI算出モデル作成時に使用するデータ項目とモデル作成方法について説明する。VHI算出モデル作成時の特徴量(説明変数)は、ステップ401で作成するデータと同じ項目を使用し、点検履歴データを目的変数とする。特徴量は、モデル作成時以前の気象データ、大気データ、地理データ、設備データなどである。広範囲にわたって設置される広域設備には個々に設備状態を計測するセンサが設けられないことから、目的変数に設定する点検履歴データは、設備の状態を数値で評価しても、”OK””NG”の2値で評価してもよい。数値で設備状態を記録している場合には、モデル作成時の目的変数に点検結果を設定することで、現在の設備状態を数値で予測可能である。
しかし、一般的に広域設備の点検結果の多くは、複数の段階で評価されている。”OK””NG”の2値で記録されている場合には”OK””NG”の2クラスを目的変数として状態を予測するモデルを作成する必要がある。しかし、予測結果が”OK””NG”の二値の場合には、”NG”と判別された設備のうち、どの設備の状態が最も悪いか判定できず、適切な点検順序の決定が困難である。そこで、直接、設備状態を数値で予測するのではなく、SVM(Support Vector Machine)で”OK””NG”を識別する境界面を作成し、クラスの境界面から各設備データまでの距離をVHIとして利用することによって数値として設備状態を示す方法を採用する。”OK””NG”を分けるモデルにおいて境界面から”OK”側に離れている場合には設備の状態が良く、”NG”側に離れている場合には設備の状態が悪いことを示す。”NG”側の境界面からの距離はマイナスをつけてVHIとすることによって、VHI値が大きいほど健全度が高く、小さいほど健全度が低く、早急に点検・修理が必要である状態を示す。
なお、2値で設備の状態を評価するVHI算出方法では、前述した以外の方法を採用できる。また、SVMなどの方法によって、目的変数の予測に使用する各特徴量の重要度(目的変数に対する寄与の大きさ)をVHI算出モデル作成時に取得可能である。特徴量の重要度によって、目的変数に大きな影響を与える特徴量を知ることができる。また、点検結果を5段階など複数段階で評価している場合には、推定される各段階の確からしさを用いてVHIを算出できる。複数段階で評価した場合でも、各段階に判定された設備を巡視・点検すべき順序の決定が困難である。このため、複数段階評価の場合にも2段階の”OK””NG”評価と同様に環境情報データベース105に格納されるデータと設備保守データベース106に格納される過去のデータを入力として、設備状態の段階を推定するモデルを作成する。例えば、5段階で設備状態を評価する場合に、段階1は設備の劣化が進んでいる状態を示し、段階5は設備が健全な状態を示す。ある設備は、設置後、段階5から段階1まで状態が徐々に変化すると考えられる。SVCを算出モデルとして利用したとき、設備状態5と推定される確からしさが高いほど設備状態が良く、設備状態1と推定される確からしさが高いほど設備状態が悪く、劣化が進んでいると判定できる。そこで、VHI算出モデルで算出される各劣化段階評価に割り当てられる確からしさを用いてVHIを算出する。
図5は、点検結果を複数段階で評価する場合に、各劣化段階評価に割り当てられる確からしさの数値を示す劣化段階評価テーブルの例を示す図である。VHIは劣化段階評価とその確からしさの重みづけ平均で算出する。VHI算出式は下記に示す。ここで劣化評価段階nと推定される確からしさをpnとする。ただし、複数段階で設備の状態を評価する際のVHI算出方法はこれに限らない。
演算装置103のVHI計算部115は、ステップ402のVHI計算処理を実行する。ステップ402のVHI計算では、VHI算出モデル作成部114が算出したモデルに、ステップ401のデータ加工で作成したデータを入力し、現在のVHIを数値指標として算出する。VHI算出時に特徴量の重要度が出力され、演算装置103の記憶部116に保持する。図11に保持される重要度を示すテーブルの例を示す。特徴量の重要度は、ステップ403の点検順序適正化処理で利用される。各項目の詳細については後述する。
ステップ402のVHI計算処理の実行結果として、各設備のVHIが算出される。各設備のVHIは、図6に示すVHI出力データとして演算装置103の記憶部116に保持され、出力装置104から出力(例えば、リストとして表示)される。ステップ403の点検順序適正化処理では、ステップ402のVHI計算処理で算出されたVHIに基づいて、最適な設備の巡視点検順序を決定する。
図7は、図4のステップ403の点検順序適正化処理の詳細な手順のフローチャートである。
ステップ701の点検順序適正化処理では、ステップ401のVHI算出処理の結果として出力されたVHIを値が低い方から順に設備を並べ替え、設備点検順序リストを作成する。
次に、ステップ702の不確信度算出処理では、モデル作成時に使用した各特徴量の重要度及びデータの品質情報から、各設備に関連付けられるデータの不確信度を算出する。ステップ702の処理の詳細については後述する。
ステップ703の不確信度に基づく設備点検順序並び替え処理では、ステップ701で並べ替えた設備点検順序リストをセグメントに分け(例えば、上位から所定件数ずつセグメントに分け)、セグメント内で不確信度に基づいて設備の点検順序を並べ替える。セグメントの分け方としてVHIの値を一定数値ごとに分ける方法や、一年など、所定の期間に点検可能な設備数ごとに分ける方法がある。セグメントを分ける方法は、管理者が入力装置101のキーボードやマウスを利用して設定する。設備の巡視、点検の実施にあたり、作業員数及び点検コストは限られているため、一年間に点検可能な設備数は限られる。そこで、設備点検順序リストの上位から順に点検予定年を設定する。
ステップ704の将来のVHI算出処理では、将来のデータに変換した特徴量を図4のステップ402で作成したモデルに入力し、将来のVHIを算出する。
最後に、ステップ705にて点検予定年月のVHIと現在のVHIとの差を算出し、点検予定年月までに著しく設備状態が低下する設備を抽出し、設備劣化が生じる前に点検が完了するように点検順序リストを再度並び替える。将来のVHI算出処理の詳細は後述する。
不確信度は、設備とデータ観測局との距離やVHI算出時の特徴量に使用するオープンデータの品質情報から算出される。データの品質情報とは、データ自体の信頼性を示す値であり、本実施例では、オープンデータの精度(品質情報)や、目的変数として入力される点検結果(劣化評価段階n)の更新頻度を用いる。
まず、設備に関連付けられた観測局との距離を用いて不確信度を算出する例を説明する。
図8は、ステップ702の不確信度算出処理の詳細な手順のフローチャートである。
まず、図8のステップ801で、設備に関連付けられた観測局との距離を算出する。設備と観測局との距離は、設備保守データベース106の設備データ111に格納されている設備の位置情報、及び環境情報データベース105の各データ108、109、110に格納されている観測局の位置情報から算出し、演算装置103の記憶部116に格納される。
例えば、図9に示す設備001に最も近い観測局は観測局1である。設備001と観測局1間の距離をd11とする。しかし、分析に使用するデータ項目が一つの観測局で全て観測されているとは限らない。例えば、図10に示すように、設備001に最も近い観測局1では降水量が観測されていないため、降水量が観測されている観測局のうち、最も距離が近い観測局3と設備001も関連付ける必要がある。このように一つの設備に対して複数の観測局のデータが関連付けられてもよい。設備に関連付けられた各観測局との距離を記憶部116に格納する。このように、一つの設備が1又は複数の観測局と関連付けられ、図8のステップ801の処理によって図12に例示するテーブルが作成される。
次に、不確信度算出処理(ステップ802)では、ステップ801で算出された設備と観測局との距離を用いて不確信度を算出する。不確信度は設備と観測局間との距離と関連付けた特徴量の重要度を用いた重みづけ平均によって不確信度Rd_1を算出する。
図11は、図8のステップ802の不確信度算出処理に使用する特徴量、各特徴量の重要度、及びデータ取得元を関連付けたテーブルの例を示す図である。また、図12は、ステップ802の不確信度算出処理に入力される設備に関連付けられた特徴量(観測値)である、観測局、設備-観測局間距離、品質情報を記録するテーブルを示す図である。これらテーブルは記憶部116に格納される。
図11に示すテーブルのデータ取得元カラムには、特徴量が環境情報データベース105に記録されている場合には1を、設備保守データベース106に記録されている場合には2を記録する。不確信度は、環境情報データベース105に格納された観測局で収集されたデータ、及び設備保守データベース106に格納されたデータのいずれでも算出可能である。
設備-観測局間距離に基づく不確信度を算出する場合には、図11のテーブルを参照し、データ取得元カラムに”1”が設定された、観測局データを使用した特徴量を抽出する。これによって、例えば、図12に示すように、データ取得元カラムにフラグ”1”が設定されている特徴量が気温、降水量及び気温の3項目である場合、設備001の設備-観測局距離に基づく不確信度Rd_1を、図11のテーブルに記録された特徴量の重みと記憶部116に格納した設備と観測局との距離を用いて式(2)によって算出する。下式において、d11は設備001と気温及び気圧を測定した観測局1との距離、d13は設備001と降水量を観測した観測局3との距離である。
次に、環境情報データベース105に格納されるデータ(各観測項目のデータ品質や観測日数)を用いて不確信度を算出する例を説明する。設備001のVHI算出に使用したデータの品質情報を用いて不確信度Rq_1を算出する場合には、図12の品質情報カラムに格納したデータ品質情報を数値に変換した値の重要度を用いた重みづけ平均によって不確信度Rq_1を算出する。そして、距離に基づく不確信度Rd_1及び品質情報に基づく不確信度Rq_1から、設備001の不確信度R1を下式で算出する。
計算に使用する重みwdistanceとwqualityは、電力会社のポリシーに従って適切な値を設定するとよい。算出された不確信度は図5のテーブルを参照して劣化段階に変換され、図14に示す点検順序リストで記憶部116に格納する。なお、重みwdistanceとwqualityの調整によって、距離を用いることなく、品質情報を用いて不確信度を算出してもよい。
なお、設備の点検間隔を用いて不確信度を計算してもよい。例えば、点検間隔が長ければ不確信度を大きくし、短ければ(例えば3か月)不確信度を小さくする。これは、点検間隔が5年の設備は、点検後の時間の経過に伴って推定される設備の状態と実際の設備の状態との乖離が大きくなると考えられ、点検間隔が3か月の設備より、不確信度が大きくなるからである。
また、点検情報112(設備保守データベース106)に記録されている前回の点検年月日からの経過期間が長ければ不確信度を大きくし、短ければ不確信度を小さくしてもよい。
さらに、品質情報として、各観測項目のデータ品質や観測日数、点検間隔、前回の点検からの経過期間を例示したが、設備の種類によって劣化に寄与する観測項目の他の品質情報を使用してもよく、これらのうち、任意の一つ以上を使用すればよい。
図13は、図7のステップ703の不確信度に基づく点検順序並べ替え処理の詳細な手順のフローチャートである。
ステップ1301では、図7のステップ701の出力結果である点検順序リストを上位から順に複数セグメントに分ける。セグメントに分ける方法は、VHIの値ごとに分ける方法や、所定数ずつ分ける方法があり、設備管理ポリシーや目的に適する方法や数値が点検計画立案者によって選択される。
ステップ1302では、図7のステップ702で算出した不確信度に基づいて、ステップ1301で分けたセグメント内で設備点検順序リストを並べ替える。このとき、VHIの信頼性が高い設備を優先的に点検する場合には、不確信度が低い設備を上位の点検順に並べる。また、VHIの値が低いセグメントで、確実に設備を点検したい場合には不確信度が高い設備を上位の点検順に並べる。不確信度によってオープンデータのデータ信頼性を評価可能となる。図14で示す点検順序リストの設備を不確信度に基づいて並べ替えた後、記憶部116に格納する。
図15は、図7のステップ704の将来のVHI算出処理の詳細な手順のフローチャートである。
ステップ704で算出された将来のVHIに基づいて、ステップ705では点検順序リストを並べ替える。配電会社によってポリシーは異なるが、時間を基準にして保全する時間基準保全の場合には数年に一度のサイクルで全ての設備を点検する。例えば、時間基準保全を導入していた場合に設定されている周期をM年とする。時間基準保全で設定されている周期は計画立案者がキーボードから入力する。図4のステップ402では現時点までのデータを使用して、現時点でのVHIを算出するが、ステップ704では将来のVHIを算出するため、M年後までのデータを作成する必要がある。
図15のステップ1501では、現在からM年後までの各年についてオープンデータを作成する。標高や海岸線からの距離はM年後に大きく変化しないと考えられるが、降水量や日照量のM年分を加算して合計値を算出する。また、M年後までの詳細な気象予報の取得は困難であるため、長期の気象シナリオや過去の気象データに基づいて複数のパターンを想定して作成する。例えば、平均的な気候が続くことが想定される場合には過去数年分の降水量や日照量などの平均値を加算して各年分の気象データを算出することによって、M年後までの各年の分析に適した気象データを取得できる。
ステップ1502では、M年後までの各年の設備データを作成し、更新する。ステップ1502では、設備を設置してからM年後までの各年における経過年数を算出する。
ステップ1503では、VHI算出モデル作成部114が作成したVHI算出モデルを用いて、ステップ1501及びステップ1502で作成したデータと、環境情報データベース105及び設備保守データベース106とから参照する年で変化しないデータを説明変数として、M年後までの各年のVHIを算出する。算出された各年のVHIは記憶部116に格納される。
ステップ1504では入力装置101で入力された一年に点検可能な設備数に基づいて点検順序リストの上位から順に点検予定年を設定する。
図16は、図7のステップ705の点検予定年VHIに基づく並べ替え処理の詳細な手順のフローチャートである。
並べ替えには、図7のステップ704で算出した将来のVHIと図4のステップ402で算出した現在のVHIを使用する。故障が近い危険な値を現在のVHIが示していなくても、現在のVHIに基づいて決定された点検予定年までに急激にVHIが低下することがある。そこで、VHIの著しい悪化が予想される設備は点検順序を入れ替え、点検順序を適正化する。図16のステップ1601では記憶部116に格納している現在のVHIの値及び将来のVHIの値を参照し、各設備について点検予定年VHIと現在のVHIとの差を算出する。VHIの差を算出後、図17に示す画面を点検計画策定者に提示する。
以上、全設備の点検順序を適正化する処理について説明したが、本発明の処理によって選択された一部の設備の適切な点検順序を決定できる。
図17は点検計画立案者がある年に点検が予定されている設備のVHIの変化とVHIの変化に影響を与える特徴量を確認する画面例を示す図である。
図17に示す画面例1701は、平均VHI経時変化表示領域1702、VHI差表示領域1703、及び設備状態推定に影響する特徴量表示領域1704を含む。平均VHI経時変化表示領域1702には、図7のステップ704と図16のステップ1601で算出した、N年後に点検が予定されている設備の平均VHIと、現在VHIとN年後のVHIの差が閾値を上回る設備について、平均VHIの継時変化を示すグラフが表示される。平均VHI経時変化表示領域1702によると、平均VHIの改善状況を確認できる。VHI差表示領域1703には、現在のVHIとN年後のVHIとの差が閾値より大きい設備について、設備ID、現在のVHI及びN年後のVHIの値がリスト形式で表示される。また、特徴量表示領域1704には、設備状態の悪化に影響した特徴量がリスト形式で表示される。点検計画立案者は、特徴量表示領域1704を確認することによって、対象設備の巡視、点検時の着目点及び劣化発生の対策方法を点検実施者に指示できる。
図16のステップ1602では、図7のステップ703で不確信度に基づいて並べ替えた結果を複数のセグメントに分割する。セグメントは1年ごとのように点検予定年ごとに分けてもよく、VHIの値の範囲ごとに分けてもよい。
図16のステップ1603では、図16のステップ1601で算出されたVHIの差が閾値t1より大きい設備をセグメント内の上位に並べ替える。ステップ1603ではセグメント内で並べ替えたが、VHIの差分が大きい場合には他セグメントに移動させることが適切であるため、ステップ1604では各セグメントごとにM年後までの各年のVHI平均値を算出する。ステップ1605ではステップ1603でセグメント内の上位に並べ替えた設備について、点検予定年のVHIと他のセグメントの点検予定年のVHI平均値とを比較する。
ステップ1605の条件に当てはまる場合には、ステップ1606に進み、当該レコードが所属するセグメントを変更しない。一方、ステップ1605の条件に当てはまらない場合には、ステップ1607に進み、平均値が最も近いセグメントに当該レコードを移動する。ステップ1608では、点検予定年を移動後のセグメントの点検予定年に更新する。ステップ1609では、移動後のセグメント内で点検予定年のVHI順に設備を並べ替える。
図18は、図4に示す処理を実行した結果として、点検計画策定者が点検順序適正化の効果を確認するための画面例を示す図である。
図18に示す画面例1800は、画面左側のグラフ1801と、画面右側のテーブル1802とを含む。画面左側のグラフ1801では、点検予定年を横軸とし、図7のステップ704で算出したM年後までの各年のVHIを縦軸として、ある年までに点検が実施されていない設備(点検未実施設備)の平均VHIを表示する。グラフ1801では、VHIが低い方から順に点検を行った場合と本発明により点検順序を適正化を実施した場合を比較して表示する。点検計画策定者は、本設備保守点検支援システムによる適正化によって、点検予定年が後半の設備についても平均VHIの悪化を抑制できることを、グラフ1801で確認できる。
また、画面右側のテーブル1802には、点検予定年と適正化前後の設備点検順序が表示される。テーブル1802によって、点検順序適正化前後では点検を行う設備IDの順序が異なることが確認できる。点検計画策定者は、適正化後の設備IDの順に巡視、点検を実施する点検計画を策定できる。
点検計画策定者は、設備状態を基準として適正化された点検順序案を、さらに、設備位置を考慮して点検順序を適正化するシステムに入力してもよい。
なお、本実施例では広域設備点検の対象の例として配電設備を示したが、本発明のシステムの適用範囲は、これに限定されず、広域に設備を有する通信、ガス、水道等の点検保守順序の適正化に適用可能である。
以上に説明したように、本発明の実施例の設備保守点検支援システムは、点検順序を決定するための条件を受け付ける入力部(入力装置101)と、設備が設置されている環境に関する環境データ(環境情報データベース105)と、点検対象の設備の情報及び点検結果を含む設備データ(設備保守データベース106)を収集するデータ収集部(データ収集装置102)と、前記収集されたデータに基づいて現在及び将来の設備健全度を算出し、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する演算部(演算装置103)と、前記決定された点検順序の結果及び前記決定された点検順序による改善状況を表示する出力部(出力装置104)とを備えるので、推定された設備状態及びデータの信頼性に基づいて点検順序を適正化できる。また、点検計画策定者は、設備状態を予測する際に使用したデータの信頼性を考慮して適正化された点検順序の提案を受け、その効果を確認できる。また、点検順序の適正化によって、点検前に発生する設備故障数を抑制できる。
また、データ収集部102は、前記環境データ105及び前記設備データ106を所定のタイミングで自動的に収集するので、情報の更新タイミングを知らなくても、最新の情報に基づいて点検順序を決定できる。
また、演算部103は、収集された環境データ105と設備データ106とを関連付け、分析用データに変換するデータ加工部113と、前記加工された分析用データから前記設備健全度を算出するモデルを作成するVHI算出モデル作成部114と、前記作成されたモデルを用いて、前記分析用データから設備健全度を算出するVHI計算部115と、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する点検順序決定部117とを有するので、推定された設備状態及びデータの信頼性に基づいて点検順序を適正化できる。
また、VHI算出モデル作成部114は、前記作成されたモデルを用いて算出される設備健全度への、前記モデルに特徴量として入力される各データの寄与の大きさを表す重要度を算出するので、設備状態の悪化に影響したデータが分かり、対象設備の巡視、点検時の着目点及び劣化発生の対策方法を検討できる。
また、点検順序決定部117は、前記算出された設備健全度が悪い設備を上位の点検順序に並べ替える第1並べ替え処理701と、前記不確信度を算出する不確信度算出処理702と、前記算出された不確信度に基づいて、設備の点検順序を並べ替える第2並べ替え処理703と、将来の設備健全度を算出する将来VHI算出処理704と、前記算出された将来の設備健全度に基づいて、設備の点検順序を並べ替える第3並べ替え処理705とを実行するので、適正な点検順序を作成できる。
また、点検順序決定部117は、前記不確信度算出処理702において、前記モデルに入力される各データの品質及び前記算出された重要度に基づいて、前記不確信度を算出するので、データの寄与度を考慮した不確信度を算出でき、適正な点検順序を作成できる。
また、点検順序決定部117は、前記不確信度算出処理702において、前記環境データに含まれる観測値の重要度に基づいて前記不確信度を算出するので、環境データに含まれる各観測値の寄与度を考慮した不確信度を算出でき、適正な点検順序を作成できる。
また、点検順序決定部117は、前記不確信度算出処理702において、前記設備データ106に含まれる設備の位置情報及び前記環境データ105に含まれる観測局の位置情報を用いて算出された観測局と前記設備との距離に基づいて前記不確信度を算出するので、距離による観測値のズレを考慮した不確信度を算出でき、適正度な点検順序を作成できる。
また、点検順序決定部117は、前記不確信度算出処理702において、前記設備データ106に含まれる点検結果の点検間隔から前記データの品質を算出するので、点検間隔の長短を考慮した不確信度を算出でき、適正な点検順序を作成できる。
また、点検順序決定部117は、前記第2並べ替え処理703において、分割されたセグメント内で、前記算出された不確信度に基づいて設備の点検順序を並べ替えるので、不確信度を考慮して適正な点検順序を作成できる。
また、点検順序決定部117は、前記将来VHI算出処理704において、現在から所定の保全周期が終了するまでの各年の環境データを作成し(1501)、現在から前記保全周期が終了するまでの各年の設備データを作成し(1502)、前記作成された各年の環境データ及び前記作成された各年の設備データを用いて将来の設備健全度を算出し(1503)、 前記算出された将来の設備健全度に基づいて点検予定年を設定する(1504)ので、将来の設備健全度を正確に算出でき、適正度な点検順序を作成できる。
また、点検順序決定部117は、前記第3並べ替え処理705において、一年に点検実施可能な設備数に基づいて前記設備の点検予定年を設定し、各設備について前記算出された現在の設備健全度と前記算出された点検予定年の設備健全度との差を算出し(1601)、所定の順序に並べられた設備をセグメントに分割し(1602)、前記設備健全度の差が所定の閾値より大きい設備を前記セグメント内の上位に並べ替え(1603)、前記各セグメントにおける設備健全度の平均を算出し(1604)、設備が所属するセグメントの点検予定年の設備健全度の平均値が設備点検予定年の設備健全度に最も近いかを判定し(1605)、設備が所属するセグメントの点検予定年のVHI平均値が設備点検予定年のVHIに最も近いものではない場合、平均値が最も近いセグメントの点検予定年に設備の点検予定年を更新し(1608)、セグメント内で設備健全度が悪い順に設備を並べ替える(1609)ので、将来の設備健全度を考慮した、適正度な点検順序を作成できる。
また、出力部104は、前記点検順序を決定する前後において、設備の点検時期ごとの設備健全度の平均値を示すグラフと、前記点検順序を決定した後の点検順序のリストとを表示する画面データを出力するので、点検順序の適正化の効果を分かりやすく提示できる。
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
Claims (14)
- 設備の保守業務における点検順序を決定する設備保守点検支援システムであって、
点検順序を決定するための条件を受け付ける入力部と、
設備が設置されている環境に関する環境データと、点検対象の設備の情報及び点検結果を含む設備データを収集するデータ収集部と、
前記収集されたデータに基づいて現在及び将来の設備健全度を算出し、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する演算部と、
前記決定された点検順序の結果及び前記決定された点検順序による改善状況を表示する出力部とを備えることを特徴とする設備保守点検支援システム。 - 請求項1に記載の設備保守点検支援システムであって、
前記データ収集部は、前記環境データ及び前記設備データを所定のタイミングで自動的に収集することを特徴とする設備保守点検支援システム。 - 請求項1に記載の設備保守点検支援システムであって、
前記演算部は、
前記収集された環境データと設備データとを関連付け、分析用データに加工するデータ加工部と、
前記加工された分析用データから前記設備健全度を算出するモデルを作成するVHI算出モデル作成部と、
前記作成されたモデルを用いて、前記分析用データから設備健全度を算出するVHI計算部と、
前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する点検順序決定部とを有することを特徴とする設備保守点検支援システム。 - 請求項3に記載の設備保守点検支援システムであって、
前記VHI算出モデル作成部は、前記作成されたモデルを用いて算出される設備健全度への、前記モデルに特徴量として入力される各データの寄与の大きさを表す重要度を算出することを特徴とする設備保守点検支援システム。 - 請求項4に記載の設備保守点検支援システムであって、
前記点検順序決定部は、
前記算出された設備健全度が悪い設備を上位の点検順序に並べ替える第1並べ替え処理と、
前記不確信度を算出する不確信度算出処理と、
前記算出された不確信度に基づいて、設備の点検順序を並べ替える第2並べ替え処理と、
将来の設備健全度を算出する将来VHI算出処理と、
前記算出された将来の設備健全度に基づいて、設備の点検順序を並べ替える第3並べ替え処理とを実行することを特徴とする設備保守点検支援システム。 - 請求項5に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記不確信度算出処理において、前記モデルに入力される各データの品質及び前記算出された重要度に基づいて、前記不確信度を算出することを特徴とする設備保守点検支援システム。 - 請求項6に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記不確信度算出処理において、前記環境データに含まれる観測値の重要度に基づいて前記不確信度を算出することを特徴とする設備保守点検支援システム。 - 請求項6に記載の設備保守点検支援システムであって、
前記環境データは、データを観測した観測局の位置情報を含み、
前記点検順序決定部は、前記不確信度算出処理において、
前記設備データに含まれる前記設備の位置情報及び前記環境データに含まれる前記観測局の位置情報を用いて、当該観測局と当該設備との距離を算出し、
前記算出された距離に基づいて前記不確信度を算出することを特徴とする設備保守点検支援システム。 - 請求項6に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記不確信度算出処理において、前記設備データに含まれる点検日時に基づいて前記データの品質を算出することを特徴とする設備保守点検支援システム。 - 請求項5に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記第2並べ替え処理において、
所定の順序に並べられた設備をセグメントに分割し、
前記分割された各セグメント内で、前記算出された不確信度に基づいて設備の点検順序を並べ替えることを特徴とする設備保守点検支援システム。 - 請求項5に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記将来VHI算出処理において、
現在から所定の保全周期が終了するまでの各年の環境データを作成し、
現在から前記保全周期が終了するまでの各年の設備データを作成し、
前記作成された各年の環境データ及び前記作成された各年の設備データを用いて将来の設備健全度を算出し、
前記算出された将来の設備健全度に基づいて点検予定年を設定することを特徴とする設備保守点検支援システム。 - 請求項5に記載の設備保守点検支援システムであって、
前記点検順序決定部は、前記第3並べ替え処理において、
一年に点検実施可能な設備数に基づいて前記設備の点検予定年を設定し、
各設備について前記算出された現在の設備健全度と前記算出された点検予定年の設備健全度との差を算出し、
所定の順序に並べられた設備をセグメントに分割し、
前記設備健全度の差が所定の閾値より大きい設備を前記セグメント内の上位に並べ替え、
前記各セグメントにおける設備健全度の平均を算出し、
設備が所属するセグメントの点検予定年の設備健全度の平均値が設備点検予定年の設備健全度に最も近いかを判定し、
設備が所属するセグメントの点検予定年のVHI平均値が設備点検予定年のVHIに最も近いものではない場合、平均値が最も近いセグメントの点検予定年に設備の点検予定年を更新し、セグメント内で設備健全度が悪い順に設備を並べ替えることを特徴とする設備保守点検支援システム。 - 請求項1に記載の設備保守点検支援システムであって、
前記出力部は、
前記点検順序を決定する前後において、設備の点検時期ごとの設備健全度の平均値を示すグラフと、
前記点検順序を決定した後の点検順序のリストとを表示する画面データを出力することを特徴とする設備保守点検支援システム。 - 計算機が設備の保守業務における点検順序を決定する設備保守点検支援方法であって、
前記計算機は、
所定の処理を実行する演算装置と、前記演算装置に接続された記憶デバイスと、前記演算装置に接続された通信インターフェースとを有し、
前記設備保守点検支援方法は、
前記演算装置が、点検順序を決定するための条件を受け付ける入力手順と、
前記演算装置が、設備が設置されている環境に関する環境データと、点検対象の設備の情報及び点検結果を含む設備データを収集するデータ収集手順と、
前記演算装置が、前記収集されたデータに基づいて現在及び将来の設備健全度を算出し、前記設備健全度の算出に使用したデータの不確信度を算出し、前記算出された設備健全度及び前記算出された不確信度に基づいて点検順序を決定する演算手順と、
前記演算装置が、決定された点検順序の結果及び前記決定した点検順序による改善状況を表示する出力手順とを含むことを特徴とする設備保守点検支援方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/043037 WO2020105151A1 (ja) | 2018-11-21 | 2018-11-21 | 設備保守点検支援システム及び点検順序決定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/043037 WO2020105151A1 (ja) | 2018-11-21 | 2018-11-21 | 設備保守点検支援システム及び点検順序決定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020105151A1 true WO2020105151A1 (ja) | 2020-05-28 |
Family
ID=70774709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043037 WO2020105151A1 (ja) | 2018-11-21 | 2018-11-21 | 設備保守点検支援システム及び点検順序決定方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020105151A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022107240A1 (ja) * | 2020-11-18 | 2022-05-27 | 日本電信電話株式会社 | 劣化推定装置、劣化推定方法およびプログラム |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002304213A (ja) * | 2001-04-06 | 2002-10-18 | Kansai Electric Power Co Inc:The | 設備劣化率予測システム |
JP2010073121A (ja) * | 2008-09-22 | 2010-04-02 | Hitachi Plant Technologies Ltd | プラント機器の補修工事スケジュール作成方法、および、補修工事スケジュール作成システム |
JP2010097392A (ja) * | 2008-10-16 | 2010-04-30 | Chugoku Electric Power Co Inc:The | 設備劣化予測システムおよび設備劣化予測方法 |
US20140156225A1 (en) * | 2012-11-19 | 2014-06-05 | Abb Technology Ag | Assessment of power system equipment for equipment maintenance and/or risk mitigation |
JP2014529795A (ja) * | 2011-08-22 | 2014-11-13 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 制御装置の機能を作成する方法 |
JP2015010927A (ja) * | 2013-06-28 | 2015-01-19 | Kddi株式会社 | 観測値処理装置、観測値処理方法及び観測値処理プログラム |
JP2016224539A (ja) * | 2015-05-27 | 2016-12-28 | 日本電信電話株式会社 | 管理方法及び管理装置 |
JP2017002537A (ja) * | 2015-06-09 | 2017-01-05 | 株式会社東芝 | 道路点検情報提供装置及び道路点検情報提供方法 |
JP2018010523A (ja) * | 2016-07-14 | 2018-01-18 | 株式会社日立製作所 | 設備保全計画作成システム及び設備保全計画作成方法 |
-
2018
- 2018-11-21 WO PCT/JP2018/043037 patent/WO2020105151A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002304213A (ja) * | 2001-04-06 | 2002-10-18 | Kansai Electric Power Co Inc:The | 設備劣化率予測システム |
JP2010073121A (ja) * | 2008-09-22 | 2010-04-02 | Hitachi Plant Technologies Ltd | プラント機器の補修工事スケジュール作成方法、および、補修工事スケジュール作成システム |
JP2010097392A (ja) * | 2008-10-16 | 2010-04-30 | Chugoku Electric Power Co Inc:The | 設備劣化予測システムおよび設備劣化予測方法 |
JP2014529795A (ja) * | 2011-08-22 | 2014-11-13 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 制御装置の機能を作成する方法 |
US20140156225A1 (en) * | 2012-11-19 | 2014-06-05 | Abb Technology Ag | Assessment of power system equipment for equipment maintenance and/or risk mitigation |
JP2015010927A (ja) * | 2013-06-28 | 2015-01-19 | Kddi株式会社 | 観測値処理装置、観測値処理方法及び観測値処理プログラム |
JP2016224539A (ja) * | 2015-05-27 | 2016-12-28 | 日本電信電話株式会社 | 管理方法及び管理装置 |
JP2017002537A (ja) * | 2015-06-09 | 2017-01-05 | 株式会社東芝 | 道路点検情報提供装置及び道路点検情報提供方法 |
JP2018010523A (ja) * | 2016-07-14 | 2018-01-18 | 株式会社日立製作所 | 設備保全計画作成システム及び設備保全計画作成方法 |
Non-Patent Citations (1)
Title |
---|
KITAYAMA, MASASHI: "Asset management for social infrastructure facilities", SYSTEMS, CONTROL AND INFORMATION, vol. 51, no. 7, 15 July 2007 (2007-07-15), pages 8 - 13, XP009521325, DOI: 10.11509/isciesci.51.7_300 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022107240A1 (ja) * | 2020-11-18 | 2022-05-27 | 日本電信電話株式会社 | 劣化推定装置、劣化推定方法およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108375715B (zh) | 一种配电网线路故障风险日预测方法及系统 | |
CN109543906B (zh) | 一种大气能见度预测的方法及设备 | |
CN107194139B (zh) | 大气污染源分级方法及计算设备 | |
CN114818391B (zh) | 一种基于多溯源模型的污染源浓度分析方法 | |
CN106321368B (zh) | 基于运营风机scada数据的海上风电场尾流损失测量方法 | |
CN111143932A (zh) | 一种桥梁健康状态的评估方法、装置、系统和设备 | |
CN113779760B (zh) | 基于可预测气候模态的动力-统计结合季节气候预测方法 | |
CN104182594A (zh) | 一种电力系统风区图的绘制方法 | |
CN113516406B (zh) | 一种基于实时观测分析的高铁沿线降水测点布置方法 | |
KR20160102805A (ko) | 해양 기상 분석 장치 및 방법 | |
Perkins et al. | CMIP3 ensemble climate projections over the western tropical Pacific based on model skill | |
JP2019203728A (ja) | 気象予測装置、気象予測方法、並びに風力発電出力推定装置 | |
Guan et al. | Development of verification methodology for extreme weather forecasts | |
CN110097205A (zh) | 一种建筑负荷预测用气象预报数据预处理方法 | |
JP2020134300A (ja) | 予測方法、予測プログラム及び情報処理装置 | |
TWI546762B (zh) | Wind power generation equipment of the stress estimation device and wind power equipment, the stress estimation method, wind power generation system | |
CN117172554A (zh) | 覆冰灾害风险预测方法、装置、设备及存储介质 | |
Wilkinson et al. | Consequence forecasting: A rational framework for predicting the consequences of approaching storms | |
Lee et al. | Quantifying the power system resilience of the US power grid through weather and power outage data mapping | |
JP2005121474A (ja) | 大気物質指標分布解析装置 | |
WO2020105151A1 (ja) | 設備保守点検支援システム及び点検順序決定方法 | |
Bean et al. | Predicting Utah ground snow loads with PRISM | |
Bannayan et al. | Predicting realizations of daily weather data for climate forecasts using the non‐parametric nearest‐neighbour re‐sampling technique | |
JP2005301840A (ja) | 防災事業支援システム | |
JP2018021856A (ja) | 気象情報予測装置および電力需要予測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940979 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940979 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |