WO2020103508A1 - 承载煤岩损伤演化的红外辐射量化表征方法 - Google Patents
承载煤岩损伤演化的红外辐射量化表征方法Info
- Publication number
- WO2020103508A1 WO2020103508A1 PCT/CN2019/102488 CN2019102488W WO2020103508A1 WO 2020103508 A1 WO2020103508 A1 WO 2020103508A1 CN 2019102488 W CN2019102488 W CN 2019102488W WO 2020103508 A1 WO2020103508 A1 WO 2020103508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared radiation
- coal rock
- rock
- coal
- bearing
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 116
- 239000011435 rock Substances 0.000 title claims abstract description 100
- 239000003245 coal Substances 0.000 title claims abstract description 98
- 230000006378 damage Effects 0.000 title claims abstract description 55
- 238000012512 characterization method Methods 0.000 title claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 53
- 230000001186 cumulative effect Effects 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000012544 monitoring process Methods 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000009412 basement excavation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0003—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
Definitions
- the invention relates to an infrared radiation quantitative characterization method for bearing coal and rock damage evolution, belonging to the field of water-retaining coal mining and rock layer control.
- the process of bearing stress, deformation and rupture of coal rock is a process of disorderly distribution of micro-defects dispersed inside to orderly formation of macro cracks, which is also the source of infrared radiation changes on the surface of coal rock.
- the rupture of each individual element of coal rock will have a contribution to the change of infrared radiation.
- the prior art only the qualitative analysis of infrared radiation on the surface of coal rock has been performed, and no suitable infrared radiation characterization parameters have been found to achieve fine calibration of damage parameters, nor has a quantitative characterization method been formed.
- the purpose of the present invention is to provide an infrared radiation quantitative characterization method for carrying coal and rock damage evolution, which can dynamically and accurately evaluate coal and rock mass damage evolution through real-time monitoring of infrared radiation data of the excavation face.
- the present invention provides a method for quantitatively characterizing infrared radiation bearing coal rock damage evolution, including the following steps:
- the first step is to collect the original infrared radiation matrix sequence of coal rock
- the second step is to establish the infrared radiation temperature change matrix sequence:
- First-order forward difference processing is performed on the original infrared radiation matrix sequence in the first step to obtain the differential infrared radiation matrix sequence of coal rock, and the absolute value of each element in the differential infrared radiation matrix sequence is taken to obtain the infrared radiation temperature change matrix sequence;
- F (i, j, p) is the infrared radiation temperature change matrix of frame p of coal rock
- f (i, j, p) is the original infrared radiation matrix of frame p of coal rock
- the third step is to take the maximum value of each frame in the infrared radiation temperature change matrix sequence of the coal rock as the threshold value of the infrared radiation change caused by the micro-elements destruction at the corresponding time of the coal rock infrared radiation temperature change matrix sequence:
- M (p) is the threshold value of the infrared radiation temperature change matrix of the pth frame carrying coal rock due to the destruction of microelements
- the fourth step is to count the infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
- the fifth step is to calculate the cumulative infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
- k is the frame number of the infrared radiation matrix sequence
- N is the cumulative count of infrared radiation at the moment of total destruction of the bearing coal rock
- m is the number of frames of the infrared radiation temperature change matrix sequence at the moment of the total failure of the bearing coal rock
- k is the frame number of the infrared radiation matrix sequence
- Step 5 Quantitative characterization of infrared radiation carrying coal and rock damage parameters:
- D (p) is the damage parameter of the pth frame carrying coal rock.
- the invention determines the threshold value of the infrared radiation change caused by the micro-element damage of the bearing coal rock, selects the cumulative number of infrared radiation in the process of damage evolution of the bearing coal rock, constructs the quantitative characterization method of the infrared radiation of the bearing coal rock damage evolution, and realizes the utilization
- the surface infrared radiation response information in the process of coal and rock damage characterizes the damage evolution.
- Fig. 1 is a graph showing the time-varying damage parameters and stress of a load-bearing coal rock in the present invention.
- the first step is to collect the original infrared radiation matrix sequence of coal rock:
- Arrange the reference coal rock on the excavation face use infrared thermal imager to detect and store the surface infrared radiation information of the coal face of the excavation face and the reference coal rock, and obtain the original infrared radiation matrix sequence of the bearing coal rock and the reference coal rock.
- the second step is to establish the infrared radiation temperature change matrix sequence:
- First-order forward difference processing is performed on the original infrared radiation matrix sequence in the first step to obtain the differential infrared radiation matrix sequence of coal rock, and the absolute value of each element in the differential infrared radiation matrix sequence is taken to obtain the infrared radiation temperature change matrix sequence;
- F (i, j, p) is the infrared radiation temperature change matrix of frame p of coal rock
- f (i, j, p) is the original infrared radiation matrix of frame p of coal rock
- i is the row number of the infrared radiation matrix
- j is the column number of the infrared radiation matrix
- the third step is to take the maximum value of each frame in the infrared radiation temperature change matrix sequence of the coal rock as the threshold value of the infrared radiation change caused by the micro-elements destruction at the corresponding time of the coal rock infrared radiation temperature change matrix sequence:
- M (p) is the threshold value of the infrared radiation temperature change matrix of the pth frame carrying coal rock due to the destruction of microelements
- the fourth step is to count the infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
- the fifth step is to calculate the cumulative infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
- the infrared radiation count Q of the bearing coal rock obtained in the fourth step is summed to obtain the cumulative infrared radiation count of the bearing coal rock, which is denoted as N, and the cumulative infrared radiation count of the p frame of the bearing coal rock is N (p):
- k is the frame number of the infrared radiation matrix sequence
- N is the cumulative count of infrared radiation at the moment of total destruction of the bearing coal rock
- m is the number of frames of the infrared radiation temperature change matrix sequence at the moment of the total failure of the bearing coal rock
- k is the frame number of the infrared radiation matrix sequence
- Step 5 Quantitative characterization of infrared radiation carrying coal and rock damage parameters:
- D (p) is the damage parameter of the pth frame carrying coal rock.
- the invention determines the threshold value of the infrared radiation change caused by the micro-element damage of the bearing coal rock, selects the cumulative number of infrared radiation during the evolution of the damage of the bearing coal rock, constructs the quantitative characterization method of the infrared radiation of the damage evolution of the bearing coal rock, and realizes the utilization
- the surface infrared radiation response information in the process of coal and rock damage characterizes the damage evolution.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种承载煤岩损伤演化的红外辐射量化表征方法,此方法以参照煤岩红外辐射变温矩阵中的最大值,作为承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,基于连续损伤力学理论,构建承载煤岩损伤演化的红外辐射量化表征方法,通过实时监测红外辐射数据,可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。
Description
本发明涉及一种承载煤岩损伤演化的红外辐射量化表征方法,属于保水采煤与岩层控制领域。
煤岩承载受力、变形及破裂的过程,是一个从内部弥散的微缺陷无序分布向有序发展,最终形成宏观裂纹的过程,这也是导致煤岩表面红外辐射发生变化的根源。煤岩每一个体元的破裂都会对红外辐射的变化有一份贡献,煤岩损伤演化程度与其表面红外辐射响应信息之间存在着规律性的量化关系。因此,通过观测煤岩表面红外辐射,能够及时掌握煤岩的变形情况,预测煤岩体的损伤演化程度。但是,现有技术中只是对煤岩表面红外辐射进行定性分析,尚未找到合适红外辐射表征参数去实现损伤参数的精细标定,更没有形成量化表征方法。
发明内容
本发明目的在于提供一种承载煤岩损伤演化的红外辐射量化表征方法,能够通过实时监测采掘面红外辐射数据,动态精准评价煤岩体损伤演化。
为实现上述目的,本发明一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:
第一步、采集煤岩的原始红外辐射矩阵序列;
第二步、建立红外辐射变温矩阵序列:
对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;
F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|
其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,
f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,
i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;
第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:
M(p)=Max(F(i,j,p))
其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;
第四步、统计承载煤岩因微元破坏的红外辐射计数:
对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记为Q,承载煤岩第p帧的红外辐射计数为Q(p);
第五步、计算承载煤岩因微元破坏的红外辐射累积计数:
对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):
其中:k为红外辐射矩阵序列的帧号;
承载煤岩全破坏时刻红外辐射累积计数为N(m):
其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;
第五步、承载煤岩损伤参量的红外辐射量化表征:
D(p)=N(p)/N(m)
其中:D(p)为承载煤岩第p帧的损伤参量。
本发明确定了承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,构建承载煤岩损伤演化的红外辐射量化表征方法,实现了利用煤岩损伤过程中表面红外辐射响应信息来表征损伤演化,通过实时监测红外辐射数据, 可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。
图1为本发明中某一承载煤岩损伤参量和应力随时间变化曲线图。
下面结合附图对本发明进一步说明:
一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:
第一步、采集煤岩的原始红外辐射矩阵序列:
在采掘面布置参照煤岩,利用红外热像仪探测并存储采掘面煤岩体和参照煤岩的表面红外辐射信息,得到承载煤岩和参照煤岩的原始红外辐射矩阵序列。
第二步、建立红外辐射变温矩阵序列:
对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;
F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|
其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,
f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,
i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;
第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:
M(p)=Max(F(i,j,p))
其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;
第四步、统计承载煤岩因微元破坏的红外辐射计数:
对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记 为Q,承载煤岩第p帧的红外辐射计数为Q(p);
第五步、计算承载煤岩因微元破坏的红外辐射累积计数:
对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):
其中:k为红外辐射矩阵序列的帧号;
承载煤岩全破坏时刻红外辐射累积计数为N(m):
其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;
第五步、承载煤岩损伤参量的红外辐射量化表征:
D(p)=N(p)/N(m)
其中:D(p)为承载煤岩第p帧的损伤参量。
本发明确定了承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,构建承载煤岩损伤演化的红外辐射量化表征方法,实现了利用煤岩损伤过程中表面红外辐射响应信息来表征损伤演化,通过实时监测红外辐射数据,可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。
从图1可知,以红外辐射累积计数为表征参数的煤岩损伤演化曲线,有明显的阶段性变化特征,能够很好地反映承载煤岩裂隙缺陷产生、发展和破坏的演化过程。
Claims (1)
- 一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:第一步、采集煤岩的原始红外辐射矩阵序列;第二步、建立红外辐射变温矩阵序列:对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:M(p)=Max(F(i,j,p))其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;第四步、统计承载煤岩因微元破坏的红外辐射计数:对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记为Q,承载煤岩第p帧的红外辐射计数为Q(p);第五步、计算承载煤岩因微元破坏的红外辐射累积计数:对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):其中:k为红外辐射矩阵序列的帧号;承载煤岩全破坏时刻红外辐射累积计数为N(m):其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;第五步、承载煤岩损伤参量的红外辐射量化表征:D(p)=N(p)/N(m)其中:D(p)为承载煤岩第p帧的损伤参量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3142064A CA3142064A1 (en) | 2018-11-23 | 2019-08-26 | Infrared radiation quantitative characterization method for damage evolution of coal-bearing rocks |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811412926.6 | 2018-11-23 | ||
CN201811412926.6A CN109443543B (zh) | 2018-11-23 | 2018-11-23 | 承载煤岩损伤演化的红外辐射量化表征方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020103508A1 true WO2020103508A1 (zh) | 2020-05-28 |
Family
ID=65554250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/102488 WO2020103508A1 (zh) | 2018-11-23 | 2019-08-26 | 承载煤岩损伤演化的红外辐射量化表征方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN109443543B (zh) |
CA (1) | CA3142064A1 (zh) |
WO (1) | WO2020103508A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112665731A (zh) * | 2020-12-31 | 2021-04-16 | 中国矿业大学 | 红外辐射技术监测煤岩破坏失稳的分级预警方法 |
CN113029995A (zh) * | 2021-03-10 | 2021-06-25 | 太原理工大学 | 一种线性调频的煤岩辐射检测装置及方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109443543B (zh) * | 2018-11-23 | 2021-05-04 | 中国矿业大学 | 承载煤岩损伤演化的红外辐射量化表征方法 |
CN110411572B (zh) * | 2019-07-10 | 2020-12-15 | 中国矿业大学 | 承载煤岩破裂的红外辐射监测预警方法 |
CN112816072B (zh) * | 2021-01-12 | 2024-05-03 | 江苏师范大学 | 水岩作用下煤岩压缩热辐射温度时空分布及预测的方法 |
CN114113217B (zh) * | 2021-11-15 | 2024-07-12 | 中国矿业大学 | 一种煤岩体损伤程度的红外辐射量化评价方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0707206A1 (en) * | 1994-10-11 | 1996-04-17 | United Technologies Corporation | High temperature crack monitoring apparatus |
CN102095755A (zh) * | 2010-12-09 | 2011-06-15 | 重庆建工市政交通工程有限责任公司 | 一种混凝土结构的无损检测方法 |
CN102853916A (zh) * | 2012-09-26 | 2013-01-02 | 中国神华能源股份有限公司 | 一种用于对煤垛表面进行远距离红外测温的方法及系统 |
CN106018096A (zh) * | 2016-07-20 | 2016-10-12 | 中国矿业大学 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
CN109443543A (zh) * | 2018-11-23 | 2019-03-08 | 中国矿业大学 | 承载煤岩损伤演化的红外辐射量化表征方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983514B (zh) * | 2014-05-22 | 2016-06-01 | 中国矿业大学 | 一种煤岩裂隙发育红外辐射监测试验方法 |
CN104764528B (zh) * | 2015-04-03 | 2018-01-12 | 中国矿业大学 | 一种煤岩裂隙发育过程中的热红外信息去噪方法 |
-
2018
- 2018-11-23 CN CN201811412926.6A patent/CN109443543B/zh active Active
-
2019
- 2019-08-26 CA CA3142064A patent/CA3142064A1/en active Pending
- 2019-08-26 WO PCT/CN2019/102488 patent/WO2020103508A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0707206A1 (en) * | 1994-10-11 | 1996-04-17 | United Technologies Corporation | High temperature crack monitoring apparatus |
CN102095755A (zh) * | 2010-12-09 | 2011-06-15 | 重庆建工市政交通工程有限责任公司 | 一种混凝土结构的无损检测方法 |
CN102853916A (zh) * | 2012-09-26 | 2013-01-02 | 中国神华能源股份有限公司 | 一种用于对煤垛表面进行远距离红外测温的方法及系统 |
CN106018096A (zh) * | 2016-07-20 | 2016-10-12 | 中国矿业大学 | 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法 |
CN109443543A (zh) * | 2018-11-23 | 2019-03-08 | 中国矿业大学 | 承载煤岩损伤演化的红外辐射量化表征方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112665731A (zh) * | 2020-12-31 | 2021-04-16 | 中国矿业大学 | 红外辐射技术监测煤岩破坏失稳的分级预警方法 |
CN113029995A (zh) * | 2021-03-10 | 2021-06-25 | 太原理工大学 | 一种线性调频的煤岩辐射检测装置及方法 |
CN113029995B (zh) * | 2021-03-10 | 2022-09-27 | 太原理工大学 | 一种线性调频的煤岩辐射检测装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109443543A (zh) | 2019-03-08 |
CN109443543B (zh) | 2021-05-04 |
CA3142064A1 (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020103508A1 (zh) | 承载煤岩损伤演化的红外辐射量化表征方法 | |
WO2020181923A1 (zh) | 基于tbm岩-机参数动态交互机制的隧洞可掘进预测方法及系统 | |
Main et al. | Lessons from a fatigue prediction challenge for an aircraft wing shear tie post | |
US8532941B2 (en) | Fatigue life estimation method and system | |
Hoseinie et al. | A new classification system for evaluating rock penetrability | |
Zhang et al. | Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending | |
CN108897925A (zh) | 一种基于铸件缺陷预测模型的铸造工艺参数优化方法 | |
CN103455682A (zh) | 一种预测高温高压井腐蚀套管剩余寿命的方法 | |
CN111079783B (zh) | 一种基于多核集成学习识别地层岩性参数的方法 | |
Qvale et al. | Digital image correlation for continuous mapping of fatigue crack initiation sites on corroded surface from offshore mooring chain | |
Lindroos et al. | Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructures | |
CN105699116B (zh) | 一种混凝土坝取芯方法 | |
CN116384193A (zh) | 基于数字孪生技术和数据融合的裂纹扩展预测方法 | |
Valerevich Lvov et al. | Comparison of the different ways of the ball Bond work index determining | |
Fletcher et al. | Image analysis to reveal crack development using a computer simulation of wear and rolling contact fatigue | |
CN109558976A (zh) | 一种基于多维信息的冲击地压危险性辨识方法 | |
CN115625894A (zh) | 一种基于同轴损伤探测的激光增材制造寿命预测方法 | |
CN108470699B (zh) | 一种半导体制造设备和工艺的智能控制系统 | |
Udalov et al. | Indentation size effect during measuring the hardness of materials by pyramidal indenter | |
CN113671919B (zh) | 一种建筑陶瓷间歇式球磨机泥浆制备控制方法 | |
Phamotse et al. | Determination of optimal fragmentation curves for a surface diamond mine | |
CN116026487B (zh) | 液面温度测量方法、装置、计算机设备和存储介质 | |
Hansen et al. | Improving face decisions in tunnelling by machine learning‐based MWD analysis | |
CN103105467A (zh) | 基于应力强度因子评估轴承滚道次表面疲劳损伤度的方法 | |
Xiao-Cong | A hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19887684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 3142064 Country of ref document: CA |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19887684 Country of ref document: EP Kind code of ref document: A1 |