WO2020100462A1 - Multiple cylindrical type reformer and hydrogen production apparatus - Google Patents
Multiple cylindrical type reformer and hydrogen production apparatus Download PDFInfo
- Publication number
- WO2020100462A1 WO2020100462A1 PCT/JP2019/039388 JP2019039388W WO2020100462A1 WO 2020100462 A1 WO2020100462 A1 WO 2020100462A1 JP 2019039388 W JP2019039388 W JP 2019039388W WO 2020100462 A1 WO2020100462 A1 WO 2020100462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- hydrogen
- reformed gas
- water
- flow path
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
Definitions
- the present disclosure relates to a multi-cylinder reformer and a hydrogen production device.
- the preheating flow path in which the hydrocarbon gas, which is the raw material supplied from one end, and water are preheated and mixed to form a mixed gas, and the preheating A reforming catalyst layer for steam reforming the mixed gas is provided on the downstream side of the flow path.
- a combustion exhaust gas passage through which the combustion exhaust gas discharged from the combustion chamber flows is formed between the inner side, that is, between the first and second cylindrical walls.
- the outside that is, between the third and fourth cylindrical walls, is a carbon monoxide removal passage for removing carbon monoxide from the primary reformed gas reformed by the reforming catalyst layer, and the preheating is performed.
- a first aspect of the present disclosure is that hydrocarbon and water are supplied as raw materials, and a primary reformed gas containing hydrogen as a main component is produced by steam-reforming a mixture of hydrocarbon and steam,
- a multi-cylinder reformer for producing a secondary reformed gas in which carbon monoxide is reduced from the primary reformed gas, wherein hydrocarbon and water supplied from one end side are heated to form a mixed gas
- a reforming section that is formed on the downstream side of the preheating section and that generates a primary reformed gas containing hydrogen and carbon monoxide by steam reforming the mixed gas.
- the multi-cylinder reformer can generate the secondary reformed gas in which the mixing of argon is prevented.
- the multi-cylinder reformer of the present disclosure can prevent the secondary reformed gas from being mixed with argon while securing a heating amount for the preheating portion of the reformer.
- the hydrogen production device of the present disclosure can improve the hydrogen purity of product hydrogen while ensuring the heating amount for the preheating part of the reformer.
- the multi-tubular reformer 12 has a plurality of tubular walls 21, 22, 23, 24 (hereinafter, may be referred to as “cylindrical walls 21-24”) arranged in multiple layers.
- the plurality of cylindrical walls 21 to 24 are formed in, for example, a cylindrical shape or an elliptic cylindrical shape.
- a combustion chamber 25 is formed inside the first cylindrical wall 21 from the inner side among the plurality of cylindrical walls 21 to 24, and a burner 26 is arranged downward on the combustion chamber 25. There is.
- an air supply pipe 40 for supplying combustion air from the outside is connected to the upper end of the combustion chamber 25.
- a raw material branch pipe 33A branched from a raw material supply pipe 33 for further supplying city gas is connected to the burner 26.
- An air branch pipe 40A branched from the air supply pipe 40 is connected to the raw material branch pipe 33A.
- An offgas recirculation pipe 100 is connected to the burner 26. Therefore, the burner 26 is configured to be supplied with gas in which city gas is mixed with air or off gas. The gas in which city gas is mixed with air or the off gas corresponds to the “fuel gas”.
- the CO conversion catalyst layer 45 is arranged all over the outside of the preheating channel 32” means the surface area of the CO conversion catalyst layer 45 occupying the tubular wall 23 with respect to the surface area of the preheating channel 32 occupying the tubular wall 23.
- the ratio that is, the ratio of the axial range B to the axial range A of the preheating channel 32 is 70% or more and 100% or less.
- the ratio of the surface area of the CO shift catalyst layer 45 in the tubular wall 23 to the surface area of the preheating channel 32 in the tubular wall 23, that is, the ratio of the axial range B to the axial range A in the preheating channel 32 is , Preferably 80% or more and 100% or less, more preferably 90% or more and 100% or less.
- Pre-pressurization water separator The downstream end of a reformed gas discharge pipe 44, into which the reformed gas G1 flows from the multi-cylinder reformer 12, is connected to the pre-pressurization water separation unit 50.
- a water recovery pipe 59 is connected to the bottom of the pre-pressurization water separation unit 50, and a communication flow path pipe 56 is connected to the top of the pre-pressurization water separation unit 50.
- the reformed gas G1 is condensed and separated in the heat exchanger HE1 arranged in the reformed gas discharge pipe 44 upstream of the pre-pressurization water separation unit 50 by cooling by heat exchange with cooling water, and before the pressurization.
- Liquid phase water can be stored under the water separation unit 50.
- the liquid phase water is sent to the water recovery pipe 59.
- the reformed gas G2 after the water is condensed is sent to the communication flow path pipe 56.
- compressor 80 In the compressor 80, there are a communication flow passage pipe 56 through which the reformed gas G2 from the pre-pressurization water separation unit 50 flows, and a communication flow passage pipe 66 through which the reformed gas G2 supplied to the post-pressurization water separation unit 60 flows. It is connected.
- the compressor 80 is capable of compressing the reformed gas G2 supplied from the pre-pressurization water separation unit 50 and supplying it to the post-pressurization water separation unit 60.
- City gas is supplied from the raw material supply pipe 33 to the multi-cylinder reformer 12.
- the city gas supplied to the multi-cylinder reformer 12 is mixed with the reforming water in the pre-heating channel 32 of the multi-cylinder reformer 12 while being mixed with the reforming water.
- the CO shift catalyst layer 45 arranged in the second passage 42 outside the preheating passage 32 causes an aqueous shift reaction which is an exothermic reaction. Is exchanged with the reformed gas. That is, the city gas and the reforming water are heated while being mixed and supplied to the reforming catalyst layer 36.
- the hydrogen purifier 90 employs a pressure swing method, in which one of the pair of adsorption tanks adsorbs impurities other than hydrogen in the adsorbent and the other adsorption tank desorbs the impurities adsorbed in the adsorbent. ..
- the adsorption step and the desorption step are repeated in each adsorption tank at a constant cycle to continuously separate hydrogen and impurities from the reformed gas G3 to purify hydrogen.
- the oxidation reaction portion is also replaced by the CO shift catalyst layer 45, that is, the water shift reaction portion, so that the production amount of product hydrogen increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
- Fuel Cell (AREA)
Abstract
Provided is a multiple cylindrical type reformer provided with: a raw material flow path having a preheating part in which mixed gas is obtained by heating water and a hydrocarbon supplied from one end side and a reforming part which is formed on the downstream side of the preheating part and in which a primary reformed gas containing hydrogen and carbon monoxide is generated by performing steam reforming on the mixed gas; and an exhaust gas flow path which is disposed adjacent to the inside of the raw material flow path and through which a combustion exhaust gas obtained by burning a fuel gas flows; and a carbon monoxide removal flow path which is disposed adjacent to the outside of the raw material flow path and which has provided thereto only a shift reaction part disposed in the whole area of the outside of the preheating part and generating a secondary reformed gas obtained by converting, to carbon dioxide and hydrogen, carbon monoxide and water contained in the primary reformed gas through water shift reaction.
Description
本開示は、多重筒型改質器及び水素製造装置に関する。
The present disclosure relates to a multi-cylinder reformer and a hydrogen production device.
従来、水素を得るための水素製造装置としては、原料炭化水素を水蒸気改質装置で改質ガスに改質した後、PSA(Pressure Swing Adsorption)装置(水素精製器)へ供給するものが知られている。
2. Description of the Related Art Conventionally, as a hydrogen production device for obtaining hydrogen, it is known that a raw material hydrocarbon is reformed into a reformed gas by a steam reforming device and then supplied to a PSA (Pressure Swing Adsorption) device (hydrogen purifier). ing.
ところで、水蒸気改質装置として多重筒型改質器が提案されている(例えば、特許文献1参照)。この多重筒型改質器では、同心円状の筒状壁が多重に配置され、隣接して配置された筒状壁間あるいは一番内側の筒状壁の内部が流路として用いられる。
By the way, a multi-cylinder type reformer has been proposed as a steam reforming device (for example, refer to Patent Document 1). In this multi-tubular reformer, concentric cylindrical walls are multiply arranged, and the space between adjacent cylindrical walls or the inside of the innermost cylindrical wall is used as a flow path.
具体的には、2番目と3番目の筒状壁の間が、一端から供給された原料である炭化水素ガスと水が予熱されると共に混合されて混合ガスとされる予熱流路と、予熱流路の下流側に混合ガスが水蒸気改質される改質触媒層とされている。この内側、すなわち、1番目と2番目の筒状壁の間が、燃焼室から排出された燃焼排ガスが流される燃焼排ガス流路とされている。一方、この外側、すなわち、3番目と4番目の筒状壁の間が、改質触媒層で改質された一次改質ガスから一酸化炭素を除去する一酸化炭素除去流路とされ、予熱流路の外側に一次改質ガス中の一酸化炭素を水性シフト反応で二酸化炭素に変換するシフト反応部と、一次改質ガス中の一酸化炭素を酸化反応で二酸化炭素にする酸化部と、が配設されている。
Specifically, between the second and third cylindrical walls, the preheating flow path in which the hydrocarbon gas, which is the raw material supplied from one end, and water are preheated and mixed to form a mixed gas, and the preheating A reforming catalyst layer for steam reforming the mixed gas is provided on the downstream side of the flow path. A combustion exhaust gas passage through which the combustion exhaust gas discharged from the combustion chamber flows is formed between the inner side, that is, between the first and second cylindrical walls. On the other hand, the outside, that is, between the third and fourth cylindrical walls, is a carbon monoxide removal passage for removing carbon monoxide from the primary reformed gas reformed by the reforming catalyst layer, and the preheating is performed. A shift reaction part for converting carbon monoxide in the primary reformed gas into carbon dioxide by an aqueous shift reaction on the outside of the flow path, and an oxidation part for converting carbon monoxide in the primary reformed gas into carbon dioxide by an oxidation reaction, Are arranged.
このように構成されることにより、予熱流路に供給された炭化水素ガスと水は、燃焼排ガス流路を流れる燃焼排ガスと熱交換すなわち、燃焼排ガスによって加熱されると共に、一酸化炭素除去通路のシフト反応部で水性シフト反応している改質ガスや酸化部で酸化反応している改質ガスと熱交換されることによって加熱され、効率的に混合ガスとされる。
With such a configuration, the hydrocarbon gas and water supplied to the preheating passage are heat-exchanged with the combustion exhaust gas flowing through the combustion exhaust gas passage, that is, heated by the combustion exhaust gas, and the carbon monoxide removal passage It is heated by heat exchange with the reformed gas that undergoes the aqueous shift reaction in the shift reaction section and the reformed gas that undergoes the oxidation reaction in the oxidation section, and is efficiently made into a mixed gas.
また、この水素製造装置では、改質器において、水性シフト反応と酸化反応で一次改質ガスから一酸化炭素を確実に除去、例えば、二酸化炭素に変換して二次改質ガスを生成することによって、水素精製器での除去が困難な一酸化炭素を一次改質ガスから除去又は低減し、製品水素の水素純度を向上させることができるとされている。
Further, in this hydrogen production device, in the reformer, carbon monoxide is surely removed from the primary reformed gas by the aqueous shift reaction and the oxidation reaction, for example, it is converted into carbon dioxide to generate the secondary reformed gas. It is said that carbon monoxide, which is difficult to remove in the hydrogen purifier, can be removed or reduced from the primary reformed gas, and the hydrogen purity of the product hydrogen can be improved.
特開2017-88490号公報に記載される従来技術では、シフト反応部で一次改質ガスに水性シフト反応を生じさせることで一次改質ガス中の一酸化炭素を低減させ、さらに酸化部で空気と一次改質ガスを反応させて一酸化炭素を酸化させ二酸化炭素とすることで、一次改質ガス中の一酸化炭素を一層低減させていた。
In the conventional technique described in Japanese Patent Laid-Open No. 2017-88490, carbon monoxide in the primary reformed gas is reduced by causing an aqueous shift reaction in the primary reformed gas in the shift reaction section, and air is further generated in the oxidation section. The carbon monoxide in the primary reformed gas was further reduced by reacting with the primary reformed gas to oxidize carbon monoxide into carbon dioxide.
これは、一次改質ガス中の一酸化炭素を除去する点では優れているが、一酸化炭素を酸化させるために酸化部で空気を導入しているため、空気中に含まれるアルゴンが二次改質ガスに混入する。下流側の水素精製器で、このアルゴンを二次改質ガスから除去することが容易でないため、製造される水素純度が低下してしまうという問題がある。
This is excellent in removing carbon monoxide in the primary reformed gas, but since air is introduced in the oxidation part to oxidize carbon monoxide, the argon contained in the air is secondary. Mix in reformed gas. Since it is not easy to remove this argon from the secondary reformed gas in the hydrogen purifier on the downstream side, there is a problem that the purity of hydrogen produced is reduced.
一方、多重筒型改質器において、一酸化炭素除去流路から酸化部を除去するだけでは、予熱部に対する加熱量が低下するという問題がある。
On the other hand, in the multi-cylinder type reformer, there is a problem that the amount of heating for the preheating part is reduced only by removing the oxidation part from the carbon monoxide removal passage.
本開示は、予熱部に対する加熱量を確保しつつ改質ガスに対するアルゴンの混入を防止は又は抑制した多重筒型改質器、及び製品水素の水素純度を向上させた水素製造装置を提供する。
The present disclosure provides a multi-cylinder reformer that prevents or suppresses the mixing of argon with the reformed gas while ensuring a heating amount for the preheating unit, and a hydrogen production device with improved hydrogen purity of product hydrogen.
本開示の第1の態様は、炭化水素と水が原料として供給されると共に、炭化水素と水蒸気からなる混合気を水蒸気改質することにより水素を主成分とする一次改質ガスを生成し、前記一次改質ガスから一酸化炭素を削減した二次改質ガスを生成する多重筒型改質器であって、一端側から供給された炭化水素と水が加熱されて混合ガスとされる予熱部と、前記予熱部の下流側に形成され、前記混合ガスが水蒸気改質されることによって水素と一酸化炭素とを含む一次改質ガスが生成される改質部と、を有する原料流路と、前記原料流路の内側に隣接して配設され、燃料ガスを燃焼させた燃焼排ガスを流す排ガス流路と、前記原料流路の外側に隣接して配設され、前記予熱部の外側全域に配置され前記一次改質ガスに含まれる水と一酸化炭素を水性シフト反応で二酸化炭素と水素に変換して前記二次改質ガスを生成するシフト反応部のみが設けられた一酸化炭素除去流路と、を備える、多重筒型改質器である。
A first aspect of the present disclosure is that hydrocarbon and water are supplied as raw materials, and a primary reformed gas containing hydrogen as a main component is produced by steam-reforming a mixture of hydrocarbon and steam, A multi-cylinder reformer for producing a secondary reformed gas in which carbon monoxide is reduced from the primary reformed gas, wherein hydrocarbon and water supplied from one end side are heated to form a mixed gas And a reforming section that is formed on the downstream side of the preheating section and that generates a primary reformed gas containing hydrogen and carbon monoxide by steam reforming the mixed gas. And an exhaust gas passage disposed adjacent to the inside of the raw material passage and flowing a combustion exhaust gas obtained by burning a fuel gas, and disposed outside of the raw material passage, outside the preheating unit. Carbon monoxide disposed in the entire region and provided only with a shift reaction part for converting water and carbon monoxide contained in the primary reformed gas into carbon dioxide and hydrogen by an aqueous shift reaction to generate the secondary reformed gas And a removal flow path.
この多重筒型改質器では、原料である炭化水素と水が供給される。多重筒型改質器の予熱部では炭化水素と水が加熱されることにより混合ガスとされ、改質部で混合ガスが水蒸気改質され、水素を主成分とする一次改質ガスが生成される。
In this multi-cylinder reformer, the raw material hydrocarbons and water are supplied. Hydrocarbon and water are heated in the preheating section of the multi-cylinder reformer to form a mixed gas, and the reformed section steam-reforms the mixed gas to generate a primary reformed gas containing hydrogen as a main component. It
改質部で水蒸気改質された一次改質ガスは、一酸化炭素除去流路のシフト反応部で含有される水と一酸化炭素が水性シフト反応により水素と二酸化炭素に変換される。すなわち、シフト反応部で一次改質ガスから一酸化炭素が低減された二次改質ガスが生成される。
In the primary reformed gas that has been steam-reformed in the reforming section, water and carbon monoxide contained in the shift reaction section of the carbon monoxide removal channel are converted into hydrogen and carbon dioxide by the aqueous shift reaction. That is, a secondary reformed gas in which carbon monoxide is reduced is generated from the primary reformed gas in the shift reaction section.
ところで、一酸化炭素除去流路には、シフト反応部のみが設けられている。すなわち、一次改質ガスから一酸化炭素を除去又は低減する際、水性シフト反応のみを用いているため、二次改質ガスに空気が混入することがない。すなわち、多重筒型改質器では、アルゴンの混入が防止された二次改質ガスを生成することができる。
By the way, only the shift reaction part is provided in the carbon monoxide removal flow path. That is, when removing or reducing carbon monoxide from the primary reformed gas, since only the aqueous shift reaction is used, air is not mixed into the secondary reformed gas. That is, the multi-cylinder reformer can generate the secondary reformed gas in which the mixing of argon is prevented.
したがって、この多重筒型改質器を水素製造装置に組み込み、多重筒型改質器で生成された二次改質ガスを水素精製器で精製することにより水素を製造する場合には、水素精製器で除去しにくい空気中のアルゴンの混入が防止された二次改質ガスが水素精製器に供給されるため、製品水素の水素純度を向上させることができる。
Therefore, when hydrogen is produced by incorporating this multi-cylinder reformer into a hydrogen production apparatus and purifying the secondary reformed gas produced by the multi-cylinder reformer with a hydrogen purifier, Since the secondary reformed gas, which is difficult to remove in the reactor by mixing in air with argon, is supplied to the hydrogen purifier, the hydrogen purity of the product hydrogen can be improved.
一方、多重筒型改質器では、原料流路の外側に位置する一酸化炭素除去流路のうち、予熱部の外側全域にシフト反応部を設けたため、予熱部の内側の排ガス流路を流れる燃焼排ガスの熱と、予熱部の外側全域に設けられたシフト反応部での水性シフト反応による反応熱とによって原料の水が十分に加熱されて水蒸気となり良好に混合ガスが生成され、多重筒型改質器における水蒸気改質反応が促進される。
On the other hand, in the multi-tubular reformer, the shift reaction part is provided in the entire area outside the preheating part of the carbon monoxide removal flow path located outside the raw material flow path, so that the exhaust gas flow path inside the preheating part flows. The raw material water is sufficiently heated by the heat of the combustion exhaust gas and the heat of reaction due to the aqueous shift reaction in the shift reaction section provided all over the outside of the preheating section to form steam, and a mixed gas is satisfactorily generated. The steam reforming reaction in the reformer is promoted.
本開示の第2の態様では、上記第1の態様において、前記多重筒型改質器の前記排ガス流路の内側には、前記燃料ガスを燃焼させるバーナーが配設された燃焼室が形成されており、前記バーナーのノズルの先端が前記改質部の内側に位置していても良い。
According to a second aspect of the present disclosure, in the first aspect, a combustion chamber in which a burner for burning the fuel gas is arranged is formed inside the exhaust gas passage of the multi-cylinder reformer. The tip of the nozzle of the burner may be located inside the reforming section.
多重筒型改質器の燃焼室に配置されたバーナーのノズル先端が、改質部の内側に位置している。したがって、バーナーに燃料ガスを供給することによりノズル先端から火炎を形成すると、多重筒型改質器の改質部の内側にバーナーの火炎が位置することになる。この結果、改質部に対する熱供給量が増大し、改質部における吸熱反応である水蒸気改質反応が一層促進される。
The tip of the nozzle of the burner arranged in the combustion chamber of the multi-tubular reformer is located inside the reforming section. Therefore, when a flame is formed from the tip of the nozzle by supplying the fuel gas to the burner, the flame of the burner is located inside the reforming section of the multi-cylinder reformer. As a result, the amount of heat supplied to the reforming section is increased, and the steam reforming reaction, which is an endothermic reaction in the reforming section, is further promoted.
本開示の第3の態様は、本開示の第2又は第3の態様の多重筒型改質器と、前記多重筒型改質器と接続され、前記二次改質ガスを製品水素と不純物とに分離して製品水素を精製する水素精製器と、を備える、水素製造装置である。
A third aspect of the present disclosure is connected to the multi-cylinder reformer of the second or third aspect of the present disclosure, and the multi-cylinder reformer to convert the secondary reformed gas into product hydrogen and impurities. And a hydrogen purifier that purifies the product hydrogen by separating into hydrogen and hydrogen.
この水素製造装置では、原料である炭化水素と水が多重筒型改質器に供給される。多重筒型改質器の予熱部では炭化水素と水が加熱されることにより混合ガスとされ、改質部で混合ガスが水蒸気改質され、水素を主成分とする一次改質ガスが生成される。
In this hydrogen production device, the raw material hydrocarbons and water are supplied to the multi-cylinder reformer. Hydrocarbon and water are heated in the preheating section of the multi-cylinder reformer to form a mixed gas, and the reformed section steam-reforms the mixed gas to generate a primary reformed gas containing hydrogen as a main component. It
改質部で水蒸気改質された一次改質ガスは、一酸化炭素除去流路のシフト反応部で含有される水と一酸化炭素が水性シフト反応により水素と二酸化炭素に変換される。すなわち、シフト反応部で一次改質ガスから一酸化炭素が低減された二次改質ガスが生成される。
In the primary reformed gas that has been steam-reformed in the reforming section, water and carbon monoxide contained in the shift reaction section of the carbon monoxide removal channel are converted into hydrogen and carbon dioxide by the aqueous shift reaction. That is, a secondary reformed gas in which carbon monoxide is reduced is generated from the primary reformed gas in the shift reaction section.
ところで、一酸化炭素除去流路には、シフト反応部のみが設けられている。すなわち、一次改質ガスから一酸化炭素を除去又は低減する際、水性シフト反応のみを用いているため、二次改質ガスに空気が混入することがない。したがって、水素精製器で除去しにくい空気中のアルゴンの混入が防止された二次改質ガスが水素精製器に供給されるため、製品水素の水素純度を向上させることができる。
By the way, only the shift reaction part is provided in the carbon monoxide removal flow path. That is, when removing or reducing carbon monoxide from the primary reformed gas, since only the aqueous shift reaction is used, air is not mixed into the secondary reformed gas. Therefore, since the secondary reformed gas, which is difficult to remove in the hydrogen purifier and in which air is not mixed with argon, is supplied to the hydrogen purifier, the hydrogen purity of the product hydrogen can be improved.
一方、多重筒型改質器では、原料流路の外側に位置する一酸化炭素除去流路のうち、予熱部の外側全域にシフト反応部を設けたため、予熱部の内側の排ガス流路を流れる燃焼排ガスの熱と、予熱部の外側全域に設けられたシフト反応部での水性シフト反応による反応熱とによって原料の水が十分に加熱されて水蒸気となり良好に混合ガスが生成され、多重筒型改質器における水蒸気改質反応が促進される。
On the other hand, in the multi-tubular reformer, the shift reaction part is provided in the entire area outside the preheating part of the carbon monoxide removal flow path located outside the raw material flow path, so that the exhaust gas flow path inside the preheating part flows. The raw material water is sufficiently heated by the heat of the combustion exhaust gas and the heat of reaction due to the aqueous shift reaction in the shift reaction section provided all over the outside of the preheating section to form steam, and a mixed gas is satisfactorily generated. The steam reforming reaction in the reformer is promoted.
第1の態様によれば、本開示の多重筒型改質器は、改質器の予熱部に対する加熱量を確保しつつ、二次改質ガスにアルゴンが混入することを防止できる。
According to the first aspect, the multi-cylinder reformer of the present disclosure can prevent the secondary reformed gas from being mixed with argon while securing a heating amount for the preheating portion of the reformer.
第2の態様によれば、本開示の多重筒型改質器は、改質部に対する熱供給量が増大し、改質部における水蒸気改質反応が一層促進される。
According to the second aspect, in the multi-cylinder reformer of the present disclosure, the heat supply amount to the reforming section is increased, and the steam reforming reaction in the reforming section is further promoted.
第3の態様によれば、本開示の水素製造装置は、改質器の予熱部に対する加熱量を確保しつつ、製品水素の水素純度を向上させることができる。
According to the third aspect, the hydrogen production device of the present disclosure can improve the hydrogen purity of product hydrogen while ensuring the heating amount for the preheating part of the reformer.
[第1実施形態]
本開示の第1実施形態に係る多重筒型改質器及び水素製造装置の一例を図1及び図2を参照して説明する。 [First Embodiment]
An example of the multi-cylinder reformer and the hydrogen production device according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
本開示の第1実施形態に係る多重筒型改質器及び水素製造装置の一例を図1及び図2を参照して説明する。 [First Embodiment]
An example of the multi-cylinder reformer and the hydrogen production device according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
〈水素製造装置〉
水素製造装置10は、図1に示すように、炭化水素例えば、都市ガスから水蒸気改質した改質ガスを生成する多重筒型改質器(以下、「改質器」という場合がある)12と、改質ガスを圧縮する圧縮機80と、圧縮された改質ガスから不純物を除去して水素ガスを精製する水素精製器90と、を備えている。また、水素製造装置10は、圧縮機80の上流側、下流側でそれぞれ改質ガスから水分を分離・除去する昇圧前水分離部50、昇圧後水分離部60と、改質器12の後述する燃焼排ガスから水分を分離・除去する燃焼排ガス水分離部70と、を備えている。 <Hydrogen production equipment>
As shown in FIG. 1, thehydrogen production apparatus 10 includes a multi-cylinder reformer (hereinafter, also referred to as a “reformer”) 12 that generates a reformed gas obtained by steam reforming hydrocarbons, for example, city gas. A compressor 80 for compressing the reformed gas, and a hydrogen purifier 90 for purifying hydrogen gas by removing impurities from the compressed reformed gas. Further, the hydrogen production device 10 includes a pre-pressurization water separation unit 50, a post-pressurization water separation unit 60, which separates and removes water from the reformed gas on the upstream side and the downstream side of the compressor 80, respectively, and the reformer 12 to be described later. And a combustion exhaust gas water separation unit 70 for separating and removing water from the combustion exhaust gas.
水素製造装置10は、図1に示すように、炭化水素例えば、都市ガスから水蒸気改質した改質ガスを生成する多重筒型改質器(以下、「改質器」という場合がある)12と、改質ガスを圧縮する圧縮機80と、圧縮された改質ガスから不純物を除去して水素ガスを精製する水素精製器90と、を備えている。また、水素製造装置10は、圧縮機80の上流側、下流側でそれぞれ改質ガスから水分を分離・除去する昇圧前水分離部50、昇圧後水分離部60と、改質器12の後述する燃焼排ガスから水分を分離・除去する燃焼排ガス水分離部70と、を備えている。 <Hydrogen production equipment>
As shown in FIG. 1, the
なお、この水素製造装置10は、炭化水素原料から水素を製造するものであり、本実施形態では、炭化水素原料の一例としてメタンを主成分とする都市ガスが用いられる場合について説明する。
The hydrogen production device 10 produces hydrogen from a hydrocarbon raw material, and in the present embodiment, a case where city gas containing methane as a main component is used as an example of the hydrocarbon raw material will be described.
(多重筒型改質器)
多重筒型改質器12は、図2に示すように、多重に配置された複数の筒状壁21、22、23、24(以下、「筒状壁21~24」という場合がある)を有している。複数の筒状壁21~24は、例えば円筒状や楕円筒状に形成される。複数の筒状壁21~24のうち内側から一番目の筒状壁21の内部には、燃焼室25が形成されており、この燃焼室25の上部には、バーナー26が下向きに配置されている。 (Multiple cylinder reformer)
As shown in FIG. 2, themulti-tubular reformer 12 has a plurality of tubular walls 21, 22, 23, 24 (hereinafter, may be referred to as “cylindrical walls 21-24”) arranged in multiple layers. Have The plurality of cylindrical walls 21 to 24 are formed in, for example, a cylindrical shape or an elliptic cylindrical shape. A combustion chamber 25 is formed inside the first cylindrical wall 21 from the inner side among the plurality of cylindrical walls 21 to 24, and a burner 26 is arranged downward on the combustion chamber 25. There is.
多重筒型改質器12は、図2に示すように、多重に配置された複数の筒状壁21、22、23、24(以下、「筒状壁21~24」という場合がある)を有している。複数の筒状壁21~24は、例えば円筒状や楕円筒状に形成される。複数の筒状壁21~24のうち内側から一番目の筒状壁21の内部には、燃焼室25が形成されており、この燃焼室25の上部には、バーナー26が下向きに配置されている。 (Multiple cylinder reformer)
As shown in FIG. 2, the
さらに、この燃焼室25の上端部には、外部から燃焼用空気を供給するための空気供給管40が接続されている。バーナー26には、さらに都市ガスを供給するための原料供給管33から分岐された原料分岐管33Aが接続されている。原料分岐管33Aには、空気供給管40から分岐された空気分岐管40Aが接続されている。また。バーナー26には、オフガス還流管100が接続されている。したがって、バーナー26には、都市ガスに空気が混合された気体又はオフガスが、供給される構成である。なお、都市ガスに空気が混合された気体又はオフガスが「燃料ガス」に相当する。
Further, an air supply pipe 40 for supplying combustion air from the outside is connected to the upper end of the combustion chamber 25. A raw material branch pipe 33A branched from a raw material supply pipe 33 for further supplying city gas is connected to the burner 26. An air branch pipe 40A branched from the air supply pipe 40 is connected to the raw material branch pipe 33A. Also. An offgas recirculation pipe 100 is connected to the burner 26. Therefore, the burner 26 is configured to be supplied with gas in which city gas is mixed with air or off gas. The gas in which city gas is mixed with air or the off gas corresponds to the “fuel gas”.
一番目の筒状壁21と二番目の筒状壁22との間には、燃焼排ガス流路27が形成されている。燃焼排ガス流路27の下端部は、燃焼室25と連通されており、燃焼排ガス流路27の上端部には、ガスを排出するためのガス排出管28が接続されている。燃焼室25から排出された燃焼排ガスは、燃焼排ガス流路27を下側から上側に流れ、ガス排出管28を通じて燃焼排ガス水分離部70へ送出される構成である。なお、燃焼排ガス流路27が「排ガス流路」に相当する。
A combustion exhaust gas passage 27 is formed between the first tubular wall 21 and the second tubular wall 22. A lower end portion of the combustion exhaust gas passage 27 communicates with the combustion chamber 25, and a gas exhaust pipe 28 for exhausting gas is connected to an upper end portion of the combustion exhaust gas passage 27. The combustion exhaust gas discharged from the combustion chamber 25 flows from the lower side to the upper side in the combustion exhaust gas flow path 27 and is sent to the combustion exhaust gas water separation unit 70 through the gas discharge pipe 28. The combustion exhaust gas passage 27 corresponds to the “exhaust gas passage”.
また、二番目の筒状壁22と三番目の筒状壁23との間には、第1流路31が形成されている。この第1流路31の上部は、予熱流路32として形成されており、この予熱流路32の上端部には、都市ガスを供給するための原料供給管33と、改質用水を供給するための改質用水供給管34とが接続されている。さらに、二番目の筒状壁22と三番目の筒状壁23との間には、螺旋部材35が設けられており、この螺旋部材35により、予熱流路32は、螺旋状に形成されている。なお、第1流路31が「原料流路」に相当する。また、予熱流路32が「予熱部」に相当する。
Also, a first flow path 31 is formed between the second tubular wall 22 and the third tubular wall 23. An upper portion of the first flow passage 31 is formed as a preheating flow passage 32, and a raw material supply pipe 33 for supplying city gas and reforming water are supplied to an upper end portion of the preheating flow passage 32. Is connected to the reforming water supply pipe 34. Further, a spiral member 35 is provided between the second cylindrical wall 22 and the third cylindrical wall 23, and the preheating flow passage 32 is formed in a spiral shape by the spiral member 35. There is. The first flow path 31 corresponds to the “raw material flow path”. Further, the preheating flow path 32 corresponds to the “preheating section”.
なお、燃焼排ガス流路27、予熱流路32は、多重筒型改質器12の周方向において全周に亘って形成されており、予熱流路32の軸方向範囲A(図2参照)は、改質触媒層36の上端から第1流路31の上端までの範囲である。
The combustion exhaust gas passage 27 and the preheating passage 32 are formed over the entire circumference in the circumferential direction of the multi-cylinder reformer 12, and the axial range A (see FIG. 2) of the preheating passage 32 is , The range from the upper end of the reforming catalyst layer 36 to the upper end of the first flow path 31.
予熱流路32には、都市ガスが原料供給管33から供給可能とされ、さらに、改質用水が改質用水供給管34から供給可能とされている。都市ガス及び改質用水は、予熱流路32を上側から下側に流れ、二番目の筒状壁22を介して燃焼排ガスと熱交換されると共に、三番目の筒状壁23を介して後述するCO変成触媒層45において水性シフト反応している改質ガスG0と熱交換され、水が気化される構成である。この予熱流路32では、都市ガス及び気相の改質用水すなわち、水蒸気が混合されることにより、混合ガスが生成される構成である。
The city gas can be supplied to the preheating channel 32 from the raw material supply pipe 33, and further the reforming water can be supplied from the reforming water supply pipe 34. The city gas and the reforming water flow from the upper side to the lower side in the preheating flow channel 32, are heat-exchanged with the combustion exhaust gas through the second tubular wall 22, and will be described later through the third tubular wall 23. The water is vaporized by heat exchange with the reformed gas G0 which has undergone the aqueous shift reaction in the CO shift catalyst layer 45. In the preheating flow path 32, the mixed gas is generated by mixing the city gas and the reforming water in the vapor phase, that is, steam.
また、第1流路31における予熱流路32の下側には、改質触媒層36が設けられており、予熱流路32にて生成された混合ガスは、改質触媒層36へ供給される構成である。改質触媒層36では、燃焼排ガス流路27を流れる燃焼排ガスからの熱を受け、混合ガスが吸熱反応である水蒸気改質反応することによって、水素を主成分とする改質ガスG0が生成される構成である。なお、改質触媒層36が「改質部」に相当する。また、改質ガスG0が「一次改質ガス」に相当する。
A reforming catalyst layer 36 is provided below the preheating channel 32 in the first channel 31, and the mixed gas generated in the preheating channel 32 is supplied to the reforming catalyst layer 36. It is a configuration. The reforming catalyst layer 36 receives heat from the combustion exhaust gas flowing through the combustion exhaust gas passage 27 and undergoes a steam reforming reaction which is an endothermic reaction of the mixed gas to generate a reformed gas G0 containing hydrogen as a main component. It is a configuration. The reforming catalyst layer 36 corresponds to the “reforming section”. Further, the reformed gas G0 corresponds to the “primary reformed gas”.
さらに、三番目の筒状壁23と四番目の筒状壁24との間には、第2流路42が形成されている。第2流路42の下端部は、第1流路31の下端部と連通されている。第2流路42の下部は、改質ガス流路43として形成されており、第2流路42の上端部には、改質ガス排出管44が接続されている。なお、第2流路42が「一酸化炭素除去流路」に相当する。
Furthermore, a second flow path 42 is formed between the third cylindrical wall 23 and the fourth cylindrical wall 24. The lower end of the second flow path 42 communicates with the lower end of the first flow path 31. A lower portion of the second flow passage 42 is formed as a reformed gas flow passage 43, and a reformed gas discharge pipe 44 is connected to an upper end portion of the second flow passage 42. The second channel 42 corresponds to the "carbon monoxide removal channel".
また、第2流路42における改質ガス流路43よりも上側には、CO変成触媒層45が設けられており、改質触媒層36にて生成された改質ガスG0は、改質ガス流路43を通過した後、CO変成触媒層45へ供給される構成である。CO変成触媒層45では、改質ガスG0に含まれる一酸化炭素と水蒸気が水性シフト反応により水素と二酸化炭素に変換され、改質ガスG0の一酸化炭素が低減、すなわち削減可能とされている。
Further, a CO shift catalyst layer 45 is provided above the reformed gas passage 43 in the second passage 42, and the reformed gas G0 generated in the reformed catalyst layer 36 is the reformed gas. After passing through the flow path 43, the CO shift catalyst layer 45 is supplied. In the CO conversion catalyst layer 45, carbon monoxide and water vapor contained in the reformed gas G0 are converted into hydrogen and carbon dioxide by an aqueous shift reaction, and the carbon monoxide in the reformed gas G0 is reduced, that is, can be reduced. ..
すなわち、第2流路42には、改質ガスG0から一酸化炭素を低減する手段として、CO変成触媒層45のみが配設されている。
That is, only the CO shift catalyst layer 45 is disposed in the second flow path 42 as a means for reducing carbon monoxide from the reformed gas G0.
CO変成触媒層45で一酸化炭素が低減された改質ガスG1は、改質ガス排出管44を通じて排出される構成である。なお、改質ガスG1が「二次改質ガス」に相当する。
The reformed gas G1 in which carbon monoxide is reduced in the CO shift catalyst layer 45 is discharged through the reformed gas discharge pipe 44. The reformed gas G1 corresponds to the “secondary reformed gas”.
なお、このCO変成触媒層45は、多重筒型改質器12の周方向で全周に亘って配設されており、軸方向(図2、矢印X方向参照)で予熱流路32の外側全域、すなわち、軸方向範囲B)に配置されている。
The CO shift catalyst layer 45 is disposed over the entire circumference in the circumferential direction of the multi-cylinder reformer 12, and is located outside the preheating passage 32 in the axial direction (see the arrow X direction in FIG. 2). It is arranged in the entire area, that is, in the axial range B).
ここで、「CO変成触媒層45が予熱流路32の外側全域に配置」とは、筒状壁23に占める予熱流路32の表面積に対する筒状壁23に占めるCO変成触媒層45の表面積の割合、すなわち、予熱流路32の軸方向範囲Aに対する軸方向範囲Bの割合が70%以上100%以下であることを意味する。
なお、筒状壁23に占める予熱流路32の表面積に対する筒状壁23に占めるCO変成触媒層45の表面積の割合、すなわち、予熱流路32の軸方向範囲Aに対する軸方向範囲Bの割合は、好ましくは80%以上100%以下、より好ましくは90%以上100%以下である。 Here, “the COconversion catalyst layer 45 is arranged all over the outside of the preheating channel 32” means the surface area of the CO conversion catalyst layer 45 occupying the tubular wall 23 with respect to the surface area of the preheating channel 32 occupying the tubular wall 23. This means that the ratio, that is, the ratio of the axial range B to the axial range A of the preheating channel 32 is 70% or more and 100% or less.
The ratio of the surface area of the COshift catalyst layer 45 in the tubular wall 23 to the surface area of the preheating channel 32 in the tubular wall 23, that is, the ratio of the axial range B to the axial range A in the preheating channel 32 is , Preferably 80% or more and 100% or less, more preferably 90% or more and 100% or less.
なお、筒状壁23に占める予熱流路32の表面積に対する筒状壁23に占めるCO変成触媒層45の表面積の割合、すなわち、予熱流路32の軸方向範囲Aに対する軸方向範囲Bの割合は、好ましくは80%以上100%以下、より好ましくは90%以上100%以下である。 Here, “the CO
The ratio of the surface area of the CO
多重筒型改質器12において生成された改質ガスG1は、図1に示すように、昇圧前水分離部50、圧縮機80、昇圧後水分離部60、及び水素精製器90をこの順番で流れる。つまり、ガスの流れ方向において、上流側から下流側に、多重筒型改質器12、昇圧前水分離部50、圧縮機80、昇圧後水分離部60、及び水素精製器90がこの順番で配置されている。
As shown in FIG. 1, the reformed gas G1 generated in the multi-cylinder reformer 12 passes through the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 in this order. Flowing in. That is, in the gas flow direction, from the upstream side to the downstream side, the multi-tubular reformer 12, the pre-pressurization water separation unit 50, the compressor 80, the post-pressurization water separation unit 60, and the hydrogen purifier 90 are arranged in this order. It is arranged.
(昇圧前水分離部)
昇圧前水分離部50には、多重筒型改質器12から改質ガスG1を流入させる改質ガス排出管44の下流端が接続されている。昇圧前水分離部50の底部には水回収管59が接続され、昇圧前水分離部50の上部には連絡流路管56が接続されている。改質ガスG1は、昇圧前水分離部50の上流の改質ガス排出管44に配置された熱交換器HE1において、冷却水との熱交換による冷却により水が凝縮されて分離され、昇圧前水分離部50の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管59へ送出される構成である。水が凝縮された後の改質ガスG2は、連絡流路管56へ送出される構成である。 (Pre-pressurization water separator)
The downstream end of a reformedgas discharge pipe 44, into which the reformed gas G1 flows from the multi-cylinder reformer 12, is connected to the pre-pressurization water separation unit 50. A water recovery pipe 59 is connected to the bottom of the pre-pressurization water separation unit 50, and a communication flow path pipe 56 is connected to the top of the pre-pressurization water separation unit 50. The reformed gas G1 is condensed and separated in the heat exchanger HE1 arranged in the reformed gas discharge pipe 44 upstream of the pre-pressurization water separation unit 50 by cooling by heat exchange with cooling water, and before the pressurization. Liquid phase water can be stored under the water separation unit 50. The liquid phase water is sent to the water recovery pipe 59. The reformed gas G2 after the water is condensed is sent to the communication flow path pipe 56.
昇圧前水分離部50には、多重筒型改質器12から改質ガスG1を流入させる改質ガス排出管44の下流端が接続されている。昇圧前水分離部50の底部には水回収管59が接続され、昇圧前水分離部50の上部には連絡流路管56が接続されている。改質ガスG1は、昇圧前水分離部50の上流の改質ガス排出管44に配置された熱交換器HE1において、冷却水との熱交換による冷却により水が凝縮されて分離され、昇圧前水分離部50の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管59へ送出される構成である。水が凝縮された後の改質ガスG2は、連絡流路管56へ送出される構成である。 (Pre-pressurization water separator)
The downstream end of a reformed
(圧縮機)
圧縮機80には、昇圧前水分離部50からの改質ガスG2が流れる連絡流路管56と、昇圧後水分離部60へ供給される改質ガスG2が流れる連絡流路管66とが接続されている。圧縮機80は、昇圧前水分離部50から供給された改質ガスG2を圧縮し、昇圧後水分離部60へ供給可能とされている。 (Compressor)
In thecompressor 80, there are a communication flow passage pipe 56 through which the reformed gas G2 from the pre-pressurization water separation unit 50 flows, and a communication flow passage pipe 66 through which the reformed gas G2 supplied to the post-pressurization water separation unit 60 flows. It is connected. The compressor 80 is capable of compressing the reformed gas G2 supplied from the pre-pressurization water separation unit 50 and supplying it to the post-pressurization water separation unit 60.
圧縮機80には、昇圧前水分離部50からの改質ガスG2が流れる連絡流路管56と、昇圧後水分離部60へ供給される改質ガスG2が流れる連絡流路管66とが接続されている。圧縮機80は、昇圧前水分離部50から供給された改質ガスG2を圧縮し、昇圧後水分離部60へ供給可能とされている。 (Compressor)
In the
(昇圧後水分離部)
昇圧後水分離部60には、圧縮機80から改質ガスG2を流入させる連絡流路管66の下流端が接続されている。昇圧後水分離部60の底部には水回収管69が接続され、昇圧後水分離部60の上部には連絡流路管68が接続されている。改質ガスG2は、昇圧後水分離部60の上流の連絡流路管66に配置された熱交換器HE2において、冷却水との熱交換による冷却により水が凝縮されて分離され、昇圧後水分離部60の下部に液相の水が貯留可能されている。当該液相の水は、水回収管69へ送出される構成である。水が凝縮された後の改質ガスG3は、連絡流路管68へ送出される構成である。 (Water separation unit after pressurization)
To the post-pressurizationwater separation unit 60, a downstream end of a communication flow pipe 66 that allows the reformed gas G2 to flow from the compressor 80 is connected. A water recovery pipe 69 is connected to the bottom of the post-pressurization water separation unit 60, and a communication channel pipe 68 is connected to the top of the post-pressurization water separation unit 60. The reformed gas G2 is condensed and separated by cooling by heat exchange with cooling water in the heat exchanger HE2 arranged in the communication flow path pipe 66 upstream of the post-pressurization water separation section 60, and the post-pressurization water is separated. Liquid phase water can be stored in the lower portion of the separation unit 60. The liquid phase water is sent to the water recovery pipe 69. The reformed gas G3 after the water is condensed is sent to the communication flow path pipe 68.
昇圧後水分離部60には、圧縮機80から改質ガスG2を流入させる連絡流路管66の下流端が接続されている。昇圧後水分離部60の底部には水回収管69が接続され、昇圧後水分離部60の上部には連絡流路管68が接続されている。改質ガスG2は、昇圧後水分離部60の上流の連絡流路管66に配置された熱交換器HE2において、冷却水との熱交換による冷却により水が凝縮されて分離され、昇圧後水分離部60の下部に液相の水が貯留可能されている。当該液相の水は、水回収管69へ送出される構成である。水が凝縮された後の改質ガスG3は、連絡流路管68へ送出される構成である。 (Water separation unit after pressurization)
To the post-pressurization
(水素精製器)
水素精製器90には、昇圧後水分離部60からの改質ガスG3が流れる連絡流路管68の下流端と、水素精製器90のオフガスが流れるオフガス還流管100の上流端とが接続されている。 (Hydrogen refiner)
Thehydrogen purifier 90 is connected to the downstream end of the communication flow pipe 68 through which the reformed gas G3 from the post-pressurization water separation unit 60 flows and the upstream end of the offgas reflux pipe 100 through which the offgas of the hydrogen purifier 90 flows. ing.
水素精製器90には、昇圧後水分離部60からの改質ガスG3が流れる連絡流路管68の下流端と、水素精製器90のオフガスが流れるオフガス還流管100の上流端とが接続されている。 (Hydrogen refiner)
The
水素精製器90は、一例として、PSA装置が使用されている。この水素精製器90では、一対の吸着槽を備え、一方の吸着槽で吸着剤に不純物を吸着させる吸着工程を行い、他方の吸着槽で吸着剤に吸着した不純物を脱着させる脱着工程を行い、次に一方の吸着槽で脱着工程、他方の吸着槽で吸着工程を行う。これを周期的に繰り返すことで、改質ガスG3を水素と一酸化炭素を含む不純物すなわち、オフガスOGとに連続的に分離して、水素が精製される構成である。精製された水素は、水素供給管92へ送出され、不図示のタンクへ貯留されたり、水素供給ラインへ送出可能とされている。
As the hydrogen purifier 90, a PSA device is used as an example. The hydrogen purifier 90 includes a pair of adsorption tanks, one adsorption tank performs an adsorption step of adsorbing impurities on the adsorbent, and the other adsorption tank performs a desorption step of desorbing the impurities adsorbed on the adsorbent, Next, the desorption process is performed in one adsorption tank, and the adsorption process is performed in the other adsorption tank. By repeating this periodically, the reformed gas G3 is continuously separated into hydrogen and impurities containing carbon monoxide, that is, off-gas OG, and hydrogen is purified. The purified hydrogen is sent to the hydrogen supply pipe 92, can be stored in a tank (not shown), or can be sent to the hydrogen supply line.
水素精製器90のオフガスは、オフガス還流管100を介して改質器12のバーナー26に供給可能とされている。
The off gas of the hydrogen purifier 90 can be supplied to the burner 26 of the reformer 12 via the off gas reflux pipe 100.
(オフガスタンク)
水素精製器90から改質器12の燃焼室25のバーナー26に連通するオフガス還流管100の途中には、オフガスタンク102が設けられている。水素精製器90から送出されたオフガスはオフガスタンク102に一旦貯留され、流量や組成が平準化されてバーナー26に供給される構成である。 (Off gas tank)
Anoffgas tank 102 is provided in the middle of an offgas recirculation pipe 100 that communicates with the burner 26 of the combustion chamber 25 of the reformer 12 from the hydrogen purifier 90. The off-gas sent from the hydrogen purifier 90 is temporarily stored in the off-gas tank 102, leveled in flow rate and composition, and supplied to the burner 26.
水素精製器90から改質器12の燃焼室25のバーナー26に連通するオフガス還流管100の途中には、オフガスタンク102が設けられている。水素精製器90から送出されたオフガスはオフガスタンク102に一旦貯留され、流量や組成が平準化されてバーナー26に供給される構成である。 (Off gas tank)
An
(燃焼排ガス水分離部)
燃焼排ガス水分離部70には、改質器12の燃焼排ガス流路27から燃焼排ガスを導くガス排出管28の下流端が接続されている。燃焼排ガス水分離部70の底部には水回収管78が接続され、燃焼排ガス水分離部70の上部にはガス排出管76が接続されている。燃焼室25から排出される燃焼排ガスは、燃焼排ガス水分離部70の上流のガス排出管28に配置された熱交換器HE3において、冷却水との熱交換による冷却により水が凝縮されて分離され、燃焼排ガス水分離部70の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管78へ送出される構成である。水が凝縮された後の燃焼排ガスは、ガス排出管76から外気中へ排出される構成である。 (Combustion exhaust gas water separation unit)
The downstream end of agas exhaust pipe 28 that guides the combustion exhaust gas from the combustion exhaust gas flow path 27 of the reformer 12 is connected to the combustion exhaust gas water separation unit 70. A water recovery pipe 78 is connected to the bottom of the combustion exhaust gas water separation unit 70, and a gas discharge pipe 76 is connected to the upper portion of the combustion exhaust gas water separation unit 70. The combustion exhaust gas discharged from the combustion chamber 25 is separated and condensed in the heat exchanger HE3 arranged in the gas discharge pipe 28 upstream of the combustion exhaust gas water separation unit 70 by cooling by heat exchange with cooling water. The liquid water can be stored under the combustion exhaust gas water separation unit 70. The liquid phase water is sent to the water recovery pipe 78. The combustion exhaust gas after the water is condensed is discharged from the gas discharge pipe 76 into the outside air.
燃焼排ガス水分離部70には、改質器12の燃焼排ガス流路27から燃焼排ガスを導くガス排出管28の下流端が接続されている。燃焼排ガス水分離部70の底部には水回収管78が接続され、燃焼排ガス水分離部70の上部にはガス排出管76が接続されている。燃焼室25から排出される燃焼排ガスは、燃焼排ガス水分離部70の上流のガス排出管28に配置された熱交換器HE3において、冷却水との熱交換による冷却により水が凝縮されて分離され、燃焼排ガス水分離部70の下部に液相の水が貯留可能とされている。当該液相の水は、水回収管78へ送出される構成である。水が凝縮された後の燃焼排ガスは、ガス排出管76から外気中へ排出される構成である。 (Combustion exhaust gas water separation unit)
The downstream end of a
水回収管59、69、78の各々の下流端は、改質用水供給管34に接続されている。改質用水供給管34には、溶存イオン成分を除去するためのイオン交換樹脂からなる水処理器34Aが設けられている。また、改質用水供給管34には、外部水供給部17が接続されている。外部水供給部17から改質用水供給管34に、例えば純水または市水が供給される構成である。
The downstream end of each of the water recovery pipes 59, 69, 78 is connected to the reforming water supply pipe 34. The reforming water supply pipe 34 is provided with a water treatment device 34A made of an ion exchange resin for removing dissolved ion components. The external water supply unit 17 is connected to the reforming water supply pipe 34. For example, pure water or city water is supplied from the external water supply unit 17 to the reforming water supply pipe 34.
さらに、改質用水供給管34には、ポンプP1が設けられている。昇圧前水分離部50、昇圧後水分離部60、燃焼排ガス水分離部70で分離された水、又は外部水供給部17から供給された水は、ポンプP1によって多重筒型改質器12へ供給される構成である。
Further, the reforming water supply pipe 34 is provided with a pump P1. The water separated by the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, the combustion exhaust gas water separation unit 70, or the water supplied from the external water supply unit 17 is sent to the multi-tubular reformer 12 by the pump P1. It is a configuration to be supplied.
(作用)
次に、水素製造装置10及び多重筒型改質器12の作用について説明する。 (Action)
Next, the operation of thehydrogen production device 10 and the multi-cylinder reformer 12 will be described.
次に、水素製造装置10及び多重筒型改質器12の作用について説明する。 (Action)
Next, the operation of the
都市ガスが、原料供給管33から多重筒型改質器12に供給される。図2に示すように、多重筒型改質器12へ供給された都市ガスは、多重筒型改質器12の予熱流路32で改質用の水と混合されつつ、予熱流路32の内側の燃焼排ガス流路27を通過する燃焼排ガスと熱交換されると共に、予熱流路32の外側の第2流路42に配置されたCO変成触媒層45で発熱反応である水性シフト反応をしている改質ガスと熱交換される。すなわち、都市ガスと改質用水が混合されつつ加熱され、改質触媒層36へ供給される。
City gas is supplied from the raw material supply pipe 33 to the multi-cylinder reformer 12. As shown in FIG. 2, the city gas supplied to the multi-cylinder reformer 12 is mixed with the reforming water in the pre-heating channel 32 of the multi-cylinder reformer 12 while being mixed with the reforming water. While exchanging heat with the combustion exhaust gas passing through the inner combustion exhaust gas passage 27, the CO shift catalyst layer 45 arranged in the second passage 42 outside the preheating passage 32 causes an aqueous shift reaction which is an exothermic reaction. Is exchanged with the reformed gas. That is, the city gas and the reforming water are heated while being mixed and supplied to the reforming catalyst layer 36.
改質触媒層36では、混合ガスが燃焼排ガス流路27を流れる燃焼排ガスの熱を受けて吸熱反応である水蒸気改質反応を生じ、水素を主成分とする改質ガスG0が生成される。この改質ガスG0は、改質ガス流路43を通ってCO変成触媒層45へ供給される。CO変成触媒層45では、改質ガスG0に含まれる一酸化炭素と水蒸気が反応して水素と二酸化炭素に変換され、すなわち、水性シフト反応が行われ、一酸化炭素が低減される。
In the reforming catalyst layer 36, the mixed gas receives the heat of the combustion exhaust gas flowing through the combustion exhaust gas passage 27 to cause a steam reforming reaction which is an endothermic reaction, and the reformed gas G0 containing hydrogen as a main component is generated. The reformed gas G0 is supplied to the CO shift catalyst layer 45 through the reformed gas passage 43. In the CO conversion catalyst layer 45, carbon monoxide contained in the reformed gas G0 reacts with steam to be converted into hydrogen and carbon dioxide, that is, an aqueous shift reaction is performed, and carbon monoxide is reduced.
このように、CO変成触媒層45で一酸化炭素が低減された改質ガスG1は、改質ガス排出管44へ送出される。
The reformed gas G1 in which carbon monoxide is reduced in the CO shift catalyst layer 45 in this manner is sent to the reformed gas discharge pipe 44.
この際、多重筒型改質器12の燃焼室25では、原料分岐管33Aと空気分岐管40Aから供給された都市ガスと空気とが混合された気体、又はオフガス還流管100から供給されたオフガスがバーナー26によって燃焼される。燃焼排ガスは、燃焼室25から燃焼排ガス流路27、ガス排出管28を介して燃焼排ガス水分離部70へ供給される。図1に示すように、燃焼排ガスに含まれる水は、熱交換器HE3での熱交換により冷却されて凝縮され、燃焼排ガス水分離部70に貯留され、水回収管78へ送出される。水が分離された燃焼排ガスは、ガス排出管76から外気中へ排出される。
At this time, in the combustion chamber 25 of the multi-cylinder reformer 12, a gas obtained by mixing the city gas and air supplied from the raw material branch pipe 33A and the air branch pipe 40A, or the off gas supplied from the off gas recirculation pipe 100. Are burned by the burner 26. The combustion exhaust gas is supplied from the combustion chamber 25 to the combustion exhaust gas water separation unit 70 via the combustion exhaust gas flow passage 27 and the gas exhaust pipe 28. As shown in FIG. 1, the water contained in the combustion exhaust gas is cooled and condensed by heat exchange in the heat exchanger HE3, stored in the combustion exhaust gas water separation unit 70, and sent to the water recovery pipe 78. The combustion exhaust gas from which the water has been separated is discharged from the gas discharge pipe 76 into the outside air.
一方、図1に示すように、改質ガスG1は、改質ガス排出管44を経て、昇圧前水分離部50へ供給される。昇圧前水分離部50では、熱交換器HE1での熱交換による冷却により凝縮された水が貯留され、水回収管59へ送出される。水が分離された改質ガスG2は、連絡流路管56から圧縮機80へ供給され、圧縮機80によって圧縮される。
On the other hand, as shown in FIG. 1, the reformed gas G1 is supplied to the pre-pressurization water separation unit 50 via the reformed gas discharge pipe 44. In the pre-pressurization water separation unit 50, water condensed by cooling by heat exchange in the heat exchanger HE1 is stored and sent to the water recovery pipe 59. The reformed gas G2 from which the water has been separated is supplied to the compressor 80 from the communication flow path pipe 56 and is compressed by the compressor 80.
圧縮された改質ガスG2は、連絡流路管66から昇圧後水分離部60へ供給される。昇圧後水分離部60では、熱交換器HE2での熱交換による冷却により凝縮された水が貯留され、水回収管69へ送出される。水が分離された改質ガスG3は、連絡流路管68から水素精製器90へ供給される。
The compressed reformed gas G2 is supplied to the water separation unit 60 after pressurization from the communication flow pipe 66. In the post-pressurization water separation unit 60, water condensed by cooling by heat exchange in the heat exchanger HE2 is stored and sent to the water recovery pipe 69. The reformed gas G3 from which water has been separated is supplied to the hydrogen purifier 90 from the communication flow path pipe 68.
なお、昇圧前水分離部50、昇圧後水分離部60、燃焼排ガス水分離部70からそれぞれ水回収管59、69、78に送出された水は、改質用水供給管34に戻される。ポンプP1の駆動により、改質用水供給管34から多重筒型改質器12に改質用水として供給される。
The water sent from the pre-pressurization water separation unit 50, the post-pressurization water separation unit 60, and the combustion exhaust gas water separation unit 70 to the water recovery pipes 59, 69, and 78 is returned to the reforming water supply pipe 34. By driving the pump P1, the reforming water supply pipe 34 supplies the reforming water to the multi-cylinder reformer 12.
水素精製器90では、圧力スイング方式が採用されており、一対の吸着槽の一方では吸着剤に水素以外の不純物が吸着され、他方の吸着槽では吸着剤に吸着された不純物が脱着されている。水素精製器90では、この吸着工程と脱着工程をそれぞれの吸着槽で一定の周期で繰り返すことにより、改質ガスG3から連続的に水素と不純物が分離されて水素が精製される。
The hydrogen purifier 90 employs a pressure swing method, in which one of the pair of adsorption tanks adsorbs impurities other than hydrogen in the adsorbent and the other adsorption tank desorbs the impurities adsorbed in the adsorbent. .. In the hydrogen purifier 90, the adsorption step and the desorption step are repeated in each adsorption tank at a constant cycle to continuously separate hydrogen and impurities from the reformed gas G3 to purify hydrogen.
水素精製器90で精製された製品としての水素は水素供給管92へ送出され、不図示のタンクへ貯留されたり、水素供給ラインへ送られたりする。
Hydrogen as a product purified by the hydrogen purifier 90 is sent to the hydrogen supply pipe 92 and stored in a tank (not shown) or sent to the hydrogen supply line.
一方、水素精製器90から排出されたオフガスOGは、オフガス還流管100の途中に設けられたオフガスタンク102に一旦貯留された後、流量や組成が平準化されて改質器12のバーナー26に供給される。なお、このオフガスOGには、改質器12で除去しきれなかった一酸化炭素と水素精製器90で分離しきれなかった水素が含有されている。
On the other hand, the off-gas OG discharged from the hydrogen purifier 90 is temporarily stored in an off-gas tank 102 provided in the middle of the off-gas recirculation pipe 100, and then the flow rate and composition thereof are leveled to the burner 26 of the reformer 12. Supplied. The offgas OG contains carbon monoxide that could not be completely removed by the reformer 12 and hydrogen that could not be completely separated by the hydrogen purifier 90.
このように、水素製造装置10では、改質器12の改質触媒層36で水蒸気改質された改質ガスG0から一酸化炭素を除去するのに、CO変成触媒層45、すなわち、水性シフト反応のみを用いている。すなわち、改質器12では、空気を用いない反応のみで改質ガスG0から一酸化炭素を除去しているため、改質器12から送出される改質ガスG1にアルゴンが含有されることが防止される。
As described above, in the hydrogen production device 10, in order to remove carbon monoxide from the reformed gas G0 steam-reformed by the reforming catalyst layer 36 of the reformer 12, the CO shift catalyst layer 45, that is, the water shift. Only the reaction is used. That is, in the reformer 12, carbon monoxide is removed from the reformed gas G0 only by a reaction that does not use air, so that the reformed gas G1 delivered from the reformer 12 may contain argon. To be prevented.
したがって、改質ガスG1、すなわち、改質ガスG3に水素精製器90で除去しにくいアルゴンが含まれていないため、水素精製器90で精製された製品水素の純度を向上させることができる。あるいは、水素精製器90でアルゴンを除去するために、水素精製器90の負荷が増大することが防止される。
Therefore, since the reformed gas G1, that is, the reformed gas G3 does not contain argon that is difficult to remove by the hydrogen purifier 90, the purity of the product hydrogen purified by the hydrogen purifier 90 can be improved. Alternatively, the removal of argon in the hydrogen purifier 90 prevents the load on the hydrogen purifier 90 from increasing.
一方、改質器12においては、予熱流路32の外側全域にCO変成触媒層45が配設されている。ここで、筒状壁23に占める予熱流路32の表面積に対する筒状壁23に占めるCO変成触媒層45の表面積の割合、すなわち、予熱流路32の軸方向範囲Aに占めるCO変成触媒層45の軸方向範囲Bの割合が70%以上100%以下とされている。したがって、発熱反応である水性シフト反応が行われているCO変成触媒層45から予熱流路32を流れる水(水蒸気)と炭化水素に十分な熱量を与えるすなわち、予熱流路32を流れる水(水蒸気)と炭化水素を十分に加熱することができる。すなわち、CO変成触媒層45は、燃焼排ガス流路27を流れる燃焼排ガスと共に、予熱流路32を流れる水及び水蒸気と炭化水素に十分な熱量を供給できるので、予熱流路32で炭化水素と水から混合ガスを良好に生成することができる。
On the other hand, in the reformer 12, the CO shift catalyst layer 45 is arranged all over the outside of the preheating flow channel 32. Here, the ratio of the surface area of the CO conversion catalyst layer 45 occupying the cylindrical wall 23 to the surface area of the preheating channel 32 occupying the cylindrical wall 23, that is, the CO conversion catalyst layer 45 occupying the axial range A of the preheating channel 32. The ratio of the axial range B is 70% or more and 100% or less. Therefore, a sufficient amount of heat is given to the water (steam) flowing through the preheating channel 32 and the hydrocarbon from the CO shift catalyst layer 45 in which the aqueous shift reaction, which is an exothermic reaction, is performed. ) And hydrocarbons can be heated sufficiently. That is, the CO shift catalyst layer 45 can supply a sufficient amount of heat to the water and steam and the hydrocarbons flowing through the preheating flow passage 32 together with the combustion exhaust gas flowing through the combustion exhaust gas flow passage 27. Therefore, the mixed gas can be satisfactorily generated.
また、改質器12では、改質ガスG0中の一酸化炭素の除去すなわち、一酸化炭素から二酸化炭素への変換を全てCO変成触媒層45(水性シフト反応)で行う。したがって、水性シフト反応と酸化反応を用いていたものとの比較において、酸化反応部分もCO変成触媒層45すなわち、水性シフト反応部分に置換したため、製品水素の生産量が増加する。
Further, in the reformer 12, removal of carbon monoxide in the reformed gas G0, that is, conversion of carbon monoxide to carbon dioxide is all performed by the CO shift catalyst layer 45 (aqueous shift reaction). Therefore, in comparison with the case where the aqueous shift reaction and the oxidation reaction are used, the oxidation reaction portion is also replaced by the CO shift catalyst layer 45, that is, the water shift reaction portion, so that the production amount of product hydrogen increases.
さらに、第2流路42のうち、予熱流路32の外側全域にCO変成触媒層45が設けられたため、CO変成触媒層45の軸方向長さすなわち、容積が十分に確保され、空間速度(SV)が低減され、CO変成触媒層45の負荷が低減される。
Furthermore, since the CO conversion catalyst layer 45 is provided in the entire area outside the preheating flow path 32 in the second flow path 42, the axial length of the CO conversion catalyst layer 45, that is, the volume is sufficiently secured, and the space velocity ( SV) is reduced, and the load on the CO shift catalyst layer 45 is reduced.
また、改質器12において、改質ガスG0から一酸化炭素を削減する手段としてCO変成触媒層45のみを用いているため、改質器12の構造が簡略化される。
Further, in the reformer 12, since only the CO shift catalyst layer 45 is used as a means for reducing carbon monoxide from the reformed gas G0, the structure of the reformer 12 is simplified.
[第2実施形態]
本開示の第2実施形態に係る多重筒型改質器及び水素製造装置の一例を図1及び図3を参照して説明する。なお、第1実施形態と同様の構成要素には、同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態と異なるのは、多重筒型改質器におけるバーナーの位置のみなので、該当部分のみ説明し、他の説明は省略する。 [Second Embodiment]
An example of the multi-cylinder reformer and the hydrogen production device according to the second embodiment of the present disclosure will be described with reference to FIGS. 1 and 3. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the only difference from the first embodiment is the position of the burner in the multi-tubular reformer, so only the relevant portions will be described and other explanations will be omitted.
本開示の第2実施形態に係る多重筒型改質器及び水素製造装置の一例を図1及び図3を参照して説明する。なお、第1実施形態と同様の構成要素には、同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態と異なるのは、多重筒型改質器におけるバーナーの位置のみなので、該当部分のみ説明し、他の説明は省略する。 [Second Embodiment]
An example of the multi-cylinder reformer and the hydrogen production device according to the second embodiment of the present disclosure will be described with reference to FIGS. 1 and 3. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the only difference from the first embodiment is the position of the burner in the multi-tubular reformer, so only the relevant portions will be described and other explanations will be omitted.
(構成)
図3に示すように、水素製造装置200の多重筒型改質器202では、燃焼室25に配設されたバーナー204の軸方向長さが第1実施形態のバーナー26と比較して長くされている。すなわち、バーナー204のノズル206の先端206Aが改質触媒層36の内側に位置するように、バーナー204が燃焼室25に配設されている。 (Constitution)
As shown in FIG. 3, in themulti-cylinder reformer 202 of the hydrogen production apparatus 200, the axial length of the burner 204 arranged in the combustion chamber 25 is made longer than that of the burner 26 of the first embodiment. ing. That is, the burner 204 is arranged in the combustion chamber 25 so that the tip 206A of the nozzle 206 of the burner 204 is located inside the reforming catalyst layer 36.
図3に示すように、水素製造装置200の多重筒型改質器202では、燃焼室25に配設されたバーナー204の軸方向長さが第1実施形態のバーナー26と比較して長くされている。すなわち、バーナー204のノズル206の先端206Aが改質触媒層36の内側に位置するように、バーナー204が燃焼室25に配設されている。 (Constitution)
As shown in FIG. 3, in the
(作用)
このように構成された水素製造装置200では、第1実施形態の水素製造装置10と同様の作用を奏する。 (Action)
Thehydrogen production apparatus 200 configured in this way has the same operation as the hydrogen production apparatus 10 of the first embodiment.
このように構成された水素製造装置200では、第1実施形態の水素製造装置10と同様の作用を奏する。 (Action)
The
また、多重筒型改質器202のバーナー204に都市ガスに空気が混合された気体又はオフガスが供給されることにより、バーナー204で燃焼される。
Further, the burner 204 of the multi-cylinder reformer 202 is supplied with a gas in which city gas is mixed with air or an off gas, so that the burner 204 is burned.
ここで、図3に示すように、多重筒型改質器202の燃焼室25においてバーナー204のノズル206は下向きに開口している。また、バーナー204のノズル206の先端206Aは、改質触媒層36の内側に位置している。
Here, as shown in FIG. 3, the nozzle 206 of the burner 204 is opened downward in the combustion chamber 25 of the multi-cylinder reformer 202. Further, the tip 206A of the nozzle 206 of the burner 204 is located inside the reforming catalyst layer 36.
したがって、図3に示すように、バーナー204のノズル206の先端206Aに形成される火炎Fは下向きに形成され、改質触媒層36の内側に位置する。
Therefore, as shown in FIG. 3, the flame F formed at the tip 206A of the nozzle 206 of the burner 204 is formed downward and is located inside the reforming catalyst layer 36.
ところで、多重筒型改質器202では、都市ガスと改質用水から生成された混合ガスが改質触媒層36に供給されることによって水蒸気改質されるが、この水蒸気改質反応は吸熱反応である。したがって、燃焼室25においてバーナー26で形成される火炎Fが改質触媒層36の内側に位置することにより、改質触媒層36に対する熱供給量が増大し、改質触媒層36における水蒸気改質が一層促進される。
By the way, in the multi-cylinder reformer 202, a mixed gas generated from city gas and reforming water is supplied to the reforming catalyst layer 36 for steam reforming. This steam reforming reaction is an endothermic reaction. Is. Therefore, since the flame F formed by the burner 26 in the combustion chamber 25 is located inside the reforming catalyst layer 36, the heat supply amount to the reforming catalyst layer 36 increases, and the steam reforming in the reforming catalyst layer 36 increases. Is further promoted.
[その他]
一実施形態に係る水素製造装置10では、水素精製器90がPSA装置である場合について説明したが、改質ガスG3から水素を精製できるものであれば、これに限定するものではない。 [Other]
In thehydrogen production device 10 according to the embodiment, the case where the hydrogen purifier 90 is a PSA device has been described, but the hydrogen purifier 90 is not limited to this as long as hydrogen can be purified from the reformed gas G3.
一実施形態に係る水素製造装置10では、水素精製器90がPSA装置である場合について説明したが、改質ガスG3から水素を精製できるものであれば、これに限定するものではない。 [Other]
In the
2018年11月12付けの日本国特許出願2018-212517の開示はその全体が参照により本明細書に取り込まれる。
The disclosure of Japanese Patent Application 2018-212517 dated November 12, 2018 is incorporated herein by reference in its entirety.
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.
Claims (3)
- 炭化水素と水が原料として供給されると共に、炭化水素と水蒸気からなる混合気を水蒸気改質することにより水素を主成分とする一次改質ガスを生成し、前記一次改質ガスから一酸化炭素を削減した二次改質ガスを生成する多重筒型改質器であって、
一端側から供給された炭化水素と水が加熱されて混合ガスとされる予熱部と、前記予熱部の下流側に形成され、前記混合ガスが水蒸気改質されることによって水素と一酸化炭素とを含む一次改質ガスが生成される改質部と、を有する原料流路と、
前記原料流路の内側に隣接して配設され、燃料ガスを燃焼させた燃焼排ガスを流す排ガス流路と、
前記原料流路の外側に隣接して配設され、前記予熱部の外側全域に配置され前記一次改質ガスに含まれる水と一酸化炭素を水性シフト反応で二酸化炭素と水素に変換して前記二次改質ガスを生成するシフト反応部のみが設けられた一酸化炭素除去流路と、
を備える多重筒型改質器。 Hydrocarbon and water are supplied as raw materials, and a primary reformed gas containing hydrogen as a main component is produced by steam reforming a mixture of hydrocarbon and steam, and carbon monoxide is produced from the primary reformed gas. A multi-cylinder type reformer that produces a secondary reformed gas with reduced
A preheating part in which hydrocarbon and water supplied from one end side are heated to form a mixed gas, and hydrogen and carbon monoxide are formed on the downstream side of the preheating part and the mixed gas is steam-reformed. A raw material flow path having a reforming section in which a primary reformed gas containing is generated,
An exhaust gas flow passage, which is disposed adjacent to the inside of the raw material flow passage and flows a combustion exhaust gas obtained by burning a fuel gas,
It is arranged adjacent to the outside of the raw material flow path, and is arranged all over the outside of the preheating section to convert water and carbon monoxide contained in the primary reformed gas into carbon dioxide and hydrogen by an aqueous shift reaction and A carbon monoxide removal flow path provided only with a shift reaction part for generating a secondary reformed gas,
Multiple cylinder type reformer equipped with. - 前記多重筒型改質器の前記排ガス流路の内側には、前記燃料ガスを燃焼させるバーナーが配設された燃焼室が形成されており、前記バーナーのノズルの先端が前記改質部の内側に位置している請求項1記載の多重筒型改質器。 A combustion chamber, in which a burner for burning the fuel gas is disposed, is formed inside the exhaust gas flow path of the multi-cylinder reformer, and a tip of a nozzle of the burner is inside the reforming section. The multi-tubular reformer according to claim 1, which is located at
- 請求項1又は2記載の多重筒型改質器と、
前記多重筒型改質器と接続され、前記二次改質ガスを製品水素と不純物とに分離して製品水素を精製する水素精製器と、
を備える水素製造装置。 A multi-cylinder reformer according to claim 1 or 2,
A hydrogen purifier that is connected to the multi-cylinder reformer and separates the secondary reformed gas into product hydrogen and impurities to purify product hydrogen,
Hydrogen production device equipped with.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212517A JP6553272B1 (en) | 2018-11-12 | 2018-11-12 | Multi-tubular reformer and hydrogen production apparatus |
JP2018-212517 | 2018-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100462A1 true WO2020100462A1 (en) | 2020-05-22 |
Family
ID=67473279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039388 WO2020100462A1 (en) | 2018-11-12 | 2019-10-04 | Multiple cylindrical type reformer and hydrogen production apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6553272B1 (en) |
WO (1) | WO2020100462A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178620A (en) * | 2010-03-02 | 2011-09-15 | Tokyo Gas Co Ltd | Multiple cylindrical steam reformer |
JP2014101237A (en) * | 2012-11-16 | 2014-06-05 | Toshiba Fuel Cell Power Systems Corp | Hydrogen production apparatus, and fuel cell system |
JP2014196208A (en) * | 2013-03-29 | 2014-10-16 | 三洋電機株式会社 | Fuel reforming apparatus and fuel cell system |
JP2014234322A (en) * | 2013-05-31 | 2014-12-15 | 株式会社神戸製鋼所 | Hydrogen production apparatus stopping method and hydrogen production apparatus |
JP2016044085A (en) * | 2014-08-21 | 2016-04-04 | パナソニックIpマネジメント株式会社 | Hydrogen generator |
JP2016060649A (en) * | 2014-09-16 | 2016-04-25 | 大日機械工業株式会社 | Hydrogen production system for hydrogen station |
JP2017048079A (en) * | 2015-09-01 | 2017-03-09 | パナソニックIpマネジメント株式会社 | Hydrogen generator and fuel cell system using the same |
JP2017077979A (en) * | 2015-10-19 | 2017-04-27 | パナソニックIpマネジメント株式会社 | Hydrogen-generating apparatus, fuel cell system using the same, and method of operating the same |
-
2018
- 2018-11-12 JP JP2018212517A patent/JP6553272B1/en active Active
-
2019
- 2019-10-04 WO PCT/JP2019/039388 patent/WO2020100462A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178620A (en) * | 2010-03-02 | 2011-09-15 | Tokyo Gas Co Ltd | Multiple cylindrical steam reformer |
JP2014101237A (en) * | 2012-11-16 | 2014-06-05 | Toshiba Fuel Cell Power Systems Corp | Hydrogen production apparatus, and fuel cell system |
JP2014196208A (en) * | 2013-03-29 | 2014-10-16 | 三洋電機株式会社 | Fuel reforming apparatus and fuel cell system |
JP2014234322A (en) * | 2013-05-31 | 2014-12-15 | 株式会社神戸製鋼所 | Hydrogen production apparatus stopping method and hydrogen production apparatus |
JP2016044085A (en) * | 2014-08-21 | 2016-04-04 | パナソニックIpマネジメント株式会社 | Hydrogen generator |
JP2016060649A (en) * | 2014-09-16 | 2016-04-25 | 大日機械工業株式会社 | Hydrogen production system for hydrogen station |
JP2017048079A (en) * | 2015-09-01 | 2017-03-09 | パナソニックIpマネジメント株式会社 | Hydrogen generator and fuel cell system using the same |
JP2017077979A (en) * | 2015-10-19 | 2017-04-27 | パナソニックIpマネジメント株式会社 | Hydrogen-generating apparatus, fuel cell system using the same, and method of operating the same |
Also Published As
Publication number | Publication date |
---|---|
JP2020079177A (en) | 2020-05-28 |
JP6553272B1 (en) | 2019-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9156690B2 (en) | Hydrogen generation process using partial oxidation/steam reforming | |
US7699907B2 (en) | Apparatus and methods for gas separation | |
US20090074644A1 (en) | Reduced temperature calcining method for hydrogen generation | |
US20090230359A1 (en) | Steam-Hydrocarbon Reforming Method with Limited Steam Export | |
JP2023530574A (en) | How to generate hydrogen | |
JP4316386B2 (en) | Method and apparatus for producing hydrogen from hydrogen rich feed gas | |
JP6530123B1 (en) | Hydrogen production equipment | |
WO2020100462A1 (en) | Multiple cylindrical type reformer and hydrogen production apparatus | |
JP4256013B2 (en) | Environmentally friendly hydrogen production method | |
JPH06191801A (en) | Production of hydrogen | |
JP2005517622A5 (en) | ||
EP3720813B1 (en) | System and process for production of synthesis gas | |
WO2020100463A1 (en) | Hydrogen production apparatus | |
JP7181080B2 (en) | Hydrogen production equipment | |
JP2020079175A (en) | Hydrogen production apparatus | |
JP2020100534A (en) | Hydrogen production apparatus | |
JP2019055891A (en) | Hydrogen production equipment | |
JP2020079174A (en) | Hydrogen production apparatus | |
JP2017222557A (en) | Method for producing hydrogen gas and apparatus for producing hydrogen gas | |
JP2021193060A (en) | Reforming unit and hydrogen production device | |
JP2020100540A (en) | Hydrogen producing apparatus | |
JP2020079176A (en) | Hydrogen production system | |
EA040289B1 (en) | SYSTEM AND METHOD FOR PRODUCING SYNTHESIS GAS | |
EA041183B1 (en) | CARBON RECYCLING DURING STEAM REFORMING | |
JP2020079171A (en) | Hydrogen production apparatus, and hydrogen production system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19884982 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19884982 Country of ref document: EP Kind code of ref document: A1 |