[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020100350A1 - Resin sheet - Google Patents

Resin sheet Download PDF

Info

Publication number
WO2020100350A1
WO2020100350A1 PCT/JP2019/029214 JP2019029214W WO2020100350A1 WO 2020100350 A1 WO2020100350 A1 WO 2020100350A1 JP 2019029214 W JP2019029214 W JP 2019029214W WO 2020100350 A1 WO2020100350 A1 WO 2020100350A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
inorganic filler
weight
resin
less
Prior art date
Application number
PCT/JP2019/029214
Other languages
French (fr)
Japanese (ja)
Inventor
弘貴 大関
大貴 ▲高▼野
拓人 小齊
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018243066A external-priority patent/JP2020079380A/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US17/285,608 priority Critical patent/US11970609B2/en
Priority to CN201980067691.8A priority patent/CN112867754B/en
Priority to EP19883379.0A priority patent/EP3882304B1/en
Publication of WO2020100350A1 publication Critical patent/WO2020100350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a resin sheet containing an aromatic polycarbonate resin.
  • thermoplastic resins such as polycarbonate resin have excellent durability, light weight, and moldability. Therefore, the thermoplastic resin is used in various fields such as the field of construction, the field of home appliances, and the field of transportation.
  • thermoplastic resins include interior materials for railway vehicles, aircraft, ships, and transportation equipment such as automobiles.
  • thermoplastic resin In the above applications, it is required that the molded product using a thermoplastic resin has excellent flame retardancy and impact resistance.
  • thermoplastic resins generally burn easily and are weak against impact, studies have been widely conducted to improve the flame retardancy and impact resistance of molded articles using the thermoplastic resin.
  • Patent Document 1 A) an aromatic polycarbonate and / or an aromatic polyester carbonate, B) a specific silicone / acrylate composite rubber, C) a specific talc, and D) a specific flameproofing agent.
  • Patent Document 2 discloses a composition containing A) an aromatic polycarbonate and / or a polyester carbonate, B) a reinforcing agent, C) a thermoplastic homopolymer and / or a copolymer, and D) a specific phosphorus compound. Is disclosed. Further, Patent Document 2 describes that a molded body can be manufactured by injection molding the above composition.
  • impact resistance may decrease when the flame retardancy of the molded product is increased. Further, in a conventional molded product containing a resin, the flame retardance may be lowered when the impact resistance of the molded product is increased.
  • the molded product obtained from the composition described in Patent Document 1 can increase flame retardancy and impact resistance to some extent, but is not sufficient, and further improvement in flame retardancy and impact resistance is required.
  • a molded body obtained by molding the composition described in Patent Document 1 by injection molding, blow molding, and thermoforming from a sheet or film formed in advance uneven distribution of talc (inorganic filler) occurs in the molded body. Easily, and as a result, flame retardancy and impact resistance are likely to decrease.
  • the molded product obtained from the composition described in Patent Document 2 does not contain an inorganic filler, it is difficult to sufficiently enhance both flame retardancy and impact resistance. Even when the composition described in Patent Document 2 is mixed with an inorganic filler, in a molded product obtained by molding the composition by injection molding or the like, uneven distribution of the inorganic filler in the molded product is likely to occur. As a result, flame retardancy and impact resistance are likely to decrease.
  • the object of the present invention is to provide a resin sheet having excellent flame retardancy and impact resistance.
  • an aromatic polycarbonate resin an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound, and has a first surface on one side in the thickness direction, the first surface In the cross section of the resin sheet in the direction orthogonal to, when the area-divided area of the inorganic filler is calculated by the area-division method, the ratio of the standard deviation of the area-divided area to the average value of the area-divided area is 0.
  • a resin sheet having a size of 53 or less is provided.
  • the average of the orientation angle of the inorganic filler is 30 degrees or less.
  • the occupation area ratio of the inorganic filler per unit area is S1
  • the first surface and In the cross section of the resin sheet in the orthogonal direction when the occupation area ratio of the inorganic filler per unit area is S2, the ratio of S1 to S2 is 2.0 or more.
  • the average particle diameter of the inorganic filler is It is 1.5 ⁇ m or less.
  • the average aspect ratio of the inorganic filler is It is 2.2 or more and 5 or less.
  • the average maximum heat generation rate measured under the condition of the heater radiant heat of 50 kW / m 2 and the ignition is 140 kW / m 2 or less in accordance with ISO5660-1.
  • the inorganic filler is talc.
  • the content of the inorganic filler with respect to 100 parts by weight of the aromatic polycarbonate resin is 10 parts by weight or more and 40 parts by weight or less.
  • the phosphorus-containing compound is a phosphoric acid ester.
  • the content of the phosphorus-containing compound is 5 parts by weight or more and 25 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
  • the silicon-containing compound is a core-shell particle including a core and a shell arranged on the surface of the core.
  • the content of the silicon-containing compound is 2 parts by weight or more and 20 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
  • the resin sheet contains a fluorine-based resin, and the content of the fluorine-based resin is 0.5 parts by weight or more and 2 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
  • the resin sheet is an extruded sheet molded product.
  • the resin sheet is an interior material for a transportation machine.
  • the resin sheet is an interior material for railway vehicles.
  • the resin sheet according to the present invention contains an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound.
  • the resin sheet according to the present invention has the first surface on one side in the thickness direction.
  • the standard deviation of the area division area is calculated when the area division area of the inorganic filler is calculated by the area division method.
  • the ratio of the area division area to the average value is 0.53 or less. Since the resin sheet according to the present invention is provided with the above configuration, it is excellent in flame retardancy and impact resistance.
  • FIG. 1 is a perspective view schematically showing a resin sheet according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view schematically showing the cross section of the resin sheet in the direction parallel to the first surface of the resin sheet.
  • FIG. 2B is a cross-sectional view schematically showing the cross section of the resin sheet in the direction orthogonal to the first surface.
  • FIG. 3 is a diagram for explaining the orientation angle ⁇ of the inorganic filler.
  • FIG. 4 is an electron micrograph of a cross section in a direction parallel to the first surface of the resin sheet produced in the example.
  • FIG. 5 is an electron micrograph of a cross section in a direction orthogonal to the first surface of the resin sheet produced in the example.
  • the resin sheet according to the present invention contains an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound.
  • the resin sheet according to the present invention has the first surface on one side in the thickness direction.
  • the standard deviation of the area division area is calculated when the area division area of the inorganic filler is calculated by the area division method.
  • the ratio of the area division area to the average value is 0.53 or less.
  • the resin sheet according to the present invention is provided with the above configuration, it has excellent flame retardancy and impact resistance.
  • the resin sheet according to the present invention can improve both flame retardancy and impact resistance.
  • FIG. 1 is a perspective view schematically showing a resin sheet according to an embodiment of the present invention.
  • the inorganic filler and the like are not shown.
  • the resin sheet 1 shown in FIG. 1 has a first surface 1a on one side in the thickness direction.
  • the resin sheet 1 has the thickness direction and a direction orthogonal to the thickness direction.
  • the direction orthogonal to the thickness direction is, for example, the MD direction or the TD direction.
  • the MD direction is the flow direction of the resin sheet at the time of manufacturing the resin sheet
  • the TD direction is the direction orthogonal to the flow direction of the resin sheet.
  • the resin sheet 1 has a thickness direction, an MD direction, and a TD direction.
  • the lateral direction is the MD direction. It is preferable that the thickness direction, the MD direction, and the TD direction are orthogonal to each other.
  • the thickness direction is preferably a direction orthogonal to the first surface.
  • the direction orthogonal to the thickness direction is preferably a direction parallel to the first surface.
  • the cross section along the line X1-X1 in FIG. 1 corresponds to the cross section of the resin sheet in the direction parallel to the first surface of the resin sheet.
  • the cross section taken along line X2-X2 in FIG. 1 corresponds to the cross section of the resin sheet in the direction orthogonal to the first surface.
  • the cross section along the line X2-X2 in FIG. 1 corresponds to the cross section along the MD direction and the cross section along the thickness direction.
  • FIG. 2A is a cross-sectional view schematically showing a cross section of the resin sheet in a direction parallel to the first surface of the resin sheet.
  • FIG. 2B is a cross-sectional view schematically showing the cross section of the resin sheet in the direction orthogonal to the first surface.
  • FIG. 2 (a) shows a cross section 11A of the resin sheet in a direction parallel to the first surface of the resin sheet. In the cross section 11A, the inorganic filler 21A is observed.
  • FIG. 2B shows a cross section 11B of the resin sheet in a direction orthogonal to the first surface of the resin sheet.
  • the cross section 11B is a cross section along the MD direction of the resin sheet and a cross section along the thickness direction. In the cross section 11B, the inorganic filler 21B is observed.
  • the standard deviation of the area division area the area The ratio of the division area to the average value (standard deviation of area division area / average value of area division area) is 0.53 or less. If the above ratio (standard deviation of area-divided area / average value of area-divided area) exceeds 0.53, the distribution of the inorganic filler in the resin sheet tends to be uneven, and as a result, flame retardancy and impact resistance It may decrease.
  • the ratio of the standard deviation of the area division areas to the average value of the area division areas is preferably 0.52 or less, more preferably 0.51 or less, More preferably, it is 0.50 or less.
  • the ratio standard deviation of area-divided area / average value of area-divided area
  • the dispersed state of the inorganic filler in the resin sheet can be improved, and the flame retardancy and impact resistance can be improved. It can be further enhanced.
  • the occupation area ratio of the inorganic filler per unit area is S1 (%)
  • the occupied area ratio of the inorganic filler per unit area is S2 (%).
  • the ratio (S1 / S2) of S1 to S2 is preferably 2.0 or more, more preferably 2.1 or more, still more preferably 2.2 or more.
  • flame retardancy can be further enhanced. More specifically, when the ratio (S1 / S2) is equal to or more than the lower limit, the inorganic filler in the resin sheet can be oriented in a direction parallel to the first surface.
  • the cross section of the resin sheet in the direction parallel to the first surface is preferably the cross section at the central position in the thickness direction of the resin sheet.
  • the cross section of the resin sheet in the direction parallel to the first surface is preferably a cross section passing through the center of the resin sheet.
  • FIG. 3 is a diagram for explaining the orientation angle ⁇ of the inorganic filler.
  • FIG. 3 shows the inorganic filler 21B observed in the cross section of the resin sheet in the direction orthogonal to the first surface.
  • the inorganic filler 21B has one end 21Ba and the other end 21Bb in the cross section of the resin sheet in the direction orthogonal to the first surface, and the distance between the one end 21Ba and the other end 21Bb is in the direction orthogonal to the first surface. It is the major axis of the inorganic filler 21 in the cross section of the resin sheet.
  • FIG. 3 shows the inorganic filler 21B observed in the cross section of the resin sheet in the direction orthogonal to the first surface.
  • the inorganic filler 21B has one end 21Ba and the other end 21Bb in the cross section of the resin sheet in the direction orthogonal to the first surface, and the distance between the one end 21Ba and the other end 21Bb is in the direction orthogonal to the first
  • X is a direction orthogonal to the thickness direction of the resin sheet in the cross section of the resin sheet in the direction orthogonal to the first surface
  • Y is a cross section of the resin sheet in the direction orthogonal to the first surface.
  • It is the thickness direction of the resin sheet
  • L is the major axis direction of the inorganic filler in the cross section of the resin sheet in the direction orthogonal to the first surface, and the orientation direction.
  • the angle formed by the direction X orthogonal to the thickness direction of the resin sheet and the orientation direction L of the inorganic filler is the orientation angle ⁇ of the inorganic filler 21.
  • the direction X orthogonal to the thickness direction of the resin sheet is preferably the MD direction.
  • the orientation angle ⁇ means the smaller of the angles formed by the direction (preferably MD direction) orthogonal to the thickness direction of the resin sheet and the orientation direction of the inorganic filler. Therefore, the maximum value of the orientation angle ⁇ is 90 degrees.
  • the average value of the orientation angle ⁇ of the inorganic filler is preferably 10 degrees or more, more preferably Is 12 degrees or more, and more preferably 14 degrees or more.
  • the average value of the orientation angle ⁇ of the inorganic filler is preferably 32 degrees or less, more preferably Is 30 degrees or less, more preferably 28 degrees or less, even more preferably 25 degrees or less, and particularly preferably 22 degrees or less.
  • the gas barrier effect effectively acts on the generation of combustion gas even when the resin sheet burns, thereby burning. Since the speed can be effectively suppressed, the flame retardancy can be further enhanced. Further, when the average value of the orientation angle ⁇ of the inorganic filler is equal to or more than the above lower limit, it is possible to effectively suppress the variation in mechanical strength of the resin sheet.
  • the average particle diameter D of the inorganic filler is preferably 0.6 ⁇ m or more, more preferably 0. It is at least 0.7 ⁇ m, preferably at most 1.5 ⁇ m, more preferably at most 1.4 ⁇ m.
  • flame retardancy and impact resistance can be further enhanced.
  • the inorganic filler is present in the cross section along the MD direction. It is preferable that the average particle diameter D of 1 satisfies the above lower limit, and the average particle diameter D of the inorganic filler satisfies the above upper limit.
  • the average aspect ratio A of the inorganic filler is preferably 2 or more, more preferably 2.2. Or more, more preferably 2.4 or more, preferably 5 or less, more preferably 4.5 or less.
  • the average aspect ratio A of the inorganic filler is not less than the lower limit and not more than the upper limit, flame retardancy and impact resistance can be further enhanced.
  • the inorganic filler is present in the cross section along the MD direction. It is preferable that the average aspect ratio A of 1 satisfies the above lower limit, and the average aspect ratio A of the inorganic filler satisfies the above upper limit.
  • the cross section of the resin sheet in the direction orthogonal to the first surface is preferably a cross section passing through the center of the resin sheet.
  • D the average aspect ratio A of the inorganic filler is specifically measured as follows.
  • the resin sheet is cut to prepare a measurement sample A in which the cross section A of the resin sheet in the direction parallel to the first surface is exposed. Further, the resin sheet is cut to prepare a measurement sample B in which the cross section B of the resin sheet in the direction orthogonal to the first surface is exposed.
  • the resin sheet may be cut such that the cross section is exposed without cutting the resin sheet.
  • the exposed cross sections A and B may be surface-polished.
  • the cross section B of the resin sheet in the direction orthogonal to the first surface may be the cross section along the MD direction or the cross section along the TD direction.
  • the cross section B of the resin sheet in the direction orthogonal to the first surface is preferably a cross section along the MD direction.
  • the section A and the section B are photographed using an electron microscope (preferably a scanning electron microscope). It should be noted that the following (2) to (6) are calculated for an inorganic filler having a cross-sectional area (projected area) of the observed inorganic filler of more than 0.1 ⁇ m 2 when photographed with an electron microscope.
  • the area of the Voronoi region of the inorganic filler is calculated by performing Voronoi division using the centroid points of the inorganic filler as mother points.
  • the ratio (standard deviation of the area of the Voronoi region / average value of the area of the Voronoi region) of the obtained standard deviation of the area of the Voronoi region to the average value of the area of the Voronoi region is calculated.
  • the area of the Voronoi region is obtained for 100 or more arbitrarily selected inorganic fillers.
  • the occupation area ratio (%) of the inorganic filler per unit area of the cross section B is calculated, and the occupation area ratio is S2 (%). ..
  • the above S2 is the area ratio of the region where the above-mentioned inorganic filler exists in the area (cross-sectional area) 100% in the cross section B.
  • the S2 is calculated from 100 or more inorganic fillers.
  • the above S2 can be calculated, for example, by the following formula.
  • orientation angle ⁇ of inorganic filler From the electron micrograph of the cross section B, the orientation angle ⁇ is calculated for each inorganic filler using commercially available image analysis software. An average value of orientation angles ⁇ of 100 or more arbitrarily selected inorganic fillers is obtained. The orientation angle ⁇ of the inorganic filler is preferably measured in the section B including the central position in the thickness direction of the resin sheet.
  • the average particle diameter D of the inorganic filler means the average equivalent circle diameter.
  • the equivalent circle diameter means the diameter of a circle having the same area as the projected area of the inorganic filler.
  • the particle size (equivalent circle diameter) of the inorganic filler from the electron micrograph of section B above.
  • the average value of the circle equivalent diameters of 100 or more arbitrarily selected inorganic fillers is determined and is defined as the average particle diameter D.
  • the resin sheet preferably has an average maximum heat generation rate of 140 kW / m 2 or less, and 135 kW / m 2 or less, measured under the conditions of heater radiant heat of 50 kW / m 2 and ignition. It is more preferable that the amount is 130 kW / m 2 or less.
  • the average maximum heat generation rate is equal to or lower than the upper limit, flame retardancy can be further enhanced. In order to further improve flame retardancy, the lower the average maximum heat generation rate, the better.
  • the average maximum heat release rate is measured as follows.
  • the resin sheet is cut or the like to obtain a sample for measuring the heat generation rate having a length of 100 mm ⁇ width of 100 mm ⁇ thickness of 3 mm.
  • the heat generation rate is measured in accordance with ISO5660-1 by using a corn calorimeter tester under the conditions of heater radiant heat of 50 kW / m 2 and ignition.
  • a material for the resin sheet may be used to prepare a heat generation measurement sample having a thickness of 3 mm.
  • the average maximum heat release rate is a value calculated according to EN45545-2 using the heat release rate measured according to ISO5660-1.
  • N means the number of measurement plots every 2 seconds. It is preferable that n is an integer of 3 or more.
  • the average heat release rate is calculated for each of multiple heat release rate measurement samples, and the maximum value of the obtained average heat release rates is taken as the average maximum heat release rate.
  • the average maximum heat generation rate is preferably a value calculated using three or more heat generation rate measurement samples.
  • JIS K7110 Izod impact strength is measured according to 1999 is preferably at 20 kJ / m 2 or more, more preferably 22kJ / m 2 or more, 24kJ / m 2 or more Is more preferable.
  • the Izod impact strength is at least the above lower limit, the impact resistance can be further enhanced. The higher the Izod impact strength is, the better, in order to further improve the impact resistance.
  • the thickness of the resin sheet is preferably 1 mm or more, more preferably 2 mm or more, preferably 7 mm or less, more preferably 6 mm or less.
  • flame retardancy can be further improved.
  • the thickness of the resin sheet is not more than the upper limit, the impact resistance can be further improved.
  • thermoplastic resin layer the fiber reinforced resin layer, the gas barrier layer, the metal layer, and the adhesive are provided on the first surface or the second surface opposite to the first surface.
  • Other layers such as an agent layer may be laminated.
  • the resin sheet according to the present invention can be obtained by molding a resin composition containing an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound into a sheet shape.
  • the resin sheet according to the present invention contains an aromatic polycarbonate resin.
  • the resin composition contains an aromatic polycarbonate resin.
  • the aromatic polycarbonate resins may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin is preferably an aromatic polycarbonate resin having a structural unit represented by the following formula (1).
  • R1 and R2 each represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a group in which a substituent is bonded to an alkyl group having 1 to 20 carbon atoms, or an aryl group.
  • R3 and R4 each represent a hydrogen atom or an alkyl group.
  • R3 or R4 in the above formula (1) is an alkyl group
  • the carbon number of the alkyl group is preferably 1 or more, preferably 6 or less, more preferably 3 or less, still more preferably 2 or less.
  • Preferred alkyl groups include a methyl group, an ethyl group, a propyl group, a butyl group, a tert-butyl group, a pentyl group, and a heptyl group.
  • the compound for introducing the structural unit represented by the above formula (1) when obtaining the above aromatic polycarbonate resin is 2,2-bis ( 4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C), or 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z)
  • it is 2,2-bis (4-hydroxyphenyl) propane (bisphenol A).
  • the aromatic polycarbonate resin preferably has a structural unit derived from such a preferable compound.
  • aromatic polycarbonate resins having a structural unit derived from a bisphenol A type compound include “UPILON E series” manufactured by Mitsubishi Gas Chemical Company.
  • aromatic polycarbonate resins having a structural unit derived from a bisphenol Z type compound include "Panlite series” manufactured by Teijin Chemicals Co., Ltd. and "Upilon Z series” manufactured by Mitsubishi Gas Chemical Co., Inc.
  • the viscosity average molecular weight (Mv) of the above aromatic polycarbonate resin is preferably 10,000 or more, more preferably 15,000 or more, preferably 50,000 or less, more preferably 40,000 or less.
  • Mv The viscosity average molecular weight
  • the viscosity average molecular weight is not less than the lower limit and not more than the upper limit, flame retardancy and impact resistance can be further enhanced.
  • the aromatic polycarbonate resin may have a branched structure or may not have a branched structure.
  • the above aromatic polycarbonate resin can be produced by a conventionally known method.
  • Examples of the method for producing the above aromatic polycarbonate resin include a melt polymerization method and a phase interface method.
  • a method for producing an aromatic polycarbonate resin by the above-mentioned melt polymerization method there is a method of reacting a diphenol compound and a diphenyl carbonate compound in a molten state by utilizing a transesterification reaction.
  • a diphenol compound and a diphenyl carbonate compound are put into a reactor equipped with a stirrer and a distilling concentrator, and the reactor is heated to a predetermined temperature under a nitrogen gas atmosphere to melt. It can be in a state.
  • a branching agent, a chain terminator and the like may be used in the method for producing an aromatic polycarbonate resin by the melt polymerization method.
  • a diphenol compound As a method for producing an aromatic polycarbonate resin by the phase interface method, a diphenol compound, a carbonic acid halide or an aromatic dicarboxylic acid dihalide, a branching agent if necessary, and a chain terminator if necessary. And a method of reacting with.
  • a carbonic acid halide may be used, an aromatic dicarboxylic acid dihalide may be used, or a carbonic acid halide and an aromatic dicarboxylic acid dihalide may be used.
  • the above diphenol compound is not particularly limited.
  • a conventionally known diphenol compound can be used.
  • the said diphenol compound only 1 type may be used and 2 or more types may be used together.
  • the above diphenyl carbonate compound is not particularly limited.
  • a conventionally known diphenyl carbonate compound can be used. Only 1 type may be used for the said diphenyl carbonate compound and 2 or more types may be used together.
  • the above carbonic acid halide is not particularly limited.
  • a conventionally known carbonic acid halide can be used as the carbonic acid halide.
  • the carbonate halide may be used alone or in combination of two or more.
  • the above carbonic acid halide is preferably phosgene.
  • the aromatic dicarboxylic acid dihalide is not particularly limited.
  • As the aromatic dicarboxylic acid dihalide a conventionally known aromatic dicarboxylic acid dihalide can be used.
  • As for the said aromatic dicarboxylic acid dihalide only 1 type may be used and 2 or more types may be used together.
  • the aromatic dicarboxylic acid dihalide is preferably benzenedicarboxylic acid dihalide.
  • branching agent is not particularly limited.
  • a conventionally known branching agent can be used.
  • the said branching agent only 1 type may be used and 2 or more types may be used together.
  • the branching agent is preferably a trifunctional phenol compound or a tetrafunctional phenol compound, more preferably triphenol, tetraphenol, or a phenol compound having at least three functional groups with low reactivity. More preferably, 1,1,1-tris- (p-hydroxyphenyl) ethane.
  • An aromatic polycarbonate resin having a branched structure can be favorably obtained by using these preferable branching agents.
  • the above branching agent may be a phenol compound having an amine functional group.
  • the branching agent is a phenol compound having an amine functional group
  • the amine functional group acts as an active functional group
  • the aromatic polycarbonate resin is branched through an amide bond.
  • the above chain terminator is not particularly limited.
  • As the chain terminator a conventionally known chain terminator can be used.
  • the above chain terminators may be used alone or in combination of two or more.
  • the above chain terminator includes phenol; p-chlorophenol; p-tert-butylphenol; 2,4,6-tribromophenol; DE-A 2,842,005.
  • Long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) -phenol and monoalkylphenols having 8 to 20 carbon atoms in the alkyl substituent; or 3,5-di-tert-butylphenol
  • p- Alkylphenols such as isooctylphenol, p-tert-octylphenol, p-dodecylphenol, 2- (3,5-dimethylheptyl) -phenol, and 4- (3,5-dimethylheptyl) -phenol are preferable.
  • the content of the chain terminator is preferably 0.5 mol or more and preferably 10 mol or less with respect to 100 mol of the diphenol compound.
  • the content of the aromatic polycarbonate resin in 100% by weight of the resin sheet is preferably 50% by weight or more, more preferably 55% by weight or more, preferably 85% by weight or less, more preferably 80% by weight or less.
  • the content of the aromatic polycarbonate resin is not less than the above lower limit and not more than the above upper limit, flame retardancy and impact resistance can be further enhanced.
  • the resin sheet according to the present invention contains an inorganic filler.
  • the resin composition contains an inorganic filler.
  • flame retardancy and impact resistance can be improved.
  • the resin sheet does not contain the inorganic filler it is difficult to improve both flame retardancy and impact resistance.
  • the said inorganic filler only 1 type may be used and 2 or more types may be used together.
  • inorganic filler talc, mica, montmorillonite, silica, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, aluminum hydroxide.
  • the inorganic filler is preferably talc, mica, or montmorillonite, and more preferably talc.
  • the above talc may be compressed talc.
  • the resin composition can be easily processed.
  • the above-mentioned inorganic filler may be surface-treated such as silanization treatment, plasma treatment, ashing treatment and the like.
  • silanization treatment a surface-treated inorganic filler such as silanization treatment
  • the compatibility with the aromatic polycarbonate resin is further improved.
  • the particle diameter and shape of the inorganic filler are such that the average particle diameter D and the average aspect ratio A calculated when observing a specific cross section of the resin sheet can be set to the preferable ranges, respectively. It is preferably shaped.
  • the volume average particle diameter (D50) of the inorganic filler is preferably 1 ⁇ m or more, and more preferably from the viewpoint of setting the average particle diameter D to the preferable range, and from the viewpoint of further improving flame retardancy and impact resistance. It is preferably 1.5 ⁇ m or more, preferably 6 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the volume average particle diameter of the above inorganic filler is an average diameter measured on a volume basis, and is a value of a median diameter (D50) of 50%.
  • the volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like.
  • the volume average particle diameter (D50) of the inorganic filler is preferably determined by measurement by a laser diffraction / scattering method.
  • the average aspect ratio of the inorganic filler is preferably 2.2 or more, and more preferably from the viewpoint of setting the average aspect ratio A to the preferable range and further improving the flame retardancy and impact resistance. It is 2.4 or more, preferably 5 or less, more preferably 4.5 or less.
  • the above aspect ratio is the ratio of the volume average particle diameter of the inorganic filler to the average thickness of the inorganic filler (volume average particle diameter of inorganic filler / thickness of inorganic filler).
  • the aspect ratio can be measured by a water surface particle film method or the like.
  • the average aspect ratio is the average aspect ratio of a plurality of inorganic fillers.
  • the content of the inorganic filler in 100% by weight of the resin sheet is preferably 8% by weight or more, more preferably 12% by weight or more, preferably 25% by weight or less, and more preferably 20% by weight or less.
  • the content of the inorganic filler is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the inorganic filler with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, and more preferably 30 parts by weight or less.
  • the content of the inorganic filler is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced.
  • the resin sheet according to the present invention contains a phosphorus-containing compound.
  • the resin composition contains a phosphorus-containing compound.
  • the phosphorus-containing compound is preferably a phosphorus-based flame retardant.
  • flame retardancy can be enhanced. If the resin sheet does not contain the phosphorus-containing compound, the flame retardancy may be poor.
  • the said phosphorus containing compound only 1 type may be used and 2 or more types may be used together.
  • the phosphorus-containing compound may be a phosphorus-containing compound having a halogen atom, or may be a phosphorus-containing compound having no halogen atom, a phosphorus-containing compound having no halogen atom and a phosphorus-containing compound having a halogen atom. It may be a mixture with a compound.
  • the above-mentioned phosphorus-containing compound may be a compound containing a phosphorus atom, and may be a compound derived from resorcinol, hydroquinone, bisphenol A, diphenylphenol and the like.
  • Examples of the phosphorus-containing compound include a phosphoric acid monomer, a phosphoric acid oligomer, a phosphonate ester, an organophosphite, a phosphonate, a phosphonate amine, a phosphate, a phosphazene, and a phosphate ester.
  • the above phosphorus-containing compound is preferably a phosphoric acid ester.
  • the phosphate ester is a compound having a phosphate ester structure.
  • the phosphoric acid ester may be a phosphoric acid monoester, a phosphoric acid diester, or a phosphoric acid triester.
  • Examples of the phosphoric acid ester include tributyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl-2-ethyl cresyl phosphate, tri- (isopropylphenyl) phosphate, resorcinol crosslinked diphosphate, And bisphenol A crosslinked diphosphate and the like.
  • the phosphoric acid ester is preferably an oligomeric phosphoric acid ester derived from bisphenol A.
  • the content of the phosphorus-containing compound in 100% by weight of the resin sheet is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 18% by weight or less, more preferably 15% by weight or less.
  • the content of the phosphorus-containing compound is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the phosphorus-containing compound is not more than the upper limit, the impact resistance can be further enhanced.
  • the content of the phosphorus-containing compound relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, further preferably 7 parts by weight or more, preferably 25 parts by weight or less, more preferably Is 20 parts by weight or less.
  • the content of the phosphorus-containing compound is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the phosphorus-containing compound is not more than the upper limit, the impact resistance can be further enhanced.
  • the resin sheet according to the present invention contains a silicon-containing compound.
  • the silicon-containing compound is preferably a silicone-based flame retardant.
  • flame retardancy can be enhanced.
  • flame retardancy may be poor.
  • the said silicon-containing compound only 1 type may be used and 2 or more types may be used together.
  • the above silicon-containing compound may be a compound containing a silicon atom.
  • the silicon-containing compound is preferably polyorganosiloxane.
  • the above polyorganosiloxane preferably has an aromatic skeleton.
  • the polyorganosiloxane having an aromatic skeleton include polydiphenylsiloxane, polymethylphenylsiloxane, polydimethyldiphenylsiloxane, and cyclic siloxane having a phenyl group.
  • the above polyorganosiloxane may have functional groups such as silanol groups, epoxy groups, silanol groups, epoxy groups, alkoxy groups, hydrosilyl groups, and vinyl groups.
  • functional groups such as silanol groups, epoxy groups, silanol groups, epoxy groups, alkoxy groups, hydrosilyl groups, and vinyl groups.
  • the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 3% by weight. % Or more, particularly preferably 5% by weight or more.
  • the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 10% by weight or less, more preferably 9% by weight or less, and further preferably 8% by weight. % Or less, particularly preferably 7.5% by weight or less.
  • the content of the silanol group is equal to or higher than the lower limit and equal to or lower than the upper limit, flame retardancy can be further enhanced.
  • the content of the silanol group exceeds 10% by weight, the thermal stability and wet heat stability of the resin composition may decrease as compared with the case where the content is 10% by weight or less.
  • the content of the alkoxy group is preferably 10% by weight or less in 100% by weight of the polyorganosiloxane.
  • the flame retardancy can be further enhanced.
  • the content of the alkoxy group exceeds 10% by weight, the resin composition may gelate more easily than when the content is 10% by weight or less.
  • the molecular weight of the silicon-containing compound and the polyorganosiloxane is preferably 450 or more, more preferably 1000 or more, still more preferably 1500 or more, particularly preferably 1700 or more, preferably 300,000 or less, more preferably 100,000 or less, It is more preferably 20,000 or less, particularly preferably 15,000 or less.
  • the molecular weights of the silicon-containing compound and the polyorganosiloxane are not less than the lower limit, the heat resistance of the silicon-containing compound and the polyorganosiloxane can be increased.
  • the stability of the resin composition can be increased, and the silicon-containing compound and the polyorganosiloxane are dispersed in the resin sheet.
  • the flame retardancy can be improved.
  • the molecular weights of the silicon-containing compound and the polyorganosiloxane can be specified. , Means the molecular weight that can be calculated from the structural formula. Further, when the silicon-containing compound and the polyorganosiloxane are polymers, the molecular weights of the silicon-containing compound and the polyorganosiloxane are in terms of polystyrene measured by gel permeation chromatography (GPC). The weight average molecular weight is shown.
  • the silicon-containing compound may be silicon-containing particles.
  • the silicon-containing particles are particles containing silicon.
  • the silicon-containing compound is preferably core-shell particles having a core and a shell arranged on the surface of the core. That is, the resin sheet preferably includes core-shell particles including a core and a shell arranged on the surface of the core. It is also preferable that the silicon-containing compound is contained in the resin sheet as the core-shell particles.
  • the core-shell particle may have a silicon atom in the core, or may have a silicon atom in the shell.
  • the core-shell particles have a silicon atom in the core
  • the core-shell particles have a silicon atom in the shell
  • the core-shell particles The whole can be regarded as a silicon-containing compound.
  • the above-mentioned silicon-containing compound is a core-shell particle, not only flame retardancy can be enhanced, but also impact resistance can be enhanced.
  • the organic compound forming the core and the organic compound forming the shell are chemically bonded.
  • the chemical bond is preferably a graft bond.
  • core-shell particles examples include silicone-based core-shell type rubbery polymers such as silicone-acrylate-methylmethacrylate copolymer and silicone-acrylate-acrylonitrile-styrene copolymer.
  • the core-shell particles preferably have a core-shell rubber structure.
  • the volume average particle diameter (D50) of the core-shell particles is preferably 100 nm or more, more preferably 250 nm or more, preferably 800 nm or less. is there.
  • the core-shell particles having a volume average particle diameter (D50) of not less than the above lower limit and not more than the above upper limit can be produced by an emulsion polymerization method.
  • the volume average particle diameter of the core-shell particles is an average diameter measured on a volume basis, and is a value of a median diameter (D50) of 50%.
  • the volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like.
  • the volume average particle diameter (D50) of the core-shell particles is preferably obtained by measurement by a laser diffraction / scattering method.
  • the content of the silicon-containing compound in 100% by weight of the resin sheet is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, and more preferably 12% by weight or less.
  • the content of the silicon-containing compound is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the silicon-containing compound is at most the above upper limit, the impact resistance can be further enhanced.
  • the content of the core-shell particles in 100% by weight of the resin sheet is preferably 1% by weight or more, more preferably 2% by weight or more. , Preferably 15% by weight or less, more preferably 12% by weight or less.
  • flame retardancy can be further enhanced.
  • the content of the core-shell particles is less than or equal to the upper limit, the impact resistance can be further enhanced.
  • the content of the silicon-containing compound with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, preferably 20 parts by weight or less, and more preferably 15 parts by weight or less.
  • the content of the silicon-containing compound is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the silicon-containing compound is at most the above upper limit, the impact resistance can be further enhanced.
  • the content of the core-shell particles relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 2 parts by weight or more, more preferably 4 parts by weight.
  • the above is preferably 20 parts by weight or less, more preferably 15 parts by weight or less.
  • flame retardancy can be further enhanced.
  • the content of the core-shell particles is less than or equal to the upper limit, the impact resistance can be further enhanced.
  • the resin sheet according to the present invention preferably contains a fluororesin.
  • the resin composition preferably contains a fluororesin.
  • the flame retardancy can be further enhanced. Only one type of the above-mentioned fluororesin may be used, or two or more types may be used in combination.
  • Examples of the above-mentioned fluorine-based resin include homopolymers having a fluorinated alpha-olefin monomer as a structural unit and copolymers having a fluorinated alpha-olefin monomer as a structural unit.
  • the fluorinated alpha-olefin monomer is an alpha-olefin monomer containing a substituent having at least one fluorine atom.
  • fluorinated alpha-olefin monomer examples include tetrafluoroethylene (CF 2 ⁇ CF 2 ), CHF ⁇ CF 2 , vinylidene fluoride (CH 2 ⁇ CF 2 ), CH 2 ⁇ CHF, chlorotrifluoroethylene (CClF ⁇ CF).
  • CCl 2 CF 2
  • CClF CClF
  • CHF CCl 2
  • CH 2 CClF
  • CCl 2 CClF
  • CF 3 CF CHF
  • CF 3 CH CF 2
  • CF 3 CH CH 2
  • CF 3 CF CHF
  • CHF 2 CH CHF
  • CF 3 CH CH 2
  • fluorine-based resin examples include poly (tetrafluoroethylene) homopolymer (PTFE), poly (hexafluoroethylene), poly (tetrafluoroethylene-hexafluoroethylene), and poly (tetrafluoroethylene-ethylene-propylene). Can be mentioned.
  • the poly (tetrafluoroethylene) homopolymer (PTFE) may be fiber-forming or non-fiber-forming.
  • the content of the fluororesin in 100% by weight of the resin sheet is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 1.5% by weight or less, more preferably 1% by weight. % Or less.
  • the content of the fluororesin is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the fluororesin is not more than the above upper limit, the impact resistance can be further enhanced.
  • the content of the fluorine-based resin with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 2 parts by weight or less, and more preferably 1.5 parts by weight. It is less than or equal to parts by weight.
  • the content of the fluororesin is at least the above lower limit, flame retardancy can be further enhanced.
  • the content of the fluororesin is not more than the above upper limit, the impact resistance can be further enhanced.
  • the resin sheet may contain other components as long as the object of the present invention is not impaired.
  • the above resin composition may contain other components as long as the object of the present invention is not impaired.
  • Other components include anti-drip agent, antioxidant, heat stabilizer, light stabilizer, UV absorber, colorant, plasticizer, lubricant, release agent, and reinforcing agent. Only 1 type may be used for each of the said other components, and 2 or more types may be used together.
  • the content of the other component is not particularly limited, but for example, the content of the other component with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01.
  • the amount is at least parts by weight, more preferably at least 0.1 parts by weight, even more preferably at least 0.5 parts by weight, preferably at most 10 parts by weight, more preferably at most 5 parts by weight.
  • antioxidants examples include alkylated monophenols; alkylated polyphenols; alkylated reaction products of polyphenols such as tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane with dienes.
  • the content of the antioxidant with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 0.1 part by weight or less.
  • the light stabilizer examples include benzotriazole such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) -benzotriazole; and 2-hydroxy- 4-n-octoxybenzophenone and the like can be mentioned.
  • the content of the light stabilizer with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 5 parts by weight or less.
  • UV absorber examples include hydroxybenzophenone; hydroxybenzotriazole; hydroxybenzotriazine; cyanoacrylate; oxanilide; benzoxazinone; 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3 -Tetramethylbutyl) -phenol; 2-hydroxy-4-n-octyloxybenzophenone; 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl]- 5- (octyloxy) -phenol; 2,2 '-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one); 1,3-bis [(2-cyano-3, 3-diphenylacryloyl) oxy] -2,2-bis [[(2-cyano-3,3-diphenylacryloyl) oxy] methyl] propane; 2,2 ′-(1,4-phenylene) bis (4H-3 , 1-benz
  • the content of the UV absorber with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 5 parts by weight or less.
  • Examples of the colorant include titanium dioxide, carbon black, and organic dyes.
  • the plasticizer, the lubricant, or the release agent may be used alone or in combination of two or more. Many of the compounds used as plasticizers also have the properties of lubricants and template agents, and many of the compounds used as lubricants also have the properties of template agents and plasticizers. Many of these compounds also have the properties of plasticizers and lubricants.
  • plasticizer examples include phthalic acid esters such as dioctyl-4,5-epoxy-hexahydrophthalate; tris- (octoxycarbonylethyl) isocyanurate; tristearin; poly-alpha-olefin Epoxidized soybean oil; ester; fatty acid ester such as alkyl stearyl ester; stearate such as methyl stearate, stearyl stearate, pentaerythritol tetrastearate; polyethylene glycol polymer, polypropylene glycol polymer, poly (ethylene glycol-co-propylene) Glycols) copolymers such as hydrophilic and hydrophobic nonionic surfactants with methyl stearate; mixtures of methyl stearate with polyethylene-polypropylene glycol copolymers; and waxes such as beeswax, montan wax, paraffin wax, etc. Etc.
  • phthalic acid esters such as di
  • the content of each of the plasticizer, the lubricant, and the release agent is preferably 100 parts by weight of the aromatic polycarbonate resin. Is 0.1 part by weight or more, preferably 1 part by weight or less.
  • a fibrous reinforcing agent such as glass fiber may, for example, be mentioned.
  • the content of the reinforcing agent relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 1 part by weight or more, more preferably 10 parts by weight or more, preferably 25 parts by weight or less, It is more preferably 20 parts by weight or less.
  • the relative amount of each component in the above other components has an important effect on the mechanical properties such as low smoke concentration property, low smoke toxicity, and ductility of the resin sheet. Even if a large amount of a certain component is added in order to improve a certain property of the resin sheet, other properties may be deteriorated.
  • the resin sheet according to the present invention is excellent in flame retardancy and impact resistance, and is therefore preferably an interior material for transportation equipment.
  • Examples of the transport aircraft include railcars, aircraft, ships, and automobiles.
  • the resin sheet according to the present invention is preferably an interior material for a railroad vehicle, preferably an interior material for an aircraft, an interior material for a ship, and preferably an interior material for an automobile.
  • the resin sheet according to the present invention is more preferably an extruded sheet molded product.
  • the resin sheet according to the present invention can be obtained by molding the resin composition into a sheet shape.
  • the method for producing the resin sheet preferably includes a step of molding the resin composition into a sheet by an extruder to obtain a resin sheet. In the step of obtaining the resin sheet, it is preferable that the ratio of the take-up speed in the take-up machine to the roll speed is 0.9 or more and 1.2 or less.
  • the method for producing the resin sheet preferably includes the following steps (a) to (c). By including the steps (a) to (c), the ratio (standard deviation of the area division area / average value of the area division area), the ratio (S1 / S2), and the average value of the orientation angle ⁇ of the inorganic filler. It is possible to favorably manufacture a resin sheet in which the average particle diameter D of the inorganic filler and the average aspect ratio A of the inorganic filler satisfy the above-described preferable ranges.
  • the ratio of the take-up speed to the roll speed (take-off speed / roll speed) in the take-up machine is 0.8 or more and 1.2.
  • the process of obtaining a resin sheet is as follows.
  • the respective contents of the aromatic polycarbonate resin, the inorganic filler, the phosphorus-containing compound and the silicon-containing compound are appropriately adjusted so as to satisfy the above-mentioned preferable range.
  • the cylinder temperature of the twin-screw extruder is preferably 260 ° C or higher, more preferably 270 ° C or higher, preferably 300 ° C or lower, and more preferably 290 ° C or lower.
  • the cylinder temperature of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. ..
  • the mold temperature of the twin-screw extruder is preferably 240 ° C. or higher, more preferably 250 ° C. or higher, preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
  • the mold temperature of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and the flame retardancy and impact resistance can be further enhanced. it can.
  • the screw rotation speed of the twin-screw extruder is preferably 300 rpm or more, more preferably 350 rpm or more, preferably 500 rpm, more preferably 450 rpm or less.
  • the screw rotation speed of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. it can.
  • step (b) it is preferable that the strand-shaped resin composition extruded in the step (a) is cooled in a water tank and then the strand-shaped resin composition is cut.
  • the average particle diameter of the pellet-shaped resin composition is preferably 0.6 mm or more, more preferably 0.7 mm or more, preferably 0.9 mm or less, more preferably 1.0 mm or less. ..
  • the cylinder temperature of the single-screw extruder is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, preferably 290 ° C. or lower, more preferably 280 ° C. or lower.
  • the cylinder temperature of the single-screw extruder is equal to or higher than the lower limit and equal to or lower than the upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. .
  • the mold temperature of the single screw extruder is preferably 270 ° C. or higher, more preferably 280 ° C. or higher, preferably 310 ° C. or lower, more preferably 300 ° C. or lower.
  • the mold temperature of the single-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. it can.
  • step (c) it is preferable to make the thickness uniform by sandwiching the molten resin composition with three-stage rolls.
  • the ratio of the take-up speed to the roll speed in the take-up machine is preferably 0.9 or more, more preferably 1.00 or more, and further preferably Is 1.02 or more, particularly preferably 1.04 or more, preferably 1.07 or less, more preferably 1.10 or less.
  • the ratio (take-off speed / roll speed) is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance are further enhanced. be able to.
  • Aromatic polycarbonate resin Aromatic polycarbonate resin (Aromatic polycarbonate resin having a structural unit derived from bisphenol A type compound, "Upilon E series” manufactured by Mitsubishi Gas Chemical Co., Inc., viscosity average molecular weight 20000)
  • Phosphorus-containing compound Phosphate ester 1 ("Fyrol Flex Sol DP” manufactured by ICL Japan)
  • Phosphate ester 2 PX-202 manufactured by Daihachi Chemical Industry Co., Ltd.
  • Example 1 The composition components shown in Table 1 below were compounded in the compounding amounts (parts by weight) shown in Table 1 below to obtain a resin sheet. Specifically, a resin sheet was obtained by the following method.
  • Step of obtaining a resin composition Using a twin-screw extruder (“TEX30a” manufactured by Japan Steel Works, Ltd.), the mixture blended in the blending amounts shown in Table 1 was used at a cylinder temperature of 280 ° C., a mold temperature of 260 ° C., and a pressure of 0.7 bar (vacuum). After melt kneading under the conditions of a screw diameter of 30 mm, a rotation speed of 400 rpm, and an extrusion rate of 15 kg / hour, melt extrusion was performed.
  • TEX30a manufactured by Japan Steel Works, Ltd.
  • Step of obtaining a pellet-shaped resin composition The resin composition obtained by melt extrusion was cooled with a water-cooling system, cut into pellets using a pelletizer, and then dried at about 120 ° C. for about 5 hours to obtain a pelletized resin composition.
  • Step of obtaining a resin sheet After melting the pelletized resin composition under the conditions of a cylinder temperature of 270 ° C., a mold temperature of 290 ° C., and an extrusion rate of 20 kg / hour using a single-screw extruder (“GT50” manufactured by Plastic Engineering Laboratory Co., Ltd.), It was formed into a sheet. Next, the ratio of the take-up speed to the roll speed (take-off speed / roll speed) in the take-up machine was set to 1.05, and the take-up was performed to obtain a resin sheet having a thickness of 3 mm.
  • GT50 single-screw extruder
  • Example 2 A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except that the composition of the resin composition (and the resin sheet) was set as shown in Tables 1 and 2 below.
  • Example 14 to 26 The composition of the resin composition (and the resin sheet) was set as shown in Tables 3 and 4 below, and (c) in the step of obtaining the resin sheet, the ratio of the take-up speed to the roll speed in the take-off machine (take-off) A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except that the speed / roll speed) was set to 1.00.
  • the obtained resin sheet has a first surface on one side in the thickness direction.
  • the resin sheet was cut to prepare a measurement sample A (5 mm in length ⁇ 5 mm in width ⁇ 3 mm in thickness) in which a cross section A of the resin sheet in a direction parallel to the first surface was exposed. Further, the resin sheet was cut to prepare a measurement sample B (5 mm in length ⁇ 5 mm in width ⁇ 3 mm in thickness) in which the cross section B of the resin sheet in the direction orthogonal to the first surface was exposed. In the measurement sample B, as the cross section B, the cross section of the resin sheet along the MD direction was exposed.
  • the cross section A is a cross section at the center position in the thickness direction of the resin sheet.
  • the surface of the exposed cross-sections A and B of the measurement samples A and B was polished using "Ultramicrotome-Leica-REICHART-NISSEI ULTRACUT S" manufactured by Leica Microsystems.
  • FIG. 4 is an electron micrograph of a cross section of the resin sheet manufactured in the example in a direction parallel to the first surface. Specifically, FIG. 4 is an electron micrograph (magnification: 2000 times) of the cross section A in the measurement sample A manufactured in Example 1. The occupied area ratio S1 obtained from the electron micrograph of FIG. 4 was 10.64%.
  • FIG. 5 is an electron micrograph of a cross section of the resin sheet manufactured in the example in a direction orthogonal to the first surface. Specifically, FIG. 5 is an electron micrograph (magnification: 2000 times) of the cross section B of the measurement sample B manufactured in Example 1.
  • the occupied area ratio S2 obtained from the electron micrograph of FIG. 5 was 4.63%. From the obtained S1 and S2, the ratio of S1 to S2 (S1 / S2) was calculated to be 2.30.
  • Ratio standard deviation of area division area / average value of area division area
  • the area division area of the inorganic filler was calculated by the area division method using image analysis software (“WinROOF2015” manufactured by Mitani Corporation). More specifically, performing the Voronoi division using each centroid of the inorganic filler as each generating point, calculating the area of the Voronoi region of the inorganic filler, and the standard deviation of the area of the obtained Voronoi region, the Voronoi region. The ratio of the area to the average value (standard deviation of the area of the Voronoi region / average value of the area of the Voronoi region) was calculated. The area of the Voronoi region was calculated for 100 or more arbitrarily selected inorganic fillers.
  • S1 (%) total projected area of inorganic filler / area of observation field of cross section A ⁇ 100
  • S2 (%) total projected area of inorganic filler / area of observation field of section B ⁇ 100
  • Average particle diameter D of inorganic filler From the electron micrograph of the cross section B, the particle size (equivalent circle diameter) of the inorganic filler was calculated using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), and the average value of the calculated equivalent circle diameters was calculated. The average particle diameter D was obtained. The average particle diameter D was calculated from 100 or more inorganic fillers.
  • the obtained resin sheet was cut into a length of 100 mm x width of 100 mm x thickness of 3 mm to obtain a heat generation rate measurement sample.
  • the obtained sample for heat generation rate measurement was measured in accordance with ISO5660-1 by using a cone calorimeter tester under the conditions of heater radiant heat of 50 kW / m 2 , measurement time of 20 minutes, and ignition, to generate heat. The speed was measured.
  • n in the above equation of the average heat generation rate was set to 600.
  • the obtained resin sheet was cut into a length of 80 mm, a width of 10 mm, and a thickness of 3 mm, and a V notch of 2 mm was formed therein.
  • the Izod impact strength was measured according to JIS K7110: 1999.
  • the resin sheets obtained in Examples 1 to 26 were excellent in flame retardancy and impact resistance. It is considered that this is because the dispersed state of the inorganic filler in the resin sheet is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention provides a resin sheet which has excellent flame retardancy and excellent impact resistance. A resin sheet according to the present invention contains an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound and a silicon-containing compound, while having a first surface on one side in the thickness direction. With respect to this resin sheet, if respective segmentation areas of the inorganic filler are calculated by means of a segmentation method in a cross-section of this resin sheet in a direction perpendicular to the first surface, the ratio of the standard deviation of the segmentation areas to the average of the segmentation areas is 0.53 or less.

Description

樹脂シートResin sheet
 本発明は、芳香族ポリカーボネート樹脂を含む樹脂シートに関する。 The present invention relates to a resin sheet containing an aromatic polycarbonate resin.
 ポリカーボネート樹脂などの熱可塑性樹脂は、耐久性、軽量性及び成形加工性等に優れる。このため、熱可塑性樹脂は、建築分野、家電分野、及び輸送分野等の様々な分野で用いられている。 ▽ Thermoplastic resins such as polycarbonate resin have excellent durability, light weight, and moldability. Therefore, the thermoplastic resin is used in various fields such as the field of construction, the field of home appliances, and the field of transportation.
 熱可塑性樹脂の具体的な用途として、鉄道車両、航空機、船舶、及び自動車等の輸送機の内装材が挙げられる。 Specific examples of applications of thermoplastic resins include interior materials for railway vehicles, aircraft, ships, and transportation equipment such as automobiles.
 上記の用途においては、熱可塑性樹脂を用いた成形体の難燃性及び耐衝撃性に優れることが求められる。しかしながら、熱可塑性樹脂は、一般的に燃えやすく、また、衝撃に弱いため、熱可塑性樹脂を用いた成形体の難燃性及び耐衝撃性を良好にするための検討が広く行われている。 In the above applications, it is required that the molded product using a thermoplastic resin has excellent flame retardancy and impact resistance. However, since thermoplastic resins generally burn easily and are weak against impact, studies have been widely conducted to improve the flame retardancy and impact resistance of molded articles using the thermoplastic resin.
 例えば、下記の特許文献1には、A)芳香族ポリカーボネートおよび/または芳香族ポリエステルカーボネートと、B)特定のシリコーン/アクリレートコンポジットゴムと、C)特定のタルクと、D)特定の防炎加工剤とを含有する組成物が開示されている。上記組成物において、上記A)~D)の各成分はそれぞれ特定の含有量で含まれる。また、特許文献1には、上記組成物を射出成形、ブロー成形、及び予め形成したシートやフィルムから熱成形することにより成形体を製造することができることが記載されている。 For example, in Patent Document 1 below, A) an aromatic polycarbonate and / or an aromatic polyester carbonate, B) a specific silicone / acrylate composite rubber, C) a specific talc, and D) a specific flameproofing agent. A composition containing and is disclosed. In the composition, each of the components A) to D) is contained in a specific content. Further, Patent Document 1 describes that a molded body can be produced by injection molding, blow molding, and thermoforming a preformed sheet or film from the composition.
 下記の特許文献2には、A)芳香族ポリカーボネートおよび/またはポリエステルカーボネートと、B)強化剤と、C)熱可塑性ホモポリマーおよび/またはコポリマーと、D)特定のリン化合物とを含有する組成物が開示されている。また、特許文献2には、上記組成物を射出成形することにより成形体を製造することができることが記載されている。 Patent Document 2 below discloses a composition containing A) an aromatic polycarbonate and / or a polyester carbonate, B) a reinforcing agent, C) a thermoplastic homopolymer and / or a copolymer, and D) a specific phosphorus compound. Is disclosed. Further, Patent Document 2 describes that a molded body can be manufactured by injection molding the above composition.
特開2014-240492号公報JP, 2014-240492, A 特表2004-517978号公報Japanese Patent Publication No. 2004-517978
 樹脂を含む従来の成形体では、該成形体の難燃性を高めようとすると耐衝撃性が低下することがある。また、樹脂を含む従来の成形体では、該成形体の耐衝撃性を高めようとすると難燃性が低下することがある。 With conventional molded products containing resin, impact resistance may decrease when the flame retardancy of the molded product is increased. Further, in a conventional molded product containing a resin, the flame retardance may be lowered when the impact resistance of the molded product is increased.
 特許文献1に記載の組成物により得られる成形体では、難燃性及び耐衝撃性をある程度高めることができるものの十分ではなく、難燃性及び耐衝撃性の更なる向上が求められている。特に、特許文献1に記載の組成物を、射出成形、ブロー成形、及び予め形成したシートやフィルムから熱成形により成形した成形体では、成形体中のタルク(無機フィラー)の分布に偏りが生じやすく、その結果、難燃性及び耐衝撃性が低下しやすい。 The molded product obtained from the composition described in Patent Document 1 can increase flame retardancy and impact resistance to some extent, but is not sufficient, and further improvement in flame retardancy and impact resistance is required. In particular, in a molded body obtained by molding the composition described in Patent Document 1 by injection molding, blow molding, and thermoforming from a sheet or film formed in advance, uneven distribution of talc (inorganic filler) occurs in the molded body. Easily, and as a result, flame retardancy and impact resistance are likely to decrease.
 また、特許文献2に記載の組成物により得られる成形体では、無機フィラーが配合されていないため、難燃性と耐衝撃性との双方を十分に高めることは困難である。なお、特許文献2に記載の組成物に無機フィラーを配合した場合であっても、該組成物を射出成形等により成形した成形体では、成形体中の無機フィラーの分布に偏りが生じやすく、その結果、難燃性及び耐衝撃性が低下しやすい。 In addition, since the molded product obtained from the composition described in Patent Document 2 does not contain an inorganic filler, it is difficult to sufficiently enhance both flame retardancy and impact resistance. Even when the composition described in Patent Document 2 is mixed with an inorganic filler, in a molded product obtained by molding the composition by injection molding or the like, uneven distribution of the inorganic filler in the molded product is likely to occur. As a result, flame retardancy and impact resistance are likely to decrease.
 本発明の目的は、難燃性に優れ、かつ耐衝撃性に優れる樹脂シートを提供することである。 The object of the present invention is to provide a resin sheet having excellent flame retardancy and impact resistance.
 本発明の広い局面によれば、芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含み、厚み方向の一方側に第1の表面を有し、前記第1の表面と直交する方向における樹脂シートの断面において、領域分割法により前記無機フィラーの領域分割面積をそれぞれ算出したときに、前記領域分割面積の標準偏差の、前記領域分割面積の平均値に対する比が0.53以下である、樹脂シートが提供される。 According to a broad aspect of the present invention, an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound, and has a first surface on one side in the thickness direction, the first surface In the cross section of the resin sheet in the direction orthogonal to, when the area-divided area of the inorganic filler is calculated by the area-division method, the ratio of the standard deviation of the area-divided area to the average value of the area-divided area is 0. A resin sheet having a size of 53 or less is provided.
 本発明に係る樹脂シートのある特定の局面では、前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーの配向角をそれぞれ算出したときに、前記無機フィラーの配向角の平均値が30度以下である。 In a particular aspect of the resin sheet according to the present invention, in the cross section of the resin sheet in the direction orthogonal to the first surface, when calculating the orientation angle of the inorganic filler, the average of the orientation angle of the inorganic filler The value is 30 degrees or less.
 本発明に係る樹脂シートのある特定の局面では、前記第1の表面と平行する方向における樹脂シートの断面において、単位面積当たりの前記無機フィラーの占有面積割合をS1とし、前記第1の表面と直交する方向における樹脂シートの断面において、単位面積当たりの前記無機フィラーの占有面積割合をS2としたときに、前記S1の前記S2に対する比が2.0以上である。 In a particular aspect of the resin sheet according to the present invention, in the cross section of the resin sheet in the direction parallel to the first surface, the occupation area ratio of the inorganic filler per unit area is S1, and the first surface and In the cross section of the resin sheet in the orthogonal direction, when the occupation area ratio of the inorganic filler per unit area is S2, the ratio of S1 to S2 is 2.0 or more.
 本発明に係る樹脂シートのある特定の局面では、前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーの粒子径をそれぞれ算出したときに、前記無機フィラーの平均粒子径が1.5μm以下である。 In a particular aspect of the resin sheet according to the present invention, in the cross section of the resin sheet in the direction orthogonal to the first surface, when calculating the particle diameter of the inorganic filler, the average particle diameter of the inorganic filler is It is 1.5 μm or less.
 本発明に係る樹脂シートのある特定の局面では、前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーのアスペクト比をそれぞれ算出したときに、前記無機フィラーの平均アスペクト比が2.2以上5以下である。 In a particular aspect of the resin sheet according to the present invention, in the cross section of the resin sheet in the direction orthogonal to the first surface, when calculating the aspect ratio of the inorganic filler, the average aspect ratio of the inorganic filler is It is 2.2 or more and 5 or less.
 本発明に係る樹脂シートのある特定の局面では、ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が140kW/m以下である。 In a specific aspect of the resin sheet according to the present invention, the average maximum heat generation rate measured under the condition of the heater radiant heat of 50 kW / m 2 and the ignition is 140 kW / m 2 or less in accordance with ISO5660-1.
 本発明に係る樹脂シートのある特定の局面では、前記無機フィラーがタルクである。 In a particular aspect of the resin sheet according to the present invention, the inorganic filler is talc.
 本発明に係る樹脂シートのある特定の局面では、前記芳香族ポリカーボネート樹脂100重量部に対する前記無機フィラーの含有量が10重量部以上40重量部以下である。 In a particular aspect of the resin sheet according to the present invention, the content of the inorganic filler with respect to 100 parts by weight of the aromatic polycarbonate resin is 10 parts by weight or more and 40 parts by weight or less.
 本発明に係る樹脂シートのある特定の局面では、前記リン含有化合物が、リン酸エステルである。 In a particular aspect of the resin sheet according to the present invention, the phosphorus-containing compound is a phosphoric acid ester.
 本発明に係る樹脂シートのある特定の局面では、前記芳香族ポリカーボネート樹脂100重量部に対する前記リン含有化合物の含有量が5重量部以上25重量部以下である。 In a particular aspect of the resin sheet according to the present invention, the content of the phosphorus-containing compound is 5 parts by weight or more and 25 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
 本発明に係る樹脂シートのある特定の局面では、前記ケイ素含有化合物が、コアと、前記コアの表面に配置されたシェルとを備えるコアシェル粒子である。 In a particular aspect of the resin sheet according to the present invention, the silicon-containing compound is a core-shell particle including a core and a shell arranged on the surface of the core.
 本発明に係る樹脂シートのある特定の局面では、前記芳香族ポリカーボネート樹脂100重量部に対する前記ケイ素含有化合物の含有量が2重量部以上20重量部以下である。 In a particular aspect of the resin sheet according to the present invention, the content of the silicon-containing compound is 2 parts by weight or more and 20 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
 本発明に係る樹脂シートのある特定の局面では、フッ素系樹脂を含み、前記芳香族ポリカーボネート樹脂100重量部に対する前記フッ素系樹脂の含有量が0.5重量部以上2重量部以下である。 In a particular aspect of the resin sheet according to the present invention, the resin sheet contains a fluorine-based resin, and the content of the fluorine-based resin is 0.5 parts by weight or more and 2 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
 本発明に係る樹脂シートのある特定の局面では、前記樹脂シートは、押出シート成形品である。 In a particular aspect of the resin sheet according to the present invention, the resin sheet is an extruded sheet molded product.
 本発明に係る樹脂シートのある特定の局面では、前記樹脂シートは、輸送機の内装材である。 In a particular aspect of the resin sheet according to the present invention, the resin sheet is an interior material for a transportation machine.
 本発明に係る樹脂シートのある特定の局面では、前記樹脂シートは、鉄道車両の内装材である。 In a particular aspect of the resin sheet according to the present invention, the resin sheet is an interior material for railway vehicles.
 本発明に係る樹脂シートは、芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含む。本発明に係る樹脂シートは、厚み方向の一方側に第1の表面を有する。本発明に係る樹脂シートでは、上記第1の表面と直交する方向における樹脂シートの断面において、領域分割法により上記無機フィラーの領域分割面積をそれぞれ算出したときに、上記領域分割面積の標準偏差の、上記領域分割面積の平均値に対する比が0.53以下である。本発明に係る樹脂シートでは、上記の構成が備えられているので、難燃性に優れ、かつ耐衝撃性に優れる。 The resin sheet according to the present invention contains an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound. The resin sheet according to the present invention has the first surface on one side in the thickness direction. In the resin sheet according to the present invention, in the cross section of the resin sheet in the direction orthogonal to the first surface, the standard deviation of the area division area is calculated when the area division area of the inorganic filler is calculated by the area division method. The ratio of the area division area to the average value is 0.53 or less. Since the resin sheet according to the present invention is provided with the above configuration, it is excellent in flame retardancy and impact resistance.
図1は、本発明の一実施形態に係る樹脂シートを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a resin sheet according to an embodiment of the present invention. 図2(a)は、樹脂シートの第1の表面と平行する方向における樹脂シートの断面を模式的に示す断面図である。図2(b)は、第1の表面と直交する方向における樹脂シートの断面を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically showing the cross section of the resin sheet in the direction parallel to the first surface of the resin sheet. FIG. 2B is a cross-sectional view schematically showing the cross section of the resin sheet in the direction orthogonal to the first surface. 図3は、無機フィラーの配向角θを説明するための図である。FIG. 3 is a diagram for explaining the orientation angle θ of the inorganic filler. 図4は、実施例で作製した樹脂シートの第1の表面と平行する方向における断面の電子顕微鏡写真である。FIG. 4 is an electron micrograph of a cross section in a direction parallel to the first surface of the resin sheet produced in the example. 図5は、実施例で作製した樹脂シートの第1の表面と直交する方向における断面の電子顕微鏡写真である。FIG. 5 is an electron micrograph of a cross section in a direction orthogonal to the first surface of the resin sheet produced in the example.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明に係る樹脂シートは、芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含む。本発明に係る樹脂シートは、厚み方向の一方側に第1の表面を有する。本発明に係る樹脂シートでは、上記第1の表面と直交する方向における樹脂シートの断面において、領域分割法により上記無機フィラーの領域分割面積をそれぞれ算出したときに、上記領域分割面積の標準偏差の、上記領域分割面積の平均値に対する比が0.53以下である。 The resin sheet according to the present invention contains an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound. The resin sheet according to the present invention has the first surface on one side in the thickness direction. In the resin sheet according to the present invention, in the cross section of the resin sheet in the direction orthogonal to the first surface, the standard deviation of the area division area is calculated when the area division area of the inorganic filler is calculated by the area division method. The ratio of the area division area to the average value is 0.53 or less.
 本発明に係る樹脂シートでは、上記の構成が備えられているので、難燃性に優れ、かつ耐衝撃性に優れる。本発明に係る樹脂シートでは、難燃性と耐衝撃性との双方を高めることができる。 Since the resin sheet according to the present invention is provided with the above configuration, it has excellent flame retardancy and impact resistance. The resin sheet according to the present invention can improve both flame retardancy and impact resistance.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る樹脂シートを模式的に示す斜視図である。図1において、無機フィラー等は図示していない。 FIG. 1 is a perspective view schematically showing a resin sheet according to an embodiment of the present invention. In FIG. 1, the inorganic filler and the like are not shown.
 図1に示す樹脂シート1は、厚み方向の一方側に第1の表面1aを有する。上記樹脂シート1は、上記厚み方向と、上記厚み方向と直交する方向とを有する。上記厚み方向と直交する方向とは、例えば、MD方向又はTD方向である。MD方向は、樹脂シートの製造時の該樹脂シートの流れ方向であり、TD方向は、樹脂シートの流れ方向と直交する方向である。樹脂シート1は、厚み方向とMD方向とTD方向とを有する。樹脂シート1では、左右方向がMD方向である。上記厚み方向と上記MD方向と上記TD方向とはそれぞれ直交していることが好ましい。 The resin sheet 1 shown in FIG. 1 has a first surface 1a on one side in the thickness direction. The resin sheet 1 has the thickness direction and a direction orthogonal to the thickness direction. The direction orthogonal to the thickness direction is, for example, the MD direction or the TD direction. The MD direction is the flow direction of the resin sheet at the time of manufacturing the resin sheet, and the TD direction is the direction orthogonal to the flow direction of the resin sheet. The resin sheet 1 has a thickness direction, an MD direction, and a TD direction. In the resin sheet 1, the lateral direction is the MD direction. It is preferable that the thickness direction, the MD direction, and the TD direction are orthogonal to each other.
 上記厚み方向は、上記第1の表面と直交する方向であることが好ましい。上記厚み方向と直交する方向は、上記第1の表面と平行する方向であることが好ましい。 The thickness direction is preferably a direction orthogonal to the first surface. The direction orthogonal to the thickness direction is preferably a direction parallel to the first surface.
 図1のX1-X1線に沿う断面は、樹脂シートの第1の表面と平行する方向における樹脂シートの断面に相当する。図1のX2-X2線に沿う断面は、第1の表面と直交する方向における樹脂シートの断面に相当する。図1のX2-X2線に沿う断面は、MD方向に沿う断面、かつ厚み方向に沿う断面に相当する。 The cross section along the line X1-X1 in FIG. 1 corresponds to the cross section of the resin sheet in the direction parallel to the first surface of the resin sheet. The cross section taken along line X2-X2 in FIG. 1 corresponds to the cross section of the resin sheet in the direction orthogonal to the first surface. The cross section along the line X2-X2 in FIG. 1 corresponds to the cross section along the MD direction and the cross section along the thickness direction.
 図2(a)は、樹脂シートの第1の表面と平行する方向における樹脂シートの断面を模式的に示す断面図である。図2(b)は、第1の表面と直交する方向における樹脂シートの断面を模式的に示す断面図である。 FIG. 2A is a cross-sectional view schematically showing a cross section of the resin sheet in a direction parallel to the first surface of the resin sheet. FIG. 2B is a cross-sectional view schematically showing the cross section of the resin sheet in the direction orthogonal to the first surface.
 図2(a)では、樹脂シートの第1の表面と平行する方向における樹脂シートの断面11Aが示されている。断面11Aにおいて、無機フィラー21Aが観察される。 FIG. 2 (a) shows a cross section 11A of the resin sheet in a direction parallel to the first surface of the resin sheet. In the cross section 11A, the inorganic filler 21A is observed.
 図2(b)では、樹脂シートの第1の表面と直交する方向における樹脂シートの断面11Bが示されている。断面11Bは、樹脂シートの上記MD方向に沿う断面であり、かつ上記厚み方向に沿う断面である。断面11Bにおいて、無機フィラー21Bが観察される。 FIG. 2B shows a cross section 11B of the resin sheet in a direction orthogonal to the first surface of the resin sheet. The cross section 11B is a cross section along the MD direction of the resin sheet and a cross section along the thickness direction. In the cross section 11B, the inorganic filler 21B is observed.
 上記樹脂シートでは、上記第1の表面と直交する方向における樹脂シートの断面において、領域分割法により上記無機フィラーの領域分割面積をそれぞれ算出したときに、上記領域分割面積の標準偏差の、上記領域分割面積の平均値に対する比(領域分割面積の標準偏差/領域分割面積の平均値)が0.53以下である。上記比(領域分割面積の標準偏差/領域分割面積の平均値)が0.53を超えると、樹脂シート中の無機フィラーの分布に偏りが生じやすく、その結果、難燃性及び耐衝撃性が低下することがある。 In the resin sheet, in the cross section of the resin sheet in the direction orthogonal to the first surface, when the area division area of the inorganic filler is calculated by the area division method, the standard deviation of the area division area, the area The ratio of the division area to the average value (standard deviation of area division area / average value of area division area) is 0.53 or less. If the above ratio (standard deviation of area-divided area / average value of area-divided area) exceeds 0.53, the distribution of the inorganic filler in the resin sheet tends to be uneven, and as a result, flame retardancy and impact resistance It may decrease.
 上記領域分割面積の標準偏差の、上記領域分割面積の平均値に対する比(領域分割面積の標準偏差/領域分割面積の平均値)は、好ましくは0.52以下、より好ましくは0.51以下、更に好ましくは0.50以下である。上記比(領域分割面積の標準偏差/領域分割面積の平均値)が上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。上記比(領域分割面積の標準偏差/領域分割面積の平均値)は、小さいほどよい。 The ratio of the standard deviation of the area division areas to the average value of the area division areas (standard deviation of the area division areas / average value of the area division areas) is preferably 0.52 or less, more preferably 0.51 or less, More preferably, it is 0.50 or less. When the ratio (standard deviation of area-divided area / average value of area-divided area) is not more than the upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and the flame retardancy and impact resistance can be improved. It can be further enhanced. The smaller the above ratio (standard deviation of area division area / average value of area division area), the better.
 上記第1の表面と平行する方向における樹脂シートの断面において、単位面積当たりの上記無機フィラーの占有面積割合をS1(%)とし、上記第1の表面と直交する方向における樹脂シートの断面において、単位面積当たりの上記無機フィラーの占有面積割合をS2(%)とする。上記S1の上記S2に対する比(S1/S2)は、好ましくは2.0以上、より好ましくは2.1以上、更に好ましくは2.2以上である。上記比(S1/S2)が上記下限以上であると、難燃性をより一層高めることができる。より具体的には、上記比(S1/S2)が上記下限以上であると、樹脂シート中の無機フィラーが、上記第1の表面に平行する方向に配向した状態とすることができる。そのため、樹脂シートが燃えた場合であっても、該樹脂シートが燃えた際に樹脂分解して発生する可燃ガスの放散を効果的に抑制することができ、また、樹脂シートの炭化物(チャー)が上記隙間を効果的に防ぐことができる。その結果、難燃性を高めることができる。上記比(S1/S2)は、大きいほどよい。 In the cross section of the resin sheet in the direction parallel to the first surface, the occupation area ratio of the inorganic filler per unit area is S1 (%), and in the cross section of the resin sheet in the direction orthogonal to the first surface, The occupied area ratio of the inorganic filler per unit area is S2 (%). The ratio (S1 / S2) of S1 to S2 is preferably 2.0 or more, more preferably 2.1 or more, still more preferably 2.2 or more. When the ratio (S1 / S2) is at least the above lower limit, flame retardancy can be further enhanced. More specifically, when the ratio (S1 / S2) is equal to or more than the lower limit, the inorganic filler in the resin sheet can be oriented in a direction parallel to the first surface. Therefore, even when the resin sheet burns, it is possible to effectively suppress the emission of combustible gas generated by the resin decomposition when the resin sheet burns, and the carbide (char) of the resin sheet. However, the above gap can be effectively prevented. As a result, flame retardancy can be improved. The larger the ratio (S1 / S2), the better.
 上記第1の表面と平行する方向における樹脂シートの断面は、樹脂シートの厚み方向の中央の位置における断面であることが好ましい。上記第1の表面と平行する方向における樹脂シートの断面は、樹脂シートの中心を通る断面であることが好ましい。 The cross section of the resin sheet in the direction parallel to the first surface is preferably the cross section at the central position in the thickness direction of the resin sheet. The cross section of the resin sheet in the direction parallel to the first surface is preferably a cross section passing through the center of the resin sheet.
 図3は、無機フィラーの配向角θを説明するための図である。図3には、第1の表面と直交する方向における樹脂シートの断面において観察された無機フィラー21Bが示されている。無機フィラー21Bは、第1の表面と直交する方向における樹脂シートの断面において、一端21Baと他端21Bbとを有し、一端21Baと他端21Bbとの距離が第1の表面と直交する方向における樹脂シートの断面における無機フィラー21の長径である。図3において、Xは、第1の表面と直交する方向における樹脂シートの断面における樹脂シートの厚み方向と直交する方向であり、Yは、第1の表面と直交する方向における樹脂シートの断面における樹脂シートの厚み方向であり、Lは、第1の表面と直交する方向における樹脂シートの断面における無機フィラーの長径方向であり、配向方向である。上記樹脂シートの厚み方向と直交する方向Xと、無機フィラーの配向方向Lとのなす角度を無機フィラー21の配向角θとする。上記樹脂シートの厚み方向と直交する方向Xは、MD方向であることが好ましい。配向角θは、樹脂シートの厚み方向と直交する方向(好ましくはMD方向)と、無機フィラーの配向方向とのなす角度のうち、小さい方の角度を意味する。したがって、配向角θの最大値は90度である。 FIG. 3 is a diagram for explaining the orientation angle θ of the inorganic filler. FIG. 3 shows the inorganic filler 21B observed in the cross section of the resin sheet in the direction orthogonal to the first surface. The inorganic filler 21B has one end 21Ba and the other end 21Bb in the cross section of the resin sheet in the direction orthogonal to the first surface, and the distance between the one end 21Ba and the other end 21Bb is in the direction orthogonal to the first surface. It is the major axis of the inorganic filler 21 in the cross section of the resin sheet. In FIG. 3, X is a direction orthogonal to the thickness direction of the resin sheet in the cross section of the resin sheet in the direction orthogonal to the first surface, and Y is a cross section of the resin sheet in the direction orthogonal to the first surface. It is the thickness direction of the resin sheet, and L is the major axis direction of the inorganic filler in the cross section of the resin sheet in the direction orthogonal to the first surface, and the orientation direction. The angle formed by the direction X orthogonal to the thickness direction of the resin sheet and the orientation direction L of the inorganic filler is the orientation angle θ of the inorganic filler 21. The direction X orthogonal to the thickness direction of the resin sheet is preferably the MD direction. The orientation angle θ means the smaller of the angles formed by the direction (preferably MD direction) orthogonal to the thickness direction of the resin sheet and the orientation direction of the inorganic filler. Therefore, the maximum value of the orientation angle θ is 90 degrees.
 上記第1の表面と直交する方向における樹脂シートの断面において、上記無機フィラーの配向角θをそれぞれ算出したときに、上記無機フィラーの配向角θの平均値は、好ましくは10度以上、より好ましくは12度以上、更に好ましくは14度以上である。上記第1の表面と直交する方向における樹脂シートの断面において、上記無機フィラーの配向角θをそれぞれ算出したときに、上記無機フィラーの配向角θの平均値は、好ましくは32度以下、より好ましくは30度以下、更に好ましくは28度以下、更により一層好ましくは25度以下、特に好ましくは22度以下である。上記無機フィラーの配向角θの平均値が上記下限以上及び上記上限以下であると、樹脂シートが燃えた場合であっても、燃焼ガスの発生に対してガスバリア効果が効果的に働くことによって燃焼速度を効果的に抑制することができるので、難燃性をより一層高めることができる。また、上記無機フィラーの配向角θの平均値が上記下限以上であると、樹脂シートの機械強度のばらつきを効果的に抑えることができる。 In the cross section of the resin sheet in the direction orthogonal to the first surface, when the orientation angle θ of the inorganic filler is calculated, the average value of the orientation angle θ of the inorganic filler is preferably 10 degrees or more, more preferably Is 12 degrees or more, and more preferably 14 degrees or more. In the cross section of the resin sheet in the direction orthogonal to the first surface, when the orientation angle θ of the inorganic filler is calculated, the average value of the orientation angle θ of the inorganic filler is preferably 32 degrees or less, more preferably Is 30 degrees or less, more preferably 28 degrees or less, even more preferably 25 degrees or less, and particularly preferably 22 degrees or less. When the average value of the orientation angle θ of the inorganic filler is equal to or higher than the lower limit and equal to or lower than the upper limit, the gas barrier effect effectively acts on the generation of combustion gas even when the resin sheet burns, thereby burning. Since the speed can be effectively suppressed, the flame retardancy can be further enhanced. Further, when the average value of the orientation angle θ of the inorganic filler is equal to or more than the above lower limit, it is possible to effectively suppress the variation in mechanical strength of the resin sheet.
 上記第1の表面と直交する方向における樹脂シートの断面において、上記無機フィラーの粒子径をそれぞれ算出したときに、上記無機フィラーの平均粒子径Dは、好ましくは0.6μm以上、より好ましくは0.7μm以上、好ましくは1.5μm以下、より好ましくは1.4μm以下である。上記無機フィラーの平均粒子径Dが上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。 In the cross section of the resin sheet in the direction orthogonal to the first surface, when the particle diameter of the inorganic filler is calculated, the average particle diameter D of the inorganic filler is preferably 0.6 μm or more, more preferably 0. It is at least 0.7 μm, preferably at most 1.5 μm, more preferably at most 1.4 μm. When the average particle diameter D of the inorganic filler is not less than the lower limit and not more than the upper limit, flame retardancy and impact resistance can be further enhanced.
 樹脂シートがMD方向とTD方向とを有する場合には、上記第1の表面と平行する方向におけるMD方向に沿う断面とTD方向に沿う断面とのうち、MD方向に沿う断面において、上記無機フィラーの平均粒子径Dが上記下限を満足することが好ましく、上記無機フィラーの平均粒子径Dが上記上限を満足することが好ましい。 When the resin sheet has the MD direction and the TD direction, in the cross section along the MD direction and the cross section along the TD direction in the direction parallel to the first surface, the inorganic filler is present in the cross section along the MD direction. It is preferable that the average particle diameter D of 1 satisfies the above lower limit, and the average particle diameter D of the inorganic filler satisfies the above upper limit.
 上記第1の表面と直交する方向における樹脂シートの断面において、上記無機フィラーのアスペクト比をそれぞれ算出したときに、上記無機フィラーの平均アスペクト比Aは、好ましくは2以上、より好ましくは2.2以上、更に好ましくは2.4以上、好ましくは5以下、より好ましくは4.5以下である。上記無機フィラーの平均アスペクト比Aが上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。 When the aspect ratio of the inorganic filler is calculated in the cross section of the resin sheet in the direction orthogonal to the first surface, the average aspect ratio A of the inorganic filler is preferably 2 or more, more preferably 2.2. Or more, more preferably 2.4 or more, preferably 5 or less, more preferably 4.5 or less. When the average aspect ratio A of the inorganic filler is not less than the lower limit and not more than the upper limit, flame retardancy and impact resistance can be further enhanced.
 樹脂シートがMD方向とTD方向とを有する場合には、上記第1の表面と平行する方向におけるMD方向に沿う断面とTD方向に沿う断面とのうち、MD方向に沿う断面において、上記無機フィラーの平均アスペクト比Aが上記下限を満足することが好ましく、上記無機フィラーの平均アスペクト比Aが上記上限を満足することが好ましい。 When the resin sheet has the MD direction and the TD direction, in the cross section along the MD direction and the cross section along the TD direction in the direction parallel to the first surface, the inorganic filler is present in the cross section along the MD direction. It is preferable that the average aspect ratio A of 1 satisfies the above lower limit, and the average aspect ratio A of the inorganic filler satisfies the above upper limit.
 上記第1の表面と直交する方向における樹脂シートの断面は、樹脂シートの中心を通る断面であることが好ましい。 The cross section of the resin sheet in the direction orthogonal to the first surface is preferably a cross section passing through the center of the resin sheet.
 上記比(領域分割面積の標準偏差/領域分割面積の平均値)、上記S1、上記S2、上記比(S1/S2)、上記無機フィラーの配向角θの平均値、上記無機フィラーの平均粒子径D、上記無機フィラーの平均アスペクト比Aは、具体的には、以下のようにして測定される。 The ratio (standard deviation of area division area / average value of area division area), S1, S2, ratio (S1 / S2), average value of orientation angle θ of the inorganic filler, average particle diameter of the inorganic filler. D, the average aspect ratio A of the inorganic filler is specifically measured as follows.
 (1)電子顕微鏡による撮影:
 樹脂シートを切削し、上記第1の表面と平行する方向における上記樹脂シートの断面Aを露出させた測定用サンプルAを作製する。また、樹脂シートを切削し、上記第1の表面と直交する方向における樹脂シートの断面Bを露出させた測定用サンプルBを作製する。樹脂シートを切削せずに、断面が露出するように、樹脂シートを切断してもよい。なお、測定用サンプルA,Bにおいて、露出させた断面A,Bは、表面研磨されていてもよい。また、上記第1の表面と直交する方向における樹脂シートの上記断面Bは、上記MD方向に沿う断面であってもよく、上記TD方向に沿う断面であってもよい。上記第1の表面と直交する方向における樹脂シートの上記断面Bは、上記MD方向に沿う断面であることが好ましい。
(1) Photograph by electron microscope:
The resin sheet is cut to prepare a measurement sample A in which the cross section A of the resin sheet in the direction parallel to the first surface is exposed. Further, the resin sheet is cut to prepare a measurement sample B in which the cross section B of the resin sheet in the direction orthogonal to the first surface is exposed. The resin sheet may be cut such that the cross section is exposed without cutting the resin sheet. In the measurement samples A and B, the exposed cross sections A and B may be surface-polished. The cross section B of the resin sheet in the direction orthogonal to the first surface may be the cross section along the MD direction or the cross section along the TD direction. The cross section B of the resin sheet in the direction orthogonal to the first surface is preferably a cross section along the MD direction.
 電子顕微鏡(好ましくは走査型電子顕微鏡)を用いて、上記断面A及び上記断面Bを撮影する。なお、電子顕微鏡での撮影において、観察された無機フィラーの断面積(投影面積)が0.1μmを超える無機フィラーにおいて、下記の(2)~(6)の算出を行うものとする。 The section A and the section B are photographed using an electron microscope (preferably a scanning electron microscope). It should be noted that the following (2) to (6) are calculated for an inorganic filler having a cross-sectional area (projected area) of the observed inorganic filler of more than 0.1 μm 2 when photographed with an electron microscope.
 (2)比(領域分割面積の標準偏差/領域分割面積の平均値)の算出:
 上記断面Bの電子顕微鏡写真から、市販の画像解析ソフトを用いて領域分割法により上記無機フィラーの領域分割面積をそれぞれ算出する。得られた領域分割面積の標準偏差の、領域分割面積の平均値に対する比(領域分割面積の標準偏差/領域分割面積の平均値)を算出する。なお、任意に選択した100個以上の無機フィラーに対して、上記領域分割面積をそれぞれ求める。
(2) Calculation of ratio (standard deviation of area division area / average value of area division area):
From the electron micrograph of the cross section B, the area division area of the inorganic filler is calculated by the area division method using commercially available image analysis software. The ratio of the standard deviation of the obtained area division areas to the average value of the area division areas (standard deviation of the area division areas / average value of the area division areas) is calculated. The area division areas are calculated for 100 or more arbitrarily selected inorganic fillers.
 より具体的には、上記無機フィラーの各重心点を各母点としてボロノイ分割を行い、上記無機フィラーのボロノイ領域の面積をそれぞれ算出する。得られたボロノイ領域の面積の標準偏差の、ボロノイ領域の面積の平均値に対する比(ボロノイ領域の面積の標準偏差/ボロノイ領域の面積の平均値)を算出する。なお、任意に選択した100個以上の無機フィラーに対して、上記ボロノイ領域の面積をそれぞれ求める。 More specifically, the area of the Voronoi region of the inorganic filler is calculated by performing Voronoi division using the centroid points of the inorganic filler as mother points. The ratio (standard deviation of the area of the Voronoi region / average value of the area of the Voronoi region) of the obtained standard deviation of the area of the Voronoi region to the average value of the area of the Voronoi region is calculated. The area of the Voronoi region is obtained for 100 or more arbitrarily selected inorganic fillers.
 なお、得られた電子顕微鏡写真に100個以上の無機フィラーが存在しない場合には、無機フィラーの数が100個以上となるまで、新たな領域を電子顕微鏡で撮影する。 If 100 or more inorganic fillers do not exist in the obtained electron micrograph, a new area is photographed with an electron microscope until the number of inorganic fillers reaches 100 or more.
 (3)S1、S2、及び比(S1/S2)の算出:
 上記断面Aの電子顕微鏡写真から、市販の画像解析ソフトを用いて、断面Aの単位面積当たりの上記無機フィラーの占有面積割合(%)を算出し、該占有面積割合をS1(%)とする。上記S1は、断面Aにおける面積(断面積)100%中の上記無機フィラーが存在する領域の面積割合である。なお、上記S1は、100個以上の無機フィラーから算出される。上記S1は、例えば下記式により算出することができる。
(3) Calculation of S1, S2 and ratio (S1 / S2):
From the electron micrograph of the cross section A, by using commercially available image analysis software, the occupied area ratio (%) of the inorganic filler per unit area of the cross section A is calculated, and the occupied area ratio is defined as S1 (%). .. The above-mentioned S1 is the area ratio of the region where the above-mentioned inorganic filler exists in the area (cross-sectional area) 100% in the cross section A. The S1 is calculated from 100 or more inorganic fillers. The above S1 can be calculated, for example, by the following formula.
 S1(%)=無機フィラーの投影面積の合計/上記断面Aの観察視野の面積×100 S1 (%) = total projected area of inorganic filler / area of observation field of view of cross section A × 100
 上記断面Bの電子顕微鏡写真から、市販の画像解析ソフトを用いて、断面Bの単位面積当たりの上記無機フィラーの占有面積割合(%)を算出し、該占有面積割合をS2(%)とする。上記S2は、断面Bにおける面積(断面積)100%中の上記無機フィラーが存在する領域の面積割合である。なお、上記S2は、100個以上の無機フィラーから算出される。上記S2は、例えば下記式により算出することができる。 From the electron micrograph of the cross section B, using a commercially available image analysis software, the occupation area ratio (%) of the inorganic filler per unit area of the cross section B is calculated, and the occupation area ratio is S2 (%). .. The above S2 is the area ratio of the region where the above-mentioned inorganic filler exists in the area (cross-sectional area) 100% in the cross section B. The S2 is calculated from 100 or more inorganic fillers. The above S2 can be calculated, for example, by the following formula.
 S2(%)=無機フィラーの投影面積の合計/上記断面Bの観察視野の面積×100 S2 (%) = total projected area of the inorganic filler / area of observation field of view of the above section B x 100
 なお、上記S1、上記S2の算出において、得られた電子顕微鏡写真に100個以上の無機フィラーが存在しない場合には、無機フィラーの数が100個以上となるまで、新たな領域を電子顕微鏡で撮影する。 In the calculation of S1 and S2, when 100 or more inorganic fillers are not present in the obtained electron micrograph, a new region is observed with an electron microscope until the number of inorganic fillers is 100 or more. Take a picture.
 得られたS1とS2とから、S1のS2に対する比(S1/S2)を算出する。 From the obtained S1 and S2, calculate the ratio of S1 to S2 (S1 / S2).
 (4)無機フィラーの配向角θの平均値の算出:
 上記断面Bの電子顕微鏡写真から、市販の画像解析ソフトを用いて、各無機フィラーについて、配向角θをそれぞれ算出する。任意に選択した100個以上の無機フィラーの配向角θの平均値を求める。上記無機フィラーの配向角θは、樹脂シートの厚み方向の中央の位置を含む断面Bにて測定されることが好ましい。
(4) Calculation of average value of orientation angle θ of inorganic filler:
From the electron micrograph of the cross section B, the orientation angle θ is calculated for each inorganic filler using commercially available image analysis software. An average value of orientation angles θ of 100 or more arbitrarily selected inorganic fillers is obtained. The orientation angle θ of the inorganic filler is preferably measured in the section B including the central position in the thickness direction of the resin sheet.
 なお、無機フィラーの配向角θの平均値の算出において、得られた電子顕微鏡写真に100個以上の無機フィラーが存在しない場合には、無機フィラーの数が100個以上となるまで、新たな領域を電子顕微鏡で撮影する。 In the calculation of the average value of the orientation angle θ of the inorganic filler, when 100 or more inorganic fillers do not exist in the obtained electron micrograph, a new region is added until the number of inorganic fillers becomes 100 or more. Is photographed with an electron microscope.
 (5)無機フィラーの平均粒子径Dの算出:
 上記無機フィラーの平均粒子径Dは、平均円相当径を意味する。円相当径は、無機フィラーの投影面積と、同じ面積をもつ円の直径を意味する。
(5) Calculation of average particle diameter D of inorganic filler:
The average particle diameter D of the inorganic filler means the average equivalent circle diameter. The equivalent circle diameter means the diameter of a circle having the same area as the projected area of the inorganic filler.
 上記断面Bの電子顕微鏡写真から、市販の画像解析ソフトを用いて、無機フィラーの粒子径(円相当径)をそれぞれ算出する。任意に選択した100個以上の無機フィラーの円相当径の平均値を求め、平均粒子径Dとする。 Using the commercially available image analysis software, calculate the particle size (equivalent circle diameter) of the inorganic filler from the electron micrograph of section B above. The average value of the circle equivalent diameters of 100 or more arbitrarily selected inorganic fillers is determined and is defined as the average particle diameter D.
 なお、平均粒子径Dの算出において、得られた電子顕微鏡写真に100個以上の無機フィラーが存在しない場合には、無機フィラーの数が100個以上となるまで、新たな領域を電子顕微鏡で撮影する。 In the calculation of the average particle diameter D, when 100 or more inorganic fillers do not exist in the obtained electron micrograph, a new region is photographed with an electron microscope until the number of inorganic fillers becomes 100 or more. To do.
 (6)無機フィラーの平均アスペクト比Aの算出:
 上記断面Bの電子顕微鏡写真から、市販の画像解析ソフトを用いて、無機フィラーのアスペクト比(長径/短径)を算出する。任意に選択した100個以上の無機フィラーのアスペクト比の平均値を求め、平均アスペクト比Aとする。
(6) Calculation of average aspect ratio A of inorganic filler:
From the electron micrograph of the cross section B, the aspect ratio (major axis / minor axis) of the inorganic filler is calculated using commercially available image analysis software. The average value of the aspect ratios of 100 or more arbitrarily selected inorganic fillers is obtained and is defined as the average aspect ratio A.
 なお、平均アスペクト比Aの算出において、得られた電子顕微鏡写真に100個以上の無機フィラーが存在しない場合には、無機フィラーの数が100個以上となるまで、新たな領域を電子顕微鏡で撮影する。 In the calculation of the average aspect ratio A, when 100 or more inorganic fillers do not exist in the obtained electron micrograph, a new region is photographed with an electron microscope until the number of inorganic fillers reaches 100 or more. To do.
 上記樹脂シートでは、ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が140kW/m以下であることが好ましく、135kW/m以下であることがより好ましく、130kW/m以下であることが更に好ましい。上記平均最大発熱速度が上記上限以下であると、難燃性をより一層高めることができる。難燃性をより一層高めるために、上記平均最大発熱速度は低いほどよい。 According to ISO5660-1, the resin sheet preferably has an average maximum heat generation rate of 140 kW / m 2 or less, and 135 kW / m 2 or less, measured under the conditions of heater radiant heat of 50 kW / m 2 and ignition. It is more preferable that the amount is 130 kW / m 2 or less. When the average maximum heat generation rate is equal to or lower than the upper limit, flame retardancy can be further enhanced. In order to further improve flame retardancy, the lower the average maximum heat generation rate, the better.
 上記平均最大発熱速度は、具体的には、以下のように測定される。 Specifically, the average maximum heat release rate is measured as follows.
 上記樹脂シートを切削等し、縦100mm×横100mm×厚み3mmの発熱速度測定用サンプルを得る。得られた発熱速度測定用サンプルについて、ISO5660-1に準拠して、コーンカロリーメータ試験装置を用いて、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定を行い、発熱速度を測定する。なお、樹脂シートの厚みが3mm未満である場合には、上記樹脂シートの材料を用いて、厚み3mmの発熱測定用サンプルを作製してもよい。 The resin sheet is cut or the like to obtain a sample for measuring the heat generation rate having a length of 100 mm × width of 100 mm × thickness of 3 mm. With respect to the obtained sample for measuring the heat generation rate, the heat generation rate is measured in accordance with ISO5660-1 by using a corn calorimeter tester under the conditions of heater radiant heat of 50 kW / m 2 and ignition. In addition, when the thickness of the resin sheet is less than 3 mm, a material for the resin sheet may be used to prepare a heat generation measurement sample having a thickness of 3 mm.
 上記平均最大発熱速度は、ISO5660-1に準拠して測定される発熱速度を用いて、EN45545-2に準拠して算出される値である。 The average maximum heat release rate is a value calculated according to EN45545-2 using the heat release rate measured according to ISO5660-1.
 ISO5660-1に準拠して測定される発熱速度(q)と、発熱速度を測定する際の測定時間(T)とから、下記式により平均発熱速度を求める。 From the heat generation rate (q) measured according to ISO5660-1 and the measurement time (T) when measuring the heat generation rate, calculate the average heat generation rate by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 nは、2秒毎の測定プロット数を意味する。nは、3以上の整数であることが好ましい。 N means the number of measurement plots every 2 seconds. It is preferable that n is an integer of 3 or more.
 複数の発熱速度測定用サンプルについて、上記平均発熱速度をそれぞれ算出し、得られた平均発熱速度の最大値を、平均最大発熱速度とする。なお、平均最大発熱速度は、3個以上の発熱速度測定用サンプルを用いて算出された値であることが好ましい。 The average heat release rate is calculated for each of multiple heat release rate measurement samples, and the maximum value of the obtained average heat release rates is taken as the average maximum heat release rate. The average maximum heat generation rate is preferably a value calculated using three or more heat generation rate measurement samples.
 上記樹脂シートでは、JIS K7110:1999に準拠して測定されるアイゾット衝撃強さが、20kJ/m以上であることが好ましく、22kJ/m以上であることがより好ましく、24kJ/m以上であることが更に好ましい。上記アイゾット衝撃強さが上記下限以上であると、耐衝撃性をより一層高めることができる。耐衝撃性をより一層高めるために、アイゾット衝撃強さは大きいほどよい。 In the resin sheet, JIS K7110: Izod impact strength is measured according to 1999 is preferably at 20 kJ / m 2 or more, more preferably 22kJ / m 2 or more, 24kJ / m 2 or more Is more preferable. When the Izod impact strength is at least the above lower limit, the impact resistance can be further enhanced. The higher the Izod impact strength is, the better, in order to further improve the impact resistance.
 上記樹脂シートの厚みは、好ましくは1mm以上、より好ましくは2mm以上、好ましくは7mm以下、より好ましくは6mm以下である。上記樹脂シートの厚みが上記下限以上であると、難燃性をより一層良好にすることができる。上記樹脂シートの厚みが上記上限以下であると、耐衝撃性をより一層良好にすることができる。 The thickness of the resin sheet is preferably 1 mm or more, more preferably 2 mm or more, preferably 7 mm or less, more preferably 6 mm or less. When the thickness of the resin sheet is at least the above lower limit, flame retardancy can be further improved. When the thickness of the resin sheet is not more than the upper limit, the impact resistance can be further improved.
 本発明に係る樹脂シートでは、上記第1の表面上、又は該第1の表面とは反対の第2の表面上に、熱可塑性樹脂層、繊維強化樹脂層、ガスバリア層、金属層、及び接着剤層等の他の層が積層されていてもよい。 In the resin sheet according to the present invention, the thermoplastic resin layer, the fiber reinforced resin layer, the gas barrier layer, the metal layer, and the adhesive are provided on the first surface or the second surface opposite to the first surface. Other layers such as an agent layer may be laminated.
 本発明に係る樹脂シートは、芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含む樹脂組成物をシート状に成形することにより得ることができる。 The resin sheet according to the present invention can be obtained by molding a resin composition containing an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound into a sheet shape.
 以下、本発明に係る樹脂シートに含まれる成分、上記樹脂組成物に含まれる成分の詳細などを説明する。 The details of the components contained in the resin sheet according to the present invention and the components contained in the resin composition will be described below.
 [芳香族ポリカーボネート樹脂]
 本発明に係る樹脂シートは、芳香族ポリカーボネート樹脂を含む。上記樹脂組成物は、芳香族ポリカーボネート樹脂を含む。上記芳香族ポリカーボネート樹脂は1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Aromatic polycarbonate resin]
The resin sheet according to the present invention contains an aromatic polycarbonate resin. The resin composition contains an aromatic polycarbonate resin. The aromatic polycarbonate resins may be used alone or in combination of two or more.
 上記芳香族ポリカーボネート樹脂は、下記式(1)で表される構造単位を有する芳香族ポリカーボネート樹脂であることが好ましい。 The aromatic polycarbonate resin is preferably an aromatic polycarbonate resin having a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、R1及びR2はそれぞれ、水素原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルキル基に置換基が結合した基、又はアリール基を表す。上記式(1)中、R3及びR4はそれぞれ、水素原子、又はアルキル基を表す。 In the above formula (1), R1 and R2 each represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a group in which a substituent is bonded to an alkyl group having 1 to 20 carbon atoms, or an aryl group. In the above formula (1), R3 and R4 each represent a hydrogen atom or an alkyl group.
 上記式(1)中のR3又はR4がアルキル基である場合に、該アルキル基の炭素数は、好ましくは1以上、好ましくは6以下、より好ましくは3以下、更に好ましくは2以下である。好ましいアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、ペンチル基、及びヘプチル基等が挙げられる。 When R3 or R4 in the above formula (1) is an alkyl group, the carbon number of the alkyl group is preferably 1 or more, preferably 6 or less, more preferably 3 or less, still more preferably 2 or less. Preferred alkyl groups include a methyl group, an ethyl group, a propyl group, a butyl group, a tert-butyl group, a pentyl group, and a heptyl group.
 芳香族ポリカーボネート樹脂を得る際に、上記式(1)で表される構造単位を導入するための化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)、2,2-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、4,4’-(1,3-フェニレンジイソプロピリデン)ビスフェノール、4,4’-(1,4-フェニレンジイソプロピリデン)ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシビフェニル、1,1-ビス(4-ヒドロキシフェニル)-3,3-5-トリメチルシクロヘキサン、及び1,1-ビス(4-ヒドロキシ-6-メチル-3-tert-ブチルフェニル)ブタン等が挙げられる。 As a compound for introducing the structural unit represented by the above formula (1) when obtaining an aromatic polycarbonate resin, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis Bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C), 2,2-bis (4-hydroxy-3- (1-methylethyl) phenyl) propane, 2 , 2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3- (1-methylpropyl) phenyl) propane, 2,2-bis (4-hydroxy-) 3-cyclohexylphenyl) propane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, 1,1-bis (4-hydroxyphenyl) decane, 1,1-bis (4-hydroxyphenyl) cyclohexane ( Bisphenol Z), 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) phenylmethane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1, 1-bis (4-hydroxy-3,5-dimethylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3- (1-methylethyl) phenyl) cyclohexane, 1,1-bis (4-hydroxy-3) -Tert-butylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3- (1-methylpropyl) phenyl) cyclohexane, 1,1-bis (4-hydroxy-3-cyclohexylphenyl) cyclohexane, 1,1 -Bis (4-hydroxy-3-phenylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3,5-dimethyl) Phenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3- (1-methylethyl) phenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3-tert-butylphenyl ) -1-Phenylethane, 1,1-bis (4-hydroxy-3- (1-methylpropyl) phenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3-si) Chlorohexylphenyl) -1-phenylethane, 1,1-bis (4-hydroxy-3-phenylphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-Hydroxyphenyl) cyclooctane, 4,4 '-(1,3-phenylenediisopropylidene) bisphenol, 4,4'-(1,4-phenylenediisopropylidene) bisphenol, 9,9-bis (4 -Hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxyphenyl ether, 4,4'-dihydroxybiphenyl, 1, Examples thereof include 1-bis (4-hydroxyphenyl) -3,3-5-trimethylcyclohexane and 1,1-bis (4-hydroxy-6-methyl-3-tert-butylphenyl) butane.
 難燃性及び耐衝撃性をより一層高める観点からは、上記芳香族ポリカーボネート樹脂を得る際に、上記式(1)で表される構造単位を導入するための化合物は、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)、又は1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)であることが好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)であることがより好ましい。上記芳香族ポリカーボネート樹脂は、このような好ましい化合物に由来する構造単位を有することが好ましい。 From the viewpoint of further increasing flame retardancy and impact resistance, the compound for introducing the structural unit represented by the above formula (1) when obtaining the above aromatic polycarbonate resin is 2,2-bis ( 4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C), or 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z) Preferably, it is 2,2-bis (4-hydroxyphenyl) propane (bisphenol A). The aromatic polycarbonate resin preferably has a structural unit derived from such a preferable compound.
 ビスフェノールA型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂の市販品としては、三菱ガス化学社製「ユーピロンEシリーズ」等が挙げられる。 Commercially available aromatic polycarbonate resins having a structural unit derived from a bisphenol A type compound include “UPILON E series” manufactured by Mitsubishi Gas Chemical Company.
 ビスフェノールZ型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂の市販品としては、帝人化成社製「パンライトシリーズ」、及び三菱ガス化学社製「ユーピロンZシリーズ」等が挙げられる。 Commercially available aromatic polycarbonate resins having a structural unit derived from a bisphenol Z type compound include "Panlite series" manufactured by Teijin Chemicals Co., Ltd. and "Upilon Z series" manufactured by Mitsubishi Gas Chemical Co., Inc.
 上記芳香族ポリカーボネート樹脂の粘度平均分子量(Mv)は、好ましくは10000以上、より好ましくは15000以上、好ましくは50000以下、より好ましくは40000以下である。上記粘度平均分子量が上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。 The viscosity average molecular weight (Mv) of the above aromatic polycarbonate resin is preferably 10,000 or more, more preferably 15,000 or more, preferably 50,000 or less, more preferably 40,000 or less. When the viscosity average molecular weight is not less than the lower limit and not more than the upper limit, flame retardancy and impact resistance can be further enhanced.
 上記芳香族ポリカーボネート樹脂は、分岐構造を有していてもよく、分岐構造を有していなくてもよい。 The aromatic polycarbonate resin may have a branched structure or may not have a branched structure.
 上記芳香族ポリカーボネート樹脂は、従来公知の方法で作製することができる。上記芳香族ポリカーボネート樹脂の作製方法としては、溶融重合法、及び相界面法等が挙げられる。 The above aromatic polycarbonate resin can be produced by a conventionally known method. Examples of the method for producing the above aromatic polycarbonate resin include a melt polymerization method and a phase interface method.
 上記溶融重合法により、芳香族ポリカーボネート樹脂を作製する方法としては、ジフェノール化合物とジフェニルカーボネート化合物とを、溶融状態下でエステル交換反応を利用して反応させる方法が挙げられる。この方法では、例えば、ジフェノール化合物とジフェニルカーボネート化合物とを、撹拌機及び留出濃縮装置付きの反応器に入れ、該反応器を窒素ガス雰囲気下で所定の温度まで昇温することで、溶融状態とすることができる。なお、上記溶融重合法により、芳香族ポリカーボネート樹脂を作製する方法において、分岐剤、及び連鎖停止剤等を用いてもよい。 As a method for producing an aromatic polycarbonate resin by the above-mentioned melt polymerization method, there is a method of reacting a diphenol compound and a diphenyl carbonate compound in a molten state by utilizing a transesterification reaction. In this method, for example, a diphenol compound and a diphenyl carbonate compound are put into a reactor equipped with a stirrer and a distilling concentrator, and the reactor is heated to a predetermined temperature under a nitrogen gas atmosphere to melt. It can be in a state. A branching agent, a chain terminator and the like may be used in the method for producing an aromatic polycarbonate resin by the melt polymerization method.
 上記相界面法により、芳香族ポリカーボネート樹脂を作製する方法としては、ジフェノール化合物と、炭酸ハロゲン化物又は芳香族ジカルボン酸二ハロゲン化物と、必要に応じて分岐剤と、必要に応じて連鎖停止剤とを反応させる方法が挙げられる。この方法では、炭酸ハロゲン化物を用いてもよく、芳香族ジカルボン酸二ハロゲン化物を用いてもよく、炭酸ハロゲン化物と芳香族ジカルボン酸二ハロゲン化物とを用いてもよい。 As a method for producing an aromatic polycarbonate resin by the phase interface method, a diphenol compound, a carbonic acid halide or an aromatic dicarboxylic acid dihalide, a branching agent if necessary, and a chain terminator if necessary. And a method of reacting with. In this method, a carbonic acid halide may be used, an aromatic dicarboxylic acid dihalide may be used, or a carbonic acid halide and an aromatic dicarboxylic acid dihalide may be used.
 上記ジフェノール化合物は、特に限定されない。上記ジフェノール化合物として、従来公知のジフェノール化合物を用いることができる。上記ジフェノール化合物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The above diphenol compound is not particularly limited. As the diphenol compound, a conventionally known diphenol compound can be used. As for the said diphenol compound, only 1 type may be used and 2 or more types may be used together.
 上記ジフェニルカーボネート化合物は、特に限定されない。上記ジフェニルカーボネート化合物として、従来公知のジフェニルカーボネート化合物を用いることができる。上記ジフェニルカーボネート化合物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The above diphenyl carbonate compound is not particularly limited. As the diphenyl carbonate compound, a conventionally known diphenyl carbonate compound can be used. Only 1 type may be used for the said diphenyl carbonate compound and 2 or more types may be used together.
 上記炭酸ハロゲン化物は、特に限定されない。上記炭酸ハロゲン化物として、従来公知の炭酸ハロゲン化物を用いることができる。上記炭酸ハロゲン化物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The above carbonic acid halide is not particularly limited. A conventionally known carbonic acid halide can be used as the carbonic acid halide. The carbonate halide may be used alone or in combination of two or more.
 上記炭酸ハロゲン化物は、ホスゲンであることが好ましい。 The above carbonic acid halide is preferably phosgene.
 上記芳香族ジカルボン酸二ハロゲン化物は、特に限定されない。上記芳香族ジカルボン酸二ハロゲン化物として、従来公知の芳香族ジカルボン酸二ハロゲン化物を用いることができる。上記芳香族ジカルボン酸二ハロゲン化物は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The aromatic dicarboxylic acid dihalide is not particularly limited. As the aromatic dicarboxylic acid dihalide, a conventionally known aromatic dicarboxylic acid dihalide can be used. As for the said aromatic dicarboxylic acid dihalide, only 1 type may be used and 2 or more types may be used together.
 上記芳香族ジカルボン酸二ハロゲン化物は、ベンゼンジカルボン酸二ハロゲン化物であることが好ましい。 The aromatic dicarboxylic acid dihalide is preferably benzenedicarboxylic acid dihalide.
 上記分岐剤は、特に限定されない。上記分岐剤として、従来公知の分岐剤を用いることができる。上記分岐剤は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The above branching agent is not particularly limited. As the branching agent, a conventionally known branching agent can be used. As for the said branching agent, only 1 type may be used and 2 or more types may be used together.
 上記分岐剤は、三官能性フェノール化合物、又は四官能性フェノール化合物であることが好ましく、トリフェノール、テトラフェノール、又は反応性が小さい少なくとも3個の官能基を有するフェノール化合物であることがより好ましく、1,1,1-トリス-(p-ヒドロキシフェニル)エタンであることが更に好ましい。これらの好ましい分岐剤を用いることにより、分岐構造を有する芳香族ポリカーボネート樹脂を良好に得ることができる。 The branching agent is preferably a trifunctional phenol compound or a tetrafunctional phenol compound, more preferably triphenol, tetraphenol, or a phenol compound having at least three functional groups with low reactivity. More preferably, 1,1,1-tris- (p-hydroxyphenyl) ethane. An aromatic polycarbonate resin having a branched structure can be favorably obtained by using these preferable branching agents.
 上記分岐剤は、アミン官能基を有するフェノール化合物であってもよい。上記分岐剤がアミン官能基を有するフェノール化合物である場合、該アミン官能基が活性官能基として作用し、アミド結合を通じて、芳香族ポリカーボネート樹脂の分岐が生じる。 The above branching agent may be a phenol compound having an amine functional group. When the branching agent is a phenol compound having an amine functional group, the amine functional group acts as an active functional group, and the aromatic polycarbonate resin is branched through an amide bond.
 上記連鎖停止剤は、特に限定されない。上記連鎖停止剤として、従来公知の連鎖停止剤を用いることができる。上記連鎖停止剤は、1種のみが用いられてもよく、2種以上が併用されていてもよい。 The above chain terminator is not particularly limited. As the chain terminator, a conventionally known chain terminator can be used. The above chain terminators may be used alone or in combination of two or more.
 芳香族ポリカーボネート樹脂を良好に得る観点からは、上記連鎖停止剤は、フェノール;p-クロロフェノール;p-tert-ブチルフェノール;2,4,6-トリブロモフェノール;DE-A 2 842 005に記載の4-(1,3-テトラメチルブチル)-フェノール、及びアルキル置換基中に8以上20以下の炭素原子を有するモノアルキルフェノール等の長鎖アルキルフェノール;又は3,5-ジ-tert-ブチルフェノール、p-イソオクチルフェノール、p-tert-オクチルフェノール、p-ドデシルフェノール、2-(3,5-ジメチルヘプチル)-フェノール、及び4-(3,5-ジメチルヘプチル)-フェノール等のアルキルフェノール等であることが好ましい。 From the viewpoint of obtaining an aromatic polycarbonate resin satisfactorily, the above chain terminator includes phenol; p-chlorophenol; p-tert-butylphenol; 2,4,6-tribromophenol; DE-A 2,842,005. Long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) -phenol and monoalkylphenols having 8 to 20 carbon atoms in the alkyl substituent; or 3,5-di-tert-butylphenol, p- Alkylphenols such as isooctylphenol, p-tert-octylphenol, p-dodecylphenol, 2- (3,5-dimethylheptyl) -phenol, and 4- (3,5-dimethylheptyl) -phenol are preferable.
 芳香族ポリカーボネート樹脂を良好に得る観点からは、上記ジフェノール化合物100molに対して、上記連鎖停止剤の含有量は、好ましくは0.5mol以上、好ましくは10mol以下である。 From the viewpoint of obtaining a good aromatic polycarbonate resin, the content of the chain terminator is preferably 0.5 mol or more and preferably 10 mol or less with respect to 100 mol of the diphenol compound.
 上記樹脂シート100重量%中、上記芳香族ポリカーボネート樹脂の含有量は、好ましくは50重量%以上、より好ましくは55重量%以上、好ましくは85重量%以下、より好ましくは80重量%以下である。上記芳香族ポリカーボネート樹脂の含有量が上記下限以上及び上記上限以下であると、難燃性及び耐衝撃性をより一層高めることができる。 The content of the aromatic polycarbonate resin in 100% by weight of the resin sheet is preferably 50% by weight or more, more preferably 55% by weight or more, preferably 85% by weight or less, more preferably 80% by weight or less. When the content of the aromatic polycarbonate resin is not less than the above lower limit and not more than the above upper limit, flame retardancy and impact resistance can be further enhanced.
 [無機フィラー]
 本発明に係る樹脂シートは、無機フィラーを含む。上記樹脂組成物は、無機フィラーを含む。上記樹脂シートが上記無機フィラーを含むことにより、難燃性及び耐衝撃性を高めることができる。上記樹脂シートが上記無機フィラーを含まない場合、難燃性と耐衝撃性との双方を高めることは困難である。上記無機フィラーは1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Inorganic filler]
The resin sheet according to the present invention contains an inorganic filler. The resin composition contains an inorganic filler. When the resin sheet contains the inorganic filler, flame retardancy and impact resistance can be improved. When the resin sheet does not contain the inorganic filler, it is difficult to improve both flame retardancy and impact resistance. As for the said inorganic filler, only 1 type may be used and 2 or more types may be used together.
 上記無機フィラーとしては、タルク、マイカ、モンモリロナイト、シリカ、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム等のカリウム塩、粘度鉱物、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、及びジルコニア繊維等が挙げられる。 As the inorganic filler, talc, mica, montmorillonite, silica, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, aluminum hydroxide. , Basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, potassium salt such as calcium silicate, viscous mineral, glass fiber, glass beads, Silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, metal powder, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum borate, molybdenum sulfide, carbonized Examples thereof include silicon, stainless fiber, zinc borate, magnetic powder, slag fiber, fly ash, silica-alumina fiber, alumina fiber, silica fiber, and zirconia fiber.
 難燃性及び耐衝撃性をより一層高める観点からは、上記無機フィラーは、タルク、マイカ、又はモンモリロナイトであることが好ましく、タルクであることがより好ましい。 From the viewpoint of further enhancing flame retardancy and impact resistance, the inorganic filler is preferably talc, mica, or montmorillonite, and more preferably talc.
 上記タルクは圧縮タルクであってもよい。上記タルクが圧縮タルクであると、樹脂組成物の加工が容易である。 The above talc may be compressed talc. When the talc is compressed talc, the resin composition can be easily processed.
 上記無機フィラーは、シラン化処理、プラズマ処理、アッシング処理等の表面処理がされていてもよい。上記無機フィラーがシラン化処理等の表面処理された無機フィラーである場合、上記芳香族ポリカーボネート樹脂との相溶性がより一層良好になる。 The above-mentioned inorganic filler may be surface-treated such as silanization treatment, plasma treatment, ashing treatment and the like. When the inorganic filler is a surface-treated inorganic filler such as silanization treatment, the compatibility with the aromatic polycarbonate resin is further improved.
 上記無機フィラーの粒子径及び形状は、樹脂シートの特定の断面を観察した際に算出される上記平均粒子径D及び上記平均アスペクト比Aを、それぞれ上記の好ましい範囲にすることができる粒子径及び形状であることが好ましい。 The particle diameter and shape of the inorganic filler are such that the average particle diameter D and the average aspect ratio A calculated when observing a specific cross section of the resin sheet can be set to the preferable ranges, respectively. It is preferably shaped.
 上記平均粒子径Dを上記の好ましい範囲にする観点、難燃性及び耐衝撃性をより一層良好にする観点からは、上記無機フィラーの体積平均粒子径(D50)は、好ましくは1μm以上、より好ましくは1.5μm以上、好ましくは6μm以下、より好ましくは5μm以下である。 The volume average particle diameter (D50) of the inorganic filler is preferably 1 μm or more, and more preferably from the viewpoint of setting the average particle diameter D to the preferable range, and from the viewpoint of further improving flame retardancy and impact resistance. It is preferably 1.5 μm or more, preferably 6 μm or less, and more preferably 5 μm or less.
 上記無機フィラーの体積平均粒子径は、体積基準で測定される平均径であり、50%となるメディアン径(D50)の値である。上記体積平均粒子径(D50)は、レーザー回折・散乱法、画像解析法、コールター法、及び遠心沈降法等により測定可能である。上記無機フィラーの体積平均粒子径(D50)は、レーザー回折・散乱法による測定により求めることが好ましい。 The volume average particle diameter of the above inorganic filler is an average diameter measured on a volume basis, and is a value of a median diameter (D50) of 50%. The volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like. The volume average particle diameter (D50) of the inorganic filler is preferably determined by measurement by a laser diffraction / scattering method.
 上記平均アスペクト比Aを上記の好ましい範囲にする観点、難燃性及び耐衝撃性をより一層良好にする観点からは、上記無機フィラーの平均アスペクト比は、好ましくは2.2以上、より好ましくは2.4以上、好ましくは5以下、より好ましくは4.5以下である。 The average aspect ratio of the inorganic filler is preferably 2.2 or more, and more preferably from the viewpoint of setting the average aspect ratio A to the preferable range and further improving the flame retardancy and impact resistance. It is 2.4 or more, preferably 5 or less, more preferably 4.5 or less.
 上記アスペクト比は、無機フィラーの体積平均粒子径の無機フィラーの平均厚みに対する比(無機フィラーの体積平均粒子径/無機フィラーの厚み)である。上記アスペクト比は、水面粒子膜法等により測定可能である。上記平均アスペクト比は、複数の無機フィラーのアスペクト比の平均である。 The above aspect ratio is the ratio of the volume average particle diameter of the inorganic filler to the average thickness of the inorganic filler (volume average particle diameter of inorganic filler / thickness of inorganic filler). The aspect ratio can be measured by a water surface particle film method or the like. The average aspect ratio is the average aspect ratio of a plurality of inorganic fillers.
 上記樹脂シート100重量%中、上記無機フィラーの含有量は、好ましくは8重量%以上、より好ましくは12重量%以上、好ましくは25重量%以下、より好ましくは20重量%以下である。上記無機フィラーの含有量が上記下限以上であると、難燃性をより一層高めることができる。上記無機フィラーの含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the inorganic filler in 100% by weight of the resin sheet is preferably 8% by weight or more, more preferably 12% by weight or more, preferably 25% by weight or less, and more preferably 20% by weight or less. When the content of the inorganic filler is at least the above lower limit, flame retardancy can be further enhanced. When the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced.
 上記芳香族ポリカーボネート樹脂100重量部に対する上記無機フィラーの含有量は、好ましくは10重量部以上、より好ましくは15重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下である。上記無機フィラーの含有量が上記下限以上であると、難燃性をより一層高めることができる。上記無機フィラーの含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the inorganic filler with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, and more preferably 30 parts by weight or less. When the content of the inorganic filler is at least the above lower limit, flame retardancy can be further enhanced. When the content of the inorganic filler is not more than the above upper limit, the impact resistance can be further enhanced.
 [リン含有化合物]
 本発明に係る樹脂シートは、リン含有化合物を含む。上記樹脂組成物は、リン含有化合物を含む。上記リン含有化合物は、リン系難燃剤であることが好ましい。上記樹脂シートが上記リン含有化合物を含むことにより、難燃性を高めることができる。上記樹脂シートが上記リン含有化合物を含まない場合、難燃性が劣ることがある。上記リン含有化合物は1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Phosphorus-containing compound]
The resin sheet according to the present invention contains a phosphorus-containing compound. The resin composition contains a phosphorus-containing compound. The phosphorus-containing compound is preferably a phosphorus-based flame retardant. When the resin sheet contains the phosphorus-containing compound, flame retardancy can be enhanced. If the resin sheet does not contain the phosphorus-containing compound, the flame retardancy may be poor. As for the said phosphorus containing compound, only 1 type may be used and 2 or more types may be used together.
 上記リン含有化合物は、ハロゲン原子を有するリン含有化合物であってもよく、ハロゲン原子を有さないリン含有化合物であってもよく、ハロゲン原子を有さないリン含有化合物とハロゲン原子を有するリン含有化合物との混合物であってもよい。 The phosphorus-containing compound may be a phosphorus-containing compound having a halogen atom, or may be a phosphorus-containing compound having no halogen atom, a phosphorus-containing compound having no halogen atom and a phosphorus-containing compound having a halogen atom. It may be a mixture with a compound.
 上記リン含有化合物は、リン原子を含む化合物であればよく、レゾルシノール、ヒドロキノン、ビスフェノールA、及びジフェニルフェノール等から誘導される化合物であってもよい。 The above-mentioned phosphorus-containing compound may be a compound containing a phosphorus atom, and may be a compound derived from resorcinol, hydroquinone, bisphenol A, diphenylphenol and the like.
 上記リン含有化合物としては、リン酸モノマー、リン酸オリゴマー、ホスホン酸エステル、オルガノホスファイト、ホスホネート、ホスホネートアミン、ホスフェート、ホスファゼン、及びリン酸エステル等が挙げられる。 Examples of the phosphorus-containing compound include a phosphoric acid monomer, a phosphoric acid oligomer, a phosphonate ester, an organophosphite, a phosphonate, a phosphonate amine, a phosphate, a phosphazene, and a phosphate ester.
 難燃性をより一層高める観点からは、上記リン含有化合物は、リン酸エステルであることが好ましい。上記リン酸エステルは、リン酸エステル構造を有する化合物である。 From the viewpoint of further enhancing flame retardancy, the above phosphorus-containing compound is preferably a phosphoric acid ester. The phosphate ester is a compound having a phosphate ester structure.
 上記リン酸エステルは、リン酸モノエステルであってもよく、リン酸ジエステルであってもよく、リン酸トリエステルであってもよい。 The phosphoric acid ester may be a phosphoric acid monoester, a phosphoric acid diester, or a phosphoric acid triester.
 上記リン酸エステルとしては、トリブチルホスフェート、トリフェニルホスフェート、トリクレシルホスフェート、ジフェニルクレシルホスフェート、ジフェニルオクチルホスフェート、ジフェニル-2-エチルクレシルホスフェート、トリ-(イソプロピルフェニル)ホスフェート、レソルシノール架橋ジホスフェート、及びビスフェノールA架橋ジホスフェート等が挙げられる。上記リン酸エステルは、ビスフェノールAから誘導されるオリゴマーリン酸エステルであることが好ましい。 Examples of the phosphoric acid ester include tributyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl-2-ethyl cresyl phosphate, tri- (isopropylphenyl) phosphate, resorcinol crosslinked diphosphate, And bisphenol A crosslinked diphosphate and the like. The phosphoric acid ester is preferably an oligomeric phosphoric acid ester derived from bisphenol A.
 上記樹脂シート100重量%中、上記リン含有化合物の含有量は、好ましくは2重量%以上、より好ましくは4重量%以上、好ましくは18重量%以下、より好ましくは15重量%以下である。上記リン含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記リン含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the phosphorus-containing compound in 100% by weight of the resin sheet is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 18% by weight or less, more preferably 15% by weight or less. When the content of the phosphorus-containing compound is at least the above lower limit, flame retardancy can be further enhanced. When the content of the phosphorus-containing compound is not more than the upper limit, the impact resistance can be further enhanced.
 上記芳香族ポリカーボネート樹脂100重量部に対する上記リン含有化合物の含有量は、好ましくは3重量部以上、より好ましくは5重量部以上、更に好ましくは7重量部以上、好ましくは25重量部以下、より好ましくは20重量部以下である。上記リン含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記リン含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the phosphorus-containing compound relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 3 parts by weight or more, more preferably 5 parts by weight or more, further preferably 7 parts by weight or more, preferably 25 parts by weight or less, more preferably Is 20 parts by weight or less. When the content of the phosphorus-containing compound is at least the above lower limit, flame retardancy can be further enhanced. When the content of the phosphorus-containing compound is not more than the upper limit, the impact resistance can be further enhanced.
 [ケイ素含有化合物]
 本発明に係る樹脂シートは、ケイ素含有化合物を含む。上記ケイ素含有化合物は、シリコーン系難燃剤であることが好ましい。上記樹脂シートが上記ケイ素含有化合物を含むことにより、難燃性を高めることができる。上記樹脂シートが上記ケイ素含有化合物を含まない場合、難燃性が劣ることがある。上記ケイ素含有化合物は1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Silicon-containing compound]
The resin sheet according to the present invention contains a silicon-containing compound. The silicon-containing compound is preferably a silicone-based flame retardant. When the resin sheet contains the silicon-containing compound, flame retardancy can be enhanced. When the resin sheet does not contain the silicon-containing compound, flame retardancy may be poor. As for the said silicon-containing compound, only 1 type may be used and 2 or more types may be used together.
 上記ケイ素含有化合物は、ケイ素原子を含む化合物であればよい。 The above silicon-containing compound may be a compound containing a silicon atom.
 難燃性をより一層高める観点からは、上記ケイ素含有化合物は、ポリオルガノシロキサンであることが好ましい。 From the viewpoint of further increasing flame retardancy, the silicon-containing compound is preferably polyorganosiloxane.
 難燃性を更により一層高める観点からは、上記ポリオルガノシロキサンは、芳香族骨格を有することが好ましい。上記芳香族骨格を有するポリオルガノシロキサンとしては、ポリジフェニルシロキサン、ポリメチルフェニルシロキサン、ポリジメチルジフェニルシロキサン、フェニル基を有する環状シロキサン等が挙げられる。 From the viewpoint of further increasing flame retardancy, the above polyorganosiloxane preferably has an aromatic skeleton. Examples of the polyorganosiloxane having an aromatic skeleton include polydiphenylsiloxane, polymethylphenylsiloxane, polydimethyldiphenylsiloxane, and cyclic siloxane having a phenyl group.
 上記ポリオルガノシロキサンは、シラノール基、エポキシ基、シラノール基、エポキシ基、アルコキシ基、ヒドロシリル基、及びビニル基等の官能基を有していてもよい。上記ポリオルガノシロキサンがこれらの官能基を有する場合には、該ポリオルガノシロキサンと芳香族ポリカーボネート樹脂との相溶性を向上させたり、燃焼時の反応性を向上させたりでき、その結果、難燃性を高めることができる。 The above polyorganosiloxane may have functional groups such as silanol groups, epoxy groups, silanol groups, epoxy groups, alkoxy groups, hydrosilyl groups, and vinyl groups. When the above polyorganosiloxane has these functional groups, it is possible to improve the compatibility between the polyorganosiloxane and the aromatic polycarbonate resin or the reactivity at the time of combustion, and as a result, the flame retardancy is improved. Can be increased.
 上記ポリオルガノシロキサンが上記シラノール基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記シラノール基の含有率は、好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは3重量%以上、特に好ましくは5重量%以上である。上記ポリオルガノシロキサンが上記シラノール基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記シラノール基の含有率は、好ましくは10重量%以下、より好ましくは9重量%以下、更に好ましくは8重量%以下、特に好ましくは7.5重量%以下である。上記シラノール基の含有率が上記下限以上及び上記上限以下であると、難燃性をより一層高めることができる。なお、上記シラノール基の含有率が10重量%を超えると、10重量%以下である場合と比べて、樹脂組成物の熱安定性及び湿熱安定性が低下することがある。 When the polyorganosiloxane has the silanol group, the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 1% by weight or more, more preferably 2% by weight or more, and further preferably 3% by weight. % Or more, particularly preferably 5% by weight or more. When the polyorganosiloxane has the silanol group, the content of the silanol group in 100% by weight of the polyorganosiloxane is preferably 10% by weight or less, more preferably 9% by weight or less, and further preferably 8% by weight. % Or less, particularly preferably 7.5% by weight or less. When the content of the silanol group is equal to or higher than the lower limit and equal to or lower than the upper limit, flame retardancy can be further enhanced. When the content of the silanol group exceeds 10% by weight, the thermal stability and wet heat stability of the resin composition may decrease as compared with the case where the content is 10% by weight or less.
 上記ポリオルガノシロキサンが上記アルコキシ基を有する場合に、上記ポリオルガノシロキサン100重量%中、上記アルコキシ基の含有率は、好ましくは10重量%以下である。上記アルコキシ基の含有率が上記上限以下であると、難燃性をより一層高めることができる。なお、上記アルコキシ基の含有率が10重量%を超えると、10重量%以下である場合と比べて、樹脂組成物がゲル化しやすくなることがある。 When the polyorganosiloxane has the alkoxy group, the content of the alkoxy group is preferably 10% by weight or less in 100% by weight of the polyorganosiloxane. When the content of the alkoxy group is not more than the upper limit, the flame retardancy can be further enhanced. When the content of the alkoxy group exceeds 10% by weight, the resin composition may gelate more easily than when the content is 10% by weight or less.
 上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、好ましくは450以上、より好ましくは1000以上、更に好ましくは1500以上、特に好ましくは1700以上であり、好ましくは300000以下、より好ましくは100000以下、更に好ましくは20000以下、特に好ましくは15000以下である。上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量が上記下限以上であると、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの耐熱性を高めることができる。上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量が上記上限以下であると、樹脂組成物の安定性を高めることができ、また、樹脂シート中における上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分散性を高めることができ、難燃性を高めることができる。 The molecular weight of the silicon-containing compound and the polyorganosiloxane is preferably 450 or more, more preferably 1000 or more, still more preferably 1500 or more, particularly preferably 1700 or more, preferably 300,000 or less, more preferably 100,000 or less, It is more preferably 20,000 or less, particularly preferably 15,000 or less. When the molecular weights of the silicon-containing compound and the polyorganosiloxane are not less than the lower limit, the heat resistance of the silicon-containing compound and the polyorganosiloxane can be increased. When the molecular weights of the silicon-containing compound and the polyorganosiloxane are not more than the upper limit, the stability of the resin composition can be increased, and the silicon-containing compound and the polyorganosiloxane are dispersed in the resin sheet. The flame retardancy can be improved.
 上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンが重合体ではない場合、及び上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンの分子量は、上記ケイ素含有化合物、及び上記ポリオルガノシロキサンが重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 When the silicon-containing compound and the polyorganosiloxane are not polymers, and when the silicon-containing compound and the structural formula of the polyorganosiloxane can be specified, the molecular weights of the silicon-containing compound and the polyorganosiloxane can be specified. , Means the molecular weight that can be calculated from the structural formula. Further, when the silicon-containing compound and the polyorganosiloxane are polymers, the molecular weights of the silicon-containing compound and the polyorganosiloxane are in terms of polystyrene measured by gel permeation chromatography (GPC). The weight average molecular weight is shown.
 また、上記ケイ素含有化合物は、ケイ素含有粒子であってもよい。上記ケイ素含有粒子は、ケイ素を含む粒子である。 The silicon-containing compound may be silicon-containing particles. The silicon-containing particles are particles containing silicon.
 上記ケイ素含有化合物は、コアと、上記コアの表面に配置されたシェルとを備えるコアシェル粒子であることが好ましい。すなわち、上記樹脂シートは、コアと、上記コアの表面に配置されたシェルとを備えるコアシェル粒子を含むことが好ましい。上記樹脂シート中に、上記ケイ素含有化合物は、上記コアシェル粒子として含まれることも好ましい。上記コアシェル粒子は、上記コアにおいてケイ素原子を有していてもよく、上記シェルにおいてケイ素原子を有していてもよい。上記コアシェル粒子が上記コアにケイ素原子を有する場合、上記コアシェル粒子が上記シェルにケイ素原子を有する場合、上記コアシェル粒子が上記コアと上記シェルとにケイ素原子を有する場合のいずれにおいても、上記コアシェル粒子全体をケイ素含有化合物とみなすことができる。上記ケイ素含有化合物がコアシェル粒子である場合には、難燃性を高めることができることに加えて、耐衝撃性も高めることができる。 The silicon-containing compound is preferably core-shell particles having a core and a shell arranged on the surface of the core. That is, the resin sheet preferably includes core-shell particles including a core and a shell arranged on the surface of the core. It is also preferable that the silicon-containing compound is contained in the resin sheet as the core-shell particles. The core-shell particle may have a silicon atom in the core, or may have a silicon atom in the shell. When the core-shell particles have a silicon atom in the core, when the core-shell particles have a silicon atom in the shell, in any of the cases where the core-shell particles have a silicon atom in the core and the shell, the core-shell particles The whole can be regarded as a silicon-containing compound. When the above-mentioned silicon-containing compound is a core-shell particle, not only flame retardancy can be enhanced, but also impact resistance can be enhanced.
 難燃性をより一層高める観点から、上記コアシェル粒子において、上記コアを構成する有機化合物と、上記シェルを構成する有機化合物とが、化学結合していることが好ましい。上記化学結合は、グラフト結合であることが好ましい。 From the viewpoint of further increasing flame retardancy, in the core-shell particles, it is preferable that the organic compound forming the core and the organic compound forming the shell are chemically bonded. The chemical bond is preferably a graft bond.
 上記コアシェル粒子としては、シリコーン-アクリレート-メチルメタクリレート共重合体、シリコーン-アクリレート-アクリロニトリル-スチレン共重合体等のシリコーン系コアシェル型ゴム質重合体等が挙げられる。上記コアシェル粒子は、コアシェルゴム構造を有することが好ましい。 Examples of the core-shell particles include silicone-based core-shell type rubbery polymers such as silicone-acrylate-methylmethacrylate copolymer and silicone-acrylate-acrylonitrile-styrene copolymer. The core-shell particles preferably have a core-shell rubber structure.
 樹脂シートの外観を良好にする観点、耐衝撃性をより一層高める観点からは、上記コアシェル粒子の体積平均粒子径(D50)は、好ましくは100nm以上、より好ましくは250nm以上、好ましくは800nm以下である。上記下限以上及び上記上限以下の体積平均粒子径(D50)を有するコアシェル粒子は、乳化重合法により作製することができる。 From the viewpoint of improving the appearance of the resin sheet and further improving impact resistance, the volume average particle diameter (D50) of the core-shell particles is preferably 100 nm or more, more preferably 250 nm or more, preferably 800 nm or less. is there. The core-shell particles having a volume average particle diameter (D50) of not less than the above lower limit and not more than the above upper limit can be produced by an emulsion polymerization method.
 上記コアシェル粒子の体積平均粒子径は、体積基準で測定される平均径であり、50%となるメディアン径(D50)の値である。上記体積平均粒子径(D50)は、レーザー回折・散乱法、画像解析法、コールター法、及び遠心沈降法等により測定可能である。上記コアシェル粒子の体積平均粒子径(D50)は、レーザー回折・散乱法による測定により求めることが好ましい。 The volume average particle diameter of the core-shell particles is an average diameter measured on a volume basis, and is a value of a median diameter (D50) of 50%. The volume average particle diameter (D50) can be measured by a laser diffraction / scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like. The volume average particle diameter (D50) of the core-shell particles is preferably obtained by measurement by a laser diffraction / scattering method.
 上記コアシェル粒子として、市販品を用いることもできる。上記コアシェル粒子の市販品としては、メタブレンS-2001、S-2006、S-2501、S-2030、S-2100、S-2200、SRK200A、SX-005、及びSX-006等(以上、いずれも三菱レイヨン社製)が挙げられる。 Commercially available products can also be used as the core-shell particles. Commercially available products of the above core-shell particles include Metablen S-2001, S-2006, S-2501, S-2030, S-2100, S-2200, SRK200A, SX-005, SX-006, etc. Mitsubishi Rayon Co.).
 上記樹脂シート100重量%中、上記ケイ素含有化合物の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは12重量%以下である。上記ケイ素含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the silicon-containing compound in 100% by weight of the resin sheet is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, and more preferably 12% by weight or less. When the content of the silicon-containing compound is at least the above lower limit, flame retardancy can be further enhanced. When the content of the silicon-containing compound is at most the above upper limit, the impact resistance can be further enhanced.
 上記樹脂シート中に、上記ケイ素含有化合物が上記コアシェル粒子として含まれる場合に、上記樹脂シート100重量%中、上記コアシェル粒子の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは12重量%以下である。上記コアシェル粒子の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記コアシェル粒子の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 When the silicon-containing compound is contained as the core-shell particles in the resin sheet, the content of the core-shell particles in 100% by weight of the resin sheet is preferably 1% by weight or more, more preferably 2% by weight or more. , Preferably 15% by weight or less, more preferably 12% by weight or less. When the content of the core-shell particles is at least the above lower limit, flame retardancy can be further enhanced. When the content of the core-shell particles is less than or equal to the upper limit, the impact resistance can be further enhanced.
 上記芳香族ポリカーボネート樹脂100重量部に対する上記ケイ素含有化合物の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記ケイ素含有化合物の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記ケイ素含有化合物の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the silicon-containing compound with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, preferably 20 parts by weight or less, and more preferably 15 parts by weight or less. When the content of the silicon-containing compound is at least the above lower limit, flame retardancy can be further enhanced. When the content of the silicon-containing compound is at most the above upper limit, the impact resistance can be further enhanced.
 上記樹脂シート中に、上記ケイ素含有化合物が上記コアシェル粒子として含まれる場合に、上記芳香族ポリカーボネート樹脂100重量部に対する上記コアシェル粒子の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記コアシェル粒子の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記コアシェル粒子の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 When the silicon-containing compound is contained as the core-shell particles in the resin sheet, the content of the core-shell particles relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 2 parts by weight or more, more preferably 4 parts by weight. The above is preferably 20 parts by weight or less, more preferably 15 parts by weight or less. When the content of the core-shell particles is at least the above lower limit, flame retardancy can be further enhanced. When the content of the core-shell particles is less than or equal to the upper limit, the impact resistance can be further enhanced.
 [フッ素系樹脂]
 本発明に係る樹脂シートは、フッ素系樹脂を含むことが好ましい。上記樹脂組成物は、フッ素系樹脂を含むことが好ましい。上記樹脂シートが上記フッ素系樹脂を含むことにより、難燃性をより一層高めることができる。上記フッ素系樹脂は1種のみが用いられてもよく、2種以上が併用されていてもよい。
[Fluorine resin]
The resin sheet according to the present invention preferably contains a fluororesin. The resin composition preferably contains a fluororesin. When the resin sheet contains the fluororesin, the flame retardancy can be further enhanced. Only one type of the above-mentioned fluororesin may be used, or two or more types may be used in combination.
 上記フッ素系樹脂としては、フッ素化アルファ-オレフィンモノマーを構造単位とするホモポリマー、及びフッ素化アルファ-オレフィンモノマーを構造単位に含むコポリマー等が挙げられる。 Examples of the above-mentioned fluorine-based resin include homopolymers having a fluorinated alpha-olefin monomer as a structural unit and copolymers having a fluorinated alpha-olefin monomer as a structural unit.
 上記フッ素化アルファ-オレフィンモノマーとは、少なくとも1つのフッ素原子を有する置換基を含むアルファ-オレフィンモノマーである。 The fluorinated alpha-olefin monomer is an alpha-olefin monomer containing a substituent having at least one fluorine atom.
 上記フッ素化アルファ-オレフィンモノマーとしては、テトラフルオロエチレン(CF=CF)、CHF=CF、フッ化ビニリデン(CH=CF)、CH=CHF、クロロトリフルオロエチレン(CClF=CF)、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、ヘキサフルオロプロピレン(CF=CFCF)、CFCF=CHF、CFCH=CF、CFCH=CH、CFCF=CHF、CHFCH=CHF、及びCFCH=CH等が挙げられる。 Examples of the fluorinated alpha-olefin monomer include tetrafluoroethylene (CF 2 ═CF 2 ), CHF═CF 2 , vinylidene fluoride (CH 2 ═CF 2 ), CH 2 ═CHF, chlorotrifluoroethylene (CClF═CF). 2 ), CCl 2 = CF 2 , CClF = CClF, CHF = CCl 2 , CH 2 = CClF, CCl 2 = CClF, hexafluoropropylene (CF 2 = CFCF 3 ), CF 3 CF = CHF, CF 3 CH = CF 2 , CF 3 CH = CH 2 , CF 3 CF = CHF, CHF 2 CH = CHF, CF 3 CH = CH 2, and the like.
 上記フッ素系樹脂としては、ポリ(テトラフルオロエチレン)ホモポリマー(PTFE)、ポリ(ヘキサフルオロエチレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロエチレン)、及びポリ(テトラフルオロエチレン-エチレン-プロピレン)等が挙げられる。上記ポリ(テトラフルオロエチレン)ホモポリマー(PTFE)は、繊維形成性であってもよく、非繊維形成性であってもよい。 Examples of the fluorine-based resin include poly (tetrafluoroethylene) homopolymer (PTFE), poly (hexafluoroethylene), poly (tetrafluoroethylene-hexafluoroethylene), and poly (tetrafluoroethylene-ethylene-propylene). Can be mentioned. The poly (tetrafluoroethylene) homopolymer (PTFE) may be fiber-forming or non-fiber-forming.
 上記樹脂シート100重量%中、上記フッ素系樹脂の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは1.5重量%以下、より好ましくは1重量%以下である。上記フッ素系樹脂の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記フッ素系樹脂の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the fluororesin in 100% by weight of the resin sheet is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 1.5% by weight or less, more preferably 1% by weight. % Or less. When the content of the fluororesin is at least the above lower limit, flame retardancy can be further enhanced. When the content of the fluororesin is not more than the above upper limit, the impact resistance can be further enhanced.
 上記芳香族ポリカーボネート樹脂100重量部に対する上記フッ素系樹脂の含有量は、好ましくは0.3重量部以上、より好ましくは0.5重量部以上、好ましくは2重量部以下、より好ましくは1.5重量部以下である。上記フッ素系樹脂の含有量が上記下限以上であると、難燃性をより一層高めることができる。上記フッ素系樹脂の含有量が上記上限以下であると、耐衝撃性をより一層高めることができる。 The content of the fluorine-based resin with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.3 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 2 parts by weight or less, and more preferably 1.5 parts by weight. It is less than or equal to parts by weight. When the content of the fluororesin is at least the above lower limit, flame retardancy can be further enhanced. When the content of the fluororesin is not more than the above upper limit, the impact resistance can be further enhanced.
 [他の成分]
 上記樹脂シートは、本発明の目的を阻害しない範囲で、他の成分を含んでいてもよい。上記樹脂組成物は、本発明の目的を阻害しない範囲で、他の成分を含んでいてもよい。
[Other ingredients]
The resin sheet may contain other components as long as the object of the present invention is not impaired. The above resin composition may contain other components as long as the object of the present invention is not impaired.
 上記他の成分としては、ドリップ防止剤、抗酸化剤、熱安定化剤、光安定化剤、UV吸収剤、着色剤、可塑剤、潤滑剤、離型剤、及び補強剤等が挙げられる。上記他の成分はそれぞれ、1種のみが用いられてもよく、2種以上が併用されていてもよい。 Other components include anti-drip agent, antioxidant, heat stabilizer, light stabilizer, UV absorber, colorant, plasticizer, lubricant, release agent, and reinforcing agent. Only 1 type may be used for each of the said other components, and 2 or more types may be used together.
 上記樹脂シートが上記他の成分を含む場合、該他の成分の含有量は特に限定されないが、例えば、上記芳香族ポリカーボネート樹脂100重量部に対する上記他の成分の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、更に好ましくは0.5重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。 When the resin sheet contains the other component, the content of the other component is not particularly limited, but for example, the content of the other component with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01. The amount is at least parts by weight, more preferably at least 0.1 parts by weight, even more preferably at least 0.5 parts by weight, preferably at most 10 parts by weight, more preferably at most 5 parts by weight.
 上記抗酸化剤としては、アルキル化モノフェノール;アルキル化ポリフェノール;テトラキス[メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナメート)]メタン等のポリフェノールとジエンのアルキル化反応生成物;パラ-クレゾール又はジシクロペンタジエンのブチル化反応生成物;アルキル化ヒドロキノン;ヒドロキシル化チオジフェニルエーテル;アルキリデン-ビスフェノール;ベンジル化合物;ベータ-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸と一価又は多価アルコールのエステル;ベータ-(5-tert-ブチル-4-ヒドロキシ-3-メチルフェニル)プロピオン酸と一価又は多価アルコールとのエステル;ジステアリルチオプロピオネート、ジラウリルチオプロピオネート、ジトリデシルチオジプロピオネート、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリトリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のチオアルキル化合物又はチオアリール化合物のエステル;及びベータ-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸のアミド化合物等が挙げられる。 Examples of the antioxidant include alkylated monophenols; alkylated polyphenols; alkylated reaction products of polyphenols such as tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane with dienes. Butylated reaction product of para-cresol or dicyclopentadiene; alkylated hydroquinone; hydroxylated thiodiphenyl ether; alkylidene-bisphenol; benzyl compound; beta- (3,5-di-tert-butyl-4-hydroxyphenyl) propion Ester of acid with monohydric or polyhydric alcohol; ester of beta- (5-tert-butyl-4-hydroxy-3-methylphenyl) propionic acid with monohydric or polyhydric alcohol; Distearyl thiopropionate, diester Lauryl thiopropionate, ditridecyl thiodipropionate, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythrityl-tetrakis [3- (3,5-di- Examples thereof include esters of thioalkyl compounds or thioaryl compounds such as tert-butyl-4-hydroxyphenyl) propionate; and amide compounds of beta- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid.
 上記樹脂シートが上記抗酸化剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対する上記抗酸化剤の含有量は、好ましくは0.01重量部以上、好ましくは0.1重量部以下である。 When the resin sheet contains the antioxidant, the content of the antioxidant with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 0.1 part by weight or less.
 上記光安定化剤としては、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-ベンゾトリアゾール等のベンゾトリアゾール;及び2-ヒドロキシ-4-n-オクトキシベンゾフェノン等が挙げられる。 Examples of the light stabilizer include benzotriazole such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) -benzotriazole; and 2-hydroxy- 4-n-octoxybenzophenone and the like can be mentioned.
 上記樹脂シートが上記光安定化剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対する上記光安定化剤の含有量は、好ましくは0.01重量部以上、好ましくは5重量部以下である。 When the resin sheet contains the light stabilizer, the content of the light stabilizer with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 5 parts by weight or less.
 上記UV吸収剤としては、ヒドロキシベンゾフェノン;ヒドロキシベンゾトリアゾール;ヒドロキシベンゾトリアジン;シアノアクリレート;オキサニリド;ベンゾオキサジノン;2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)-フェノール;2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン;2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)-フェノール;2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン);1,3-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]-2,2-ビス[[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル]プロパン;2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンゾオキサジン-4-オン);1,3-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]-2,2-ビス[[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル]プロパン;並びに酸化セリウム及び酸化亜鉛等の平均粒子径が100nm以下の無機物質等が挙げられる。 Examples of the UV absorber include hydroxybenzophenone; hydroxybenzotriazole; hydroxybenzotriazine; cyanoacrylate; oxanilide; benzoxazinone; 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3 -Tetramethylbutyl) -phenol; 2-hydroxy-4-n-octyloxybenzophenone; 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl]- 5- (octyloxy) -phenol; 2,2 '-(1,4-phenylene) bis (4H-3,1-benzoxazin-4-one); 1,3-bis [(2-cyano-3, 3-diphenylacryloyl) oxy] -2,2-bis [[(2-cyano-3,3-diphenylacryloyl) oxy] methyl] propane; 2,2 ′-(1,4-phenylene) bis (4H-3 , 1-benzoxazin-4-one); 1,3-bis [(2-cyano-3,3-diphenylacryloyl) oxy] -2,2-bis [[(2-cyano-3,3-diphenylacryloyl) ) Oxy] methyl] propane; and inorganic substances having an average particle diameter of 100 nm or less, such as cerium oxide and zinc oxide.
 上記樹脂シートが上記UV吸収剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対する上記UV吸収剤の含有量は、好ましくは0.01重量部以上、好ましくは5重量部以下である。 When the resin sheet contains the UV absorber, the content of the UV absorber with respect to 100 parts by weight of the aromatic polycarbonate resin is preferably 0.01 part by weight or more, and preferably 5 parts by weight or less.
 上記着色剤としては、二酸化チタン、カーボンブラック、及び有機染料等が挙げられる。 Examples of the colorant include titanium dioxide, carbon black, and organic dyes.
 上記可塑剤、上記潤滑剤、又は上記離型剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。可塑剤として用いられる化合物には、潤滑剤や雛形剤の性質をも有する化合物が多く、潤滑剤として用いられる化合物には、雛形剤や可塑剤の性質をも有する化合物が多く、雛形剤として用いられる化合物には、可塑剤や潤滑剤の性質をも有する化合物が多い。 The plasticizer, the lubricant, or the release agent may be used alone or in combination of two or more. Many of the compounds used as plasticizers also have the properties of lubricants and template agents, and many of the compounds used as lubricants also have the properties of template agents and plasticizers. Many of these compounds also have the properties of plasticizers and lubricants.
 上記可塑剤、潤滑剤、又は離型剤としては、ジオクチル-4,5-エポキシ-ヘキサヒドロフタレート等のフタル酸エステル;トリス-(オクトキシカルボニルエチル)イソシアヌレート;トリステアリン;ポリ-アルファ-オレフィン;エポキシ化大豆油;エステル;アルキルステアリルエステル等の脂肪酸エステル;メチルステアレート、ステアリルステアレート、ペンタエリトリトールテトラステアレート等のステアレート;ポリエチレングリコールポリマー、ポリプロピレングリコールポリマー、ポリ(エチレングリコール-co-プロピレングリコール)コポリマー等の親水性および疎水性の非イオン性界面活性剤とメチルステアレートとの混合物;メチルステアレートとポリエチレン-ポリプロピレングリコールコポリマーとの混合物;及び蜜ろう、モンタンワックス、パラフィンワックス等のワックス等が挙げられる。 Examples of the plasticizer, lubricant, or release agent include phthalic acid esters such as dioctyl-4,5-epoxy-hexahydrophthalate; tris- (octoxycarbonylethyl) isocyanurate; tristearin; poly-alpha-olefin Epoxidized soybean oil; ester; fatty acid ester such as alkyl stearyl ester; stearate such as methyl stearate, stearyl stearate, pentaerythritol tetrastearate; polyethylene glycol polymer, polypropylene glycol polymer, poly (ethylene glycol-co-propylene) Glycols) copolymers such as hydrophilic and hydrophobic nonionic surfactants with methyl stearate; mixtures of methyl stearate with polyethylene-polypropylene glycol copolymers; and waxes such as beeswax, montan wax, paraffin wax, etc. Etc.
 上記樹脂シートが上記可塑剤、上記潤滑剤、又は上記離型剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対する上記可塑剤、上記潤滑剤、及び上記離型剤の各含有量は、好ましくは0.1重量部以上、好ましくは1重量部以下である。 When the resin sheet contains the plasticizer, the lubricant, or the release agent, the content of each of the plasticizer, the lubricant, and the release agent is preferably 100 parts by weight of the aromatic polycarbonate resin. Is 0.1 part by weight or more, preferably 1 part by weight or less.
 上記補強剤としては、ガラスファイバー等の繊維状の補強剤等が挙げられる。 As the above-mentioned reinforcing agent, a fibrous reinforcing agent such as glass fiber may, for example, be mentioned.
 上記樹脂シートが上記補強剤を含む場合、上記芳香族ポリカーボネート樹脂100重量部に対する上記補強剤の含有量は、好ましくは1重量部以上、より好ましくは10重量部以上、好ましくは25重量部以下、より好ましくは20重量部以下である。 When the resin sheet contains the reinforcing agent, the content of the reinforcing agent relative to 100 parts by weight of the aromatic polycarbonate resin is preferably 1 part by weight or more, more preferably 10 parts by weight or more, preferably 25 parts by weight or less, It is more preferably 20 parts by weight or less.
 上記他の成分における各成分の相対量は、樹脂シートの低煙濃度性、低煙毒性、及び延性等の機械的特性等に重要な影響を与える。樹脂シートのある特性を向上させるために、ある成分を多く配合しても、他の特性が低下する可能性がある。 -The relative amount of each component in the above other components has an important effect on the mechanical properties such as low smoke concentration property, low smoke toxicity, and ductility of the resin sheet. Even if a large amount of a certain component is added in order to improve a certain property of the resin sheet, other properties may be deteriorated.
 [樹脂シートの他の詳細]
 本発明に係る樹脂シートは、難燃性及び耐衝撃性に優れるので、輸送機の内装材であることが好ましい。上記輸送機としては、鉄道車両、航空機、船舶、及び自動車等が挙げられる。本発明に係る樹脂シートは、鉄道車両の内装材であることが好ましく、航空機の内装材であることが好ましく、船舶の内装材であることが好ましく、自動車の内装材であることが好ましい。
[Other details of resin sheet]
The resin sheet according to the present invention is excellent in flame retardancy and impact resistance, and is therefore preferably an interior material for transportation equipment. Examples of the transport aircraft include railcars, aircraft, ships, and automobiles. The resin sheet according to the present invention is preferably an interior material for a railroad vehicle, preferably an interior material for an aircraft, an interior material for a ship, and preferably an interior material for an automobile.
 本発明に係る樹脂シートは、押出シート成形品であることがより好ましい。 The resin sheet according to the present invention is more preferably an extruded sheet molded product.
 本発明に係る樹脂シートは、樹脂組成物をシート状に成形することにより得ることができる。上記樹脂シートの製造方法は、樹脂組成物を、押出機によりシート状に成形して、樹脂シートを得る工程を備えることが好ましい。樹脂シートを得る工程において、引取機における引取り速度のロール速度に対する比を0.9以上1.2以下にすることが好ましい。上記樹脂シートの製造方法は、以下の(a)~(c)の工程を備えることが好ましい。(a)~(c)の工程を備えることにより、上記比(領域分割面積の標準偏差/領域分割面積の平均値)、上記比(S1/S2)、上記無機フィラーの配向角θの平均値、上記無機フィラーの平均粒子径D、上記無機フィラーの平均アスペクト比Aが、それぞれ上述した好ましい範囲を満たす樹脂シートを良好に製造することができる。 The resin sheet according to the present invention can be obtained by molding the resin composition into a sheet shape. The method for producing the resin sheet preferably includes a step of molding the resin composition into a sheet by an extruder to obtain a resin sheet. In the step of obtaining the resin sheet, it is preferable that the ratio of the take-up speed in the take-up machine to the roll speed is 0.9 or more and 1.2 or less. The method for producing the resin sheet preferably includes the following steps (a) to (c). By including the steps (a) to (c), the ratio (standard deviation of the area division area / average value of the area division area), the ratio (S1 / S2), and the average value of the orientation angle θ of the inorganic filler. It is possible to favorably manufacture a resin sheet in which the average particle diameter D of the inorganic filler and the average aspect ratio A of the inorganic filler satisfy the above-described preferable ranges.
 (a)二軸押出機を用いて、芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含む混合物を、スクリュー回転速度50rpm以上500rpm以下で溶融混練して、樹脂組成物を得る工程。 (A) Using a twin-screw extruder, a mixture containing an aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound is melt-kneaded at a screw rotation speed of 50 rpm or more and 500 rpm or less to obtain a resin composition. The process of obtaining things.
 (b)ペレタイザーを用いて、溶融混練された上記樹脂組成物をカットして、ペレット状の樹脂組成物を得る工程。 (B) A step of cutting the melt-kneaded resin composition using a pelletizer to obtain a pellet-shaped resin composition.
 (c)単軸押出機を用いて、ペレット状の上記樹脂組成物を溶融した後、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)を0.8以上1.2以下にして、樹脂シートを得る工程。 (C) After melting the pelletized resin composition using a single-screw extruder, the ratio of the take-up speed to the roll speed (take-off speed / roll speed) in the take-up machine is 0.8 or more and 1.2. The process of obtaining a resin sheet is as follows.
 (a)工程において、上記芳香族ポリカーボネート樹脂、上記無機フィラー、上記リン含有化合物及び上記ケイ素含有化合物の各含有量は、上述した好ましい範囲を満たすように適宜調整される。 In the step (a), the respective contents of the aromatic polycarbonate resin, the inorganic filler, the phosphorus-containing compound and the silicon-containing compound are appropriately adjusted so as to satisfy the above-mentioned preferable range.
 (a)工程において、二軸押出機のシリンダー温度は、好ましくは260℃以上、より好ましくは270℃以上、好ましくは300℃以下、より好ましくは290℃以下である。二軸押出機のシリンダー温度が上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In step (a), the cylinder temperature of the twin-screw extruder is preferably 260 ° C or higher, more preferably 270 ° C or higher, preferably 300 ° C or lower, and more preferably 290 ° C or lower. When the cylinder temperature of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. ..
 (a)工程において、二軸押出機の金型温度は、好ましくは240℃以上、より好ましくは250℃以上、好ましくは280℃以下、より好ましくは270℃以下である。二軸押出機の金型温度が上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In the step (a), the mold temperature of the twin-screw extruder is preferably 240 ° C. or higher, more preferably 250 ° C. or higher, preferably 280 ° C. or lower, more preferably 270 ° C. or lower. When the mold temperature of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and the flame retardancy and impact resistance can be further enhanced. it can.
 (a)工程において、二軸押出機のスクリュー回転速度は、好ましくは300rpm以上、より好ましくは350rpm以上、好ましくは500rpm、より好ましくは450rpm以下である。二軸押出機のスクリュー回転速度は上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In the step (a), the screw rotation speed of the twin-screw extruder is preferably 300 rpm or more, more preferably 350 rpm or more, preferably 500 rpm, more preferably 450 rpm or less. When the screw rotation speed of the twin-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. it can.
 (b)工程では、(a)工程において押出されたストランド状の樹脂組成物を、水槽冷却を行った後、該ストランド状の樹脂組成物をカットすることが好ましい。 In the step (b), it is preferable that the strand-shaped resin composition extruded in the step (a) is cooled in a water tank and then the strand-shaped resin composition is cut.
 (b)工程において、ペレット状の上記樹脂組成物の平均粒径は、好ましくは0.6mm以上、より好ましくは0.7mm以上、好ましくは0.9mm以下、より好ましくは1.0mm以下である。 In the step (b), the average particle diameter of the pellet-shaped resin composition is preferably 0.6 mm or more, more preferably 0.7 mm or more, preferably 0.9 mm or less, more preferably 1.0 mm or less. ..
 (c)工程において、単軸押出機のシリンダー温度は、好ましくは250℃以上、より好ましくは260℃以上、好ましくは290℃以下、より好ましくは280℃以下である。単軸押出機のシリンダー温度が上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In step (c), the cylinder temperature of the single-screw extruder is preferably 250 ° C. or higher, more preferably 260 ° C. or higher, preferably 290 ° C. or lower, more preferably 280 ° C. or lower. When the cylinder temperature of the single-screw extruder is equal to or higher than the lower limit and equal to or lower than the upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. .
 (c)工程において、単軸押出機の金型温度は、好ましくは270℃以上、より好ましくは280℃以上、好ましくは310℃以下、より好ましくは300℃以下である。単軸押出機の金型温度が上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In step (c), the mold temperature of the single screw extruder is preferably 270 ° C. or higher, more preferably 280 ° C. or higher, preferably 310 ° C. or lower, more preferably 300 ° C. or lower. When the mold temperature of the single-screw extruder is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance can be further enhanced. it can.
 (c)工程において、溶融した樹脂組成物を3段ロールにて挟み込みこむことで、厚みを均一化することが好ましい。 In the step (c), it is preferable to make the thickness uniform by sandwiching the molten resin composition with three-stage rolls.
 樹脂シートを得る工程及び(c)工程において、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)は、好ましくは0.9以上、より好ましくは1.00以上、更に好ましくは1.02以上、特に好ましくは1.04以上、好ましくは1.07以下、より好ましくは1.10以下である。上記比(引取り速度/ロール速度)が上記下限以上及び上記上限以下であると、樹脂シート中の無機フィラーの分散状態を良好にすることができ、難燃性及び耐衝撃性をより一層高めることができる。 In the step of obtaining the resin sheet and the step (c), the ratio of the take-up speed to the roll speed in the take-up machine (take-off speed / roll speed) is preferably 0.9 or more, more preferably 1.00 or more, and further preferably Is 1.02 or more, particularly preferably 1.04 or more, preferably 1.07 or less, more preferably 1.10 or less. When the ratio (take-off speed / roll speed) is not less than the above lower limit and not more than the above upper limit, the dispersed state of the inorganic filler in the resin sheet can be improved, and flame retardancy and impact resistance are further enhanced. be able to.
 以下、実施例を挙げて本発明をさらに詳しく説明する。本発明は以下の実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
 以下の材料を用意した。 The following materials were prepared.
 (芳香族ポリカーボネート樹脂)
 芳香族ポリカーボネート樹脂(ビスフェノールA型化合物に由来する構造単位を有する芳香族ポリカーボネート樹脂、三菱ガス化学社製「ユーピロンEシリーズ」、粘度平均分子量20000)
(Aromatic polycarbonate resin)
Aromatic polycarbonate resin (Aromatic polycarbonate resin having a structural unit derived from bisphenol A type compound, "Upilon E series" manufactured by Mitsubishi Gas Chemical Co., Inc., viscosity average molecular weight 20000)
 (リン含有化合物)
 リン酸エステル1(ICLジャパン社製「Fyrol Flex Sol DP」)
 リン酸エステル2(大八化学工業社製「PX-202」)
(Phosphorus-containing compound)
Phosphate ester 1 ("Fyrol Flex Sol DP" manufactured by ICL Japan)
Phosphate ester 2 ("PX-202" manufactured by Daihachi Chemical Industry Co., Ltd.)
 (ケイ素含有化合物)
 シリコーン・アクリルコアシェルゴム(三菱レイヨン社製「メタブレン SX-005」)
(Silicon-containing compound)
Silicone / Acrylic core shell rubber ("Metabrene SX-005" manufactured by Mitsubishi Rayon Co., Ltd.)
 (無機フィラー)
 タルク1(イメリススペシャリティーズ社製「Jet Fine 3CA」)
 タルク2(イメリススペシャリティーズ社製「Jet Fine 0.7CA」)
 タルク3(イメリススペシャリティーズ社製「HAR W92」)
(Inorganic filler)
Talc 1 ("Jet Fine 3CA" manufactured by Imerys Specialties)
Talc 2 ("Jet Fine 0.7CA" manufactured by Imerys Specialties)
Talc 3 (“HAR W92” made by Imerys Specialties)
 (フッ素系樹脂)
 ポリテトラフルオロエチレン(Dupon社製「Teflon CFP6000」)
(Fluorine resin)
Polytetrafluoroethylene ("Teflon CFP6000" manufactured by Dupon)
 (実施例1)
 下記の表1に示す配合成分を、下記の表1に示す配合量(重量部)で配合し、樹脂シートを得た。具体的には、以下の方法により樹脂シートを得た。
(Example 1)
The composition components shown in Table 1 below were compounded in the compounding amounts (parts by weight) shown in Table 1 below to obtain a resin sheet. Specifically, a resin sheet was obtained by the following method.
 (a)樹脂組成物を得る工程:
 二軸押出機(日本製鋼所社製「TEX30a」)を用いて、表1に示す配合量で配合された混合物を、シリンダー温度280℃、金型温度260℃、圧力0.7バール(真空)、スクリュー径30mm、回転速度400rpm、押出量15kg/時間の条件下で、溶融混練した後、溶融押出を行った。
(A) Step of obtaining a resin composition:
Using a twin-screw extruder (“TEX30a” manufactured by Japan Steel Works, Ltd.), the mixture blended in the blending amounts shown in Table 1 was used at a cylinder temperature of 280 ° C., a mold temperature of 260 ° C., and a pressure of 0.7 bar (vacuum). After melt kneading under the conditions of a screw diameter of 30 mm, a rotation speed of 400 rpm, and an extrusion rate of 15 kg / hour, melt extrusion was performed.
 (b)ペレット状の樹脂組成物を得る工程:
 溶融押出しによって得られた樹脂組成物を、水冷式で冷却し、ペレタイザーを用いてペレット状に切断した後、約120℃で約5時間乾燥して、ペレット状の樹脂組成物を得た。
(B) Step of obtaining a pellet-shaped resin composition:
The resin composition obtained by melt extrusion was cooled with a water-cooling system, cut into pellets using a pelletizer, and then dried at about 120 ° C. for about 5 hours to obtain a pelletized resin composition.
 (c)樹脂シートを得る工程:
 単軸押出機(プラスチック工学研究所製「GT50」)を用いて、ペレット状の上記樹脂組成物をシリンダー温度270℃、金型温度290℃、押出量20kg/時間の条件下で溶融した後、シート状に成形した。次いで、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)を1.05に設定して引取り、厚み3mmの樹脂シートを得た。
(C) Step of obtaining a resin sheet:
After melting the pelletized resin composition under the conditions of a cylinder temperature of 270 ° C., a mold temperature of 290 ° C., and an extrusion rate of 20 kg / hour using a single-screw extruder (“GT50” manufactured by Plastic Engineering Laboratory Co., Ltd.), It was formed into a sheet. Next, the ratio of the take-up speed to the roll speed (take-off speed / roll speed) in the take-up machine was set to 1.05, and the take-up was performed to obtain a resin sheet having a thickness of 3 mm.
 (実施例2~13)
 樹脂組成物(及び樹脂シート)の組成を下記の表1,2に示すように設定したこと以外は、実施例1と同様にして、厚み3mmの樹脂シートを作製した。
(Examples 2 to 13)
A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except that the composition of the resin composition (and the resin sheet) was set as shown in Tables 1 and 2 below.
 (実施例14~26)
 樹脂組成物(及び樹脂シート)の組成を下記の表3,4に示すように設定したこと、及び(c)樹脂シートを得る工程において、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)を1.00に設定したこと以外は、実施例1と同様にして、厚み3mmの樹脂シートを作製した。
(Examples 14 to 26)
The composition of the resin composition (and the resin sheet) was set as shown in Tables 3 and 4 below, and (c) in the step of obtaining the resin sheet, the ratio of the take-up speed to the roll speed in the take-off machine (take-off) A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except that the speed / roll speed) was set to 1.00.
 (比較例1)
 樹脂組成物(及び樹脂シート)の組成を下記の表5に示すように設定したこと、及び(a)樹脂組成物を得る工程において、シリンダー温度240℃、金型温度240℃、回転速度100rpmにしたこと以外は、実施例1と同様にして、厚み3mmの樹脂シートを作製した。
(Comparative Example 1)
The composition of the resin composition (and the resin sheet) was set as shown in Table 5 below, and (a) in the step of obtaining the resin composition, the cylinder temperature was 240 ° C., the mold temperature was 240 ° C., and the rotation speed was 100 rpm. A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except for the above.
 (比較例2~13)
 樹脂組成物(及び樹脂シート)の組成を下記の表5,6に示すように設定したこと以外は、比較例1と同様にして、厚み3mmの樹脂シートを作製した。
(Comparative Examples 2 to 13)
A resin sheet having a thickness of 3 mm was produced in the same manner as in Comparative Example 1 except that the composition of the resin composition (and the resin sheet) was set as shown in Tables 5 and 6 below.
 (比較例14~26)
 樹脂組成物(及び樹脂シート)の組成を下記の表7,8に示すように設定したこと、及び(c)樹脂シートを得る工程において、引取機における引取り速度のロール速度に対する比(引取り速度/ロール速度)を1.00に設定したこと以外は、比較例1と同様にして、厚み3mmの樹脂シートを作製した。
(Comparative Examples 14 to 26)
The composition of the resin composition (and the resin sheet) was set as shown in Tables 7 and 8 below, and (c) in the step of obtaining the resin sheet, the ratio of the take-up speed to the roll speed in the take-off machine (take-off) A resin sheet having a thickness of 3 mm was produced in the same manner as in Comparative Example 1 except that the speed / roll speed) was set to 1.00.
 (比較例27~29)
 樹脂組成物(及び樹脂シート)の組成を下記の表9に示すように設定したこと以外は、実施例1と同様にして、厚み3mmの樹脂シートを作製した。
(Comparative Examples 27 to 29)
A resin sheet having a thickness of 3 mm was produced in the same manner as in Example 1 except that the composition of the resin composition (and the resin sheet) was set as shown in Table 9 below.
 (評価)
 (1)電子顕微鏡による撮影
 得られた樹脂シートは、厚み方向の一方側に第1の表面を有する。樹脂シートを切削し、上記第1の表面と平行する方向における上記樹脂シートの断面Aを露出させた測定用サンプルA(縦5mm×横5mm×厚み3mm)を作製した。また、樹脂シートを切削し、上記第1の表面と直交する方向における樹脂シートの断面Bを露出させた測定用サンプルB(縦5mm×横5mm×厚み3mm)を作製した。測定用サンプルBでは、断面Bとして、MD方向に沿う樹脂シートの断面を露出させた。なお、断面Aは、樹脂シートの厚み方向の中央の位置における断面である。
(Evaluation)
(1) Photographing with electron microscope The obtained resin sheet has a first surface on one side in the thickness direction. The resin sheet was cut to prepare a measurement sample A (5 mm in length × 5 mm in width × 3 mm in thickness) in which a cross section A of the resin sheet in a direction parallel to the first surface was exposed. Further, the resin sheet was cut to prepare a measurement sample B (5 mm in length × 5 mm in width × 3 mm in thickness) in which the cross section B of the resin sheet in the direction orthogonal to the first surface was exposed. In the measurement sample B, as the cross section B, the cross section of the resin sheet along the MD direction was exposed. The cross section A is a cross section at the center position in the thickness direction of the resin sheet.
 Leica Microsystems社製「ウルトラミクロトーム・Leica・REICHERT-NISSEI ULTRACUT S」を用いて、測定用サンプルA,Bにおける露出させた断面A,Bの表面研磨を行った。 The surface of the exposed cross-sections A and B of the measurement samples A and B was polished using "Ultramicrotome-Leica-REICHART-NISSEI ULTRACUT S" manufactured by Leica Microsystems.
 走査型電子顕微鏡(日立ハイテクノロジーズ社製「SU3500」、測定倍率2000倍、低真空モード条件)を用いて、得られた測定用サンプルAにおける上記断面A、及び得られた測定用サンプルBにおける上記断面Bを撮影した。比較例27で得られた樹脂シートを除き、撮影された上記断面A,Bの電子顕微鏡写真にはそれぞれ、断面積(投影面積)が0.1μmを超える無機フィラーが100個以上存在した。 Using a scanning electron microscope ("SU3500" manufactured by Hitachi High-Technologies Corp., measurement magnification 2000 times, low vacuum mode condition), the above cross section A in the obtained measurement sample A and the above in the obtained measurement sample B Section B was photographed. Except for the resin sheet obtained in Comparative Example 27, 100 or more inorganic fillers each having a cross-sectional area (projected area) of more than 0.1 μm 2 were present in the electron micrographs of the above-mentioned cross-sections A and B taken.
 図4は、実施例で作製した樹脂シートの第1の表面と平行する方向における断面の電子顕微鏡写真である。具体的には、図4は、実施例1で作製した測定用サンプルAにおける断面Aの電子顕微鏡写真(倍率2000倍)である。図4の電子顕微鏡写真から求めた占有面積割合S1は、10.64%であった。 FIG. 4 is an electron micrograph of a cross section of the resin sheet manufactured in the example in a direction parallel to the first surface. Specifically, FIG. 4 is an electron micrograph (magnification: 2000 times) of the cross section A in the measurement sample A manufactured in Example 1. The occupied area ratio S1 obtained from the electron micrograph of FIG. 4 was 10.64%.
 図5は、実施例で作製した樹脂シートの第1の表面と直交する方向における断面の電子顕微鏡写真である。具体的には、図5は、実施例1で作製した測定用サンプルBにおける断面Bの電子顕微鏡写真(倍率2000倍)である。図5の電子顕微鏡写真から求めた占有面積割合S2は、4.63%であった。得られたS1とS2とから、S1のS2に対する比(S1/S2)を算出すると2.30であった。 FIG. 5 is an electron micrograph of a cross section of the resin sheet manufactured in the example in a direction orthogonal to the first surface. Specifically, FIG. 5 is an electron micrograph (magnification: 2000 times) of the cross section B of the measurement sample B manufactured in Example 1. The occupied area ratio S2 obtained from the electron micrograph of FIG. 5 was 4.63%. From the obtained S1 and S2, the ratio of S1 to S2 (S1 / S2) was calculated to be 2.30.
 (2)比(領域分割面積の標準偏差/領域分割面積の平均値)
 上記断面Bの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて領域分割法により上記無機フィラーの領域分割面積をそれぞれ算出した。より具体的には、上記無機フィラーの各重心点を各母点としてボロノイ分割を行い、上記無機フィラーのボロノイ領域の面積をそれぞれ算出し、得られたボロノイ領域の面積の標準偏差の、ボロノイ領域の面積の平均値に対する比(ボロノイ領域の面積の標準偏差/ボロノイ領域の面積の平均値)を算出した。なお、任意に選択した100個以上の無機フィラーに対して、上記ボロノイ領域の面積をそれぞれ求めた。
(2) Ratio (standard deviation of area division area / average value of area division area)
From the electron micrograph of the cross section B, the area division area of the inorganic filler was calculated by the area division method using image analysis software (“WinROOF2015” manufactured by Mitani Corporation). More specifically, performing the Voronoi division using each centroid of the inorganic filler as each generating point, calculating the area of the Voronoi region of the inorganic filler, and the standard deviation of the area of the obtained Voronoi region, the Voronoi region. The ratio of the area to the average value (standard deviation of the area of the Voronoi region / average value of the area of the Voronoi region) was calculated. The area of the Voronoi region was calculated for 100 or more arbitrarily selected inorganic fillers.
 (3)無機フィラーの配向角θの平均値
 上記断面Bの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて、各無機フィラーについて、配向角θをそれぞれ算出し、算出された配向角θの平均値を求めた。なお、上記無機フィラーの配向角θの平均値は、100個以上の無機フィラーから算出した。
(3) Average Value of Orientation Angle θ of Inorganic Filler From the electron micrograph of the cross section B, the orientation angle θ is calculated for each inorganic filler using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), The average value of the calculated orientation angle θ was determined. The average value of the orientation angle θ of the inorganic filler was calculated from 100 or more inorganic fillers.
 (4)比(S1/S2)
 上記断面Aの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて、断面Aの単位面積当たりの上記無機フィラーの占有面積割合(%)を算出し、該占有面積割合をS1(%)とした。上記断面Bの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて、断面Bの単位面積当たりの上記無機フィラーの占有面積割合(%)を算出し、該占有面積割合をS2(%)とした。上記S1及び上記S1を、下記式により算出した。なお、上記S1及び上記S1は、100個以上の上記無機フィラーから算出した。
(4) Ratio (S1 / S2)
From the electron micrograph of the cross section A, by using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), the occupied area ratio (%) of the inorganic filler per unit area of the cross section A was calculated, and the occupied area ratio Was defined as S1 (%). From the electron micrograph of the cross section B, the occupied area ratio (%) of the inorganic filler per unit area of the cross section B was calculated using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), and the occupied area ratio Was defined as S2 (%). The above S1 and the above S1 were calculated by the following formulas. The S1 and S1 were calculated from 100 or more inorganic fillers.
 S1(%)=無機フィラーの投影面積の合計/断面Aの観察視野の面積×100
 S2(%)=無機フィラーの投影面積の合計/断面Bの観察視野の面積×100
S1 (%) = total projected area of inorganic filler / area of observation field of cross section A × 100
S2 (%) = total projected area of inorganic filler / area of observation field of section B × 100
 得られたS1とS2とから、S1のS2に対する比(S1/S2)を算出した。 From the obtained S1 and S2, the ratio of S1 to S2 (S1 / S2) was calculated.
 (5)無機フィラーの平均粒子径D
 上記断面Bの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて、無機フィラーの粒子径(円相当径)をそれぞれ算出し、算出された円相当径の平均値を求め、平均粒子径Dとした。なお、上記平均粒子径Dは、100個以上の無機フィラーから算出した。
(5) Average particle diameter D of inorganic filler
From the electron micrograph of the cross section B, the particle size (equivalent circle diameter) of the inorganic filler was calculated using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), and the average value of the calculated equivalent circle diameters was calculated. The average particle diameter D was obtained. The average particle diameter D was calculated from 100 or more inorganic fillers.
 (6)無機フィラーの平均アスペクト比A
 上記断面Bの電子顕微鏡写真から、画像解析ソフト(三谷商事社製「WinROOF2015」)を用いて、無機フィラーのアスペクト比(長径/短径)をそれぞれ算出し、算出されたアスペクト比の平均値を求め、平均アスペクト比Aとした。なお、上記平均アスペクト比Aは、100個以上の無機フィラーから算出した。
(6) Average aspect ratio A of inorganic filler
From the electron micrograph of the cross section B, the aspect ratio (major axis / minor axis) of the inorganic filler was calculated using image analysis software (“WinROOF2015” manufactured by Mitani Corporation), and the average value of the calculated aspect ratios was calculated. The average aspect ratio A was obtained. The average aspect ratio A was calculated from 100 or more inorganic fillers.
 (7)平均最大発熱速度
 得られた樹脂シートを縦100mm×横100mm×厚み3mmに切り出し、発熱速度測定用サンプルを得た。得られた発熱速度測定用サンプルについて、ISO5660-1に準拠して、コーンカロリーメータ試験装置を用いて、ヒーター輻射熱50kW/m、測定時間20分、及びイグニッション有りの条件で測定を行い、発熱速度を測定した。
(7) Average maximum heat generation rate The obtained resin sheet was cut into a length of 100 mm x width of 100 mm x thickness of 3 mm to obtain a heat generation rate measurement sample. The obtained sample for heat generation rate measurement was measured in accordance with ISO5660-1 by using a cone calorimeter tester under the conditions of heater radiant heat of 50 kW / m 2 , measurement time of 20 minutes, and ignition, to generate heat. The speed was measured.
 測定した発熱速度から、EN45545-2に準拠して平均最大発熱速度を求めた。この評価では、上述した平均発熱速度の式におけるnは、600とした。 From the measured heat generation rate, the average maximum heat generation rate was calculated in accordance with EN45545-2. In this evaluation, n in the above equation of the average heat generation rate was set to 600.
 [平均最大発熱速度の判定基準]
 ○:130kW/m以下
 △:130kW/mを超え140kW/m以下
 ×:140kW/m超える
[Judgment criteria for average maximum heat generation rate]
○: 130kW / m 2 or less △: 130kW / m 2 to more than 140kW / m 2 or less ×: more than 140kW / m 2
 (8)アイゾット衝撃強さ
 得られた樹脂シートを縦80mm×横10mm×厚み3mmに切り出し、2mmのVノッチを入れた。JIS K7110:1999に準拠してアイゾット衝撃強さを測定した。
(8) Izod impact strength The obtained resin sheet was cut into a length of 80 mm, a width of 10 mm, and a thickness of 3 mm, and a V notch of 2 mm was formed therein. The Izod impact strength was measured according to JIS K7110: 1999.
 [アイゾット衝撃強さの判定基準]
 ○:22kJ/m以上
 △:20kJ/m以上22kJ/m未満
 ×:20kJ/m未満
[Criteria for Izod impact strength]
◯: 22 kJ / m 2 or more Δ: 20 kJ / m 2 or more and less than 22 kJ / m 2 ×: less than 20 kJ / m 2
 (9)総合判定
 (7)平均最大発熱速度の評価結果と(8)アイゾット衝撃強さの評価結果とから、下記の基準で総合判定を評価した。
(9) Comprehensive judgment From the evaluation results of (7) average maximum heat generation rate and (8) evaluation result of Izod impact strength, the comprehensive judgment was evaluated according to the following criteria.
 [総合判定の評価基準]
 ○○:上記の(7),(8)の評価結果がともに○
 ○:上記の(7),(8)の評価結果の一方が○、他方が△
 △:上記の(7),(8)の評価結果がともに△
 ×:上記の(7),(8)の評価結果に×がある
[Evaluation criteria for comprehensive judgment]
○○: Both the evaluation results of (7) and (8) above are ○
◯: One of the evaluation results of (7) and (8) above is ◯, and the other is Δ
Δ: Both the evaluation results of (7) and (8) above are Δ
X: There is x in the evaluation results of (7) and (8) above.
 樹脂シートの構成、並びに結果を下記の表1~9に示す。 The structure of the resin sheet and the results are shown in Tables 1 to 9 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例1~26で得られた樹脂シートでは、難燃性及び耐衝撃性に優れていた。これは、樹脂シート中の無機フィラーの分散状態が良好であるためであると考えられる。 The resin sheets obtained in Examples 1 to 26 were excellent in flame retardancy and impact resistance. It is considered that this is because the dispersed state of the inorganic filler in the resin sheet is good.
 これに対して、比較例1~26で得られた樹脂シートでは、難燃性と耐衝撃性との双方を十分に高めることはできなかった。これは、樹脂シート中で無機フィラーが偏った分散状態であることに起因すると考えられる。また、比較例27~29で得られた樹脂シートでは、無機フィラー、リン含有化合物又はケイ素含有化合物のいずれかが含まれていないため、難燃性と耐衝撃性との双方を十分に高めることはできなかった。 On the other hand, with the resin sheets obtained in Comparative Examples 1 to 26, it was not possible to sufficiently improve both flame retardancy and impact resistance. It is considered that this is because the inorganic filler is unevenly dispersed in the resin sheet. Further, since the resin sheets obtained in Comparative Examples 27 to 29 do not contain any of the inorganic filler, the phosphorus-containing compound and the silicon-containing compound, it is necessary to sufficiently enhance both the flame retardancy and the impact resistance. I couldn't.
 1…樹脂シート
 1a…第1の表面
 11A…断面
 11B…断面
 21A…無機フィラー
 21B…無機フィラー
 21Ba…一端
 21Bb…他端
DESCRIPTION OF SYMBOLS 1 ... Resin sheet 1a ... 1st surface 11A ... Section 11B ... Section 21A ... Inorganic filler 21B ... Inorganic filler 21Ba ... One end 21Bb ... The other end

Claims (16)

  1.  芳香族ポリカーボネート樹脂と、無機フィラーと、リン含有化合物と、ケイ素含有化合物とを含み、
     厚み方向の一方側に第1の表面を有し、
     前記第1の表面と直交する方向における樹脂シートの断面において、領域分割法により前記無機フィラーの領域分割面積をそれぞれ算出したときに、前記領域分割面積の標準偏差の、前記領域分割面積の平均値に対する比が0.53以下である、樹脂シート。
    An aromatic polycarbonate resin, an inorganic filler, a phosphorus-containing compound, and a silicon-containing compound,
    Has a first surface on one side in the thickness direction,
    In the cross section of the resin sheet in the direction orthogonal to the first surface, when calculating the area-divided area of the inorganic filler by the area-division method, the standard deviation of the area-divided area, the average value of the area-divided area The resin sheet having a ratio to 0.53 or less.
  2.  前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーの配向角をそれぞれ算出したときに、前記無機フィラーの配向角の平均値が30度以下である、請求項1に記載の樹脂シート。 The average value of the orientation angle of the inorganic filler is 30 degrees or less when the orientation angle of the inorganic filler is calculated in the cross section of the resin sheet in the direction orthogonal to the first surface. Resin sheet.
  3.  前記第1の表面と平行する方向における樹脂シートの断面において、単位面積当たりの前記無機フィラーの占有面積割合をS1とし、前記第1の表面と直交する方向における樹脂シートの断面において、単位面積当たりの前記無機フィラーの占有面積割合をS2としたときに、前記S1の前記S2に対する比が2.0以上である、請求項1又は2に記載の樹脂シート。 In the cross section of the resin sheet in the direction parallel to the first surface, the occupation area ratio of the inorganic filler per unit area is S1, and in the cross section of the resin sheet in the direction orthogonal to the first surface, per unit area The resin sheet according to claim 1 or 2, wherein a ratio of S1 to S2 is 2.0 or more, where S2 is an occupied area ratio of the inorganic filler.
  4.  前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーの粒子径をそれぞれ算出したときに、前記無機フィラーの平均粒子径が1.5μm以下である、請求項1~3のいずれか1項に記載の樹脂シート。 The average particle size of the inorganic filler is 1.5 μm or less when the particle size of the inorganic filler is calculated in the cross section of the resin sheet in the direction orthogonal to the first surface. The resin sheet according to any one of items.
  5.  前記第1の表面と直交する方向における樹脂シートの断面において、前記無機フィラーのアスペクト比をそれぞれ算出したときに、前記無機フィラーの平均アスペクト比が2.2以上5以下である、請求項1~4のいずれか1項に記載の樹脂シート。 The average aspect ratio of the inorganic filler is 2.2 or more and 5 or less when the aspect ratio of the inorganic filler is calculated in the cross section of the resin sheet in the direction orthogonal to the first surface. The resin sheet according to any one of 4 above.
  6.  ISO5660-1に準拠して、ヒーター輻射熱50kW/m及びイグニッション有りの条件で測定された平均最大発熱速度が140kW/m以下である、請求項1~5のいずれか1項に記載の樹脂シート。 The resin according to any one of claims 1 to 5, which has an average maximum heat generation rate of 140 kW / m 2 or less measured in accordance with ISO 5660-1 under conditions of heater radiant heat of 50 kW / m 2 and ignition. Sheet.
  7.  前記無機フィラーがタルクである、請求項1~6のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 6, wherein the inorganic filler is talc.
  8.  前記芳香族ポリカーボネート樹脂100重量部に対する前記無機フィラーの含有量が10重量部以上40重量部以下である、請求項1~7のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 7, wherein a content of the inorganic filler with respect to 100 parts by weight of the aromatic polycarbonate resin is 10 parts by weight or more and 40 parts by weight or less.
  9.  前記リン含有化合物が、リン酸エステルである、請求項1~8のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 8, wherein the phosphorus-containing compound is a phosphoric acid ester.
  10.  前記芳香族ポリカーボネート樹脂100重量部に対する前記リン含有化合物の含有量が5重量部以上25重量部以下である、請求項1~9のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 9, wherein the content of the phosphorus-containing compound is 5 parts by weight or more and 25 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
  11.  前記ケイ素含有化合物が、コアと、前記コアの表面に配置されたシェルとを備えるコアシェル粒子である、請求項1~10のいずれかの1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 10, wherein the silicon-containing compound is a core-shell particle having a core and a shell arranged on the surface of the core.
  12.  前記芳香族ポリカーボネート樹脂100重量部に対する前記ケイ素含有化合物の含有量が2重量部以上20重量部以下である、請求項1~11のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 11, wherein the content of the silicon-containing compound relative to 100 parts by weight of the aromatic polycarbonate resin is 2 parts by weight or more and 20 parts by weight or less.
  13.  フッ素系樹脂を含み、
     前記芳香族ポリカーボネート樹脂100重量部に対する前記フッ素系樹脂の含有量が0.5重量部以上2重量部以下である、請求項1~12のいずれか1項に記載の樹脂シート。
    Including fluorinated resin,
    The resin sheet according to any one of claims 1 to 12, wherein the content of the fluorine-based resin is 0.5 parts by weight or more and 2 parts by weight or less based on 100 parts by weight of the aromatic polycarbonate resin.
  14.  押出シート成形品である、請求項1~13のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 13, which is an extruded sheet molded product.
  15.  輸送機の内装材である、請求項1~14のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 14, which is an interior material for a transportation machine.
  16.  鉄道車両の内装材である、請求項1~15のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 1 to 15, which is an interior material for railway vehicles.
PCT/JP2019/029214 2018-11-12 2019-07-25 Resin sheet WO2020100350A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/285,608 US11970609B2 (en) 2018-11-12 2019-07-25 Resin sheet
CN201980067691.8A CN112867754B (en) 2018-11-12 2019-07-25 resin sheet
EP19883379.0A EP3882304B1 (en) 2018-11-12 2019-07-25 Resin sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018212188 2018-11-12
JP2018-212188 2018-11-12
JP2018-243066 2018-12-26
JP2018243066A JP2020079380A (en) 2018-11-12 2018-12-26 Resin sheet

Publications (1)

Publication Number Publication Date
WO2020100350A1 true WO2020100350A1 (en) 2020-05-22

Family

ID=70730220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029214 WO2020100350A1 (en) 2018-11-12 2019-07-25 Resin sheet

Country Status (1)

Country Link
WO (1) WO2020100350A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2842005A1 (en) 1978-09-27 1980-04-10 Bayer Ag POLYCARBONATES WITH ALKYLPHENYL END GROUPS, THEIR PRODUCTION AND THEIR USE
JP2004517978A (en) 2000-12-08 2004-06-17 バイエル アクチェンゲゼルシャフト Flame retardant polycarbonate-containing composition
JP2006111822A (en) 2004-10-18 2006-04-27 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
WO2007037887A1 (en) 2005-09-28 2007-04-05 General Electric Company Thermoplastic polycarbonate compositions, method of manufacture, and method of use thereof
US20070225412A1 (en) 2006-03-22 2007-09-27 Vera Buchholz Flameproofed impact-strength-modified poly(ester)carbonate compositions
JP2014240492A (en) 2008-12-23 2014-12-25 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Flameproofed impact-modified polycarbonate composition
JP2017019887A (en) * 2015-07-07 2017-01-26 住友ベークライト株式会社 Elastic material and application thereof
WO2017043532A1 (en) * 2015-09-09 2017-03-16 旭化成株式会社 Hydrogenated block copolymer, polypropylene resin composition, and molded article
JP6285085B1 (en) 2016-09-09 2018-02-28 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
WO2018047693A1 (en) * 2016-09-09 2018-03-15 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2842005A1 (en) 1978-09-27 1980-04-10 Bayer Ag POLYCARBONATES WITH ALKYLPHENYL END GROUPS, THEIR PRODUCTION AND THEIR USE
JP2004517978A (en) 2000-12-08 2004-06-17 バイエル アクチェンゲゼルシャフト Flame retardant polycarbonate-containing composition
JP2006111822A (en) 2004-10-18 2006-04-27 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition
WO2007037887A1 (en) 2005-09-28 2007-04-05 General Electric Company Thermoplastic polycarbonate compositions, method of manufacture, and method of use thereof
JP2009510217A (en) * 2005-09-28 2009-03-12 ゼネラル・エレクトリック・カンパニイ Thermoplastic polycarbonate composition and method for producing and using the same
US20070225412A1 (en) 2006-03-22 2007-09-27 Vera Buchholz Flameproofed impact-strength-modified poly(ester)carbonate compositions
JP2014240492A (en) 2008-12-23 2014-12-25 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Flameproofed impact-modified polycarbonate composition
JP2017019887A (en) * 2015-07-07 2017-01-26 住友ベークライト株式会社 Elastic material and application thereof
WO2017043532A1 (en) * 2015-09-09 2017-03-16 旭化成株式会社 Hydrogenated block copolymer, polypropylene resin composition, and molded article
JP6285085B1 (en) 2016-09-09 2018-02-28 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
WO2018047693A1 (en) * 2016-09-09 2018-03-15 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
EP3511375A1 (en) 2016-09-09 2019-07-17 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BHARADWAJ R. K.: "Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 34, no. 26, 1 December 2001 (2001-12-01), US , pages 9189 - 9192, XP093039971, ISSN: 0024-9297, DOI: 10.1021/ma010780b
NOBUHIRO SHIROIWA: "Distributed Basic Courses (XI Courses) Dispersion in plastics ", J. JPN. SOC. COLOUR MATER., FLOWERS, vol. 5, 1 January 2005 (2005-01-01), pages 233 - 239, XP093039465
SEIKEI-KAKOU: "Foundation of the filler kneading and dispersing mechanism and the points to disperse well", SPECIAL FEATURE KNEADING, vol. 23, 1 January 2011 (2011-01-01), pages 83 - 95, XP093039976
SORRENTINO A., M. TORTORA, V. VITTORIA: "Diffusion Behavior in Polymer–Clay Nanocomposites", JOURNAL OF POLYMER SCIENCE:, vol. 44, 1 January 2006 (2006-01-01), pages 165 - 274, XP093039970

Similar Documents

Publication Publication Date Title
EP2358816B1 (en) Flame retardant polycarbonate compositions, method of manufacture thereof, and articles therefrom
JPWO2014208423A1 (en) Flame-retardant sheet or film, product using the same, and method for producing the same
JP6568639B1 (en) Resin sheet
JP6285085B1 (en) Polycarbonate resin composition
KR20110044279A (en) Ignition resistant carbonate polymer composition
WO2018047693A1 (en) Polycarbonate resin composition
JP2009215415A (en) Thermoplastic resin composition and molded product
US10508191B2 (en) Flame-retardant polycarbonate resin composition, sheet and film each using same, and method for producing said sheet or film
US10696818B2 (en) Flame-retardant polycarbonate resin composition, sheet and film using same, and manufacturing method for each
US11214681B2 (en) Flame-retardant polycarbonate resin composition, sheet and film using same, and manufacturing method for each
JP6816331B1 (en) Mold
JP5276765B2 (en) Aromatic polycarbonate resin composition and molded article using the same
WO2020100350A1 (en) Resin sheet
JP2022056029A (en) Resin composition and molding
JP6276019B2 (en) Polycarbonate resin composition
JP2019038895A (en) Resin composition and molded article
JP5758649B2 (en) Polycarbonate resin composition and molded body
JP7188911B2 (en) laminate
JP2021155693A (en) Resin composition, molding and resin laminate
JP7305395B2 (en) laminate
JP7193278B2 (en) laminate
JP5217996B2 (en) Polycarbonate resin composition
JP2011038046A (en) Aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883379

Country of ref document: EP

Effective date: 20210614