[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020195786A1 - Color conversion substrate and display using same - Google Patents

Color conversion substrate and display using same Download PDF

Info

Publication number
WO2020195786A1
WO2020195786A1 PCT/JP2020/010270 JP2020010270W WO2020195786A1 WO 2020195786 A1 WO2020195786 A1 WO 2020195786A1 JP 2020010270 W JP2020010270 W JP 2020010270W WO 2020195786 A1 WO2020195786 A1 WO 2020195786A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
color conversion
conversion layer
light emitting
groups
Prior art date
Application number
PCT/JP2020/010270
Other languages
French (fr)
Japanese (ja)
Inventor
神崎達也
石田豊
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020515045A priority Critical patent/JPWO2020195786A1/ja
Publication of WO2020195786A1 publication Critical patent/WO2020195786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a color conversion substrate and a display using the same.
  • a color conversion method has been proposed as one of the methods for realizing multicolor light emission by using a self-luminous element such as an organic EL display or a micro LED display (see, for example, Patent Documents 2 and 3).
  • the color conversion method is a method of expressing multiple colors by arranging a color conversion layer that absorbs light emitted from a self-luminous element and emits light having a wavelength distribution different from the absorption wavelength in front of the light emitting element. Since this method can use a light emitting element that emits a single color, it is easy to manufacture a display, and its development in a large screen display is being actively studied.
  • the organic light emitting material contained in the green color conversion layer and the red color conversion layer absorbs the blue light from the light source and converts it into green light and red light to display the color.
  • the color conversion efficiency in the color conversion layer is low, and a display having a preferable chromaticity and sufficient brightness cannot be obtained.
  • it is preferable to use an organic light emitting material for the color conversion layer but even with the color conversion methods described in Documents 2 and 3, from the viewpoint of achieving both preferable chromaticity and sufficient brightness, it is still possible. It was inadequate.
  • An object to be solved by the present invention is to provide a color conversion substrate capable of achieving both preferable chromaticity and sufficient brightness in a color conversion substrate used for an organic EL display, a micro LED display, or the like.
  • the present invention has a green color conversion layer, a red color conversion layer, and a phosphor in a region having a partition wall on the substrate and partitioned by the partition wall.
  • a color conversion substrate having a non-color conversion layer that does not include the green color conversion layer and the red color conversion layer, the green color conversion layer and the red color conversion layer include a light emitting material, the area of the green color conversion layer is Sg, and the area of the red color conversion layer.
  • Is S, and when the area of the non-color conversion layer is Sn, Sg, Sr, and Sn are color conversion substrates that satisfy the relationship of the following formulas (A) and (B).
  • the color conversion substrate according to the present invention When the color conversion substrate according to the present invention is combined with a self-luminous light source, there is an effect that it is possible to achieve both preferable chromaticity and sufficient brightness.
  • FIG. 1 is a schematic cross-sectional view showing an example of a color conversion substrate and a display according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a color conversion substrate and a display according to an embodiment of the present invention.
  • FIG. 3 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
  • FIG. 4 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
  • FIG. 5 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of a color conversion substrate and a display according to an embodiment of the present invention.
  • FIG. 3 is a schematic top view showing an example of the shapes of the partition wall and the color conversion
  • FIG. 6 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
  • FIG. 7 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
  • the display 11 of FIG. 1 has an organic EL substrate 12 and a color conversion substrate 16.
  • the organic EL substrate 12 has an organic EL element 13 provided on the transparent substrate 14 and a sealing layer 15 that covers the organic EL element 13.
  • the color conversion substrate 16 has recesses on the substrate 110 partitioned by partition walls 19 arranged in a pattern corresponding to the organic EL element 13. In this recess, a recess in which the non-color conversion layer 17N and the blue color filter 18B were formed, a recess in which the green color conversion layer 17G and the yellow color filter 18Y were formed, a red color conversion layer 17R and a yellow color filter 18Y were formed. Consists of recesses.
  • the display 21 of FIG. 2 has an LED substrate 22 and a color conversion substrate 26.
  • the LED substrate 22 has an LED 23 provided on the transparent substrate 24.
  • the color conversion substrate 26 has recesses on the substrate 210, which are partitioned by partition walls 29 arranged in a pattern corresponding to the LED 23. In this recess, a recess in which the non-color conversion layer 27N and the blue color filter 28B were formed, a recess in which the green color conversion layer 27G and the yellow color filter 28Y were formed, a red color conversion layer 27R and a yellow color filter 28Y were formed. Consists of recesses.
  • the LED substrate 22 is preferably a mini LED substrate or a micro LED substrate in which fine LEDs are densely spread on individual pixels.
  • the green color conversion layer is a layer that converts the light incident from the light source into green light having a peak wavelength of 500 nm or more and less than 580 nm.
  • the red color conversion layer is a layer that converts light incident from a light source into red light having a peak wavelength of 580 nm or more and 750 nm or less.
  • the color conversion substrate in the present invention has a partition wall on the substrate, and has a green color conversion layer, a red color conversion layer, and a non-color conversion layer containing no phosphor in a region partitioned by the partition wall.
  • the area of the green color conversion layer is Sg
  • the area of the red color conversion layer is Sr
  • the area of the non-color conversion layer is Sn
  • Sg, Sr, and Sn are the following formulas (A) and (A).
  • the area in the present invention means that when the surfaces of the color conversion layers 17N, 17G, and 17R are present parallel to the surface of the substrate 110 in FIG. 1, the area is observed from the surface perpendicular to the surface of the substrate 110. The calculated area. Further, when the surfaces of the color conversion layers 17N, 17G, and 17R do not exist in parallel with the surface of the substrate 110, the area calculated by observing along the surfaces of the color conversion layers 17N, 17G, and 17R.
  • the relationship between the formulas (A) and (B) satisfies (i) the total area of the green color conversion layer existing on the color conversion substrate, the total area of the red color conversion layer, and the total area of the non-color conversion layer. (Ii) Regarding the total area of the green color conversion layer, the total area of the red color conversion layer, and the total area of the non-color conversion layer in one of the arbitrary 5 cm ⁇ 5 cm regions in the color conversion substrate. May be satisfied.
  • the color conversion substrate according to the present invention is (ii) the total area of the green color conversion layer, the total area of the red color conversion layer, and the non-color conversion layer in one of the arbitrary 5 cm ⁇ 5 cm regions in the color conversion substrate. It is preferable to satisfy the relationship between the formula (A) and the formula (B) for the total area.
  • the sub-pixel is a pixel composed of only one primary color, which is obtained by further dividing a colored minute point (pixel) which is a constituent unit of a screen.
  • pixel a colored minute point
  • sub-pixels of three adjacent colors of red, green, and blue three primary colors of light
  • Equation (C-1) Sn ⁇ Sg ⁇ Sr It is preferable to satisfy the relationship of.
  • the area of the green sub-pixel is the largest for high brightness.
  • Equation (C-2) Sn ⁇ Sr ⁇ Sg It is preferable to satisfy the relationship of.
  • Sg, Sr, and Sn satisfy at least one of the following relations of the formula (D) and the formula (E). Equation (D) 1.0 ⁇ Sg / Sn ⁇ 5.0 Equation (E) 1.0 ⁇ Sr / Sn ⁇ 5.0
  • Sg / Sn is preferably greater than 1.0, more preferably 1.8 or more, and even more preferably 2.4 or more. Further, it is preferably 5.0 or less, and more preferably 4.0 or less.
  • Sr / Sn is preferably greater than 1.0, more preferably 1.9 or more, and even more preferably 3.0 or more. Further, it is preferably 5.0 or less, and more preferably 4.2 or less.
  • the planar shape of the partition wall can be striped.
  • the planar shape means a shape when the color conversion substrate is viewed from directly above. Looking at the color conversion substrate from directly above means observing the color conversion substrate in the direction perpendicular to the surface of the substrate 110 in FIG. 3 shows an example in which the planar shape of the partition wall is striped.
  • the striped shape means that the partition walls are arranged substantially parallel to each other. Further, the line width of a part of the partition wall may be different. Since the partition wall has a striped shape, it is possible to reduce color mixing in the process of forming the color conversion layer, and it is possible to manufacture a display with a high yield.
  • the red color conversion layer R, the green color conversion layer G, and the non-color conversion layer B are formed in each of the striped regions.
  • the red color conversion layer R, the green color conversion layer G, and the non-color conversion layer B may have color conversion layers of different colors formed in adjacent regions as shown in FIG. 3, or color conversion layers of the same color. May be formed adjacent to each other.
  • the planar shape of the partition wall can also be a grid pattern.
  • the grid shape means a shape obtained by intersecting a plurality of vertical partition walls and horizontal partition walls.
  • FIG. 4 shows an example in which the planar shape of the partition wall is a grid pattern.
  • the angle at which the vertical partition wall and the horizontal partition wall intersect is not particularly limited, and the angle may be different for each lattice. The angles are preferably approximately orthogonal.
  • planar shape of the partition wall can be any shape such as the polygon of FIG. 5 and the triangle of FIG.
  • a plurality of arbitrary shapes such as stripes, grids, polygons, and triangles may be used in combination.
  • the light source used in the display according to the present invention is preferably a light source composed of a plurality of light sources and capable of partial drive.
  • a partially driveable light source By using a partially driveable light source, the display can be turned ON / OFF without using a liquid crystal panel, and a display having excellent contrast and response speed can be obtained.
  • Any type of light source can be used as long as it can emit light that can excite the phosphor in the color conversion layer.
  • any excitation light such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic electroluminescence (EL), an organic EL element light source, an LED light source, and an incandescent light source can be used in principle.
  • EL inorganic electroluminescence
  • the organic EL element 13 corresponds to the light source
  • the LED 23 corresponds to the light source.
  • the excitation light may have one type of emission peak or may have two or more types of emission peaks, but in order to increase the color purity, one having one type of emission peak is preferable. It is also possible to use a plurality of light sources having different types of emission peaks in any combination.
  • the light source emits blue light or blue-green light in that the color purity of blue light can be increased.
  • blue light or blue-green light it is preferable to have a maximum wavelength in the wavelength range of 430 to 500 nm, and the emission spectrum may be a single peak or a double peak.
  • those having a maximum wavelength in the wavelength range of 430 to 500 nm have a first peak in the wavelength range of 430 nm to 500 nm and a second peak in the wavelength range of 500 nm to 700 nm, such as YAG-based LEDs. Although some of them have, those having no maximum wavelength of 500 nm to 700 nm are preferable from the viewpoint of improving the color purity of blue.
  • the light source used for the light source unit is preferably a light source having maximum light emission in the wavelength range of 430 nm or more and 500 nm or less. Further, this light source preferably has maximum light emission in a wavelength range of 440 nm or more and 470 nm or less.
  • the light source used in the display according to the present invention is preferably a plurality of partially driveable blue light sources.
  • the light source used in the display according to the present invention is preferably a light emitting diode.
  • the light source is a light emitting diode
  • a plurality of light sources can be arranged in high definition, so that a high resolution display is possible. Further, since the light emitting diode has a high light emitting intensity, a display having high brightness is possible.
  • the light emitting diode has a gallium nitride based compound semiconductor in that the color purity of blue light can be increased. Since the light emitting diode is a gallium nitride compound semiconductor, the emission of excitation light can be sharpened and the color purity is improved.
  • the light source is preferably an organic electroluminescent element in which an organic layer exists between the anode and the cathode and emits light by electric energy.
  • the light source is an organic electroluminescent element that has an organic layer between the anode and the cathode and emits light by electric energy, a plurality of light sources can be arranged with high definition, so that a high-resolution display is possible. Further, since the organic electroluminescent element can be made thinner, it can contribute to making the display itself thinner.
  • the organic electroluminescent element has an anode and a cathode, and an organic layer interposed between the anode and the cathode, and the organic layer has at least a light emitting layer and an electron transporting layer, and the organic layer is provided.
  • the layer, particularly the light emitting layer is a light source that emits light by electroluminescence.
  • the organic layer is composed of only a light emitting layer / an electron transport layer, 1) a hole transport layer / a light emitting layer / an electron transport layer, and 2) a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer. 3) A laminated structure such as a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer can be mentioned. Further, each of the above layers may be either a single layer or a plurality of layers.
  • it may be a laminated type having a plurality of phosphorescent light emitting layers or fluorescent light emitting layers, or may be a light emitting element in which a fluorescent light emitting layer and a phosphorescent light emitting layer are combined. Further, light emitting layers having different emission colors can be laminated.
  • the above element configuration may be a tandem type in which a plurality of elements are laminated via an intermediate layer.
  • at least one layer is preferably a phosphorescent layer.
  • the intermediate layer is also generally referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and a known material structure can be used.
  • tandem type examples include, for example, 4) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 5) hole injection layer / hole transport layer / A charge generation layer is provided as an intermediate layer between the anode and the cathode, such as a light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer.
  • a laminated structure including is mentioned. Specifically, a pyridine derivative and a phenanthroline derivative are preferably used as the material constituting the intermediate layer.
  • a top emission type organic electroluminescent device is a top emission type organic electroluminescent device.
  • a top-emission type organic electroluminescent element for example, a method in which the anode has a laminated structure of a reflective electrode layer and a transparent electrode layer and the film thickness of the transparent electrode layer on the reflective electrode layer is changed can be mentioned.
  • a microcavity structure can be introduced into an organic electroluminescent device by appropriately laminating an organic layer on the anode and then using, for example, thin-film translucent silver or the like as a translucent electrode for the cathode.
  • the microcavity structure When the microcavity structure is introduced into the organic electroluminescent device in this way, the spectrum of the light emitted from the organic layer and emitted through the cathode becomes steeper than when the organic electroluminescent device does not have the microcavity structure. In addition, the injection strength to the front is greatly increased. When this is used for a display, it contributes to the improvement of color gamut and the improvement of brightness.
  • the light emitting layer may be either a single layer or a plurality of layers, and each is formed of a light emitting material (host material, dopant material).
  • the material constituting the light emitting layer may be a mixture of the host material and the dopant material, or may be the host material alone. Further, the host material and the dopant material may be either one type or a plurality of combinations.
  • the dopant material may be contained entirely or partially in the host material.
  • the dopant material may be laminated or dispersed.
  • the light emitting layer in which the host material and the dopant material are mixed can be formed by a co-deposition method of the host material and the dopant material or a method of premixing the host material and the dopant material and then vapor deposition.
  • the luminescent material is a fused ring derivative such as anthracene or pyrene, which has been known as a luminescent material for a long time
  • a metal chelating oxynoid compound such as tris (8-quinolinolato) aluminum, a bisstyryl anthracene derivative or di Bistylyl derivatives such as styrylbenzene derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives and the like can be used, but are not particularly limited.
  • an anthracene derivative or naphthacene derivative is preferable.
  • the host material contains an anthracene-based host material.
  • the host material contains an anthracene-based host material, high color purity and high-efficiency light emission are possible, which can contribute to low power consumption of the display.
  • a boron complex-based dopant material As the dopant material, a boron complex-based dopant material, a pyrene-based dopant material, a chrysene-based dopant material, a benzofluorentene-based dopant material, and an amine-based dopant material are preferable.
  • Boron complex-based dopant materials, pyrene-based dopant materials, chrysene-based dopant materials, benzofluorane-based dopant materials, and amine-based dopant materials exhibit extremely sharp light emission, and thus improve color purity. Further, it is preferable that the dopant material is an amine-based dopant material because the brightness is improved.
  • the dopant material is a boron complex-based dopant material because the color gamut is improved.
  • the quinoline boron complex-based dopant material is preferable because it exhibits particularly sharp light emission.
  • the light emitting layer may contain a phosphorescent material.
  • the phosphorescent material is a material that emits phosphorescent light even at room temperature.
  • an organometallic complex having iridium or platinum is more preferable from the viewpoint of having a high phosphorescent yield even at room temperature.
  • Hosts used in combination with phosphorescent dopants include indol derivatives, carbazole derivatives, indolocarbazole derivatives, pyridines, pyrimidines, nitrogen-containing aromatic compound derivatives with a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, Aromatic hydrocarbon compound derivatives such as tolucene derivatives and triphenylene derivatives, compounds containing chalcogen elements such as dibenzofuran derivatives and dibenzothiophene derivatives, and organic metal complexes such as beryllium quinolinol complexes are preferably used.
  • the triplet energy is larger than that of a generally used dopant, and the electrons and holes are not limited to these as long as they are smoothly injected and transported from the respective transport layers.
  • two or more kinds of triplet light emitting dopants may be contained, or two or more kinds of host materials may be contained.
  • one or more triplet emission dopants and one or more fluorescence emission dopants may be contained.
  • the light emitting layer contains a heat-activated delayed fluorescent material.
  • Thermally activated delayed fluorescent materials also commonly referred to as TADF materials, reduce the energy gap between the singlet excited state energy level and the triplet excited state energy level to reduce the triplet excited state to the singlet. It is a material that promotes the inverse intersystem crossing to the excited state and improves the probability of singlet exciter generation.
  • TADF materials Thermally activated delayed fluorescent materials
  • the heat-activated delayed fluorescence material may be a material that exhibits heat-activated delayed fluorescence with a single material, or may be a material that exhibits heat-activated delayed fluorescence with a plurality of materials.
  • the heat-activated delayed fluorescent material used may be a single material or a plurality of materials, and known materials can be used. Specific examples thereof include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, and oxadiazole derivatives.
  • the recess used in the present invention refers to a region partitioned by arranging partition walls in a pattern so as to correspond to a plurality of light sources.
  • the region partitioned by the partition walls 19 arranged in a pattern on the substrate 110 corresponds to the recess
  • the region partitioned by the partition walls 29 arranged in a pattern on the substrate 210 corresponds to the recess.
  • the material that can be used for the partition wall may be either photosensitive or non-photosensitive, and specifically, an epoxy resin, an acrylic resin, a siloxane polymer resin, a polyimide resin, or the like is preferably used.
  • a predetermined thin film is formed by a wet coating method such as spin coating, dip coating, roll coating, gravure coating, dispenser, etc., and further resist coating, prebaking, exposure, development, post-baking, etching, resist removal, etc.
  • the pattern may be produced by utilizing the including photolithography method.
  • a partition wall is formed using a solid material such as LiF or MgF 2
  • a film is formed by a dry process such as vacuum deposition or sputtering, and then a photolithography method as described above or a dry process such as etching is performed. The process may form a predetermined pattern.
  • the film thickness of the partition wall is preferably larger than the film thickness of the color conversion layer, and is preferably in the range of 1 to 100 ⁇ m. Further, the pattern of the partition wall may be sufficient as long as it is sufficient to prevent color mixing with the color conversion layer formed in the adjacent recesses, and is preferably 10 to 50 ⁇ m, more preferably 15 to 30 ⁇ m. ..
  • the shape of the concave portion is not particularly limited, and various shapes such as a striped shape, a grid shape, a triangular shape, a diamond shape, a hexagonal shape, and the like can be adopted. From the viewpoint of easy production and prevention of crosstalk, which will be described later, the shape of the recesses is preferably a grid pattern. Crosstalk refers to a phenomenon in which the color of a lit pixel leaks to adjacent pixels, and examples thereof include displaying green light in a pixel for displaying red.
  • the color conversion unit is a unit provided with a green color conversion layer, which will be described later, or a recess forming a red color conversion layer. It is preferable that the color conversion unit has a color conversion layer formed in a plurality of recesses. By forming the color conversion layer in the plurality of recesses, it is possible to prevent color mixing with the light emission of the adjacent color conversion layer and enable a high-resolution display.
  • the color conversion layer formed in the recess is composed of two or more types of color conversion layers that emit emitted light in different wavelength regions. Since the color conversion layer is composed of at least two types of color conversion layers, it is possible to control the emission of different colors, and it is possible to make the display multicolored.
  • the green color conversion unit forming the green color conversion layer preferably has a single emission peak in a region having a wavelength of 500 nm or more and less than 580 nm.
  • having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 500 nm or more and less than 580 nm.
  • the red color conversion unit forming the red color conversion layer preferably has a single emission peak in a region having a wavelength of 580 nm or more and 750 nm or less. Having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 580 nm or more and 750 nm or less.
  • the non-color conversion unit is a portion provided with a recess forming a non-color conversion layer, which will be described later.
  • the color conversion layer included in the present invention is a layer having a function of converting at least a part of a wavelength region of incident light and emitting emitted light in a wavelength region different from that of the incident light.
  • the color conversion layer contains at least a light emitting material and a matrix resin.
  • the color conversion layer may further contain inorganic particles and other additives.
  • the green color conversion layer preferably has a single emission peak in a region having a wavelength of 500 nm or more and less than 580 nm.
  • having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 500 nm or more and less than 580 nm.
  • the red color conversion layer preferably has a single emission peak in the region of wavelength 580 nm or more and 750 nm or less. Having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 580 nm or more and 750 nm or less.
  • the non-color conversion layer included in the present invention is a layer that does not absorb incident light or emits light in a wavelength region different from that of incident light even if it partially absorbs it.
  • the non-color conversion layer may be an air layer or a resin layer. In the case of the resin layer, inorganic particles and other additives may be further contained.
  • ⁇ Luminescent material> Known light emitting materials can be used, but since quantum dots and organic light emitting materials can efficiently absorb the light emitted from the light source, high efficiency can be achieved when used in the color conversion layer. .. Inorganic phosphors such as ⁇ -SiAlON phosphors and KSF phosphors can also be used, but quantum dots and organic light emitting materials having high absorption efficiency per unit weight at the excitation wavelength are preferably used as the light emitting material. It is more preferable to use an organic light emitting material as the light emitting material.
  • organic light emitting material examples include compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthalene, triphenylene, perylene, fluoranthene, fluorene, and indene, and derivatives thereof; Furan, pyrrol, thiophene, silol, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, diazanaphthalene, quinoxaline, pyrolopyridine Compounds having a heteroaryl ring such as and derivatives thereof; Borane derivative; 1,4-Distyrylbenzene, 4,4'-bis (2- (4-diphenylaminoph
  • the organic light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but in order to achieve high color purity, the fluorescent light emitting material is preferable.
  • compounds having a condensed aryl ring and derivatives thereof can be preferably used because of their high thermal stability and photostability.
  • a compound having a coordination bond is preferable.
  • a boron-containing compound such as a boron fluoride complex is also preferable because it has a small half-value width and can emit light with high efficiency.
  • the pyrromethene derivative can be preferably used in that it gives a high fluorescence quantum yield and has good durability. More preferably, it is a compound represented by the general formula (1).
  • R 1 to R 9 may be the same or different, respectively, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group and aryl.
  • Ether group arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, sulfo It is selected from a fused ring and an aliphatic ring formed between a group, a phosphine oxide group, and an adjacent substituent.
  • hydrogen may be deuterium. This also applies to the compounds described below or their partial structures. Further, in the following description, for example, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms has all carbon atoms of 6 to 40 including the carbon number contained in the substituent substituted with the aryl group. It is an aryl group. The same applies to other substituents that specify the number of carbon atoms.
  • the substituents in the case of substitution include an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group and an alkylthio group.
  • Sulf group and phosphine oxide group are preferable, and specific substituents which are preferable in the description of each substituent are preferable. Further, these substituents may be further substituted with the above-mentioned substituents.
  • the alkyl group is a saturated aliphatic hydrocarbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group. Shows a group, which may or may not have a substituent.
  • the additional substituent when substituted is not particularly limited, and examples thereof include an alkyl group, a halogen, an aryl group, and a heteroaryl group, and this point is also common to the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group means, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which may or may not have a substituent. ..
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to an aliphatic ring having an atom other than carbon such as a pyran ring, a piperidine ring, and a cyclic amide in the ring, which may or may not have a substituent. Good.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, a butadienyl group, etc., which may or may not have a substituent. ..
  • the carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, etc., even if it has a substituent. You do not have to have it.
  • the alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the carbon number of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group has a substituent. You do not have to have.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the alkylthio group is one in which the oxygen atom of the ether bond of the alkoxy group is replaced with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • the number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. May be good.
  • the number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the arylthio ether group is one in which the oxygen atom of the ether bond of the aryl ether group is replaced with a sulfur atom.
  • the aromatic hydrocarbon group in the arylthioether group may or may not have a substituent.
  • the number of carbon atoms of the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the aryl group is, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthrasenyl group, a benzophenanthryl group, a benzoanthrase.
  • aromatic hydrocarbon group such as an Nyl group, a chrysenyl group, a pyrenyl group, a fluoranthenyl group, a triphenylenyl group, a benzofluoranthenyl group, a dibenzoanthrasenyl group, a perylenel group and a helisenyl group.
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group are preferable.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably 6 or more and 30 or less.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthrasenyl group, preferably a phenyl group or a biphenyl group.
  • Groups, turphenyl groups and naphthyl groups are more preferred. More preferably, it is a phenyl group, a biphenyl group, a terphenyl group, and a phenyl group is particularly preferable.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group or an anthrasenyl group, preferably a phenyl group, a biphenyl group or a ter.
  • a phenyl group and a naphthyl group are more preferable. Particularly preferred is a phenyl group.
  • the heteroaryl group is, for example, a pyridyl group, a furanyl group, a thienyl group, a quinolinyl group, an isoquinolinyl group, a pyrazinyl group, a pyrimidyl group, a pyridadinyl group, a triazine group, a naphthyldinyl group, a synnolinyl group, a phthalazinyl group, a quinoxalinyl group, a quinazolinyl group, Benzofuranyl group, benzothienyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofluorocarbazolyl group, benzothienocarbazolyl
  • Non-carbon atoms such as groups, dihydroindenoc
  • the naphthyldinyl group is any of 1,5-naphthylidine group, 1,6-naphthylidine group, 1,7-naphthylidine group, 1,8-naphthylidine group, 2,6-naphthylidine group, and 2,7-naphthylidine group.
  • the heteroaryl group may or may not have a substituent.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
  • the heteroaryl groups include pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group and indrill.
  • dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzoimidazolyl group, imidazole pyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group are preferable, and pyridyl group, furanyl group, thienyl group and quinolinyl group are preferable. More preferred. Particularly preferred is a pyridyl group.
  • the heteroaryl group includes pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group, indolyl group, dibenzo.
  • a furanyl group, a dibenzothienyl group, a carbazolyl group, a benzoimidazolyl group, an imidazole pyridyl group, a benzoxazolyl group, a benzothiazolyl group and a phenanthrolinyl group are preferable, and a pyridyl group, a furanyl group, a thienyl group and a quinolinyl group are more preferable. Particularly preferred is a pyridyl group.
  • Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the carbonyl group, the carboxyl group, the ester group and the carbamoyl group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like, and these substituents may be further substituted.
  • the amino group is a substituted or unsubstituted amino group.
  • substituents in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group and the like.
  • aryl group and heteroaryl group a phenyl group, a naphthyl group, a pyridyl group and a quinolinyl group are preferable. These substituents may be further substituted.
  • the number of carbon atoms is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
  • the silyl group is, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, a vinyldimethylsilyl group, a phenyldimethylsilyl group, a tert-butyldiphenylsilyl group, or a tri.
  • Indicates an arylsilyl group such as a phenylsilyl group and a trinaphthylsilyl group.
  • Substituents on silicon may be further substituted.
  • the number of carbon atoms of the silyl group is not particularly limited, but is preferably in the range of 1 or more and 30 or less.
  • the siloxanyl group refers to, for example, a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
  • the boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, a hydroxyl group and the like. Of these, aryl groups and aryl ether groups are preferable.
  • the sulfo group is a substituted or unsubstituted sulfo group.
  • substituents in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group and the like. Of these, a linear alkyl group and an aryl group are preferable.
  • R 10 R 11 is selected from the same group as R 1 to R 9 .
  • the condensed ring and the aliphatic ring formed between the adjacent substituents are conjugated or unconjugated by any adjacent bisubstituted groups (for example, R 1 and R 2 of the general formula (1)) bonded to each other. It means to form a circular skeleton of.
  • the constituent elements of such a fused ring and the aliphatic ring may contain elements selected from nitrogen, oxygen, sulfur, phosphorus and silicon in addition to carbon.
  • these condensed ring and aliphatic ring may be condensed with yet another ring.
  • the compound represented by the general formula (1) exhibits a high emission quantum yield and a small half-value width of the emission spectrum, both efficient color conversion and high color purity can be achieved. Further, the compound represented by the general formula (1) has various properties such as luminous efficiency, color purity, thermal stability, photostability and dispersibility by introducing an appropriate substituent at an appropriate position. And physical properties can be adjusted. For example, at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted alkyl group as compared with the case where R 1 , R 3 , R 4 and R 6 are all hydrogen. Aryl groups, substituted or unsubstituted heteroaryl groups show better thermal and photostability.
  • the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like.
  • Alkyl groups having 1 to 6 carbon atoms such as sec-butyl group, tert-butyl group, pentyl group and hexyl group are preferable.
  • this alkyl group a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group are preferable from the viewpoint of excellent thermal stability. Further, from the viewpoint of preventing concentration quenching and improving the emission quantum yield, the tert-butyl group having a high sterically bulk is more preferable as the alkyl group. A methyl group is also preferably used as the alkyl group from the viewpoint of ease of synthesis and availability of raw materials.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and more preferably. It is a phenyl group and a biphenyl group. Particularly preferred is a phenyl group.
  • the heteroaryl group is preferably a pyridyl group, a quinolinyl group or a thienyl group, and more preferably a pyridyl group.
  • Kinolinyl group is particularly preferred.
  • a pyridyl group is particularly preferred.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, and a substituted or unsubstituted alkyl group is preferable because it has good solubility in a binder resin or a solvent.
  • the alkyl group is preferably a methyl group from the viewpoint of easiness of synthesis and availability of raw materials.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, with better thermal stability and better thermal stability when they are substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. It is preferable because it shows photostability. In this case, R 1 , R 3 , R 4 and R 6 may all be the same or different, and are more preferably substituted or unsubstituted aryl groups.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, and in the case of substituted or unsubstituted aryl groups, for example, R 1 ⁇ R 4 , R 3 ⁇ R 6 , R It is preferable to introduce a plurality of types of substituents such as 1 ⁇ R 3 or R 4 ⁇ R 6 .
  • " ⁇ " indicates that the bases have different structures.
  • R 1 ⁇ R 4 indicates that R 1 and R 4 are groups of different structures.
  • R 1 ⁇ R 3 or R 4 ⁇ R 6 from the viewpoint of improving the luminous efficiency and the color purity in a well-balanced manner.
  • one or more aryl groups that affect the color purity are introduced into the pyrrole rings on both sides, and the aryl that affects the luminous efficiency at other positions. Since the group can be introduced, both of these properties can be improved to the maximum.
  • an aryl group substituted with an electron donating group is preferable.
  • An electron-donating group is an atomic group that donates electrons to an atomic group substituted by an inductive effect or a resonance effect in organic electron theory.
  • Examples of the electron donating group include those having a negative value as the substituent constant ( ⁇ p (para)) of Hammett's law.
  • the Hammett equation substituent constant ( ⁇ p (para)) can be quoted from the 5th edition of the Basics of Chemistry Handbook (page II-380).
  • the electron donating group examples include an alkyl group (methyl group ⁇ p: ⁇ 0.17), an alkoxy group (methoxy group ⁇ p: ⁇ 0.27), and an amino group ( ⁇ NH 2 ⁇ p: ⁇ ”. 0.66) and the like can be mentioned.
  • an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, a tert-butyl group and a methoxy group are more preferable.
  • a tert-butyl group and a methoxy group are particularly preferable, and when these are used as the above-mentioned electron-donating groups, in the compound represented by the general formula (1), quenching due to aggregation of molecules is prevented. be able to.
  • the substitution position of the substituent is not particularly limited, but since it is necessary to suppress the twist of the bond in order to enhance the photostability of the compound represented by the general formula (1), the meta is relative to the bond position with the pyrromethene skeleton. It is preferable to combine with the position or para position.
  • an aryl group having a bulky substituent such as a tert-butyl group, an adamantyl group, or a methoxy group is preferable.
  • R 1 , R 3 , R 4 and R 6 are the same or different, respectively, and are substituted or unsubstituted aryl groups, then R 1 , R 3 , R 4 and R 6 are the same or different, respectively. It may be a substituted or unsubstituted phenyl group, and is preferable. At this time, it is more preferable that R 1 , R 3 , R 4 and R 6 are selected from the following Ar-1 to Ar-6, respectively. In this case, the combination of R 1 , R 3 , R 4 and R 6 is not particularly limited.
  • R 2 and R 5 are preferably any of hydrogen, alkyl group, carbonyl group, ester group and aryl group. Of these, hydrogen or an alkyl group is preferable from the viewpoint of thermal stability, and hydrogen is more preferable from the viewpoint of easily obtaining a narrow full width at half maximum in the emission spectrum.
  • R 8 and R 9 are alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryl ether groups, fluorines, fluorine-containing alkyl groups, fluorine-containing heteroaryl groups or fluorine-containing aryl groups, fluorine-containing alkoxy groups, and fluorine-containing aryls.
  • An ether group and a cyano group are preferable, and a fluorine, a cyano group, or a fluorine-containing aryl group is more preferable because a stable and higher fluorescence quantum yield can be obtained with respect to excitation light. From the viewpoint of ease of synthesis, it is more preferably a fluorine or cyano group. Further, it is preferable that any one of R 8 and R 9 is a cyano group. Durability is improved by introducing a cyano group.
  • the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group.
  • the fluorine-containing heteroaryl group is a fluorine-containing heteroaryl group, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group.
  • the fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
  • X is CR 7 from the viewpoint of light stability.
  • the substituent R 7 has a great influence on the durability of the compound represented by the general formula (1), that is, the decrease in the emission intensity of this compound with time.
  • R 7 is hydrogen
  • the reactivity of this part is high, so that this part easily reacts with water and oxygen in the air. This causes the decomposition of the compound represented by the general formula (1).
  • R 7 is a substituent such as an alkyl group having a large degree of freedom of movement of the molecular chain, the reactivity is certainly lowered, but the compounds aggregate with time in the color conversion sheet, and the compounds aggregate with time.
  • R 7 is preferably a group that is rigid, has a small degree of freedom of movement, and does not easily cause aggregation. Specifically, it is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. It is preferably either.
  • X is CR 7 and R 7 is a substituted or unsubstituted aryl group.
  • R 7 is a substituted or unsubstituted aryl group.
  • aryl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group and an anthrasenyl group are preferable from the viewpoint of not impairing the emission wavelength.
  • R 7 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group, and is preferably substituted or unsubstituted.
  • phenyl group a substituted or unsubstituted biphenyl group, or a substituted or unsubstituted terphenyl group. Particularly preferred is a substituted or unsubstituted phenyl group.
  • R 7 is preferably a moderately bulky substituent.
  • R 7 has a certain bulk height, molecular aggregation can be prevented, and as a result, the luminous efficiency and durability of the compound represented by the general formula (1) are further improved.
  • R 7 represented by the following general formula (2).
  • r is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, aryl thio ether.
  • k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
  • r is preferably a substituted or unsubstituted aryl group.
  • aryl groups a phenyl group and a naphthyl group are particularly preferable examples.
  • k in the general formula (2) is preferably 1 or 2, and more preferably 2 from the viewpoint of further preventing molecular aggregation. Further, when k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group.
  • the alkyl group in this case a methyl group, an ethyl group and a tert-butyl group are particularly preferable examples from the viewpoint of thermal stability.
  • r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen.
  • Methyl group, ethyl group, tert-butyl group, methoxy group are more preferable.
  • a tert-butyl group and a methoxy group are particularly preferable.
  • the fact that r is a tert-butyl group or a methoxy group is more effective in preventing quenching due to aggregation of molecules.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, and are substituted or unsubstituted alkyl groups. Further, there is a case where X is CR 7 and R 7 is a group represented by the general formula (2). In this case, it is particularly preferable that R 7 is a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, and the above-mentioned Ar-1 may be used. It is selected from ⁇ Ar-6, and further, there is a case where X is CR 7 and R 7 is a group represented by the general formula (2).
  • R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and is represented by the general formula (2) in which r is contained as a methoxy group. It is particularly preferable that it is a group to be produced.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, and may be substituted or unsubstituted. It is an alkyl group, and R 2 and R 5 may be the same or different, respectively, and is a substituted or unsubstituted ester group.
  • X is C-R 7 and R 7 is a general formula.
  • the group represented by (2) may be used. In this case, it is particularly preferable that R 7 is a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
  • R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, and the above-mentioned Ar-1 may be used.
  • ⁇ Ar-6, and R 2 and R 5 may be the same or different, respectively, are substituted or unsubstituted ester groups, and X is CR 7 and R 7 is.
  • R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and is represented by the general formula (2) in which r is contained as a methoxy group. It is particularly preferable that it is a group to be produced.
  • the compound represented by the general formula (1) can be synthesized, for example, by the method described in JP-A-8-509471 and JP-A-2000-208262. That is, the desired pyrromethene-based metal complex can be obtained by reacting the pyrromethene compound and the metal salt in the presence of a base.
  • a method of forming a carbon-carbon bond by using a coupling reaction between a halogenated derivative and a boronic acid or a boronic acid esterified derivative can be mentioned. , Not limited to this.
  • a method of forming a carbon-nitrogen bond by using a coupling reaction between a halogenated derivative and an amine or carbazole derivative under a metal catalyst such as palladium is used.
  • the present invention is not limited thereto.
  • the color conversion sheet according to the embodiment of the present invention may appropriately contain other compounds in addition to the compound represented by the general formula (1), if necessary.
  • an assist dopant such as rubrene may be contained in order to further increase the energy transfer efficiency from the excitation light to the compound represented by the general formula (1).
  • a desired organic light emitting material for example, an organic light emitting material such as a coumarin dye or a rhodamine dye may be added. it can.
  • known light emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots can be added in combination.
  • organic light emitting material other than the compound represented by the general formula (1) is shown below, but the present invention is not particularly limited thereto.
  • the quantum dots are not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of group II-VI compounds, group III-V compounds, group IV-VI compounds, and group IV compounds.
  • the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS.
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, GaNAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb. , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInNSb, GaInPAs, GaInPSb, AlInPAs, GaInPSb, InAl
  • IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSne, SnPbSe, SnPbSe ..
  • Group IV compounds include Si, Ge, SiC, SiGe and the like.
  • the quantum dots those having a core-shell structure are preferable.
  • the band gap of the compound constituting the shell layer wider than the band gap of the compound constituting the core portion, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • the combination of the core portion and the shell layer include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell layer has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be improved. It is possible to further improve.
  • the color conversion layer and the non-color conversion layer may contain a resin.
  • This resin forms a continuous phase, and may be any material that is excellent in molding processability, transparency, heat resistance, and the like.
  • the resin include a photocurable resist material having a reactive vinyl group such as acrylic-based, methacrylic-based, vinyl polysilicate-based, polyimide-based, and ring-rubber-based, epoxy resin, and silicone resin (silicone rubber, silicone gel, etc.).
  • Organopolysiloxane cured product (including crosslinked product)), urea resin, fluororesin, polycarbonate resin, acrylic resin, methacrylic resin, polyimide resin, cyclic olefin, polyethylene terephthalate resin, polypropylene resin, polystyrene resin, urethane resin, melamine
  • resins such as resins, polyvinyl resins, polyamide resins, phenol resins, polyvinyl alcohol resins, cellulose resins, aliphatic ester resins, aromatic ester resins, aliphatic polyolefin resins and aromatic polyolefin resins can be used. Further, as the resin, these copolymer resins can also be used.
  • epoxy resin, silicone resin, acrylic resin, ester resin or a mixture thereof can be preferably used from the viewpoint of transparency, and acrylic resin and ester resin are preferably used from the viewpoint of heat resistance. ..
  • the silicone resin may be either a thermosetting silicone resin or a thermoplastic silicone resin.
  • the thermosetting silicone resin cures at room temperature or a temperature of 50 to 200 ° C., and is excellent in transparency, heat resistance, and adhesiveness.
  • thermosetting silicone resin is formed, for example, by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • a material include alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, and octenyltrimethoxysilane.
  • Containing compounds and hydrogen bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc.
  • examples thereof include those formed by a hydrosilylation reaction with a compound having an atom.
  • thermosetting silicone resin known ones such as those described in JP-A-2010-159411 can be used.
  • thermosetting silicone resin it is also possible to use a commercially available silicone resin, for example, a silicone encapsulant for general LED applications.
  • a commercially available silicone resin for example, a silicone encapsulant for general LED applications.
  • Specific examples thereof include OE-6630A / B and OE-6336A / B manufactured by Toray Dow Corning Co., Ltd., SCR-1012A / B and SCR-1016A / B manufactured by Shin-Etsu Chemical Co., Ltd.
  • thermosetting silicone resin it is preferable to add a hydrosilylation reaction retarder such as acetylene alcohol to the thermosetting silicone resin in order to suppress curing at room temperature and prolong the pot life.
  • a hydrosilylation reaction retarder such as acetylene alcohol
  • Thermoplastic silicone resin is a resin that softens by heating to the glass transition temperature or melting point and exhibits fluidity. Since the thermoplastic silicone resin does not undergo a chemical reaction such as a curing reaction even if it is once heated and softened, it becomes a solid again when it returns to room temperature.
  • thermoplastic silicone resin examples include commercially available ones, for example, RSN series such as RSN-0805 and RSN-0217 manufactured by Toray Dow Corning.
  • thermoplastic resin since the thermoplastic resin does not contain a reactive component, it can react with the light emitting material and the light emitting material and suppress the deterioration of the light emitting material. Therefore, it is preferable to use a thermoplastic resin for the color conversion layer in the present invention.
  • the color conversion layer may contain additives as long as the effects of the present invention are not impaired.
  • additives include light-resistant stabilizers such as dispersion stabilizers, leveling agents, antioxidants, flame retardants, defoaming agents, plasticizers, cross-linking agents, curing agents, and ultraviolet absorbers.
  • Adhesive aids such as silane coupling agents and the like.
  • the color conversion layer may contain inorganic particles for the purpose of increasing the efficiency of light extraction from the color conversion layer.
  • the inorganic particles include fine particles composed of glass, titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, barium titanate and the like. These may be used alone or in combination of two or more. Silica, alumina, titania and zirconia are preferable from the viewpoint of easy availability.
  • an ink containing a constituent material of the color conversion layer is prepared, formed on the entire surface of a transparent substrate by a coating method such as a spin coating method, and then patterned by a photolithography method or the like.
  • the color conversion layer may be formed in a pattern by a screen printing method or the like, or the color conversion layer may be formed in a pattern by an inkjet method.
  • the color conversion substrate includes a partition wall, a green color conversion layer, a red color conversion layer, and a non-color conversion layer on a transparent substrate.
  • the red color conversion layer is formed of an organic light emitting material that absorbs at least blue light and emits red light.
  • the green color conversion layer is formed of an organic light emitting material that absorbs at least blue light and emits green light.
  • the red color conversion layer, the green color conversion layer, and the non-color conversion layer are arranged between the partition walls (recessions).
  • the excitation light may be incident from the transparent substrate side and visually recognized from the side opposite to the transparent substrate, or the excitation light may be incident from the color conversion layer side and visually recognized from the transparent substrate side.
  • the quantum yield when the color conversion substrate is measured as a sample is usually 0.5 or more, preferably 0.7 or more, more preferably 0.7 or more when the color conversion substrate is irradiated with blue light having a peak wavelength of 440 to 460 nm. It is 0.8 or more, more preferably 0.9 or more.
  • the green color conversion layer according to the embodiment of the present invention comprises a light emitting material (hereinafter referred to as "light emitting material (a1)”) that exhibits light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm when photoexcited. It is preferable to include it.
  • a1 light emitting material
  • the red color conversion layer according to the embodiment of the present invention is a light emitting material (hereinafter referred to as "light emitting material (b1)") that exhibits light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less when photoexcited. ), Is preferable. It is more preferable that the light emitting material (a1) and the light emitting material (b1) are light emitting materials excited by light having a wavelength in the range of 400 nm or more and 500 nm or less.
  • the green color conversion layer according to the embodiment of the present invention is an organic light emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm when photoexcited (hereinafter, “organic light emitting material (a2)). It is more preferable to include).
  • the red color conversion layer according to the embodiment of the present invention is an organic light emitting material exhibiting light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less when photoexcited (hereinafter, “organic light emitting material (b2)). ”), Is more preferable. It is more preferable that the organic light emitting material (a2) and the organic light emitting material (b2) are organic light emitting materials excited by light having a wavelength in the range of 400 nm or more and 500 nm or less.
  • the excitation light having a wavelength in the range of 400 nm or more and 500 nm or less has a relatively small excitation energy. Therefore, light emission with good color purity can be obtained without causing decomposition of the light emitting material in the color conversion layer.
  • the organic light emitting material (a2) contained in the green color conversion layer according to the embodiment of the present invention may be only one type or may be used in combination of two or more. Further, in addition to the organic light emitting material (a2), a light emitting material exhibiting light emission observed in a region having a peak wavelength of 450 nm or more and 530 nm or less when excited by light having a wavelength in the range of 400 nm or more and 500 nm or less may be further contained. ..
  • the organic light emitting material (b2) contained in the red color conversion composition according to the embodiment of the present invention may be only one type or may be used in combination of two or more. Further, the organic light emitting material (a2) may be contained in addition to the organic light emitting material (b2), and by being excited by light having a wavelength in the range of 400 nm or more and 500 nm or less, it is observed in a region having a peak wavelength of 450 nm or more and 530 nm or less. It may further contain a light emitting material that exhibits light emission.
  • a part of the excitation light having a wavelength in the range of 400 nm or more and 500 nm or less can be used as blue light emission by itself by passing through a non-color conversion portion included in the color conversion substrate according to the embodiment of the present invention. it can. Therefore, by combining a color conversion board having a green color conversion unit, a red color conversion unit, a non-color conversion unit, and a partially driveable blue light source, it is possible to display blue, green, and red in a single color and white. Therefore, full-color display of the display becomes possible. That is, green can be displayed by partially lighting only the blue light source located in the green color conversion unit, and red can be displayed by partially lighting only the blue light source located in the red color conversion unit. It is possible to display blue by partially turning on only the blue light source located in the non-color conversion unit.
  • organic luminescent material (a2) examples include coumarin derivatives such as coumarin 6, coumarin 7, and coumarin 153, cyanine derivatives such as indocyanine green, fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, and carboxyfluorescein diacetate, and phthalocyanine such as phthalocyanine green.
  • perylene derivatives such as diisobutyl-4,10-dicyanoperylene-3,9-dicarboxylate, other pyromethene derivatives, stillben derivatives, oxazine derivatives, naphthalimide derivatives, pyrazine derivatives, benzoimidazole derivatives, benzoxazole derivatives, benzo Suitable compounds include thiazole derivatives, imidazole pyridine derivatives, azole derivatives, compounds having a fused aryl ring such as anthracene, derivatives thereof, aromatic amine derivatives, and organic metal complex compounds.
  • the organic light emitting material (a2) is not particularly limited to these.
  • the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability.
  • the pyrromethene derivative for example, the compound represented by the general formula (1) is preferable because it exhibits high luminescence with high color purity.
  • organic light emitting material (b2) examples include cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, rhodamine B, rhodamine 6G, rhodamine 101, sulfodamine 101 and the like.
  • Rhodamine derivatives pyridine derivatives such as 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium-parklorate, N, N'-bis (2,6-diisopropylphenyl) Perylene derivatives such as -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-bisdicarboimide, as well as porphyrin derivatives, pyromethene derivatives, oxazine derivatives, pyrazine derivatives, naphthacene and dibenzodiindeno Suitable compounds include compounds having a fused aryl ring such as perylene, derivatives thereof, and organic metal complex compounds. However, the organic light emitting material (b2) is not particularly limited to these.
  • the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability.
  • the pyrromethene derivative for example, the compound represented by the general formula (1) is preferable because it exhibits high luminescence with high color purity.
  • the content of the organic light emitting material (a2) contained in the green color conversion layer according to the embodiment of the present invention includes the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion sheet to be produced. Although it depends on the thickness and transmittance, it is preferably 5.0 ⁇ 10 -6 mol / m 2 or more and 5.0 ⁇ 10 -3 mol / m 2 or less per unit area of the color conversion substrate, preferably 1.0.
  • ⁇ 10 -5 mol / m 2 or more and 1.0 ⁇ 10 -3 mol / m 2 or less is more preferable, and 2.0 ⁇ 10 -5 mol / m 2 or more and 1.0 ⁇ 10 -3 mol / m It is more preferably 2 or less, and even more preferably 5.0 ⁇ 10 -5 mol / m 2 or more and 1.0 ⁇ 10 -3 mol / m 2 or less.
  • the content of the organic light emitting material (b2) contained in the red color conversion layer according to the embodiment of the present invention includes the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion sheet to be produced. Although it depends on the thickness and transmittance of the material, it is preferably 5.0 ⁇ 10 -6 mol / m 2 or more and 5.0 ⁇ 10 -3 mol / m 2 or less per unit area of the color conversion substrate.
  • the color conversion substrate in the present invention preferably has a color filter.
  • the color filter is a layer for transmitting a specific wavelength range of visible light, making the transmitted light a desired hue, and improving the color purity of the transmitted light.
  • the blue light from the excitation light source cannot be sufficiently cut, so that the converted light is mixed with blue light, and as a result, the converted light cannot be selectively obtained, resulting in high color purity. I can't get it. Therefore, by using a color filter, it is possible to selectively cut only blue light and extract only converted light, and the color purity is improved.
  • the color filter used in the present invention can be formed by using a material used for a flat panel display such as a liquid crystal display.
  • a pigment-dispersed material in which a pigment is dispersed in a photoresist is often used.
  • a blue color filter that transmits a wavelength of 400 nm to 550 nm, a green color filter that transmits a wavelength of 500 nm to 600 nm, a yellow color filter that transmits a wavelength of 500 nm or more, or a red color filter that transmits a wavelength of 600 nm or more is used.
  • the color filters may be laminated apart from the color conversion unit, or may be integrated and laminated.
  • a color filter may be formed on the color conversion substrate, or a color filter substrate may be produced separately from the color conversion substrate and superposed. Further, it is preferable that the color conversion unit and the color filter are stacked in this order from the light source.
  • the blue color filter is preferably formed on the non-color conversion portion
  • the green color filter is preferably formed on the green color conversion layer
  • the red color filter is preferably formed on the red color conversion layer.
  • the yellow color filter is preferably formed on the green color conversion layer and the red color conversion layer.
  • the color filter, the non-color conversion unit, the green color conversion layer, and the red color conversion layer may be directly laminated, or may have an air layer or a resin layer between them.
  • the resin of the resin layer the resin described in ⁇ Resin contained in the color conversion layer and the non-color conversion layer> can be appropriately used.
  • the display having the color conversion substrate according to the present invention includes at least a partially driven blue light source.
  • a partially driven blue light source an organic electroluminescent element, a blue LED light source, or the like can be used.
  • a color filter may be included in addition to the light source, and an optical film such as a prism film or a diffusion film may be included.
  • the display having the color conversion substrate according to the present invention has a minimum of three sub-pixels in which the green color conversion unit is a green sub-pixel, the red color conversion unit is a red sub-pixel, and the non-color conversion unit is a blue sub-pixel. It constitutes one pixel which is a unit.
  • FIG. 7 shows a partition wall width 71, a blue sub-pixel width 74, a green sub-pixel width 73, and a red sub-pixel width 72 when the partition wall shape is striped.
  • the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or less.
  • the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are 300 ⁇ m or less, a higher-definition display can be obtained.
  • the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are 10 ⁇ m or more, a color conversion substrate with good yield can be manufactured.
  • the partition wall width is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 10 ⁇ m or less. Further, the partition wall width is preferably 5 ⁇ m or more. When the partition wall width is in the above range, a display having high brightness and good color purity can be obtained.
  • the chromaticity and brightness of the display having the color conversion substrate according to the present invention can be measured by a luminance meter or the like with the display lit.
  • the measurement can be performed according to the organic EL display module measuring method "EIAJ ED-2810" defined by the Japan Electronics Machinery Manufacturers Association.
  • the chromaticity when the display is displayed in white can be expressed as chromaticity coordinates (x, y) according to the "XYZ color system” defined by the International Commission on Illumination (CIE).
  • the chromaticity x when displayed in white is preferably 0.25 or more, more preferably 0.28 or more, and further preferably 0.30 or more.
  • the chromaticity y when displayed in white is preferably 0.25 or more, more preferably 0.28 or more, and further preferably 0.30 or more. Further, it is preferably 0.36 or less, and more preferably 0.34 or less.
  • the brightness of the display is preferably 100 nits or more, more preferably 150 nits or more, further preferably 200 nits or more, further preferably 250 nits or more, and particularly preferably 300 nits or more.
  • the organic EL display was formed with 160 ⁇ 120 ⁇ RGB pixels.
  • Example 1 (Making a color conversion board) 1.
  • Fabrication of partition wall VPA204 / P5.4-2 (manufactured by Nippon Steel Chemical Co., Ltd.) is spin-coated on a transparent substrate (Corning 1737 glass: 50 x 50 x 1.1 mm) as a partition wall material to form a striped pattern. It was exposed to ultraviolet rays through a photomask, developed with a 2% aqueous sodium carbonate solution, and then baked at 200 ° C. to form a transparent partition wall (thickness 30 ⁇ m) pattern.
  • the partition wall width was 10 ⁇ m
  • the red sub-pixel width was 110 ⁇ m
  • the green sub-pixel width was 110 ⁇ m
  • the blue sub-pixel width was 80 ⁇ m.
  • Red Color Conversion Layer An ink was prepared by mixing a red pyrromethene derivative RD-1 (0.01% by weight) and polymethyl methacrylate (manufactured by Kuraray) (4% by weight) in a propylene glycol monomethyl acetate solvent. The prepared ink was adhered to the surface of the red color conversion layer region in a nitrogen atmosphere using an inkjet method. Then, the substrate was dried at 200 ° C. for 30 minutes to prepare a red color conversion layer having a film thickness of 25 ⁇ m.
  • RD-1 red pyrromethene derivative
  • polymethyl methacrylate manufactured by Kuraray
  • the black coloring composition was prepared by mixing and stirring a mixture having the following composition and filtering it with a filter having a pore size of 1.0 ⁇ m.
  • Carbon black dispersion Mikuni Color Co., Ltd. (TPBK-2016) 29.8 parts by weight
  • Resin V259-ME (Nippon Steel Chemical Co., Ltd.) (solid content 56.1% by weight) 10.3 parts by weight
  • Monomer DPHA ( Nippon Kayaku Co., Ltd.) 2.58 parts by weight
  • Solvent propylene glycol monomethyl ether acetate 92.0 parts by weight
  • Dispersant DISPER BYK 21116 (manufactured by Ciba Specialty Chemicals) Big Chemy Japan Co., Ltd.) 2.6 parts by weight.
  • the above black coloring composition was applied using a spin coating method.
  • the formed film was patterned by a photolithography method to prepare a black matrix having a line pattern having a line width of 10 ⁇ m, a pitch of 0.33 mm, and a film thickness of 2 ⁇ m.
  • the yellow coloring composition was prepared by mixing and stirring a mixture having the following composition and filtering it with a filter having a pore size of 1.0 ⁇ m.
  • Yellow pigment Pigment Yellow 150 7.5 parts by weight
  • Resin Aronix M7100 (manufactured by Toa Synthetic Chemical Industry Co., Ltd.) 5.5 parts by weight
  • Monomer Dipentaesterol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) 5.0 parts by weight started
  • Solvent Eukerester EEP (manufactured by Dow Chemical Co., Ltd.) 13.5 parts by weight propylene glycol monomethyl ether acetate 41.0 parts by weight
  • Dispersant DISPER BYK 21116 (manufactured by Big Chemie Japan Co., Ltd.) 2.3 parts by weight.
  • the above yellow coloring composition was applied using a spin coating method.
  • the formed film was patterned by a photolithography method to prepare a yellow color filter having a thickness of 2 ⁇ m on the red color conversion layer and the green color conversion layer.
  • the TFTs were arranged on the organic EL substrate corresponding to the pixel shape patterned on the color conversion substrate prepared above. Subsequently, an Ag film was formed on the organic EL substrate by a sputtering method, and then an ITO transparent conductive film was formed in a pattern with a thickness of 165 nm. The obtained substrate was ultrasonically cleaned with Semicoclean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water.
  • Semicoclean 56 trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • this substrate was subjected to UV-ozone treatment for 1 hour, installed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN 6 was first deposited at 5 nm as a hole injection layer, and HT-1 was deposited at 50 nm as a hole transport layer.
  • H-1 as a host material and BD-1 as a blue dopant material were deposited to a thickness of 20 nm so that the doping concentration was 5% by weight.
  • ET-1 was used as the electron transport layer and 2E-1 was used as the donor material, and the layers were laminated to a thickness of 35 nm so that the vapor deposition rate ratio of ET-1 and 2E-1 was 1: 1.
  • magnesium and silver were co-deposited at 60 nm to form a cathode, and Alq 3 was deposited to a thickness of 60 nm.
  • a sealed glass substrate was adhered to the substrate after the film formation to obtain a partially driveable top emission type organic EL substrate.
  • the size of the blue light source for the red subpixel was 300 ⁇ m ⁇ 100 ⁇ m
  • the size of the blue light source for the green subpixel was 300 ⁇ m ⁇ 100 ⁇ m
  • the size of the blue light source for the blue subpixel was 300 ⁇ m ⁇ 70 ⁇ m.
  • Each blue light source was prepared so as to be arranged in a grid pattern with an interval of 10 ⁇ m from the adjacent blue light sources on the top, bottom, left, and right.
  • Examples 2 to 9, Comparative Example 1 The color conversion substrate, the organic EL substrate, and the organic EL display are operated in the same manner as in the first embodiment except that the width of each sub-pixel and the size of the blue light source corresponding to each sub-pixel are as shown in Tables 1 and 2. Made. The chromaticity and brightness measurement results of the obtained organic EL display are shown in Tables 1 and 2. RD-1, GD-1, BD-1, HAT-CN 6 , HT-1, H-1, ET-1, and 2E-1 are the compounds shown below.
  • Example 10 A color conversion substrate, an organic EL substrate, and an organic EL display were produced by the same operations as in Example 1 except that the width of each sub-pixel and the size of the blue light source corresponding to each sub-pixel were set as shown in Table 3.
  • Table 3 shows the chromaticity and brightness measurement results of the obtained organic EL display.
  • the total area of the red color conversion layer existing on the color conversion substrate, the total area of the green color conversion layer, and the total area of the non-color conversion layer are also expressed in the formulas (A) and (B). And it was confirmed that the relation of the equation (C-2) was satisfied.
  • the color conversion substrate according to the present invention and the display using the same can achieve both preferable chromaticity and sufficient brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This color conversion substrate is characterized by having a partition wall on a substrate and having, in a region partitioned by the partition wall, a green color conversion layer, a red color conversion layer, and a non-color conversion layer not including a phosphor, wherein the green color conversion layer and the red color conversion layer include light-emitting materials, and when Sg is the area of the green color conversion layer, Sr is the area of the red color conversion layer, and Sn is the area of the non-color conversion layer, Sg, Sr, and Sn satisfy the relationship of the following expressions (A) and (B). (A): Sn < Sg, (B): Sn < Sr

Description

色変換基板およびそれを用いたディスプレイColor conversion board and display using it
 本発明は、色変換基板およびそれを用いたディスプレイに関する。 The present invention relates to a color conversion substrate and a display using the same.
 色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明などへ応用する検討が、盛んに行われている。 There are many studies to apply the multi-color technology based on the color conversion method to liquid crystal displays, organic EL displays, lighting, and so on.
 液晶ディスプレイの色再現性を向上する手段として、無機半導体微粒子による量子ドットを色変換組成物の成分として用いる技術が提案されている(例えば、特許文献1参照)。 As a means for improving the color reproducibility of a liquid crystal display, a technique of using quantum dots made of inorganic semiconductor fine particles as a component of a color conversion composition has been proposed (see, for example, Patent Document 1).
 また、有機ELディスプレイやマイクロLEDディスプレイのような自発光型素子を用いて多色発光を実現する方法の一つとして、色変換方式が提案されている(例えば、特許文献2および3参照)。色変換方式とは、自発光型素子からの発光を吸収し、吸収波長と異なる波長分布の発光を行う色変換層を発光素子の前面に配設して多色を表現する方法である。本方式は単色発光の発光素子を用いることができるため、ディスプレイの製造が容易であり、大画面ディスプレイへの展開も積極的に検討されている。 Further, a color conversion method has been proposed as one of the methods for realizing multicolor light emission by using a self-luminous element such as an organic EL display or a micro LED display (see, for example, Patent Documents 2 and 3). The color conversion method is a method of expressing multiple colors by arranging a color conversion layer that absorbs light emitted from a self-luminous element and emits light having a wavelength distribution different from the absorption wavelength in front of the light emitting element. Since this method can use a light emitting element that emits a single color, it is easy to manufacture a display, and its development in a large screen display is being actively studied.
特開2011-241160号公報Japanese Unexamined Patent Publication No. 2011-241160 特開平8-286033号公報Japanese Unexamined Patent Publication No. 8-286033 国際公開第2010/092694号International Publication No. 2010/092694
 しかし、色変換方式によるディスプレイは、緑色色変換層および赤色色変換層に含まれる有機発光材料が光源からの青色光を吸収し、緑色光および赤色光に変換することにより色を表示するため、色変換層における色変換効率が低く、好ましい色度でかつ十分な輝度を有するディスプレイが得られないという課題があった。色変換効率向上のためには色変換層に有機発光材料を使用することが好ましいが、文献2および3に記載の色変換方式でも、好ましい色度と十分な輝度を両立するという観点では、未だ不十分であった。 However, in a display based on the color conversion method, the organic light emitting material contained in the green color conversion layer and the red color conversion layer absorbs the blue light from the light source and converts it into green light and red light to display the color. There is a problem that the color conversion efficiency in the color conversion layer is low, and a display having a preferable chromaticity and sufficient brightness cannot be obtained. In order to improve the color conversion efficiency, it is preferable to use an organic light emitting material for the color conversion layer, but even with the color conversion methods described in Documents 2 and 3, from the viewpoint of achieving both preferable chromaticity and sufficient brightness, it is still possible. It was inadequate.
 本発明が解決しようとする課題は、有機ELディスプレイやマイクロLEDディスプレイ等に用いられる色変換基板において、好ましい色度と十分な輝度を両立することができる色変換基板を提供することである。 An object to be solved by the present invention is to provide a color conversion substrate capable of achieving both preferable chromaticity and sufficient brightness in a color conversion substrate used for an organic EL display, a micro LED display, or the like.
 上述した課題を解決し、目的を達成するために、本発明は、基板上に隔壁を有し、かつ隔壁により仕切られた領域に、緑色色変換層と、赤色色変換層と、蛍光体を含まない非色変換層とを有する色変換基板であって、前記緑色色変換層および赤色色変換層は発光材料を含み、かつ前記緑色色変換層の面積をSg、前記赤色色変換層の面積をSr、前記非色変換層の面積をSnとしたとき、Sg、Sr、Snが以下の式(A)および式(B)の関係を満たす色変換基板である。
式(A) Sn<Sg
式(B) Sn<Sr
In order to solve the above-mentioned problems and achieve the object, the present invention has a green color conversion layer, a red color conversion layer, and a phosphor in a region having a partition wall on the substrate and partitioned by the partition wall. A color conversion substrate having a non-color conversion layer that does not include the green color conversion layer and the red color conversion layer, the green color conversion layer and the red color conversion layer include a light emitting material, the area of the green color conversion layer is Sg, and the area of the red color conversion layer. Is S, and when the area of the non-color conversion layer is Sn, Sg, Sr, and Sn are color conversion substrates that satisfy the relationship of the following formulas (A) and (B).
Formula (A) Sn <Sg
Equation (B) Sn <Sr
 本発明に係る色変換基板を自発光型の光源と組み合わせた場合、好ましい色度と十分な輝度を両立させることが可能となるという効果を奏する。 When the color conversion substrate according to the present invention is combined with a self-luminous light source, there is an effect that it is possible to achieve both preferable chromaticity and sufficient brightness.
図1は、本発明の実施の形態に係る色変換基板およびディスプレイの一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a color conversion substrate and a display according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る色変換基板およびディスプレイの一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a color conversion substrate and a display according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る色変換基板に含まれる隔壁および色変換層の形状の一例を示す模式上面図である。FIG. 3 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る色変換基板に含まれる隔壁および色変換層の形状の一例を示す模式上面図である。FIG. 4 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る色変換基板に含まれる隔壁および色変換層の形状の一例を示す模式上面図である。FIG. 5 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る色変換基板に含まれる隔壁および色変換層の形状の一例を示す模式上面図である。FIG. 6 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る色変換基板に含まれる隔壁および色変換層の形状の一例を示す模式上面図である。FIG. 7 is a schematic top view showing an example of the shapes of the partition wall and the color conversion layer included in the color conversion substrate according to the embodiment of the present invention.
 以下、本発明に係る色変換基板およびディスプレイの好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments of the color conversion substrate and display according to the present invention will be specifically described, but the present invention is not limited to the following embodiments and may be variously modified according to an object and an application. Can be carried out.
 図1のディスプレイ11は、有機EL基板12および色変換基板16を有する。有機EL基板12は、透明基板14上に設けられた有機EL素子13および有機EL素子13を覆う封止層15を有する。色変換基板16は、基板110上に、有機EL素子13に対応するパターン状に配置された隔壁19によって区画された凹部を有する。この凹部は、非色変換層17Nおよび青色カラーフィルター18Bが形成された凹部、緑色色変換層17Gおよび黄色カラーフィルター18Yが形成された凹部、赤色色変換層17Rおよび黄色カラーフィルター18Yが形成された凹部からなる。 The display 11 of FIG. 1 has an organic EL substrate 12 and a color conversion substrate 16. The organic EL substrate 12 has an organic EL element 13 provided on the transparent substrate 14 and a sealing layer 15 that covers the organic EL element 13. The color conversion substrate 16 has recesses on the substrate 110 partitioned by partition walls 19 arranged in a pattern corresponding to the organic EL element 13. In this recess, a recess in which the non-color conversion layer 17N and the blue color filter 18B were formed, a recess in which the green color conversion layer 17G and the yellow color filter 18Y were formed, a red color conversion layer 17R and a yellow color filter 18Y were formed. Consists of recesses.
 図2のディスプレイ21は、LED基板22および色変換基板26を有するものである。LED基板22は、透明基板24上に設けられたLED23を有する。色変換基板26は、基板210上に、LED23に対応するパターン状に配置された隔壁29によって区画された凹部を有する。この凹部は、非色変換層27Nおよび青色カラーフィルター28Bが形成された凹部、緑色色変換層27Gおよび黄色カラーフィルター28Yが形成された凹部、赤色色変換層27Rおよび黄色カラーフィルター28Yが形成された凹部からなる。また、LED基板22は微細なLEDを個々の画素に高密度に敷き詰めたミニLED基板もしくはマイクロLED基板であることが好ましい。 The display 21 of FIG. 2 has an LED substrate 22 and a color conversion substrate 26. The LED substrate 22 has an LED 23 provided on the transparent substrate 24. The color conversion substrate 26 has recesses on the substrate 210, which are partitioned by partition walls 29 arranged in a pattern corresponding to the LED 23. In this recess, a recess in which the non-color conversion layer 27N and the blue color filter 28B were formed, a recess in which the green color conversion layer 27G and the yellow color filter 28Y were formed, a red color conversion layer 27R and a yellow color filter 28Y were formed. Consists of recesses. Further, the LED substrate 22 is preferably a mini LED substrate or a micro LED substrate in which fine LEDs are densely spread on individual pixels.
 ここで、緑色色変換層は、光源から入射された光を、ピーク波長500nm以上580nm未満の緑色の光に変換する層である。また、赤色色変換層は、光源から入射された光を、ピーク波長580nm以上750nm以下の赤色の光に変換する層である。 Here, the green color conversion layer is a layer that converts the light incident from the light source into green light having a peak wavelength of 500 nm or more and less than 580 nm. The red color conversion layer is a layer that converts light incident from a light source into red light having a peak wavelength of 580 nm or more and 750 nm or less.
 <色変換層および非色変換層の面積比>
 本発明における色変換基板は、基板上に隔壁を有し、かつ隔壁により仕切られた領域に緑色色変換層と、赤色色変換層と、蛍光体を含まない非色変換層とを有する色変換基板であって、緑色色変換層の面積をSg、赤色色変換層の面積をSr、非色変換層の面積をSnとしたとき、Sg、Sr、Snが以下の式(A)および式(B)の関係を満たす。
<Area ratio of color conversion layer and non-color conversion layer>
The color conversion substrate in the present invention has a partition wall on the substrate, and has a green color conversion layer, a red color conversion layer, and a non-color conversion layer containing no phosphor in a region partitioned by the partition wall. In the substrate, when the area of the green color conversion layer is Sg, the area of the red color conversion layer is Sr, and the area of the non-color conversion layer is Sn, Sg, Sr, and Sn are the following formulas (A) and (A). B) Satisfies the relationship.
 
式(A)Sn<Sg
式(B)Sn<Sr
 
 ここで、本発明における面積とは、図1において各色変換層17N、17G、および17Rの面が基板110の面と平行に存在する場合、基板110の面に対して垂直な面から観察して算出した面積をいう。また、各色変換層17N、17G、および17Rの面が基板110の面と平行に存在しない場合、各色変換層17N、17G、および17Rの面に沿って観察し、算出した面積をいう。式(A)および式(B)の関係は、(i)色変換基板に存在する緑色色変換層の面積の総和、赤色色変換層の面積の総和、非色変換層の面積の総和について満たしてもよいし、(ii)色変換基板内の任意の5cm×5cm領域の1つにおける緑色色変換層の面積の総和、赤色色変換層の面積の総和、非色変換層の面積の総和について満たしてもよい。本発明に係る色変換基板は、(ii)色変換基板内の任意の5cm×5cm領域の1つにおける緑色色変換層の面積の総和、赤色色変換層の面積の総和、非色変換層の面積の総和について式(A)および式(B)の関係を満たすことが好ましい。

Formula (A) Sn <Sg
Equation (B) Sn <Sr

Here, the area in the present invention means that when the surfaces of the color conversion layers 17N, 17G, and 17R are present parallel to the surface of the substrate 110 in FIG. 1, the area is observed from the surface perpendicular to the surface of the substrate 110. The calculated area. Further, when the surfaces of the color conversion layers 17N, 17G, and 17R do not exist in parallel with the surface of the substrate 110, the area calculated by observing along the surfaces of the color conversion layers 17N, 17G, and 17R. The relationship between the formulas (A) and (B) satisfies (i) the total area of the green color conversion layer existing on the color conversion substrate, the total area of the red color conversion layer, and the total area of the non-color conversion layer. (Ii) Regarding the total area of the green color conversion layer, the total area of the red color conversion layer, and the total area of the non-color conversion layer in one of the arbitrary 5 cm × 5 cm regions in the color conversion substrate. May be satisfied. The color conversion substrate according to the present invention is (ii) the total area of the green color conversion layer, the total area of the red color conversion layer, and the non-color conversion layer in one of the arbitrary 5 cm × 5 cm regions in the color conversion substrate. It is preferable to satisfy the relationship between the formula (A) and the formula (B) for the total area.
 Sn≧Sgの場合、およびSn≧Srの場合、赤色サブ画素、緑色サブ画素、および青色サブ画素に相当する光源をすべて点灯させて白色表示することができるが、青みがかった白となってしまうという課題がある。ここで、サブ画素とは、画面の構成単位となる色の付いた微細な点(画素)をさらに分割した、一つの原色のみからなる画素である。通常、隣り合う赤・緑・青の三色(光の三原色)のサブ画素がまとまって一つの画素として機能する。しかし、式(A)および式(B)の関係を満たす場合、複雑な回路設計および制御システムを必要とすることなく、好ましい色度と十分な輝度を両立させることが可能である。特に、エネルギー変換効率の低い赤色サブ画素の面積が最も大きい、
式(C-1) Sn<Sg<Sr
の関係を満たすことが好ましい。
また、高輝度化のためには、緑色サブ画素の面積が最も大きい、
式(C-2) Sn<Sr<Sg
の関係を満たすことが好ましい。
When Sn ≧ Sg and when Sn ≧ Sr, all the light sources corresponding to the red sub-pixel, the green sub-pixel, and the blue sub-pixel can be turned on and displayed in white, but the result is bluish white. There are challenges. Here, the sub-pixel is a pixel composed of only one primary color, which is obtained by further dividing a colored minute point (pixel) which is a constituent unit of a screen. Normally, sub-pixels of three adjacent colors of red, green, and blue (three primary colors of light) function as one pixel. However, when the relationship between the formula (A) and the formula (B) is satisfied, it is possible to achieve both preferable chromaticity and sufficient brightness without requiring a complicated circuit design and control system. In particular, the area of the red sub-pixel with low energy conversion efficiency is the largest.
Equation (C-1) Sn <Sg <Sr
It is preferable to satisfy the relationship of.
In addition, the area of the green sub-pixel is the largest for high brightness.
Equation (C-2) Sn <Sr <Sg
It is preferable to satisfy the relationship of.
 また、Sg、Sr、Snが、以下の式(D)および式(E)の関係の少なくとも1つを満たすことが好ましい。
式(D) 1.0<Sg/Sn≦5.0
式(E) 1.0<Sr/Sn≦5.0
式(D)の関係を満たすことにより、視感度の大きい緑の輝度を高くすることができ、ディスプレイの輝度をより向上することができるため好ましい。
Further, it is preferable that Sg, Sr, and Sn satisfy at least one of the following relations of the formula (D) and the formula (E).
Equation (D) 1.0 <Sg / Sn ≦ 5.0
Equation (E) 1.0 <Sr / Sn ≦ 5.0
By satisfying the relationship of the formula (D), the brightness of green having high luminosity factor can be increased, and the brightness of the display can be further improved, which is preferable.
 さらに、式(E)の関係を満たすことにより、エネルギー変換効率が特に低い赤色の輝度を向上することができ、ディスプレイの輝度をさらに向上することができるため好ましい。 Further, by satisfying the relationship of the formula (E), it is possible to improve the brightness of red, which has a particularly low energy conversion efficiency, and it is possible to further improve the brightness of the display, which is preferable.
 Sg/Snは1.0より大きいことが好ましく、1.8以上であることがより好ましく、2.4以上であることがさらに好ましい。また、5.0以下であることが好ましく、4.0以下であることがより好ましい。 Sg / Sn is preferably greater than 1.0, more preferably 1.8 or more, and even more preferably 2.4 or more. Further, it is preferably 5.0 or less, and more preferably 4.0 or less.
 Sr/Snは1.0より大きいことが好ましく、1.9以上であることがより好ましく、3.0以上であることがさらに好ましい。また、5.0以下であることが好ましく、4.2以下であることがより好ましい。 Sr / Sn is preferably greater than 1.0, more preferably 1.9 or more, and even more preferably 3.0 or more. Further, it is preferably 5.0 or less, and more preferably 4.2 or less.
 隔壁の平面形状は、ストライプ状とすることができる。ここで、平面形状とは、色変換基板を真上から見たときの形状をいう。色変換基板を真上から見るとは、図1において、基板110の面に対して垂直方向に観察することをいう。図3は、隔壁の平面形状がストライプ状である場合の一例である。ストライプ状とは隔壁が互いに概略平行に並んでいることを示す。また、隔壁の一部の線幅が異なっていてもよい。隔壁がストライプ状であることにより、色変換層の形成工程における混色を低減することができ、歩留まり良くディスプレイを製造することができる。ストライプ状に仕切られた各領域には、赤色色変換層R、緑色色変換層G、および非色変換層Bが形成されていることが好ましい。赤色色変換層R、緑色色変換層G、および非色変換層Bは、図3のように隣接する領域に異なる色の色変換層が形成されていてもよいし、同一色の色変換層が隣接して形成されていてもよい。 The planar shape of the partition wall can be striped. Here, the planar shape means a shape when the color conversion substrate is viewed from directly above. Looking at the color conversion substrate from directly above means observing the color conversion substrate in the direction perpendicular to the surface of the substrate 110 in FIG. FIG. 3 shows an example in which the planar shape of the partition wall is striped. The striped shape means that the partition walls are arranged substantially parallel to each other. Further, the line width of a part of the partition wall may be different. Since the partition wall has a striped shape, it is possible to reduce color mixing in the process of forming the color conversion layer, and it is possible to manufacture a display with a high yield. It is preferable that the red color conversion layer R, the green color conversion layer G, and the non-color conversion layer B are formed in each of the striped regions. The red color conversion layer R, the green color conversion layer G, and the non-color conversion layer B may have color conversion layers of different colors formed in adjacent regions as shown in FIG. 3, or color conversion layers of the same color. May be formed adjacent to each other.
 また、隔壁の平面形状は、格子状とすることもできる。ここで、格子状とは、複数の縦方向の隔壁と横方向の隔壁とが交差することによって得られる形状のことをいう。図4は、隔壁の平面形状が格子状である場合の一例である。縦方向の隔壁と横方向の隔壁とが交差する角度は特に限定されず、該角度は各格子で異なっていてもよい。該角度は好ましくは概略直交である。隔壁の平面形状を格子とすることにより色変換基板の反射率を向上することが可能であり、より良好な輝度のディスプレイを得ることができる。 The planar shape of the partition wall can also be a grid pattern. Here, the grid shape means a shape obtained by intersecting a plurality of vertical partition walls and horizontal partition walls. FIG. 4 shows an example in which the planar shape of the partition wall is a grid pattern. The angle at which the vertical partition wall and the horizontal partition wall intersect is not particularly limited, and the angle may be different for each lattice. The angles are preferably approximately orthogonal. By forming the planar shape of the partition wall into a lattice, it is possible to improve the reflectance of the color conversion substrate, and it is possible to obtain a display having better brightness.
 さらに、隔壁の平面形状は、図5の多角形や、図6の三角形など、任意の形状とすることができる。また、ストライプ状、格子状、多角形、三角形等、任意の形状を複数組み合わせて使用してもよい。 Further, the planar shape of the partition wall can be any shape such as the polygon of FIG. 5 and the triangle of FIG. In addition, a plurality of arbitrary shapes such as stripes, grids, polygons, and triangles may be used in combination.
 <光源>
 本発明に係るディスプレイに用いられる光源は、複数の光源からなり、部分駆動が可能であるものが好ましい。部分駆動が可能な光源を用いることにより、液晶パネルを使用することなく表示のON/OFFが可能となり、コントラストおよび応答速度に優れたディスプレイを得ることができる。色変換層の蛍光体を励起することができる発光を放射できれば、いずれの種類の光源でも用いることができる。例えば、熱陰極管や冷陰極管、無機エレクトロルミネッセンス(EL)等の蛍光性光源、有機EL素子光源、LED光源、白熱光源などいずれの励起光でも原理的には利用可能である。図1では有機EL素子13が、図2ではLED23が光源に該当する。励起光は、1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには、1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の光源を任意に組み合わせて使用することも可能である。
<Light source>
The light source used in the display according to the present invention is preferably a light source composed of a plurality of light sources and capable of partial drive. By using a partially driveable light source, the display can be turned ON / OFF without using a liquid crystal panel, and a display having excellent contrast and response speed can be obtained. Any type of light source can be used as long as it can emit light that can excite the phosphor in the color conversion layer. For example, any excitation light such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic electroluminescence (EL), an organic EL element light source, an LED light source, and an incandescent light source can be used in principle. In FIG. 1, the organic EL element 13 corresponds to the light source, and in FIG. 2, the LED 23 corresponds to the light source. The excitation light may have one type of emission peak or may have two or more types of emission peaks, but in order to increase the color purity, one having one type of emission peak is preferable. It is also possible to use a plurality of light sources having different types of emission peaks in any combination.
 ディスプレイや照明用途では、青色光の色純度を高められる点で、前記光源の発光が青色光または青緑色光であることが好ましい。青色光または青緑色光として、430~500nmの波長範囲に極大波長を有することが好ましく、発光スペクトルはシングルピークであってもダブルピークであってもよい。また、430~500nmの波長範囲に極大波長を有するものには、YAG系LEDのように430nm~500nmの波長範囲に第1のピークを有し、500nm~700nmの波長範囲に第2のピークを有するものも含まれるが、青色の色純度が向上する観点から500nm~700nmに極大波長を有しないものが好ましい。また、430nm~500nmの波長範囲にピークを持つことが、さらに好適な励起光である。430nm~500nmの波長範囲の励起光は、比較的小さい励起エネルギーであり、有機発光材料の分解を防止できる。したがって、光源ユニットに用いる光源は、波長430nm以上500nm以下の範囲に極大発光を有する光源であることが好ましい。さらに、この光源は、波長440nm以上470nm以下の範囲に極大発光を有することが好ましい。 In display and lighting applications, it is preferable that the light source emits blue light or blue-green light in that the color purity of blue light can be increased. As blue light or blue-green light, it is preferable to have a maximum wavelength in the wavelength range of 430 to 500 nm, and the emission spectrum may be a single peak or a double peak. Further, those having a maximum wavelength in the wavelength range of 430 to 500 nm have a first peak in the wavelength range of 430 nm to 500 nm and a second peak in the wavelength range of 500 nm to 700 nm, such as YAG-based LEDs. Although some of them have, those having no maximum wavelength of 500 nm to 700 nm are preferable from the viewpoint of improving the color purity of blue. Further, having a peak in the wavelength range of 430 nm to 500 nm is a more preferable excitation light. The excitation light in the wavelength range of 430 nm to 500 nm has a relatively small excitation energy and can prevent decomposition of the organic light emitting material. Therefore, the light source used for the light source unit is preferably a light source having maximum light emission in the wavelength range of 430 nm or more and 500 nm or less. Further, this light source preferably has maximum light emission in a wavelength range of 440 nm or more and 470 nm or less.
 本発明に係るディスプレイに用いられる光源は、部分駆動可能な複数の青色光源であることが好ましい。 The light source used in the display according to the present invention is preferably a plurality of partially driveable blue light sources.
 本発明に係るディスプレイで用いられる光源は、発光ダイオードであることが好ましい。光源が発光ダイオードである場合、光源を高精細に複数配置することができるため、高解像度なディスプレイが可能となる。また、発光ダイオードは発光強度が高いため輝度の高いディスプレイが可能となる。 The light source used in the display according to the present invention is preferably a light emitting diode. When the light source is a light emitting diode, a plurality of light sources can be arranged in high definition, so that a high resolution display is possible. Further, since the light emitting diode has a high light emitting intensity, a display having high brightness is possible.
 また、青色光の色純度を高められる点で、発光ダイオードが窒化ガリウム系化合物半導体を有することが好ましい。発光ダイオードが窒化ガリウム系化合物半導体であることによって、励起光の発光をシャープにでき、色純度が向上する。 Further, it is preferable that the light emitting diode has a gallium nitride based compound semiconductor in that the color purity of blue light can be increased. Since the light emitting diode is a gallium nitride compound semiconductor, the emission of excitation light can be sharpened and the color purity is improved.
 光源は、陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する有機電界発光素子であることが好ましい。光源が陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する有機電界発光素子である場合、光源を高精細に複数配置することができるため、高解像度なディスプレイが可能となる。また、有機電界発光素子は薄型化が可能であるため、ディスプレイ自体の薄型化に寄与することができる。 The light source is preferably an organic electroluminescent element in which an organic layer exists between the anode and the cathode and emits light by electric energy. When the light source is an organic electroluminescent element that has an organic layer between the anode and the cathode and emits light by electric energy, a plurality of light sources can be arranged with high definition, so that a high-resolution display is possible. Further, since the organic electroluminescent element can be made thinner, it can contribute to making the display itself thinner.
 有機電界発光素子は、より具体的には、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層は少なくとも発光層と電子輸送層を有し、該有機層、特に発光層が電気エネルギーにより発光する光源であることが好ましい。 More specifically, the organic electroluminescent element has an anode and a cathode, and an organic layer interposed between the anode and the cathode, and the organic layer has at least a light emitting layer and an electron transporting layer, and the organic layer is provided. It is preferable that the layer, particularly the light emitting layer, is a light source that emits light by electroluminescence.
 有機層は、発光層/電子輸送層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層、2)正孔輸送層/発光層/電子輸送層/電子注入層、3)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。また、燐光発光層や蛍光発光層を複数有する積層型であってもよく、蛍光発光層と燐光発光層を組み合わせた発光素子でもよい。さらにそれぞれ互いに異なる発光色を示す発光層を積層することができる。 The organic layer is composed of only a light emitting layer / an electron transport layer, 1) a hole transport layer / a light emitting layer / an electron transport layer, and 2) a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer. 3) A laminated structure such as a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer can be mentioned. Further, each of the above layers may be either a single layer or a plurality of layers. Further, it may be a laminated type having a plurality of phosphorescent light emitting layers or fluorescent light emitting layers, or may be a light emitting element in which a fluorescent light emitting layer and a phosphorescent light emitting layer are combined. Further, light emitting layers having different emission colors can be laminated.
 また、上記の素子構成は中間層を介して複数積層したタンデム型であってもよい。中でも、少なくとも一層は燐光発光層であることが好ましい。上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、公知の材料構成を用いることができる。タンデム型の具体例は、例えば4)正孔輸送層/発光層/電子輸送層/電荷発生層/正孔輸送層/発光層/電子輸送層、5)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった、陽極と陰極の間に中間層として電荷発生層を含む積層構成が挙げられる。中間層を構成する材料としては、具体的にはピリジン誘導体、フェナントロリン誘導体が好ましく用いられる。 Further, the above element configuration may be a tandem type in which a plurality of elements are laminated via an intermediate layer. Above all, at least one layer is preferably a phosphorescent layer. The intermediate layer is also generally referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and a known material structure can be used. Specific examples of the tandem type include, for example, 4) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 5) hole injection layer / hole transport layer / A charge generation layer is provided as an intermediate layer between the anode and the cathode, such as a light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer. A laminated structure including is mentioned. Specifically, a pyridine derivative and a phenanthroline derivative are preferably used as the material constituting the intermediate layer.
 また、トップエミッション型の有機電界発光素子であることが好ましい。トップエミッション型の有機電界発光素子の場合、例えば、陽極を、反射電極層と透明電極層との積層構造とし、反射電極層上の透明電極層の膜厚を変える方法が挙げられる。陽極の上に有機層を適宜積層した後、陰極に、半透明電極として、例えば薄膜にした半透明の銀等を用いることで、有機電界発光素子にマイクロキャビティ構造を導入することができる。このように有機電界発光素子にマイクロキャビティ構造を導入すると、有機層から発光され、陰極を通して射出された光のスペクトルは、有機電界発光素子がマイクロキャビティ構造を有していない場合よりも急峻になり、また、正面への射出強度が大きく増大する。これをディスプレイに用いた場合、色域向上と、輝度向上に寄与する。 Further, it is preferable that it is a top emission type organic electroluminescent device. In the case of a top-emission type organic electroluminescent element, for example, a method in which the anode has a laminated structure of a reflective electrode layer and a transparent electrode layer and the film thickness of the transparent electrode layer on the reflective electrode layer is changed can be mentioned. A microcavity structure can be introduced into an organic electroluminescent device by appropriately laminating an organic layer on the anode and then using, for example, thin-film translucent silver or the like as a translucent electrode for the cathode. When the microcavity structure is introduced into the organic electroluminescent device in this way, the spectrum of the light emitted from the organic layer and emitted through the cathode becomes steeper than when the organic electroluminescent device does not have the microcavity structure. In addition, the injection strength to the front is greatly increased. When this is used for a display, it contributes to the improvement of color gamut and the improvement of brightness.
 <発光層>
 発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成される。発光層を構成する材料は、ホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ホスト材料とドーパント材料が混合された発光層は、ホスト材料とドーパント材料との共蒸着法や、ホスト材料とドーパント材料とを予め混合してから蒸着する方法で形成できる。
<Light emitting layer>
The light emitting layer may be either a single layer or a plurality of layers, and each is formed of a light emitting material (host material, dopant material). The material constituting the light emitting layer may be a mixture of the host material and the dopant material, or may be the host material alone. Further, the host material and the dopant material may be either one type or a plurality of combinations. The dopant material may be contained entirely or partially in the host material. The dopant material may be laminated or dispersed. The light emitting layer in which the host material and the dopant material are mixed can be formed by a co-deposition method of the host material and the dopant material or a method of premixing the host material and the dopant material and then vapor deposition.
 発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体などが使用できるが特に限定されるものではない。 Specifically, the luminescent material is a fused ring derivative such as anthracene or pyrene, which has been known as a luminescent material for a long time, a metal chelating oxynoid compound such as tris (8-quinolinolato) aluminum, a bisstyryl anthracene derivative or di Bistylyl derivatives such as styrylbenzene derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives and the like can be used, but are not particularly limited.
 ホスト材料としては、アントラセン誘導体またはナフタセン誘導体が好ましい。 As the host material, an anthracene derivative or naphthacene derivative is preferable.
 特にホスト材料がアントラセン系ホスト材料を含有することが好ましい。ホスト材料がアントラセン系ホスト材料を含有すると、高い色純度と、高効率発光が可能となり、ディスプレイの低消費電力化に寄与することができる。 In particular, it is preferable that the host material contains an anthracene-based host material. When the host material contains an anthracene-based host material, high color purity and high-efficiency light emission are possible, which can contribute to low power consumption of the display.
 ドーパント材料としては、ホウ素錯体系ドーパント材料、ピレン系ドーパント材料、クリセン系ドーパント材料、ベンゾフルオランテン系ドーパント材料、アミン系ドーパント材料が好ましい。ホウ素錯体系ドーパント材料、ピレン系ドーパント材料、クリセン系ドーパント材料、ベンゾフルオランテン系ドーパント材料およびアミン系ドーパント材料は、非常にシャープな発光示すことから、色純度が向上する。また、ドーパント材料がアミン系ドーパント材料であると、輝度が向上するため好ましい。一方で、ドーパント材料がホウ素錯体系ドーパント材料であると、色域が向上するため好ましい。ホウ素錯体系ドーパント材料の内、キノリンホウ素錯体系ドーパント材料は特にシャープな発光を示すため好ましい。 As the dopant material, a boron complex-based dopant material, a pyrene-based dopant material, a chrysene-based dopant material, a benzofluorentene-based dopant material, and an amine-based dopant material are preferable. Boron complex-based dopant materials, pyrene-based dopant materials, chrysene-based dopant materials, benzofluorane-based dopant materials, and amine-based dopant materials exhibit extremely sharp light emission, and thus improve color purity. Further, it is preferable that the dopant material is an amine-based dopant material because the brightness is improved. On the other hand, it is preferable that the dopant material is a boron complex-based dopant material because the color gamut is improved. Among the boron complex-based dopant materials, the quinoline boron complex-based dopant material is preferable because it exhibits particularly sharp light emission.
 また、発光層にリン光発光材料が含まれていてもよい。リン光発光材料とは、室温でもリン光発光を示す材料である。ドーパント材料としてリン光発光材料を用いる場合は室温でも高いリン光発光収率を有するという観点から、イリジウム、もしくは白金を有する有機金属錯体がより好ましい。リン光発光性のドーパントと組み合わせて用いられるホストとしては、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン骨格を有する含窒素芳香族化合物誘導体、ポリアリールベンゼン誘導体、スピロフルオレン誘導体、トルキセン誘導体、トリフェニレン誘導体といった芳香族炭化水素化合物誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体といったカルコゲン元素を含有する化合物、ベリリウムキノリノール錯体といった有機金属錯体などが好適に用いられる。一般的に用いられるドーパントよりも三重項エネルギーが大きく、電子、正孔がそれぞれの輸送層から円滑に注入され、また輸送するものであればこれらに限定されるものではない。また2種以上の三重項発光ドーパントが含有されていてもよいし、2種以上のホスト材料が含有されていてもよい。さらに1種以上の三重項発光ドーパントと1種以上の蛍光発光ドーパントが含有されていてもよい。 Further, the light emitting layer may contain a phosphorescent material. The phosphorescent material is a material that emits phosphorescent light even at room temperature. When a phosphorescent material is used as the dopant material, an organometallic complex having iridium or platinum is more preferable from the viewpoint of having a high phosphorescent yield even at room temperature. Hosts used in combination with phosphorescent dopants include indol derivatives, carbazole derivatives, indolocarbazole derivatives, pyridines, pyrimidines, nitrogen-containing aromatic compound derivatives with a triazine skeleton, polyarylbenzene derivatives, spirofluorene derivatives, Aromatic hydrocarbon compound derivatives such as tolucene derivatives and triphenylene derivatives, compounds containing chalcogen elements such as dibenzofuran derivatives and dibenzothiophene derivatives, and organic metal complexes such as beryllium quinolinol complexes are preferably used. The triplet energy is larger than that of a generally used dopant, and the electrons and holes are not limited to these as long as they are smoothly injected and transported from the respective transport layers. Further, two or more kinds of triplet light emitting dopants may be contained, or two or more kinds of host materials may be contained. Further, one or more triplet emission dopants and one or more fluorescence emission dopants may be contained.
 また、発光層に熱活性化遅延蛍光材料を含有することが好ましい。熱活性化遅延蛍光材料は、一般的に、TADF材料とも呼ばれ、一重項励起状態のエネルギー準位と三重項励起状態エネルギー準位のエネルギーギャップを小さくすることで、三重項励起状態から一重項励起状態への逆項間交差を促進し、一重項励起子生成確率を向上させた材料である。発光層が熱活性化遅延蛍光材料を含有すると、さらに高効率発光が可能となり、ディスプレイの低消費電力化に寄与する。熱活性化遅延蛍光材料は、単一の材料で熱活性化遅延蛍光を示す材料であってもいいし、複数の材料で熱活性化遅延蛍光を示す材料であってよい。用いられる熱活性化遅延蛍光材料は、単一でも複数の材料でもよく、公知の材料を用いることができる。具体的には、例えば、ベンゾニトリル誘導体、トリアジン誘導体、ジスルホキシド誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ジヒドロフェナジン誘導体、チアゾール誘導体、オキサジアゾール誘導体などが挙げられる。 Further, it is preferable that the light emitting layer contains a heat-activated delayed fluorescent material. Thermally activated delayed fluorescent materials, also commonly referred to as TADF materials, reduce the energy gap between the singlet excited state energy level and the triplet excited state energy level to reduce the triplet excited state to the singlet. It is a material that promotes the inverse intersystem crossing to the excited state and improves the probability of singlet exciter generation. When the light emitting layer contains a heat-activated delayed fluorescent material, more efficient light emission becomes possible, which contributes to lower power consumption of the display. The heat-activated delayed fluorescence material may be a material that exhibits heat-activated delayed fluorescence with a single material, or may be a material that exhibits heat-activated delayed fluorescence with a plurality of materials. The heat-activated delayed fluorescent material used may be a single material or a plurality of materials, and known materials can be used. Specific examples thereof include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, and oxadiazole derivatives.
 <凹部>
 本発明において用いられる凹部は、複数の光源に対応するようにパターン状に隔壁が配置されることにより区画された領域のことを指す。図1では、基板110上にパターン状に配置された隔壁19によって区画された領域が凹部に該当し、図2では、基板210上にパターン状に配置された隔壁29によって区画された領域が凹部に該当する。隔壁に用いることのできる材料は、感光性、非感光性のいずれでもよく、具体的にはエポキシ樹脂、アクリル樹脂、シロキサンポリマ系樹脂、ポリイミド樹脂などが好ましく用いられる。
<Recess>
The recess used in the present invention refers to a region partitioned by arranging partition walls in a pattern so as to correspond to a plurality of light sources. In FIG. 1, the region partitioned by the partition walls 19 arranged in a pattern on the substrate 110 corresponds to the recess, and in FIG. 2, the region partitioned by the partition walls 29 arranged in a pattern on the substrate 210 corresponds to the recess. Corresponds to. The material that can be used for the partition wall may be either photosensitive or non-photosensitive, and specifically, an epoxy resin, an acrylic resin, a siloxane polymer resin, a polyimide resin, or the like is preferably used.
 隔壁は、スピンコート、ディップコート、ロールコート、グラビアコート、ディスペンサーなどのような湿式コーティング法で所定の薄膜を形成し、さらにレジスト塗布、プリベーク、露光、現像、ポストベーク、エッチング、レジスト除去などを含むフォトリソグラフィ法を利用し、パターンを作製してもよい。また、LiF、MgFなどのような固体物を用いて隔壁を形成する場合、真空蒸着、スパッタリングなどのドライプロセスで膜を形成した後、さらに上記のようなフォトリソグラフィ法、またはエッチングなどのドライプロセスで所定のパターンを形成してもよい。 For the partition wall, a predetermined thin film is formed by a wet coating method such as spin coating, dip coating, roll coating, gravure coating, dispenser, etc., and further resist coating, prebaking, exposure, development, post-baking, etching, resist removal, etc. The pattern may be produced by utilizing the including photolithography method. Further, when a partition wall is formed using a solid material such as LiF or MgF 2 , a film is formed by a dry process such as vacuum deposition or sputtering, and then a photolithography method as described above or a dry process such as etching is performed. The process may form a predetermined pattern.
 隔壁の膜厚は、色変換層の膜厚よりも大きいことが好ましく、1~100μmの範囲が好ましい。また、隔壁のパターンは隣接する凹部に形成されてなる色変換層との混色を防ぐのに十分なものであればよく、10~50μmであることが好ましく、15~30μmのであることがさらに好ましい。凹部の形状は特に制限されるものではなく、ストライプ状や格子状、三角形状、菱形状、六角形状などの多角形状など各種の形状を採用することができる。製造が容易であることと、後述するクロストーク防止の観点から、凹部の形状は格子状であることが好ましい。クロストークとは点灯している画素の色味が隣接する画素に漏れる現象のことを指し、例えば赤色を表示するための画素で緑色光が表示されることなどが挙げられる。 The film thickness of the partition wall is preferably larger than the film thickness of the color conversion layer, and is preferably in the range of 1 to 100 μm. Further, the pattern of the partition wall may be sufficient as long as it is sufficient to prevent color mixing with the color conversion layer formed in the adjacent recesses, and is preferably 10 to 50 μm, more preferably 15 to 30 μm. .. The shape of the concave portion is not particularly limited, and various shapes such as a striped shape, a grid shape, a triangular shape, a diamond shape, a hexagonal shape, and the like can be adopted. From the viewpoint of easy production and prevention of crosstalk, which will be described later, the shape of the recesses is preferably a grid pattern. Crosstalk refers to a phenomenon in which the color of a lit pixel leaks to adjacent pixels, and examples thereof include displaying green light in a pixel for displaying red.
 <色変換部>
 色変換部は、後述する緑色色変換層、または赤色色変換層を形成した凹部を備えた部である。複数の凹部内に色変換層が形成されている色変換部であることが好ましい。複数の凹部内に色変換層が形成されていることによって、隣接する色変換層の発光との混色を防ぎ、高解像度なディスプレイが可能となる。
<Color conversion unit>
The color conversion unit is a unit provided with a green color conversion layer, which will be described later, or a recess forming a red color conversion layer. It is preferable that the color conversion unit has a color conversion layer formed in a plurality of recesses. By forming the color conversion layer in the plurality of recesses, it is possible to prevent color mixing with the light emission of the adjacent color conversion layer and enable a high-resolution display.
 さらに、凹部に形成された色変換層が、互いに異なる波長領域の出射光を放出する2種類以上の色変換層からなることが好ましい。色変換層が少なくとも2種類の色変換層からなることで、異なった色の発光の制御が可能となり、ディスプレイのマルチカラー化が可能となる。 Further, it is preferable that the color conversion layer formed in the recess is composed of two or more types of color conversion layers that emit emitted light in different wavelength regions. Since the color conversion layer is composed of at least two types of color conversion layers, it is possible to control the emission of different colors, and it is possible to make the display multicolored.
 緑色色変換層を形成した緑色色変換部は、波長500nm以上580nm未満の領域において、単一の発光ピークを有するものであることが好ましい。ここで、単一の発光ピークを有するとは、波長500nm以上580nm未満の領域において、極大値を有するピークの5%以上の強度を有するピークが存在しないことをいう。 The green color conversion unit forming the green color conversion layer preferably has a single emission peak in a region having a wavelength of 500 nm or more and less than 580 nm. Here, having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 500 nm or more and less than 580 nm.
 また、赤色色変換層を形成した赤色色変換部は、波長580nm以上750nm以下の領域において、単一の発光ピークを有するものであることが好ましい。単一の発光ピークを有するとは、波長580nm以上750nm以下の領域において、極大値を有するピークの5%以上の強度を有するピークが存在しないことをいう。 Further, the red color conversion unit forming the red color conversion layer preferably has a single emission peak in a region having a wavelength of 580 nm or more and 750 nm or less. Having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 580 nm or more and 750 nm or less.
 <非色変換部>
 非色変換部は後述する非色変換層を形成した凹部を備えた部である。非色変換層を有する凹部が設けられることで、光源の青色光を透過させることができ、青色光を効率的に利用できるためディスプレイの高効率化に寄与する。
<Non-color conversion unit>
The non-color conversion unit is a portion provided with a recess forming a non-color conversion layer, which will be described later. By providing the recess having the non-color conversion layer, the blue light of the light source can be transmitted, and the blue light can be efficiently used, which contributes to high efficiency of the display.
 <色変換層>
 本発明に含まれる色変換層は、入射光の波長領域の少なくとも一部を変換して、前記入射光とは異なる波長領域の出射光を放出する機能を有する層である。色変換層は少なくとも発光材料およびマトリックス樹脂を含む。色変換層にはさらに無機粒子やその他の添加剤などが含まれていてもよい。
<Color conversion layer>
The color conversion layer included in the present invention is a layer having a function of converting at least a part of a wavelength region of incident light and emitting emitted light in a wavelength region different from that of the incident light. The color conversion layer contains at least a light emitting material and a matrix resin. The color conversion layer may further contain inorganic particles and other additives.
 緑色色変換層は、色純度を高める観点から、波長500nm以上580nm未満の領域において、単一の発光ピークを有するものであることが好ましい。ここで、単一の発光ピークを有するとは、波長500nm以上580nm未満の領域において、極大値を有するピークの5%以上の強度を有するピークが存在しないことをいう。 From the viewpoint of increasing the color purity, the green color conversion layer preferably has a single emission peak in a region having a wavelength of 500 nm or more and less than 580 nm. Here, having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 500 nm or more and less than 580 nm.
 また、赤色色変換層は、色純度を高める観点から、波長580nm以上750nm以下の領域において、単一の発光ピークを有するものであることが好ましい。単一の発光ピークを有するとは、波長580nm以上750nm以下の領域において、極大値を有するピークの5%以上の強度を有するピークが存在しないことをいう。 Further, from the viewpoint of increasing the color purity, the red color conversion layer preferably has a single emission peak in the region of wavelength 580 nm or more and 750 nm or less. Having a single emission peak means that there is no peak having an intensity of 5% or more of the peak having a maximum value in a region having a wavelength of 580 nm or more and 750 nm or less.
 <非色変換層>
 本発明に含まれる非色変換層は、入射光を吸収しないもしくは、一部吸収しても入射光と異なる波長領域の光を放射しない層である。非色変換層は空気層でもよく、樹脂層であってもよい。樹脂層の場合はさらに無機粒子やその他の添加剤などが含まれていてもよい。
<Non-color conversion layer>
The non-color conversion layer included in the present invention is a layer that does not absorb incident light or emits light in a wavelength region different from that of incident light even if it partially absorbs it. The non-color conversion layer may be an air layer or a resin layer. In the case of the resin layer, inorganic particles and other additives may be further contained.
 <発光材料>
 発光材料としては公知のものを使用することができるが、量子ドットや有機発光材料は光源の発光を効率よく吸収することができるため、色変換層に利用した際に高効率化が可能となる。β-SiAlON蛍光体やKSF蛍光体などの無機蛍光体を使用することも可能であるが、励起波長における単位重量当たりの吸収効率が高い量子ドットや有機発光材料が発光材料として好適に用いられる。有機発光材料を発光材料に用いることがより好ましい。
<Luminescent material>
Known light emitting materials can be used, but since quantum dots and organic light emitting materials can efficiently absorb the light emitted from the light source, high efficiency can be achieved when used in the color conversion layer. .. Inorganic phosphors such as β-SiAlON phosphors and KSF phosphors can also be used, but quantum dots and organic light emitting materials having high absorption efficiency per unit weight at the excitation wavelength are preferably used as the light emitting material. It is more preferable to use an organic light emitting material as the light emitting material.
 有機発光材料としては、例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデン等の縮合アリール環を有する化合物やその誘導体;
 フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン等のヘテロアリール環を有する化合物やその誘導体;
 ボラン誘導体;
 1,4-ジスチリルベンゼン、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベン等のスチルベン誘導体;
 芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体;
 クマリン6、クマリン7、クマリン153などのクマリン誘導体;
 イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体;
 インドシアニングリーン等のシアニン系化合物;
 フルオレセイン・エオシン・ローダミン等のキサンテン系化合物やチオキサンテン系化合物;
 ポリフェニレン系化合物、ナフタルイミド誘導体、フタロシアニン誘導体およびその金属錯体、ポルフィリン誘導体およびその金属錯体;
 ナイルレッドやナイルブルー等のオキサジン系化合物;
 ヘリセン系化合物;
 N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン等の芳香族アミン誘導体;および
 イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)等の有機金属錯体化合物;
等が好適なものとして挙げられるが、特にこれらに限定されるものではない。
Examples of the organic light emitting material include compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthalene, triphenylene, perylene, fluoranthene, fluorene, and indene, and derivatives thereof;
Furan, pyrrol, thiophene, silol, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, diazanaphthalene, quinoxaline, pyrolopyridine Compounds having a heteroaryl ring such as and derivatives thereof;
Borane derivative;
1,4-Distyrylbenzene, 4,4'-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4'-bis (N- (stilbene-4-yl) -N-phenylamino) Stilbene derivatives such as stilbene;
Aromatic acetylene derivatives, tetraphenylbutadiene derivatives, aldazine derivatives, pyromethene derivatives, diketopyrrole [3,4-c] pyrrole derivatives;
Coumarin derivatives such as coumarin 6, coumarin 7, coumarin 153;
Azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, triazole and their metal complexes;
Cyanine compounds such as indocyanine green;
Xanthene compounds such as fluorescein, eosin, and rhodamine and thioxanthene compounds;
Polyphenylene compounds, naphthalimide derivatives, phthalocyanine derivatives and their metal complexes, porphyrin derivatives and their metal complexes;
Oxazine compounds such as Nile Red and Nile Blue;
Helicene compounds;
Aromatic amine derivatives such as N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine; and iridium (Ir), ruthenium (Ru) , Rhodium (Rh), palladium (Pd), platinum (Pt), osmium (Os), and ruthenium (Re) and other organic metal complex compounds;
Etc. are mentioned as suitable ones, but are not particularly limited thereto.
 有機発光材料は、蛍光発光材料であっても、リン光発光材料であっても良いが、高い色純度を達成するためには、蛍光発光材料が好ましい。 The organic light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but in order to achieve high color purity, the fluorescent light emitting material is preferable.
 これらの中でも、熱的安定性および光安定性が高いことから、縮合アリール環を有する化合物やその誘導体を好適に用いることができる。 Among these, compounds having a condensed aryl ring and derivatives thereof can be preferably used because of their high thermal stability and photostability.
 また、溶解性や分子構造の多様性の観点からは、配位結合を有する化合物が好ましい。半値幅が小さく、高効率な発光が可能である点で、フッ化ホウ素錯体などのホウ素を含有する化合物も好ましい。 Further, from the viewpoint of solubility and diversity of molecular structure, a compound having a coordination bond is preferable. A boron-containing compound such as a boron fluoride complex is also preferable because it has a small half-value width and can emit light with high efficiency.
 中でも、高い蛍光量子収率を与え、耐久性が良好である点で、ピロメテン誘導体を好適に用いることができる。より好ましくは、一般式(1)で表される化合物である。 Among them, the pyrromethene derivative can be preferably used in that it gives a high fluorescence quantum yield and has good durability. More preferably, it is a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。 X is CR 7 or N. R 1 to R 9 may be the same or different, respectively, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group and aryl. Ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, sulfo It is selected from a fused ring and an aliphatic ring formed between a group, a phosphine oxide group, and an adjacent substituent.
 上記の全ての基において、水素は重水素であってもよい。このことは、以下に説明する化合物またはその部分構造においても同様である。また、以下の説明において、例えば、炭素数6~40の置換もしくは無置換のアリール基とは、アリール基に置換した置換基に含まれる炭素数も含めて全ての炭素数が6~40となるアリール基である。炭素数を規定している他の置換基も、これと同様である。 In all the above groups, hydrogen may be deuterium. This also applies to the compounds described below or their partial structures. Further, in the following description, for example, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms has all carbon atoms of 6 to 40 including the carbon number contained in the substituent substituted with the aryl group. It is an aryl group. The same applies to other substituents that specify the number of carbon atoms.
 また、上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基が好ましく、さらには、各置換基の説明において好ましいとする具体的な置換基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。 Further, in all the above groups, the substituents in the case of substitution include an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group and an alkylthio group. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group. , Sulf group and phosphine oxide group are preferable, and specific substituents which are preferable in the description of each substituent are preferable. Further, these substituents may be further substituted with the above-mentioned substituents.
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。 "Unsubstituted" in the case of "substituted or unsubstituted" means that a hydrogen atom or a deuterium atom has been substituted. The same applies to the case of "substituted or unsubstituted" in the compound described below or its partial structure.
 上記の全ての基のうち、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等の飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、ハロゲン、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は、特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。 Of all the above groups, the alkyl group is a saturated aliphatic hydrocarbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group. Shows a group, which may or may not have a substituent. The additional substituent when substituted is not particularly limited, and examples thereof include an alkyl group, a halogen, an aryl group, and a heteroaryl group, and this point is also common to the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等の飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキル基部分の炭素数は、特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkyl group means, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which may or may not have a substituent. .. The number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミド等の炭素以外の原子を環内に有する脂肪族環を示し、これは、置換基を有していても有していなくてもよい。複素環基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having an atom other than carbon such as a pyran ring, a piperidine ring, and a cyclic amide in the ring, which may or may not have a substituent. Good. The number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基等の二重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルケニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, a butadienyl group, etc., which may or may not have a substituent. .. The carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基等の二重結合を含む不飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, etc., even if it has a substituent. You do not have to have it.
 アルキニル基とは、例えば、エチニル基等の三重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The carbon number of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基等のエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は、置換基を有していても有していなくてもよい。アルコキシ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group has a substituent. You do not have to have. The number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は、置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkylthio group is one in which the oxygen atom of the ether bond of the alkoxy group is replaced with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. The number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アリールエーテル基とは、例えば、フェノキシ基等、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. May be good. The number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールチオエーテル基における芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールチオエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 The arylthio ether group is one in which the oxygen atom of the ether bond of the aryl ether group is replaced with a sulfur atom. The aromatic hydrocarbon group in the arylthioether group may or may not have a substituent. The number of carbon atoms of the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基等の芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は、特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。 The aryl group is, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthrasenyl group, a benzophenanthryl group, a benzoanthrase. It shows an aromatic hydrocarbon group such as an Nyl group, a chrysenyl group, a pyrenyl group, a fluoranthenyl group, a triphenylenyl group, a benzofluoranthenyl group, a dibenzoanthrasenyl group, a perylenel group and a helisenyl group. Of these, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group are preferable. The aryl group may or may not have a substituent. The number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably 6 or more and 30 or less.
 R~Rが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。さらに好ましくは、フェニル基、ビフェニル基、ターフェニル基であり、フェニル基が特に好ましい。 When R 1 to R 9 are substituted or unsubstituted aryl groups, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthrasenyl group, preferably a phenyl group or a biphenyl group. Groups, turphenyl groups and naphthyl groups are more preferred. More preferably, it is a phenyl group, a biphenyl group, a terphenyl group, and a phenyl group is particularly preferable.
 それぞれの置換基がさらにアリール基で置換される場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。特に好ましくは、フェニル基である。 When each substituent is further substituted with an aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group or an anthrasenyl group, preferably a phenyl group, a biphenyl group or a ter. A phenyl group and a naphthyl group are more preferable. Particularly preferred is a phenyl group.
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チエニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基等の、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は、置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は、特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 The heteroaryl group is, for example, a pyridyl group, a furanyl group, a thienyl group, a quinolinyl group, an isoquinolinyl group, a pyrazinyl group, a pyrimidyl group, a pyridadinyl group, a triazine group, a naphthyldinyl group, a synnolinyl group, a phthalazinyl group, a quinoxalinyl group, a quinazolinyl group, Benzofuranyl group, benzothienyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofluorocarbazolyl group, benzothienocarbazolyl Non-carbon atoms such as groups, dihydroindenocarbazolyl groups, benzoquinolinyl groups, acridinyl groups, dibenzoacrydinyl groups, benzoimidazolyl groups, imidazoly pyridyl groups, benzoxazolyl groups, benzothiazolyl groups, phenanthrolinyl groups, etc. Indicates a cyclic aromatic group having one or more rings in the ring. However, the naphthyldinyl group is any of 1,5-naphthylidine group, 1,6-naphthylidine group, 1,7-naphthylidine group, 1,8-naphthylidine group, 2,6-naphthylidine group, and 2,7-naphthylidine group. Indicates. The heteroaryl group may or may not have a substituent. The number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
 R1~R9が置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 When R 1 to R 9 are substituted or unsubstituted heteroaryl groups, the heteroaryl groups include pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group and indrill. Group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzoimidazolyl group, imidazole pyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group are preferable, and pyridyl group, furanyl group, thienyl group and quinolinyl group are preferable. More preferred. Particularly preferred is a pyridyl group.
 それぞれの置換基がさらにヘテロアリール基で置換される場合、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 When each substituent is further substituted with a heteroaryl group, the heteroaryl group includes pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group, indolyl group, dibenzo. A furanyl group, a dibenzothienyl group, a carbazolyl group, a benzoimidazolyl group, an imidazole pyridyl group, a benzoxazolyl group, a benzothiazolyl group and a phenanthrolinyl group are preferable, and a pyridyl group, a furanyl group, a thienyl group and a quinolinyl group are more preferable. Particularly preferred is a pyridyl group.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。また、カルボニル基、カルボキシル基、エステル基、カルバモイル基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基等が挙げられ、これら置換基は、さらに置換されてもよい。 Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine. Further, the carbonyl group, the carboxyl group, the ester group and the carbamoyl group may or may not have a substituent. Here, examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like, and these substituents may be further substituted.
 アミノ基とは、置換もしくは無置換のアミノ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基等が挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基は、さらに置換されてもよい。炭素数は、特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。 The amino group is a substituted or unsubstituted amino group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group and the like. As the aryl group and heteroaryl group, a phenyl group, a naphthyl group, a pyridyl group and a quinolinyl group are preferable. These substituents may be further substituted. The number of carbon atoms is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
 シリル基とは、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基等のアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基等のアリールシリル基を示す。ケイ素上の置換基は、さらに置換されてもよい。シリル基の炭素数は、特に限定されないが、好ましくは、1以上30以下の範囲である。 The silyl group is, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, a vinyldimethylsilyl group, a phenyldimethylsilyl group, a tert-butyldiphenylsilyl group, or a tri. Indicates an arylsilyl group such as a phenylsilyl group and a trinaphthylsilyl group. Substituents on silicon may be further substituted. The number of carbon atoms of the silyl group is not particularly limited, but is preferably in the range of 1 or more and 30 or less.
 シロキサニル基とは、例えば、トリメチルシロキサニル基等のエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基は、さらに置換されてもよい。また、ボリル基とは、置換もしくは無置換のボリル基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基、ヒドロキシル基等が挙げられる。中でも、アリール基、アリールエーテル基が好ましい。また、スルホ基とは、置換もしくは無置換のスルホ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基等が挙げられる。中でも、直鎖アルキル基、アリール基が好ましい。また、ホスフィンオキシド基とは、-P(=O)R1011で表される基である。R1011は、R~Rと同様の群から選ばれる。 The siloxanyl group refers to, for example, a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted. The boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, a hydroxyl group and the like. Of these, aryl groups and aryl ether groups are preferable. The sulfo group is a substituted or unsubstituted sulfo group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group and the like. Of these, a linear alkyl group and an aryl group are preferable. The phosphine oxide group is a group represented by −P (= O) R 10 R 11 . R 10 R 11 is selected from the same group as R 1 to R 9 .
 隣接置換基との間に形成される縮合環および脂肪族環とは、任意の隣接する2置換基(例えば一般式(1)のRとR)が互いに結合して、共役または非共役の環状骨格を形成することをいう。このような縮合環および脂肪族環の構成元素としては、炭素以外にも、窒素、酸素、硫黄、リンおよびケイ素から選ばれる元素を含んでいてもよい。また、これらの縮合環および脂肪族環は、さらに別の環と縮合してもよい。 The condensed ring and the aliphatic ring formed between the adjacent substituents are conjugated or unconjugated by any adjacent bisubstituted groups (for example, R 1 and R 2 of the general formula (1)) bonded to each other. It means to form a circular skeleton of. The constituent elements of such a fused ring and the aliphatic ring may contain elements selected from nitrogen, oxygen, sulfur, phosphorus and silicon in addition to carbon. Moreover, these condensed ring and aliphatic ring may be condensed with yet another ring.
 一般式(1)で表される化合物は、高い発光量子収率を示し、かつ、発光スペクトルの半値幅が小さいため、効率的な色変換と高い色純度との双方を達成することができる。さらに、一般式(1)で表される化合物は、適切な置換基を適切な位置に導入することで、発光効率、色純度、熱的安定性、光安定性および分散性等の様々な特性や物性を調整することができる。例えば、R、R、RおよびRが全て水素である場合に比べ、R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基や置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基である場合の方が、より良い熱的安定性および光安定性を示す。 Since the compound represented by the general formula (1) exhibits a high emission quantum yield and a small half-value width of the emission spectrum, both efficient color conversion and high color purity can be achieved. Further, the compound represented by the general formula (1) has various properties such as luminous efficiency, color purity, thermal stability, photostability and dispersibility by introducing an appropriate substituent at an appropriate position. And physical properties can be adjusted. For example, at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted alkyl group as compared with the case where R 1 , R 3 , R 4 and R 6 are all hydrogen. Aryl groups, substituted or unsubstituted heteroaryl groups show better thermal and photostability.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基である場合、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基といった炭素数1~6のアルキル基が好ましい。さらに、このアルキル基としては、熱的安定性に優れるという観点から、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が好ましい。また、濃度消光を防ぎ、発光量子収率を向上させるという観点では、このアルキル基として、立体的にかさ高いtert-ブチル基がより好ましい。また、合成の容易さ、原料入手の容易さという観点から、このアルキル基として、メチル基も好ましく用いられる。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group, the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like. Alkyl groups having 1 to 6 carbon atoms such as sec-butyl group, tert-butyl group, pentyl group and hexyl group are preferable. Further, as this alkyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group are preferable from the viewpoint of excellent thermal stability. Further, from the viewpoint of preventing concentration quenching and improving the emission quantum yield, the tert-butyl group having a high sterically bulk is more preferable as the alkyl group. A methyl group is also preferably used as the alkyl group from the viewpoint of ease of synthesis and availability of raw materials.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基が好ましく、さらに好ましくは、フェニル基、ビフェニル基である。特に好ましくは、フェニル基である。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and more preferably. It is a phenyl group and a biphenyl group. Particularly preferred is a phenyl group.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としては、ピリジル基、キノリニル基、チエニル基が好ましく、さらに好ましくは、ピリジル基、キノリニル基である。特に好ましくは、ピリジル基である。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted heteroaryl group, the heteroaryl group is preferably a pyridyl group, a quinolinyl group or a thienyl group, and more preferably a pyridyl group. , Kinolinyl group. Particularly preferred is a pyridyl group.
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基である場合、バインダー樹脂や溶媒への溶解性が良好なため、好ましい。この場合、アルキル基としては、合成の容易さ、原料入手の容易さという観点から、メチル基が好ましい。 R 1 , R 3 , R 4 and R 6 may all be the same or different, and a substituted or unsubstituted alkyl group is preferable because it has good solubility in a binder resin or a solvent. In this case, the alkyl group is preferably a methyl group from the viewpoint of easiness of synthesis and availability of raw materials.
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である場合、より良い熱的安定性および光安定性を示すため、好ましい。この場合、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基であることがより好ましい。 R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, with better thermal stability and better thermal stability when they are substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. It is preferable because it shows photostability. In this case, R 1 , R 3 , R 4 and R 6 may all be the same or different, and are more preferably substituted or unsubstituted aryl groups.
 複数の性質を向上させる置換基もあるが、全てにおいて十分な性能を示す置換基は限られている。特に、高発光効率と高色純度との両立が難しい。そのため、一般式(1)で表される化合物に対して複数種類の置換基を導入することで、発光特性や色純度等にバランスの取れた化合物を得ることが可能である。 Although there are substituents that improve multiple properties, the substituents that show sufficient performance in all are limited. In particular, it is difficult to achieve both high luminous efficiency and high color purity. Therefore, by introducing a plurality of types of substituents into the compound represented by the general formula (1), it is possible to obtain a compound having a good balance in light emission characteristics, color purity and the like.
 特に、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基の場合、例えば、R≠R、R≠R、R≠RまたはR≠R等のように、複数種類の置換基を導入することが好ましい。ここで「≠」は、異なる構造の基であることを示す。例えば、R≠Rは、R1とR4とが異なる構造の基であることを示す。上記のように複数種類の置換基を導入することにより、色純度に影響を与えるアリール基と発光効率に影響を与えるアリール基とを同時に導入することができるため、細やかな調節が可能となる。 In particular, R 1 , R 3 , R 4 and R 6 may all be the same or different, and in the case of substituted or unsubstituted aryl groups, for example, R 1 ≠ R 4 , R 3 ≠ R 6 , R It is preferable to introduce a plurality of types of substituents such as 1 ≠ R 3 or R 4 ≠ R 6 . Here, "≠" indicates that the bases have different structures. For example, R 1 ≠ R 4 indicates that R 1 and R 4 are groups of different structures. By introducing a plurality of types of substituents as described above, an aryl group that affects color purity and an aryl group that affects luminous efficiency can be introduced at the same time, so that fine adjustment is possible.
 中でも、R≠RまたはR≠Rであることが、発光効率と色純度をバランスよく向上させるという観点から、好ましい。この場合、一般式(1)で表される化合物に対して、色純度に影響を与えるアリール基を両側のピロール環にそれぞれ1つ以上導入し、それ以外の位置に発光効率に影響を与えるアリール基を導入することができるため、これら両方の性質を最大限に向上させることができる。また、R≠RまたはR≠Rである場合、耐熱性と色純度との双方を向上させるという観点から、R=RおよびR=Rであることがより好ましい。 Above all, it is preferable that R 1 ≠ R 3 or R 4 ≠ R 6 from the viewpoint of improving the luminous efficiency and the color purity in a well-balanced manner. In this case, for the compound represented by the general formula (1), one or more aryl groups that affect the color purity are introduced into the pyrrole rings on both sides, and the aryl that affects the luminous efficiency at other positions. Since the group can be introduced, both of these properties can be improved to the maximum. Further, when R 1 ≠ R 3 or R 4 ≠ R 6 , it is more preferable that R 1 = R 4 and R 3 = R 6 from the viewpoint of improving both heat resistance and color purity.
 主に色純度に影響を与えるアリール基としては、電子供与性基で置換されたアリール基が好ましい。電子供与性基とは、有機電子論において、誘起効果や共鳴効果により、置換した原子団に、電子を供与する原子団である。電子供与性基としては、ハメット則の置換基定数(σp(パラ))として、負の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。 As the aryl group that mainly affects the color purity, an aryl group substituted with an electron donating group is preferable. An electron-donating group is an atomic group that donates electrons to an atomic group substituted by an inductive effect or a resonance effect in organic electron theory. Examples of the electron donating group include those having a negative value as the substituent constant (σp (para)) of Hammett's law. The Hammett equation substituent constant (σp (para)) can be quoted from the 5th edition of the Basics of Chemistry Handbook (page II-380).
 電子供与性基の具体例としては、例えば、アルキル基(メチル基のσp:-0.17)やアルコキシ基(メトキシ基のσp:-0.27)、アミノ基(―NHのσp:-0.66)等が挙げられる。特に、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基が好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましく、これらを上記の電子供与性基とした場合、一般式(1)で表される化合物において、分子同士の凝集による消光を防ぐことができる。置換基の置換位置は、特に限定されないが、一般式(1)で表される化合物の光安定性を高めるには結合のねじれを抑える必要があるため、ピロメテン骨格との結合位置に対してメタ位またはパラ位に結合させることが好ましい。一方、主に発光効率に影響を与えるアリール基としては、tert-ブチル基、アダマンチル基、メトキシ基等のかさ高い置換基を有するアリール基が好ましい。 Specific examples of the electron donating group include an alkyl group (methyl group σp: −0.17), an alkoxy group (methoxy group σp: −0.27), and an amino group (−NH 2 σp: −”. 0.66) and the like can be mentioned. In particular, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, a tert-butyl group and a methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferable, and when these are used as the above-mentioned electron-donating groups, in the compound represented by the general formula (1), quenching due to aggregation of molecules is prevented. be able to. The substitution position of the substituent is not particularly limited, but since it is necessary to suppress the twist of the bond in order to enhance the photostability of the compound represented by the general formula (1), the meta is relative to the bond position with the pyrromethene skeleton. It is preferable to combine with the position or para position. On the other hand, as the aryl group that mainly affects the luminous efficiency, an aryl group having a bulky substituent such as a tert-butyl group, an adamantyl group, or a methoxy group is preferable.
 R、R、RおよびRが、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基である場合、R、R、RおよびRは、それぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基であることが好ましい。このとき、R、R、RおよびRは、それぞれ以下のAr-1~Ar-6から選ばれることがより好ましい。この場合、R、R、RおよびRの組み合わせは特に制限はない。 If R 1 , R 3 , R 4 and R 6 are the same or different, respectively, and are substituted or unsubstituted aryl groups, then R 1 , R 3 , R 4 and R 6 are the same or different, respectively. It may be a substituted or unsubstituted phenyl group, and is preferable. At this time, it is more preferable that R 1 , R 3 , R 4 and R 6 are selected from the following Ar-1 to Ar-6, respectively. In this case, the combination of R 1 , R 3 , R 4 and R 6 is not particularly limited.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 RおよびRは、水素、アルキル基、カルボニル基、エステル基、アリール基のいずれかであることが好ましい。中でも、熱的安定性の観点から、水素またはアルキル基が好ましく、発光スペクトルにおいて狭い半値幅を得やすいという観点から、水素がより好ましい。 R 2 and R 5 are preferably any of hydrogen, alkyl group, carbonyl group, ester group and aryl group. Of these, hydrogen or an alkyl group is preferable from the viewpoint of thermal stability, and hydrogen is more preferable from the viewpoint of easily obtaining a narrow full width at half maximum in the emission spectrum.
 RおよびRは、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールエーテル基、フッ素、含フッ素アルキル基、含フッ素ヘテロアリール基または含フッ素アリール基、含フッ素アルコキシ基、含フッ素アリールエーテル基、シアノ基が好ましく、励起光に対して安定でより高い蛍光量子収率が得られることから、フッ素、シアノ基または含フッ素アリール基であることがより好ましい。合成の容易さから、フッ素またはシアノ基であることがさらに好ましい。さらに、RもしくはRのいずれか一つはシアノ基であることが好ましい。シアノ基を導入することで耐久性が向上する。 R 8 and R 9 are alkyl groups, aryl groups, heteroaryl groups, alkoxy groups, aryl ether groups, fluorines, fluorine-containing alkyl groups, fluorine-containing heteroaryl groups or fluorine-containing aryl groups, fluorine-containing alkoxy groups, and fluorine-containing aryls. An ether group and a cyano group are preferable, and a fluorine, a cyano group, or a fluorine-containing aryl group is more preferable because a stable and higher fluorescence quantum yield can be obtained with respect to excitation light. From the viewpoint of ease of synthesis, it is more preferably a fluorine or cyano group. Further, it is preferable that any one of R 8 and R 9 is a cyano group. Durability is improved by introducing a cyano group.
 ここで、含フッ素アリール基とは、フッ素を含むアリール基であり、例えば、フルオロフェニル基、トリフルオロメチルフェニル基およびペンタフルオロフェニル基等が挙げられる。含フッ素ヘテロアリール基とは、フッ素を含むヘテロアリール基であり、例えば、フルオロピリジル基、トリフルオロメチルピリジル基およびトリフルオロピリジル基等が挙げられる。含フッ素アルキル基とは、フッ素を含むアルキル基であり、例えば、トリフルオロメチル基やペンタフルオロエチル基等が挙げられる。 Here, the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group. The fluorine-containing heteroaryl group is a fluorine-containing heteroaryl group, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group. The fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
 また、一般式(1)において、Xは、C-Rであることが、光安定性の観点から好ましい。XがC-Rであるとき、一般式(1)で表される化合物の耐久性、すなわち、この化合物の発光強度の経時的な低下には、置換基Rが大きく影響する。具体的には、Rが水素である場合、この部位の反応性が高いため、この部位と空気中の水分や酸素とが容易に反応してしまう。このことは、一般式(1)で表される化合物の分解を引き起こす。また、Rが例えばアルキル基のような分子鎖の運動の自由度が大きい置換基である場合は、確かに反応性は低下するが、色変換シート中で化合物同士が経時的に凝集し、結果的に濃度消光による発光強度の低下を招く。したがって、Rは、剛直で、かつ運動の自由度が小さく凝集を引き起こしにくい基であることが好ましく、具体的には、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基のいずれかであることが好ましい。 Further, in the general formula (1), it is preferable that X is CR 7 from the viewpoint of light stability. When X is CR 7 , the substituent R 7 has a great influence on the durability of the compound represented by the general formula (1), that is, the decrease in the emission intensity of this compound with time. Specifically, when R 7 is hydrogen, the reactivity of this part is high, so that this part easily reacts with water and oxygen in the air. This causes the decomposition of the compound represented by the general formula (1). Further, when R 7 is a substituent such as an alkyl group having a large degree of freedom of movement of the molecular chain, the reactivity is certainly lowered, but the compounds aggregate with time in the color conversion sheet, and the compounds aggregate with time. As a result, the emission intensity is lowered due to the concentration quenching. Therefore, R 7 is preferably a group that is rigid, has a small degree of freedom of movement, and does not easily cause aggregation. Specifically, it is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. It is preferably either.
 より高い蛍光量子収率を与え、より熱分解しづらい点、また光安定性の観点から、XがC-Rであり、Rが置換もしくは無置換のアリール基であることが好ましい。アリール基としては、発光波長を損なわないという観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましい。 From the viewpoint of giving a higher fluorescence quantum yield, making it more difficult to thermally decompose, and from the viewpoint of photostability, it is preferable that X is CR 7 and R 7 is a substituted or unsubstituted aryl group. As the aryl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group and an anthrasenyl group are preferable from the viewpoint of not impairing the emission wavelength.
 さらに、一般式(1)で表される化合物の光安定性を高めるには、Rとピロメテン骨格の炭素-炭素結合のねじれを適度に抑える必要がある。何故ならば、過度にねじれが大きいと、励起光に対する反応性が高まる等、光安定性が低下するからである。このような観点から、Rとしては、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のナフチル基が好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基であることがより好ましい。特に好ましくは、置換もしくは無置換のフェニル基である。 Furthermore, to increase the photostability of the compound represented by the general formula (1), the carbon of R 7 and pyrromethene skeleton - it is necessary to suppress the twisting of the carbon bonds moderately. This is because if the twist is excessively large, the reactivity with the excitation light is increased and the photostability is lowered. From this point of view, R 7 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group, and is preferably substituted or unsubstituted. It is more preferably a phenyl group, a substituted or unsubstituted biphenyl group, or a substituted or unsubstituted terphenyl group. Particularly preferred is a substituted or unsubstituted phenyl group.
 また、Rは、適度にかさ高い置換基であることが好ましい。Rが、ある程度のかさ高さを有することで分子の凝集を防ぐことができ、その結果、一般式(1)で表される化合物の発光効率や耐久性がより向上する。 Further, R 7 is preferably a moderately bulky substituent. When R 7 has a certain bulk height, molecular aggregation can be prevented, and as a result, the luminous efficiency and durability of the compound represented by the general formula (1) are further improved.
 このようなかさ高い置換基のさらに好ましい例としては、下記一般式(2)で表されるRの構造が挙げられる。 A more preferable example of such a bulky substituent is the structure of R 7 represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(2)において、rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なっても良い。 In the general formula (2), r is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, aryl thio ether. Group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siroxanyl group, boryl group, sulfo group, phosphine oxide group. Selected from the group consisting of. k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
 より高い発光量子収率を与えることができるという観点から、rは、置換もしくは無置換のアリール基であることが好ましい。このアリール基の中でも、特に、フェニル基、ナフチル基が好ましい例として挙げられる。rがアリール基である場合、一般式(2)のkは、1もしくは2であることが好ましく、中でも、分子の凝集をより防ぐという観点から2であることがより好ましい。さらに、kが2以上である場合、rの少なくとも1つは、アルキル基で置換されていることが好ましい。この場合のアルキル基としては、熱的安定性の観点から、メチル基、エチル基およびtert-ブチル基が特に好ましい例として挙げられる。 From the viewpoint of being able to give a higher emission quantum yield, r is preferably a substituted or unsubstituted aryl group. Among these aryl groups, a phenyl group and a naphthyl group are particularly preferable examples. When r is an aryl group, k in the general formula (2) is preferably 1 or 2, and more preferably 2 from the viewpoint of further preventing molecular aggregation. Further, when k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group. As the alkyl group in this case, a methyl group, an ethyl group and a tert-butyl group are particularly preferable examples from the viewpoint of thermal stability.
 また、蛍光波長や吸収波長を制御したり、溶媒との相溶性を高めたりするという観点から、rは、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基またはハロゲンであることが好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましい。rがtert-ブチル基またはメトキシ基であることは、分子同士の凝集による消光を防ぐことについて、より有効である。 Further, from the viewpoint of controlling the fluorescence wavelength and absorption wavelength and enhancing the compatibility with the solvent, r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen. , Methyl group, ethyl group, tert-butyl group, methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferable. The fact that r is a tert-butyl group or a methoxy group is more effective in preventing quenching due to aggregation of molecules.
 一般式(1)で表される化合物の好ましい例の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であって、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rが置換もしくは無置換のフェニル基として含まれる一般式(2)で表される基であることが特に好ましい。 As one of the preferable examples of the compound represented by the general formula (1), R 1 , R 3 , R 4 and R 6 may all be the same or different, and are substituted or unsubstituted alkyl groups. Further, there is a case where X is CR 7 and R 7 is a group represented by the general formula (2). In this case, it is particularly preferable that R 7 is a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、上述のAr-1~Ar-6から選ばれ、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rがtert-ブチル基、メトキシ基として含まれる一般式(2)で表される基であることがより好ましく、rがメトキシ基として含まれる一般式(2)で表される基であることが特に好ましい。 Further, as another preferable example of the compound represented by the general formula (1), R 1 , R 3 , R 4 and R 6 may all be the same or different, and the above-mentioned Ar-1 may be used. It is selected from ~ Ar-6, and further, there is a case where X is CR 7 and R 7 is a group represented by the general formula (2). In this case, R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and is represented by the general formula (2) in which r is contained as a methoxy group. It is particularly preferable that it is a group to be produced.
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であって、かつ、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であり、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rが置換もしくは無置換のフェニル基として含まれる一般式(2)で表される基であることが特に好ましい。 Further, as another preferable example of the compound represented by the general formula (1), R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, and may be substituted or unsubstituted. It is an alkyl group, and R 2 and R 5 may be the same or different, respectively, and is a substituted or unsubstituted ester group. Further, X is C-R 7 and R 7 is a general formula. The group represented by (2) may be used. In this case, it is particularly preferable that R 7 is a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、上述のAr-1~Ar-6から選ばれ、かつ、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であり、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rがtert-ブチル基、メトキシ基として含まれる一般式(2)で表される基であることがより好ましく、rがメトキシ基として含まれる一般式(2)で表される基であることが特に好ましい。 Further, as another preferable example of the compound represented by the general formula (1), R 1 , R 3 , R 4 and R 6 may all be the same or different, respectively, and the above-mentioned Ar-1 may be used. ~ Ar-6, and R 2 and R 5 may be the same or different, respectively, are substituted or unsubstituted ester groups, and X is CR 7 and R 7 is. There is a case where it is a group represented by the general formula (2). In this case, R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and is represented by the general formula (2) in which r is contained as a methoxy group. It is particularly preferable that it is a group to be produced.
 一般式(1)で表される化合物の一例を以下に示すが、この化合物は、これらに限定されるものではない。 An example of the compound represented by the general formula (1) is shown below, but this compound is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(1)で表される化合物は、例えば、特表平8-509471号公報や特開2000-208262号公報に記載の方法で合成することができる。すなわち、ピロメテン化合物と金属塩とを塩基共存下で反応させることにより、目的とするピロメテン系金属錯体が得られる。 The compound represented by the general formula (1) can be synthesized, for example, by the method described in JP-A-8-509471 and JP-A-2000-208262. That is, the desired pyrromethene-based metal complex can be obtained by reacting the pyrromethene compound and the metal salt in the presence of a base.
 また、ピロメテン-フッ化ホウ素錯体の合成については、J.Org.Chem.,vol.64,No.21,pp.7813-7819(1999)、Angew.Chem.,Int.Ed.Engl.,vol.36,pp.1333-1335(1997)等に記載されている方法を参考にして、一般式(1)で表される化合物を合成することができる。例えば、下記一般式(3)で表される化合物と一般式(4)で表される化合物とをオキシ塩化リン存在下、1,2-ジクロロエタン中で加熱した後、下記一般式(5)で表される化合物をトリエチルアミン存在下、1,2-ジクロロエタン中で反応させ、これにより、一般式(1)で表される化合物を得る方法が挙げられる。しかし、本発明は、これに限定されるものではない。ここで、R~Rは、上記説明と同様である。Jは、ハロゲンを表す。 Regarding the synthesis of the pyrromethene-boron trifluoride complex, refer to J. Org. Chem. , Vol. 64, No. 21, pp. 7813-7819 (1999), Angew. Chem. , Int. Ed. Engl. , Vol. 36, pp. The compound represented by the general formula (1) can be synthesized with reference to the method described in 1333-1335 (1997) and the like. For example, the compound represented by the following general formula (3) and the compound represented by the general formula (4) are heated in 1,2-dichloroethane in the presence of phosphorus oxychloride, and then the following general formula (5) is used. A method of reacting the represented compound in 1,2-dichloroethane in the presence of triethylamine to obtain the compound represented by the general formula (1) can be mentioned. However, the present invention is not limited to this. Here, R 1 to R 9 are the same as the above description. J represents halogen.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 さらに、アリール基やヘテロアリール基の導入の際は、ハロゲン化誘導体とボロン酸あるいはボロン酸エステル化誘導体とのカップリング反応を用いて炭素-炭素結合を生成する方法が挙げられるが、本発明は、これに限定されるものではない。同様に、アミノ基やカルバゾリル基の導入の際にも、例えば、パラジウム等の金属触媒下でのハロゲン化誘導体とアミンあるいはカルバゾール誘導体とのカップリング反応を用いて炭素-窒素結合を生成する方法が挙げられるが、本発明は、これに限定されるものではない。 Further, when introducing an aryl group or a heteroaryl group, a method of forming a carbon-carbon bond by using a coupling reaction between a halogenated derivative and a boronic acid or a boronic acid esterified derivative can be mentioned. , Not limited to this. Similarly, when introducing an amino group or a carbazolyl group, for example, a method of forming a carbon-nitrogen bond by using a coupling reaction between a halogenated derivative and an amine or carbazole derivative under a metal catalyst such as palladium is used. However, the present invention is not limited thereto.
 本発明の実施の形態に係る色変換シートは、一般式(1)で表される化合物以外に、必要に応じてその他の化合物を適宜含有することができる。例えば、励起光から一般式(1)で表される化合物へのエネルギー移動効率を更に高めるために、ルブレン等のアシストドーパントを含有してもよい。また、一般式(1)で表される化合物の発光色以外の発光色を加味したい場合は、所望の有機発光材料、例えば、クマリン系色素、ローダミン系色素等の有機発光材料を添加することができる。その他、これらの有機発光材料以外でも、無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料を組み合わせて添加することも可能である。 The color conversion sheet according to the embodiment of the present invention may appropriately contain other compounds in addition to the compound represented by the general formula (1), if necessary. For example, an assist dopant such as rubrene may be contained in order to further increase the energy transfer efficiency from the excitation light to the compound represented by the general formula (1). Further, when it is desired to add a light emitting color other than the light emitting color of the compound represented by the general formula (1), a desired organic light emitting material, for example, an organic light emitting material such as a coumarin dye or a rhodamine dye may be added. it can. In addition to these organic light emitting materials, known light emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots can be added in combination.
 以下に、一般式(1)で表される化合物以外の有機発光材料の一例を以下に示すが、本発明は、特にこれらに限定されるものではない。 An example of an organic light emitting material other than the compound represented by the general formula (1) is shown below, but the present invention is not particularly limited thereto.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 量子ドットとしては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。 The quantum dots are not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of group II-VI compounds, group III-V compounds, group IV-VI compounds, and group IV compounds. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。 Specific examples of the II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS. , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSeTe, CdHgSe, CdHgSe
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。 Specific examples of the Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, GaNAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb. , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInNSb, GaInPAs, GaInPSb, AlInPAs, GaInPSb, InAl
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。 Specific examples of the IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSne, SnPbSe, SnPbSe ..
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。量子ドットとしては、コアシェル構造を有するものが好ましい。コア部を構成する化合物のバンドギャップよりもシェル層を構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア部及びシェル層の組み合わせ(コア部/シェル層)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。 Specific examples of Group IV compounds include Si, Ge, SiC, SiGe and the like. As the quantum dots, those having a core-shell structure are preferable. By making the band gap of the compound constituting the shell layer wider than the band gap of the compound constituting the core portion, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Examples of the combination of the core portion and the shell layer (core portion / shell layer) include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
 また、量子ドット蛍光体としては、シェル層が多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコア部にバンドギャップの狭いシェル層を1層又は2層以上積層し、更にこのシェル層の上にバンドギャップの広いシェル層を積層することで、量子ドット蛍光体の量子効率を更に向上させることが可能となる。 Further, the quantum dot phosphor may have a so-called core multi-shell structure in which the shell layer has a multi-layer structure. By laminating one or more shell layers with a narrow bandgap on the core portion with a wide bandgap, and further laminating a shell layer with a wide bandgap on the shell layer, the quantum efficiency of the quantum dot phosphor can be improved. It is possible to further improve.
 <色変換層および非色変換層に含まれる樹脂>
 色変換層および非色変換層は、樹脂を含有していてもよい。この樹脂は、連続相を形成するものであり、成型加工性、透明性、耐熱性等に優れる材料であれば良い。樹脂としては、例えば、アクリル系、メタクリル系、ポリケイ皮酸ビニル系、ポリイミド系、環ゴム系等の反応性ビニル基を有する光硬化型レジスト材料、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリイミド樹脂、環状オレフィン、ポリエチレンテレフタラート樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ウレタン樹脂、メラミン樹脂、ポリビニル樹脂、ポリアミド樹脂、フェノール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、脂肪族エステル樹脂、芳香族エステル樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂などの、公知のものを用いることができる。また、樹脂としては、これらの共重合樹脂を用いることもできる。
<Resin contained in color conversion layer and non-color conversion layer>
The color conversion layer and the non-color conversion layer may contain a resin. This resin forms a continuous phase, and may be any material that is excellent in molding processability, transparency, heat resistance, and the like. Examples of the resin include a photocurable resist material having a reactive vinyl group such as acrylic-based, methacrylic-based, vinyl polysilicate-based, polyimide-based, and ring-rubber-based, epoxy resin, and silicone resin (silicone rubber, silicone gel, etc.). Organopolysiloxane cured product (including crosslinked product)), urea resin, fluororesin, polycarbonate resin, acrylic resin, methacrylic resin, polyimide resin, cyclic olefin, polyethylene terephthalate resin, polypropylene resin, polystyrene resin, urethane resin, melamine Known resins such as resins, polyvinyl resins, polyamide resins, phenol resins, polyvinyl alcohol resins, cellulose resins, aliphatic ester resins, aromatic ester resins, aliphatic polyolefin resins and aromatic polyolefin resins can be used. Further, as the resin, these copolymer resins can also be used.
 これらの樹脂の中でも、透明性の観点から、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、エステル樹脂またはこれらの混合物を好適に用いることができ、耐熱性の観点から、アクリル樹脂およびエステル樹脂が好ましく用いられる。 Among these resins, epoxy resin, silicone resin, acrylic resin, ester resin or a mixture thereof can be preferably used from the viewpoint of transparency, and acrylic resin and ester resin are preferably used from the viewpoint of heat resistance. ..
 シリコーン樹脂は、熱硬化型シリコーン樹脂および熱可塑性シリコーン樹脂のいずれであってもよい。熱硬化型シリコーン樹脂は、常温または50~200℃の温度で硬化するものであり、透明性、耐熱性、接着性に優れる。 The silicone resin may be either a thermosetting silicone resin or a thermoplastic silicone resin. The thermosetting silicone resin cures at room temperature or a temperature of 50 to 200 ° C., and is excellent in transparency, heat resistance, and adhesiveness.
 熱硬化型シリコーン樹脂は、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物とのヒドロシリル化反応により形成される。このような材料としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等の、ケイ素原子に結合したアルケニル基を含有する化合物と、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等の、ケイ素原子に結合した水素原子を有する化合物との、ヒドロシリル化反応により形成されるものが挙げられる。また、熱硬化型シリコーン樹脂としては、他にも、例えば、特開2010-159411号公報に記載されているような、公知のものを利用することができる。 The thermosetting silicone resin is formed, for example, by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom. Examples of such a material include alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, and octenyltrimethoxysilane. Containing compounds and hydrogen bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc. Examples thereof include those formed by a hydrosilylation reaction with a compound having an atom. In addition, as the thermosetting silicone resin, known ones such as those described in JP-A-2010-159411 can be used.
 また、熱硬化型シリコーン樹脂としては、市販されているもの、例えば、一般的なLED用途のシリコーン封止材を使用することも可能である。その具体例としては、東レ・ダウコーニング社製のOE-6630A/B、OE-6336A/Bや、信越化学工業株式会社製のSCR-1012A/B、SCR-1016A/Bなどが挙げられる。 Further, as the thermosetting silicone resin, it is also possible to use a commercially available silicone resin, for example, a silicone encapsulant for general LED applications. Specific examples thereof include OE-6630A / B and OE-6336A / B manufactured by Toray Dow Corning Co., Ltd., SCR-1012A / B and SCR-1016A / B manufactured by Shin-Etsu Chemical Co., Ltd.
 熱硬化型シリコーン樹脂には、常温での硬化を抑制してポットライフを長くするために、アセチレンアルコールなどのヒドロシリル化反応遅延剤を配合することが好ましい。 It is preferable to add a hydrosilylation reaction retarder such as acetylene alcohol to the thermosetting silicone resin in order to suppress curing at room temperature and prolong the pot life.
 熱可塑性シリコーン樹脂は、ガラス転移温度または融点まで加熱することで軟化し、流動性を示す樹脂である。熱可塑性シリコーン樹脂は、一度加熱して軟化しても硬化反応等の化学反応を伴わないため、常温に戻れば再び固体となる。 Thermoplastic silicone resin is a resin that softens by heating to the glass transition temperature or melting point and exhibits fluidity. Since the thermoplastic silicone resin does not undergo a chemical reaction such as a curing reaction even if it is once heated and softened, it becomes a solid again when it returns to room temperature.
 また、熱可塑性シリコーン樹脂としては、市販されているもの、例えば、東レ・ダウコーニング社製のRSN-0805、RSN-0217などのRSNシリーズが挙げられる。 Examples of the thermoplastic silicone resin include commercially available ones, for example, RSN series such as RSN-0805 and RSN-0217 manufactured by Toray Dow Corning.
 中でも、熱可塑性樹脂は反応性成分を含まないため、発光材料と発光材料と反応し発光材料の劣化を抑制することができる。そのため、本発明における色変換層は、熱可塑性樹脂を用いることが好ましい。 Among them, since the thermoplastic resin does not contain a reactive component, it can react with the light emitting material and the light emitting material and suppress the deterioration of the light emitting material. Therefore, it is preferable to use a thermoplastic resin for the color conversion layer in the present invention.
 <その他の添加剤>
 色変換層は、本発明の効果が損なわれない範囲で、添加剤を含んでいてもよい。添加剤の例としては、具体的には、分散安定化剤、レベリング剤、酸化防止剤、難燃剤、脱泡剤、可塑剤、架橋剤、硬化剤、紫外線吸収剤等の耐光性安定化剤、シランカップリング剤等の接着補助剤等が挙げられる。
<Other additives>
The color conversion layer may contain additives as long as the effects of the present invention are not impaired. Specific examples of additives include light-resistant stabilizers such as dispersion stabilizers, leveling agents, antioxidants, flame retardants, defoaming agents, plasticizers, cross-linking agents, curing agents, and ultraviolet absorbers. , Adhesive aids such as silane coupling agents and the like.
 また、色変換層からの光取り出し効率を上げる目的で、色変換層は、無機粒子を含んでいてもよい。無機粒子の例としては、具体的には、ガラス、チタニア、シリカ、アルミナ、シリコーン、ジルコニア、セリア、窒化アルミ、炭化ケイ素、窒化ケイ素、チタン酸バリウムなどで構成される微粒子が挙げられる。これらは単独で用いられてもよく、2種類以上併用されても良い。入手しやすいという観点から、シリカ、アルミナ、チタニア、ジルコニアが好ましい。 Further, the color conversion layer may contain inorganic particles for the purpose of increasing the efficiency of light extraction from the color conversion layer. Specific examples of the inorganic particles include fine particles composed of glass, titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, barium titanate and the like. These may be used alone or in combination of two or more. Silica, alumina, titania and zirconia are preferable from the viewpoint of easy availability.
 <色変換層の作製方法>
 色変換層を凹部内に設ける方法としては、色変換層の構成材料を含むインクを調製し、スピンコート法などの塗布法を用いて透明基板全面に形成した後にフォトリソグラフ法などを用いてパターニングを実施することによって形成してもよいし、あるいはスクリーン印刷法などを用いてパターン状に形成してもよいし、あるいはインクジェット法で色変換層をパターン状に形成してもよい。
<Method of manufacturing color conversion layer>
As a method of providing the color conversion layer in the recess, an ink containing a constituent material of the color conversion layer is prepared, formed on the entire surface of a transparent substrate by a coating method such as a spin coating method, and then patterned by a photolithography method or the like. The color conversion layer may be formed in a pattern by a screen printing method or the like, or the color conversion layer may be formed in a pattern by an inkjet method.
 <色変換基板>
 色変換基板は、透明基板上に、隔壁、緑色色変換層、赤色色変換層および非色変換層を備えるものである。赤色色変換層は少なくとも青色光を吸収して赤色光を発する有機発光材料によって形成されている。緑色色変換層は少なくとも青色光を吸収して緑色光を発する有機発光材料によって形成されている。赤色色変換層、緑色色変換層、および非色変換層は、隔壁と隔壁の間(凹部)に配置されている。透明基板側から励起光を入射させ、透明基板と反対の側から視認してもよいし、色変換層側から励起光を入射させ、透明基板側から視認してもよい。サンプルとして色変換基板を測定したときの量子収率は、ピーク波長が440~460nmの青色光を色変換基板に照射したとき、通常は0.5以上、好ましくは0.7以上、より好ましくは0.8以上、さらに好ましくは0.9以上である。
<Color conversion board>
The color conversion substrate includes a partition wall, a green color conversion layer, a red color conversion layer, and a non-color conversion layer on a transparent substrate. The red color conversion layer is formed of an organic light emitting material that absorbs at least blue light and emits red light. The green color conversion layer is formed of an organic light emitting material that absorbs at least blue light and emits green light. The red color conversion layer, the green color conversion layer, and the non-color conversion layer are arranged between the partition walls (recessions). The excitation light may be incident from the transparent substrate side and visually recognized from the side opposite to the transparent substrate, or the excitation light may be incident from the color conversion layer side and visually recognized from the transparent substrate side. The quantum yield when the color conversion substrate is measured as a sample is usually 0.5 or more, preferably 0.7 or more, more preferably 0.7 or more when the color conversion substrate is irradiated with blue light having a peak wavelength of 440 to 460 nm. It is 0.8 or more, more preferably 0.9 or more.
 本発明の実施の形態に係る緑色色変換層は、光励起されることにより、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する発光材料(以下「発光材料(a1)」という)を含むことが好ましい。 The green color conversion layer according to the embodiment of the present invention comprises a light emitting material (hereinafter referred to as "light emitting material (a1)") that exhibits light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm when photoexcited. It is preferable to include it.
 また、本発明の実施の形態に係る赤色色変換層は、光励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する発光材料(以下「発光材料(b1)」という)、を含むことが好ましい。発光材料(a1)および発光材料(b1)は、波長400nm以上500nm以下の範囲の光により励起される発光材料であることがより好ましい。 Further, the red color conversion layer according to the embodiment of the present invention is a light emitting material (hereinafter referred to as "light emitting material (b1)") that exhibits light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less when photoexcited. ), Is preferable. It is more preferable that the light emitting material (a1) and the light emitting material (b1) are light emitting materials excited by light having a wavelength in the range of 400 nm or more and 500 nm or less.
 中でも、本発明の実施の形態に係る緑色色変換層は、光励起されることにより、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する有機発光材料(以下「有機発光材料(a2)」という)を含むことがより好ましい。 Among them, the green color conversion layer according to the embodiment of the present invention is an organic light emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm when photoexcited (hereinafter, “organic light emitting material (a2)). It is more preferable to include).
 また、本発明の実施の形態に係る赤色色変換層は、光励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する有機発光材料(以下「有機発光材料(b2)」という)、を含むことがより好ましい。有機発光材料(a2)および有機発光材料(b2)は、波長400nm以上500nm以下の範囲の光により励起される有機発光材料であることがさらに好ましい。 Further, the red color conversion layer according to the embodiment of the present invention is an organic light emitting material exhibiting light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less when photoexcited (hereinafter, “organic light emitting material (b2)). ”), Is more preferable. It is more preferable that the organic light emitting material (a2) and the organic light emitting material (b2) are organic light emitting materials excited by light having a wavelength in the range of 400 nm or more and 500 nm or less.
 一般に、励起光は、そのエネルギーが大きいほど、材料の分解を引き起こしやすい。しかし、波長400nm以上500nm以下の範囲の励起光は、比較的小さい励起エネルギーのものである。このため、色変換層中の発光材料の分解を引き起こすことなく、色純度の良好な発光が得られる。 In general, the larger the energy of excitation light, the more likely it is to cause decomposition of the material. However, the excitation light having a wavelength in the range of 400 nm or more and 500 nm or less has a relatively small excitation energy. Therefore, light emission with good color purity can be obtained without causing decomposition of the light emitting material in the color conversion layer.
 本発明の実施の形態に係る緑色色変換層に含まれる有機発光材料(a2)は1種類だけでもよく、複数併用してもよい。また有機発光材料(a2)のほかに波長400nm以上500nm以下の範囲の光により励起されることにより、ピーク波長450nm以上530nm以下の領域に観測される発光を呈する発光材料をさらに含んでいてもよい。 The organic light emitting material (a2) contained in the green color conversion layer according to the embodiment of the present invention may be only one type or may be used in combination of two or more. Further, in addition to the organic light emitting material (a2), a light emitting material exhibiting light emission observed in a region having a peak wavelength of 450 nm or more and 530 nm or less when excited by light having a wavelength in the range of 400 nm or more and 500 nm or less may be further contained. ..
 同様に、本発明の実施の形態に係る赤色色変換組成物に含まれる有機発光材料(b2)は1種類だけでもよく、複数併用してもよい。また有機発光材料(b2)のほかに有機発光材料(a2)を含んでいてもよく、波長400nm以上500nm以下の範囲の光により励起されることにより、ピーク波長450nm以上530nm以下の領域に観測される発光を呈する発光材料をさらに含んでいてもよい。 Similarly, the organic light emitting material (b2) contained in the red color conversion composition according to the embodiment of the present invention may be only one type or may be used in combination of two or more. Further, the organic light emitting material (a2) may be contained in addition to the organic light emitting material (b2), and by being excited by light having a wavelength in the range of 400 nm or more and 500 nm or less, it is observed in a region having a peak wavelength of 450 nm or more and 530 nm or less. It may further contain a light emitting material that exhibits light emission.
 波長400nm以上500nm以下の範囲の励起光の一部は、本発明の実施の形態に係る色変換基板に含まれる非色変換部を透過することにより、それ自体を青色の発光として利用することができる。そのため、緑色色変換部と、赤色色変換部と、非色変換部とを有する色変換基板と部分駆動可能な青色光源とを組み合わせることにより、青、緑、赤の単色表示および白色表示が可能であり、ディスプレイのフルカラー表示が可能となる。すなわち、緑色色変換部に位置する青色光源のみを部分的に点灯させることで緑色を表示することができ、赤色色変換部に位置する青色光源のみを部分的に点灯させることで赤色を表示することができ、非色変換部に位置する青色光源のみを部分的に点灯させることで青色を表示することが可能となる。 A part of the excitation light having a wavelength in the range of 400 nm or more and 500 nm or less can be used as blue light emission by itself by passing through a non-color conversion portion included in the color conversion substrate according to the embodiment of the present invention. it can. Therefore, by combining a color conversion board having a green color conversion unit, a red color conversion unit, a non-color conversion unit, and a partially driveable blue light source, it is possible to display blue, green, and red in a single color and white. Therefore, full-color display of the display becomes possible. That is, green can be displayed by partially lighting only the blue light source located in the green color conversion unit, and red can be displayed by partially lighting only the blue light source located in the red color conversion unit. It is possible to display blue by partially turning on only the blue light source located in the non-color conversion unit.
 有機発光材料(a2)としては、クマリン6、クマリン7、クマリン153等のクマリン誘導体、インドシアニングリーン等のシアニン誘導体、フルオレセイン、フルオレセインイソチオシアネート、カルボキシフルオレセインジアセテート等のフルオレセイン誘導体、フタロシアニングリーン等のフタロシアニン誘導体、ジイソブチル-4,10-ジシアノペリレン-3,9-ジカルボキシレート等のペリレン誘導体、他にピロメテン誘導体、スチルベン誘導体、オキサジン誘導体、ナフタルイミド誘導体、ピラジン誘導体、ベンゾイミダゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、イミダゾピリジン誘導体、アゾール誘導体、アントラセン等の縮合アリール環を有する化合物やその誘導体、芳香族アミン誘導体、有機金属錯体化合物等が好適なものとして挙げられる。しかし、有機発光材料(a2)は、特にこれらに限定されるものではない。 Examples of the organic luminescent material (a2) include coumarin derivatives such as coumarin 6, coumarin 7, and coumarin 153, cyanine derivatives such as indocyanine green, fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, and carboxyfluorescein diacetate, and phthalocyanine such as phthalocyanine green. Derivatives, perylene derivatives such as diisobutyl-4,10-dicyanoperylene-3,9-dicarboxylate, other pyromethene derivatives, stillben derivatives, oxazine derivatives, naphthalimide derivatives, pyrazine derivatives, benzoimidazole derivatives, benzoxazole derivatives, benzo Suitable compounds include thiazole derivatives, imidazole pyridine derivatives, azole derivatives, compounds having a fused aryl ring such as anthracene, derivatives thereof, aromatic amine derivatives, and organic metal complex compounds. However, the organic light emitting material (a2) is not particularly limited to these.
 有機発光材料(a2)の化合物の中でも、ピロメテン誘導体は、高い発光量子収率を与え、耐久性が良好なので、特に好適な化合物である。ピロメテン誘導体としては、例えば、一般式(1)で表される化合物が、色純度の高い発光を示すことから、好ましい。 Among the compounds of the organic light emitting material (a2), the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability. As the pyrromethene derivative, for example, the compound represented by the general formula (1) is preferable because it exhibits high luminescence with high color purity.
 有機発光材料(b2)としては、4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン等のシアニン誘導体、ローダミンB、ローダミン6G、ローダミン101、スルホローダミン101等のローダミン誘導体、1-エチル-2-(4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル)-ピリジニウム-パークロレート等のピリジン誘導体、N,N’-ビス(2,6-ジイソプロピルフェニル)-1,6,7,12-テトラフェノキシペリレン-3,4:9,10-ビスジカルボイミド等のペリレン誘導体、他にポルフィリン誘導体、ピロメテン誘導体、オキサジン誘導体、ピラジン誘導体、ナフタセンやジベンゾジインデノペリレン等の縮合アリール環を有する化合物やその誘導体、有機金属錯体化合物等が好適なものとして挙げられる。しかし、有機発光材料(b2)は、特にこれらに限定されるものではない。 Examples of the organic light emitting material (b2) include cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, rhodamine B, rhodamine 6G, rhodamine 101, sulfodamine 101 and the like. Rhodamine derivatives, pyridine derivatives such as 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium-parklorate, N, N'-bis (2,6-diisopropylphenyl) Perylene derivatives such as -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-bisdicarboimide, as well as porphyrin derivatives, pyromethene derivatives, oxazine derivatives, pyrazine derivatives, naphthacene and dibenzodiindeno Suitable compounds include compounds having a fused aryl ring such as perylene, derivatives thereof, and organic metal complex compounds. However, the organic light emitting material (b2) is not particularly limited to these.
 有機発光材料(b2)の化合物の中でも、ピロメテン誘導体は、高い発光量子収率を与え、耐久性が良好なので、特に好適な化合物である。ピロメテン誘導体としては、例えば、一般式(1)で表される化合物が、色純度の高い発光を示すことから、好ましい。 Among the compounds of the organic light emitting material (b2), the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability. As the pyrromethene derivative, for example, the compound represented by the general formula (1) is preferable because it exhibits high luminescence with high color purity.
 本発明の実施の形態に係る緑色色変換層に含まれる有機発光材料(a2)の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する色変換シートの厚みや透過率にもよるが、色変換基板の単位面積当たり、5.0×10-6mol/m以上5.0×10-3mol/m以下であることが好ましく、1.0×10-5mol/m以上1.0×10-3mol/m以下であることがより好ましく、2.0×10-5mol/m以上1.0×10-3mol/m以下であることがさらに好ましく、5.0×10-5mol/m以上1.0×10-3mol/m以下であることがさらにより好ましい。 The content of the organic light emitting material (a2) contained in the green color conversion layer according to the embodiment of the present invention includes the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion sheet to be produced. Although it depends on the thickness and transmittance, it is preferably 5.0 × 10 -6 mol / m 2 or more and 5.0 × 10 -3 mol / m 2 or less per unit area of the color conversion substrate, preferably 1.0. × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m 2 or less is more preferable, and 2.0 × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m It is more preferably 2 or less, and even more preferably 5.0 × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m 2 or less.
 また本発明の実施の形態に係る赤色色変換層に含まれる有機発光材料(b2)の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する色変換シートの厚みや透過率にもよるが、色変換基板の単位面積当たり、5.0×10-6mol/m以上5.0×10-3mol/m以下であることが好ましく、1.0×10-5mol/m以上1.0×10-3mol/m以下であることがより好ましく、3.0×10-5mol/m以上1.0×10-3mol/m以下がさらに好ましく、5.0×10-5mol/m以上1.0×10-3mol/m以下であることがさらにより好ましい。 Further, the content of the organic light emitting material (b2) contained in the red color conversion layer according to the embodiment of the present invention includes the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion sheet to be produced. Although it depends on the thickness and transmittance of the material, it is preferably 5.0 × 10 -6 mol / m 2 or more and 5.0 × 10 -3 mol / m 2 or less per unit area of the color conversion substrate. It is more preferably 0 × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m 2 or less, and 3.0 × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m / m. It is more preferably m 2 or less, and even more preferably 5.0 × 10 -5 mol / m 2 or more and 1.0 × 10 -3 mol / m 2 or less.
 <カラーフィルター>
 さらに、本発明における色変換基板はカラーフィルターを有することが好ましい。カラーフィルターは、可視光の特定波長域を透過させ、透過光を所望の色相とし、および透過光の色純度を向上させるための層である。青色光を色変換層で変換する際に、励起光源からの青色光を充分にカットできないため、変換光に青色光が混ざり、その結果、選択的に変換光は得られず、高い色純度が得られない。そこで、カラーフィルターを用いることで、選択的に青色光のみカットし、変換光のみ取り出すことが可能となり、色純度が向上する。本発明に用いられるカラーフィルターは、液晶ディスプレイ等のフラットパネルディスプレイに用いられる材料を用いて形成することができる。近年はフォトレジストに顔料を分散させた顔料分散型材料がよく用いられる。400nm~550nmの波長を透過する青色カラーフィルター、500nm~600nmの波長を透過する緑色カラーフィルター、500nm以上の波長を透過する黄色カラーフィルター、もしくは、600nm以上の波長を透過する赤色カラーフィルターなどを用いることが好ましい。また、カラーフィルターは、色変換部から離隔して積層されていてもよいし、一体化して積層されていてもよい。また、色変換基板上にカラーフィルターを形成してもよいし、色変換基板とは別にカラーフィルター基板を作製し、重ね合わせてもよい。また、光源から順に、色変換部、カラーフィルターの順で積層されていることが好ましい。
<Color filter>
Further, the color conversion substrate in the present invention preferably has a color filter. The color filter is a layer for transmitting a specific wavelength range of visible light, making the transmitted light a desired hue, and improving the color purity of the transmitted light. When converting blue light with the color conversion layer, the blue light from the excitation light source cannot be sufficiently cut, so that the converted light is mixed with blue light, and as a result, the converted light cannot be selectively obtained, resulting in high color purity. I can't get it. Therefore, by using a color filter, it is possible to selectively cut only blue light and extract only converted light, and the color purity is improved. The color filter used in the present invention can be formed by using a material used for a flat panel display such as a liquid crystal display. In recent years, a pigment-dispersed material in which a pigment is dispersed in a photoresist is often used. A blue color filter that transmits a wavelength of 400 nm to 550 nm, a green color filter that transmits a wavelength of 500 nm to 600 nm, a yellow color filter that transmits a wavelength of 500 nm or more, or a red color filter that transmits a wavelength of 600 nm or more is used. Is preferable. Further, the color filters may be laminated apart from the color conversion unit, or may be integrated and laminated. Further, a color filter may be formed on the color conversion substrate, or a color filter substrate may be produced separately from the color conversion substrate and superposed. Further, it is preferable that the color conversion unit and the color filter are stacked in this order from the light source.
 青色カラーフィルターは非色変換部上に形成することが好ましく、緑色カラーフィルターは緑色色変換層上に形成することが好ましく、赤色カラーフィルターは赤色色変換層上に形成することが好ましい。また、黄色カラーフィルターは緑色色変換層および赤色色変換層上に形成することが好ましい。カラーフィルターと非色変換部、緑色色変換層および赤色色変換層は直接積層されていてもよいし、間に空気層や樹脂層を有していてもよい。樹脂層の樹脂には、<色変換層および非色変換層に含まれる樹脂>で説明した樹脂を適宜使用することができる。 The blue color filter is preferably formed on the non-color conversion portion, the green color filter is preferably formed on the green color conversion layer, and the red color filter is preferably formed on the red color conversion layer. Further, the yellow color filter is preferably formed on the green color conversion layer and the red color conversion layer. The color filter, the non-color conversion unit, the green color conversion layer, and the red color conversion layer may be directly laminated, or may have an air layer or a resin layer between them. As the resin of the resin layer, the resin described in <Resin contained in the color conversion layer and the non-color conversion layer> can be appropriately used.
 <ディスプレイ>
 本発明に係る色変換基板を有するディスプレイは、少なくとも部分駆動型青色光源を含むものである。光源としては、有機電界発光素子や、青色LED光源などを用いることが可能である。また光源以外にカラーフィルターを含んでいてもよく、さらにプリズムフィルムや拡散フィルムなどの光学フィルムを含んでいてもよい。
<Display>
The display having the color conversion substrate according to the present invention includes at least a partially driven blue light source. As the light source, an organic electroluminescent element, a blue LED light source, or the like can be used. Further, a color filter may be included in addition to the light source, and an optical film such as a prism film or a diffusion film may be included.
 本発明に係る色変換基板を有するディスプレイは、緑色色変換部を緑色サブ画素、赤色色変換部を赤色サブ画素、非色変換部を青色サブ画素とした3つのサブ画素により画像を構成する最小単位である一つの画素を構成する。図7に隔壁形状がストライプ状である場合の隔壁幅71、青色サブ画素幅74、緑色サブ画素幅73および赤色サブ画素幅72を示す。 The display having the color conversion substrate according to the present invention has a minimum of three sub-pixels in which the green color conversion unit is a green sub-pixel, the red color conversion unit is a red sub-pixel, and the non-color conversion unit is a blue sub-pixel. It constitutes one pixel which is a unit. FIG. 7 shows a partition wall width 71, a blue sub-pixel width 74, a green sub-pixel width 73, and a red sub-pixel width 72 when the partition wall shape is striped.
 青色サブ画素幅、緑色サブ画素幅および赤色サブ画素幅は300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましい。また青色サブ画素幅、緑色サブ画素幅および赤色サブ画素幅は10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以下であることがさらに好ましい。青色サブ画素幅、緑色サブ画素幅および赤色サブ画素幅が300μ以下であることにより、より高精細なディスプレイを得ることができる。また青色サブ画素幅、緑色サブ画素幅および赤色サブ画素幅が10μm以上であることにより、歩留まり良く色変換基板を製造することができる。 The blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are preferably 300 μm or less, more preferably 200 μm or less, and further preferably 150 μm or less. The blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are preferably 10 μm or more, more preferably 20 μm or more, and further preferably 30 μm or less. When the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are 300 μm or less, a higher-definition display can be obtained. Further, when the blue sub-pixel width, the green sub-pixel width, and the red sub-pixel width are 10 μm or more, a color conversion substrate with good yield can be manufactured.
 隔壁幅は好ましくは30μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることがさらに好ましい。また、隔壁幅は5μm以上であることが好ましい。隔壁幅が上記範囲にあることにより、高輝度かつ色純度のよいディスプレイを得ることができる。 The partition wall width is preferably 30 μm or less, more preferably 20 μm or less, and further preferably 10 μm or less. Further, the partition wall width is preferably 5 μm or more. When the partition wall width is in the above range, a display having high brightness and good color purity can be obtained.
 <ディスプレイの色度・輝度>
 本発明に係る色変換基板を有するディスプレイの色度および輝度は、ディスプレイを点灯した状態で輝度計などにより測定することができる。例えば、日本電子機械工業会の定める有機ELディスプレイモジュール測定方法「EIAJ ED-2810」に則って測定することができる。ディスプレイを白色表示したときの色度は国際照明委員会(CIE)の定める「XYZ表色系」により色度座標(x,y)として表すことができる。白色表示したときの色度xは0.25以上であることが好ましく、0.28以上であることがより好ましく、0.30以上であることがさらに好ましい。また、0.35以下であることが好ましく、0.33以下であることがより好ましい。白色表示したときの色度yは0.25以上であることが好ましく、0.28以上であることがより好ましく、0.30以上であることがさらに好ましい。また、0.36以下であることが好ましく、0.34以下であることがさらに好ましい。ディスプレイの輝度としては100nit以上であることが好ましく、150nit以上であることがより好ましく、200nit以上であることがさらに好ましく、250nit以上であることがさらにより好ましく、300nit以上であることが特に好ましい。
<Display chromaticity / brightness>
The chromaticity and brightness of the display having the color conversion substrate according to the present invention can be measured by a luminance meter or the like with the display lit. For example, the measurement can be performed according to the organic EL display module measuring method "EIAJ ED-2810" defined by the Japan Electronics Machinery Manufacturers Association. The chromaticity when the display is displayed in white can be expressed as chromaticity coordinates (x, y) according to the "XYZ color system" defined by the International Commission on Illumination (CIE). The chromaticity x when displayed in white is preferably 0.25 or more, more preferably 0.28 or more, and further preferably 0.30 or more. Further, it is preferably 0.35 or less, and more preferably 0.33 or less. The chromaticity y when displayed in white is preferably 0.25 or more, more preferably 0.28 or more, and further preferably 0.30 or more. Further, it is preferably 0.36 or less, and more preferably 0.34 or less. The brightness of the display is preferably 100 nits or more, more preferably 150 nits or more, further preferably 200 nits or more, further preferably 250 nits or more, and particularly preferably 300 nits or more.
 以下、本発明およびその効果について具体的な例を用いて説明するが、実施例は本発明の適用範囲を限定するものではない。 Hereinafter, the present invention and its effects will be described with reference to specific examples, but the examples do not limit the scope of application of the present invention.
 (面積Sr、面積Sg、面積Snの測定)
 後述する実施例および比較例で作製した色変換基板における、任意の5cm×5cm領域の1つについて、赤色色変換層の面積の総和Sr(cm)、緑色色変換層の面積の総和Sg(cm)、非色変換層の面積の総和Sn(cm)をそれぞれ求めた。各実施例の測定結果を表1~表3に示す。また、実施例1は、色変換基板に存在する赤色色変換層の面積の総和、緑色色変換層の面積の総和、非色変換層の面積の総和についても式(A)および式(B)の関係を満たすことを確認した。
(Measurement of area Sr, area Sg, area Sn)
For one of the arbitrary 5 cm × 5 cm regions in the color conversion substrates produced in Examples and Comparative Examples described later, the total area of the red color conversion layer Sr (cm 2 ) and the total area of the green color conversion layer Sg ( cm 2 ) and the total area of the non-color conversion layer Sn (cm 2 ) were obtained. The measurement results of each example are shown in Tables 1 to 3. Further, in the first embodiment, the total area of the red color conversion layer existing on the color conversion substrate, the total area of the green color conversion layer, and the total area of the non-color conversion layer are also expressed in the formulas (A) and (B). It was confirmed that the relationship was satisfied.
 (色度・輝度評価)
 後述する実施例および比較例で作製したディスプレイを各色に対して10mA/cmで駆動し、トプコン製分光放射計SR-LEDWで色度および輝度を測定した。
(Saturation / brightness evaluation)
The displays produced in Examples and Comparative Examples described later were driven at 10 mA / cm 2 for each color, and the chromaticity and brightness were measured with a Topcon spectroradiometer SR-LEDW.
 以下、本発明の色変換基板およびこれを適用した有機ELディスプレイの作製例を説明する。当該有機ELディスプレイは画素数160×120×RGBで形成した。 Hereinafter, an example of manufacturing the color conversion substrate of the present invention and an organic EL display to which the color conversion substrate is applied will be described. The organic EL display was formed with 160 × 120 × RGB pixels.
 (実施例1)
 (色変換基板の作製)
 1.隔壁の作製
 透明基板(コーニング1737ガラス:50×50×1.1mm)上に、隔壁材料としてVPA204/P5.4-2(新日鉄化学社製)をスピンコートし、ストライプ状のパターンになるようなフォトマスクを介して紫外線露光し、2%炭酸ナトリウム水溶液で現像後、200℃でベークして、透明な隔壁(膜厚30μm)のパターンを形成した。隔壁幅は10μmとし、赤色サブ画素の幅を110μm、緑色サブ画素幅を110μm、青色サブ画素幅を80μmとした。
(Example 1)
(Making a color conversion board)
1. 1. Fabrication of partition wall VPA204 / P5.4-2 (manufactured by Nippon Steel Chemical Co., Ltd.) is spin-coated on a transparent substrate (Corning 1737 glass: 50 x 50 x 1.1 mm) as a partition wall material to form a striped pattern. It was exposed to ultraviolet rays through a photomask, developed with a 2% aqueous sodium carbonate solution, and then baked at 200 ° C. to form a transparent partition wall (thickness 30 μm) pattern. The partition wall width was 10 μm, the red sub-pixel width was 110 μm, the green sub-pixel width was 110 μm, and the blue sub-pixel width was 80 μm.
 2.赤色色変換層の作製
 プロピレングリコールモノメチルアセテート溶媒中に赤色ピロメテン誘導体RD-1(0.01重量%)とポリメタクリル酸メチル(クラレ製)(4重量%)を混合して、インクを調製した。調製したインクを、インクジェット法を用いて、窒素雰囲気中で、赤色色変換層領域の表面へ付着させた。その後、該基板を200℃で30分間、乾燥させ、膜厚25μmの赤色色変換層を作製した。
2. 2. Preparation of Red Color Conversion Layer An ink was prepared by mixing a red pyrromethene derivative RD-1 (0.01% by weight) and polymethyl methacrylate (manufactured by Kuraray) (4% by weight) in a propylene glycol monomethyl acetate solvent. The prepared ink was adhered to the surface of the red color conversion layer region in a nitrogen atmosphere using an inkjet method. Then, the substrate was dried at 200 ° C. for 30 minutes to prepare a red color conversion layer having a film thickness of 25 μm.
 3.緑色色変換層の作製
 プロピレングリコールモノメチルアセテート溶媒中へ緑色ピロメテン誘導体GD-1(0.01重量%)とポリメタクリル酸メチル(クラレ製)(4重量%)を混合して、を溶解させてインクを調製した。調製したインクを、インクジェット法を用いて、窒素雰囲気中で、緑色色変換層領域の表面へ付着した。その後、該基板を200℃で30分間、乾燥させ、膜厚25μmの緑色色変換層を作製した。
3. 3. Preparation of green color conversion layer Mix green pyromethene derivative GD-1 (0.01% by weight) and polymethyl methacrylate (manufactured by Kuraray) (4% by weight) in a propylene glycol monomethyl acetate solvent, and dissolve the ink. Was prepared. The prepared ink was adhered to the surface of the green color conversion layer region in a nitrogen atmosphere by using an inkjet method. Then, the substrate was dried at 200 ° C. for 30 minutes to prepare a green color conversion layer having a film thickness of 25 μm.
 4.カラーフィルターの作製
 黒色着色組成物は、以下の組成の混合物を混合攪拌し孔径1.0μmのフィルタで濾過して作製した。
カーボンブラック分散液:御国色素社製(TPBK-2016)   29.8重量部
樹脂:V259-ME(新日鐵化学社製)(固形分56.1重量%) 10.3重量部
モノマー:DPHA(日本化薬社製)               2.58重量部
開始剤:OXE-02(チバ・スペシャルティ・ケミカルズ社製)  0.86重量部
溶剤:プロピレングリコールモノメチルエーテルアセテート     92.0重量部
分散材:DISPER BYK 21116(ビックケミージャパン(株)製)2.6重量部。
4. Preparation of Color Filter The black coloring composition was prepared by mixing and stirring a mixture having the following composition and filtering it with a filter having a pore size of 1.0 μm.
Carbon black dispersion: Mikuni Color Co., Ltd. (TPBK-2016) 29.8 parts by weight Resin: V259-ME (Nippon Steel Chemical Co., Ltd.) (solid content 56.1% by weight) 10.3 parts by weight Monomer: DPHA ( Nippon Kayaku Co., Ltd.) 2.58 parts by weight Initiator: OXE-02 (manufactured by Ciba Specialty Chemicals) 0.86 parts by weight Solvent: propylene glycol monomethyl ether acetate 92.0 parts by weight Dispersant: DISPER BYK 21116 (manufactured by Ciba Specialty Chemicals) Big Chemy Japan Co., Ltd.) 2.6 parts by weight.
 上記黒色着色組成物を、スピンコート法を用いて塗布した。形成された膜にフォトリソグラフィ法によりパターニングを実施し、線幅10μm、ピッチ0.33mm、膜厚2μmのラインパターンを有するブラックマトリックスを作製した。 The above black coloring composition was applied using a spin coating method. The formed film was patterned by a photolithography method to prepare a black matrix having a line pattern having a line width of 10 μm, a pitch of 0.33 mm, and a film thickness of 2 μm.
 黄色着色組成物は、以下の組成の混合物を混合攪拌し孔径1.0μmのフィルタで濾過して作製した。
黄色顔料:ピグメントイエロー150                 7.5重量部
樹脂:アロニックスM7100(東亜合成化学工業株式会社製)     5.5重量部
モノマー:ジペンタエリストールヘキサアクリレート(日本化薬社製)  5.0重量部
開始剤:OXE-02(チバ・スペシャルティ・ケミカルズ社製)    0.86重量部
溶剤:ユーカーエステルEEP(ダウ・ケミカル社製)        13.5重量部
   プロピレングリコールモノメチルエーテルアセテート     41.0重量部
分散材:DISPER BYK 21116(ビックケミージャパン(株)製)2.3重量部。
The yellow coloring composition was prepared by mixing and stirring a mixture having the following composition and filtering it with a filter having a pore size of 1.0 μm.
Yellow pigment: Pigment Yellow 150 7.5 parts by weight Resin: Aronix M7100 (manufactured by Toa Synthetic Chemical Industry Co., Ltd.) 5.5 parts by weight Monomer: Dipentaesterol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) 5.0 parts by weight started Agent: OXE-02 (manufactured by Ciba Specialty Chemicals) 0.86 parts by weight Solvent: Eukerester EEP (manufactured by Dow Chemical Co., Ltd.) 13.5 parts by weight propylene glycol monomethyl ether acetate 41.0 parts by weight Dispersant: DISPER BYK 21116 (manufactured by Big Chemie Japan Co., Ltd.) 2.3 parts by weight.
 上記黄色着色組成物を、スピンコート法を用いて塗布した。形成された膜にフォトリソグラフィ法によりパターニングを実施し、膜厚2μmの黄色カラーフィルターを赤色色変換層および緑色色変換層上に作製した。 The above yellow coloring composition was applied using a spin coating method. The formed film was patterned by a photolithography method to prepare a yellow color filter having a thickness of 2 μm on the red color conversion layer and the green color conversion layer.
 以上により、青色光を透過する非色変換部と、赤色変換層および緑色色変換層の上に黄色カラーフィルターを有する色変換基板を作製した。 From the above, a color conversion substrate having a non-color conversion unit that transmits blue light and a yellow color filter on the red conversion layer and the green color conversion layer was produced.
 5.有機EL基板作製
 上記により作製された色変換基板上にパターニングされた画素形状に対応して、有機EL基板上にTFTを配列した。続いて、該有機EL基板にスパッタ法を用いてAg膜を形成した後、ITO透明導電膜を165nmの厚さでパターン状に形成した。得られた基板を セミコクリーン56(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。素子を作製する直前に、この基板を1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CNを5nm、正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料としてH-1を、青色ドーパント材料としてBD-1をドープ濃度が5重量%になるようにして20nmの厚さに蒸着した。さらに電子輸送層としてET-1を、ドナー性材料として2E-1を用い、ET-1と2E-1の蒸着速度比が1:1になるようにして35nmの厚さに積層した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を60nm共蒸着して陰極とし、Alqを60nmの厚さに蒸着した。成膜を終了した基板に封止ガラス基板を接着して、部分駆動可能なトップエミッション型有機EL基板を得た。赤色サブ画素用の青色光源のサイズは300μm×100μm、緑色サブ画素用の青色光源のサイズは300μm×100μm、青色サブ画素用青色光源のサイズは300μm×70μmとした。それぞれの青色光源は上下左右の隣接する青色光源と10μmの間隔をあけて格子状に配列するように作製した。
5. Fabrication of Organic EL Substrate The TFTs were arranged on the organic EL substrate corresponding to the pixel shape patterned on the color conversion substrate prepared above. Subsequently, an Ag film was formed on the organic EL substrate by a sputtering method, and then an ITO transparent conductive film was formed in a pattern with a thickness of 165 nm. The obtained substrate was ultrasonically cleaned with Semicoclean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. Immediately before manufacturing the device, this substrate was subjected to UV-ozone treatment for 1 hour, installed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN 6 was first deposited at 5 nm as a hole injection layer, and HT-1 was deposited at 50 nm as a hole transport layer. Next, as a light emitting layer, H-1 as a host material and BD-1 as a blue dopant material were deposited to a thickness of 20 nm so that the doping concentration was 5% by weight. Further, ET-1 was used as the electron transport layer and 2E-1 was used as the donor material, and the layers were laminated to a thickness of 35 nm so that the vapor deposition rate ratio of ET-1 and 2E-1 was 1: 1. Next, after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 60 nm to form a cathode, and Alq 3 was deposited to a thickness of 60 nm. A sealed glass substrate was adhered to the substrate after the film formation to obtain a partially driveable top emission type organic EL substrate. The size of the blue light source for the red subpixel was 300 μm × 100 μm, the size of the blue light source for the green subpixel was 300 μm × 100 μm, and the size of the blue light source for the blue subpixel was 300 μm × 70 μm. Each blue light source was prepared so as to be arranged in a grid pattern with an interval of 10 μm from the adjacent blue light sources on the top, bottom, left, and right.
 6.有機ELディスプレイの作製
 上記のとおり作製した色変換基板および有機EL基板を貼り合わせ、ディスプレイを作製した。該ディスプレイを用いて各色の色度および輝度を測定した。
6. Production of Organic EL Display A display was produced by laminating the color conversion substrate and the organic EL substrate prepared as described above. The chromaticity and brightness of each color were measured using the display.
 (実施例2~9、比較例1)
 各サブ画素の幅および各サブ画素に対応する青色光源のサイズを表1および表2の通りとしたこと以外は実施例1と同様の操作にて色変換基板、有機EL基板および有機ELディスプレイを作製した。得られた有機ELディスプレイの色度および輝度測定結果を表1および表2に示す。なお、RD-1、GD-1、BD-1、HAT-CN、HT-1、H-1、ET-1、2E-1は下記に示す化合物である。実施例2~9は、色変換基板に存在する赤色色変換層の面積の総和、緑色色変換層の面積の総和、非色変換層の面積の総和についても式(A)および式(B)の関係を満たすことを確認した。また実施例3~9については式(C-1)を満たすことを確認した。一方、比較例1は、色変換基板に存在する赤色色変換層の面積の総和、緑色色変換層の面積の総和、非色変換層の面積の総和についても式(A)および式(B)の関係を満たさないことを確認した。
(Examples 2 to 9, Comparative Example 1)
The color conversion substrate, the organic EL substrate, and the organic EL display are operated in the same manner as in the first embodiment except that the width of each sub-pixel and the size of the blue light source corresponding to each sub-pixel are as shown in Tables 1 and 2. Made. The chromaticity and brightness measurement results of the obtained organic EL display are shown in Tables 1 and 2. RD-1, GD-1, BD-1, HAT-CN 6 , HT-1, H-1, ET-1, and 2E-1 are the compounds shown below. In Examples 2 to 9, the total area of the red color conversion layer existing on the color conversion substrate, the total area of the green color conversion layer, and the total area of the non-color conversion layer are also expressed in the formulas (A) and (B). It was confirmed that the relationship was satisfied. Further, it was confirmed that the formula (C-1) was satisfied for Examples 3 to 9. On the other hand, in Comparative Example 1, the total area of the red color conversion layer existing on the color conversion substrate, the total area of the green color conversion layer, and the total area of the non-color conversion layer are also expressed in the formulas (A) and (B). It was confirmed that the relationship was not satisfied.
 (実施例10および11)
 各サブ画素の幅および各サブ画素に対応する青色光源のサイズを表3の通りとしたこと以外は実施例1と同様の操作にて色変換基板、有機EL基板および有機ELディスプレイを作製した。得られた有機ELディスプレイの色度および輝度測定結果を表3に示す。実施例10および11は、色変換基板に存在する赤色色変換層の面積の総和、緑色色変換層の面積の総和、非色変換層の面積の総和についても式(A)、式(B)および式(C-2)の関係を満たすことを確認した。
(Examples 10 and 11)
A color conversion substrate, an organic EL substrate, and an organic EL display were produced by the same operations as in Example 1 except that the width of each sub-pixel and the size of the blue light source corresponding to each sub-pixel were set as shown in Table 3. Table 3 shows the chromaticity and brightness measurement results of the obtained organic EL display. In Examples 10 and 11, the total area of the red color conversion layer existing on the color conversion substrate, the total area of the green color conversion layer, and the total area of the non-color conversion layer are also expressed in the formulas (A) and (B). And it was confirmed that the relation of the equation (C-2) was satisfied.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 本発明に係る色変換基板、およびそれを用いたディスプレイは、好ましい色度と十分な輝度を両立することができるものである。 The color conversion substrate according to the present invention and the display using the same can achieve both preferable chromaticity and sufficient brightness.
11  ディスプレイ
12  有機EL基板
13  有機EL素子
14  透明基板
15  封止層
16  色変換基板
17N 非色変換層
17G 緑色色変換層
17R 赤色色変換層
18B 青色カラーフィルター
18Y 黄色カラーフィルター
19  隔壁
110 基板
21  ディスプレイ
22  LED基板
23  LED
24  透明基板
26  色変換基板
27N 非色変換層
27G 緑色色変換層
27R 赤色色変換層
28B 青色カラーフィルター
28Y 黄色カラーフィルター
29  隔壁
210 基板
B   非色変換層
G   緑色色変換層
R   赤色色変換層
71  隔壁幅
72  赤色サブ画素幅
73  緑色サブ画素幅
74  青色サブ画素幅
11 Display 12 Organic EL substrate 13 Organic EL element 14 Transparent substrate 15 Encapsulating layer 16 Color conversion substrate 17N Non-color conversion layer 17G Green color conversion layer 17R Red color conversion layer 18B Blue color filter 18Y Yellow color filter 19 Partition 110 Substrate 21 Display 22 LED board 23 LED
24 Transparent substrate 26 Color conversion substrate 27N Non-color conversion layer 27G Green color conversion layer 27R Red color conversion layer 28B Blue color filter 28Y Yellow color filter 29 Partition 210 Board B Non-color conversion layer G Green color conversion layer R Red color conversion layer 71 Partition width 72 Red sub-pixel width 73 Green sub-pixel width 74 Blue sub-pixel width

Claims (16)

  1. 基板上に隔壁を有し、かつ隔壁により仕切られた領域に、緑色色変換層と、赤色色変換層と、蛍光体を含まない非色変換層とを有する色変換基板であって、前記緑色色変換層および赤色色変換層は発光材料を含み、かつ前記緑色色変換層の面積をSg、前記赤色色変換層の面積をSr、前記非色変換層の面積をSnとしたとき、Sg、Sr、Snが以下の式(A)および式(B)の関係を満たす色変換基板。
    式(A) Sn<Sg
     式(B) Sn<Sr
    A color conversion substrate having a partition wall on the substrate and having a green color conversion layer, a red color conversion layer, and a non-color conversion layer containing no phosphor in a region partitioned by the partition wall. When the color conversion layer and the red color conversion layer contain a light emitting material and the area of the green color conversion layer is Sg, the area of the red color conversion layer is Sr, and the area of the non-color conversion layer is Sn, Sg. A color conversion substrate in which Sr and Sn satisfy the relationships of the following formulas (A) and (B).
    Formula (A) Sn <Sg
    Equation (B) Sn <Sr
  2. 前記面積Sgと、前記面積Srと、前記面積Snが以下の式(C-1)の関係を満たす請求項1記載の色変換基板。
    式(C-1) Sn<Sg<Sr
    The color conversion substrate according to claim 1, wherein the area Sg, the area Sr, and the area Sn satisfy the relationship of the following formula (C-1).
    Equation (C-1) Sn <Sg <Sr
  3.  前記面積Sgと、前記面積Srと、前記面積Snが以下の式(C-2)の関係を満たす請求項1記載の色変換基板。
    式(C-2) Sn<Sr<Sg
    The color conversion substrate according to claim 1, wherein the area Sg, the area Sr, and the area Sn satisfy the relationship of the following formula (C-2).
    Equation (C-2) Sn <Sr <Sg
  4. 前記面積Sgと、前記面積Srと、前記面積Snが以下の式(D)および式(E)の関係のうち少なくとも1つを満たす請求項1~3のいずれかに記載の色変換基板。
     式(D) 1.0<Sg/Sn≦5.0
     式(E) 1.0<Sr/Sn≦5.0
    The color conversion substrate according to any one of claims 1 to 3, wherein the area Sg, the area Sr, and the area Sn satisfy at least one of the relationships of the following formulas (D) and (E).
    Equation (D) 1.0 <Sg / Sn ≦ 5.0
    Equation (E) 1.0 <Sr / Sn ≦ 5.0
  5.  前記隔壁の平面形状がストライプ状である請求項1~4のいずれかに記載の色変換基板。 The color conversion substrate according to any one of claims 1 to 4, wherein the planar shape of the partition wall is striped.
  6.  前記隔壁の平面形状が格子状である請求項1~4のいずれかに記載の色変換基板。 The color conversion substrate according to any one of claims 1 to 4, wherein the partition wall has a grid-like planar shape.
  7.  前記発光材料は、下記の発光材料(a1)および(b1)を含む請求項1~6のいずれかに記載の色変換基板。
    (a1)光励起されることにより、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する発光材料
    (b1)光励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する発光材料
    The color conversion substrate according to any one of claims 1 to 6, wherein the light emitting material includes the following light emitting materials (a1) and (b1).
    (A1) Light emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm when photoexcited (b1) Light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less by photoexcitation Luminescent material that exhibits
  8.  前記発光材料(a1)および(b1)がそれぞれ下記の有機発光材料(a2)および(b2)である請求項1~7のいずれかに記載の色変換基板。
    (a2)光励起されることにより、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する有機発光材料
    (b2)光励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する有機発光材料
    The color conversion substrate according to any one of claims 1 to 7, wherein the light emitting materials (a1) and (b1) are the following organic light emitting materials (a2) and (b2), respectively.
    (A2) Organic light emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm by photoexcitation (b2) Observed in a region having a peak wavelength of 580 nm or more and 750 nm or less by photoexcitation Organic luminescent material that emits light
  9.  単位面積当たりの前記有機発光材料(a2)の含有量が5.0×10-6mol/m以上、5.0×10-3mol/m以下である、請求項8に記載の色変換基板。 The color according to claim 8, wherein the content of the organic light emitting material (a2) per unit area is 5.0 × 10 -6 mol / m 2 or more and 5.0 × 10 -3 mol / m 2 or less. Conversion board.
  10.  単位面積当たりの前記有機発光材料(b2)の含有量が5.0×10-6mol/m以上、5.0×10-3mol/m以下である、請求項7に記載の色変換基板。 The color according to claim 7, wherein the content of the organic light emitting material (b2) per unit area is 5.0 × 10 -6 mol / m 2 or more and 5.0 × 10 -3 mol / m 2 or less. Conversion board.
  11. 前記発光材料がピロメテン誘導体である請求項1~10のいずれかに記載の色変換基板。 The color conversion substrate according to any one of claims 1 to 10, wherein the light emitting material is a pyrromethene derivative.
  12. 前記ピロメテン誘導体が一般式(1)で表される化合物である請求項11に記載の色変換基板。
    Figure JPOXMLDOC01-appb-C000001
    (XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
    The color conversion substrate according to claim 11, wherein the pyrromethene derivative is a compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (X is CR 7 or N. R 1 to R 9 may be the same or different, respectively, hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, Hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, aryl thio ether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro It is selected from a fused ring and an aliphatic ring formed between a group, a silyl group, a siloxanyl group, a boryl group, a sulfo group, a phosphine oxide group, and an adjacent substituent.)
  13. 前記一般式(1)において、XがC-Rであり、Rが一般式(2)で表される基である、請求項12記載の色変換基板。
    Figure JPOXMLDOC01-appb-C000002
    (rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なってもよい。)
    The color conversion substrate according to claim 12, wherein in the general formula (1), X is CR 7 and R 7 is a group represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (R is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, hetero Selected from the group consisting of aryl groups, halogens, cyano groups, aldehyde groups, carbonyl groups, carboxyl groups, ester groups, carbamoyl groups, amino groups, nitro groups, silyl groups, siloxanyl groups, boryl groups, sulfo groups and phosphine oxide groups. .K is an integer of 1 to 3. When k is 2 or more, r may be the same or different.)
  14. 請求項1~13のいずれかに記載の色変換基板と部分駆動可能な複数の青色光源を含むディスプレイ。 A display including the color conversion substrate according to any one of claims 1 to 13 and a plurality of partially driveable blue light sources.
  15. 前記青色光源が、発光ダイオードである請求項14に記載のディスプレイ。 The display according to claim 14, wherein the blue light source is a light emitting diode.
  16. 前記青色光源が、陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する有機電界発光素子である請求項14または15に記載のディスプレイ。 The display according to claim 14 or 15, wherein the blue light source is an organic electroluminescent device in which an organic layer exists between an anode and a cathode and emits light by electric energy.
PCT/JP2020/010270 2019-03-27 2020-03-10 Color conversion substrate and display using same WO2020195786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515045A JPWO2020195786A1 (en) 2019-03-27 2020-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019061082 2019-03-27
JP2019-061082 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195786A1 true WO2020195786A1 (en) 2020-10-01

Family

ID=72608658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010270 WO2020195786A1 (en) 2019-03-27 2020-03-10 Color conversion substrate and display using same

Country Status (3)

Country Link
JP (1) JPWO2020195786A1 (en)
TW (1) TW202041650A (en)
WO (1) WO2020195786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631019A (en) * 2020-12-25 2021-04-09 舟山扑浪实业有限公司 Preparation method of quantum dot display panel and quantum dot display panel
WO2022239354A1 (en) * 2021-05-14 2022-11-17 ソニーグループ株式会社 Light-emitting device and image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039791A (en) * 1996-07-22 1998-02-13 Mitsubishi Electric Corp Organic electroluminescence display device
US20180129098A1 (en) * 2016-11-10 2018-05-10 Samsung Display Co., Ltd. Display device including a light amount control layer
JP2018163357A (en) * 2016-03-25 2018-10-18 東レ株式会社 Light source unit, lamination member, and display and luminaire using those
CN109085717A (en) * 2018-09-25 2018-12-25 上海中航光电子有限公司 Display panel and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039791A (en) * 1996-07-22 1998-02-13 Mitsubishi Electric Corp Organic electroluminescence display device
JP2018163357A (en) * 2016-03-25 2018-10-18 東レ株式会社 Light source unit, lamination member, and display and luminaire using those
US20180129098A1 (en) * 2016-11-10 2018-05-10 Samsung Display Co., Ltd. Display device including a light amount control layer
CN109085717A (en) * 2018-09-25 2018-12-25 上海中航光电子有限公司 Display panel and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631019A (en) * 2020-12-25 2021-04-09 舟山扑浪实业有限公司 Preparation method of quantum dot display panel and quantum dot display panel
WO2022239354A1 (en) * 2021-05-14 2022-11-17 ソニーグループ株式会社 Light-emitting device and image display device

Also Published As

Publication number Publication date
JPWO2020195786A1 (en) 2020-10-01
TW202041650A (en) 2020-11-16

Similar Documents

Publication Publication Date Title
US11957020B2 (en) Light-emitting device, display and color conversion substrate
TW201838174A (en) Light emitting device and image display device using same
WO2020195786A1 (en) Color conversion substrate and display using same
WO2022070877A1 (en) Color conversion sheet and light source unit including same, display, and lighting device
CN114685547A (en) Organic electroluminescent device and polycyclic compound for organic electroluminescent device
CN114075134A (en) Organic electroluminescent device and amine compound for organic electroluminescent device
CN114388717A (en) Light emitting device
CN114249744A (en) Light emitting device and polycyclic compound used therefor
CN115207232A (en) Light emitting diode
CN114853616A (en) Light-emitting element and amine compound for light-emitting element
CN114605312A (en) Light-emitting device and amine compound for light-emitting device
JP2021076790A (en) Color conversion film, light source unit including the same, display, and illumination device
WO2024024590A1 (en) Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same
JP2023051871A (en) Light-emitting element and display device including the same
CN118496148A (en) Light-emitting element and heterocyclic compound for light-emitting element
CN118184521A (en) Light-emitting element and amine compound for light-emitting element
CN115440906A (en) Light emitting diode
CN118580208A (en) Light-emitting element and amine compound for light-emitting element
CN117700435A (en) Light emitting device and condensed polycyclic compound for light emitting device
KR20240019643A (en) Display apparatus
CN116261384A (en) Light-emitting element and polycyclic compound for light-emitting element
CN115340487A (en) Light emitting device and nitrogen-containing compound for light emitting device
CN114478358A (en) Organic electroluminescent device and amine compound for organic electroluminescent device
CN117720561A (en) Light emitting element and polycyclic compound for use therein
CN118406069A (en) Light-emitting element and condensed polycyclic compound for light-emitting element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515045

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777436

Country of ref document: EP

Kind code of ref document: A1