[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020194400A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020194400A1
WO2020194400A1 PCT/JP2019/012205 JP2019012205W WO2020194400A1 WO 2020194400 A1 WO2020194400 A1 WO 2020194400A1 JP 2019012205 W JP2019012205 W JP 2019012205W WO 2020194400 A1 WO2020194400 A1 WO 2020194400A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
sps
user terminal
information
unit
Prior art date
Application number
PCT/JP2019/012205
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
シャオホン ジャン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP19921271.3A priority Critical patent/EP3944700A1/en
Priority to CN201980096685.5A priority patent/CN113875310A/zh
Priority to PCT/JP2019/012205 priority patent/WO2020194400A1/ja
Publication of WO2020194400A1 publication Critical patent/WO2020194400A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • SPS semi-persistent scheduling
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately performing transmission / reception processing with respect to repetition.
  • the user terminal is a control that controls a receiving unit that receives a downlink shared channel to which repeated transmission is applied, and controls to transmit individual delivery confirmation information for each iteration of the downlink shared channel. It is characterized by having a part and.
  • transmission / reception processing can be appropriately performed with respect to repetition.
  • FIG. 1 is a diagram showing an example of censoring of SPS in which repetition is set.
  • FIG. 2 is a diagram showing another example of censoring of SPS in which repetition is set.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • SPS Semi-Persistent Scheduling
  • DL Downlink
  • the UE may activate or deactivate (release) the SPS settings based on the downlink control channel (Physical Downlink Control Channel (PDCCH)).
  • the UE may receive the corresponding downlink shared channel (Physical Downlink Shared Channel (PDSCH)) of the SPS based on the activated SPS setting.
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH may be read as downlink control information (Downlink Control Information (DCI)) transmitted using PDCCH, simply DCI or the like.
  • DCI Downlink Control Information
  • the DCI for activating or deactivating the SPS setting may be referred to as SPS activation DCI, SPS deactivation DCI, or the like.
  • SPS deactivation DCI may be referred to as the SPS release DCI, simply the SPS release, and the like.
  • the DCI has a cyclic redundancy check (Cyclic Redundancy Check (CRC)) bit scrambled by a predetermined RNTI (eg, Configure Scheduling Radio Network Temporary Identifier (CS-RNTI)). May be good.
  • CRC Cyclic Redundancy Check
  • RNTI eg, Configure Scheduling Radio Network Temporary Identifier
  • the UE may activate or release one or more SPS settings based on one DCI (SPS activation DCI or SPS release DCI).
  • SPS activation DCI or SPS release DCI DCI
  • which SPS activation or release is instructed is specified based on at least one of the DCI field and the RNTI (eg, CS-RNTI) that scrambles the CRC attached to the DCI. You may.
  • the UE may activate or release one or more SPS configurations corresponding to the SPS identifier specified by the SPS activation / release DCI.
  • the SPS index and the SPS identifier may be read as each other.
  • the SPS activation / release DCI may also include at least one of the following information associated with the corresponding SPS HARQ-ACK: Information indicating the HARQ process corresponding to the SPS (for example, HARQ process number (HPN), HARQ process ID), • Information about physical uplink control channel (PUCCH) resources (eg, PUCCH resource indicator), -Information regarding the timing for feeding back (transmitting) HARQ-ACK (for example, PDSCH-HARQ-ACK feedback timing indicator (PDSCH-to-HARQ_feedback timing indicator)).
  • Information indicating the HARQ process corresponding to the SPS for example, HARQ process number (HPN), HARQ process ID
  • PUCCH resource indicator eg, PUCCH resource indicator
  • -Information regarding the timing for feeding back (transmitting) HARQ-ACK for example, PDSCH-HARQ-ACK feedback timing indicator (PDSCH-to-HARQ_feedback timing indicator)
  • SPS settings (which may be referred to as setting information regarding SPS) may be set in the UE using higher layer signaling.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, master information block (Master Information Block (MIB)), system information block (System Information Block (SIB)), minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI Other System Information
  • the setting information related to SPS may include an index for identifying SPS (SPS index), information related to SPS resources, and the like.
  • the SPS may be set to a special cell (Special Cell (SpCell)) (for example, a primary cell (PCell) or a primary secondary cell (Primary Secondary Cell (PSCell))), or a secondary cell (Secondary Cell). (SCell)) may be set.
  • SPCell Special Cell
  • PCell primary cell
  • PSCell Primary Secondary Cell
  • SCell Secondary Cell
  • the existing Rel-15 NR has a specification that SPS is not set for more than one serving cell at the same time per cell group (that is, one SPS is set per cell group).
  • the present inventors have conceived a method for appropriately performing transmission / reception processing with respect to repetition.
  • the UE may set (notify, instruct) repetition with respect to SPS using higher layer signaling, physical layer signaling, or a combination thereof.
  • the UE may set parameters related to repetition in relation to a predetermined SPS setting.
  • the parameter related to repetition may include at least one such as the number of repetitions (repetition factor), the repetition interval, and the redundant version (Redundancy Version (RV)) series used for repetition.
  • the SPS setting information (for example, the "SPS-Config" information element of the RRC) includes the number of repetitions (for example, it may be set by the RRC parameter "repK”) and the repeating RV series (for example, the RRC parameter "repK-RV"). It may be an SPS setting including at least one of (may be set by).
  • the RV series may include a predetermined number (eg, 4) of RVs (RV indexes).
  • the number of repetitions may correspond to the number of repetitions of the same SPS PDSCH.
  • the UE may use the same transport block (Transport Block (TB)) or the same code block (Code Block (CB)) or the same code block group within the SPS period (periodicity) for the SPS setting in which the repetition is set. It may be assumed that (Code Block Group (CBG)) is transmitted as many times as the number of repetitions.
  • Transport Block TB
  • CB code Block
  • CBG Code Block Group
  • the repetition interval may correspond to a temporal interval between repeated transmissions.
  • the interval may be read as a period, an offset, or the like. If the number of repetitions is K and the repetition interval is not set (or the repetition interval is set to 0 or 1 slot), the UE may assume that the repetition is performed in consecutive K slots. When the number of repetitions is K (> 1) and the interval between the repetition units is T slots, the UE may assume that the repetition is performed using K slots for each T slot.
  • the interval of the repeating unit may be expressed by, for example, a symbol, a slot, a subframe, a millisecond, a second, or the like.
  • the predetermined conditions are set or specified by the vertical communication direction (for example, TDD UL-DL setting (TDD UL-DL config)) of Time Division Duplex (TDD), slot format indicator, and the like.
  • the link direction of the symbol (transmission direction, for example, DL, UL, etc.) may not match the repeated transmission / reception direction. Also, the UE may not expect to receive a repeat of SPS PDSCH at a symbol set or designated as UL.
  • the UE When the UE receives SPS setting information including parameters related to repetition, it may determine that repetition is set for the SPS setting.
  • the UE may include information (fields) for specifying parameters (number of repetitions, repetition interval, etc.) related to repetition for the predetermined SPS setting in the DCI that activates the predetermined SPS setting.
  • the UE when the UE receives the SPS activation DCI including the parameter related to the repetition, it may determine that the repetition is set (designated) for the SPS setting activated by the DCI. The UE may preferentially use the value specified by DCI even when the value of the parameter related to repetition is given in the upper layer for the predetermined SPS setting.
  • the UE may apply soft combining to a plurality of SPS PDSCHs within the SPS cycle.
  • the UE may assume that one SPS PDSCH is transmitted every SPS cycle.
  • the UE transmits one delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)) to the K times SPS PDSCH.
  • HARQ-ACK may be transmitted individually for each of the K times of SPS PDSCH. The latter corresponds to transmitting HARQ-ACK using a separate PUCCH for each iteration.
  • the UE transmits an acknowledgment (Acknowledgement (ACK)) in response to the SPS PDSCH in the middle of K SPS PDSCHs (before receiving all K SPS PDSCHs) (for example, L ( ⁇ K)). If the second SPS PDSCH is successfully decoded), the subsequent (L + 1th and subsequent) or remaining (remaining) SPS PDSCH transmissions may be assumed to be terminated. Note that "censored” may be read as dropped, omitted, skipped, not transmitted, or the like.
  • the UE does not have to receive the repetition (SPS PDSCH) after the successful decoding of the SPS PDSCH (or transmission of ACK).
  • This "not received” may be read as not receiving processing, not decoding, ignoring, discarding, or the like.
  • the base station may terminate the repeated transmission.
  • the UE does not have to transmit HARQ-ACK for the terminated SPS PDSCH, may transmit ACK in a fixed manner, or transmits a negative response (Negative-Acknowledgement (NACK)) in a fixed manner. May be good.
  • NACK Negative-Acknowledgement
  • the base station may notify the UE by using MAC signaling (for example, MAC CE) or physical layer signaling (for example, DCI) to terminate the repeated transmission in the middle.
  • MAC signaling for example, MAC CE
  • DCI physical layer signaling
  • FIG. 1 is a diagram showing an example of censoring of SPS in which repetition is set.
  • SPS # 1 SPS PDSCH # 1
  • SPS # 1 SPS PDSCH # 1
  • 4 is set or specified as the number of repetitions of SPS # 1, but the number of repetitions is not limited to this.
  • the UE feeds back HARQ-ACK for each iteration of the SPS for which the iteration is set.
  • the frequency for receiving SPS and the like and the frequency for transmitting HARQ-ACK are different, but the present invention is not limited to this, and these may be transmitted and received at the same (or overlapping) frequencies. The same applies to the following figures.
  • the UE transmits NACK for the first reception of SPS # 1 and ACK for the second reception of SPS # 1. Since the ACK is fed back from the UE regarding the SPS of the repeated transmission, the base station terminates the repeated transmission. Therefore, in FIG. 1, the third and subsequent transmissions of SPS # 1 are not performed.
  • the UE does not have to receive the repetition (SPS PDSCH) after receiving the reschedule information regarding the SPS PDSCH.
  • This "not received” may be read as not receiving processing, not decoding, ignoring, discarding, or the like.
  • the reschedule information regarding the SPS PDSCH is read by the DCI (for example, downlink DCI (for example, DCI format 1_0 or 1-11)) that schedules the dynamic PDSCH (in other words, the dynamic grant-based PDSCH).
  • the DCI for example, downlink DCI (for example, DCI format 1_0 or 1-11)
  • the dynamic PDSCH in other words, the dynamic grant-based PDSCH.
  • the reschedule information may be information for activating another SPS setting (for example, SPS activation DCI).
  • the UE may assume that the first SPS has been released if another second SPS is activated during the iterative transmission period of the first SPS.
  • these reschedule information includes information that specifies a radio resource different from the original SPS PDSCH radio resource (for example, time resource, frequency resource).
  • Rescheduling information regarding SPS PDSCH may be determined based on the HARQ process ID (HPN). For example, if the UE receives a DCI (DL DCI) that specifies the same HPN during the repeated transmission period of the SPS corresponding to a certain HPN, the UE may determine that the DCI corresponds to the reschedule information regarding the SPS PDSCH. Good.
  • DL DCI DCI
  • the UE may determine that the DCI corresponds to the reschedule information regarding the SPS PDSCH. Good.
  • the HPN corresponding to the SPS PDSCH may be derived based on the SPS cycle, the number of slots per frame, the transmission timing of the first PDSCH of the SPS, etc., or may be specified by the SPS activation DCI. It may be set by higher layer signaling.
  • Rescheduling information regarding SPS PDSCH may be determined based on the RNTI that scrambles the CRC attached to the DCI.
  • the UE has a DCI (DL DCI) having a CRC scrambled with a predetermined RNTI (eg, CS-RNTI) during a repetitive transmission period of the SPS activated by the SPS activation DCI associated with a CS-RNTI. ) Is received, it may be determined that the DCI corresponds to the reschedule information regarding the SPS PDSCH.
  • DL DCI DL DCI
  • a predetermined RNTI eg, CS-RNTI
  • the base station received NACK for the SPS PDSCH from the UE more than a predetermined threshold number of times during repeated transmission of the SPS PDSCH (or even if the SPS PDSCH was transmitted more than the predetermined threshold value, the base station did not receive the ACK. ),
  • the information for rescheduling the SPS PDSCH may be transmitted to the UE, and the repeated transmission may be terminated.
  • Information about the predetermined threshold may be set by higher layer signaling (may be included in the SPS configuration) or specified by physical layer signaling (eg, included in the SPS activation DCI). Good).
  • FIG. 2 is a diagram showing another example of censoring of SPS in which repetition is set.
  • SPS # 1 SPS PDSCH # 1
  • SPS # 1 SPS PDSCH # 1
  • 4 is set or specified as the number of repetitions of SPS # 1, but the number of repetitions is not limited to this.
  • the UE feeds back HARQ-ACK for each iteration of the SPS for which the iteration is set.
  • the UE transmits NACK for the first reception of SPS # 1 and NACK for the second reception of SPS # 1. Since the base station did not receive an ACK after transmitting SPS # 1 twice, it reserved another resource for retransmission of SPS # 1 and used DCI (for example, DCI that schedules normal PDSCH). Send schedule information for the resource.
  • DCI for example, DCI that schedules normal PDSCH
  • the base station cancels the repeated transmission of SPS # 1 after the transmission of the DCI. Therefore, in FIG. 2, the third and subsequent transmissions of SPS # 1 are not performed.
  • the UE receives the SPS # 1 retransmitted by the resource based on the detected DCI.
  • transmission / reception processing can be appropriately controlled even when repetition is used for SPS.
  • the repetition of SPS PDSCH has been described in each of the above-described embodiments, the application of the present disclosure is not limited to this.
  • the above-mentioned controls related to repetition may be another signal or channel (for example, dynamic grant base PDSCH, configated grant PUSCH, dynamic grant base, etc.). It may be applied to the repetition of PUSCH etc.).
  • the SPS, SPS setting, SPS PDSCH, etc. of the present disclosure may be read as at least one such as PDSCH, Configated Grant PUSCH, PUSCH, and the like.
  • the UE when the number of repetitions, the repetition interval, and the like are set by the upper layer signaling (RRC parameter “pdsch-AggregationFactor”), DCI, or a combination thereof, the UE performs each repetition of the PDSCH.
  • HARQ-ACK may be transmitted to the signal, or processing assuming termination may be performed in the middle of the repetition.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access system based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block containing SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB), or the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit a downlink shared channel (PDSCH) to which repetition is applied to the user terminal 20.
  • the transmission / reception unit 120 may receive individual delivery confirmation information (HARQ-ACK) for each repetition of the downlink shared channel from the user terminal 20.
  • PDSCH downlink shared channel
  • HARQ-ACK individual delivery confirmation information
  • FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 may receive a downlink shared channel (PDSCH) to which repeated transmission (repetition) is applied.
  • PDSCH downlink shared channel
  • the control unit 210 may be controlled to transmit individual delivery confirmation information (HARQ-ACK) for each repetition of the downlink shared channel (that is, for each repetition unit).
  • HARQ-ACK delivery confirmation information
  • the transmission / reception unit 220 may transmit each HARQ-ACK.
  • control unit 210 transmits an acknowledgment (ACK) as the delivery confirmation information in the middle of the repeated transmission, it may be assumed that the remaining repeated transmission is terminated.
  • ACK acknowledgment
  • control unit 210 receives the reschedule information regarding the downlink shared channel in the middle of the repeated transmission, it may be assumed that the remaining repeated transmission is terminated.
  • the downlink shared channel may be a downlink shared channel (SPS PDSCH) based on the semi-persistent scheduling setting, or may be a downlink shared channel scheduled by a dynamic grant.
  • SPS PDSCH downlink shared channel
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a mini slot, a sub slot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ端末は、繰り返し送信が適用される下り共有チャネルを受信する受信部と、当該下り共有チャネルの各繰り返しに対して個別の送達確認情報を送信するように制御する制御部と、を有することを特徴とする。本開示の一態様によれば、繰り返し(repetition)に関して適切に送受信処理を実施できる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、セミパーシステントスケジューリング(semi-persistent scheduling(SPS))に基づく送受信が利用される。
 NR仕様において、SPSの品質向上、カバレッジ拡大などを目的として、SPSに関して繰り返し(repetition)を設定することが検討されている。しかしながら、繰り返しありのSPSの具体的な処理、制御などについては、まだ検討が進んでいない。当該処理、制御などについて明確に規定しなければ、SPSに繰り返しを適用する場合に適切な送受信ができず、通信スループットが劣化などするおそれがある。
 そこで、本開示は、繰り返し(repetition)に関して適切に送受信処理を実施できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、繰り返し送信が適用される下り共有チャネルを受信する受信部と、当該下り共有チャネルの各繰り返しに対して個別の送達確認情報を送信するように制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、繰り返し(repetition)に関して適切に送受信処理を実施できる。
図1は、繰り返しが設定されるSPSの打ち切りの一例を示す図である。 図2は、繰り返しが設定されるSPSの打ち切りの別の一例を示す図である。 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図4は、一実施形態に係る基地局の構成の一例を示す図である。 図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図6は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 NRでは、セミパーシステントスケジューリング(Semi-Persistent Scheduling(SPS))に基づく送受信が利用される。本開示において、SPSは、下りリンクSPS(Downlink(DL) SPS)と互いに読み替えられてもよい。
 UEは、下り制御チャネル(Physical Downlink Control Channel(PDCCH))に基づいて、SPS設定をアクティベート又はディアクティベート(リリース)してもよい。UEは、アクティベートされたSPS設定に基づいて、対応するSPSの下り共有チャネル(Physical Downlink Shared Channel(PDSCH))の受信を行ってもよい。
 なお、本開示において、PDCCHは、PDCCHを用いて送信される下り制御情報(Downlink Control Information(DCI))、単にDCIなどで読み替えられてもよい。
 SPS設定をアクティベート又はディアクティベートするためのDCIは、SPSアクティベーションDCI、SPSディアクティベーションDCIなどと呼ばれてもよい。SPSディアクティベーションDCIは、SPSリリースDCI、単にSPSリリースなどと呼ばれてもよい。
 当該DCIは、所定のRNTI(例えば、設定スケジューリング無線ネットワーク一時識別子(Configured Scheduling Radio Network Temporary Identifier(CS-RNTI)))によってスクランブルされた巡回冗長検査(Cyclic Redundancy Check(CRC))ビットを有してもよい。
 UEは、1つのDCI(SPSアクティベーションDCI又はSPSリリースDCI)に基づいて、1つ又は複数のSPS設定をアクティベート又はリリースしてもよい。ここで、どのSPSのアクティベート又はリリースを指示するかは、当該DCIのフィールドと、当該DCIに付されるCRCをスクランブルするRNTI(例えば、CS-RNTI)と、の少なくとも1つに基づいて特定されてもよい。
 例えば、SPS設定がSPSインデックスを含む場合、UEは、SPSアクティベーション/リリースDCIによって指定されるSPS識別子に対応する1つ又は複数のSPS設定をアクティベート又はリリースしてもよい。なお、本開示において、SPSインデックス及びSPS識別子(SPS ID)は、互いに読み替えられてもよい。
 また、SPSアクティベーション/リリースDCIは、対応するSPSのHARQ-ACKに関連する以下の少なくとも1つの情報を含んでもよい:
・当該SPSに対応するHARQプロセスを示す情報(例えば、HARQプロセス番号(HARQ process number(HPN))、HARQプロセスID)、
・上り制御チャネル(Physical Uplink Control Channel(PUCCH))リソースに関する情報(例えば、PUCCHリソース識別子(PUCCH resource indicator))、
・HARQ-ACKをフィードバック(送信)するタイミングに関する情報(例えば、PDSCH-HARQ-ACKフィードバックタイミング識別子(PDSCH-to-HARQ_feedback timing indicator))。
 SPS設定(SPSに関する設定情報と呼ばれてもよい)は、上位レイヤシグナリングを用いて、UEに設定されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 SPSに関する設定情報(例えば、RRCの「SPS-Config」情報要素)は、SPSを識別するためのインデックス(SPSインデックス)、SPSのリソースに関する情報などを含んでもよい。
 SPSは、スペシャルセル(Special Cell(SpCell))(例えば、プライマリセル(Primary Cell(PCell))又はプライマリセカンダリセル(Primary Secondary Cell(PSCell)))に設定されてもよいし、セカンダリセル(Secondary Cell(SCell))に設定されてもよい。ただし、既存のRel-15 NRでは、1つのセルグループにつき同時に1つより多いサービングセルに対してSPSが設定されない(つまり、SPSの設定は1セルグループにつき1つ)という仕様になっている。
 ところで、NR仕様において、SPSの品質向上、カバレッジ拡大などを目的として、SPSに関して繰り返し(repetition)を設定することが検討されている。しかしながら、繰り返しありのSPSの具体的な処理、制御などについては、まだ検討が進んでいない。当該処理、制御などについて明確に規定しなければ、SPSに繰り返しを適用する場合に適切な送受信ができず、通信スループットが劣化などするおそれがある。
 そこで、本発明者らは、繰り返し(repetition)に関して適切に送受信処理を行うための方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<SPSの繰り返し>
 一実施形態において、UEは、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて、SPSに関して繰り返し(repetition)を設定(通知、指示)されてもよい。
 例えば、UEは、所定のSPS設定に関連して、繰り返しに関するパラメータを設定されてもよい。ここで、繰り返しに関するパラメータは、繰り返し回数(repetition factor)、繰り返し間隔、繰り返しに利用する冗長バージョン(Redundancy Version(RV))系列などの少なくとも1つを含んでもよい。
 例えば、SPS設定情報(例えば、RRCの「SPS-Config」情報要素)は、繰り返し回数(例えば、RRCパラメータ「repK」で設定されてもよい)及び繰り返しRV系列(例えば、RRCパラメータ「repK-RV」で設定されてもよい)の少なくとも一方を含むSPS設定であってもよい。RV系列は、所定数(例えば、4)のRV(RVインデックス)を含んでもよい。
 繰り返し回数は、同じSPS PDSCHの繰り返し回数に該当してもよい。例えば、UEは、繰り返しが設定されたSPS設定については、SPS周期(periodicity)内において、同じトランスポートブロック(Transport Block(TB))又は同じコードブロック(Code Block(CB))又は同じコードブロックグループ(Code Block Group(CBG))が、繰り返し回数分送信されると想定してもよい。
 繰り返し間隔は、繰り返し送信間の時間的な間隔に該当してもよい。間隔は、周期、オフセットなどで読み替えられてもよい。UEは、繰り返し回数がKであって、繰り返し間隔が設定されない(又は繰り返し間隔=0又は1スロットに設定される)場合、繰り返しは連続するKスロットで行われると想定してもよい。UEは、繰り返し回数がK(>1)であって、繰り返し単位の間隔がTスロットである場合、繰り返しはTスロットごとのK個のスロットを用いて行われると想定してもよい。なお、繰り返し単位の間隔は、例えば、シンボル、スロット、サブフレーム、ミリ秒、秒などで表現されてもよい。
 このような繰り返し間隔を設定することによって、個別の繰り返しに対するHARQ-ACKの送信タイミングを好適に確保できる。
 なお、K個の繰り返しの中で一つ以上の繰り返しが、所定の条件によって送受信できない場合、当該繰り返しはスキップされてもよいし、次の送受信機会に遅延するものとしてもよい。前記所定の条件とは、時分割複信(Time Division Duplex(TDD))の上下通信方向(例えば、TDD UL-DL設定(TDD UL-DL config)、スロットフォーマットインディケーターなどによって設定又は指定されるシンボルのリンク方向(伝送方向。例えば、DL、ULなど))が前記繰り返しの送受信方向と一致しない場合などであってもよい。また、UEは、ULと設定又は指定されたシンボルにおいてSPS PDSCHの繰り返しを受信することを期待しなくてもよい。
 UEは、繰り返しに関するパラメータを含むSPS設定情報を受信した場合、当該SPS設定については繰り返しが設定されたと判断してもよい。
 UEは、所定のSPS設定をアクティベートするDCIに、当該所定のSPS設定についての繰り返しに関するパラメータ(上述の繰り返し回数、繰り返し間隔など)を特定するための情報(フィールド)を含んでもよい。
 例えば、UEは、繰り返しに関するパラメータを含むSPSアクティベーションDCIを受信した場合、当該DCIによってアクティベートされるSPS設定については繰り返しが設定(指定)されたと判断してもよい。UEは、当該所定のSPS設定について繰り返しに関するパラメータの値が上位レイヤで与えられている場合であっても、DCIで指定された値を優先して用いてもよい。
 K回の繰り返しが設定又は指定されたSPS設定については、UEは、SPS周期内の複数のSPS PDSCHに対してソフト結合(soft combining)を適用してもよい。
 繰り返しが設定又は指定されないSPS設定については、UEは、SPS周期ごとに1回のSPS PDSCHが送信されると想定してもよい。
 繰り返し回数がK(>1)とすると、UEは、K回のSPS PDSCHに対して1つの送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)と呼ばれてもよい)を送信してもよいし、K回のSPS PDSCHのそれぞれに対して個別にHARQ-ACKを送信してもよい。後者は、繰り返しごとに別々のPUCCHを用いてHARQ-ACKを送信することに相当する。
<SPSの繰り返しの打ち切りの一態様>
 UEは、K回のSPS PDSCHの途中で(K回全てのSPS PDSCHを受信する前に)、当該SPS PDSCHに応じて肯定応答(Acknowledgement(ACK))を送信する(例えば、L(<K)回目のSPS PDSCHの復号に成功した)場合、その後の(L+1回目以降の)又は残りの(remaining)SPS PDSCHの送信は、打ち切られた(terminated)と想定してもよい。なお、「打ち切られた」は、ドロップされた、省略された(omitted)、スキップされた、送信されない、などで読み替えられてもよい。
 UEは、上記SPS PDSCHの復号に成功した(又はACKを送信した)以降の繰り返し(SPS PDSCH)を受信しなくてもよい。この「受信しない」は、受信処理しない、復号しない、無視する、破棄するなどで読み替えられてもよい。
 基地局は、SPS PDSCHの繰り返し送信中に、UEから当該SPS PDSCHに対するACKを受信した場合、当該繰り返し送信を打ち切ってもよい。
 UEは、打ち切られたSPS PDSCHに対するHARQ-ACKは送信しなくてもよいし、固定的にACKを送信してもよいし、固定的に否定応答(Negative-Acknowledgement(NACK))を送信してもよい。
 なお、基地局は、繰り返し送信を途中で打ち切ることについて、MACシグナリング(例えば、MAC CE)又は物理レイヤシグナリング(例えば、DCI)を用いてUEに通知してもよい。
 図1は、繰り返しが設定されるSPSの打ち切りの一例を示す図である。本例では、HARQプロセスID#1に対応するSPS#1(SPS PDSCH#1)が既にアクティベートされている。SPS#1の繰り返し回数として4が設定又は指定されたと想定するが、繰り返し回数はこれに限られない。UEは、繰り返しが設定されるSPSについて、繰り返しごとにHARQ-ACKをフィードバックする。
 なお、本例ではSPSなどを受信する周波数とHARQ-ACKを送信する周波数は異なる例を示したが、これに限られず、これらが同じ(又は重複する)周波数で送受信されてもよい。以降の図でも同様である。
 本例では、UEは、1回目のSPS#1の受信に対してはNACKを送信し、2回目のSPS#1の受信に対してはACKを送信している。基地局は、繰り返し送信のSPSに関してUEからACKがフィードバックされたため、当該繰り返し送信を打ち切る。このため、図1では、3回目以降のSPS#1の送信は行われない。
<SPSの繰り返しの打ち切りの別の一態様>
 UEは、K回のSPS PDSCHの途中で、当該SPS PDSCHに関する再スケジュールの情報を(re-scheduling information)受信した場合、その後の(残りの(remaining))SPS PDSCHの送信は、打ち切られた(terminated)と想定してもよい。
 UEは、上記SPS PDSCHに関する再スケジュールの情報を受信した以降の繰り返し(SPS PDSCH)を受信しなくてもよい。この「受信しない」は、受信処理しない、復号しない、無視する、破棄するなどで読み替えられてもよい。
 ここで、SPS PDSCHに関する再スケジュールの情報は、動的なPDSCH(言い換えると、動的グラントベースPDSCH)をスケジュールするDCI(例えば、下りリンクDCI(例えば、DCIフォーマット1_0又は1_1))で読み替えられてもよい。
 また、当該再スケジュールの情報は、別のSPS設定をアクティベートする情報(例えば、SPSアクティベーションDCI)であってもよい。UEは、第1のSPSの繰り返し送信期間中に別の第2のSPSをアクティベートされた場合、当該第1のSPSはリリースされたと想定してもよい。
 これらの再スケジュールの情報は、もともとのSPS PDSCHの無線リソース(例えば、時間リソース、周波数リソース)と異なる無線リソースを指定する情報を含むことが好ましい。
 SPS PDSCHに関する再スケジュールの情報は、HARQプロセスID(HPN)に基づいて判断されてもよい。例えば、UEは、あるHPNに対応するSPSの繰り返し送信期間中に、同じHPNを指定するDCI(DL DCI)を受信した場合、当該DCIはSPS PDSCHに関する再スケジュールの情報に該当すると判断してもよい。
 なお、SPS PDSCHに対応するHPNは、SPSの周期、フレームあたりのスロット数、当該SPSの1番目のPDSCHの送信タイミングなどに基づいて導出されてもよいし、SPSアクティベーションDCIによって指定されてもよいし、上位レイヤシグナリングによって設定されてもよい。
 SPS PDSCHに関する再スケジュールの情報は、DCIに付されるCRCをスクランブルするRNTIに基づいて判断されてもよい。例えば、UEは、あるCS-RNTIに関連するSPSアクティベーションDCIによってアクティベートされたSPSの繰り返し送信期間中に、所定のRNTI(例えば、上記CS-RNTI)でスクランブルされたCRCを有するDCI(DL DCI)を受信した場合、当該DCIはSPS PDSCHに関する再スケジュールの情報に該当すると判断してもよい。
 基地局は、SPS PDSCHの繰り返し送信中に、UEから当該SPS PDSCHに対するNACKを所定の閾値以上の回数受信した(又はSPS PDSCHを当該所定の閾値の回数以上送信してもACKを受信しなかった)場合、当該UEに対して当該SPS PDSCHを再度スケジュールする情報を送信し、当該繰り返し送信を打ち切ってもよい。
 当該所定の閾値に関する情報は、上位レイヤシグナリングによって設定されてもよい(SPS設定に含まれてもよい)し、物理レイヤシグナリングによって指定されてもよい(例えば、SPSアクティベーションDCIに含まれてもよい)。
 図2は、繰り返しが設定されるSPSの打ち切りの別の一例を示す図である。本例では、HARQプロセスID#1に対応するSPS#1(SPS PDSCH#1)が既にアクティベートされている。SPS#1の繰り返し回数として4が設定又は指定されたと想定するが、繰り返し回数はこれに限られない。UEは、繰り返しが設定されるSPSについて、繰り返しごとにHARQ-ACKをフィードバックする。
 本例では、UEは、1回目のSPS#1の受信に対してはNACKを送信し、2回目のSPS#1の受信に対してはNACKを送信している。基地局は、SPS#1について2回送信してもACKを受信しなかったため、SPS#1の再送用に別のリソースを確保し、DCI(例えば、通常のPDSCHをスケジュールするDCI)を用いて当該リソースのスケジュール情報を送信する。
 基地局は、当該DCIの送信後、SPS#1の繰り返し送信を打ち切る。このため、図2では、3回目以降のSPS#1の送信は行われない。
 UEは、検出した上記DCIに基づいて、上記リソースによって再送されるSPS#1を受信する。
 以上説明した一実施形態によれば、SPSに関して繰り返しが利用される場合であっても適切に送受信処理を制御できる。
<その他>
 なお、上述の各実施形態ではSPS PDSCHの繰り返しについて説明したが、本開示の適用はこれに限られない。例えば、上述した繰り返しに関する制御(各繰り返しに対してHARQ-ACK送信、繰り返し途中の打ち切りなど)は、別の信号又はチャネル(例えば、動的グラントベースPDSCH、コンフィギュアドグラントPUSCH、動的グラントベースPUSCHなど)の繰り返しに適用されてもよい。
 つまり、本開示のSPS、SPS設定、SPS PDSCHなどは、PDSCH、コンフィギュアドグラントPUSCH、PUSCHなどの少なくとも1つで読み替えられてもよい。
 例えば、動的グラントベースPDSCHに関して、上位レイヤシグナリング(RRCパラメータ「pdsch-AggregationFactor」)、DCI又はこれらの組み合わせによって、繰り返し回数、繰り返し間隔などが設定される場合において、UEは、当該PDSCHの各繰り返しに対してHARQ-ACKを送信したり、繰り返し途中で打ち切りを想定した処理を行ったりしてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図4は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、繰り返し送信(repetition)が適用される下り共有チャネル(PDSCH)を、ユーザ端末20に対して送信してもよい。送受信部120は、当該下り共有チャネルの繰り返しごとの個別の送達確認情報(HARQ-ACK)を、ユーザ端末20から受信してもよい。
(ユーザ端末)
 図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、繰り返し送信(repetition)が適用される下り共有チャネル(PDSCH)を受信してもよい。
 制御部210は、当該下り共有チャネルの各繰り返しに対して(つまり、繰り返し単位ごとに)個別の送達確認情報(HARQ-ACK)を送信するように制御してもよい。送受信部220は、各HARQ-ACKを送信してもよい。
 制御部210は、前記繰り返し送信の途中で前記送達確認情報として肯定応答(ACK)を送信した場合、残りの前記繰り返し送信は打ち切られると想定してもよい。
 制御部210は、前記繰り返し送信の途中で前記下り共有チャネルに関する再スケジュールの情報を受信した場合、残りの前記繰り返し送信は打ち切られると想定してもよい。
 前記下り共有チャネルは、セミパーシステントスケジューリングの設定に基づく下り共有チャネル(SPS PDSCH)であってもよいし、動的グラントによってスケジュールされる下り共有チャネルであってもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図6は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  繰り返し送信が適用される下り共有チャネルを受信する受信部と、
     当該下り共有チャネルの各繰り返しに対して個別の送達確認情報を送信するように制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、前記繰り返し送信の途中で前記送達確認情報として肯定応答を送信した場合、残りの前記繰り返し送信は打ち切られると想定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記繰り返し送信の途中で前記下り共有チャネルに関する再スケジュールの情報を受信した場合、残りの前記繰り返し送信は打ち切られると想定することを特徴とする請求項1に記載のユーザ端末。
  4.  前記下り共有チャネルは、セミパーシステントスケジューリングの設定に基づく下り共有チャネルであることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記下り共有チャネルは、動的グラントによってスケジュールされる下り共有チャネルであることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  繰り返し送信が適用される下り共有チャネルを受信するステップと、
     当該下り共有チャネルの各繰り返しに対して個別の送達確認情報を送信するように制御するステップと、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2019/012205 2019-03-22 2019-03-22 ユーザ端末及び無線通信方法 WO2020194400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19921271.3A EP3944700A1 (en) 2019-03-22 2019-03-22 User terminal and wireless communication method
CN201980096685.5A CN113875310A (zh) 2019-03-22 2019-03-22 用户终端以及无线通信方法
PCT/JP2019/012205 WO2020194400A1 (ja) 2019-03-22 2019-03-22 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012205 WO2020194400A1 (ja) 2019-03-22 2019-03-22 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020194400A1 true WO2020194400A1 (ja) 2020-10-01

Family

ID=72610391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012205 WO2020194400A1 (ja) 2019-03-22 2019-03-22 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
EP (1) EP3944700A1 (ja)
CN (1) CN113875310A (ja)
WO (1) WO2020194400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074819A1 (ja) * 2020-10-09 2022-04-14 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210706A1 (ja) * 2022-04-27 2023-11-02 京セラ株式会社 通信制御方法
WO2023211174A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 반지속적 스케줄링 pdsch 송수신 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538371A (ja) * 2014-11-06 2017-12-21 インテル アイピー コーポレイション Mtcのための繰り返し送信の早期の終了
JP2018515987A (ja) * 2015-05-10 2018-06-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク送信のための繰り返しレベルを適応させる方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781111B (zh) * 2011-05-13 2016-09-14 南京中兴软件有限责任公司 上行sps激活的确定方法、设备及系统
US10757698B2 (en) * 2013-07-26 2020-08-25 Qualcomm Incorporated Transmission time interval (TTI) bundling for physical downlink shared channel (PDSCH)
JP6272371B2 (ja) * 2016-02-04 2018-01-31 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538371A (ja) * 2014-11-06 2017-12-21 インテル アイピー コーポレイション Mtcのための繰り返し送信の早期の終了
JP2018515987A (ja) * 2015-05-10 2018-06-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク送信のための繰り返しレベルを適応させる方法及び装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.300
HUAWEI, HISILICON: "Summary of remaining issues on UL data transmission procedure", 3GPP TSG RAN WG1 #93 R1-1806901, 20 May 2018 (2018-05-20), XP051442101 *
INTEL CORPORATION: "Semi-persistent scheduling for feNB-IoT", 3GPP TSG RAN WG1 #90 R1-1712503, 20 August 2017 (2017-08-20), XP051315319 *
NTT DOCOMO; INC: "DL/UL scheduling and HARQ management", 3GPP TSG RAN WG1 #90B R1- 1718217, 3 October 2017 (2017-10-03), XP051352925 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074819A1 (ja) * 2020-10-09 2022-04-14 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
CN113875310A (zh) 2021-12-31
EP3944700A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP7171926B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020245973A1 (ja) 端末及び無線通信方法
WO2020194514A1 (ja) ユーザ端末及び無線通信方法
WO2020217408A1 (ja) ユーザ端末及び無線通信方法
WO2020194404A1 (ja) ユーザ端末及び無線通信方法
WO2020188815A1 (ja) ユーザ端末及び無線通信方法
WO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2020217514A1 (ja) ユーザ端末及び無線通信方法
WO2020261389A1 (ja) 端末及び無線通信方法
WO2020261510A1 (ja) 端末及び無線通信方法
JPWO2020166024A1 (ja) ユーザ端末及び無線通信方法
WO2020250360A1 (ja) 端末及び無線通信方法
WO2020095457A1 (ja) ユーザ端末
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2021130941A1 (ja) 端末及び無線通信方法
WO2020202517A1 (ja) ユーザ端末及び無線通信方法
WO2020194611A1 (ja) ユーザ端末及び無線通信方法
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020230860A1 (ja) 端末及び無線通信方法
WO2020194400A1 (ja) ユーザ端末及び無線通信方法
WO2020202448A1 (ja) ユーザ端末及び無線通信方法
WO2020194459A1 (ja) ユーザ端末及び無線通信方法
WO2020188666A1 (ja) ユーザ端末及び無線通信方法
WO2020188821A1 (ja) ユーザ端末及び無線通信方法
WO2022024377A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019921271

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP