WO2020194389A1 - 交通環境認識装置及び車両制御装置 - Google Patents
交通環境認識装置及び車両制御装置 Download PDFInfo
- Publication number
- WO2020194389A1 WO2020194389A1 PCT/JP2019/012159 JP2019012159W WO2020194389A1 WO 2020194389 A1 WO2020194389 A1 WO 2020194389A1 JP 2019012159 W JP2019012159 W JP 2019012159W WO 2020194389 A1 WO2020194389 A1 WO 2020194389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- risk
- moving body
- traffic environment
- data
- predetermined
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims description 18
- 238000013500 data storage Methods 0.000 claims description 7
- 230000008685 targeting Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 44
- 238000004364 calculation method Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 239000002279 physical standard Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/05—Type of road, e.g. motorways, local streets, paved or unpaved roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/402—Type
- B60W2554/4026—Cycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4044—Direction of movement, e.g. backwards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/60—Traffic rules, e.g. speed limits or right of way
Definitions
- the present invention relates to a traffic environment recognition device that recognizes the traffic environment in the traveling direction of the own vehicle.
- the maximum inclination value is calculated by the simple regression analysis method of the acceleration spectrum based on the acceleration of the own vehicle, and the covariance is performed by the Gaussian distribution method based on the inter-vehicle distance from other vehicles around the own vehicle.
- the minimum value is calculated.
- a correlation map showing the relationship between the logarithm of the maximum slope value and the logarithm of the minimum covariance value is created, and the presence or absence of the critical region of the traffic flow is determined based on this correlation map.
- a vehicle control device that executes automatic driving control of the own vehicle has been desired.
- the traffic environment including moving objects and targets in the traveling direction of the own vehicle is recognized, and the traffic environment is quickly recognized because the automatic driving control of the own vehicle is executed. Is required.
- the conventional traffic environment recognition device the simple regression analysis method and the Gaussian distribution method of the acceleration spectrum are used to recognize the traffic environment of other vehicles around the own vehicle. As the calculation time increases, the calculation load increases. This tendency is more remarkable as the number of traffic participants such as other vehicles increases. As a result, controllability such as automatic operation control may decrease.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a traffic environment recognition device or the like that can quickly recognize the traffic environment in the traveling direction of the own vehicle.
- the traffic environment recognition device has a peripheral condition data acquisition unit that acquires peripheral condition data representing the peripheral condition in the traveling direction of the own vehicle, and the own vehicle based on the peripheral condition data.
- a recognition unit that recognizes a moving body and a target within a predetermined range in the traveling direction of the moving body and recognizes the positional relationship between the moving body and the target, and a plurality of moving body nouns, which are names of the plurality of moving bodies.
- a storage unit that stores a plurality of target nouns that are the names of the targets, and a plurality of positional relational words that represent a plurality of positional relationships between the moving body and the target, and a predetermined first moving body as the moving body.
- the first mobile noun selection unit that selects the first mobile noun representing a predetermined first mobile noun from a plurality of mobile nouns, and the predetermined first mobile noun.
- a predetermined first target is recognized as a target
- a first target noun selection unit that selects the first target noun representing the predetermined first target from a plurality of target nouns
- a predetermined target noun selection unit When the positional relationship between the first moving body and the predetermined first target is recognized, the first positional relationship word representing the positional relationship between the predetermined first moving body and the predetermined first target is derived from a plurality of positional relationships words.
- the selected positional relational word selection unit and the first mobile noun, the first physical noun, and the first positional relational word are selected, the first mobile noun, the first physical standard noun, and the first positional relational word are selected. It is characterized by including a traffic environment scene data creation unit that creates traffic environment scene data representing a traffic environment scene in the traveling direction of the own vehicle by associating them.
- moving objects and targets in the traveling direction of the own vehicle are recognized based on the surrounding situation data representing the surrounding conditions within a predetermined range of the traveling direction of the own vehicle, and the moving objects and objects are recognized.
- the positional relationship of the marks is recognized.
- the first moving body noun representing the predetermined first moving body is selected from the plurality of moving body nouns, and the periphery of the predetermined first moving body is selected.
- the first target noun representing the predetermined first target is selected from a plurality of target nouns.
- first positional relationship words representing the positional relationship between the predetermined first moving body and the predetermined first target. Selected from positional terms. Then, when the first mobile noun, the first object noun, and the first positional relation word are selected, the first mobile noun, the first object noun, and the first positional relation word are associated with each other. Traffic environment scene data representing a traffic environment scene in the direction of travel of the vehicle is created.
- the predetermined first moving body and the predetermined first target are within the predetermined range in the traveling direction of the own vehicle, the first moving body noun, the first target noun, and the first positional relationship Since traffic environment scene data can be created simply by associating words, it is possible to quickly recognize the traffic environment in the traveling direction of the own vehicle.
- the invention according to claim 2 is described in a plurality of mobile nouns when a predetermined second moving body other than the predetermined first moving body is recognized as a moving body in the traffic environment recognition device according to claim 1.
- a second mobile noun selection unit for selecting a second mobile noun representing a predetermined second mobile body is further provided, and the storage unit holds a plurality of positional relationships between the two mobile bodies as a plurality of positional relational words.
- a plurality of positional relational words representing each are further stored, and the positional relational word selection unit receives the predetermined first moving body and the predetermined first moving body and the predetermined second moving body when the positional relationship between the predetermined first moving body and the predetermined second moving body is recognized.
- a second positional relationship word representing the positional relationship of a predetermined second moving body is selected from a plurality of positional relationship words, and the traffic environment scene data creation unit determines the first moving body noun, the second moving body noun, and the second positional relationship.
- the traffic environment scene data is further created by associating the first mobile noun, the second mobile noun, and the second positional relational word.
- this traffic environment recognition device when a predetermined second moving body other than the predetermined first moving body is recognized as a moving body, a second moving body representing a predetermined second moving body is represented from a plurality of moving body nouns. The mobile noun is selected. Further, when the positional relationship between the predetermined first moving body and the predetermined second moving body is recognized, there are a plurality of second positional relationship words representing the positional relationship between the predetermined first moving body and the predetermined second moving body. Selected from positional terms. Then, when the first mobile noun, the second mobile noun, and the second positional relational word are selected, the traffic is performed by associating the first mobile body noun, the second mobile body noun, and the second positional relational word.
- first moving body noun, the second moving body noun, and the second positional relational word are linked under the condition that the predetermined first moving body and the predetermined second moving body exist in the traveling direction of the own vehicle. Since the traffic environment scene data can be further created just by doing so, the traffic environment in the traveling direction of the own vehicle can be quickly recognized.
- the peripheral situation data acquisition unit acquires the peripheral situation data so as to include the distance parameter data representing the distance to the own vehicle, and the recognition unit. Is characterized by recognizing moving objects and targets within a predetermined range based on distance parameter data.
- this traffic environment recognition device moving objects and targets located within a predetermined range are recognized based on the distance parameter data representing the distance to the own vehicle, so this predetermined range should be set appropriately. Therefore, the traffic environment scene data can be appropriately created.
- the distance parameter data is image data
- the recognition unit has a predetermined first moving body and a predetermined first target in the image data. It is characterized in that it recognizes a predetermined first moving object and a predetermined first target located within a predetermined range based on the area occupied by.
- the predetermined first moving body and the predetermined first moving body located within the predetermined range based on the area occupied by the predetermined first moving body and the predetermined first target in the image data. Since one target is recognized, a predetermined first moving body and a predetermined first target located within a predetermined range can be recognized by using a general image recognition method. Thereby, the traffic environment scene data can be easily created.
- the invention according to claim 5 is the traffic environment recognition device according to any one of claims 1 to 4, wherein the storage unit uses a plurality of positional relationship words to represent a positional relationship between the road and the moving body. In addition to memorizing so as to include words, it also memorizes a plurality of road type words representing each of a plurality of road types, and based on the surrounding situation data, the road on which the predetermined first moving body is located. When a predetermined first road type is recognized as the type of the road on which the predetermined first moving body is located and the road type recognition unit that recognizes the type, the predetermined first road is selected from a plurality of road type words.
- a first road type word selection unit for selecting a first road type word representing a type is further provided, and the positional relationship word selection unit has a third positional relationship when a predetermined first moving body is located on the road.
- the traffic environment scene data creation unit selects the first mobile body nomenclature, the first road type word, and the third positional relational word, the first mobile body nomenclature, the first It is characterized in that traffic environment scene data is further created by associating a road type word and a third positional relational word.
- this traffic environment recognition device when a predetermined first moving object is located on a road, the type of the road is recognized based on the surrounding situation data, and the predetermined road type is recognized as the type of the road.
- the first road type word representing a predetermined road type is selected from a plurality of road type words.
- the third positional relational word is selected from the plurality of positional relational words. Then, when the first mobile noun, the first road type word, and the third positional relation word are selected, the traffic is performed by associating the first mobile noun, the first road type word, and the third positional relation word. Further environmental scene data is created.
- the traffic environment can be obtained simply by associating the first moving body nomenclature, the first road type word, and the third positional relational word. Since scene data can be further created, it is possible to quickly recognize the traffic environment in the direction of travel of the own vehicle (note that the "road” in this specification is not limited to the road and sidewalk, but the vehicle and traffic participation. Anything that allows a person to move on it, including railroads, for example).
- the invention according to claim 6 is the traffic environment recognition device according to any one of claims 1 to 4, wherein the peripheral situation data acquisition unit acquires the traveling direction of the first moving body, and the traffic environment scene data is the first. 1 It is characterized in that the traveling direction of the moving body is further linked.
- the traffic environment scene data is created by further associating the traveling direction of the first moving object, so that the traffic environment scene data more reflects the actual traffic environment. Can be created as.
- the invention according to claim 7 is the risk of storing a risk model that defines the relationship between the risk to the own vehicle in the traffic environment and the traffic environment scene data in the traffic environment recognition device according to any one of claims 1 to 6. It is characterized by further including a model storage unit and a risk acquisition unit that acquires a risk corresponding to the traffic environment scene data by using a risk model when the traffic environment scene data is created.
- the risk corresponding to the traffic environment scene data is acquired by using the risk model, so that the risk to the own vehicle in the traffic environment can be swiftly taken. Can be obtained.
- the invention according to claim 8 sets the risk of the first moving object, which is the risk of the first moving object, and the risk of the first target, which is the risk of the first target, in the traffic environment recognition device according to claim 7.
- the risk storage unit is further provided with a risk storage unit to be stored, and when the traffic environment scene data is created and the created traffic environment scene data does not exist in the risk model, the risk acquisition unit is the first moving object risk and the first target. It is characterized by acquiring the risk using the risk and the first position risk.
- the risk to the own vehicle can be surely acquired.
- the peripheral situation data acquisition unit acquires the traveling direction of the first moving body, and the risk acquisition unit obtains the traffic environment scene data and the risk. If the relationship does not exist in the risk model, the risk is acquired by using the direction of travel of the first moving object in addition to the first moving object risk, the first targeting risk, and the first position risk. It is a feature.
- the traffic environment recognition device when the traffic environment scene data does not exist in the risk model, in addition to the first moving body risk, the first targeting risk and the first position risk, the traveling direction of the first moving body. Since the risk is acquired by further using, the risk to the own vehicle can be acquired more accurately.
- the invention according to claim 10 is the traffic environment recognition device according to any one of claims 1 to 9, when a traffic regulation data storage unit for storing traffic regulation data and traffic environment scene data are created. It is characterized by further including a traffic regulation data acquisition unit that acquires traffic regulation data corresponding to the traffic environment scene data by referring to the traffic regulation data according to the scene data.
- the traffic regulation data corresponding to the traffic environment scene data is acquired by referring to the traffic regulation data according to the traffic environment scene data.
- Traffic regulation data can be acquired quickly.
- the invention according to claim 11 is the traffic environment recognition device according to claim 10, which performs data communication with an external storage unit separate from the own vehicle that stores the traffic regulation data corresponding to the current position of the own vehicle.
- the traffic regulation data corresponding to the current position is acquired from the external storage unit by data communication.
- the current position regulation data acquisition unit is further provided, and the traffic regulation data storage unit is characterized in that it stores the traffic regulation data corresponding to the current position acquired by the current position regulation data acquisition unit.
- the traffic regulation data corresponding to the current position is acquired from the external storage unit by data communication, and this is stored in the traffic regulation data storage unit. Therefore, it is possible to realize a state in which the traffic regulation data corresponding to the current position is stored at the time when the control of the traveling state of the own vehicle is started.
- the invention according to claim 12 is the traffic environment recognition device according to any one of claims 1 to 11, wherein the predetermined first moving body is a bicycle, and the recognition unit compares the bicycle with a moving body other than the bicycle. It is characterized by preferential recognition.
- the bicycle In general, bicycles frequently come and go between the sidewalk and the roadway, so the risk is higher than other moving objects such as pedestrians and automobiles that have less traffic between the sidewalk and the roadway. There is a feature.
- the bicycle is preferentially recognized as compared with the moving body other than the bicycle, so that the above risk can be appropriately recognized.
- the vehicle control device includes the traffic environment recognition device according to any one of claims 1 to 6 and a control unit that controls the traveling state of the own vehicle according to the traffic environment scene data. It is characterized by.
- the running state of the own vehicle is controlled according to the traffic environment scene data quickly acquired as described above, so that the running state of the own vehicle can be quickly and appropriately adjusted according to the risk. Can be controlled.
- the vehicle control device is characterized by including the traffic environment recognition device according to any one of claims 7 to 9 and a control unit that controls a running state of the own vehicle according to a risk. To do.
- the running state of the own vehicle is controlled according to the risk acquired quickly as described above, so that the running state of the own vehicle is quickly and appropriately controlled according to the risk. Can be done.
- the vehicle control device is characterized by including the traffic environment recognition device according to claim 10 or 11, and a control unit that controls a traveling state of the own vehicle according to traffic regulation data. ..
- the running state of the own vehicle is controlled according to the traffic regulation data, so that the running state of the own vehicle can be quickly and appropriately controlled while observing the traffic regulation.
- the traffic environment recognition device and the vehicle control device according to the embodiment of the present invention will be described with reference to the drawings. Since the vehicle control device of the present embodiment also serves as a traffic environment recognition device, the vehicle control device will be described in the following description, and the functions and configurations of the traffic environment recognition device will also be described therein. ..
- this vehicle control device 1 is applied to a four-wheel type automobile (hereinafter referred to as "own vehicle") 3 and includes an ECU 2.
- a situation detection device 4, a prime mover 5, an actuator 6, and a car navigation system (hereinafter referred to as “car navigation") 7 are electrically connected to the ECU 2.
- the situation detection device 4 is composed of a camera, a millimeter-wave radar, LIDAR, sonar, GPS, various sensors, and the like, and includes the current position of the own vehicle 3 and the surrounding conditions (traffic environment and traffic) in the traveling direction of the own vehicle 3.
- the peripheral situation data D_info representing (participants, etc.) is output to the ECU 2.
- the peripheral situation data D_info is configured to include image data acquired by the camera and distance data measured by LIDAR or the like.
- the ECU 2 recognizes the traffic environment around the own vehicle 3 based on the surrounding situation data D_info from the situation detection device 4, calculates the driving risk R_risk, and sets the driving risk R_risk or the like.
- the traveling state of the own vehicle 3 is controlled accordingly.
- the situation detection device 4 corresponds to the peripheral situation data acquisition unit and the current position acquisition unit
- the car navigation system 7 corresponds to the data communication unit.
- the prime mover 5 is composed of, for example, an electric motor or the like, and as will be described later, when the traveling track of the own vehicle 3 is determined, the prime mover 5 is driven by the ECU 2 so that the own vehicle 3 travels on this traveling track. Output is controlled.
- the actuator 6 is composed of a braking actuator, a steering actuator, and the like, and as will be described later, when the traveling track of the own vehicle 3 is determined, the own vehicle 3 travels on this traveling track. , The operation of the actuator 6 is controlled by the ECU 2.
- the car navigation system 7 is composed of a display, a storage device, a wireless communication device, a controller (none of which is shown) and the like.
- the map data around the current position of the own vehicle 3 is read out from the map data stored in the storage device, and this is displayed on the display.
- wireless data communication is executed between the car navigation system of another vehicle and the external server 31 (see FIG. 14) via the wireless communication device.
- the car navigation system 7 receives the traffic regulation data from the external server 31, it outputs the traffic regulation data to the ECU 2.
- the ECU 2 is composed of a microcomputer including a CPU, RAM, ROM, E2PROM, an I / O interface, and various electric circuits (none of which are shown).
- the ECU 2 executes a driving risk R_risk calculation process and the like as described below based on the peripheral situation data D_info and the like from the situation detection device 4 described above.
- the ECU 2 is a recognition unit, a storage unit, a first mobile noun selection unit, a first object noun selection unit, a positional relational word selection unit, a traffic environment scene data creation unit, and a second mobile noun.
- Selection unit, road type recognition unit, first road type word selection unit, risk model storage unit, risk acquisition unit, risk storage unit, traffic regulation data storage unit, traffic regulation data acquisition unit, current position regulation data acquisition unit, and control Corresponds to the department.
- the risk estimation device 10 estimates (acquires) the running risk R_risk, which is a risk from the traffic environment while the own vehicle 3 is running, according to the surrounding situation data D_info.
- the risk estimation device 10 includes a recognition unit 11, a selection unit 12, a first storage unit 13, a scene data creation unit 14, a risk acquisition unit 15, and a second storage unit 16.
- the elements 11 to 16 are configured by the ECU 2.
- the recognition unit 11 corresponds to the road type recognition unit
- the selection unit 12 is the first mobile noun selection unit, the first target noun selection unit, the positional relational word selection unit, and the second mobile noun.
- the first storage unit 13 corresponds to the storage unit
- the scene data creation unit 14 corresponds to the traffic environment scene data creation unit
- the second storage unit 16 corresponds to the risk model storage unit and the risk storage unit.
- the recognition unit 11 exists within a predetermined range (for example, several tens of meters) in the traveling direction of the own vehicle 3 by a predetermined image recognition method (for example, a deep learning method) based on the image data included in the surrounding situation data D_info.
- a predetermined image recognition method for example, a deep learning method
- bicycles, pedestrians, automobiles, etc. are recognized as moving objects and traffic participants, and parked vehicles, guard fences, etc. are recognized as targets.
- roadways and sidewalks are recognized as road types.
- bicycle in this specification means a bicycle driven by a driver.
- the moving body recognized by the recognition unit 11 is referred to as a "first moving body", and the target recognized by the recognition unit 11 is referred to as a "first target”.
- the first moving body in this case has the highest risk in relation to the own vehicle 3, and corresponds to the moving body to be recognized with the highest priority by the recognition unit 11.
- the traffic environment shown in FIGS. 3 and 4 will be described as an example.
- the bicycle 21 is recognized as the first moving body in a traffic environment where the bicycle 21 and the pedestrian 22 are on the sidewalk 24 with the fence 23 while the own vehicle 3 is traveling on the road 20.
- the pedestrian 22 is recognized as a traffic participant (second moving body).
- the fence 23 is recognized as the first target, and the roadway 20 and the sidewalk 24 are recognized as the type of road.
- the pedestrian 22 is recognized as the first moving body under the condition that the bicycle 21 does not exist and only one pedestrian 22 exists. Further, although not shown, in a traffic environment where the bicycle 21 does not exist and there are two or more pedestrians, the pedestrian closest to the own vehicle 3 is recognized as the first moving body, and the other pedestrians are Recognized as a traffic participant.
- the reason why the bicycle 21 is recognized as the first moving body in preference to the pedestrian 22 is that it can be regarded as a high-risk moving body as compared with the pedestrian 22. That is, in the case of the bicycle 21, unlike the pedestrian 22, which is likely to move only on the sidewalk 24, there is a high possibility of going back and forth between the sidewalk 24 and the roadway 20, and as a result, from the sidewalk 24 to the roadway 20 side. This is because it is likely to pop out at a relatively high speed.
- the positional relationship between the first moving body and the traffic participant is recognized by the size in the image data in relation to recognizing the moving body or the like by a predetermined image recognition method. ..
- the detection frame 21a of the bicycle 21 becomes larger than the detection frame 22a of the pedestrian 22, so that the bicycle 21 is on the front side of the pedestrian 22.
- the positional relationship between the two is recognized as being located at.
- the recognition unit 11 recognizes the first moving object or the like as described above, the first moving object, the traffic participant, and the first object existing in the traffic environment are based on the distance data included in the surrounding situation data D_info. It may be configured to acquire the positional relationship between the mark and the own vehicle 3. Further, both the image data and the distance data included in the surrounding situation data D_info may be used to recognize the positional relationship between the first moving object, the traffic participant, and the first target.
- the recognition unit 11 recognizes the first moving body, the traffic participant, the first target, and the type of road existing in the traffic environment, and further, the first moving body and other objects are recognized. The positional relationship is recognized, and whether or not the traveling direction of the first moving body is the same as that of the own vehicle 3 is recognized. Then, those recognition results are output from the recognition unit 11 to the selection unit 12.
- the selection unit 12 acquires a term corresponding to the recognition result from various nouns and positional relational words stored in the first storage unit 13. .
- This positional relationship term is a term that expresses the positional relationship with each object when the first moving body is used as a reference.
- all of the nouns of moving objects, the nouns of traffic participants, the nouns of target objects, the nouns of road types, and the positional relational words are stored as terms written in English.
- a bicycle is stored as a "bicycle”
- a pedestrian is stored as a "walker”
- a car is stored as a "car”.
- a target as an example, a parked vehicle is stored as "parked vehicle”
- a guard fence is stored as "fence”
- a traffic light is stored as "signal”.
- the roadway is stored as "driveway”
- the sidewalk is stored as “sidewalk”
- the pedestrian crossing is stored as "cross-walk”
- the railroad track is stored as "line”.
- the term in which the first moving body is located behind the traffic participant is memorized as "behind”.
- the term in which the first moving body is located next to the traffic participant is memorized as "next to (or side)", and the first moving body is located in front of the traffic participant.
- the term is memorized as "in front of”.
- the selection unit 12 includes the noun of the object that does not exist, the first moving object, and this object. The positional relational words with and are not selected, and these are not output to the scene data creation unit 14.
- the scene data creation unit 14 creates scene data based on these selection results.
- the first to third scene data shown in FIGS. 6 to 8 are created, respectively.
- the first to third scene data correspond to the traffic environment scene data.
- the first scene data includes the first moving body "bicycle", the positional relationship word “behind” of the first moving body with respect to the first target, the first target "fence”, and the first target. 1
- the relationship between the moving body and the traveling direction of the own vehicle 3 "the same direction" is created as data linked to each other.
- the second scene data includes the first moving body "bicycle", the positional relationship word “behind” of the first moving body with respect to the traffic participant, the traffic participant "walker”, and the first. 1
- the relationship between the moving body and the traveling direction of the own vehicle 3 "the same direction" is created as data linked to each other.
- the first moving body “bicycle”, the positional relationship word “on” of the first moving body with respect to the road, and the road type “sidewalk” are associated with each other. Created as data.
- the scene data creation unit 14 As described above, if the first target does not exist under the traffic environment in the traveling direction of the own vehicle 3, the noun of the first target is not input from the selection unit 12. As a result, the fields of the first target and the position-related words in the first scene data are set to blank. Further, in the traffic environment in the traveling direction of the own vehicle 3, when there is no traffic participant, the noun of the traffic participant is not input from the selection unit 12, so that the traffic participant and the positional relationship in the second scene data The word field is set to blank.
- the first to third scene data are created, they are output from the scene data creation unit 14 to the risk acquisition unit 15.
- the risk acquisition unit 15 when these first to third scene data are input from the scene data creation unit 14, the first to third risks are taken according to the first to third scene data as described below. Acquire (calculate) Risk_1 to 3.
- the first risk Risk_1 is calculated by referring to the first risk map (risk model) shown in FIG. 9 according to the first scene data.
- the first risk map risk model
- the first risk Risk_1 is calculated as a value 3 by matching the combination in the nth (n is an integer) th data shown in bold in the 1st risk map.
- the risk acquisition unit 15 when the combination of the first moving body, the positional relational word, the first target, and the traveling direction in the first scene data does not exist in the first risk map of FIG. 9, the method described below is used. , The first risk Risk_1 is calculated.
- the individual risk corresponding to the first moving body (first moving body risk), the individual risk corresponding to the positional relationship word (first position risk), and the first Individual risks corresponding to one target are set. Therefore, as described above, first, three individual risks are read from the first risk map according to the first moving body, the positional relational word, and the first target in the first scene data, and the following equation (1) is used. , Calculate the provisional first risk Risk_tmp1.
- the individual risk A in the above equation (1) represents the individual risk corresponding to the first moving body, and KA is a predetermined multiplication coefficient set in advance. Further, the individual risk B represents the individual risk corresponding to the positional relational term, and KB is a predetermined multiplication coefficient set in advance. Further, the individual risk C represents the individual risk corresponding to the first target, and KC is a predetermined multiplication coefficient set in advance.
- the provisional first risk Risk_tp1 After calculating the provisional first risk Risk_tp1 by the above equation (1), the provisional first risk Risk_tp1 is converted into an integer by a predetermined method (for example, rounding method). Next, it is determined whether or not the risk exists in the traveling direction of the first moving body, and when the risk does not exist in the traveling direction of the first moving body, the integerized value of the provisional first risk Risk_tp1 is determined. Is set to the first risk Risk_1.
- a predetermined method for example, rounding method
- the value obtained by adding the value 1 to the integerized value of the provisional first risk Risk_tp1 is set in the first risk Risk_1.
- the risk determination in the traveling direction of the first moving body is specifically executed as described below.
- the bicycle 21 which is the first moving body is located in front (back side) of the pedestrian 22 in FIG. 3 described above, the bicycle 21 is moving in the opposite direction to the own vehicle 3. At that time, that is, when the bicycle 21 is moving toward the own vehicle 3, it is determined that the risk exists in the traveling direction of the first moving body. On the other hand, when the bicycle 21 is moving in the same direction as the own vehicle 3, it is determined that the risk does not exist in the traveling direction of the first moving body.
- the second risk Risk_2 is calculated by referring to the second risk map (risk model) shown in FIG. 10 according to the second scene data.
- the second risk map risk model
- the combination of the first moving body “bicycle”, the positional relational word “behind”, the traffic participant “walker”, and the traveling direction “same direction” is the second.
- the second risk Risk_2 is calculated as a value 3 by matching the combination in the first data shown in bold in the risk map.
- the individual risk D in the above equation (2) represents the individual risk corresponding to the traffic participant, and the KD is a predetermined multiplication coefficient set in advance.
- the provisional second risk Risk_tp2 is converted into an integer by the predetermined method described above.
- the integerized value of the provisional second risk Risk_tp2 is determined. Is set to the second risk Risk_2.
- the value obtained by adding the value 1 to the integerized value of the provisional second risk Risk_tp2 is set in the second risk Risk_2.
- the third risk Risk_3 is calculated by referring to the third risk map (risk model) shown in FIG. 11 according to the third scene data. In that case, if the combination of the first moving object "bicycle", the positional relation word "on", and the road type "sidewalk” in the third scene data matches the combination in the data of the third risk map, the combination is selected. The corresponding third risk Risk_3 is read.
- the third risk Risk_3 is calculated by a method substantially similar to the calculation method of the first risk Risk_1 and the second Risk_1 described above.
- the individual risk E in the above equation (3) represents the individual risk corresponding to the road type, and KE is a predetermined multiplication coefficient set in advance.
- the provisional third risk Risk_tp3 After calculating the provisional third risk Risk_tp3 by the above equation (3), the provisional third risk Risk_tp3 is converted into an integer by the predetermined method described above. Then, the integerized value of the provisional third risk Risk_tp3 is set to the third risk Risk_3.
- the risk acquisition unit 15 calculates the first to third risk Risk_3 as described above, and based on these first to third risk Risk_3, a predetermined calculation method (for example, a weighted average calculation method and a map search method) is used.
- the driving risk R_risk is finally calculated.
- the risk estimation device 10 calculates the running risk R_risk.
- this running risk R_risk may be estimated as the risk of the first moving body and the target space including the target or the traffic participant, or may be estimated as the risk of the first moving body itself. For example, when there are no other traffic participants other than the first moving body, it may be estimated as the risk of only the first moving body, and it is estimated as the risk of the first moving body in the first to third scene data. If there is possible scene data, it may be estimated as the risk of only the first moving body. Based on the above, the estimation of which space on the road the risk exists may be changed.
- this automatic driving control process executes the automatic driving control of the own vehicle 3 by using the running risk R_risk, and is executed by the ECU 2 at a predetermined control cycle. It is assumed that various values calculated in the following description are stored in the E2PROM of the ECU 2.
- the driving risk R_risk is calculated (FIG. 12 / STEP1). Specifically, the running risk R_risk is calculated by the same calculation method as that of the risk estimation device 10 described above.
- the traffic regulation data is read out from the E2PROM according to the above-mentioned first to third scene data (Fig. 12 / STEP2).
- This traffic regulation data is acquired by the traffic regulation data acquisition process described later and is stored in the E2PROM.
- the traveling track calculation process is executed (Fig. 12 / STEP3).
- the future traveling trajectory of the own vehicle 3 is calculated as time series data of the two-dimensional coordinate system by a predetermined calculation algorithm. Will be done. That is, the traveling track is calculated as time-series data that defines the position of the own vehicle 3 on the xy coordinate axis, the speed in the x-axis direction, and the speed in the y-axis direction.
- the prime mover 5 is controlled so that the own vehicle 3 travels on the traveling track (FIG. 12 / STEP4).
- the actuator 6 is controlled so that the own vehicle 3 travels on the traveling track (FIG. 12 / STEP 5). After that, this process ends.
- the running state of the own vehicle 3 is controlled according to the running risk R_risk and the traffic regulation data. For example, when the traveling risk R_risk is high, the own vehicle 3 travels while decelerating while changing the traveling line toward the center lane. On the other hand, when the traveling risk R_risk is low, the vehicle travels while maintaining the vehicle speed and the traveling line.
- the first to third scene data as the traffic environment scene data are created in English in the form of so-called "subject”, “adjective”, and “predicate”. Therefore, it is possible to use the traffic regulation data as it is, and if the traffic regulation data is in a state where the feature points are recognized by natural language processing or the like, the traffic regulation is according to the created traffic environment scene data. It is possible to search the data.
- the second scene data is a combination of the first moving body "bicycle", the positional relational word “behind", and the traffic participant (second moving body) "bicycle". That is, when the first moving body "bicycle” is located behind the traffic participant "bicycle", both the first moving body “bicycle” and the traffic participant "bicycle” are light vehicles. Therefore, in Article 28 of the Road Traffic Law of Japan, "When overtaking another vehicle, basically, you must change your course to the right and pass through the right side of the overtaking vehicle.” As a result, it is possible to infer that there is a high risk that the first moving body "bicycle” will jump out into the right traveling lane.
- this traffic regulation data acquisition process acquires traffic regulation data, and is executed by the ECU 2 in a predetermined control cycle. It should be noted that this traffic regulation data acquisition process is executed only when the own vehicle 3 is started.
- wireless data communication is executed between the ECU 2 and the external server 31 via the wireless communication device (not shown) of the car navigation system 7 and the wireless communication network 30.
- the external server 31 stores traffic regulation data corresponding to the current position.
- the first to third scene data are created based on the surrounding situation data D_info. Then, by referring to the first to third risk maps according to the first to third scene data, the first to third risk Risk_1 to 3 are calculated, and these first to third risk Risk_1 to these are calculated. The running risk R_risk is finally calculated according to 3. Then, the traveling state of the own vehicle 3 is controlled according to the traveling risk R_risk.
- the first scene data is created by associating the first moving body noun, the first object noun, the positional relational word, and the traveling direction
- the first scene data can be created quickly.
- the second scene data is created by associating the first mobile noun, the positional relational word, the traffic participant noun, and the traveling direction
- the third scene data is the first mobile noun, the position. Since it is created by associating related words and road type words, the second scene data and the third scene data can also be created quickly. As described above, the traffic environment in the traveling direction of the own vehicle 3 can be quickly recognized.
- the positional relationship between the bicycle 21 as the first moving body, the guard fence 23 as the first target, and the pedestrian 22 as a traffic participant can be easily obtained by using a general image recognition method. This allows the first to third scene data to be easily created.
- first to third risks Risk_1 to 3 are calculated by referring to the first to third risk maps according to the first to third scene data created quickly and easily as described above. Since the running risk R_risk is finally calculated based on these first to third risks Risk_1 to 3, this running risk R_risk can also be obtained quickly and easily.
- the individual risk of the first moving object even when the first scene data does not exist in the first risk model, the individual risk of the first moving object, the individual risk of the first target, the individual risk of the positional relationship word, and the traveling direction of the first moving object.
- the first risk Risk_1 is acquired using the above, and the second Risk_1 and the third risk Risk_3 are also acquired by the same method. As a result, the running risk R_risk for the own vehicle 3 can be reliably acquired.
- the traffic regulation data of the current position is acquired according to the first to third scene data, and the traveling state of the own vehicle 3 is controlled according to the traveling risk R_risk and the traffic regulation data. It is possible to drive the own vehicle 3 quickly and appropriately according to the risk while observing the regulations.
- the traffic regulation data corresponding to the current position is acquired from the external server 31 by wireless data communication and stored in the ECU 2, so that the running state of the own vehicle 3 can be controlled. At the time of starting, it is possible to realize a state in which the traffic regulation data corresponding to the current position is stored.
- the embodiment is an example in which the running risk R_risk is calculated according to the first to third risks Risk_1 to 3, but the running risk R_risk is set according to at least one of the first to third risks Risk_1 to 3. It may be configured to calculate.
- the embodiment is an example in which the traveling state of the own vehicle 3 is controlled according to the traveling risk R_risk, but the traveling state of the own vehicle 3 is controlled according to at least one of the first to third risks Risk_1 to 3. May be controlled.
- the embodiment is an example in which the first scene data is configured as data in which the first moving body noun, the first object noun, the first positional relational word, and the traveling direction of the first moving body are linked.
- the first scene data may be configured as data in which the first mobile noun, the first object noun, and the first positional relational word are associated with each other.
- the embodiment is an example in which the second scene data is configured as data in which the first moving body noun, the second moving body noun, the second positional relational word, and the traveling direction of the first moving body are linked.
- the second scene data may be configured as data in which the first mobile noun, the second mobile noun, and the second positional relational word are linked.
- the embodiment is an example in which the car navigation system 7 is used as the data communication unit, but the data communication unit of the present invention is not limited to this, and data is generated between the vehicle and an external storage unit separate from the own vehicle. Anything that executes communication will do.
- a wireless communication circuit or the like which is separate from the car navigation system, may be used.
- the embodiment is an example in which the first to third risk maps are used as the risk model, but the risk model of the present invention is not limited to these, and defines the relationship between the traffic environment scene data and the risk. All you need is.
- a graph that defines the relationship between traffic environment scene data and risk may be used.
- the embodiment is an example in which the traveling state of the own vehicle 3 is controlled according to the traveling risk R_risk and the traffic regulation data, but in a traffic environment (for example, a circuit or a wilderness) where there is no problem even if the traffic regulation is ignored. May control the traveling state of the own vehicle 3 according only to the traveling risk R_risk.
- Vehicle control device traffic environment recognition device 2 ECU (recognition unit, storage unit, first moving body nose selection unit, first object nomenclature selection unit, positional relationship word selection unit, traffic environment scene data creation unit, second movement Body name selection unit, road type recognition unit, first road type word selection unit, risk model storage unit, risk acquisition unit, risk storage unit, traffic regulation data storage unit, traffic regulation data acquisition unit, current position regulation data acquisition unit, Control unit) 3 Own vehicle 4 Situation detection device (surrounding situation data acquisition unit, current position acquisition unit) 7 Car navigation system (data communication department) 11 Recognition unit (road type recognition unit) 12 Selection unit (1st mobile noun selection unit, 1st object noun selection unit, positional relational word selection unit, 2nd mobile noun selection unit, 1st road type word selection unit) 13 First storage unit (memory unit) 14 Scene data creation department (Traffic environment scene data creation department) 15 Risk acquisition unit 16 Second storage unit (risk model storage unit, risk storage unit) 21 Bicycle (1st moving body, moving body) 22 Pedestrians (second moving)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
自車両の進行方向における交通環境を迅速に認識できる交通環境認識装置などを提供する。車両制御装置1は、周辺状況データD_infoに基づき、自車両3の進行方向の所定範囲内における移動体及び物標を認識するとともに、移動体及び物標の位置関係を認識する。移動体として自転車21が認識された場合、第1移動体名詞「bicycle」が選択され、物標として防護柵23が認識された場合、第1物標名詞「fence」が選択され、両者の位置関係を表す位置関係語「behind」が選択される。そして、「bicycle」、「behind」及び「fence」を紐付けすることにより、第1シーンデータが作成される。
Description
本発明は、自車両の進行方向における交通環境を認識する交通環境認識装置などに関する。
従来、交通環境認識装置として、特許文献1に記載されたものが知られている。この交通環境認識装置では、自車両の加速度に基づき、加速度スペクトルの単回帰分析手法により、傾き極大値が算出され、自車両周辺の他車両との車間距離に基づき、ガウス分布手法により、共分散最小値が算出される。そして、傾き極大値の対数及び共分散最小値の対数との関係を表す相関マップが作成され、この相関マップに基づき、交通流の臨界領域の有無が判定される。
近年、自車両の自動運転制御を実行する車両制御装置が望まれている。このような車両制御装置の場合、自車両の進行方向における移動体及び物標などを含む交通環境を認識して、自車両の自動運転制御を実行する関係上、交通環境を迅速に認識することが要求される。これに対して、上記従来の交通環境認識装置によれば、自車両周辺の他車両などの交通環境を認識するのに、加速度スペクトルの単回帰分析手法及びガウス分布手法を用いている関係上、演算時間が増大するとともに、演算負荷が増大してしまう。この傾向は、他車両などの交通参加者の数が多いほど、顕著である。その結果、自動運転制御などの制御性が低下する可能性がある。
本発明は、上記課題を解決するためになされたもので、自車両の進行方向における交通環境を迅速に認識できる交通環境認識装置などを提供することを目的とする。
上記目的を達成するために、請求項1に係る交通環境認識装置は、自車両の進行方向における周辺状況を表す周辺状況データを取得する周辺状況データ取得部と、周辺状況データに基づき、自車両の進行方向の所定範囲内における移動体及び物標を認識するとともに、移動体及び物標の位置関係を認識する認識部と、複数の移動体のそれぞれの名称である複数の移動体名詞、複数の物標のそれぞれの名称である複数の物標名詞、及び移動体と物標の複数の位置関係をそれぞれ表す複数の位置関係語を記憶する記憶部と、移動体として所定の第1移動体が認識された場合、複数の移動体名詞の中から所定の第1移動体を表す第1移動体名詞を選択する第1移動体名詞選択部と、所定の第1移動体の周辺に存在する物標として所定の第1物標が認識された場合、複数の物標名詞の中から所定の第1物標を表す第1物標名詞を選択する第1物標名詞選択部と、所定の第1移動体及び所定の第1物標の位置関係が認識された場合、所定の第1移動体及び所定の第1物標の位置関係を表す第1位置関係語を複数の位置関係語から選択する位置関係語選択部と、第1移動体名詞、第1物標名詞及び第1位置関係語が選択された場合、第1移動体名詞、第1物標名詞及び第1位置関係語を紐付けすることにより、自車両の進行方向における交通環境のシーンを表す交通環境シーンデータを作成する交通環境シーンデータ作成部と、を備えることを特徴とする。
この交通環境認識装置によれば、自車両の進行方向の所定範囲内における周辺状況を表す周辺状況データに基づき、自車両の進行方向における移動体及び物標が認識されるとともに、移動体及び物標の位置関係が認識される。そして、移動体として所定の第1移動体が認識された場合、複数の移動体名詞の中から所定の第1移動体を表す第1移動体名詞が選択され、所定の第1移動体の周辺に存在する物標として所定の第1物標が認識された場合、複数の物標名詞の中から所定の第1物標を表す第1物標名詞が選択される。また、所定の第1移動体及び所定の第1物標の位置関係が認識された場合、所定の第1移動体及び所定の第1物標の位置関係を表す第1位置関係語が複数の位置関係語から選択される。そして、第1移動体名詞、第1物標名詞及び第1位置関係語が選択された場合、第1移動体名詞、第1物標名詞及び第1位置関係語を紐付けすることにより、自車両の進行方向における交通環境のシーンを表す交通環境シーンデータが作成される。
このように、所定の第1移動体及び所定の第1物標が自車両の進行方向の所定範囲内に存在する条件下で、第1移動体名詞、第1物標名詞及び第1位置関係語を紐付けするだけで、交通環境シーンデータを作成することができるので、自車両の進行方向における交通環境を迅速に認識することができる。
請求項2に係る発明は、請求項1に記載の交通環境認識装置において、移動体として所定の第1移動体以外の所定の第2移動体が認識された場合、複数の移動体名詞の中から所定の第2移動体を表す第2移動体名詞を選択する第2移動体名詞選択部をさらに備え、記憶部は、複数の位置関係語として、2つの移動体間の複数の位置関係をそれぞれ表す複数の位置関係語をさらに記憶しており、位置関係語選択部は、所定の第1移動体及び所定の第2移動体の位置関係が認識された場合、所定の第1移動体及び所定の第2移動体の位置関係を表す第2位置関係語を複数の位置関係語から選択し、交通環境シーンデータ作成部は、第1移動体名詞、第2移動体名詞及び第2位置関係語が選択された場合、第1移動体名詞、第2移動体名詞及び第2位置関係語を紐付けすることにより、交通環境シーンデータをさらに作成することを特徴とする。
この交通環境認識装置によれば、移動体として所定の第1移動体以外の所定の第2移動体が認識された場合、複数の移動体名詞の中から所定の第2移動体を表す第2移動体名詞が選択される。さらに、所定の第1移動体及び所定の第2移動体の位置関係が認識された場合、所定の第1移動体及び所定の第2移動体の位置関係を表す第2位置関係語が複数の位置関係語から選択される。そして、第1移動体名詞、第2移動体名詞及び第2位置関係語が選択された場合、第1移動体名詞、第2移動体名詞及び第2位置関係語を紐付けすることにより、交通環境シーンデータがさらに作成される。このように、所定の第1移動体及び所定の第2移動体が自車両の進行方向に存在する条件下で、第1移動体名詞、第2移動体名詞及び第2位置関係語を紐付けするだけで、交通環境シーンデータをさらに作成することができるので、自車両の進行方向における交通環境を迅速に認識することができる。
請求項3に係る発明は、請求項2に記載の交通環境認識装置において、周辺状況データ取得部は、周辺状況データを自車両との距離を表す距離パラメータデータを含むように取得し、認識部は、距離パラメータデータに基づき、所定範囲内にしている移動体及び物標を認識することを特徴とする。
この交通環境認識装置によれば、自車両との距離を表す距離パラメータデータに基づき、所定範囲内に位置している移動体及び物標が認識されるので、この所定範囲を適切に設定することにより、交通環境シーンデータを適切に作成することができる。
請求項4に係る発明は、請求項3に記載の交通環境認識装置において、距離パラメータデータは画像データであり、認識部は、所定の第1移動体及び所定の第1物標が画像データ内で占める面積に基づき、所定範囲内に位置している所定の第1移動体及び所定の第1物標を認識することを特徴とする。
この交通環境認識装置によれば、所定の第1移動体及び所定の第1物標が画像データ内で占める面積に基づき、所定範囲内に位置している所定の第1移動体及び所定の第1物標が認識されるので、一般的な画像認識手法を用いて、所定範囲内に位置している所定の第1移動体及び所定の第1物標を認識することができる。それにより、交通環境シーンデータを容易に作成することができる。
請求項5に係る発明は、請求項1ないし4のいずれかに記載の交通環境認識装置において、記憶部は、複数の位置関係語を、道路と移動体との位置関係を表す第3位置関係語を含むように記憶しているとともに、複数の道路の種類をそれぞれ表す複数の道路種類語をさらに記憶しており、周辺状況データに基づき、所定の第1移動体が位置している道路の種類を認識する道路種類認識部と、所定の第1移動体が位置している道路の種類として所定の第1道路種類が認識された場合、複数の道路種類語の中から所定の第1道路種類を表す第1道路種類語を選択する第1道路種類語選択部と、をさらに備え、位置関係語選択部は、所定の第1移動体が道路に位置している場合、第3位置関係語を複数の位置関係語から選択し、交通環境シーンデータ作成部は、第1移動体名詞、第1道路種類語及び第3位置関係語が選択された場合、第1移動体名詞、第1道路種類語及び第3位置関係語を紐付けすることにより、交通環境シーンデータをさらに作成することを特徴とする。
この交通環境認識装置によれば、周辺状況データに基づき、所定の第1移動体が道路に位置している場合、道路の種類が認識され、この道路の種類として所定の道路種類が認識された場合、複数の道路種類語の中から所定の道路種類を表す第1道路種類語が選択される。さらに、所定の第1移動体が道路に位置している場合、第3位置関係語が複数の位置関係語から選択される。そして、第1移動体名詞、第1道路種類語及び第3位置関係語が選択された場合、第1移動体名詞、第1道路種類語及び第3位置関係語を紐付けすることにより、交通環境シーンデータがさらに作成される。このように、所定の第1移動体が所定の道路種類の道路に位置している場合、第1移動体名詞、第1道路種類語及び第3位置関係語を紐付けするだけで、交通環境シーンデータをさらに作成することができるので、自車両の進行方向における交通環境を迅速に認識することができる(なお、本明細書における「道路」は、車道及び歩道に限らず、車両や交通参加者がその上を移動可能なものであればよく、例えば、線路も含む)。
請求項6に係る発明は、請求項1ないし4のいずれかに記載の交通環境認識装置において、周辺状況データ取得部は、第1移動体の進行方向を取得し、交通環境シーンデータでは、第1移動体の進行方向がさらに紐付けされていることを特徴とする。
この交通環境認識装置によれば、第1移動体の進行方向がさらに紐付けされることにより、交通環境シーンデータが作成されるので、交通環境シーンデータを、実際の交通環境をより反映したものとして作成することができる。
請求項7に係る発明は、請求項1ないし6のいずれかに記載の交通環境認識装置において、交通環境における自車両へのリスクと交通環境シーンデータとの関係を定義したリスクモデルを記憶するリスクモデル記憶部と、交通環境シーンデータが作成された場合、リスクモデルを用いて、交通環境シーンデータに対応するリスクを取得するリスク取得部と、をさらに備えることを特徴とする。
この交通環境認識装置によれば、交通環境シーンデータが作成された場合、リスクモデルを用いて、交通環境シーンデータに対応するリスクが取得されるので、交通環境における自車両へのリスクを迅速に取得することができる。
請求項8に係る発明は、請求項7に記載の交通環境認識装置において、第1移動体のリスクである第1移動体リスクと、第1物標のリスクである第1物標リスクとを記憶するリスク記憶部をさらに備え、リスク取得部は、交通環境シーンデータが作成された場合において、作成された交通環境シーンデータがリスクモデルに存在しないときには、第1移動体リスク、第1物標リスク及び第1位置リスクを用いて、リスクを取得することを特徴とする。
この交通環境認識装置によれば、交通環境シーンデータが作成された場合において、作成された交通環境シーンデータがリスクモデルに存在しないときでも、第1移動体リスク、第1物標リスク及び第1位置リスクを用いて、リスクが取得されるので、自車両に対するリスクを確実に取得することができる。
請求項9に係る発明は、請求項8に記載の交通環境認識装置において、周辺状況データ取得部は、第1移動体の進行方向を取得し、リスク取得部は、交通環境シーンデータとリスクとの関係がリスクモデルに存在しない場合には、第1移動体リスク、第1物標リスク及び第1位置リスクに加えて、第1移動体の進行方向をさらに用いて、リスクを取得することを特徴とする。
この交通環境認識装置によれば、交通環境シーンデータがリスクモデルに存在しない場合には、第1移動体リスク、第1物標リスク及び第1位置リスクに加えて、第1移動体の進行方向をさらに用いて、リスクが取得されるので、自車両に対するリスクをより精度よく取得することができる。
請求項10に係る発明は、請求項1ないし9のいずれかに記載の交通環境認識装置において、交通法規データを記憶する交通法規データ記憶部と、交通環境シーンデータが作成された場合、交通環境シーンデータに応じて交通法規データを参照することにより、交通環境シーンデータに対応する交通法規データを取得する交通法規データ取得部と、をさらに備えることを特徴とする。
この交通環境認識装置によれば、交通環境シーンデータが作成された場合、交通環境シーンデータに応じて交通法規データを参照することにより、交通環境シーンデータに対応する交通法規データが取得されるので、交通法規データを迅速に取得することができる。
請求項11に係る発明は、請求項10に記載の交通環境認識装置において、自車両の現在位置に対応する交通法規データを記憶する自車両とは別個の外部記憶部との間でデータ通信を実行するデータ通信部と、自車両の現在位置を取得する現在位置取得部と、自車両の現在位置が取得された場合、データ通信によって、現在位置に対応する交通法規データを外部記憶部から取得する現在位置法規データ取得部と、をさらに備え、交通法規データ記憶部は、現在位置法規データ取得部によって取得された現在位置に対応する交通法規データを記憶することを特徴とする。
この交通環境認識装置によれば、自車両の現在位置が取得された場合、データ通信によって、現在位置に対応する交通法規データが外部記憶部から取得され、これが交通法規データ記憶部に記憶されるので、自車両の走行状態の制御を開始する時点で、現在位置に対応する交通法規データが記憶されている状態を実現することができる。
請求項12に係る発明は、請求項1ないし11のいずれかに記載の交通環境認識装置において、所定の第1移動体は、自転車であり、認識部は、自転車を自転車以外の移動体と比べて優先的に認識することを特徴とする。
一般に、自転車は、歩道と車道との間を頻繁に往来するものであるので、歩行者や自動車などの歩道と車道との間の往来が少ない他の移動体と比べて、そのリスクが高いという特徴がある。これに対して、この交通環境認識装置によれば、自転車が自転車以外の移動体と比べて優先的に認識されるので、上記のリスクを適切に認識することができる。
請求項13に係る車両制御装置は、請求項1ないし6のいずれかに記載の交通環境認識装置と、交通環境シーンデータに応じて、自車両の走行状態を制御する制御部と、を備えることを特徴とする。
この車両制御装置によれば、前述したように迅速に取得された交通環境シーンデータに応じて、自車両の走行状態が制御されるので、自車両の走行状態をリスクに応じて迅速かつ適切に制御することができる。
請求項14に係る車両制御装置は、請求項7ないし9のいずれかに記載の交通環境認識装置と、リスクに応じて、自車両の走行状態を制御する制御部と、を備えることを特徴とする。
この車両制御装置によれば、前述したように迅速に取得されたリスクに応じて、自車両の走行状態が制御されるので、自車両の走行状態をリスクに応じて迅速かつ適切に制御することができる。
請求項15に係る車両制御装置は、請求項10又は11に記載の交通環境認識装置と、交通法規データに応じて、自車両の走行状態を制御する制御部と、を備えることを特徴とする。
この車両制御装置によれば、交通法規データに応じて、自車両の走行状態が制御されるので、自車両の走行状態を、交通法規を遵守しながら迅速かつ適切に制御することができる。
以下、図面を参照しながら、本発明の一実施形態に係る交通環境認識装置及び車両制御装置について説明する。なお、本実施形態の車両制御装置は交通環境認識装置も兼用しているので、以下の説明では、車両制御装置について説明するとともに、その中で、交通環境認識装置の機能及び構成についても説明する。
図1に示すように、この車両制御装置1は、四輪タイプの自動車(以下「自車両」という)3に適用されたものであり、ECU2を備えている。このECU2には、状況検出装置4、原動機5、アクチュエータ6及びカーナビゲーションシステム(以下「カーナビ」という)7が電気的に接続されている。
この状況検出装置4は、カメラ、ミリ波レーダー、LIDAR、ソナー、GPS及び各種のセンサなどで構成されており、自車両3の現在位置及び自車両3の進行方向の周辺状況(交通環境や交通参加者など)を表す周辺状況データD_infoをECU2に出力する。この周辺状況データD_infoは、カメラによって取得された画像データと、LIDARなどによって計測された距離データとを含むように構成されている。
ECU2は、後述するように、この状況検出装置4からの周辺状況データD_infoに基づいて、自車両3の周辺の交通環境を認識して、走行リスクR_riskを算出するとともに、この走行リスクR_riskなどに応じて、自車両3の走行状態を制御する。なお、本実施形態では、状況検出装置4が周辺状況データ取得部及び現在位置取得部に相当し、カーナビ7がデータ通信部に相当する。
原動機5は、例えば、電気モータなどで構成されており、後述するように、自車両3の走行軌道が決定されたときに、自車両3がこの走行軌道で走行するように、ECU2によって原動機5の出力が制御される。
また、アクチュエータ6は、制動用アクチュエータ及び操舵用アクチュエータなどで構成されており、後述するように、自車両3の走行軌道が決定されたときに、自車両3がこの走行軌道で走行するように、ECU2によってアクチュエータ6の動作が制御される。
さらに、カーナビ7は、ディスプレイ、記憶装置、無線通信装置及びコントローラ(いずれも図示せず)などで構成されている。このカーナビ7では、自車両3の現在位置に基づいて、記憶装置に記憶された地図データの中から、自車両3の現在位置周辺の地図データが読み出され、これがディスプレイに表示される。
さらに、カーナビ7では、無線通信装置を介して、他車両のカーナビ及び外部サーバ31(図14参照)などとの間で無線データ通信が実行される。後述するように、カーナビ7は、交通法規データを外部サーバ31から受信したときに、これをECU2に出力する。
一方、ECU2は、CPU、RAM、ROM、E2PROM、I/Oインターフェース及び各種の電気回路(いずれも図示せず)などからなるマイクロコンピュータで構成されている。ECU2は、上述した状況検出装置4からの周辺状況データD_infoなどに基づいて、以下に述べるように、走行リスクR_riskの算出処理などを実行する。
なお、本実施形態では、ECU2が、認識部、記憶部、第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、交通環境シーンデータ作成部、第2移動体名詞選択部、道路種類認識部、第1道路種類語選択部、リスクモデル記憶部、リスク取得部、リスク記憶部、交通法規データ記憶部、交通法規データ取得部、現在位置法規データ取得部、及び制御部に相当する。
次に、図2を参照しながら、車両制御装置1におけるリスク推定装置10の構成について説明する。このリスク推定装置10は、以下に述べるように、周辺状況データD_infoに応じて、自車両3の走行中における交通環境からのリスクである走行リスクR_riskを推定(取得)するものである。
同図に示すように、リスク推定装置10は、認識部11、選択部12、第1記憶部13、シーンデータ作成部14、リスク取得部15及び第2記憶部16を備えており、これらの要素11~16は、具体的には、ECU2によって構成されている。
なお、本実施形態では、認識部11が道路種類認識部に相当し、選択部12が第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、第2移動体名詞選択部、及び第1道路種類語選択部に相当する。さらに、第1記憶部13が記憶部に相当し、シーンデータ作成部14が交通環境シーンデータ作成部に相当し、第2記憶部16がリスクモデル記憶部及びリスク記憶部に相当する。
この認識部11では、周辺状況データD_infoに含まれる画像データに基づき、所定の画像認識手法(例えば、深層学習法)によって、自車両3の進行方向の所定範囲(例えば数十メートル)内に存在する移動体、交通参加者、物標及び道路の種類が認識される。
この場合、移動体及び交通参加者としては、自転車、歩行者及び自動車などが認識され、物標としては、駐車車両及び防護柵などが認識される。これに加えて、道路の種類として、車道及び歩道などが認識される。なお、本明細書における「自転車」は、運転者によって運転されている自転車を意味する。
また、以下の説明では、認識部11で認識された移動体を「第1移動体」と呼び、認識部11で認識された物標を「第1物標」と呼ぶ。この場合の第1移動体は、自車両3との関係において、リスクが一番高く、認識部11において最優先で認識すべき移動体に相当する。
本実施形態では、図3及び図4に示す交通環境下を例にとって説明する。両図に示すように、自車両3が車道20を走行中、自転車21及び歩行者22がフェンス23付きの歩道24上に存在する交通環境下では、自転車21が第1移動体として認識され、歩行者22が交通参加者(第2移動体)として認識される。さらに、フェンス23が第1物標として認識され、車道20及び歩道24が道路の種類として認識される。
一方、図示しないが、自転車21が存在せず、1人の歩行者22のみが存在する条件下では、歩行者22が第1移動体として認識される。さらに、図示しないが、自転車21が存在せず、歩行者が2人以上存在する交通環境では、自車両3に最も近い歩行者が第1移動体として認識されるとともに、それ以外の歩行者は交通参加者として認識される。
以上のように、自転車21が歩行者22よりも優先して第1移動体として認識されるのは、歩行者22に比べて、高リスクの移動体と見なせることによる。すなわち、自転車21の場合、歩道24のみを移動する可能性が高い歩行者22と異なり、歩道24と車道20との間を往来する可能性が高く、結果的に、歩道24から車道20側に比較的、高速で飛び出してくる可能性が高いことによる。
また、この認識部11では、所定の画像認識手法によって、移動体等を認識する関係上、第1移動体及び交通参加者の位置関係などは、画像データ内でのサイズの大小によって認識される。例えば、図5に示すように、画像認識処理の実行中、自転車21の検出枠21aの方が、歩行者22の検出枠22aよりも大きくなることで、自転車21が歩行者22よりも手前側に位置しているという両者の位置関係が認識される。
また、以上のように認識部11で第1移動体などを認識する場合、周辺状況データD_infoに含まれる距離データに基づき、交通環境下に存在する第1移動体、交通参加者及び第1物標と自車両3との位置関係を取得するように構成してもよい。さらに、周辺状況データD_infoに含まれる画像データ及び距離データの双方を用いて、第1移動体、交通参加者及び第1物標の位置関係を認識するように構成してもよい。
以上のように、認識部11では、交通環境下に存在する第1移動体、交通参加者、第1物標及び道路の種類が認識され、さらに、第1移動体とそれ以外の対象との位置関係が認識されるとともに、第1移動体の進行方向が自車両3と同方向であるか否かが認識される。そして、それらの認識結果が認識部11から選択部12に出力される。
選択部12では、上記の認識結果が認識部11から入力された場合、第1記憶部13に記憶されている各種の名詞及び位置関係語の中から、認識結果に対応する用語が取得される。この位置関係語は、第1移動体を基準とした場合の各対象との位置関係を表す用語である。
この第1記憶部13では、移動体の名詞、交通参加者の名詞、物標の名詞、道路の種類の名詞及び位置関係語のいずれもが英語表記の用語として記憶されている。移動体又は交通参加者の場合、その一例としては、自転車が「bicycle」、歩行者が「walker」、自動車が「car」としてそれぞれ記憶されている。また、物標の場合、その一例としては、駐車車両が「parked vehicle」、防護柵が「fence」、信号機が「signal」としてそれぞれ記憶されている。さらに、道路の種類の場合、その一例としては、車道が「drive way」、歩道が「sidewalk」、横断歩道が「cross-walk」、線路が「line」としてそれぞれ記憶されている。
一方、第1移動体と交通参加者の位置関係語としては、第1移動体が交通参加者の後ろ側に位置している状態の用語が「behind」として記憶されている。また、第1移動体が交通参加者の隣りに位置している状態の用語が「next to(又はside)」として記憶され、第1移動体が交通参加者の手前側に位置している状態の用語が「in front of」として記憶されている。さらに、第1移動体と第1物標の位置関係語の場合も、以上と同一の用語が記憶されている。
一方、第1移動体と道路の位置関係語の場合、第1移動体が道路に沿って移動している状態の用語が「on」として記憶され、第1移動体が道路を横切って移動している状態の用語が「across」として記憶されている。
以上の構成により、この選択部12の場合、図3及び図4に示す交通環境下では、第1移動体として「bicycle」が、交通参加者として「walker」が、第1物標として「fence」が、道路の種類として「sidewalk」がそれぞれ選択される。なお、本実施形態では、「bicycle」が第1移動体名詞に相当し、「fence」が第1物標名詞に相当し、「walker」が第2移動体名詞に相当し、「sidewalk」が第1道路種類語に相当する。
また、第1移動体と交通参加者の位置関係語としては、第1移動体である自転車21が交通参加者である歩行者22の後ろ側に位置していることで、「behind」が選択される。さらに、第1移動体と第1物標の位置関係語としては、第1移動体である自転車21が第1物標である防護柵の後ろ側に位置していることで、「behind」が選択される。なお、本実施形態では、「behind」が第1位置関係語及び第2位置関係語に相当する。
一方、第1移動体と道路の位置関係語の場合、第1移動体である自転車21が歩道24上に位置していることで、「on」が選択される。さらに、第1移動体である自転車21の進行方向が自車両3の進行方向と同一であることで、第1移動体の進行方向として「同一方向」が選択される。なお、本実施形態では、「on」が第3位置関係語に相当する。
そして、以上のように選択部12において、第1移動体などの名詞、位置関係語及び第1移動体の進行方向が選択された場合、それらの選択結果がシーンデータ作成部14に出力される。なお、自車両3の進行方向の交通環境下において、交通参加者及び第1物標の一方の対象が存在しない場合、選択部12では、存在しない対象の名詞と、第1移動体とこの対象との位置関係語とが、選択されず、これらはシーンデータ作成部14に出力されない。
シーンデータ作成部14では、上記の選択結果が選択部12から入力された場合、これらの選択結果に基づいて、シーンデータを作成する。この場合、例えば図3及び図4に示す交通環境下での選択結果が選択部12から入力されたときには、図6~8に示す第1~第3シーンデータがそれぞれ作成される。なお、本実施形態では、第1~第3シーンデータが交通環境シーンデータに相当する。
図6に示すように、第1シーンデータは、第1移動体「bicycle」と、第1物標に対する第1移動体の位置関係語「behind」と、第1物標「fence」と、第1移動体と自車両3の進行方向の関係「同方向」とを互いに紐付けしたデータとして作成される。
また、図7に示すように、第2シーンデータは、第1移動体「bicycle」と、交通参加者に対する第1移動体の位置関係語「behind」と、交通参加者「walker」と、第1移動体と自車両3の進行方向の関係「同方向」とを互いに紐付けしたデータとして作成される。
さらに、図8に示すように、第3シーンデータは、第1移動体「bicycle」と、道路に対する第1移動体の位置関係語「on」と、道路種類「sidewalk」とを互いに紐付けしたデータとして作成される。
このシーンデータ作成部14の場合、前述したように、自車両3の進行方向の交通環境下において、第1物標が存在しない場合には、第1物標の名詞が選択部12から入力されないことで、第1シーンデータにおける第1物標及び位置関係語の欄が空白に設定される。また、自車両3の進行方向の交通環境下において、交通参加者が存在しない場合には、交通参加者の名詞が選択部12から入力されないことで、第2シーンデータにおける交通参加者及び位置関係語の欄が空白に設定される。
以上のように、第1~第3シーンデータが作成された場合、それらがシーンデータ作成部14からリスク取得部15に出力される。リスク取得部15では、これらの第1~第3シーンデータがシーンデータ作成部14から入力された場合、以下に述べるように、第1~第3シーンデータに応じて、第1~第3リスクRisk_1~3を取得(算出)する。
具体的には、第1リスクRisk_1は、第1シーンデータに応じて、図9に示す第1リスクマップ(リスクモデル)を参照することにより算出される。例えば、前述した図6の第1シーンデータの場合には、第1移動体「bicycle」、位置関係語「behind」、第1物標「fence」及び進行方向「同方向」の組合せが、第1リスクマップの太字で示すn(nは整数)番目のデータにおける組合せと一致することで、第1リスクRisk_1は値3として算出される。
また、このリスク取得部15では、第1シーンデータにおける第1移動体、位置関係語、第1物標及び進行方向の組合せが図9の第1リスクマップに存在しないときには、以下に述べる手法により、第1リスクRisk_1が算出される。
同図9に示すように、この第1リスクマップでは、第1移動体に対応する個別リスク(第1移動体リスク)と、位置関係語に対応する個別リスク(第1位置リスク)と、第1物標に対応する個別リスクとが設定されている。したがって、まず、上述したように、第1シーンデータにおける、第1移動体、位置関係語及び第1物標に応じて、第1リスクマップから3つの個別リスクを読出し、下式(1)により、暫定第1リスクRisk_tmp1を算出する。
Risk_tmp1=(個別リスクA×KA)×(個別リスクB×KB)×(個別リスクC×KC)
…… (1)
…… (1)
上式(1)の個別リスクAは第1移動体に対応する個別リスクを表しており、KAは、予め設定される所定の乗算係数である。また、個別リスクBは位置関係語に対応する個別リスクを表しており、KBは、予め設定される所定の乗算係数である。さらに、個別リスクCは第1物標に対応する個別リスクを表しており、KCは、予め設定される所定の乗算係数である。
上式(1)によって、暫定第1リスクRisk_tmp1を算出した後、暫定第1リスクRisk_tmp1を所定手法(例えば四捨五入法)により整数化する。次いで、リスクが第1移動体の進行方向に存在する状況にあるか否かを判定し、リスクが第1移動体の進行方向に存在しない状況にあるときには、暫定第1リスクRisk_tmp1の整数化値が、第1リスクRisk_1に設定される。
一方、リスクが第1移動体の進行方向に存在する状況にあるときには、暫定第1リスクRisk_tmp1の整数化値に値1を加算した値が、第1リスクRisk_1に設定される。この場合、第1移動体の進行方向のリスク判定は、具体的には、以下に述べるように実行される。
例えば、前述した図3において第1移動体である自転車21が歩行者22の前方(奥側)に位置している状態を想定した場合、自転車21が自車両3と逆方向に移動しているとき、すなわち自転車21が自車両3に向かって移動しているときには、リスクが第1移動体の進行方向に存在する状況にあると判定される。一方、自転車21が自車両3と同方向に移動しているときには、リスクが第1移動体の進行方向に存在しない状況にあると判定される。
また、第2リスクRisk_2は、第2シーンデータに応じて、図10に示す第2リスクマップ(リスクモデル)を参照することにより算出される。例えば、前述した図7の第2シーンデータの場合には、第1移動体「bicycle」、位置関係語「behind」、交通参加者「walker」及び進行方向「同方向」の組合せが、第2リスクマップの太字で示す1番目のデータにおける組合せと一致することで、第2リスクRisk_2は値3として算出される。
また、第2シーンデータにおける第1移動体、位置関係語、交通参加者及び進行方向の組合せが図10の第2リスクマップに存在しないときには、上述した第1リスクRisk_1の算出手法と同様の手法により、第2リスクRisk_2が算出される。
すなわち、第2シーンデータにおける、第1移動体、位置関係語及び交通参加者に応じて、第2リスクマップから3つの個別リスクを読出し、下式(2)により、暫定第2リスクRisk_tmp2を算出する。
Risk_tmp2=(個別リスクA×KA)×(個別リスクB×KB)×(個別リスクD×KD)
…… (2)
…… (2)
上式(2)の個別リスクDは交通参加者に対応する個別リスクを表しており、KDは、予め設定される所定の乗算係数である。上式(2)によって、暫定第2リスクRisk_tmp2を算出した後、暫定第2リスクRisk_tmp2を前述した所定手法により整数化する。
次いで、リスクが第1移動体の進行方向に存在する状況にあるか否かを判定し、リスクが第1移動体の進行方向に存在しない状況にあるときには、暫定第2リスクRisk_tmp2の整数化値が、第2リスクRisk_2に設定される。一方、リスクが第1移動体の進行方向に存在する状況にあるときには、暫定第2リスクRisk_tmp2の整数化値に値1を加算した値が、第2リスクRisk_2に設定される。
さらに、第3リスクRisk_3は、第3シーンデータに応じて、図11に示す第3リスクマップ(リスクモデル)を参照することにより算出される。その場合、第3シーンデータの第1移動体「bicycle」、位置関係語「on」及び道路種類「sidewalk」の組合せが、第3リスクマップのデータにおける組合せと一致した場合には、その組合せに対応する第3リスクRisk_3が読み出される。
一方、第1移動体「bicycle」、位置関係語「on」及び道路種類「sidewalk」の組合せが、第3リスクマップのデータにおける組合せと一致しない場合、例えば前述した図8の第3シーンデータの場合には、第3リスクRisk_3は、上述した第1リスクRisk_1及び第2Risk_2の算出手法とほぼ同様の手法によって算出される。
すなわち、第3シーンデータにおける、第1移動体、位置関係語及び道路種類に応じて、第3リスクマップから3つの個別リスクを読出し、下式(3)により、暫定第3リスクRisk_tmp3を算出する。
Risk_tmp3=(個別リスクA×KA)×(個別リスクB×KB)×(個別リスクE×KE)
…… (3)
…… (3)
上式(3)の個別リスクEは道路種類に対応する個別リスクを表しており、KEは、予め設定される所定の乗算係数である。
上式(3)によって、暫定第3リスクRisk_tmp3を算出した後、暫定第3リスクRisk_tmp3を前述した所定手法により整数化する。そして、暫定第3リスクRisk_tmp3の整数化値が、第3リスクRisk_3に設定される。
リスク取得部15では、以上のように第1~第3リスクRisk_3が算出され、これらの第1~第3リスクRisk_3に基づき、所定算出手法(例えば加重平均演算手法及びマップ検索手法など)により、走行リスクR_riskが最終的に算出される。以上の手法により、リスク推定装置10では、走行リスクR_riskが算出される。
なお、この走行リスクR_riskは、第1移動体と物標もしくは交通参加者も含めた所定空間のリスクとして推定してもよく、第1移動体自体のリスクとして推定してもよい。例えば、第1移動体以外に他の交通参加者が存在しない場合には、第1移動体のみのリスクとして推定してもよく、第1~第3シーンデータにおいて第1移動体のリスクと推定できるシーンデータが存在する場合には、第1移動体のみのリスクとして推定してもよい。以上により、道路上のどの空間にリスクが存在するかという推定を変更してもよい。
次に、図12を参照しながら、本実施形態の車両制御装置1による自動運転制御処理について説明する。この自動運転制御処理は、以下に述べるように、走行リスクR_riskを用いて、自車両3の自動運転制御を実行するものであり、ECU2によって、所定の制御周期で実行される。なお、以下の説明において算出される各種の値は、ECU2のE2PROM内に記憶されるものとする。
図12に示すように、まず、走行リスクR_riskを算出する(図12/STEP1)。具体的には、前述したリスク推定装置10と同じ算出手法により、走行リスクR_riskを算出する。
次いで、前述した第1~第3シーンデータに応じて、交通法規データをE2PROM内から読み出す(図12/STEP2)。この交通法規データは、後述する交通法規データ取得処理によって取得され、E2PROM内に記憶されている。
次に、走行軌道算出処理を実行する(図12/STEP3)。この処理では、以上のように算出した走行リスクR_risk、交通法規データ及び周辺状況データD_infoに基づき、所定の算出アルゴリズムにより、自車両3の未来の走行軌道が2次元座標系の時系列データとして算出される。すなわち、走行軌道は、自車両3のxy座標軸上の位置と、x軸方向速度及びy軸方向速度とを規定した時系列データとして算出される。
次いで、自車両3が走行軌道で走行するように、原動機5を制御する(図12/STEP4)。次に、自車両3が走行軌道で走行するように、アクチュエータ6を制御する(図12/STEP5)。その後、本処理を終了する。
以上のように自動運転制御処理を実行することにより、自車両3は、走行リスクR_risk及び交通法規データに応じて、走行状態が制御される。例えば、走行リスクR_riskが高いときには、自車両3は、減速しながら、走行ラインを中央車線寄りに変更して走行する。一方、走行リスクR_riskが低いときには、車速及び走行ラインを維持しながら走行する。
本実施形態では、以上のように、交通環境シーンデータとしての第1~第3シーンデータが、いわゆる「主語」「形容詞」「述語」の形態で、英語で作成される。したがって、交通法規データをそのまま使用することが可能であるとともに、交通法規データが自然言語処理などによって特徴点を認識した状態になっている場合には、作成した交通環境シーンデータに応じて交通法規データを検索することが可能である。
例えば、自車両3が日本国内を走行中、第2シーンデータが、第1移動体「bicycle」、位置関係語「behind」及び交通参加者(第2移動体)「bicycle」の組合せである場合、すなわち、第1移動体「bicycle」が交通参加者「bicycle」の後ろ側に位置している場合には、第1移動体「bicycle」及び交通参加者「bicycle」がいずれも軽車両であるので、日本国の道路交通法第28条における「他の車両を追い越す際には、基本的に、右に進路変更し、追い越す車両の右側を通って追い越さなければならない。」が検索される。それにより、第1移動体「bicycle」が右側の走行車線に飛び出してくるリスクが高いと推測することが可能になる。
次に、図13を参照しながら、本実施形態の車両制御装置1による交通法規データ取得処理について説明する。この交通法規データ取得処理は、以下に述べるように、交通法規データを取得するものであり、ECU2によって、所定の制御周期で実行される。なお、この交通法規データ取得処理は、自車両3の起動時にのみ実行される。
図13に示すように、まず、通信制御フラグF_CONNECTが「1」であるか否かを判定する(図13/STEP10)。この判定が否定で(図13/STEP10…NO)、前回以前の制御タイミングにおいて、後述する通信制御処理が実行中でなかったときには、GPSにより、現在位置を取得する(図13/STEP11)。
次いで、交通法規データの取得が必要であるか否かを判定する(図13/STEP12)。この判定処理では、上記のように取得した現在位置に基づき、この現在位置に対応する交通法規データがECU2のE2PROM内に記憶されていないときには、交通法規データの取得が必要であると判定され、それ以外のときには、交通法規データの取得が不要であると判定される。
この判定が否定で(図13/STEP12…NO)、現在位置に対応する交通法規データがECU2のE2PROM内に記憶されているときには、そのまま本処理を終了する。
一方、この判定が肯定で(図13/STEP12…YES)、現在位置に対応する交通法規データがECU2のE2PROM内に記憶されていないときには、これを取得するための通信制御処理を実行すべきであると判定して、それを表すために、通信制御フラグF_CONNECTを「1」に設定する(図13/STEP13)。
このように通信制御フラグF_CONNECTを「1」に設定したとき、又は前述した判定が肯定で(図13/STEP10…YES)、前回以前の制御タイミングにおいて、以下の通信制御処理が実行中であったときには、それらに続けて、通信制御処理を実行する(図13/STEP14)。
この通信制御処理では、図14に示すように、カーナビ7の無線通信装置(図示せず)及び無線通信網30を介して、ECU2と外部サーバ31との間で無線データ通信が実行される。この外部サーバ31には、現在位置に対応する交通法規データが記憶されている。以上の構成により、この通信制御処理を実行することによって、外部サーバ31内に記憶されている交通法規データが、カーナビ7で受信された後、ECU2に入力される。
以上のように、通信制御処理を実行した後、交通法規データの取得が完了したか否かを判定する(図13/STEP15)。この判定が否定で(図13/STEP15…NO)、交通法規データの取得が完了していないときには、そのまま本処理を終了する。
一方、この判定が肯定で(図13/STEP15…YES)、交通法規データの取得が完了したとき、すなわち交通法規データがECU2のE2PROM内に記憶されたときには、通信制御処理を終了すべきあると判定して、それを表すために、通信制御フラグF_CONNECを「0」に設定して(図13/STEP16)、本処理を終了する。
以上のように、本実施形態の車両制御装置1によれば、周辺状況データD_infoに基づき、第1~第3シーンデータが作成される。そして、第1~第3シーンデータに応じて、第1~第3リスクマップをそれぞれ参照することにより、第1~第3リスクRisk_1~3が算出され、これらの第1~第3リスクRisk_1~3に応じて、走行リスクR_riskが最終的に算出される。そして、この走行リスクR_riskに応じて、自車両3の走行状態が制御される。
この場合、第1シーンデータは、第1移動体名詞、第1物標名詞、位置関係語及び進行方向を紐付けすることによって作成されるので、第1シーンデータを迅速に作成することができる。これと同様に、第2シーンデータは、第1移動体名詞、位置関係語、交通参加者名詞及び進行方向を紐付けすることによって作成され、第3シーンデータは、第1移動体名詞、位置関係語及び道路種類語を紐付けすることによって作成されるので、第2シーンデータ及び第3シーンデータも迅速に作成することができる。以上により、自車両3の進行方向における交通環境を迅速に認識することができる。
また、第1移動体としての自転車21と、第1物標としての防護柵23と、交通参加者としての歩行者22との位置関係は、一般的な画像認識手法を用いて容易に取得することができ、それにより、第1~第3シーンデータを容易に作成することができる。
さらに、以上のように迅速かつ容易に作成された第1~第3シーンデータに応じて、第1~第3リスクマップをそれぞれ参照することにより、第1~第3リスクRisk_1~3が算出され、これらの第1~第3リスクRisk_1~3に基づいて、走行リスクR_riskが最終的に算出されるので、この走行リスクR_riskも迅速かつ容易に取得することができる。
これに加えて、第1シーンデータが第1リスクモデルに存在しないときでも、第1移動体の個別リスク、第1物標の個別リスク、位置関係語の個別リスク及び第1移動体の進行方向を用いて、第1リスクRisk_1が取得され、これと同様の手法により、第2Risk_2及び第3リスクRisk_3も取得される。それにより、自車両3に対する走行リスクR_riskを確実に取得することができる。
また、第1~第3シーンデータに応じて、現在位置の交通法規データが取得され、走行リスクR_risk及び交通法規データに応じて、自車両3の走行状態が制御されるので、現在位置の交通法規を遵守しながらリスクに応じて、自車両3を迅速かつ適切に走行させることができる。
これに加えて、自車両3の起動時、無線データ通信によって、現在位置に対応する交通法規データが外部サーバ31から取得され、これがECU2に記憶されるので、自車両3の走行状態の制御を開始する時点で、現在位置に対応する交通法規データが記憶されている状態を実現することができる。
なお、実施形態は、第1~第3リスクRisk_1~3に応じて、走行リスクR_riskを算出した例であるが、走行リスクR_riskを、第1~第3リスクRisk_1~3の少なくとも1つに応じて算出するように構成してよい。
また、実施形態は、走行リスクR_riskに応じて、自車両3の走行状態を制御した例であるが、第1~第3リスクRisk_1~3の少なくとも1つに応じて、自車両3の走行状態を制御してもよい。
さらに、実施形態は、第1シーンデータを、第1移動体名詞、第1物標名詞、第1位置関係語及び第1移動体の進行方向を紐付けしたデータとして構成した例であるが、第1シーンデータを、第1移動体名詞、第1物標名詞及び第1位置関係語を紐付けしたデータとして構成してもよい。
一方、実施形態は、第2シーンデータを、第1移動体名詞、第2移動体名詞、第2位置関係語及び第1移動体の進行方向を紐付けしたデータとして構成した例であるが、第2シーンデータを、第1移動体名詞、第2移動体名詞及び第2位置関係語を紐付けしたデータとして構成してもよい。
また、実施形態は、データ通信部として、カーナビゲーションシステム7を用いた例であるが、本発明のデータ通信部は、これに限らず、自車両とは別個の外部記憶部との間でデータ通信を実行するものであればよい。例えば、カーナビゲーションシステムとは別個の、無線通信回路などを用いてもよい。
さらに、実施形態は、リスクモデルとして、第1~第3リスクマップを用いた例であるが、本発明のリスクモデルは、これらに限らず、交通環境シーンデータとリスクの関係を定義したものであればよい。例えば、交通環境シーンデータとリスクの関係を定義したグラフを用いてもよい。
一方、実施形態は、走行リスクR_risk及び交通法規データに応じて、自車両3の走行状態を制御した例であるが、交通法規を無視しても問題ない交通環境(例えば、サーキットや原野)においては、走行リスクR_riskのみに応じて、自車両3の走行状態を制御してもよい。
1 車両制御装置、交通環境認識装置
2 ECU(認識部、記憶部、第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、交通環境シーンデータ作成部、第2移動体名詞選択部、道路種類認識部、第1道路種類語選択部、リスクモデル記憶部、リスク取得部、リスク記憶部、交通法規データ記憶部、交通法規データ取得部、現在位置法規データ取得部、制御部)
3 自車両
4 状況検出装置(周辺状況データ取得部、現在位置取得部)
7 カーナビゲーションシステム(データ通信部)
11 認識部(道路種類認識部)
12 選択部(第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、第2移動体名詞選択部、第1道路種類語選択部)
13 第1記憶部(記憶部)
14 シーンデータ作成部(交通環境シーンデータ作成部)
15 リスク取得部
16 第2記憶部(リスクモデル記憶部、リスク記憶部)
21 自転車(第1移動体、移動体)
22 歩行者(第2移動体、移動体)
23 防護柵(第1物標、物標)
D_info 周辺状況データ
bicycle 第1移動体名詞
fence 第1物標名詞
walker 第2移動体名詞
behind 第1位置関係語、第2位置関係語
on 第3位置関係語
Risk_1 第1リスク(リスク)
Risk_2 第2リスク(リスク)
Risk_3 第3リスク(リスク)
R_risk 走行リスク(リスク)
2 ECU(認識部、記憶部、第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、交通環境シーンデータ作成部、第2移動体名詞選択部、道路種類認識部、第1道路種類語選択部、リスクモデル記憶部、リスク取得部、リスク記憶部、交通法規データ記憶部、交通法規データ取得部、現在位置法規データ取得部、制御部)
3 自車両
4 状況検出装置(周辺状況データ取得部、現在位置取得部)
7 カーナビゲーションシステム(データ通信部)
11 認識部(道路種類認識部)
12 選択部(第1移動体名詞選択部、第1物標名詞選択部、位置関係語選択部、第2移動体名詞選択部、第1道路種類語選択部)
13 第1記憶部(記憶部)
14 シーンデータ作成部(交通環境シーンデータ作成部)
15 リスク取得部
16 第2記憶部(リスクモデル記憶部、リスク記憶部)
21 自転車(第1移動体、移動体)
22 歩行者(第2移動体、移動体)
23 防護柵(第1物標、物標)
D_info 周辺状況データ
bicycle 第1移動体名詞
fence 第1物標名詞
walker 第2移動体名詞
behind 第1位置関係語、第2位置関係語
on 第3位置関係語
Risk_1 第1リスク(リスク)
Risk_2 第2リスク(リスク)
Risk_3 第3リスク(リスク)
R_risk 走行リスク(リスク)
Claims (15)
- 自車両の進行方向における周辺状況を表す周辺状況データを取得する周辺状況データ取得部と、
当該周辺状況データに基づき、前記自車両の前記進行方向の所定範囲内における移動体及び物標を認識するとともに、当該移動体及び当該物標の位置関係を認識する認識部と、
複数の前記移動体のそれぞれの名称である複数の移動体名詞、複数の前記物標のそれぞれの名称である複数の物標名詞、及び前記移動体と前記物標の複数の位置関係をそれぞれ表す複数の位置関係語を記憶する記憶部と、
前記移動体として所定の第1移動体が認識された場合、前記複数の移動体名詞の中から当該所定の第1移動体を表す第1移動体名詞を選択する第1移動体名詞選択部と、
前記所定の第1移動体の周辺に存在する前記物標として所定の第1物標が認識された場合、前記複数の物標名詞の中から当該所定の第1物標を表す第1物標名詞を選択する第1物標名詞選択部と、
前記所定の第1移動体及び前記所定の第1物標の位置関係が認識された場合、前記所定の第1移動体及び前記所定の第1物標の当該位置関係を表す第1位置関係語を前記複数の位置関係語から選択する位置関係語選択部と、
前記第1移動体名詞、前記第1物標名詞及び前記第1位置関係語が選択された場合、前記第1移動体名詞、前記第1物標名詞及び前記第1位置関係語を紐付けすることにより、前記自車両の進行方向における交通環境のシーンを表す交通環境シーンデータを作成する交通環境シーンデータ作成部と、
を備えることを特徴とする交通環境認識装置。 - 請求項1に記載の交通環境認識装置において、
前記移動体として前記所定の第1移動体以外の所定の第2移動体が認識された場合、前記複数の移動体名詞の中から当該所定の第2移動体を表す第2移動体名詞を選択する第2移動体名詞選択部をさらに備え、
前記記憶部は、前記複数の位置関係語として、2つの前記移動体間の複数の位置関係をそれぞれ表す複数の前記位置関係語をさらに記憶しており、
前記位置関係語選択部は、前記所定の第1移動体及び前記所定の第2移動体の位置関係が認識された場合、前記所定の第1移動体及び前記所定の第2移動体の当該位置関係を表す第2位置関係語を前記複数の位置関係語から選択し、
前記交通環境シーンデータ作成部は、前記第1移動体名詞、前記第2移動体名詞及び前記第2位置関係語が選択された場合、前記第1移動体名詞、前記第2移動体名詞及び前記第2位置関係語を紐付けすることにより、前記交通環境シーンデータをさらに作成することを特徴とする交通環境認識装置。 - 請求項2に記載の交通環境認識装置において、
前記周辺状況データ取得部は、前記周辺状況データを前記自車両との距離を表す距離パラメータデータを含むように取得し、
前記認識部は、当該距離パラメータデータに基づき、前記所定範囲内に位置している前記移動体及び前記物標を認識することを特徴とする交通環境認識装置。 - 請求項3に記載の交通環境認識装置において、
前記距離パラメータデータは画像データであり、
前記認識部は、前記所定の第1移動体及び前記所定の第1物標が前記画像データ内で占める面積に基づき、前記所定範囲内に位置している前記所定の第1移動体及び前記所定の第1物標を認識することを特徴とする交通環境認識装置。 - 請求項1ないし4のいずれかに記載の交通環境認識装置において、
前記記憶部は、前記複数の位置関係語を、道路と前記移動体との位置関係を表す第3位置関係語を含むように記憶しているとともに、複数の当該道路の種類をそれぞれ表す複数の道路種類語をさらに記憶しており、
前記周辺状況データに基づき、前記所定の第1移動体が位置している前記道路の種類を認識する道路種類認識部と、
前記所定の第1移動体が位置している前記道路の種類として所定の第1道路種類が認識された場合、前記複数の道路種類語の中から当該所定の第1道路種類を表す第1道路種類語を選択する第1道路種類語選択部と、
をさらに備え、
前記位置関係語選択部は、前記所定の第1移動体が前記道路に位置している場合、前記第3位置関係語を前記複数の位置関係語から選択し、
前記交通環境シーンデータ作成部は、前記第1移動体名詞、前記第1道路種類語及び前記第3位置関係語が選択された場合、前記第1移動体名詞、前記第1道路種類語及び前記第3位置関係語を紐付けすることにより、前記交通環境シーンデータをさらに作成することを特徴とする交通環境認識装置。 - 請求項1ないし4のいずれかに記載の交通環境認識装置において、
前記周辺状況データ取得部は、前記第1移動体の進行方向を取得し、
前記交通環境シーンデータでは、前記第1移動体の前記進行方向がさらに紐付けされていることを特徴とする交通環境認識装置。 - 請求項1ないし6のいずれかに記載の交通環境認識装置において、
前記交通環境における前記自車両へのリスクと前記交通環境シーンデータとの関係を定義したリスクモデルを記憶するリスクモデル記憶部と、
前記交通環境シーンデータが作成された場合、前記リスクモデルを用いて、当該交通環境シーンデータに対応する前記リスクを取得するリスク取得部と、
をさらに備えることを特徴とする交通環境認識装置。 - 請求項7に記載の交通環境認識装置において、
前記第1移動体のリスクである第1移動体リスクと、前記第1物標のリスクである第1物標リスクと、前記第1移動体及び前記第1物標の位置関係のリスクである第1位置リスクとを記憶するリスク記憶部をさらに備え、
前記リスク取得部は、前記交通環境シーンデータが作成された場合において、当該作成された交通環境シーンデータが前記リスクモデルに存在しないときには、前記第1移動体リスク、前記第1物標リスク及び前記第1位置リスクを用いて、前記リスクを取得することを特徴とする交通環境認識装置。 - 請求項8に記載の交通環境認識装置において、
前記周辺状況データ取得部は、前記第1移動体の進行方向を取得し、
前記リスク取得部は、前記交通環境シーンデータと前記リスクとの関係が前記リスクモデルに存在しない場合には、前記第1移動体リスク、前記第1物標リスク及び前記第1位置リスクに加えて、前記第1移動体の前記進行方向をさらに用いて、前記リスクを取得することを特徴とする交通環境認識装置。 - 請求項1ないし9のいずれかに記載の交通環境認識装置において、
交通法規データを記憶する交通法規データ記憶部と、
前記交通環境シーンデータが作成された場合、前記交通環境シーンデータに応じて前記交通法規データを参照することにより、当該交通環境シーンデータに対応する交通法規データを取得する交通法規データ取得部と、をさらに備えることを特徴とする交通環境認識装置。 - 請求項10に記載の交通環境認識装置において、
前記自車両の外部に設けられるとともに前記自車両の現在位置に対応する交通法規データを記憶する外部記憶部との間でデータ通信を実行するデータ通信部と、
前記自車両の現在位置を取得する現在位置取得部と、
前記自車両の前記現在位置が取得された場合、前記データ通信によって、当該現在位置に対応する前記交通法規データを前記外部記憶部から取得する現在位置法規データ取得部と、
をさらに備え、
前記交通法規データ記憶部は、前記現在位置法規データ取得部によって取得された前記現在位置に対応する前記交通法規データを記憶することを特徴とする交通環境認識装置。 - 請求項1ないし11のいずれかに記載の交通環境認識装置において、
前記所定の第1移動体は、自転車であり、
前記認識部は、当該自転車を当該自転車以外の前記移動体と比べて優先的に認識することを特徴とする交通環境認識装置。 - 請求項1ないし6のいずれかに記載の交通環境認識装置と、
前記交通環境シーンデータに応じて、前記自車両の走行状態を制御する制御部と、
を備えることを特徴とする車両制御装置。 - 請求項7ないし9のいずれかに記載の交通環境認識装置と、
前記リスクに応じて、前記自車両の走行状態を制御する制御部と、
を備えることを特徴とする車両制御装置。 - 請求項10又は11に記載の交通環境認識装置と、
前記交通法規データに応じて、前記自車両の走行状態を制御する制御部と、
を備えることを特徴とする車両制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/441,442 US20220222946A1 (en) | 2019-03-22 | 2019-03-22 | Traffic environment recognition device and vehicle control device |
CN201980092299.9A CN113474827B (zh) | 2019-03-22 | 2019-03-22 | 交通环境识别装置和车辆控制装置 |
PCT/JP2019/012159 WO2020194389A1 (ja) | 2019-03-22 | 2019-03-22 | 交通環境認識装置及び車両制御装置 |
JP2021508372A JP7212761B2 (ja) | 2019-03-22 | 2019-03-22 | 交通環境認識装置及び車両制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/012159 WO2020194389A1 (ja) | 2019-03-22 | 2019-03-22 | 交通環境認識装置及び車両制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020194389A1 true WO2020194389A1 (ja) | 2020-10-01 |
Family
ID=72610386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012159 WO2020194389A1 (ja) | 2019-03-22 | 2019-03-22 | 交通環境認識装置及び車両制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220222946A1 (ja) |
JP (1) | JP7212761B2 (ja) |
CN (1) | CN113474827B (ja) |
WO (1) | WO2020194389A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021203994A1 (de) * | 2021-04-21 | 2022-10-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Betreiben eines wenigstens teilweise automatisierten Fahrzeugs |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005228195A (ja) * | 2004-02-16 | 2005-08-25 | Nissan Motor Co Ltd | 障害物検知装置 |
JP2006079356A (ja) * | 2004-09-09 | 2006-03-23 | Denso Corp | 車線案内装置 |
JP2016001464A (ja) * | 2014-05-19 | 2016-01-07 | 株式会社リコー | 処理装置、処理システム、処理プログラム、及び、処理方法 |
JP2016001461A (ja) * | 2014-05-30 | 2016-01-07 | ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH | ドライバ支援システムの制御方法 |
JP2018045482A (ja) * | 2016-09-15 | 2018-03-22 | ソニー株式会社 | 撮像装置、信号処理装置、及び、車両制御システム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6587574B1 (en) * | 1999-01-28 | 2003-07-01 | Koninklijke Philips Electronics N.V. | System and method for representing trajectories of moving objects for content-based indexing and retrieval of visual animated data |
CN101334933B (zh) * | 2007-06-28 | 2012-04-04 | 日电(中国)有限公司 | 路况信息处理设备及其方法和路况信息集成装置及其方法 |
KR20120127830A (ko) * | 2011-05-16 | 2012-11-26 | 삼성전자주식회사 | 차량용 단말을 위한 사용자 인터페이스 방법 및 장치 |
RU2624373C1 (ru) * | 2013-07-19 | 2017-07-03 | Ниссан Мотор Ко., Лтд. | Устройство помощи в вождении для транспортного средства и способ помощи в вождении для транспортного средства |
US9984100B2 (en) * | 2015-09-29 | 2018-05-29 | International Business Machines Corporation | Modification of images and associated text |
-
2019
- 2019-03-22 JP JP2021508372A patent/JP7212761B2/ja active Active
- 2019-03-22 CN CN201980092299.9A patent/CN113474827B/zh active Active
- 2019-03-22 US US17/441,442 patent/US20220222946A1/en active Pending
- 2019-03-22 WO PCT/JP2019/012159 patent/WO2020194389A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005228195A (ja) * | 2004-02-16 | 2005-08-25 | Nissan Motor Co Ltd | 障害物検知装置 |
JP2006079356A (ja) * | 2004-09-09 | 2006-03-23 | Denso Corp | 車線案内装置 |
JP2016001464A (ja) * | 2014-05-19 | 2016-01-07 | 株式会社リコー | 処理装置、処理システム、処理プログラム、及び、処理方法 |
JP2016001461A (ja) * | 2014-05-30 | 2016-01-07 | ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH | ドライバ支援システムの制御方法 |
JP2018045482A (ja) * | 2016-09-15 | 2018-03-22 | ソニー株式会社 | 撮像装置、信号処理装置、及び、車両制御システム |
Also Published As
Publication number | Publication date |
---|---|
US20220222946A1 (en) | 2022-07-14 |
CN113474827A (zh) | 2021-10-01 |
JP7212761B2 (ja) | 2023-01-25 |
JPWO2020194389A1 (ja) | 2021-12-09 |
CN113474827B (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7416176B2 (ja) | 表示装置 | |
US10240937B2 (en) | Display apparatus for vehicle and vehicle | |
US9944317B2 (en) | Driver assistance apparatus and control method for the same | |
CN114375467B (zh) | 用于检测紧急车辆的系统和方法 | |
RU2760046C1 (ru) | Способ помощи при вождении и устройство помощи при вождении | |
US9308917B2 (en) | Driver assistance apparatus capable of performing distance detection and vehicle including the same | |
US9708004B2 (en) | Method for assisting a driver in driving an ego vehicle and corresponding driver assistance system | |
CN109426256A (zh) | 自动驾驶车辆的基于驾驶员意图的车道辅助系统 | |
JP6485915B2 (ja) | 道路区画線認識装置、車両制御装置、道路区画線認識方法、および道路区画線認識プログラム | |
US20230304821A1 (en) | Digital signage platform providing device, operating method thereof, and system including digital signage platform providing device | |
KR20200022521A (ko) | 자율 차량들에 대한 교통 신호 응답 | |
US20190276044A1 (en) | User interface apparatus for vehicle and vehicle including the same | |
JP6792704B2 (ja) | 自動運転車の制御のための車両制御装置及び方法 | |
CN111186373B (zh) | 报告装置 | |
JP2017081421A (ja) | 車両制御装置、車両制御方法、および車両制御プログラム | |
US10926760B2 (en) | Information processing device, information processing method, and computer program product | |
CN115339437A (zh) | 自主车辆的远程对象检测、定位、跟踪和分类 | |
CN117284319A (zh) | 基于横向对象控制纵向加速度的系统和方法 | |
RU2721436C1 (ru) | Способ помощи вождению и устройство помощи вождению | |
JP6728970B2 (ja) | 移動体の自動運転制御システム | |
WO2020194389A1 (ja) | 交通環境認識装置及び車両制御装置 | |
US20230012932A1 (en) | Vehicle control device and control method therefor | |
CN110618676B (zh) | 车辆自动驾驶时安全偏移线的生成方法、生成系统及车辆 | |
CN117284318A (zh) | 基于横向对象控制纵向加速度的系统和方法 | |
US11794733B2 (en) | Risk estimation device and vehicle control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19921363 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021508372 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19921363 Country of ref document: EP Kind code of ref document: A1 |