WO2020188808A1 - 車両用駆動装置 - Google Patents
車両用駆動装置 Download PDFInfo
- Publication number
- WO2020188808A1 WO2020188808A1 PCT/JP2019/011820 JP2019011820W WO2020188808A1 WO 2020188808 A1 WO2020188808 A1 WO 2020188808A1 JP 2019011820 W JP2019011820 W JP 2019011820W WO 2020188808 A1 WO2020188808 A1 WO 2020188808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- shaft
- power
- clutch
- input shaft
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/18—Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
Definitions
- the present invention relates to a vehicle drive device, and more particularly to a vehicle drive device that transmits the output of a motor to an output shaft.
- Patent Document 1 A vehicle drive device that transmits the power of the first motor and the second motor to the output shaft is known.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a vehicle drive device capable of using the power of the first motor and the second motor as a driving force other than the output shaft.
- the vehicle drive device of the present invention includes a first input shaft and a second input shaft coupled to the first motor and the second motor, respectively, and an output shaft that outputs at least the power of the first motor.
- a take-out shaft that takes out the power of at least one of the first motor and the second motor.
- an take-out shaft that takes out the power of at least one of the first motor and the second motor is provided. Therefore, the power of the first motor and the second motor can be used as the driving force of the take-out shaft.
- the power of the first input shaft is transmitted to the output shaft by the first deceleration mechanism, and the power of the first input shaft is transmitted to the take-out shaft by the second deceleration mechanism. Therefore, in addition to the effect of claim 1, the output shaft and the take-out shaft can be driven simultaneously by the first motor.
- the power of the first input shaft is transmitted to the output shaft by the third reduction mechanism at a reduction ratio different from the reduction ratio of the first reduction mechanism. Since the second clutch transmits and disengages power by the third reduction mechanism, in addition to the effect of claim 2, the torque of the output shaft by the first motor can be changed.
- the first clutch transmits and disengages power by the first deceleration mechanism.
- the third reduction gear mechanism transmits power to the output shaft
- the first reduction gear mechanism transmits power to the output shaft. Therefore, in addition to the effect of claim 3, the torque of the output shaft can be easily changed by the first motor.
- the first input shaft and the second input shaft are arranged coaxially.
- the first clutch transmits and disengages power between the first input shaft and the second input shaft. Therefore, in addition to the effect of claim 4, when the first clutch is engaged, the power of the first motor and the second motor can be simultaneously transmitted to the output shaft.
- FIG. 1 is a skeleton diagram of the vehicle drive device 10 according to the first embodiment.
- the vehicle drive device 10 is mounted on a construction machine equipped with a mounting device such as a crane or a pump, an agricultural machine such as a tractor, or a vehicle such as a truck.
- the vehicle drive device 10 includes a first input shaft 11, a second input shaft 12, a first intermediate shaft 13, an output shaft 14, and an extraction shaft 15.
- the first input shaft 11 and the second input shaft 12 are arranged coaxially.
- the first motor 16 is coupled to the first input shaft 11, and the second motor 17 is coupled to the second input shaft 12.
- a power take-off device (PTO: Power take-off) 18 is coupled to the take-out shaft 15.
- the power extraction device 18 is a device for operating a bodywork device (not shown) mounted on the vehicle.
- the first input shaft 11 (second input shaft 12), the first intermediate shaft 13, the output shaft 14, and the take-out shaft 15 are arranged in parallel.
- the first input shaft 11 and the second input shaft 12 are spindles that directly receive the driving force of the first motor 16 and the second motor 17, respectively.
- the output shaft 14 is an axle
- a differential device 19 is arranged at the center of the output shaft 14
- wheels 20 are arranged at both ends of the output shaft 14.
- a vehicle equipped with the vehicle drive device 10 has a plurality of wheels (not shown) arranged in addition to the wheels 20, and can travel by rotationally driving the output shaft 14 and the wheels 20.
- the first input shaft 11 and the second input shaft 12 are rotatably connected to each other via a pilot bearing (not shown). As a result, the number of bearings can be reduced as compared with the case where the first input shaft 11 and the second input shaft 12 are supported by bearings, respectively.
- the first motor 16 and the second motor 17 are devices that apply rotational driving force to the first input shaft 11 and the second input shaft 12, respectively.
- the first motor 16 and the second motor 17 are electric motors.
- the first motor 16 and the second motor 17 have the same torque characteristics.
- the first deceleration mechanism 30 is a mechanism that transmits the power of the first input shaft 11 to the output shaft 14 via the first clutch 40 and the first intermediate shaft 13.
- the first reduction mechanism 30 has a first gear 31 coupled to the second input shaft 12, a second gear 32 engaged with the first gear 31 and coupled to the first intermediate shaft 13, and a first gear 32 coupled to the first intermediate shaft 13. It includes a 3rd gear 33 and a 4th gear 34 that engages with the 3rd gear 33 and is coupled to the differential device 19.
- the first reduction gear mechanism 30 is set to a reduction ratio based on the engagement between the first gear 31 and the second gear 32 and the engagement between the third gear 33 and the fourth gear 34.
- the first clutch 40 is arranged on the axes of the first input shaft 11 and the second input shaft 12.
- the first clutch 40 is a meshing clutch such as a dog clutch.
- the first clutch 40 When the first clutch 40 is connected, the first input shaft 11 and the second input shaft 12 are connected, and when the first clutch 40 is disengaged, the first input shaft 11 and the second input shaft 12 are released from the connected state. To. Therefore, when the first clutch 40 is engaged, the power of the first motor 16 is transmitted to the output shaft 14, and when the first clutch 40 is disengaged, the transmission of the power of the first motor 16 to the output shaft 14 is cut off.
- the second motor 17 can always transmit power to the output shaft 14 via the first reduction mechanism 30.
- the second deceleration mechanism 50 is a mechanism that transmits the power of the first input shaft 11 to the take-out shaft 15.
- the second reduction gear mechanism 50 includes a fifth gear 51 coupled to the first input shaft 11 and a sixth gear 52 engaged with the fifth gear 51 and coupled to the take-out shaft 15.
- the first motor 16 can always transmit power to the take-out shaft 15 via the second reduction mechanism 50.
- the third reduction gear mechanism 60 is a mechanism that transmits the power of the first input shaft 11 to the output shaft 14 via the second clutch 70 and the first intermediate shaft 13.
- the third reduction mechanism 60 is coupled to the fifth gear 51 that is coupled to the first input shaft 11, the seventh gear 61 that meshes with the fifth gear 51 and is arranged on the first intermediate shaft 13, and the first intermediate shaft 13.
- a third gear 33 and a fourth gear 34 that engages with the third gear 33 and is coupled to the differential device 19 are provided.
- the third reduction gear mechanism 60 is set with a gear train different from the gear trains constituting the first reduction gear mechanism 30.
- the third reduction gear mechanism 60 is set to a reduction ratio different from that of the first reduction gear mechanism 30 by the engagement between the fifth gear 51 and the seventh gear 61 and the engagement between the third gear 33 and the fourth gear 34.
- the reduction ratio of the third reduction mechanism 60 is larger than the reduction ratio of the first reduction mechanism 30.
- the second clutch 70 is arranged on the first intermediate shaft 13.
- the second clutch 70 is a meshing clutch such as a dog clutch.
- the second clutch 70 is engaged, the first intermediate shaft 13 and the seventh gear 61 are connected, and when the second clutch 70 is disengaged, the first intermediate shaft 13 and the seventh gear 61 are released from the connected state. Therefore, when the second clutch 70 is engaged, the power of the first motor 16 is transmitted to the output shaft 14, and when the second clutch 70 is disengaged, the transmission of the power of the first motor 16 to the output shaft 14 is cut off.
- the vehicle drive device 10 drives at least the first motor 16 at high speed, engages the first clutch 40, and disengages the second clutch 70.
- the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30 having a reduction ratio smaller than that of the third reduction mechanism 60. Since the power of the first motor 16 is transmitted to the take-out shaft 15 via the second deceleration mechanism 50, the power take-out device 18 can be operated even during high-speed traveling.
- the first motor 16 when traveling at low speed, the first motor 16 is driven, the second motor 17 is stopped, the first clutch 40 is disengaged, and the second clutch 70 is engaged.
- the power of the first motor 16 is transmitted to the output shaft 14 via the third reduction mechanism 60 having a reduction ratio larger than that of the first reduction mechanism 30.
- the torque of the output shaft 14 can be increased as compared with the case where the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the power take-out device 18 can be operated even during low-speed traveling.
- the first motor 16 when the first motor 16 is stopped, the second motor 17 is driven, and the first clutch 40 is disengaged, the power of the second motor 17 is not transmitted to the take-out shaft 15.
- the power of the second motor 17 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the vehicle can travel without operating the power extraction device 18.
- the power of the second motor 17 By disengaging the first clutch 40, the power of the second motor 17 is not transmitted to the first input shaft 11, so that the drag loss due to the first input shaft 11 rotating the first motor 16 can be suppressed.
- the power of the first motor 16 is not transmitted to the output shaft 14.
- the power of the first motor 16 is transmitted to the take-out shaft 15 via the second speed reduction mechanism 50. Therefore, the power extraction device 18 can be operated when the vehicle is stopped.
- the power of the first motor 16 is not transmitted to the second input shaft 12, so that the drag loss due to the second input shaft 12 rotating the second motor 17 can be suppressed.
- the vehicle drive device 10 includes the take-out shaft 15 through which the power of the first motor 16 and the second motor 17 is transmitted. Therefore, the power of the first motor 16 and the second motor 17 can be taken out from the take-out shaft 15 and used as power other than the output shaft 14 (axle).
- the power of the first input shaft 11 is transmitted to the output shaft 14 by the first deceleration mechanism 30, and the power of the first input shaft 11 is transmitted to the take-out shaft 15 by the second deceleration mechanism 50. Therefore, the first motor 16 can simultaneously transmit power to the output shaft 14 and the take-out shaft 15.
- the power of the first input shaft 11 is transmitted to the output shaft 14 by the third reduction mechanism 60 at a reduction ratio different from the reduction ratio of the first reduction mechanism 30. Since the second clutch 70 transmits and shuts off the power by the third reduction mechanism 60, the torque of the output shaft 14 by the power of the first motor 16 can be changed.
- the first clutch 40 transmits and shuts off power by the first deceleration mechanism 30.
- the third reduction mechanism 60 transmits power to the output shaft 14, and when the first clutch 40 is connected and the second clutch 70 is disengaged, the first reduction mechanism 30 outputs. Power is transmitted to the shaft 14. Therefore, the torque of the output shaft 14 can be easily changed by the power of the first motor 16.
- the first input shaft 11 and the second input shaft 12 are arranged coaxially.
- the first clutch 40 transmits and disengages power between the first input shaft 11 and the second input shaft 12. Therefore, when the first clutch 40 is connected, the power of the first motor 16 and the second motor 17 can be simultaneously transmitted to the output shaft 14.
- FIG. 2 is a skeleton diagram of the vehicle drive device 80 according to the second embodiment.
- the vehicle drive device 80 includes a first input shaft 11, a second input shaft 12, a first intermediate shaft 13, an output shaft 14, an extraction shaft 15, and a second intermediate shaft 82.
- the first input shaft 11 (second input shaft 12), the first intermediate shaft 13, the output shaft 14, the take-out shaft 15, and the second intermediate shaft 82 are arranged in parallel.
- the second deceleration mechanism 81 is a mechanism that transmits the power of the first input shaft 11 to the take-out shaft 15.
- the second reduction gear 81 engages with the fifth gear 51 coupled to the first input shaft 11, the eighth gear 83 engaged with the fifth gear 51 and coupled with the second intermediate shaft 82, and the take-out shaft 15 engaged with the eighth gear 83.
- a ninth gear 84 which is coupled to the above, is provided.
- the first motor 16 can always transmit power to the take-out shaft 15 via the second reduction mechanism 81.
- the distance between the first input shaft 11 and the take-out shaft 15 is adjusted by the second intermediate shaft 82 arranged between the first input shaft 11 and the take-out shaft 15.
- the first motor 16, the second motor 17, and the power extraction device 18 can be arranged. Therefore, the first motor 16, the second motor 17, and the power extraction device 18 having large dimensions can be adopted.
- FIG. 3 is a skeleton diagram of the vehicle drive device 90 according to the third embodiment.
- the third reduction mechanism 91 of the vehicle drive device 90 transmits the power of the first input shaft 11 to the output shaft 14 via the second clutch 93, the take-out shaft 15, the second input shaft 12, and the first intermediate shaft 13. It is a mechanism to do.
- the fifth gear 51 coupled to the first input shaft 11, the sixth gear 52 engaged with the fifth gear 51 and coupled to the take-out shaft 15, and the second clutch 93 are connected to the take-out shaft 15.
- a third gear 33 coupled to the intermediate shaft 13 and a fourth gear 34 engaged with the third gear 33 and coupled to the differential device 19 are provided.
- the third reduction gear mechanism 91 a gear train that partially overlaps the gear trains constituting the first reduction gear mechanism 30 is set.
- the third reduction mechanism 91 is set to a reduction ratio different from that of the first reduction mechanism 30.
- the reduction ratio of the third reduction mechanism 91 is larger than the reduction ratio of the first reduction mechanism 30.
- the second clutch 93 is arranged on the take-out shaft 15.
- the second clutch 93 is a meshing clutch such as a dog clutch.
- the second clutch 93 is connected, the take-out shaft 15 and the tenth gear 92 are connected, and when the second clutch 93 is disengaged, the take-out shaft 15 and the tenth gear 92 are released from the connected state. Therefore, when the second clutch 93 is connected, the power of the first motor 16 is transmitted to the output shaft 14, and when the second clutch 93 is disengaged, the transmission of the power of the first motor 16 to the output shaft 14 is cut off.
- the vehicle drive device 90 drives at least the first motor 16 at high speed, engages the first clutch 40, and disengages the second clutch 93.
- the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30 having a reduction ratio smaller than that of the third reduction mechanism 91. Since the power of the first motor 16 is transmitted to the take-out shaft 15 via the second deceleration mechanism 50, the power take-out device 18 can be operated even during high-speed traveling.
- the first motor 16 when traveling at low speed, the first motor 16 is driven, the second motor 17 is stopped, the first clutch 40 is disengaged, and the second clutch 93 is engaged.
- the power of the first motor 16 is transmitted to the output shaft 14 via the third reduction mechanism 91 having a reduction ratio larger than that of the first reduction mechanism 30.
- the torque of the output shaft 14 can be increased as compared with the case where the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the power take-out device 18 can be operated even during low-speed traveling.
- the power of the second motor 17 is not transmitted to the take-out shaft 15.
- the power of the second motor 17 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the vehicle can travel without operating the power extraction device 18.
- the power of the second motor 17 is not transmitted to the first input shaft 11, so that the drag loss due to the first input shaft 11 rotating the first motor 16 can be suppressed.
- the power extraction device 18 can be operated when the vehicle is stopped.
- the power of the first motor 16 is not transmitted to the second input shaft 12, so that the drag loss due to the second input shaft 12 rotating the second motor 17 is suppressed. it can.
- the maximum number of gears arranged on each of the first input shaft 11, the second input shaft 12, the first intermediate shaft 13, the output shaft 14, and the take-out shaft 15 is two, three or more gears on one shaft.
- the length of the shaft can be shortened as compared with the case where is arranged.
- the length of the vehicle drive device 90 in the axial direction (horizontal direction in FIG. 3) can be shortened.
- FIG. 4 is a skeleton diagram of the vehicle drive device 100 according to the fourth embodiment.
- the first input shaft 11 (second input shaft 12), the first intermediate shaft 13, the output shaft 14, the take-out shaft 15, and the second intermediate shaft 102 are arranged in parallel.
- the second deceleration mechanism 101 of the vehicle drive device 100 is a mechanism that transmits the power of the first input shaft 11 to the take-out shaft 15.
- the second reduction gear mechanism 101 engages with the fifth gear 51 coupled to the first input shaft 11, the eleventh gear 103 engaged with the fifth gear 51 and coupled with the second intermediate shaft 102, and the take-out shaft 15 engaged with the eleventh gear 103.
- a twelfth gear 104, which is coupled to, is provided.
- the first motor 16 can always transmit power to the take-out shaft 15 via the second speed reduction mechanism 101.
- the third reduction gear mechanism 105 is a mechanism for transmitting the power of the first input shaft 11 to the output shaft 14 via the second clutch 107, the second intermediate shaft 102, the second input shaft 12, and the first intermediate shaft 13. .
- the third reduction mechanism 105 includes a fifth gear 51 that engages with the first input shaft 11, an eleventh gear 103 that engages with the fifth gear 51 and engages with the second intermediate shaft 102, and a second clutch 107 that engages with the second intermediate shaft.
- the 13th gear 106 to be connected to 102, the 1st gear 31 meshing with the 13th gear 106 and coupling to the 2nd input shaft 12, and the 2nd gear 32 engaging with the 1st gear 31 and coupling to the 1st intermediate shaft 13.
- a third gear 33 coupled to the first intermediate shaft 13 and a fourth gear 34 engaged with the third gear 33 and coupled to the differential device 19 are provided.
- the third reduction gear mechanism 105 a gear train that partially overlaps the gear trains constituting the first reduction gear mechanism 30 is set.
- the third reduction mechanism 105 is set to a reduction ratio different from that of the first reduction mechanism 30.
- the reduction ratio of the third reduction mechanism 105 is larger than the reduction ratio of the first reduction mechanism 30.
- the second clutch 107 is arranged on the second intermediate shaft 102.
- the second clutch 107 is a meshing clutch such as a dog clutch.
- the second clutch 107 is connected, the second intermediate shaft 102 and the thirteenth gear 106 are connected, and when the second clutch 107 is disengaged, the second intermediate shaft 102 and the thirteenth gear 106 are released from the connected state. Therefore, when the second clutch 107 is connected, the power of the first motor 16 is transmitted to the output shaft 14, and when the second clutch 107 is disengaged, the transmission of the power of the first motor 16 to the output shaft 14 is cut off.
- the vehicle drive device 100 drives at least the first motor 16 at high speed, engages the first clutch 40, and disengages the second clutch 107.
- the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30 having a reduction ratio smaller than that of the third reduction mechanism 105. Since the power of the first motor 16 is transmitted to the take-out shaft 15 via the second deceleration mechanism 101, the power take-out device 18 can be operated even during high-speed traveling.
- the first motor 16 when traveling at low speed, the first motor 16 is driven, the second motor 17 is stopped, the first clutch 40 is disengaged, and the second clutch 107 is engaged.
- the power of the first motor 16 is transmitted to the output shaft 14 via the third reduction mechanism 105 having a reduction ratio larger than that of the first reduction mechanism 30.
- the torque of the output shaft 14 can be increased as compared with the case where the power of the first motor 16 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the power take-out device 18 can be operated even during low-speed traveling.
- the first motor 16 when the first motor 16 is stopped, the second motor 17 is driven, and the first clutch 40 and the second clutch are disengaged, the power of the second motor 17 is not transmitted to the take-out shaft 15.
- the power of the second motor 17 is transmitted to the output shaft 14 via the first reduction mechanism 30.
- the vehicle can travel without operating the power extraction device 18.
- the power of the second motor 17 By disengaging the first clutch 40, the power of the second motor 17 is not transmitted to the first input shaft 11, so that the drag loss due to the first input shaft 11 rotating the first motor 16 can be suppressed.
- the power of the first motor 16 is not transmitted to the output shaft 14.
- the power of the first motor 16 is transmitted to the take-out shaft 15 via the second deceleration mechanism 101. Therefore, the power extraction device 18 can be operated when the vehicle is stopped.
- the power of the first motor 16 is not transmitted to the second input shaft 12, so that the drag loss due to the second input shaft 12 rotating the second motor 17 can be suppressed.
- the maximum number of gears arranged in each of the first input shaft 11, the second input shaft 12, the first intermediate shaft 13, the second intermediate shaft 102, the output shaft 14, and the take-out shaft 15 is two, one shaft.
- the length of the shaft can be shortened as compared with the case where three or more gears are arranged in the.
- the length of the vehicle drive device 100 in the axial direction can be shortened.
- the second intermediate shaft 102 arranged between the first input shaft 11 and the take-out shaft 15 adjusts the distance between the first input shaft 11 and the take-out shaft 15 to adjust the distance between the first motor 16 and the second motor 16.
- the motor 17 and the power extraction device 18 can be arranged. Therefore, the first motor 16, the second motor 17, and the power extraction device 18 having large dimensions can be adopted.
- first intermediate shaft 13 is arranged between the first input shaft 11, the second input shaft 12, and the output shaft 14
- present invention is not necessarily limited to this. It is naturally possible to provide a plurality of first intermediate shafts 13, arrange gears on the first intermediate shaft 13, and provide gear trains forming a part of the first reduction mechanism and the third reduction mechanism on the first intermediate shaft 13. Is.
- the present invention is not necessarily limited to this.
- the motor having the torque characteristic for low speed is referred to as the first motor 16
- the motor having the torque characteristic for high speed is referred to as the second motor 17.
- the first motor 16 having torque characteristics for low speed is a motor having a torque peak value on the low rotation side.
- the second motor 17 having torque characteristics for high speed is a motor having a torque peak value on the higher rotation speed side than the rotation speed at which the torque of the first motor 16 peaks.
- first input shaft 11 and the second input shaft 12 directly receive the driving force of the first motor 16 and the second motor 17
- present invention is not necessarily limited to this.
- the present invention is not necessarily limited to this.
- any of the front wheels and the rear wheels of the vehicle on which the vehicle drive devices 10, 80, 90, and 100 are mounted is driven by the first motor 16 and the second motor 17, and the remaining wheels.
- a two-wheel drive vehicle in which either the front wheels or the rear wheels are driven by the first motor 16 and the second motor 17
- a four-wheel drive vehicle in which the front and rear wheels are driven by the first motor 16 and the second motor 17.
- first clutch and the second clutch are meshing clutches
- the present invention is not necessarily limited to this.
- first clutch or the second clutch as another clutch.
- clutches include friction clutches such as disc clutches, drum clutches, and conical clutches.
- synchromesh it is possible to incorporate a synchromesh into the first clutch and the second clutch.
- the first motor 16 when the first motor 16 is driven at low speed, the second motor 17 is stopped, the first clutch 40 is disengaged, and the second clutches 70, 93, 107 are connected, that is, the power of the first motor 16 is supplied.
- the case of transmitting to the wheel 20 has been described. However, it is not always limited to this. It is of course possible to drive both the first motor 16 and the second motor 17 to obtain greater power.
- Vehicle drive device 11 1st input shaft 12 2nd input shaft 14 Output shaft 15 Extraction shaft 16 1st motor 17 2nd motor 30 1st deceleration mechanism 40 1st clutch 50, 81, 101 2 deceleration mechanism 60,91,105 3rd deceleration mechanism 70,93,107 2nd clutch
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
モータの動力を出力軸以外の駆動力にできる車両用駆動装置を提供する。車両用駆動装置は、第1モータ(16)及び第2モータ(17)にそれぞれ結合する第1入力軸(11)および第2入力軸(12)と、第1モータ(16)の動力を少なくとも出力する出力軸(14)と、第1モータ(16)及び第2モータ(17)の少なくとも一方の動力を取り出す取出軸(15)と、を備えている。取出軸(15)の動力は動力取出装置(PTO)を作動させる。
Description
本発明は車両用駆動装置に関し、特にモータの出力を出力軸に伝達する車両用駆動装置に関するものである。
第1モータ及び第2モータの動力を出力軸に伝達する車両用駆動装置が知られている(特許文献1)。
しかし、特許文献1に開示される技術では、車両に架装されたクレーンやポンプ等の装置(以下「架装装置」と称す)の動力として、第1モータや第2モータの動力を使えないという問題点がある。
本発明は上述の問題点を解決するためになされたものであり、第1モータや第2モータの動力を出力軸以外の駆動力にできる車両用駆動装置を提供することを目的としている。
この目的を達成するために本発明の車両用駆動装置は、第1モータ及び第2モータにそれぞれ結合する第1入力軸および第2入力軸と、第1モータの動力を少なくとも出力する出力軸と、第1モータ及び第2モータの少なくとも一方の動力を取り出す取出軸と、を備えている。
請求項1記載の車両用駆動装置によれば、第1モータの動力を少なくとも出力する出力軸の他に、第1モータ及び第2モータの少なくとも一方の動力を取り出す取出軸を備えている。よって、第1モータや第2モータの動力を取出軸の駆動力にできる。
請求項2記載の車両用駆動装置によれば、第1減速機構により第1入力軸の動力が出力軸に伝達され、第2減速機構により第1入力軸の動力が取出軸に伝達される。従って、請求項1の効果に加え、第1モータによって同時に出力軸および取出軸を駆動できる。
請求項3記載の車両用駆動装置によれば、第3減速機構により第1減速機構の減速比と異なる減速比で第1入力軸の動力が出力軸に伝達される。第2クラッチは第3減速機構による動力の伝達および遮断を行うので、請求項2の効果に加え、第1モータによる出力軸のトルクを変更できる。
請求項4記載の車両用駆動装置によれば、第1クラッチは第1減速機構による動力の伝達および遮断を行う。第1クラッチを切って第2クラッチをつなぐと第3減速機構は出力軸に動力を伝達し、第1クラッチをつないで第2クラッチを切ると第1減速機構は出力軸に動力を伝達する。よって、請求項3の効果に加え、第1モータによる出力軸のトルクの変更を簡易にできる。
請求項5記載の車両用駆動装置によれば、第1入力軸および第2入力軸は同軸上に配置される。第1クラッチは、第1入力軸と第2入力軸との間の動力の伝達および遮断を行う。よって、請求項4の効果に加え、第1クラッチをつなぐと第1モータ及び第2モータの動力を同時に出力軸に伝達できる。
以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して第1実施の形態における車両用駆動装置10について説明する。図1は第1実施の形態における車両用駆動装置10のスケルトン図である。車両用駆動装置10は、クレーンやポンプ等の架装装置を備えた建設機械やトラクター等の農業機械、トラック等の車両に搭載される。
図1に示すように車両用駆動装置10は、第1入力軸11、第2入力軸12、第1中間軸13、出力軸14及び取出軸15を備えている。第1入力軸11及び第2入力軸12は同軸上に配置される。第1入力軸11に第1モータ16が結合し、第2入力軸12に第2モータ17が結合する。取出軸15に動力取出装置(PTO:Power take-off)18が結合する。動力取出装置18は、車両に搭載された架装装置(図示せず)を作動させるための装置である。第1入力軸11(第2入力軸12)、第1中間軸13、出力軸14及び取出軸15は平行に配置されている。
本実施形態では、第1入力軸11及び第2入力軸12は、それぞれ第1モータ16及び第2モータ17の駆動力を直接受ける主軸である。また、出力軸14は車軸であり、出力軸14の中央に差動装置19が配置され、出力軸14の両端に車輪20がそれぞれ配置されている。車両用駆動装置10を搭載した車両は、車輪20以外に複数の車輪(図示せず)が配置されており、出力軸14及び車輪20の回転駆動により走行できる。
第1入力軸11及び第2入力軸12は、パイロットベアリング(図示せず)を介して互いに相対回転可能に連結されている。これにより、第1入力軸11及び第2入力軸12を軸受でそれぞれ支持する場合に比べ、軸受の点数を減らすことができる。
第1モータ16及び第2モータ17は、第1入力軸11及び第2入力軸12にそれぞれ回転駆動力を与える装置である。本実施形態では第1モータ16及び第2モータ17は電動モータである。第1モータ16及び第2モータ17は同一のトルク特性を有している。
第1減速機構30は、第1クラッチ40及び第1中間軸13を介して第1入力軸11の動力を出力軸14に伝達する機構である。第1減速機構30は、第2入力軸12に結合する第1ギヤ31と、第1ギヤ31にかみ合い第1中間軸13に結合する第2ギヤ32と、第1中間軸13に結合する第3ギヤ33と、第3ギヤ33にかみ合い差動装置19に結合する第4ギヤ34と、を備えている。第1減速機構30は、第1ギヤ31と第2ギヤ32とのかみ合い、第3ギヤ33と第4ギヤ34とのかみ合いによる減速比に設定される。
第1クラッチ40は、第1入力軸11及び第2入力軸12の軸上に配置されている。本実施形態では、第1クラッチ40はドッグクラッチ等のかみ合いクラッチである。第1クラッチ40をつなぐと第1入力軸11と第2入力軸12とが連結状態になり、第1クラッチ40を切ると第1入力軸11と第2入力軸12とが連結状態から解除される。従って、第1クラッチ40をつなぐと第1モータ16の動力が出力軸14に伝達され、第1クラッチ40を切ると第1モータ16の動力の出力軸14への伝達が遮断される。第2モータ17は第1減速機構30を介して常に出力軸14に動力を伝達できる。
第2減速機構50は、第1入力軸11の動力を取出軸15に伝達する機構である。第2減速機構50は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い取出軸15に結合する第6ギヤ52と、を備えている。第1モータ16は第2減速機構50を介して常に取出軸15に動力を伝達できる。
第3減速機構60は、第2クラッチ70及び第1中間軸13を介して第1入力軸11の動力を出力軸14に伝達する機構である。第3減速機構60は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い第1中間軸13に配置された第7ギヤ61と、第1中間軸13に結合する第3ギヤ33と、第3ギヤ33にかみ合い差動装置19に結合する第4ギヤ34と、を備えている。第3減速機構60は第1減速機構30を構成する歯車列とは異なる歯車列が設定されている。第3減速機構60は、第5ギヤ51と第7ギヤ61とのかみ合い、第3ギヤ33と第4ギヤ34とのかみ合いにより、第1減速機構30とは異なる減速比に設定される。本実施形態では、第3減速機構60の減速比は第1減速機構30の減速比よりも大きい。
第2クラッチ70は第1中間軸13に配置されている。本実施形態では、第2クラッチ70はドッグクラッチ等のかみ合いクラッチである。第2クラッチ70をつなぐと第1中間軸13と第7ギヤ61とが連結状態になり、第2クラッチ70を切ると第1中間軸13と第7ギヤ61とが連結状態から解除される。従って、第2クラッチ70をつなぐと第1モータ16の動力が出力軸14に伝達され、第2クラッチ70を切ると第1モータ16の動力の出力軸14への伝達が遮断される。
車両用駆動装置10の動作について説明する。車両用駆動装置10は、高速走行時には、少なくとも第1モータ16を駆動し、第1クラッチ40をつなぎ、第2クラッチ70を切る。第1モータ16の動力は、第3減速機構60よりも減速比の小さい第1減速機構30を介して出力軸14に伝達される。第1モータ16の動力は第2減速機構50を介して取出軸15に伝達されるので、高速走行時も動力取出装置18を作動できる。
この状態で第1モータ16と一緒に第2モータ17を駆動すると、第1モータ16だけを駆動する場合に比べて、出力軸14及び取出軸15のトルクを大きくできる。その結果、高速走行時も十分な駆動トルクを得て安定に加速できる。
これに対し低速走行時には、第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40を切り、第2クラッチ70をつなぐ。第1モータ16の動力は、第1減速機構30よりも減速比の大きい第3減速機構60を介して出力軸14に伝達される。これにより、第1減速機構30を介して第1モータ16の動力を出力軸14に伝達する場合に比べて、出力軸14のトルクを大きくできる。このときも第1モータ16の動力は第2減速機構50を介して取出軸15に伝達されるので、低速走行時も動力取出装置18を作動できる。第1クラッチ40を切ることにより、第1モータ16の動力が第2入力軸12に伝達されないので、第2入力軸12が第2モータ17を回転させることによる引き摺り損失を抑制できる。
また、第1モータ16を停止し、第2モータ17を駆動し、第1クラッチ40を切ると、第2モータ17の動力は取出軸15に伝達されない。第2モータ17の動力は第1減速機構30を介して出力軸14に伝達される。その結果、動力取出装置18を作動させずに走行できる。第1クラッチ40を切ることにより、第2モータ17の動力が第1入力軸11に伝達されないので、第1入力軸11が第1モータ16を回転させることによる引き摺り損失を抑制できる。
第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40及び第2クラッチ70を切ると、第1モータ16の動力は出力軸14に伝達されない。第1モータ16の動力は第2減速機構50を介して取出軸15に伝達される。よって、停車時に動力取出装置18を作動できる。第1クラッチ40を切ることにより、第1モータ16の動力が第2入力軸12に伝達されないので、第2入力軸12が第2モータ17を回転させることによる引き摺り損失を抑制できる。
このように車両用駆動装置10は、第1モータ16や第2モータ17の動力が伝達される取出軸15を備えている。よって、第1モータ16や第2モータ17の動力を取出軸15から取り出して出力軸14(車軸)以外の動力として使うことができる。
第1減速機構30により第1入力軸11の動力が出力軸14に伝達され、第2減速機構50により第1入力軸11の動力が取出軸15に伝達される。従って、第1モータ16によって同時に出力軸14及び取出軸15に動力を伝達できる。
第3減速機構60により第1減速機構30の減速比と異なる減速比で第1入力軸11の動力が出力軸14に伝達される。第2クラッチ70は第3減速機構60による動力の伝達および遮断を行うので、第1モータ16の動力による出力軸14のトルクを変更できる。
第1クラッチ40は第1減速機構30による動力の伝達および遮断を行う。第1クラッチ40を切って第2クラッチ70をつなぐと第3減速機構60は出力軸14に動力を伝達し、第1クラッチ40をつないで第2クラッチ70を切ると第1減速機構30は出力軸14に動力を伝達する。よって、第1モータ16の動力による出力軸14のトルクの変更を簡易にできる。
第1入力軸11及び第2入力軸12は同軸上に配置されている。第1クラッチ40は、第1入力軸11と第2入力軸12との間の動力の伝達および遮断を行う。よって、第1クラッチ40をつなぐと第1モータ16及び第2モータ17の動力を同時に出力軸14に伝達できる。
図2を参照して第2実施の形態について説明する。第2実施形態では、第1入力軸11と取出軸15との間に第2中間軸82が配置される場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。図2は第2実施の形態における車両用駆動装置80のスケルトン図である。
車両用駆動装置80は、第1入力軸11、第2入力軸12、第1中間軸13、出力軸14、取出軸15及び第2中間軸82を備えている。第1入力軸11(第2入力軸12)、第1中間軸13、出力軸14、取出軸15及び第2中間軸82は平行に配置されている。
第2減速機構81は、第1入力軸11の動力を取出軸15に伝達する機構である。第2減速機構81は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い第2中間軸82に結合する第8ギヤ83と、第8ギヤ83にかみ合い取出軸15に結合する第9ギヤ84と、を備えている。第1モータ16は第2減速機構81を介して常に取出軸15に動力を伝達できる。
車両用駆動装置80によれば、第1入力軸11と取出軸15との間に配置された第2中間軸82により、第1入力軸11と取出軸15との軸間距離を調整して第1モータ16や第2モータ17、動力取出装置18を配置できる。よって、寸法が大きい第1モータ16や第2モータ17、動力取出装置18を採用できる。
図3を参照して第3実施の形態について説明する。第1実施形態および第2実施形態では、第1中間軸13に第2クラッチ70が配置された場合について説明した。これに対し第3実施形態では、取出軸15に第2クラッチ93が配置される場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。図3は第3実施の形態における車両用駆動装置90のスケルトン図である。
車両用駆動装置90の第3減速機構91は、第2クラッチ93、取出軸15、第2入力軸12及び第1中間軸13を介して、第1入力軸11の動力を出力軸14に伝達する機構である。第3減速機構91は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い取出軸15に結合する第6ギヤ52と、第2クラッチ93が取出軸15に連結状態にする第10ギヤ92と、第10ギヤ92にかみ合い第2入力軸12に結合する第1ギヤ31と、第1ギヤ31にかみ合い第1中間軸13に結合する第2ギヤ32と、第1中間軸13に結合する第3ギヤ33と、第3ギヤ33にかみ合い差動装置19に結合する第4ギヤ34と、を備えている。
第3減速機構91は第1減速機構30を構成する歯車列に一部が重複する歯車列が設定されている。第3減速機構91は、第1減速機構30とは異なる減速比に設定される。本実施形態では、第3減速機構91の減速比は第1減速機構30の減速比よりも大きい。
第2クラッチ93は取出軸15に配置されている。本実施形態では、第2クラッチ93はドッグクラッチ等のかみ合いクラッチである。第2クラッチ93をつなぐと取出軸15と第10ギヤ92とが連結状態になり、第2クラッチ93を切ると取出軸15と第10ギヤ92とが連結状態から解除される。従って、第2クラッチ93をつなぐと第1モータ16の動力が出力軸14に伝達され、第2クラッチ93を切ると第1モータ16の動力の出力軸14への伝達が遮断される。
車両用駆動装置90の動作について説明する。車両用駆動装置90は、高速走行時には、少なくとも第1モータ16を駆動し、第1クラッチ40をつなぎ、第2クラッチ93を切る。第1モータ16の動力は、第3減速機構91よりも減速比の小さい第1減速機構30を介して出力軸14に伝達される。第1モータ16の動力は第2減速機構50を介して取出軸15に伝達されるので、高速走行時も動力取出装置18を作動できる。
この状態で第1モータ16と一緒に第2モータ17を駆動すると、第1モータ16だけを駆動する場合に比べて、出力軸14及び取出軸15のトルクを大きくできる。その結果、高速走行時も十分な駆動トルクを得て安定に加速できる。
これに対し低速走行時には、第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40を切り、第2クラッチ93をつなぐ。第1モータ16の動力は、第1減速機構30よりも減速比の大きい第3減速機構91を介して出力軸14に伝達される。これにより、第1減速機構30を介して第1モータ16の動力を出力軸14に伝達する場合に比べて、出力軸14のトルクを大きくできる。このときも第1モータ16の動力は第2減速機構50を介して取出軸15に伝達されるので、低速走行時も動力取出装置18を作動できる。
また、第1モータ16を停止し、第2モータ17を駆動し、第1クラッチ40及び第2クラッチ93を切ると、第2モータ17の動力は取出軸15に伝達されない。第2モータ17の動力は第1減速機構30を介して出力軸14に伝達される。その結果、動力取出装置18を作動させずに走行できる。第1クラッチ40を切ることにより、第2モータ17の動力が第1入力軸11に伝達されないので、第1入力軸11が第1モータ16を回転させることによる引き摺り損失を抑制できる。
第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40及び第2クラッチ70を切ると、第1モータ16の動力は出力軸14に伝達されない。第1モータ16の動力は第2減速機構50を介して取出軸15に伝達される。よって、停車時に動力取出装置18を作動できる。第1クラッチ40及び第2クラッチ93を切ることにより、第1モータ16の動力が第2入力軸12に伝達されないので、第2入力軸12が第2モータ17を回転させることによる引き摺り損失を抑制できる。
第1入力軸11、第2入力軸12、第1中間軸13、出力軸14及び取出軸15の各々に配置されるギヤの最多の数は2つなので、一つの軸に3つ以上のギヤが配置される場合に比べて、軸の長さを短くできる。その結果、車両用駆動装置90の軸方向(図3左右方向)の長さを短くできる。
図4を参照して第4実施の形態について説明する。第3実施形態では、取出軸15に第2クラッチ93が配置された場合について説明した。これに対し第4実施形態では、第1入力軸11と取出軸15との間に配置された第2中間軸102に第2クラッチ107が配置される場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。図4は第4実施の形態における車両用駆動装置100のスケルトン図である。第1入力軸11(第2入力軸12)、第1中間軸13、出力軸14、取出軸15及び第2中間軸102は平行に配置されている。
車両用駆動装置100の第2減速機構101は、第1入力軸11の動力を取出軸15に伝達する機構である。第2減速機構101は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い第2中間軸102に結合する第11ギヤ103と、第11ギヤ103にかみ合い取出軸15に結合する第12ギヤ104と、を備えている。第1モータ16は第2減速機構101を介して常に取出軸15に動力を伝達できる。
第3減速機構105は、第2クラッチ107、第2中間軸102、第2入力軸12及び第1中間軸13を介して、第1入力軸11の動力を出力軸14に伝達する機構である。第3減速機構105は、第1入力軸11に結合する第5ギヤ51と、第5ギヤ51にかみ合い第2中間軸102に結合する第11ギヤ103と、第2クラッチ107が第2中間軸102に連結状態にする第13ギヤ106と、第13ギヤ106にかみ合い第2入力軸12に結合する第1ギヤ31と、第1ギヤ31にかみ合い第1中間軸13に結合する第2ギヤ32と、第1中間軸13に結合する第3ギヤ33と、第3ギヤ33にかみ合い差動装置19に結合する第4ギヤ34と、を備えている。
第3減速機構105は第1減速機構30を構成する歯車列に一部が重複する歯車列が設定されている。第3減速機構105は、第1減速機構30とは異なる減速比に設定される。本実施形態では、第3減速機構105の減速比は第1減速機構30の減速比よりも大きい。
第2クラッチ107は第2中間軸102に配置されている。本実施形態では、第2クラッチ107はドッグクラッチ等のかみ合いクラッチである。第2クラッチ107をつなぐと第2中間軸102と第13ギヤ106とが連結状態になり、第2クラッチ107を切ると第2中間軸102と第13ギヤ106とが連結状態から解除される。従って、第2クラッチ107をつなぐと第1モータ16の動力が出力軸14に伝達され、第2クラッチ107を切ると第1モータ16の動力の出力軸14への伝達が遮断される。
車両用駆動装置100の動作について説明する。車両用駆動装置100は、高速走行時には、少なくとも第1モータ16を駆動し、第1クラッチ40をつなぎ、第2クラッチ107を切る。第1モータ16の動力は、第3減速機構105よりも減速比の小さい第1減速機構30を介して出力軸14に伝達される。第1モータ16の動力は第2減速機構101を介して取出軸15に伝達されるので、高速走行時も動力取出装置18を作動できる。
この状態で第1モータ16と一緒に第2モータ17を駆動すると、第1モータ16だけを駆動する場合に比べて、出力軸14及び取出軸15のトルクを大きくできる。その結果、高速走行時も十分な駆動トルクを得て安定に加速できる。
これに対し低速走行時には、第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40を切り、第2クラッチ107をつなぐ。第1モータ16の動力は、第1減速機構30よりも減速比の大きい第3減速機構105を介して出力軸14に伝達される。これにより、第1減速機構30を介して第1モータ16の動力を出力軸14に伝達する場合に比べて、出力軸14のトルクを大きくできる。このときも第1モータ16の動力は第2減速機構101を介して取出軸15に伝達されるので、低速走行時も動力取出装置18を作動できる。
また、第1モータ16を停止し、第2モータ17を駆動し、第1クラッチ40及び第2クラッチを切ると、第2モータ17の動力は取出軸15に伝達されない。第2モータ17の動力は第1減速機構30を介して出力軸14に伝達される。その結果、動力取出装置18を作動させずに走行できる。第1クラッチ40を切ることにより、第2モータ17の動力が第1入力軸11に伝達されないので、第1入力軸11が第1モータ16を回転させることによる引き摺り損失を抑制できる。
第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40及び第2クラッチ70を切ると、第1モータ16の動力は出力軸14に伝達されない。第1モータ16の動力は第2減速機構101を介して取出軸15に伝達される。よって、停車時に動力取出装置18を作動できる。第1クラッチ40を切ることにより、第1モータ16の動力が第2入力軸12に伝達されないので、第2入力軸12が第2モータ17を回転させることによる引き摺り損失を抑制できる。
第1入力軸11、第2入力軸12、第1中間軸13、第2中間軸102、出力軸14及び取出軸15の各々に配置されるギヤの最多の数は2つなので、一つの軸に3つ以上のギヤが配置される場合に比べて、軸の長さを短くできる。その結果、車両用駆動装置100の軸方向(図4左右方向)の長さを短くできる。
また、第1入力軸11と取出軸15との間に配置された第2中間軸102により、第1入力軸11と取出軸15との軸間距離を調整して第1モータ16や第2モータ17、動力取出装置18を配置できる。よって、寸法が大きい第1モータ16や第2モータ17、動力取出装置18を採用できる。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
実施形態では、第1入力軸11及び第2入力軸12と出力軸14との間に第1中間軸13が1本配置される場合について説明したが、必ずしもこれに限られるものではない。第1中間軸13を複数設け、第1中間軸13にそれぞれギヤを配置し、第1減速機構および第3減速機構の一部を構成する歯車列を第1中間軸13に設けることは当然可能である。
実施形態では、第1モータ16及び第2モータ17にトルク特性が同一の電動モータを用いる場合について説明したが、必ずしもこれに限られるものではない。トルク特性が異なるモータを用いることは当然可能である。例えば、低速用のトルク特性を有するモータを第1モータ16とし、高速用のトルク特性を有するモータを第2モータ17とする。低速用のトルク特性を有する第1モータ16は、トルクピーク値が低回転側にあるモータである。高速用のトルク特性を有する第2モータ17は、第1モータ16のトルクがピークとなる回転数よりも高回転側にトルクピーク値があるモータである。
実施形態では、第1モータ16及び第2モータ17に電動モータを用いる場合について説明したが、必ずしもこれに限られるものではない。第1モータ16及び第2モータ17のいずれか一方または両方を油圧モータにすることは当然可能である。
実施形態では、第1入力軸11及び第2入力軸12が第1モータ16及び第2モータ17の駆動力を直接受ける場合について説明したが、必ずしもこれに限られるものではない。第1モータ16及び第2モータ17と第1入力軸11及び第2入力軸12との間に歯車列やベルト等を介在することは当然可能である。
実施形態では、第1減速機構、第2減速機構および第3減速機構がギヤのかみ合いによって動力を伝達する場合について説明したが、必ずしもこれに限られるものではない。ギヤの代わりに、ベルトやチェーン等を用いることは当然可能である。
実施形態では説明を省略したが、車両用駆動装置10,80,90,100が搭載される車両の前輪、後輪のいずれかを第1モータ16及び第2モータ17で駆動し、残りの車輪をエンジンで駆動する4輪駆動車に適用することが可能である。また、前輪、後輪のいずれかを第1モータ16及び第2モータ17で駆動する2輪駆動車や、前輪および後輪を第1モータ16及び第2モータ17で駆動する4輪駆動車に適用することは当然可能である。
実施形態では、第1クラッチ及び第2クラッチがかみ合いクラッチである場合について説明したが、必ずしもこれに限られるものではない。第1クラッチや第2クラッチを他のクラッチにすることは当然可能である。他のクラッチとしては、例えばディスククラッチ、ドラムクラッチ、円すいクラッチ等の摩擦クラッチが挙げられる。第1クラッチや第2クラッチにシンクロメッシュを組み込むことは当然可能である。
実施形態では、低速走行時に第1モータ16を駆動し、第2モータ17を停止し、第1クラッチ40を切り、第2クラッチ70,93,107をつなぐ場合、即ち第1モータ16の動力を車輪20に伝達する場合について説明した。しかし、必ずしもこれに限られるものではない。第1モータ16及び第2モータ17の両方を駆動し、より大きな動力を得ることは当然可能である。
10,80,90,100 車両用駆動装置
11 第1入力軸
12 第2入力軸
14 出力軸
15 取出軸
16 第1モータ
17 第2モータ
30 第1減速機構
40 第1クラッチ
50,81,101 第2減速機構
60,91,105 第3減速機構
70,93,107 第2クラッチ
11 第1入力軸
12 第2入力軸
14 出力軸
15 取出軸
16 第1モータ
17 第2モータ
30 第1減速機構
40 第1クラッチ
50,81,101 第2減速機構
60,91,105 第3減速機構
70,93,107 第2クラッチ
Claims (5)
- 第1モータ及び第2モータにそれぞれ結合する第1入力軸および第2入力軸と、
前記第1モータの動力を少なくとも出力する出力軸と、
前記第1モータ及び前記第2モータの少なくとも一方の動力を取り出す取出軸と、を備える車両用駆動装置。 - 前記第1入力軸の動力を前記出力軸に伝達する第1減速機構と、
前記第1入力軸の動力を前記取出軸に伝達する第2減速機構と、を備える請求項1記載の車両用駆動装置。 - 前記第1減速機構の減速比と異なる減速比で前記第1入力軸の動力を前記出力軸に伝達する第3減速機構と、
前記第3減速機構による動力の伝達および遮断を行う第2クラッチと、を備える請求項2記載の車両用駆動装置。 - 前記第1減速機構による動力の伝達および遮断を行う第1クラッチを備え、
前記第1クラッチを切って前記第2クラッチをつなぐと前記第3減速機構は前記出力軸に動力を伝達し、
前記第1クラッチをつないで前記第2クラッチを切ると前記第1減速機構は前記出力軸に動力を伝達する請求項3記載の車両用駆動装置。 - 前記第1入力軸および前記第2入力軸は同軸上に配置され、
前記第1クラッチは、前記第1入力軸と前記第2入力軸との間の動力の伝達および遮断を行う請求項4記載の車両用駆動装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/011820 WO2020188808A1 (ja) | 2019-03-20 | 2019-03-20 | 車両用駆動装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/011820 WO2020188808A1 (ja) | 2019-03-20 | 2019-03-20 | 車両用駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020188808A1 true WO2020188808A1 (ja) | 2020-09-24 |
Family
ID=72520669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/011820 WO2020188808A1 (ja) | 2019-03-20 | 2019-03-20 | 車両用駆動装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020188808A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139229A1 (de) * | 2022-01-24 | 2023-07-27 | Zf Friedrichshafen Ag | Leistungsstrang für eine arbeitsmaschine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143035A (ja) * | 2004-11-22 | 2006-06-08 | Toyota Motor Corp | 車両用駆動装置 |
US20080004779A1 (en) * | 2006-06-30 | 2008-01-03 | Sah Jy-Jen F | Apparatus and method to control transmission torque output during a gear-to-gear shift |
JP2013141955A (ja) * | 2012-01-12 | 2013-07-22 | Kubota Corp | 電動作業車 |
JP2014143965A (ja) * | 2013-01-30 | 2014-08-14 | Iseki & Co Ltd | トラクタ |
WO2015072484A1 (ja) * | 2013-11-15 | 2015-05-21 | 株式会社小松製作所 | 作業車両及びその制御方法 |
JP2018158592A (ja) * | 2017-03-22 | 2018-10-11 | 株式会社ユニバンス | 動力伝達装置 |
-
2019
- 2019-03-20 WO PCT/JP2019/011820 patent/WO2020188808A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143035A (ja) * | 2004-11-22 | 2006-06-08 | Toyota Motor Corp | 車両用駆動装置 |
US20080004779A1 (en) * | 2006-06-30 | 2008-01-03 | Sah Jy-Jen F | Apparatus and method to control transmission torque output during a gear-to-gear shift |
JP2013141955A (ja) * | 2012-01-12 | 2013-07-22 | Kubota Corp | 電動作業車 |
JP2014143965A (ja) * | 2013-01-30 | 2014-08-14 | Iseki & Co Ltd | トラクタ |
WO2015072484A1 (ja) * | 2013-11-15 | 2015-05-21 | 株式会社小松製作所 | 作業車両及びその制御方法 |
JP2018158592A (ja) * | 2017-03-22 | 2018-10-11 | 株式会社ユニバンス | 動力伝達装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023139229A1 (de) * | 2022-01-24 | 2023-07-27 | Zf Friedrichshafen Ag | Leistungsstrang für eine arbeitsmaschine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018174067A1 (ja) | 動力伝達装置 | |
KR101961509B1 (ko) | 순수 전기식 4륜 구동 자동차의 구동 트레인 | |
JP6224609B2 (ja) | 純電気的に全輪駆動可能な自動車のドライブトレイン | |
CN103770622B (zh) | 用于车辆的混合动力推进系统和用于该推进系统的变速器 | |
US11780328B2 (en) | Drive device for an electrically driven axle of a motor vehicle | |
US10415679B2 (en) | Electric all-wheel drive two speed with split double reduction planetary | |
CN104670010B (zh) | 一种具备转矩定向分配功能的电动主动正齿轮差速器 | |
JP7025239B2 (ja) | 車両用駆動装置 | |
CN109990053A (zh) | 变速器、动力驱动系统及车辆 | |
WO2020188808A1 (ja) | 車両用駆動装置 | |
CN102862477A (zh) | 电动汽车的四轮驱动转换器 | |
CN210416189U (zh) | 一种带取力器的双速比纯电动卡车驱动桥 | |
JP6595938B2 (ja) | 動力伝達装置 | |
JP2002048197A (ja) | 走行台車 | |
CN104527414A (zh) | 一种中置双驱赛车传动系统 | |
CN101233008A (zh) | 多速动力传送单元 | |
JPS6231296Y2 (ja) | ||
JPS636523Y2 (ja) | ||
JP6369480B2 (ja) | パワートレイン構造 | |
JP6369481B2 (ja) | パワートレイン構造 | |
JPS5824591Y2 (ja) | 車両用動力分割装置 | |
CN117989299A (zh) | 变速箱、拱腰式移动底盘及车辆 | |
JP2022175727A (ja) | 車両用四輪駆動装置 | |
JP5367624B2 (ja) | 車両のトランスファ | |
CN114087322A (zh) | 一种集成分动器的减速器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19919748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19919748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |