[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020183739A1 - テールシッタ式飛行体 - Google Patents

テールシッタ式飛行体 Download PDF

Info

Publication number
WO2020183739A1
WO2020183739A1 PCT/JP2019/011951 JP2019011951W WO2020183739A1 WO 2020183739 A1 WO2020183739 A1 WO 2020183739A1 JP 2019011951 W JP2019011951 W JP 2019011951W WO 2020183739 A1 WO2020183739 A1 WO 2020183739A1
Authority
WO
WIPO (PCT)
Prior art keywords
tail
aircraft
seat
sitter type
propellers
Prior art date
Application number
PCT/JP2019/011951
Other languages
English (en)
French (fr)
Inventor
大橋 俊夫
Original Assignee
インダストリーネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インダストリーネットワーク株式会社 filed Critical インダストリーネットワーク株式会社
Priority to JP2021600187U priority Critical patent/JP3236741U/ja
Publication of WO2020183739A1 publication Critical patent/WO2020183739A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft

Definitions

  • the present invention relates to a tailsitter type air vehicle.
  • Non-Patent Document 1 a tailsitter type air vehicle capable of vertical takeoff and landing is known (see, for example, Non-Patent Document 1).
  • the tailsitter type air vehicle disclosed in Non-Patent Document 1 includes a fuselage, a pair of left and right main wings in front view, and a pair of left and right propellers (propulsion devices) provided for each main wing.
  • the aircraft transitions from vertical flight or hovering after takeoff to horizontal flight, and when transitioning from horizontal flight to vertical flight or hovering before landing, the aircraft makes a posture transition of about 90 degrees.
  • Such a tailsitter type air vehicle obtains lift or propulsion by two rotating propellers.
  • Such a tailsitter type aircraft can hover and take off and land vertically like a helicopter when the propeller is facing upward, such as the so-called Osprey disclosed in Non-Patent Document 2, and the propeller is tilted forward.
  • Osprey disclosed in Non-Patent Document 2
  • it is excellent in that it does not require space for takeoff and landing such as a runway, like a fixed-wing aircraft capable of long-distance flight at high speed, and also with an aircraft such as the above-mentioned Osprey.
  • a drive mechanism for tilting the propeller is not required, it is extremely excellent in terms of weight reduction and energy reduction.
  • tailsitter type aircraft when transitioning from vertical flight or hovering after takeoff to horizontal flight, and from horizontal flight to vertical flight or hovering before landing. It is expected that the burden on the passengers will be heavy because the aircraft will change its posture by about 90 degrees at the time of the transition.
  • an object of the present invention is to provide a tailsitter type aircraft capable of reducing the burden on the passenger when maneuvering the aircraft.
  • the tail-sitter type flying object of the present invention is connected to the fuselage and the fuselage, respectively, and is provided on the front left and right pair or two or more pairs of main wings and the fuselage or the front view left and right pair or two or more pairs of main wings. It is a tail-sitter type airframe equipped with a propulsion device for obtaining lift or propulsion, and the fuselage has an in-flight space inside, and the in-flight space has a seat that tilts according to the attitude of the fuselage. It is provided.
  • the fuselage has an in-flight space inside, and the in-flight space is provided with a seat that tilts according to the attitude of the body. Therefore, vertical flight after takeoff. Or the seat on which the occupant sits, even if there is a change in attitude of the aircraft, such as when transitioning from hovering to level flight and from level flight to pre-landing vertical or hovering. By tilting, it is possible to reduce the burden on the passenger.
  • tilt means tilting up and down with the left and right as the axis.
  • the seat is tilted so that the line of sight of the passenger seated on the seat in the natural posture faces in the horizontal direction.
  • the seat extends back and forth in the process of transition from takeoff to horizontal flight, and bends in the process of transition from horizontal flight to landing.
  • the fuselage is provided with a window at a position where the passenger sitting on the seat can visually recognize the scenery outside the aircraft in the natural attitude. May be good.
  • the passenger can see the scenery outside the aircraft in a natural attitude.
  • one or two or more moving image cameras for photographing the scenery outside the aircraft are provided on the fuselage or the main wings, and the one or two or more moving objects are provided in the in-flight space.
  • a display for displaying the scenery outside the aircraft taken by the moving image camera may be provided.
  • the passenger can see the scenery outside the aircraft.
  • the position and attitude of the display may be controllable according to the tilt posture of the seat.
  • the passenger can visually recognize the scenery outside the aircraft in a natural attitude.
  • the display may be attached to the seat at a position and posture within the field of view of the passenger seated on the seat.
  • the passenger can see the scenery outside the aircraft in a natural attitude.
  • the display may be a head-mounted display worn by a passenger seated on the seat when maneuvering the aircraft.
  • the passenger can see the scenery outside the aircraft in a natural attitude.
  • FIG. 5 is a perspective view seen from the front showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight.
  • FIG. 5 is a perspective view seen from the rear showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight. It is a figure for demonstrating an example from takeoff to landing of the tail sitter type flying object 1 which concerns on Embodiment 1.
  • FIG. 5 is a perspective view seen from the front showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight.
  • FIG. 5 is a perspective view seen from the rear showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight.
  • FIG. 2 It is a perspective view of the tail sitter type flying object 100 which concerns on Embodiment 2.
  • FIG. It is a block diagram for demonstrating the structure of the tail sitter type flying object 100 which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating an example from takeoff to level flight of the tail sitter type flying object 100 which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating an example from level flight to landing of the tail sitter type flying object 100 which concerns on Embodiment 2.
  • FIG. It is a block diagram for demonstrating the structure of the modification of the tail sitter type flying object 100 which concerns on Embodiment 2.
  • tail-sitter type flying object of the present invention will be described in detail based on the embodiment shown in the figure. It should be noted that all the structures shown in the drawings are schematic, and the display of dimensions, angles, etc. is not always realistic. Further, substantially the same components are designated by the same reference numerals across the embodiments, and the description thereof will be omitted again.
  • the configuration diagram 1 of the tail sitter type air vehicle is a perspective view of the tail sitter type air vehicle 1 according to the first embodiment.
  • the tailsitter type aircraft 1 according to the first embodiment is a so-called unmanned vertical take-off and landing aircraft.
  • the tailsitter type air vehicle 1 has a fuselage 20, four main wings 30a, 30b, 30c, 30d, four moving blades 40a, 40b, 40c, 40d, and four blades. It includes inner propellers 50a, 50b, 50c, 50d and four outer propellers 60a, 60b, 60c, 60d.
  • the main wing 30a corresponds to the main wing on the upper right side of the front view during level flight.
  • the main wing 30b corresponds to the main wing on the upper left side of the front view during level flight.
  • the main wing 30c corresponds to the main wing on the lower left side of the front view during level flight.
  • the main wing 30d corresponds to the main wing on the lower right side of the front view during level flight.
  • the fuselage 20 is an egg shape in which the traveling direction of the fuselage is longitudinal.
  • the body 20 shown in FIG. 1 has an egg shape in which the traveling direction of the machine body is longitudinal, but the shape of the body 20 is not limited to the egg shape.
  • the fuselage 20 may have a spherical shape or a sharp nose.
  • the fuselage 20 is the base of the four main wings 30a, 30b, 30c, 30d.
  • the body 20 houses a battery 21 and the like, which will be described later.
  • the four main wings 30a, 30b, 30c, and 30d are connected to the fuselage 20 in an X-shape when viewed from the front.
  • the front view means "when the aircraft is viewed from the front side” when the traveling direction side during level flight is the front side and the opposite direction side of the traveling direction is the back side.
  • the four main wings are connected to the fuselage in an X-shape in the front view
  • the main wing 30a in the upper right of the front view and the main wing 30c in the lower left of the front view are located on a straight line, and the main wing in the upper left of the front view.
  • the "angle” is preferably smaller than 90 degrees, and even more preferably in the range of, for example, 20 to 70 degrees. When these angles are 20 degrees or more, it becomes easy to suppress the interference between the inner propeller provided on the upper main wing and the inner propeller provided on the lower main wing, and these angles are 70 degrees or less. In some cases, it is possible to increase the lift of the main wing generated during level flight.
  • the four main wings 30a, 30b, 30c, 30d have a tailless aerodynamic surface.
  • the tailsitter type aircraft 1 according to the first embodiment does not include not only the horizontal stabilizer but also the vertical stabilizer.
  • the tailsitter type aircraft 1 according to the first embodiment does not include an elevator or a ladder.
  • the four rotor blades 40a, 40b, 40c, and 40d are arranged at the trailing edges of the main blades 30a, 30b, 30c, and 30d, respectively.
  • the four blades 40a, 40b, 40c, and 40d are so-called elevons.
  • the four inner propellers 50a, 50b, 50c, and 50d are arranged inside the leading edges of the four main wings 30a, 30b, 30c, and 30d, respectively.
  • Each inner propeller 50a, 50b, 50c, 50d is composed of a fixed pitch type propeller.
  • the four outer propellers 60a, 60b, 60c, and 60d are arranged outside the leading edges of the four main wings 30a, 30b, 30c, and 30d, respectively.
  • Each outer propeller 60a, 60b, 60c, 60d is composed of a fixed pitch type propeller.
  • two propellers are arranged on each of the four main wings 30a, 30b, 30c, and 30d, and a total of eight propellers (four inner propellers) are arranged. It has a propeller and four outer propellers).
  • FIG. 2 is a block diagram for explaining the configuration of the tail sitter type flying object 1 according to the first embodiment.
  • the fuselage 20 the four main wings 30a, 30b, 30c, 30d and the like are not shown.
  • the tailsitter type vehicle 1 includes a battery 21, a control device 22, four blades 40a, 40b, 40c, 40d, four electric actuators 41a, 41b, 41c, 41d, and four. It includes one inner propeller 50a, 50b, 50c, 50d, eight electric motors 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d, and four outer propellers 60a, 60b, 60c, 60d.
  • the rotor blades 40a, 40b, 40c, 40d and the electric actuators 41a, 41b, 41c, 41d correspond one-to-one, and the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d and each electric motor.
  • "one-to-one correspondence with electric actuators" for moving blades means that the number of moving blades and the number of electric actuators are the same, and a specific moving blade and a specific electric actuator are used. It means that there is a corresponding relationship.
  • "one-to-one correspondence with an electric motor” for a propeller means that the number of propellers and the number of electric motors are the same, and the specific propeller and the specific electric motor correspond to each other. It means that it is in.
  • the battery 21 supplies the stored electric power to each component.
  • the battery 21 may be rechargeable.
  • the control device 22 is connected to a battery 21, four electric actuators 41a, 41b, 41c, 41d, and eight electric motors 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d.
  • the control device 22 includes a power conversion device and the like, and controls each component.
  • the four electric actuators 41a, 41b, 41c, 41d are connected to the four blades 40a, 40b, 40c, 40d, respectively.
  • the four electric actuators 41a, 41b, 41c, 41d are for moving the four blades 40a, 40b, 40c, 40d, respectively. Electric power is supplied from the control device 22 to the electric actuators 41a, 41b, 41c, and 41d.
  • the four electric motors 51a, 51b, 51c, 51d are connected to the four inner propellers 50a, 50b, 50c, 50d, respectively.
  • the four electric motors 51a, 51b, 51c and 51d control the rotation speeds of the four inner propellers 50a, 50b, 50c and 50d, respectively. Electric power is supplied to each of the electric motors 51a, 51b, 51c, and 51d from the control device 22.
  • the four electric motors 61a, 61b, 61c, 61d are connected to the four outer propellers 60a, 60b, 60c, 60d, respectively.
  • the four electric motors 61a, 61b, 61c, 61d control the rotation speeds of the four outer propellers 60a, 60b, 60c, 60d, respectively. Electric power is supplied to each of the electric motors 61a, 61b, 61c, 61d from the control device 22.
  • various motors such as a synchronous motor, an induction motor, and a DC commutator motor can be used.
  • FIG. 3 is a front view of the tail sitter type flying object 1 according to the first embodiment.
  • each propeller 50a, 50c, 60a, 60c is used to offset the counter-torque generated by the rotation of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d.
  • the propellers 50b, 50d, 60b, 60d those that rotate in the direction indicated by the arrow A (clockwise in FIG. 3) are adopted, and those that rotate in the direction indicated by the arrow B (counterclockwise in FIG. 3). Can be adopted.
  • propellers 50a, 50c, 60a, 60c that rotate in the direction indicated by the arrow B are adopted, and the propellers 50b, 50d, 60b, 60d are the arrows A. It is also possible to adopt the one that rotates in the direction indicated by.
  • propellers 50a, 50c, 60b, 60d that rotate in the direction indicated by arrow A are adopted, and propellers 50b, 50d, 60a, 60c are designated as arrow B. It is also possible to adopt the one that rotates in the direction indicated by.
  • propellers 50a, 50c, 60b, 60d that rotate in the direction indicated by the arrow B are adopted, and the propellers 50b, 50d, 60a, 60c are the arrows A. It is also possible to adopt the one that rotates in the direction indicated by.
  • the two inner propellers 50a and 50b provided on the two main wings 30a and 30b, which are located on the upper side during level flight have opposite rotation directions, respectively.
  • the two inner propellers 50c and 50d provided on the two main wings 30c and 30d, which are located on the lower side during level flight have opposite rotation directions, respectively.
  • the two outer propellers 60a and 60b provided on the two main wings 30a and 30b, which are located on the upper side during level flight have opposite rotation directions and are located on the lower side during level flight. It is preferable that the two outer propellers 60c and 60d provided on the two main wings 30c and 30d have opposite rotation directions, respectively.
  • the two inner propellers 50b and 50c provided on the two main wings 30b and 30c, which are located on the right side in the traveling direction during level flight, are in the rotation direction, respectively.
  • the two inner propellers 50a and 50d provided on the two main wings 30a and 30d, which are located on the left side in the traveling direction during level flight, have opposite rotation directions, respectively.
  • the two inner propellers 50b and 50c provided on the two main wings 30b and 30c, which are located on the right side in the traveling direction during level flight have the same rotation direction and travel during level flight.
  • the two inner propellers 50a and 50d provided on the two main wings 30a and 30d located on the left side in the direction may have the same rotation direction, respectively.
  • the two outer propellers 60b and 60c provided on the two main wings 30b and 30c, which are located on the right side in the traveling direction during level flight, are in the rotation direction, respectively.
  • the two outer propellers 60a and 60d provided on the two main wings 30a and 30d, which are located on the left side in the traveling direction during level flight, have opposite rotation directions, respectively.
  • the two outer propellers 60b and 60c provided on the two main wings 30b and 30c, which are located on the right side in the traveling direction during level flight have the same rotation direction and travel during level flight.
  • the two outer propellers 60a and 60d provided on the two main wings 30a and 30d located on the left side in the direction may have the same rotation direction, respectively.
  • the tail sitter type flying object 1 it is possible to individually control the rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d.
  • roll control, pitch control, and yaw control can be performed by appropriately controlling the rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d. That is, in the tail sitter type flying object 1, the rotation speed difference is generated between the rotation speeds of the propellers 50a, 50c, 60a, 60c and the rotation speeds of the propellers 50b, 50d, 60b, 60d, thereby causing the roll. Control is possible.
  • the pitch is caused by causing a rotation speed difference between the rotation speeds of the propellers 50a, 50b, 60a, 60b and the rotation speeds of the propellers 50c, 50d, 60c, 60d. Control is possible. Further, in the tail sitter type flying object 1, the yaw is generated by causing a rotation speed difference between the rotation speeds of the propellers 50a, 50d, 60a, 60d and the rotation speeds of the propellers 50b, 50c, 60b, 60c. Control is possible.
  • the roll control, pitch control, and yaw control described above can be performed with high accuracy and response. It becomes possible to do it with good sex.
  • the tail sitter type flying object 1 it is possible to control the rotation speeds of the inner propellers 50a, 50b, 50c, and 50d to the same number, and individually control the rotation speeds of the outer propellers 60a, 60b, 60c, and 60d. .. Further, in the tail sitter type flying object 1, it is possible to control the rotation speeds of the outer propellers 60a, 60b, 60c, and 60d to the same number, and individually control the rotation speeds of the inner propellers 50a, 50b, 50c, and 50d. ..
  • the tail sitter type flying object 1 it is also possible to individually control the rotation speeds of the inner propellers 50a, 50b, 50c, 50d and the outer propellers 60a, 60b, 60c, 60d, respectively.
  • the roll control, pitch control, and yaw control described above can be performed with higher accuracy and response. It becomes possible to do it with good sex.
  • each electric motor 51a, 51b, 51c, 51d , 61a, 61b, 61c, 61d accurately adjust the rotation speed of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d to an arbitrary rotation speed commanded by the control device 22.
  • the rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d can be controlled with high accuracy and responsiveness. ..
  • FIG. 4 is a perspective view seen from the front showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight.
  • FIG. 5 is a rear perspective view showing an example of the tail sitter type flying object 1 according to the first embodiment during level flight.
  • each of the moving blades 40a, 40b, 40c, and 40d can be moved upward when viewed from the nose during level flight, as shown in FIG. In addition, it is possible to move each blade 40a, 40b, 40c, 40d downward when viewed from the nose during level flight.
  • the moving directions of the moving blades 40a, 40b, 40c, and 40d can be individually controlled.
  • the degree of movement (size, speed) of each of the moving blades 40a, 40b, 40c, and 40d can be individually controlled.
  • FIG. 6 is a diagram for explaining an example from takeoff to landing of the tailsitter type aircraft 1 according to the first embodiment.
  • the tailsitter type aircraft 1 takes off and rises by rotating each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d at a predetermined rotation speed.
  • the rotation speed of each propeller 50a, 50b, 60a, 60b is higher than the rotation speed of each propeller 50c, 50d, 60c, 60d. Make it larger (pitch control) and change the attitude of the aircraft by about 90 degrees.
  • the tail sitter type aircraft 1 may make the rotation speed of each propeller 50c, 50d, 60c, 60d smaller than the rotation speed of each propeller 50a, 50b, 60a, 60b, and shift the attitude of the aircraft by about 90 degrees. .. [3] During horizontal flight Next, the tailsitter type flying object 1 makes horizontal flight by rotating each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d at a predetermined rotation speed.
  • the tailsitter type flying object 1 can accelerate or decelerate by increasing or decreasing the rotation speed of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d, and each propeller 50a, 50b, Roll control, pitch control, and yaw control can be performed by increasing or decreasing the individual rotation speeds of 50c, 50d, 60a, 60b, 60c, and 60d.
  • the inner propellers 50a, 50b, 50c, 50d are rotated mainly for obtaining propulsive force, and the outer propellers 60a, 60b, 60c, respectively.
  • the 60d may be rotated primarily for roll control, pitch control and yaw control, or the outer propellers 60a, 60b, 60c, 60d may be rotated primarily for propulsion during level flight.
  • the inner propellers 50a, 50b, 50c, 50d may be rotated mainly for roll control, pitch control, and yaw control.
  • the tail sitter type flying object 1 can be raised or lowered by increasing or decreasing the rotation speed of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d, and each propeller 50a. , 50b, 50c, 50d, 60a, 60b, 60c, 60d By increasing or decreasing the individual rotation speeds, roll control, pitch control and yaw control can be performed, and movement in the horizontal direction becomes possible. .. In this case, the tailsitter type flying object 1 has an effect that lift can be obtained from the four main wings 30a, 30b, 30c, and 30d connected to the fuselage 20 in an X-shape in front view.
  • the rotation speed of each propeller 50c, 50d, 60c, 60d is made larger than the rotation speed of each propeller 50a, 50b, 60a, 60b to make the aircraft body.
  • the attitude of the aircraft is changed by a predetermined angle (an angle greater than 0 degrees and less than 90 degrees) and the rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d are controlled. It is also possible to fly from ultra-low speed to high speed from aerial stop.
  • each propeller 50c, 50d, 60c, 60d is made larger than the rotation speed of each propeller 50a, 50b, 60a, 60b to make the aircraft body. Hovering is also possible by balancing the thrust and the weight of the aircraft by changing the attitude of about 90 degrees and controlling the rotation speed of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d. ..
  • the rotation speed of each propeller 50c, 50d, 60c, 60d is made larger than the rotation speed of each propeller 50a, 50b, 60a, 60b to make the aircraft body.
  • the attitude of the aircraft is changed by a predetermined angle (greater than 90 degrees and less than 180 degrees) and the rotation speed of each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d is controlled. It is also possible to fly backward from ultra-low speed to high speed from aerial stop.
  • the rotation speed of each propeller 50c, 50d, 60c, 60d is set to be larger than the rotation speed of each propeller 50a, 50b, 60a, 60b. It is also possible to shift the attitude to about 180 degrees and shift to back flight.
  • roll control, pitch control, and yaw control which are more accurate and responsive than the conventional ones, can be performed even during these flights.
  • the tail sitter type flying object 1 it is possible to obtain sufficient propulsive force and ascending force by the eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d even during these flights. Further, in the tail sitter type flying object 1, eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d are provided in a front view X shape even during these flights, so that each propeller It is possible to make the moments of forces of 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d highly symmetric and to have high maneuvering stability.
  • tail-sitter type air vehicle 1 According to the tail-sitter type air vehicle 1 according to the first embodiment, four main wings 30a, 30b, 30c, 30d and four main wings 30a connected to the fuselage 20 in a front view X shape, respectively. , 30b, 30c, 30d, respectively, with eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d and eight propellers 50a, 50b, for obtaining lift or propulsion.
  • Eight electric motors that have a one-to-one correspondence with 50c, 50d, 60a, 60b, 60c, and 60d, respectively, and control the rotation speeds of the eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d, respectively. It is equipped with 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d, and eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d are four main wings 30a, 30b, 30c, 30d.
  • the four inner propellers 50a, 50b, 50c, 50d provided inside each leading edge and the four outer propellers 60a, provided outside the respective leading edges of the four main wings 30a, 30b, 30c, 30d. Since it is composed of 60b, 60c, and 60d, it is possible to perform roll control, pitch control, and yaw control with higher accuracy and better responsiveness than before.
  • the two inner propellers 50a and 50c and the two outer propellers 60a and 60c provided on the two main wings 30a and 30c on the upper right side and the lower left side in the front view during level flight.
  • Rotation speed between the rotation speed of the two inner propellers 50b and 50d and the rotation speeds of the two outer propellers 60b and 60d provided on the two main wings 30b and 30d on the upper left side and the lower right side of the front view during level flight By making a difference, the roll control described above is possible during vertical flight, horizontal flight and hovering.
  • the rotational speeds of the two inner propellers 50a and 50b and the two outer propellers 60a and 60b provided on the two main wings 30a and 30b on the upper side of the front view during level flight are horizontal.
  • the pitch described above is created by creating a rotation speed difference between the rotation speeds of the two inner propellers 50c and 50d and the two outer propellers 60c and 60d provided on the two main wings 30c and 30d on the lower front view during flight. Control is possible during vertical flight, level flight and hovering.
  • the rotation speeds of the two inner propellers 50a and 50d and the two outer propellers 60a and 60d provided on the two main wings 30a and 30d on the right side of the front view during level flight As described above, by creating a rotation speed difference between the rotation speeds of the two inner propellers 50b and 50c and the two outer propellers 60b and 60c provided on the two main wings 30b and 30c on the left side of the front view during level flight. Yaw control is possible during vertical flight, level flight and hovering.
  • the roll control described above is performed by appropriately controlling the rotation speeds of the eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d, respectively.
  • Pitch control and yaw control can be performed with high accuracy and responsiveness.
  • the two inner propellers 50a and 50b provided on the two main wings 30a and 30b, which are located on the upper side during level flight, have different rotation directions, respectively. If the two inner propellers 50c and 50d provided on the two main wings 30c and 30d, which are opposite and will be located on the lower side during level flight, have opposite rotation directions, the inner propellers 50a , 50b, 50c, 50d can cancel out the anti-torque generated by the rotation. As a result, the flight of the aircraft is stabilized, and more accurate and responsive roll control, pitch control and yaw control become possible.
  • the two outer propellers 60a and 60b provided on the two main wings 30a and 30b, which are located on the upper side during level flight, have different rotation directions, respectively. If the two outer propellers 60c and 60d provided on the two main wings 30c and 30d, which are opposite and will be located on the lower side during level flight, have opposite rotation directions, the outer propellers 60a , 60b, 60c, 60d can cancel the anti-torque generated by the rotation. As a result, the flight of the aircraft is stabilized, and more accurate and responsive roll control, pitch control and yaw control become possible.
  • the roll control can also be performed by appropriately controlling the rotor blades 40a, 40b, 40c, and 40d. Since pitch control and yaw control can be performed, roll control, pitch control, and yaw control with higher accuracy and better responsiveness become possible.
  • the fuselage 20 has an egg shape in which the traveling direction of the fuselage is long as in the tail sitter type flying body 1 according to the first embodiment, it is possible to reduce the air resistance of the fuselage during flight.
  • the four main wings 30a, 30b, 30c, and 30d are provided. As a result, during level flight, it is possible to perform a flight operation using sufficient lift obtained from each of the main wings 30a, 30b, 30c, and 30d.
  • the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d are arranged apart from each other, it is suitable for hovering and fine movement. It is possible to make a suitable tailsitter type air vehicle 1.
  • the four main wings 30a, 30b, 30c, and 30d are connected to the fuselage 20 in an X-shape in front view.
  • the size of the fuselage 20 can be minimized, and it is possible to eliminate the need to provide the fuselage 20 with a structure for fixing the main wings to the fuselage 20.
  • each propeller 50a using the electric motors 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d having excellent output control responsiveness, Since it is possible to control the rotation speeds of 50b, 50c, 50d, 60a, 60b, 60c, and 60d, the rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d can be precisely and smoothly controlled. Can be controlled.
  • roll control, pitch control and yaw control are performed by increasing or decreasing the individual rotation speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d. Since it is possible to perform control, it is not necessary to provide a horizontal stabilizer, a vertical stabilizer, an elevator, a rudder, and the like, and as a result, it is possible to reduce the air resistance of the airframe.
  • FIG. 7 is a perspective view of the tail sitter type flying object 100 according to the second embodiment.
  • the tail sitter type aircraft 100 according to the second embodiment is a so-called manned vertical take-off and landing aircraft.
  • the tail sitter type aircraft 100 according to the second embodiment basically has the same configuration as the tail sitter type aircraft 1 according to the first embodiment, but the fuselage configuration is the same as the tail sitter type aircraft 1 according to the first embodiment. different.
  • the tailsitter type air vehicle 100 includes a fuselage 120, four main wings 30a, 30b, 30c, 30d, four moving blades 40a, 40b, 40c, 40d, and four blades. It includes inner propellers 50a, 50b, 50c, 50d and four outer propellers 60a, 60b, 60c, 60d.
  • the four main wings 30a, 30b, 30c, and 30d are separated from each other and connected to the fuselage 120 in a front view X shape.
  • the fuselage 120 is an egg shape in which the traveling direction of the fuselage is longitudinal.
  • the body 120 shown in FIG. 7 has an egg shape in which the traveling direction of the body is longitudinal, but the shape of the body 120 is not limited to the egg shape.
  • the fuselage 120 may have a spherical shape or a pointed nose.
  • the fuselage 120 is the base of the four main wings 30a, 30b, 30c, 30d.
  • the body 120 houses a battery 121 and the like, which will be described later.
  • the fuselage 120 has an in-flight space 134 described later inside.
  • the fuselage 120 has lower window portions 123a and 123b located on the lower side during level flight of the fuselage.
  • the passenger H which will be described later, can board the cabin space 134 by opening the lower window portions 123a and 123b.
  • the fuselage 120 has a front window portion 124 located on the front side during level flight of the fuselage.
  • the fuselage 120 has an upper window portion 125 located on the upper side during level flight of the fuselage.
  • the fuselage 120 has a right window portion 126 located on the right side of the fuselage during level flight and a left window portion (not shown) located on the left side.
  • the fuselage 120 is provided with a window at a position where the passenger seated on the seat 132 can visually recognize the scenery outside the aircraft in the natural posture.
  • the fuselage 120 includes an upper pillar portion (not shown) that connects the adjacent main wings 30a and the main wings 30b, a lower pillar portion 128 that connects the adjacent main wings 30c and the main wings 30d, and adjacent main wings 30b and the main wings 30c. It has a right-side pillar portion 130 that connects between the two pillars, and a left-side pillar portion (not shown) that connects the adjacent main wings 30a and the main wings 30d.
  • FIG. 8 is a block diagram for explaining the configuration of the tail sitter type flying object 100 according to the second embodiment.
  • the fuselage 120, the four main wings 30a, 30b, 30c, 30d, etc. are not shown.
  • the tailsitter type air vehicle 100 includes a battery 121, a control device 122, a seat 132, an electric motor 133, four blades 40a, 40b, 40c, 40d, and four electric actuators 41a. , 41b, 41c, 41d, four inner propellers 50a, 50b, 50c, 50d, eight electric motors 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d and four outer propellers 60a, 60b, 60c and 60d are provided.
  • the battery 121 supplies the stored electric power to each component.
  • the capacity of the battery 121 is much larger than the capacity of the battery 21 of the first embodiment.
  • the battery 121 may be rechargeable.
  • the control device 122 is connected to a battery 121, an electric motor 133, four electric actuators 41a, 41b, 41c, 41d, and eight electric motors 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d. There is.
  • the control device 122 includes a power conversion device and the like, and controls each component.
  • the seat 132 is connected to the electric motor 133.
  • the seat 132 is provided in the cabin space 134.
  • Passenger H which will be described later, is seated on the seat 132.
  • the seat 132 includes a link mechanism.
  • the electric motor 133 is connected to the seat 132.
  • the electric motor 133 transmits the rotational force to the seat 132.
  • Electric power is supplied to the electric motor 133 from the control device 122.
  • As the electric motor 133 a geared motor can be used.
  • FIG. 9 is a diagram for explaining an example from takeoff to level flight of the tailsitter type flying object 100 according to the second embodiment.
  • FIG. 10 is a diagram for explaining an example from level flight to landing of the tail sitter type aircraft 100 according to the second embodiment.
  • the rotation speed of each propeller 50c, 50d, 60c, 60d may be made smaller than the rotation speed of each propeller 50a, 50b, 60a, 60b, and the attitude of the aircraft may be changed by about 90 degrees. ..
  • the seat 132 is tilted in the direction indicated by the arrow C.
  • the seat 132 is tilted so that the passenger H seated on the seat 132 faces in the horizontal direction.
  • the tailsitter type flying object 1 makes horizontal flight by rotating each propeller 50a, 50b, 50c, 50d, 60a, 60b, 60c, 60d at a predetermined rotation speed.
  • the seat 132 is further tilted in the direction indicated by the arrow C, and the sheet 132 is extended in the direction indicated by the arrow D accordingly (by the link mechanism).
  • the rotation speeds of the propellers 50c, 50d, 60c, and 60d are set to the rotation speeds of the propellers 50a, respectively.
  • the attitude of the aircraft is changed by about 90 degrees by making it larger than the rotation speeds of 50b, 60a, and 60b (pitch control).
  • the tail sitter type aircraft 100 may make the rotation speed of each propeller 50a, 50b, 60a, 60b smaller than the rotation speed of each propeller 50c, 50d, 60c, 60d, and shift the attitude of the aircraft by about 90 degrees. ..
  • the seat 132 is tilted in the direction indicated by the arrow E, and the seat 132 is bent in the direction indicated by the arrow F accordingly (by the link mechanism).
  • the tailsitter type aircraft 100 descends and lands by gradually reducing the rotational speeds of the propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c, and 60d.
  • the tail-sitter type aircraft 100 according to the second embodiment has a body configuration different from that of the tail-sitter type 1 according to the first embodiment, but has four main wings 30a, which are connected to the body 120 in an X-shape in a front view.
  • Eight propellers 50a, 50b, 50c, 50d, 60a, 60b, 60c are provided on each of the 30b, 30c, 30d and the four main wings 30a, 30b, 30c, 30d to obtain lift or propulsion.
  • the fuselage 120 has an in-flight space 134 inside, and the in-flight space 134 is provided with a seat 132 that tilts according to the attitude of the aircraft. Even if there is a change in the attitude of the aircraft, such as when transitioning from vertical or hovering after takeoff to horizontal flight, or from horizontal flight to vertical or hovering before landing. By tilting the seat on which the passenger sits, it is possible to reduce the burden on the passenger.
  • the tail sitter type airframe 100 since the seat 132 is tilted so that the passenger H seated on the seat 132 faces in the horizontal direction, the attitude transition of the aircraft If there is, it will be possible to further reduce the burden on the passengers.
  • the seat 132 extends back and forth in the process of transition from takeoff to horizontal flight, and bends in the process of transition from horizontal flight to landing. Therefore, for example, even when the fuselage is made into an oval shape in which the traveling direction of the fuselage is long in order to reduce air resistance, there is an inconvenience that the passenger's head hits the upper part of the cabin when the seat is tilted. Can be eliminated.
  • the fuselage 120 is provided with a window at a position where the passenger seated on the seat 132 can visually recognize the scenery outside the aircraft in the natural attitude. Therefore, the passenger can see the scenery outside the aircraft in a natural attitude.
  • the four main wings 30a, 30b, 30c, and 30d are separated from each other and connected to the body 120, and the body 120 is placed on the lower side of the body during horizontal flight.
  • the lower window portions 123a and 123b located, the right window portion 126 located on the right side during horizontal flight of the aircraft, the left window portion (not shown) located on the left side during horizontal flight of the aircraft, and the adjacent main wings are connected. Since it has pillar portions 128, 130, etc., it is possible to secure a wide field of view of the passenger H during vertical flight, horizontal flight, and hovering of the aircraft. Further, since it is not necessary to separately provide a structure for connecting adjacent main wings, it is possible to reduce the weight of the airframe and increase the strength of the airframe.
  • the tail-sitter type flying object 100 according to the second embodiment has the same configuration as the tail-sitter type flying object 1 according to the first embodiment except for the configuration of the fuselage, the effect of the tail-sitter type flying object 1 according to the first embodiment is obtained. Among them, it has the corresponding effect.
  • the tail sitter type flying vehicle 100 having four main wings 30a, 30b, 30c, and 30d connected to the fuselage 20 in an X-shape in a front view is used as the main wings of the present invention.
  • the tail-sitter type air vehicle of the present invention is, for example, a tail-sitter type air vehicle having four main wings connected to the fuselage 20 in a manner different from the X-shape (for example, like a so-called biplane) as main wings. May be good.
  • the tail sitter type flying object of the present invention has been described by using the tail sitter type flying object 100 including two pairs of main wings 30a, 30b, 30c, 30d in front view as the main wings.
  • the present invention is not limited to this.
  • the tail-sitter type air vehicle of the present invention may be, for example, a tail-sitter type air vehicle having a pair of left and right main wings in front view like the tail sitter type air vehicle described in Non-Patent Document 1, or as a main wing. It may be a tail-sitter type aircraft having three or more pairs of left and right main wings in front view.
  • the tail sitter of the present invention is used as a propulsion device by using a tail sitter type flying vehicle 100 having eight propellers provided on two pairs of main wings 30a, 30b, 30c, and 30d in front view.
  • a tail sitter type flying vehicle 100 having eight propellers provided on two pairs of main wings 30a, 30b, 30c, and 30d in front view.
  • the tail-sitter type air vehicle of the present invention may be, for example, a tail-sitter type air vehicle having a plurality of propellers provided on one pair of left and right front view or two or more pairs of left and right main wings as a propulsion device, or as a propulsion device.
  • It may be a tail-sitter type flight body equipped with a plurality of jet engines provided on one pair of left and right or two or more pairs of left and right main wings in front view, or a tail-sitter type flight equipped with a propeller or jet engine provided on a conductor as a propulsion device. It may be a body.
  • the propeller may be an electric propeller or an engine type propeller.
  • the tail sitter type air vehicle is provided with a tilting seat driven by, for example, a geared motor in the cabin space, but the present invention is not limited thereto.
  • a seat having a structure of hanging from a support or the like, such as a so-called swing may be provided in the cabin space.
  • the seat can be tilted by using gravity by moving the support column or the like according to the posture of the machine body.
  • the tail sitter of the present invention is used as the fuselage by using the tail sitter type flying vehicle 100 having a window provided at a position where the passenger can see the scenery outside the aircraft in a natural posture.
  • the type air vehicle has been described, the present invention is not limited thereto.
  • the tail sitter type air vehicle of the present invention for example, one or two or more video cameras for capturing the scenery outside the aircraft are provided on the fuselage or the main wing, and the one or two video cameras are used in the cabin space.
  • It may be a tail-sitter type air vehicle provided with a display for displaying the photographed scenery outside the aircraft.
  • the display may be configured so that its position and posture can be controlled according to the tilt posture of the seat.
  • the display may be attached to the seat at a position and posture within the field of view of the passenger seated on the seat.
  • the display may be a head-mounted display worn by a passenger seated in the seat when maneuvering the aircraft.
  • FIG. 11 is a block diagram for explaining a configuration of a modified example of the tail sitter type flying object 100 according to the second embodiment.
  • the tailsitter type flying object 100A further includes a sensor 135.
  • the sensor 135 is a posture sensor that detects a change in the posture of the airframe. If the sensor 135 for detecting the attitude change of the airframe is provided as in this modification, it is possible to accurately detect the attitude change of the airframe.
  • 1,100,100A ... tail sitter type flying object 20,120 ... fuselage, 21,121 ... battery, 22,122 ... control device, 30a, 30b, 30c, 30d ... main wing, 40a, 40b, 40c, 40d ... moving blade , 41a, 41b, 41c, 41d ... Electric actuator, 50a, 50b, 50c, 50d ... Inner propeller, 51a, 51b, 51c, 51d, 61a, 61b, 61c, 61d, 133 ... Electric motor, 60a, 60b, 60c, 60d ... outer propeller, 123a, 123b ... lower window, 124 ... front window, 125 ... upper window, 126 ... right window, 128 ... lower pillar, 130 ... right pillar, 132 ... seat, 134 ... cabin space, 135 ... sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

胴体120と、胴体120にそれぞれ接続され、正面視左右2対の主翼30a,30b,30c,30dと、左右2対の主翼30a,30b,30c,30dに設けられ、揚力または推進力を得るための8つのプロペラと50a,50b,50c,50d,60a,60b,60c,60dを備えるテールシッタ式飛行体であって、胴体120は内部に機内空間134を有し、機内空間134には、機体の姿勢に応じてチルトするシート132が設けられているテールシッタ式飛行体100。シート132は、搭乗者の自然姿勢時における視線が水平方向に向くようにチルトするものであることが好ましい。上記したテールシッタ式飛行体100は、機体を操縦する際に搭乗者の負担を軽減可能なテールシッタ式飛行体となる。

Description

テールシッタ式飛行体
 本発明は、テールシッタ式飛行体に関する。
 従来、垂直離着陸が可能なテールシッタ式飛行体が知られている(例えば、非特許文献1参照。)。非特許文献1に開示されているテールシッタ式飛行体は、胴体と、正面視左右一対の主翼と、それぞれの主翼に1つずつ設けられた、左右一対のプロペラ(推進装置)とを備え、機体が離陸後の垂直飛行またはホバリングから水平飛行に移行する際、および、水平飛行から着陸前の垂直飛行またはホバリングに移行する際に、機体が約90度姿勢遷移する。このようなテールシッタ式飛行体は、回転する2つのプロペラにより揚力または推進力を得ている。
 このようなテールシッタ式飛行体は、非特許文献2に開示されているいわゆるオスプレイといった、プロペラを上に向けた状態においてはヘリコプタのようにホバリングや垂直離着陸が可能であり、プロペラを前方に傾けた状態においては固定翼機のように高速での長距離飛行が可能である飛行体と同様に、滑走路といった離着陸のためのスペースが不要となる点で優れているほか、上記オスプレイといった飛行体と比較して、プロペラを傾けるための駆動機構等が不要となるため、軽量化、低エネルギー化等の点で非常に優れている。
openx,"INES 双発テールシッタ-1800mm機 Tailsitter VTOL UAV 1800mm 008",YouTube LLC,[online]、2015年8月4日,[2019年3月8日検索]、インターネット〈URL:https://www.youtube.com/watch?time_continue=3&v=Uf9WRFBNEU0〉 防衛省・自衛隊、CV-22オスプレイについて″、[online]、[2019年3月8日検索]、インターネット〈URL:http://www.mod.go.jp/j/approach/anpo/osprey/yokota/cv22.html〉
 しかしながら、上記したテールシッタ式飛行体を有人型のテールシッタ式飛行体としようとした場合、離陸後の垂直飛行またはホバリングから水平飛行に移行する際、および、水平飛行から着陸前の垂直飛行またはホバリングに移行する際に、機体が約90度姿勢遷移することから、搭乗者の負担が大きいことが予想される。
 そこで、本発明は上記した背景に鑑みてなされたものであり、機体を操縦する際に搭乗者の負担を軽減可能なテールシッタ式飛行体を提供することを目的とする。
[1]本発明のテールシッタ式飛行体は、胴体と、前記胴体にそれぞれ接続され、正面視左右一対又は2対以上の主翼と、前記胴体又は前記正面視左右一対又は2対以上の主翼に設けられ、揚力または推進力を得るための推進装置とを備えるテールシッタ式飛行体であって、前記胴体は内部に機内空間を有し、前記機内空間には、機体の姿勢に応じてチルトするシートが設けられているものである。
 本発明のテールシッタ式飛行体によれば、前記胴体は内部に機内空間を有し、前記機内空間には、機体の姿勢に応じてチルトするシートが設けられていることから、離陸後の垂直飛行またはホバリングから水平飛行に移行する際、および、水平飛行から着陸前の垂直飛行またはホバリングに移行する際にように、機体の姿勢遷移があった場合であっても、搭乗者が着座するシートをチルトさせることにより、搭乗者の負担を軽減することが可能となる。なお、本発明において「チルト」とは、左右を軸として上下に傾けることをいう。
[2]本発明のテールシッタ式飛行体においては、前記シートは、当該シートに着座している搭乗者の自然姿勢時における視線が水平方向に向くようにチルトすることが好ましい。
 このような構成とすることにより、機体の姿勢遷移があった場合に、搭乗者の負担をより一層軽減することが可能となる。
[3]本発明のテールシッタ式飛行体においては、前記シートは、離陸時から水平飛行時に移行する過程で前後に伸展し、かつ、水平飛行時から着陸時に移行する過程で屈曲することが好ましい。
 このような構成とすることにより、例えば、空気抵抗を低減させるために胴体を機体の進行方向が長手である卵型とした場合においても、シートがチルトする際に、搭乗者の頭部が機内の上部に当たるといった不都合をなくすことが可能となる。
[4]本発明のテールシッタ式飛行体は、前記胴体に、当該シートに着座している搭乗者が自然姿勢時において機外の景色を視認可能な位置に窓が設けられているものであってもよい。
 このような構成とすることにより、搭乗者が自然姿勢のまま機外の景色を視認可能となる。
[5]本発明のテールシッタ式飛行体は、前記胴体又は前記主翼に、機外の景色を撮影する1又は2以上の動画カメラが設けられており、前記機内空間に、前記1又は2以上の動画カメラにより撮影された機外の景色を表示するディスプレイが設けられているものであってもよい。
 このような構成とすることによっても、搭乗者が機外の景色を視認可能となる。
[6]本発明のテールシッタ式飛行体においては、前記ディスプレイは、前記シートのチルト姿勢に応じて、その位置及び姿勢が制御可能に構成されていてもよい。
 このような構成とすることにより、搭乗者が自然姿勢のまま機外の景色を視認可能となる。

[7]本発明のテールシッタ式飛行体においては、前記ディスプレイは、前記シートに着座している搭乗者の視界に入る位置及び姿勢で前記シートに取り付けられていてもよい。
 このような構成とすることによっても、搭乗者が自然姿勢のまま機外の景色を視認可能となる。
[8]本発明のテールシッタ式飛行体においては、前記ディスプレイは、前記シートに着座している搭乗者が機体の操縦を行う際に装着するヘッドマウントディスプレイであってもよい。
 このような構成とすることによっても、搭乗者が自然姿勢のまま機外の景色を視認可能となる。
実施形態1に係るテールシッタ式飛行体1の斜視図である。 実施形態1に係るテールシッタ式飛行体1の構成を説明するためのブロック図である。 実施形態1に係るテールシッタ式飛行体1の正面図である。 実施形態1に係るテールシッタ式飛行体1の水平飛行時の一例を示す前方から見た斜視図である。 実施形態1に係るテールシッタ式飛行体1の水平飛行時の一例を示す後方から見た斜視図である。 実施形態1に係るテールシッタ式飛行体1の離陸から着陸までの一例を説明するための図である。 実施形態2に係るテールシッタ式飛行体100の斜視図である。 実施形態2に係るテールシッタ式飛行体100の構成を説明するためのブロック図である。 実施形態2に係るテールシッタ式飛行体100の離陸から水平飛行までの一例を説明するための図である。 実施形態2に係るテールシッタ式飛行体100の水平飛行から着陸までの一例を説明するための図である。 実施形態2に係るテールシッタ式飛行体100の変形例の構成を説明するためのブロック図である。
 以下、本発明のテールシッタ式飛行体を図に示す実施形態に基づいて詳細に説明する。なお、図面に示す構造は全て模式的なものであり、寸法や角度等の表示は必ずしも現実に即したものとはなっていない。また、実質的に同一の構成要素については実施形態をまたいで同一の符号を付し、再度の説明は省略する。
[実施形態1]
1.テールシッタ式飛行体の構成
 図1は、実施形態1に係るテールシッタ式飛行体1の斜視図である。実施形態1に係るテールシッタ式飛行体1は、いわゆる無人型の垂直離着陸機である。
 なお、本明細書および図面においては、主に本発明の特徴的な構成要素についての説明および図示を行う。一般的な構成要素等(操作信号の受信や各種情報を送信するための通信装置、離着陸時に地面と接触するランディングギア等)については、説明および図示を省略する。
 実施形態1に係るテールシッタ式飛行体1は、図1に示すように、胴体20と、4つの主翼30a,30b,30c,30dと、4つの動翼40a,40b,40c,40dと、4つの内側プロペラ50a,50b,50c,50dと、4つの外側プロペラ60a,60b,60c,60dとを備える。主翼30aは、水平飛行時に正面視右上側の主翼に該当する。主翼30bは、水平飛行時に正面視左上側の主翼に該当する。主翼30cは、水平飛行時に正面視左下側の主翼に該当する。主翼30dは、水平飛行時に正面視右下側の主翼に該当する。
 胴体20は、機体の進行方向が長手となる卵型である。図1に示す胴体20は、機体の進行方向が長手となる卵型であるが、胴体20の形状は当該卵型の形状に限られない。例えば、胴体20は、球型であってもよく、機首が尖った形状であってもよい。胴体20は、4つの主翼30a,30b,30c,30dの基部である。胴体20は、後述するバッテリ21等を収納している。
 4つの主翼30a,30b,30c,30dは、正面視X字状に、胴体20にそれぞれ接続される。ここで、正面視とは、水平飛行時の進行方向側を正面側とし、進行方向の逆方向側を背面側としたとき、「正面側から機体を視たとき」のことをいう。また、「4つの主翼が正面視X字状に胴体にそれぞれ接続される」には、「正面視右上の主翼30aと正面視左下の主翼30cとが直線上に位置し、正面視左上の主翼30bと正面視右下の主翼30dとが直線上に位置する態様で胴体に接続されている場合」のみならず、「正面視右上の主翼30aと正面視左下の主翼30cとが直線上に位置せず、正面視左上の主翼30bと正面視右下の主翼30dとが直線上に位置しない態様で胴体に接続されている場合(後述する図3参照。)」も含まれる。
 実施形態1に係るテールシッタ式飛行体1において、「正面視右上の主翼30aと正面視右下の主翼30dとが成す角」および「正面視左上の主翼30bと正面視左下の主翼30cとが成す角」は90度よりも小さいことが好ましく、例えば20度~70度の範囲内にあることがより一層好ましい。これらの角度が20度以上である場合には上側主翼に設けられた内側プロペラと下側主翼に設けられた内側プロペラとの干渉を抑制することが容易となり、これらの角度が70度以下である場合には水平飛行時に発生する主翼の揚力を大きいものとすることが可能となる。
 4つの主翼30a,30b,30c,30dは、無尾翼型の空力面を有する。実施形態1に係るテールシッタ式飛行体1は、水平尾翼だけでなく、垂直尾翼も備えていない。実施形態1に係るテールシッタ式飛行体1は、エレベータやラダーを備えていない。
 4つの動翼40a,40b,40c,40dはそれぞれ主翼30a,30b,30c,30dの後縁部に配設されている。4つの動翼40a,40b,40c,40dは、いわゆるエレボンである。
 4つの内側プロペラ50a,50b,50c,50dはそれぞれ4つの主翼30a,30b,30c,30dの前縁部の内側に配設されている。各内側プロペラ50a,50b,50c,50dは、固定ピッチ式のプロペラから構成される。
 4つの外側プロペラ60a,60b,60c,60dはそれぞれ4つの主翼30a,30b,30c,30dの前縁部の外側に配設されている。各外側プロペラ60a,60b,60c,60dは、固定ピッチ式のプロペラから構成される。
 実施形態1に係るテールシッタ式飛行体1においては、4つの主翼30a,30b,30c,30dのそれぞれに2つのプロペラ(内側プロペラおよび外側プロペラ)が配設され、合計として8つのプロペラ(4つの内側プロペラおよび4つの外側プロペラ)を備える。
 図2は、実施形態1に係るテールシッタ式飛行体1の構成を説明するためのブロック図である。図2においては、胴体20、4つの主翼30a,30b,30c,30d等の図示は省略されている。
 図2に示すように、テールシッタ式飛行体1は、バッテリ21と、制御装置22と、4つの動翼40a,40b,40c,40dと、4つの電動アクチュエータ41a,41b,41c,41dと、4つの内側プロペラ50a,50b,50c,50dと、8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dと、4つの外側プロペラ60a,60b,60c,60dとを備える。各動翼40a,40b,40c,40dと各電動アクチュエータ41a,41b,41c,41dとは1対1で対応し、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dと各電動モータ51a,51b,51c,51d,61a,61b,61c,61dとは1対1で対応する。本明細書において、動翼について「電動アクチュエータと1対1で対応する」とは、動翼の数と電動アクチュエータの数とが同数であり、かつ、特定の動翼と特定の電動アクチュエータとが対応する関係にあることをいう。本明細書において、プロペラについて「電動モータと1対1で対応する」とは、プロペラの数と電動モータの数とが同数であり、かつ、特定のプロペラと特定の電動モータとが対応する関係にあることをいう。
 バッテリ21は、蓄積した電力を各構成要素へ供給するものである。バッテリ21は、充電可能なものであってもよい。
 制御装置22は、バッテリ21と、4つの電動アクチュエータ41a,41b,41c,41dと、8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dと接続されている。制御装置22は、電力変換装置などを含み、各構成要素を制御するものである。
 4つの電動アクチュエータ41a,41b,41c,41dはそれぞれ4つの動翼40a,40b,40c,40dと接続されている。4つの電動アクチュエータ41a,41b,41c,41dはそれぞれ4つの動翼40a,40b,40c,40dを動かすためのものである。各電動アクチュエータ41a,41b,41c,41dには、制御装置22から電力が供給される。
 4つの電動モータ51a,51b,51c,51dはそれぞれ4つの内側プロペラ50a,50b,50c,50dと接続されている。4つの電動モータ51a,51b,51c,51dはそれぞれ4つの内側プロペラ50a,50b,50c,50dの回転速度を制御する。各電動モータ51a,51b,51c,51dには、制御装置22から電力が供給される。
 4つの電動モータ61a,61b,61c,61dはそれぞれ4つの外側プロペラ60a,60b,60c,60dと接続されている。4つの電動モータ61a,61b,61c,61dはそれぞれ4つの外側プロペラ60a,60b,60c,60dの回転速度を制御する。各電動モータ61a,61b,61c,61dには、制御装置22から電力が供給される。
 各電動モータ51a,51b,51c,51d,61a,61b,61c,61dとしては、同期モータ、誘導モータ、直流整流子モータといった種々のモータを用いることができる。
 図3は、実施形態1に係るテールシッタ式飛行体1の正面図である。
 例えば、テールシッタ式飛行体1においては、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dが回転することによって生じる反トルクを相殺するために、各プロペラ50a,50c,60a,60cとして、矢印Aが示す方向(図3中時計回り)に回転するものを採用し、各プロペラ50b,50d,60b,60dとして、矢印Bが示す方向(図3中反時計回り)に回転するものを採用することができる。また、同様に、テールシッタ式飛行体1においては、各プロペラ50a,50c,60a,60cとして、矢印Bが示す方向に回転するものを採用し、各プロペラ50b,50d,60b,60dとして、矢印Aが示す方向に回転するものを採用することもできる。
 また、同様に、テールシッタ式飛行体1においては、各プロペラ50a,50c,60b,60dとして、矢印Aが示す方向に回転するものを採用し、各プロペラ50b,50d,60a,60cとして、矢印Bが示す方向に回転するものを採用することもできる。また、同様に、テールシッタ式飛行体1においては、各プロペラ50a,50c,60b,60dとして、矢印Bが示す方向に回転するものを採用し、各プロペラ50b,50d,60a,60cとして、矢印Aが示す方向に回転するものを採用することもできる。
 実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に上側に位置することとなる2つの主翼30a,30bのそれぞれに設けられた2つの内側プロペラ50a,50bはそれぞれ回転方向が逆であり、かつ、水平飛行時に下側に位置することとなる2つの主翼30c,30dのそれぞれに設けられた2つの内側プロペラ50c,50dはそれぞれ回転方向が逆であることが好ましい。また、水平飛行時に上側に位置することとなる2つの主翼30a,30bのそれぞれに設けられた2つの外側プロペラ60a,60bはそれぞれ回転方向が逆であり、かつ、水平飛行時に下側に位置することとなる2つの主翼30c,30dのそれぞれに設けられた2つの外側プロペラ60c,60dはそれぞれ回転方向が逆であることが好ましい。
 なお、実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に進行方向右側に位置することとなる2つの主翼30b,30cのそれぞれに設けられた2つの内側プロペラ50b,50cはそれぞれ回転方向が逆であり、かつ、水平飛行時に進行方向左側に位置することとなる2つの主翼30a,30dのそれぞれに設けられた2つの内側プロペラ50a,50dはそれぞれ回転方向が逆であるものであってもよいし、水平飛行時に進行方向右側に位置することとなる2つの主翼30b,30cのそれぞれに設けられた2つの内側プロペラ50b,50cはそれぞれ回転方向が同じであり、かつ、水平飛行時に進行方向左側に位置することとなる2つの主翼30a,30dのそれぞれに設けられた2つの内側プロペラ50a,50dはそれぞれ回転方向が同じであるものであってもよい。
 また、実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に進行方向右側に位置することとなる2つの主翼30b,30cのそれぞれに設けられた2つの外側プロペラ60b,60cはそれぞれ回転方向が逆であり、かつ、水平飛行時に進行方向左側に位置することとなる2つの主翼30a,30dのそれぞれに設けられた2つの外側プロペラ60a,60dはそれぞれ回転方向が逆であるものであってもよいし、水平飛行時に進行方向右側に位置することとなる2つの主翼30b,30cのそれぞれに設けられた2つの外側プロペラ60b,60cはそれぞれ回転方向が同じであり、かつ、水平飛行時に進行方向左側に位置することとなる2つの主翼30a,30dのそれぞれに設けられた2つの外側プロペラ60a,60dはそれぞれ回転方向が同じであるものであってもよい。
 実施形態1に係るテールシッタ式飛行体1においては、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を個別に制御することが可能である。テールシッタ式飛行体1においては、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を適宜制御することにより、ロール制御、ピッチ制御およびヨー制御が可能となる。すなわち、テールシッタ式飛行体1においては、各プロペラ50a,50c,60a,60cの回転速度と、各プロペラ50b,50d,60b,60dの回転速度との間に回転数差を生じさせることにより、ロール制御が可能となる。また、テールシッタ式飛行体1においては、各プロペラ50a,50b,60a,60bの回転速度と、各プロペラ50c,50d,60c,60dの回転速度との間に回転数差を生じさせることにより、ピッチ制御が可能となる。また、テールシッタ式飛行体1においては、各プロペラ50a,50d,60a,60dの回転速度と、各プロペラ50b,50c,60b,60cの回転速度との間に回転数差を生じさせることにより、ヨー制御が可能となる。このとき、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度をそれぞれ適宜制御することにより、上述したロール制御、ピッチ制御およびヨー制御を、高精度に、かつ、応答性良く行うことが可能となる。
 例えば、テールシッタ式飛行体1においては、内側プロペラ50a,50b,50c,50dの回転速度を同数に制御し、外側プロペラ60a,60b,60c,60dの回転速度を個別に制御することが可能である。また、テールシッタ式飛行体1においては、外側プロペラ60a,60b,60c,60dの回転速度を同数に制御し、内側プロペラ50a,50b,50c,50dの回転速度を個別に制御することも可能である。また、テールシッタ式飛行体1においては、内側プロペラ50a,50b,50c,50d及び外側プロペラ60a,60b,60c,60dの回転速度をそれぞれ個別に制御することも可能である。このように、テールシッタ式飛行体1においては、8つのプロペラの回線速度をそれぞれ適宜に制御可能であるから、上述したロール制御、ピッチ制御およびヨー制御を、より一層、高精度に、かつ、応答性良く行うことが可能となる。
 水平飛行中(各主翼30a,30b,30c,30dの揚力を用いた飛行動作中)、垂直飛行中(テールシッタ式の垂直離着陸動作中)およびホバリング中において、各電動モータ51a,51b,51c,51d,61a,61b,61c,61dは、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度をそれぞれ、制御装置22によって指令された任意の回転速度に、高精度に、かつ、迅速に、かつ、滑らかにに変化させることで、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を高精度に、かつ、応答性良く制御することができる。
 図4は、実施形態1に係るテールシッタ式飛行体1の水平飛行時の一例を示す前方から見た斜視図である。図5は、実施形態1に係るテールシッタ式飛行体1の水平飛行時の一例を示す後方から見た斜視図である。
 テールシッタ式飛行体1においては、図4に示すように、各動翼40a,40b,40c,40dを水平飛行時における機首から見て上方向に動かすことが可能であり、図5に示すように、各動翼40a,40b,40c,40dを水平飛行時における機首から見て下方向に動かすことが可能である。テールシッタ式飛行体1においては、各動翼40a,40b,40c,40dの動かす方向を個別に制御可能である。さらに、テールシッタ式飛行体1においては、各動翼40a,40b,40c,40dの動かす程度(大きさ、速さ)をも個別に制御可能である。
 図6は、実施形態1に係るテールシッタ式飛行体1の離陸から着陸までの一例を説明するための図である。
[A]離陸時
 まず、テールシッタ式飛行体1は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dを所定の回転速度で回転させることにより、離陸して上昇する。
[B]姿勢遷移時
 次いで、テールシッタ式飛行体1は、任意の高度に到達すると、各プロペラ50a,50b,60a,60bの回転速度を、各プロペラ50c,50d,60c,60dの回転速度よりも大きくして(ピッチ制御)、機体を約90度姿勢遷移させる。テールシッタ式飛行体1は、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも小さくして、機体を約90度姿勢遷移させてもよい。
[3]水平飛行時
 次いで、テールシッタ式飛行体1は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dを所定の回転速度で回転させることにより、水平飛行する。
[4]姿勢遷移時
 次いで、テールシッタ式飛行体1は、任意の目的地の上空に到達すると、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして、機体を約90度姿勢遷移させる(ピッチ制御)。テールシッタ式飛行体1は、各プロペラ50a,50b,60a,60bの回転速度を、各プロペラ50c,50d,60c,60dの回転速度よりも小さくして、機体を約90度姿勢遷移させてもよい。
[5]着陸時
 そして、テールシッタ式飛行体1は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を徐々に低下させることにより、下降して着陸する。
 テールシッタ式飛行体1は、水平飛行中は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を増減することで加速や減速が可能となり、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの個別の回転速度を増減することでロール制御、ピッチ制御およびヨー制御を行うことが可能となる。
 また、テールシッタ式飛行体1においては、例えば、水平飛行中は、各内側プロペラ50a,50b,50c,50dを主に推進力を得るために回転させるようにし、各外側プロペラ60a,60b,60c,60dを主にロール制御、ピッチ制御およびヨー制御を行うために回転させるようにしてもよいし、水平飛行中は、各外側プロペラ60a,60b,60c,60dを主に推進力を得るために回転させるようにし、各内側プロペラ50a,50b,50c,50dを主にロール制御、ピッチ制御およびヨー制御を行うために回転させるようにしてもよい。
 テールシッタ式飛行体1は、垂直飛行中およびホバリング中は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を増減することで上昇や下降が可能となり、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの個別の回転速度を増減することでロール制御、ピッチ制御およびヨー制御を行うことが可能となるとともに、水平方向への移動が可能となる。この場合、テールシッタ式飛行体1は、正面視X字状に、胴体20にそれぞれ接続される4つの主翼30a,30b,30c,30dからも揚力が得られるといった効果を奏する。
 また、テールシッタ式飛行体1においては、水平飛行中に、例えば、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして、機体を所定の角度(0度よりも大きく、90度よりも小さい角度)姿勢遷移させ、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を制御することによって機体の姿勢を保持して、空中停止から超低速から高速での飛行も可能である。
 また、テールシッタ式飛行体1においては、水平飛行中に、例えば、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして、機体を約90度姿勢遷移させ、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を制御することによって推力と機体の重量とを釣り合わせることによる、ホバリングも可能である。
 また、テールシッタ式飛行体1においては、水平飛行中に、例えば、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして、機体を所定の角度(90度よりも大きく、180度よりも小さい角度)姿勢遷移させ、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を制御することによって機体の姿勢を保持して、空中停止から超低速から高速での後退飛行も可能である。
 また、テールシッタ式飛行体1においては、水平飛行中に、例えば、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして、機体を約180度姿勢遷移させて、背面飛行に移行させることも可能である。テールシッタ式飛行体1においては、これらの飛行中においても、従来よりも、高精度、かつ、応答性の良い、ロール制御、ピッチ制御およびヨー制御が可能となる。
 テールシッタ式飛行体1においては、これらの飛行中においても、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dによって、十分な推進力や上昇力を得ることが可能となる。さらに、テールシッタ式飛行体1においては、これらの飛行中においても、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dが正面視X字状に設けられているため、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの力のモーメントを対称性の高いものにして、操縦安定性が高いものとすることが可能となる。
2.テールシッタ式飛行体の効果
 実施形態1に係るテールシッタ式飛行体1によれば、正面視X字状に、胴体20にそれぞれ接続される4つの主翼30a,30b,30c,30dと、4つの主翼30a,30b,30c,30dのそれぞれに2つずつ設けられ、揚力または推進力を得るための8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dと、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dとそれぞれ1対1で対応し、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dのそれぞれの回転速度を制御する8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dとを備え、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dは、4つの主翼30a,30b,30c,30dのそれぞれの前縁部の内側に設けられる4つの内側プロペラ50a,50b,50c,50dと、4つの主翼30a,30b,30c,30dのそれぞれの前縁部の外側に設けられる4つの外側プロペラ60a,60b,60c,60dとで構成されているため、従来よりも、高精度、かつ、応答性の良い、ロール制御、ピッチ制御およびヨー制御が可能となる。
 すなわち、実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に正面視右上側および左下側の2つの主翼30a,30cに設けられる2つの内側プロペラ50a,50cおよび2つの外側プロペラ60a,60cの回転速度と、水平飛行時に正面視左上側および右下側の2つの主翼30b,30dに設けられる2つの内側プロペラ50b,50dおよび2つの外側プロペラ60b,60dの回転速度との間に回転数差を生じさせることにより、上述したロール制御が垂直飛行中、水平飛行中およびホバリング中に可能となる。
 実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に正面視上側の2つの主翼30a,30bに設けられる2つの内側プロペラ50a,50bおよび2つの外側プロペラ60a,60bの回転速度と、水平飛行時に正面視下側の2つの主翼30c,30dに設けられる2つの内側プロペラ50c,50dおよび2つの外側プロペラ60c,60dの回転速度との間に回転数差を生じさせることにより、上述したピッチ制御が垂直飛行中、水平飛行中およびホバリング中に可能となる。
 また、実施形態1に係るテールシッタ式飛行体1においては、水平飛行時に正面視右側の2つの主翼30a,30dに設けられる2つの内側プロペラ50a,50dおよび2つの外側プロペラ60a,60dの回転速度と、水平飛行時に正面視左側の2つの主翼30b,30cに設けられる2つの内側プロペラ50b,50cおよび2つの外側プロペラ60b,60cの回転速度との間に回転数差を生じさせることにより、上述したヨー制御が垂直飛行中、水平飛行中およびホバリング中に可能となる。
 このとき、実施形態1に係るテールシッタ式飛行体1においては、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度をそれぞれ適宜制御することにより、上述したロール制御、ピッチ制御およびヨー制御を、高精度に、かつ、応答性良く行うことが可能となる。
 また、実施形態1に係るテールシッタ式飛行体1のように、水平飛行時に上側に位置することとなる2つの主翼30a,30bのそれぞれに設けられた2つの内側プロペラ50a,50bはそれぞれ回転方向が逆であり、かつ、水平飛行時に下側に位置することとなる2つの主翼30c,30dのそれぞれに設けられた2つの内側プロペラ50c,50dはそれぞれ回転方向が逆であると、各内側プロペラ50a,50b,50c,50dが回転することによって生じる反トルクを相殺することが可能となる。これにより、機体の飛行が安定化し、より一層、高精度、かつ、応答性の良いロール制御、ピッチ制御およびヨー制御が可能となる。
 また、実施形態1に係るテールシッタ式飛行体1のように、水平飛行時に上側に位置することとなる2つの主翼30a,30bのそれぞれに設けられた2つの外側プロペラ60a,60bはそれぞれ回転方向が逆であり、かつ、水平飛行時に下側に位置することとなる2つの主翼30c,30dのそれぞれに設けられた2つの外側プロペラ60c,60dはそれぞれ回転方向が逆であると、各外側プロペラ60a,60b,60c,60dが回転することによって生じる反トルクを相殺することが可能となる。これにより、機体の飛行が安定化し、より一層、高精度、かつ、応答性の良いロール制御、ピッチ制御およびヨー制御が可能となる。
 また、実施形態1に係るテールシッタ式飛行体1のように、4つの主翼30a,30b,30c,30dのそれぞれの後縁部に設けられる4つの動翼40a,40b,40c,40dをさらに備えると、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を適宜制御するのに加えて、各動翼40a,40b,40c,40dを適宜制御することによってもロール制御、ピッチ制御およびヨー制御を行うことができるため、より一層、高精度、かつ、応答性の良いロール制御、ピッチ制御およびヨー制御が可能となる。
 また、実施形態1に係るテールシッタ式飛行体1のように、胴体20が、機体の進行方向が長手である卵型であると、機体の飛行時における空気抵抗を小さくすることが可能となる。
 また、実施形態1に係るテールシッタ式飛行体1によれば、4つの主翼30a,30b,30c,30dを備える。これにより、水平飛行中において、各主翼30a,30b,30c,30dから得られる十分な揚力を用いた飛行動作が可能となる。
 また、実施形態1に係るテールシッタ式飛行体1によれば、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dが、離間して配設されているため、ホバリングや細かい動作に適したテールシッタ式飛行体1とすることが可能となる。
 また、実施形態1に係るテールシッタ式飛行体1によれば、4つの主翼30a,30b,30c,30dが、正面視X字状に、胴体20にそれぞれ接続される。これにより、胴体20の大きさを最小化させることが可能であるとともに、主翼を胴体20に固定するための構造体を胴体20に設ける必要をなくすことが可能となる。
 また、実施形態1に係るテールシッタ式飛行体1によれば、出力制御の即応性に優れている各電動モータ51a,51b,51c,51d,61a,61b,61c,61dを用いて各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を制御することが可能であるため、緻密かつ滑らかに各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を制御することが可能となる。
 また、実施形態1に係るテールシッタ式飛行体1によれば、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの個別の回転速度を増減することでロール制御、ピッチ制御およびヨー制御を行うことが可能であるため、水平尾翼、垂直尾翼、エレベータ、ラダー等を備える必要がなくなり、その結果、機体の空気抵抗を低減することが可能となる。
[実施形態2]
 図7は、実施形態2に係るテールシッタ式飛行体100の斜視図である。実施形態2に係るテールシッタ式飛行体100は、いわゆる有人型の垂直離着陸機である。
 実施形態2に係るテールシッタ式飛行体100は、基本的には実施形態1に係るテールシッタ式飛行体1と同様の構成を有するが、胴体の構成が実施形態1に係るテールシッタ式飛行体1とは異なる。
 実施形態2に係るテールシッタ式飛行体100は、図7に示すように、胴体120と、4つの主翼30a,30b,30c,30dと、4つの動翼40a,40b,40c,40dと、4つの内側プロペラ50a,50b,50c,50dと、4つの外側プロペラ60a,60b,60c,60dとを備える。4つの主翼30a,30b,30c,30dは、それぞれ離れて、正面視X字状に、胴体120に接続される。
 胴体120は、機体の進行方向が長手となる卵型である。図7に示す胴体120は、機体の進行方向が長手となる卵型であるが、胴体120の形状は当該卵型の形状に限られない。例えば、胴体120は、球型であってもよく、機首が尖った形状であってもよい。胴体120は、4つの主翼30a,30b,30c,30dの基部である。胴体120は、後述するバッテリ121等を収納している。胴体120は内部に後述する機内空間134を有する。
 胴体120は、機体の水平飛行時の下側に位置する下側窓部123a,123bを有する。例えば、テールシッタ式飛行体100においては、下側窓部123a,123bを開けることにより、後述する搭乗者Hが機内空間134に乗り込むことができる。胴体120は、機体の水平飛行時の前側に位置する前側窓部124を有する。胴体120は、機体の水平飛行時の上側に位置する上側窓部125を有する。胴体120は、機体の水平飛行時の右側に位置する右側窓部126、および左側に位置する図示しない左側窓部を有する。このように、胴体120には、シート132に着座している搭乗者が自然姿勢時において機外の景色を視認可能な位置に窓が設けられている。
 胴体120は、隣り合う主翼30aと主翼30bとの間を繋ぐ図示しない上側ピラー部と、隣り合う主翼30cと主翼30dとの間を繋ぐ下側ピラー部128と、隣り合う主翼30bと主翼30cとの間を繋ぐ右側ピラー部130と、隣り合う主翼30aと主翼30dとの間を繋ぐ図示しない左側ピラー部とを有する。
 図8は、実施形態2に係るテールシッタ式飛行体100の構成を説明するためのブロック図である。図8においては、胴体120、4つの主翼30a,30b,30c,30d等の図示は省略されている。
 テールシッタ式飛行体100は、図8に示すように、バッテリ121と、制御装置122と、シート132と、電動モータ133と、4つの動翼40a,40b,40c,40dと、4つの電動アクチュエータ41a,41b,41c,41dと、4つの内側プロペラ50a,50b,50c,50dと、8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dと、4つの外側プロペラ60a,60b,60c,60dとを備える。
 バッテリ121は、蓄積した電力を各構成要素へ供給するものである。バッテリ121の容量は、実施形態1のバッテリ21の容量と比較して遥かに大きなものである。バッテリ121は、充電可能なものであってもよい。
 制御装置122は、バッテリ121と、電動モータ133と、4つの電動アクチュエータ41a,41b,41c,41dと、8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dと接続されている。制御装置122は、電力変換装置などを含み、各構成要素を制御するものである。
 シート132は、電動モータ133と接続されている。シート132は、機内空間134に設けられる。シート132には、後述する搭乗者Hが着座する。シート132は、リンク機構を備える。
 電動モータ133はシート132と接続されている。電動モータ133は回転力をシート132に伝達する。電動モータ133には、制御装置122から電力が供給される。電動モータ133としては、ギヤードモータを用いることができる。
 図9は、実施形態2に係るテールシッタ式飛行体100の離陸から水平飛行までの一例を説明するための図である。図10は、実施形態2に係るテールシッタ式飛行体100の水平飛行から着陸までの一例を説明するための図である。
[A]離陸時
 まず、図9に示すように、テールシッタ式飛行体100の機内空間134に搭乗者Hが乗り込んでシート132に着座する。次いで、テールシッタ式飛行体100は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dを所定の回転速度で回転させることにより、離陸して上昇する。
[B]姿勢遷移時
 次いで、テールシッタ式飛行体100は、任意の高度に到達すると、各プロペラ50a,50b,60a,60bの回転速度を、各プロペラ50c,50d,60c,60dの回転速度よりも大きくして(ピッチ制御)、機体を約90度姿勢遷移させる。テールシッタ式飛行体100は、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも小さくして、機体を約90度姿勢遷移させてもよい。このとき、シート132は、矢印Cが示す方向にチルトする。シート132は、シート132に着座している搭乗者Hが水平方向に向くようにチルトする。
[3]水平飛行時
 次いで、テールシッタ式飛行体1は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dを所定の回転速度で回転させることにより、水平飛行する。このとき、シート132は、矢印Cが示す方向にさらにチルトし、これに応じて(リンク機構によって)シート132が矢印Dが示す方向に伸展する。
[4]姿勢遷移時
 次いで、図10に示すように、テールシッタ式飛行体100は、任意の目的地の上空に到達すると、各プロペラ50c,50d,60c,60dの回転速度を、各プロペラ50a,50b,60a,60bの回転速度よりも大きくして(ピッチ制御)、機体を約90度姿勢遷移させる。テールシッタ式飛行体100は、各プロペラ50a,50b,60a,60bの回転速度を、各プロペラ50c,50d,60c,60dの回転速度よりも小さくして、機体を約90度姿勢遷移させてもよい。このとき、シート132は、矢印Eが示す方向にチルトし、これに応じて(リンク機構によって)シート132が矢印Fが示す方向に屈曲する。
[5]着陸時
 そして、テールシッタ式飛行体100は、各プロペラ50a,50b,50c,50d,60a,60b,60c,60dの回転速度を徐々に低下させることにより、下降して着陸する。
 実施形態2に係るテールシッタ式飛行体100は、胴体の構成が実施形態1に係るテールシッタ式飛行体1とは異なるが、正面視X字状に、胴体120にそれぞれ接続される4つの主翼30a,30b,30c,30dと、4つの主翼30a,30b,30c,30dのそれぞれに2つずつ設けられ、揚力または推進力を得るための8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dと、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dとそれぞれ1対1で対応し、8つのプロペラ50a,50b,50c,50d,60a,60b,60c,60dのそれぞれの回転速度を制御する8つの電動モータ51a,51b,51c,51d,61a,61b,61c,61dとを備えるため、実施形態1に係るテールシッタ式飛行体1と同様に、従来よりも、高精度、かつ、応答性の良い、ロール制御、ピッチ制御およびヨー制御が可能となる。
 また、実施形態2に係るテールシッタ式飛行体100によれば、胴体120が内部に機内空間134を有し、機内空間134には、機体の姿勢に応じてチルトするシート132が設けられていることから、離陸後の垂直飛行またはホバリングから水平飛行に移行する際、または、水平飛行から着陸前の垂直飛行またはホバリングに移行する際のように、機体の姿勢遷移があった場合であっても、搭乗者が着座するシートをチルトさせることにより、搭乗者の負担を軽減することが可能となる。そのとき、実施形態2に係るテールシッタ式飛行体100によれば、シート132が、当該シート132に着座している搭乗者Hが水平方向に向くようにチルトするものであるから、機体の姿勢遷移があった場合に、搭乗者の負担をより一層軽減することが可能となる。
 また、実施形態2に係るテールシッタ式飛行体100によれば、シート132は、離陸時から水平飛行時に移行する過程で前後に伸展し、かつ、水平飛行時から着陸時に移行する過程で屈曲するものであるから、例えば、空気抵抗を低減させるために胴体を機体の進行方向が長手である卵型とした場合においても、シートがチルトする際に、搭乗者の頭部が機内の上部に当たるといった不都合をなくすことが可能となる。
 また、実施形態2に係るテールシッタ式飛行体100によれば、胴体120には、シート132に着座している搭乗者が自然姿勢時において機外の景色を視認可能な位置に窓が設けられていることから、搭乗者が自然姿勢のまま機外の景色を視認可能となる。
 また、実施形態2に係るテールシッタ式飛行体100によれば、4つの主翼30a,30b,30c,30dが、それぞれ離れて胴体120に接続され、胴体120が、機体の水平飛行時の下側に位置する下側窓部123a,123bと、機体の水平飛行時の右側に位置する右側窓部126と、機体の水平飛行時の左側に位置する図示しない左側窓部と、隣り合う主翼間を繋ぐピラー部128,130等とを有するものであるから、機体の垂直飛行中、水平飛行中およびホバリング中における搭乗者Hの広い視野が確保できる。また、隣り合う主翼間を繋ぐ構造体を別途設ける必要がなくなるため、機体を軽量化させることが可能となるとともに、機体の強度を高めることが可能となる。
 実施形態2に係るテールシッタ式飛行体100は、胴体の構成以外については実施形態1に係るテールシッタ式飛行体1と同様の構成を有するため、実施形態1に係るテールシッタ式飛行体1が有する効果のうち該当する効果を有する。
 以上、本発明を上記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記各実施形態において記載した構成要素の数、形状、位置、大きさ、角度等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記実施形態2においては、主翼として、正面視X型字状に胴体20に接続された4つの主翼30a,30b,30c,30dを備えるテールシッタ式飛行体100を用いて、本発明のテールシッタ式飛行体を説明したが、本発明はこれに限定されるものでない。本発明のテールシッタ式飛行体は、例えば、主翼として、X型字状とは異なる態様で(例えばいわゆる複葉機のように)胴体20に接続された4つの主翼を備えるテールシッタ式飛行体であってもよい。
(3)上記実施形態2においては、主翼として、正面視左右二対の主翼30a,30b,30c,30dを備えるテールシッタ式飛行体100を用いて、本発明のテールシッタ式飛行体を説明したが、本発明はこれに限定されるものでない。本発明のテールシッタ式飛行体は、例えば、主翼として、非特許文献1に記載のテールシッタ式飛行体のように正面視左右一対の主翼を備えるテールシッタ式飛行体であってもよいし、主翼として、正面視左右三対以上の主翼を備えるテールシッタ式飛行体であってもよい。
(4)上記実施形態2においては、推進装置として、正面視左右二対の主翼30a,30b,30c,30dに設けられた8つのプロペラを備えるテールシッタ式飛行体100を用いて、本発明のテールシッタ式飛行体を説明したが、本発明はこれに限定されるものでない。本発明のテールシッタ式飛行体は、例えば、推進装置として、正面視左右一対又は左右二対以上の主翼に設けられた複数のプロペラを備えるテールシッタ式飛行体であってもよいし、推進装置として、正面視左右一対又は左右二対以上の主翼に設けられた複数のジェットエンジンを備えるテールシッタ式飛行体であってもよいし、推進装置として、導体に設けられたプロペラ又はジェットエンジンを備えるテールシッタ式飛行体であってもよい。この場合、プロペラは、電動式プロペラであってもよいしエンジン式プロペラであってもよい。
(5)上記実施形態2においては、テールシッタ式飛行体は、機内空間に、例えばギヤードモータで駆動される、チルトするシートが設けられていたが、本発明はこれに限定されるものではない。例えば、機内空間に、いわゆるブランコのような、支柱等から吊り下げる構造をもつシートが設けられていてもよい。この場合において、機体の姿勢に応じて支柱等を動かすことにより、重力を利用してシートをチルトさせることができる。
(6)上記実施形態2においては、胴体には、搭乗者が自然姿勢時において機外の景色を視認可能な位置に窓が設けられているテールシッタ式飛行体100を用いて、本発明のテールシッタ式飛行体を説明したが、本発明はこれに限定されるものでない。本発明のテールシッタ式飛行体は、例えば、胴体又は主翼に、機外の景色を撮影する1又は2以上の動画カメラが設けられており、機内空間には、当該1又は2以上の動画カメラにより撮影された機外の景色を表示するディスプレイが設けられているテールシッタ式飛行体であってもよい。この場合、ディスプレイは、シートのチルト姿勢に応じて、その位置及び姿勢が制御可能に構成されているものであってもよい。また、ディスプレイは、シートに着座している搭乗者の視界に入る位置及び姿勢でシートに取り付けられているものであってもよい。さらにまた、ディスプレイは、シートに着座している搭乗者が機体の操縦を行う際に装着するヘッドマウントディスプレイであってもよい。
(7)本発明のテールシッタ式飛行体は、上記各実施形態で記載した構成要素の他にも、用途に応じた追加の構成要素(カメラ、各種センサ、衛星測位システム、作業用または検査用のアーム、貨物保持用のラック等)をさらに備えていてもよい。図11は、実施形態2に係るテールシッタ式飛行体100の変形例の構成を説明するためのブロック図である。図11に示すように、テールシッタ式飛行体100Aは、センサ135をさらに備える。センサ135は、機体の姿勢変化を検知する姿勢センサである。本変形例のように、機体の姿勢変化を検知するためのセンサ135を備えると、機体の姿勢変化を精度よく検知することが可能となる。
1,100,100A…テールシッタ式飛行体、20,120…胴体、21,121…バッテリ、 22,122…制御装置、30a,30b,30c,30d…主翼、40a,40b,40c,40d…動翼、41a,41b,41c,41d…電動アクチュエータ、50a,50b,50c,50d…内側プロペラ、51a,51b,51c,51d,61a,61b,61c,61d,133…電動モータ、60a,60b,60c,60d…外側プロペラ、123a,123b…下側窓部、124…前側窓部、125…上側窓部、126…右側窓部、128…下側ピラー部、130…右側ピラー部、132…シート、134…機内空間、135…センサ

Claims (8)

  1.  胴体と、
     前記胴体にそれぞれ接続され、正面視左右一対又は2対以上の主翼と、
     前記胴体又は前記正面視左右一対又は2対以上の主翼に設けられ、揚力または推進力を得るための推進装置とを備えるテールシッタ式飛行体であって、
     前記胴体は内部に機内空間を有し、
     前記機内空間には、機体の姿勢に応じてチルトするシートが設けられていることを特徴とするテールシッタ式飛行体。
  2.  請求項1に記載のテールシッタ式飛行体において、
     前記シートは、当該シートに着座している搭乗者の自然姿勢時における視線が水平方向に向くようにチルトすることを特徴とするテールシッタ式飛行体。
  3.  請求項1又は2に記載のテールシッタ式飛行体において、
     前記シートは、離陸時から水平飛行時に移行する過程で前後に伸展し、かつ、水平飛行時から着陸時に移行する過程で屈曲することを特徴とするテールシッタ式飛行体。
  4.  請求項1~3のいずれかに記載のテールシッタ式飛行体において、
     前記胴体には、当該シートに着座している搭乗者が自然姿勢時において機外の景色を視認可能な位置に窓が設けられていることを特徴とするテールシッタ式飛行体。
  5.  請求項1~3のいずれかに記載のテールシッタ式飛行体において、
     前記胴体又は前記主翼には、機外の景色を撮影する1又は2以上の動画カメラが設けられており、
     前記機内空間には、前記1又は2以上の動画カメラにより撮影された機外の景色を表示するディスプレイが設けられていることを特徴とするテールシッタ式飛行体。
  6.  請求項5に記載のテールシッタ式飛行体において、
     前記ディスプレイは、前記シートのチルト姿勢に応じて、その位置及び姿勢が制御可能に構成されていることを特徴とするテールシッタ式飛行体。
  7.  請求項5に記載のテールシッタ式飛行体において、
     前記ディスプレイは、前記シートに着座している搭乗者の視界に入る位置及び姿勢で前記シートに取り付けられていることを特徴とするテールシッタ式飛行体。
  8.  請求項5に記載のテールシッタ式飛行体において、
     前記ディスプレイは、前記シートに着座している搭乗者が機体の操縦を行う際に装着するヘッドマウントディスプレイであることを特徴とするテールシッタ式飛行体。
PCT/JP2019/011951 2019-03-11 2019-03-21 テールシッタ式飛行体 WO2020183739A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021600187U JP3236741U (ja) 2019-03-11 2019-03-21 テールシッタ式飛行体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/009836 WO2020183594A1 (ja) 2019-03-11 2019-03-11 テールシッタ式飛行体
JPPCT/JP2019/009836 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020183739A1 true WO2020183739A1 (ja) 2020-09-17

Family

ID=72426677

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/009836 WO2020183594A1 (ja) 2019-03-11 2019-03-11 テールシッタ式飛行体
PCT/JP2019/011951 WO2020183739A1 (ja) 2019-03-11 2019-03-21 テールシッタ式飛行体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009836 WO2020183594A1 (ja) 2019-03-11 2019-03-11 テールシッタ式飛行体

Country Status (2)

Country Link
JP (1) JP3236741U (ja)
WO (2) WO2020183594A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237582A (ja) * 1998-02-19 1999-08-31 Mitsubishi Precision Co Ltd 航空機搭載用模擬視界装置
JP2007527161A (ja) * 2004-02-17 2007-09-20 タレス アビオニクス インコーポレイテッド 旅客機情報放送システム及びその使用方法
US20160144957A1 (en) * 2014-11-26 2016-05-26 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
JP2016517821A (ja) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. 垂直離着陸(vtol)航空機
US20180002011A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft with Selectively Attachable Passenger Pod Assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205440867U (zh) * 2015-12-30 2016-08-10 崔浩 一种可倾转机翼飞机
BR112018073801A2 (pt) * 2016-05-18 2019-02-26 A^3 By Airbus, Llc aeronave elétrica pilotada automaticamente para executar decolagens e aterrissagens verticais e método para controlar uma aeronave
US10513334B2 (en) * 2017-06-12 2019-12-24 Textron Innovations Inc. X-tiltwing aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237582A (ja) * 1998-02-19 1999-08-31 Mitsubishi Precision Co Ltd 航空機搭載用模擬視界装置
JP2007527161A (ja) * 2004-02-17 2007-09-20 タレス アビオニクス インコーポレイテッド 旅客機情報放送システム及びその使用方法
JP2016517821A (ja) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. 垂直離着陸(vtol)航空機
US20160144957A1 (en) * 2014-11-26 2016-05-26 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
US20180002011A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft with Selectively Attachable Passenger Pod Assembly

Also Published As

Publication number Publication date
JP3236741U (ja) 2022-03-14
WO2020183594A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
US10717522B2 (en) Vertical takeoff and landing (VTOL) air vehicle
US10144509B2 (en) High performance VTOL aircraft
US20190389573A1 (en) Vertical take-off and landing unmanned aerial vehicle
CN106892094B (zh) 一种空间六自由度独立可控四旋翼无人飞行器及其控制方法
US20200010182A1 (en) Pivoting wing system for vtol aircraft
US11117657B2 (en) Aeronautical apparatus
CN111605708B (zh) 偏转翼飞行器
WO2016028358A2 (en) High Performance VTOL Aircraft
KR20210047277A (ko) 테일 시터
EP3730404A1 (en) Vertical take-off and landing aircraft and related control method
CN107444606B (zh) 新型飞行器及飞行器系统
JP2018086916A (ja) 飛行体
US11628951B2 (en) Electronic component and aircraft with electronic component attached thereto
US11372427B2 (en) System and method for enhanced altitude control of an autogyro
WO2018187844A1 (en) Dual flight mode aircraft
JP3236741U (ja) テールシッタ式飛行体
CN114307101A (zh) 模拟飞行系统
JP2022150020A (ja) 無人航空機およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919398

Country of ref document: EP

Kind code of ref document: A1