[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020183764A1 - Vaporization device - Google Patents

Vaporization device Download PDF

Info

Publication number
WO2020183764A1
WO2020183764A1 PCT/JP2019/037842 JP2019037842W WO2020183764A1 WO 2020183764 A1 WO2020183764 A1 WO 2020183764A1 JP 2019037842 W JP2019037842 W JP 2019037842W WO 2020183764 A1 WO2020183764 A1 WO 2020183764A1
Authority
WO
WIPO (PCT)
Prior art keywords
end wall
heat transfer
trough
heating liquid
lid member
Prior art date
Application number
PCT/JP2019/037842
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 鶴
祐二 澄田
一也 河田
孝祐 東
諭史 近口
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019163410A external-priority patent/JP7209605B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020217031896A priority Critical patent/KR102545419B1/en
Priority to EP19918978.8A priority patent/EP3922938B1/en
Priority to ES19918978T priority patent/ES2973144T3/en
Publication of WO2020183764A1 publication Critical patent/WO2020183764A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0297Side headers, e.g. for radiators having conduits laterally connected to common header

Definitions

  • the present invention relates to a vaporizer used for vaporizing liquefied gas.
  • the vaporizer disclosed in Patent Document 1 has a trough for sprinkling a heating liquid having a temperature higher than that of the liquefied gas on the outer surface of a plurality of heat transfer tubes erected so as to guide the liquefied gas upward. There is. While the heating liquid sprinkled by the trough flows down along the outer surfaces of the heat transfer tubes, the liquefied gas flowing in the heat transfer tubes is heated with the heating liquid on the outer surfaces of the heat transfer tubes. Exchange. As a result of heat exchange with the heating liquid, the liquefied gas vaporizes.
  • the trough is arranged at a position adjacent to each of the plurality of heat transfer tubes in the horizontal direction orthogonal to the alignment direction of the plurality of heat transfer tubes, and is configured to store the heating liquid.
  • the trough is box-shaped, which is long in the alignment direction of the plurality of heat transfer tubes.
  • the trough has a rectangular bottom wall that is long in the alignment direction of the plurality of heat transfer tubes, and an outer peripheral wall that is erected above the outer peripheral edge of the bottom wall.
  • the bottom wall and the outer peripheral wall form a storage space in which the heating liquid is stored.
  • an inflow port into which the heating liquid flows is formed on the bottom wall of the trough.
  • a water supply pipe extending from the manifold is connected to the inflow port of the trough.
  • the water supply pipe extends below the bottom wall of the trough substantially parallel to the bottom wall and guides the heating liquid to a position below the inflow port of the trough.
  • the tip of the water supply pipe is bent upward below the trough inlet and is connected to the trough inlet.
  • the water supply pipe extends in the longitudinal direction of the trough and forms a long flow path for the heating liquid. If the water supply pipe is formed to guide the heating liquid over a long path, not only resistance is added to the flow of the heating liquid, but also the material cost of the water supply pipe is increased.
  • An object of the present invention is to provide a vaporizer having a structure capable of supplying a heating liquid to a trough by a short route.
  • the vaporizer according to one aspect of the present invention is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas.
  • the vaporizer supplies the heating liquid to the heat transfer panel configured so that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction and the outer surface of the plurality of heat transfer tubes.
  • the truffles are arranged at a position lower than the upper edge of the heat transfer panel, and the truffles are arranged on one end side of the truffles in the alignment direction of the plurality of heat transfer tubes. It is provided with a manifold configured to supply the heating liquid to the heat pipe.
  • the trough is aligned with a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction. It includes a second end wall erected at another end of the bottom wall that is distant from the first end wall in the direction. An inflow port into which the heating liquid flows is formed on the first end wall.
  • the above-mentioned vaporizer makes it possible to supply the heating liquid to the trough in which the heating liquid is stored by a short route.
  • FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member.
  • FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member.
  • FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member.
  • FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member.
  • FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member. It is a schematic cross-sectional view of another Example of a box body having a double lid member. It is a schematic cross-sectional view of another Example of a box body having a double lid member. It is a schematic cross-sectional view of another Example of a box body having a double lid member. It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member. It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member.
  • FIG. 3 is a schematic cross-sectional view of the vaporizer of FIG. 34.
  • FIG. 1 is a schematic perspective view of the open rack type vaporizer (ORV) 100 of the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the vaporizer 100 on a virtual vertical plane. The vaporizer 100 will be described with reference to FIGS. 1 and 2.
  • the vaporizer 100 is configured to vaporize the liquefied natural gas (hereinafter referred to as "liquefied gas") by exchanging heat with a heating liquid having a temperature higher than that of the liquefied gas.
  • liquefied gas The gas phase natural gas obtained as a result of heat exchange is referred to as "vaporized gas" in the following description.
  • seawater is used as the heating liquid.
  • a liquid having a temperature higher than that of the vaporized gas may be used as the heating liquid.
  • the vaporizer 100 includes a gas flow portion in which the liquefied gas and the vaporized gas flow, and a seawater flow portion in which the seawater flows.
  • the gas flow portion includes a lower manifold 111, an upper manifold 112, and a plurality of heat transfer panels 113.
  • the lower manifold 111 and the upper manifold 112 extend in the horizontal direction.
  • the upper manifold 112 extends substantially parallel to the lower manifold 111 at a position separated upward from the lower manifold 111.
  • the plurality of heat transfer panels 113 are connected to the upper manifold 112 and the lower manifold 111.
  • the plurality of heat transfer panels 113 are arranged in the horizontal direction at intervals.
  • the extending directions of the lower manifold 111 and the upper manifold 112 coincide with the alignment directions of the plurality of heat transfer panels 113.
  • the lower manifold 111 is used to distribute the liquefied gas to the plurality of heat transfer panels 113.
  • the plurality of heat transfer panels 113 are used to exchange heat with the seawater supplied from the seawater flow portion.
  • the upper manifold 112 is used to aggregate the vaporized gas obtained as a result of heat exchange between the liquefied gas and seawater.
  • a supply device (not shown) configured to supply vaporized gas to a predetermined demand destination (not shown) is connected to the upper manifold 112.
  • Each of the plurality of heat transfer panels 113 includes a lower header tube 114, an upper header tube 115, and a plurality of heat transfer tubes 116.
  • the lower header pipe 114 and the upper header pipe 115 are extended in the horizontal direction perpendicular to the extending direction of the lower manifold 111 and the upper manifold 112 at positions separated from each other in the vertical direction.
  • the plurality of heat transfer tubes 116 extend vertically between the lower header tube 114 and the upper header tube 115, respectively.
  • the lower header tube 114 extends from the lower manifold 111 to form the lower edge of the heat transfer panel 113, while the upper header tube 115 extends from the upper manifold 112 to form the upper edge of the heat transfer panel 113. doing.
  • the plurality of heat transfer tubes 116 extend upward from the lower header tube 114 and are connected to the upper header tube 115.
  • the plurality of heat transfer tubes 116 are arranged in the extending direction of the lower header tube 114 and the upper header tube 115.
  • the alignment direction of the plurality of heat transfer tubes 116 is referred to as a "first horizontal direction” in the following description.
  • the horizontal direction perpendicular to the first horizontal direction (that is, the extension direction of the lower manifold 111 and the upper manifold 112) is referred to as a "second horizontal direction" in the following description.
  • the seawater flow portion is configured to sprinkle seawater on a plurality of heat transfer tubes 116 of each of the plurality of heat transfer panels 113.
  • the seawater flow site includes a sprinkling site for storing and sprinkling seawater and a supply site for supplying seawater to the sprinkling site.
  • the seawater flow part is used to adjust the flow rate of seawater from the supply part to the sprinkling part, and to suppress the uplift of the seawater level formed in the sprinkling part. It includes a configured uplift suppression section.
  • the supply parts include a pump 121 configured to discharge seawater, a manifold 122 configured to guide the seawater discharged from the pump 121 in the second horizontal direction, and a plurality of supplies connected to the manifold 122.
  • the manifold 122 extends in the second horizontal direction at a position separated from the plurality of heat transfer panels 113 in the first horizontal direction.
  • the manifold 122 is formed with a plurality of outlets 125 from which seawater flowing into the manifold 122 flows out. These outlets 125 are spaced apart in the second horizontal direction.
  • a plurality of supply pipes 123 are connected to these outlets 125.
  • the end of the supply pipe 123 connected to the outlet 125 is referred to as the "upstream end” in the following description.
  • the end of the supply pipe 123 opposite to the upstream end is referred to as the "downstream end” in the following description.
  • the downstream end is connected to the watering site.
  • the watering site includes a plurality of troughs 130 arranged corresponding to the plurality of supply pipes 123.
  • the plurality of troughs 130 are arranged so as to be alternately arranged with the plurality of heat transfer panels 113 in the second horizontal direction.
  • the trough 130 is arranged at a position lower than that of the upper header pipe 115.
  • the trough 130 is arranged so as to be adjacent to the upper part of the plurality of heat transfer tubes 116 of the heat transfer panel 113 (above the intermediate position of the plurality of heat transfer tubes 116 in the height direction) in the second horizontal direction.
  • the trough 130 is located higher than the manifold 122 on which the outlet 125 is formed.
  • Each of the plurality of troughs 130 has a box body 131 configured to store seawater flowing in through the corresponding supply pipe 123, and a plurality of heat transfer tubes of the heat transfer panel 113 corresponding to the seawater overflowing from the box body 131. It includes a guide portion 139 configured to guide to the outer surface.
  • the box body 131 is a rectangular box that is long in the first horizontal direction and short in the second horizontal direction.
  • the box body 131 is open upward.
  • the box body 131 includes an elongated substantially rectangular bottom wall 132 in the first horizontal direction, and a peripheral wall 133 erected above the outer peripheral edge of the bottom wall 132.
  • the peripheral wall 133 has a pair of side walls 134 and 135 erected upward from a pair of longitudinally extending edges of the bottom wall 132 and a first erected upward from a pair of laterally extending edges of the bottom wall 132. It includes one end wall 136 and a second end wall 137.
  • the side walls 134 and 135 are erected at positions separated from each other in the second horizontal direction, while the first end wall 136 and the second end wall 137 are erected at positions separated from each other in the first horizontal direction. ing.
  • the lengths of the side walls 134 and 135 and the bottom wall 132 in the first horizontal direction are set to a value larger than the length of the pipe rows of the plurality of heat transfer tubes 116 arranged in the first horizontal direction.
  • the box 131 is arranged so that the side walls 134 and 135 overlap the entire row of the plurality of heat transfer tubes 116 in the second horizontal direction.
  • the first end wall 136 is arranged closer to the outlet 125 of the manifold 122 than the second end wall 137.
  • the first end wall 136 is formed with an inflow port 138 to which the downstream end of the supply pipe 123 is connected (see FIG. 1).
  • the center of the inflow port 138 is located below the center of the first end wall.
  • the position of the inflow port 138 of the first end wall 136 in the second horizontal direction substantially coincides with the position of the outflow port 125 of the manifold 122 in the second horizontal direction. Since the trough 130 is located higher than the manifold 122, the inflow port 138 formed on the first end wall 136 of the trough 130 is also located higher than the outlet 125 of the manifold 122.
  • the height dimensions of the first end wall 136 and the second end wall 137 are the side wall 134.
  • 135 is set to a value larger than the height dimension. That is, the upper edges of the first end wall 136 and the second end wall 137 extend at positions higher than the upper edges of the side walls 134 and 135.
  • the height dimensions of the first end wall 136, the second end wall 137 and the right side wall 135 are such that the left side wall 134 (ie, the heat transfer panel 113 side).
  • the value is set to be larger than the height dimension of the facing side wall 134). That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 135 extend at a position higher than the upper edge of the side wall 134. That is, the side wall on the side opposite to the side wall has a larger height than the side wall on the heat transfer panel 113 side.
  • the height dimensions of the first end wall 136, the second end wall 137 and the left side wall 134 are such that the right side wall 135 (ie, the heat transfer panel 113 side).
  • the value is set to be larger than the height dimension of the facing side wall 135). That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 134 extend at a position higher than the upper edge of the side wall 135.
  • the guide portion 139 forms an inclined surface inclined downward from the upper edge of at least one of the side walls 134 and 135 toward the heat transfer panel 113 to which the seawater is supplied.
  • the inclined surface allows seawater that is supplied to the trough 130 beyond the volume of the box body 131 and overflows beyond the upper edges of the side walls 134 and 135 of the box body 131 to a plurality of heat transfer tubes 116 of the corresponding heat transfer panel 113. Used to guide.
  • the guide portion 139 is provided so as to project to the right from the upper edge of the side wall 135 on the heat transfer panel 113 side.
  • the guide portion 139 is not provided on the side wall 134 on the opposite side.
  • the guide portion 139 is provided so as to project to the left from the upper edge of the side wall 134 on the left side.
  • the guide 139 is provided so as to project outward from the upper edges of the side walls 134, 135.
  • FIG. 3 is a schematic vertical sectional view of the box body 131.
  • the flow rate adjusting unit includes a closing member 140 attached to the inner surface of the box 131 so as to partially close the inflow port 138.
  • the closing member 140 is used to make the inflow of seawater substantially uniform among the plurality of troughs 130.
  • an orifice having an opening 141 formed in the first horizontal direction can be preferably used as the closing member 140.
  • the opening 141 has a smaller area than the inflow port 138.
  • the closing member 140 is attached to the inner surface of the first end wall 136 and / or the side walls 134, 135.
  • the closing member 140 is removable from the first end wall 136 and / or the side walls 134, 135.
  • the side edge of the closing member 140 may be inserted into the vertical groove portion formed on the inner surface of the side walls 134 and 135.
  • the ridge suppressing portion includes a resistance member arranged between the first end wall 136 and the second end wall 137.
  • the resistance member is arranged so that the seawater flowing in from the inflow port 138 collides with the resistance member before colliding with the second end wall 137.
  • the resistance member includes a baffle plate (resistor) 151 erected above the bottom wall 132. Three baffle plates 151 are shown in FIG.
  • the plurality of baffle plates 151 are arranged at intervals in the first horizontal direction between the first end wall 136 and the second end wall 137.
  • the plurality of baffle plates 151 are attached to the bottom wall 132 and / or the side walls 134 and 135.
  • the plurality of baffle plates 151 may be removable from the bottom wall 132 and / or the side walls 134, 135.
  • the height dimension of the baffle plate 151 is smaller than the height dimension of the peripheral wall 133. Therefore, a space for seawater to flow in the first horizontal direction is formed above the baffle plate 151.
  • the liquefied gas is supplied to the lower manifold 111 by a pump (not shown). After flowing into the lower manifold 111, the liquefied gas flows into the lower header pipe 114 of each of the plurality of heat transfer panels 113. After flowing into the lower header pipe 114, the liquefied gas flows upward along a plurality of heat transfer tubes 116 extending upward from the lower header pipe 114. During this time, the liquefied gas exchanges heat with the seawater supplied from the seawater flow site and becomes a vaporized gas. The vaporized gas flows upward and flows into the header pipe 115. After that, the vaporized gas flows through the upper header pipe 115 and is collected in the upper manifold 112.
  • the seawater is supplied to the manifold 122 by the pump 121.
  • the seawater is guided in the second horizontal direction by the manifold 122 and distributed to a plurality of supply pipes 123 attached to the manifold 122.
  • the seawater that has flowed through the supply pipe 123 flows into the corresponding trough 130.
  • the seawater flowing into the trough 130 forms a liquid layer in the space surrounded by the bottom wall 132 and the peripheral wall 133.
  • the seawater overflows beyond the upper edges of the side walls 134 and 135.
  • the seawater then flows down along the slope of the guide 139.
  • the seawater is sprinkled on the upper portions of the plurality of heat transfer tubes 116 located on the side of the box 131.
  • the sprinkled seawater flows down while forming a liquid film on the outer surface of the plurality of heat transfer tubes 116. Since the liquefied gas flows upward inside the plurality of heat transfer tubes 116, the seawater can exchange heat with the liquefied gas. That is, the liquefied gas is vaporized. The vaporized gas is collected in the upper manifold 112 through the plurality of upper header pipes 115 as described above.
  • the flow path of seawater from the manifold 122 to the plurality of troughs 130 is compared with the structure of the conventional vaporizer as follows.
  • the seawater flow path is configured so that the seawater flows in from the bottom surface of the trough, so that the seawater flow path extends from the manifold beyond the first end wall to the bottom surface of the trough. It is connected to the formed inlet.
  • the supply pipe 123 does not extend from the manifold 122 beyond the first end wall 136, which not only saves the material cost of the supply pipe 123 but also flows into the seawater flowing in the supply pipe 123. The resistance is low.
  • fluid parts such as butterfly valves and orifices are generally arranged in the flow path extending from the manifold to multiple troughs. These fluid components are used to suppress variations in the amount of seawater flowing into a plurality of troughs.
  • the closing member 140 is used in order to suppress the variation in the amount of seawater among the plurality of troughs.
  • the closing member 140 is compared to a conventional fluid component as follows.
  • the operator performing the replacement work can easily access the closing member 140 through the upward opening of the box body 131.
  • the operator can pull out the existing closing member 140 from the box body 131 and install a new closing member in the box body 131.
  • the replacement of the closing member 140 does not require disassembly of the supply pipe 123.
  • the large space above the trough 130 is utilized for replacement work rather than the narrow space provided by the short supply pipe 123. Therefore, the replacement of the closing member 140 is relatively easy.
  • FIG. 3 shows a straight line (solid line) extending in the first horizontal direction and a curved line drawn by a dotted line above the plurality of obstacle plates 151.
  • the solid line schematically represents the liquid level of seawater assumed in the presence of a plurality of obstacle plates 151.
  • the dotted line schematically represents the liquid level of seawater assumed in the absence of the plurality of obstacle plates 151.
  • the liquid level of the seawater in the box 131 rises upward near the inner surface of the second end wall 137.
  • baffle plate 151 that is, the first end wall arranged at the most upstream. It collides with the baffle plate 151) arranged at the position closest to 136.
  • a part of the seawater that collides with the obstacle plate 151 turns and flows in a direction other than the first horizontal direction, while the other seawater passes over the obstacle plate 151 and flows toward the second end wall 137.
  • the seawater that has passed over the most upstream obstacle plate 151 collides with the next obstacle plate 151.
  • the seawater component that flows vigorously toward the second end wall 137 gradually decreases. Since the collision force generated between the seawater and the second end wall 137 is smaller in the presence of the plurality of obstruction plates 151 than in the absence of the plurality of obstruction plates 151, the collision force of the seawater with respect to the second end wall 137 occurs. The momentum of the upward seawater flow caused by this also weakens. As a result, the height of the liquid level uplift near the inner surface of the second end wall 137 becomes low.
  • the number of baffle plates 151 to be arranged is determined so that the liquid level of seawater in the trough 130 is substantially flat based on the flow velocity of the seawater flowing into the trough 130 and the flow mode of the seawater in the trough 130. It is preferable to be done. Therefore, the resistance member may be one or two baffle plates 151, or may be a baffle plate 151 exceeding three.
  • resistance member instead of the baffle plate 151, another resistance member configured to collide with the seawater flowing in from the inflow port 138 may be used.
  • Alternative members that can be used as resistance members are described with reference to FIGS. 4 and 5. 4 and 5 are schematic perspective views of the alternative member.
  • a perforated plate 152 having a large number of through holes formed in the first horizontal direction may be used as a resistance member (see FIG. 4). Since seawater can pass through the through hole of the perforated plate 152, the perforated plate 152 may have substantially the same height dimension as the peripheral wall 133.
  • a block body 153 whose dimensional difference in the first horizontal direction, the second horizontal direction, and the vertical direction is smaller than that of the baffle plate 151 may be used as the resistance member (FIG. 5). See). It is preferable that the shape and size of the member used as the uplift suppressing portion are determined so that the liquid level of the seawater in the box 131 is substantially flat.
  • the obstruction plate 151, the perforated plate 152, and the block body 153 exemplified as the uplift suppressing portion relax the momentum of the seawater toward the second end wall 137 before the seawater collides with the second end wall 137, and the liquid level rises. Suppress.
  • the ridge suppressing portion may be a member arranged so as to collide with the upward flow of the heating liquid generated in the box body 131.
  • the ridge suppressor arranged to collide with the upward flow of the heating liquid will be described with reference to FIGS. 1, 6 to 25. 6 to 25 are schematic cross-sectional views of the box 131.
  • the ridge suppressing portion may be a plate-shaped lid member 154 arranged in the box body 131 near the second end wall 137. A large number of through holes are formed in the lid member 154. Therefore, as the lid member 154, a perforated plate (plate member) can be preferably used.
  • the lid member 154 may be used alone as a ridge suppressing portion (see FIG. 6), or may be used as a ridge suppressing portion together with a resistance member (for example, a baffle plate 151).
  • the lid member 154 extends in the first horizontal direction from the vicinity of the second end wall 137 and is arranged so as to lie substantially horizontally.
  • the lid member 154 partitions a part of the internal space of the box body 131 up and down near the second end wall 137.
  • the pair of side edges of the lid member 154 may be attached to the inner surfaces of the side walls 134, 135.
  • the downstream edge of the lid member 154 may be attached to the inner surface of the second end wall 137 and abut on the inner surface of the second end wall 137 (see FIG. 6).
  • the first horizontal position of the lid member 154 may be determined such that the downstream edge of the lid member 154 is slightly spaced from the inner surface of the second end wall 137 (see FIG. 7).
  • the downstream edge of the lid member 154 is close to the inner surface of the second end wall 137, whereas the upstream edge of the lid member 154 is significantly distant from the inner surface of the upstream first end wall 136. It is preferable that the lid member 154 is removable from the box body 131.
  • the lid member 154 is arranged at a position higher than the inflow port 138. Therefore, most of the seawater that has flowed into the box 131 from the inflow port 138 through the opening of the closing member 140 (orifice) collides with the inner surface of the second end wall 137 below the lid member 154.
  • the lid member may not have a through hole as long as the effect of suppressing the local uplift of the liquid level can be obtained over the entire trough 130.
  • seawater can flow into the space above the lid member through the space between the upstream edge of the lid member and the first upstream wall 136.
  • the lid member 154 of FIGS. 6 and 7 is arranged closer to the second end wall 137 than to the first end wall 136. However, the lid member 154 may be located closer to the first end wall 136 than to the second end wall 137 (see FIG. 8). In this case, the upward flow of the heating liquid generated near the first end wall 136 on which the inflow port 138 is formed collides with the lid member 154. As a result, the upward flow of the heating liquid near the first end wall 136 is weakened, and the uplift of the liquid level of the heating liquid near the first end wall 136 is suppressed.
  • the lid member 154 of FIGS. 6 to 9 is arranged near the first end wall 136 or the second end wall 137. However, the lid member 154 is arranged at a position substantially equidistant from the first end wall 136 and the second end wall 137 (that is, a substantially intermediate position in the longitudinal direction (first horizontal direction) of the box body 131). It may be (see FIG. 9). In this case, the uplift of the liquid level of the heating liquid is suppressed at a substantially intermediate position in the longitudinal direction of the box body 131.
  • FIG. 6 to 8 show a single perforated plate as the lid member 154.
  • a plurality of perforated plates (plate members) 155 may be arranged in the box 131 as lid members 154 (see FIG. 10). These perforated plates 155 are arranged at intervals in the first horizontal direction. In addition, these perforated plates 155 are arranged at a substantially constant height position (higher than the inflow port and lower than the upper edge of the box 131).
  • the most downstream perforated plate 155 corresponds to the lid member 154 described with reference to FIGS. 6-8. That is, the most downstream perforated plate 155 contributes to the suppression of the uplift of the liquid level near the second end wall 137.
  • the other perforated plate 155 contributes to suppressing the waviness of the liquid level caused by the seawater from the inflow port 138.
  • the waviness of the liquid surface is suppressed to some extent by forming the inflow port 138 in the lower region of the first end wall 136, but it is also effectively suppressed by these perforated plates 155.
  • thin plates having no through holes may be attached at the arrangement positions of these perforated plates 155.
  • seawater can flow into the region above the placement height of these thin plates through the voids between the adjacent thin plates. Even with a plurality of thin plates, an effect of suppressing the waviness and uplift of the liquid surface can be obtained.
  • one perforated plate 156 long in the first horizontal direction may be used as the lid member 154 (see FIG. 11).
  • the perforated plate 156 shown in FIG. 11 vertically partitions the internal space of the box body 131 over a section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137.
  • the height position of the perforated plate 156 is equal to the height position of the perforated plate 155 of FIG. Seawater can flow into the space above the perforated plate 156 through the through hole of the perforated plate 156.
  • a single-layer lid member 154 is arranged in the box body 131 of FIGS. 6 to 11. However, a plurality of layers of lid members 154 may be arranged in the box 131 (see FIGS. 12 to 15). That is, on the upper side of the lid member 154, another lid member 154 is provided at a position separated from the lid member 154. 12 to 21 show two-layer lid members 154 arranged at intervals in the vertical direction. Both of these lid members 154 are provided above the inflow port 138 and below the liquid level of the heating liquid in the box 131.
  • Both of the two-layer lid member 154 of FIG. 12 partition the internal space of the box body 131 up and down over the entire section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137.
  • These lid members 154 may be configured by using the perforated plate 156 described with reference to FIG.
  • the upward heating liquid collides with the lower lid member 154 and the upper lid member 154 in sequence.
  • the momentum of the upward heating liquid is more effectively weakened by the two-layer lid member 154 of FIG. 12 than by the single-layer lid member 154 of FIG. Therefore, the uplift of the liquid level of the heating liquid is effectively suppressed.
  • the lid member 154 of FIG. 12 is provided over the entire length of the box body 131, waviness and ridge of the liquid surface are suppressed over the entire length of the box body 131.
  • the structure of the two-layer lid member 154 may be provided only in that region (see FIGS. 13 to 15).
  • the lower lid member 154 of FIGS. 13 to 15 is the same as the lower lid member 154 of FIG. 12, while the upper lid member 154 of FIGS. 13 to 15 is from the lower lid member 154. Is also short in the longitudinal direction of the box 131.
  • the upper lid member 154 is arranged near the first end wall 136 (see FIG. 13). If it is known that a strong upward flow occurs at an intermediate position in the longitudinal direction of the box 131, the lid member 154 of the upper box 131 is arranged at an intermediate position of the box 131 (see FIG. 14). .. If it is known that a strong upward flow occurs near the second end wall 137, the upper lid member 154 is placed near the second end wall 137 (see FIG. 15).
  • the short lid member 154 of FIGS. 13 to 15 is arranged above the long lid member 154. However, the short lid member 154 may be located below the long lid member 154 (see FIGS. 16-18).
  • the short lid member 154 of FIG. 16 is located near the first end wall 136.
  • the short lid member 154 of FIG. 17 is arranged at an intermediate position of the box body 131.
  • the short lid member 154 of FIG. 18 is located near the second end wall 137.
  • the region where the short lid member 154 is present and the region where the short lid member 154 is not present are the heating liquids. Formed near the liquid level of. In this case, the influence of the presence or absence of the short lid member 154 on the flow of the heating liquid tends to appear in the shape of the liquid surface.
  • the influence of the presence or absence of the short lid member 154 on the flow of the heating liquid is on the upper side. The long lid member 154 makes it difficult to appear on the liquid surface.
  • the long lid member 154 is not always required (see FIGS. 19 to 21). If it is known that the single-layer lid member 154 produces a strong upward flow near the first end wall 136 that cannot sufficiently suppress the uplift of the liquid level, two near the first end wall 136. Short lid members 154 may be stacked vertically spaced apart (see FIG. 19). If it is known that a strong upward flow occurs at the intermediate position of the box 131, two short lid members 154 may be vertically spaced apart at the intermediate position of the box 131 (FIG. 20). See). Two short lid members 154 may be vertically spaced apart near the second end wall 137, provided that a strong upward flow is known to occur near the second end wall 137. See FIG. 21).
  • FIGS. 12 to 21 two lid members 154 are shown. However, in the box 131, more than two lid members 154 may be aligned in the vertical direction.
  • the lid member 154 When the lid member 154 is arranged in the box body 131, the lid member 154 may be used for fixing the baffle plate 151 (see FIGS. 22 to 24).
  • the structure of the lid member 154 shown in FIGS. 22 to 24 is the same as the structure of the lid member 154 of FIG.
  • the baffle plate 151 of FIGS. 22 to 24 is fixed to the lower long lid member 154 in a substantially vertical posture.
  • the upper edge of the baffle plate 151 is connected to the lower surface of the lower long lid member 154.
  • the lower edge of the baffle plate 151 is separated upward from the bottom wall 132 of the box body 131.
  • the space between the lower edge of the baffle plate 151 and the bottom wall 132 is formed to allow the passage of the heating liquid toward the second end wall 137.
  • the baffle plate 151 of FIG. 22 is fixed to a long lid member 154 on the lower side closer to the first end wall 136 than the second end wall 137.
  • the baffle plate 151 of FIG. 23 is fixed to the lower long lid member 154 near the intermediate position of the box body 131.
  • the baffle plate 151 of FIG. 24 is fixed to a long lid member 154 on the lower side closer to the second end wall 137 than the first end wall 136.
  • baffle plate 151a having a through hole may be used instead of the baffle plate 151 (see FIG. 25).
  • the baffle plate 151a of FIG. 25 is fixed to the lower surface of the lower long lid member 154 at the same position as the baffle plate 151 of FIG. 22.
  • the baffle plate 151a When the baffle plate 151a is used, the baffle plate 151a may be connected to the bottom wall 132.
  • the flow of the heating liquid flowing horizontally through the space between these lid members 154 flows.
  • the liquid level of the heating liquid may be raised.
  • this horizontal flow passes through the region where the lid members 154 overlap, the heating liquid flows while spreading up and down. Since these lid members 154 are arranged near the liquid level, the heating liquid that spreads in the vertical direction tends to cause the liquid level to rise.
  • a vertical lid 157 may be provided in order to prevent or suppress the generation of the heating liquid that spreads in the vertical direction.
  • the lid member 154 of FIG. 26 has the same structure as the lid member of FIG.
  • the vertical lid 157 of FIG. 26 is fixed to the end edge of the upper short lid member 154 (the end edge on the second end wall 137 side) and the upper surface of the lower long lid member 154 on the second end wall 137 side. , The gap between these lid members 154 is closed.
  • the lid member 154 of FIG. 27 has the same structure as the lid member 154 of FIG.
  • the lid member 154 of FIG. 28 has the same structure as the lid member 154 of FIG.
  • the vertical lid 157 of FIG. 28 is fixed to the edge of these lid members 154 (the edge on the side of the first end wall 136) and closes the gap between the lid members 154.
  • the vertical lid 157 may completely close the gap (the gap opened in the horizontal direction) between the lid members 154, or may partially close the gap.
  • a through hole may be formed in the vertical lid 157 connected to both lid members 154, or a through hole may be formed or penetrated.
  • the upper or lower edge of the vertical lid 157 in which the hole is not formed may be separated from the lower surface or the upper surface of the upper and lower lid members 154.
  • liquefied natural gas is exemplified as the liquefied gas.
  • the liquefied gas may be liquefied petroleum gas or liquid nitrogen.
  • seawater is exemplified as a heating liquid.
  • another liquid having a temperature higher than that of the liquefied gas may be used as the heating liquid.
  • FIG. 29 is a schematic cross-sectional view of the manifold 122.
  • the inflow port 138 of the first end wall 136 is arranged at a different height position from the outflow port 125 of the manifold 122.
  • the inflow port 138 of the first end wall 136 may have a relative positional relationship between the manifold 122 and the plurality of troughs 130 so as to be substantially coaxial with the outflow port 125 of the manifold 122 (FIG. FIG. 29). That is, the manifold 122 may be arranged at a position higher than the position shown in FIG. 1 so that the height position of the manifold 122 is substantially equal to the height position of the plurality of troughs 130.
  • a straight pipe type supply pipe 123 can be preferably used as the supply pipe connected to these, and a flow path shorter than the curved flow path is formed.
  • the inflow amount of seawater between the plurality of troughs 130 is made uniform by using the closing member 140.
  • Flow rate adjusting components such as a valve body and an orifice may be attached to the plurality of supply pipes 123 in order to increase the adjustment range of the amount of seawater flowing into each of the plurality of troughs 130.
  • the closing member 140 is formed by using an orifice.
  • the closing member 140 may be formed by using the perforated plate 142.
  • a plurality of baffle plates 151 are used as the ridge suppressing portion.
  • a single baffle plate may be used as the ridge suppressor. How many baffles are used as the uplift suppressor may be determined based on the flow rate of seawater flowing into the trough 130 and the size of the inflow port 138. Based on these design conditions, the arrangement interval of the plurality of baffle plates 151 and the heights of the plurality of baffle plates 151 may be determined.
  • the baffle plate 151 is fixed in the box body 131 in a substantially vertical posture.
  • the vaporizer 100 may have a baffle plate 151'fixed in the box 131 in an inclined position (see FIGS. 31 and 32).
  • the baffle plate 151'shown in FIGS. 31 and 32 is fixed to the bottom wall 132.
  • the baffle plate 151'in FIG. 31 is inclined from the bottom wall 132 toward the upper edge of the baffle plate 151' toward the second end wall 137.
  • the baffle plate 151'in FIG. 32 is inclined from the bottom wall 132 toward the upper edge of the baffle plate 151' toward the first end wall 136 side.
  • the baffle plate 151' may be separated from the bottom wall 132. In this case, the baffle plate 151'is fixed to the side walls 134 and 135.
  • the heating liquid that collides with the baffle plate 151' tends to flow diagonally downward.
  • the flow velocity of the heating liquid near the bottom wall 132 of the box body 131 tends to increase.
  • the bias of the velocity distribution of the heating liquid in the depth direction of the box 131 is alleviated. In this case, the waviness of the liquid surface of the heating liquid is suppressed.
  • the resistance member may have a plurality of baffle plates 151 ′′ (resistors) arranged at intervals from each other (see FIG. 33).
  • the plurality of baffle plates 151 ′′ of FIG. 33 are installed at three locations in the first horizontal direction. At each of these installation locations, the two baffle plates 151 ′′ are arranged at intervals in the vertical direction. A part of the heating liquid that collides with the baffle plates 151 ′′ can pass through the space between these baffle plates 151 ′′ and flow downstream.
  • the size of the void is adjusted by the distance between the two baffle plates 151'' arranged in the vertical direction. By adjusting these distances, the influence of the baffle plate 151'' on the heating liquid and the baffle plate 151'' The amount of heating liquid flowing beyond'' can be set to an appropriate value.
  • FIG. 34 is a schematic perspective view of the open rack type vaporizer 100'of the second embodiment.
  • FIG. 35 is a schematic cross-sectional view of the vaporizer 100'. The vaporizer 100'is described with reference to FIGS. 34 and 35.
  • the vaporizer 100'of the second embodiment uses two supply pipes 123, 123'that differ in the cross-sectional area of the flow path with respect to the supply paths for supplying the heating liquid from the manifold 122 to the four troughs 130. , It is different from the vaporizer 100 of the first embodiment.
  • the supply pipe 123 is connected to the outermost two troughs 130 out of the four troughs 130 spaced apart from each other in the second horizontal direction.
  • the flow path cross-sectional area of the supply pipe 123'used to supply the heating liquid to the remaining trough 130 is larger than the flow path cross-sectional area of the supply pipe 123.
  • Each of the two outermost troughs 130 is adjacent to one heat transfer panel 113.
  • each of the remaining two troughs 130 is adjacent to the two heat transfer panels 113. Therefore, each of the two outermost troughs 130 need only supply the heating liquid to one heat transfer panel 113, whereas each of the remaining two troughs 130 is for heating to the two heat transfer panels 113. It is necessary to supply the liquid. Therefore, it is necessary that more heating liquid flows out from the remaining two troughs 130 than the amount of the heating liquid flowing out from the outermost two troughs 130. Therefore, it is necessary to supply more heating liquid to the remaining two troughs 130 than the amount of the heating liquid supplied to the outermost two troughs 130.
  • the flow path cross-sectional area of the supply pipe 123' is larger than the flow path cross-sectional area of the supply pipe 123, more heating liquid is supplied than the supply amount of the heating liquid to the outermost two troughs 130. It becomes possible to supply to the remaining two troughs 130. In order to obtain such a magnitude relationship of the flow rate, it is not necessary to attach a fluid device (for example, a flow rate adjusting valve or an orifice) for adjusting the flow rate to the supply pipes 123, 123'.
  • a fluid device for example, a flow rate adjusting valve or an orifice
  • the vaporizer described in connection with the various embodiments described above mainly has the following features.
  • the vaporizer is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas.
  • the vaporizer supplies the heating liquid to the heat transfer panel configured so that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction and the outer surface of the plurality of heat transfer tubes.
  • the truffles are arranged at a position lower than the upper edge of the heat transfer panel, and the truffles are arranged on one end side of the truffles in the alignment direction of the plurality of heat transfer tubes. It is provided with a manifold configured to supply the heating liquid to the heat pipe.
  • the trough is aligned with a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction. It includes a second end wall erected at another end of the bottom wall that is distant from the first end wall in the direction. An inflow port into which the heating liquid flows is formed on the first end wall.
  • the manifold configured to supply the heating liquid to the trough is arranged on the first end wall side of the trough, and the inflow port is formed on the first end wall.
  • the flow path of the heating liquid from the manifold to the trough is shortened.
  • the flow path of the heating liquid from the manifold to the trough is different from the structure in which the heating liquid flows into the trough having an inflow port formed in the bottom wall from the manifold, and the flow path of the heating liquid is over the first end wall of the bottom wall. It does not have to extend to the inlet.
  • the vaporizer is configured to suppress the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid flowing into the trough with the second end wall. It may further include a raised restraint portion.
  • the heating liquid that has flowed into the trough through the inflow port flows toward the second end wall and collides with the second end wall.
  • a part of the heating liquid that collides with the second end wall flows upward near the second end wall and tries to raise the liquid level of the heating liquid upward.
  • the uplift suppressing portion suppresses the uplift of the liquid surface, excessive supply of the heating liquid to the outer surface of the heat transfer tube near the second end wall is prevented. Therefore, the variation in the amount of heat exchange between the plurality of heat transfer tubes is suppressed.
  • the ridge restraining portion includes a lid member extending in the alignment direction between the first end wall and the second end wall at a position higher than the inflow port in the trough. You may be.
  • the lid member may be arranged on the first end wall side, the second end wall side, or at an intermediate position between the first end wall and the second end wall. ..
  • the lid member when the lid member is arranged on the first end wall side, the uplift of the heating liquid is suppressed near the inflow port.
  • the lid member When the lid member is arranged on the second end wall side, the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid with the second end wall is suppressed.
  • the lid member When the lid member is arranged at an intermediate position between the first end wall and the second end wall, the uplift of the liquid level of the heating liquid at the intermediate position is suppressed.
  • the lid member is a plate member that is entirely arranged in the alignment direction from the first end wall to the second end wall, or in a section from the first end wall to the second end wall. It may be composed of a plurality of plate members arranged at intervals in the alignment direction.
  • the lid member when the lid member is composed of plate members arranged entirely in the alignment direction from the first end wall to the second end wall, the waviness or ridge of the liquid level of the heating liquid is caused by the trough. It is suppressed over the entire length.
  • the lid member is composed of a plurality of plate members arranged at intervals in the alignment direction in the section from the first end wall to the second end wall, the uplift of the liquid level of the heating liquid is a trough. It is suppressed over a wide range in the longitudinal direction of the trough without excessive weight gain.
  • the lid member may be formed with a through hole that penetrates the lid member in the vertical direction.
  • a part of the heating liquid flowing upward can flow into the space above the lid member through the through hole of the lid member. As the heating liquid passes through the through hole, resistance is applied to the heating liquid, so that the uplift of the liquid level near the second end wall is suppressed.
  • the ridge suppressing portion may include a resistance member arranged between the first end wall and the second end wall.
  • the heating liquid flowing in from the inflow port collides with the resistance member before colliding with the second end wall, and is therefore decelerated by the resistance member before colliding with the second end wall. Therefore, even if the heating liquid collides with the second end wall, a large collision force is not generated, and the flow of the heating liquid having a large velocity component is less likely to occur upward. That is, the uplift of the liquid level near the second end wall is suppressed.
  • the resistance member may be installed in a posture perpendicular to or inclined with respect to the bottom wall of the trough.
  • the resistance member when the resistance member is installed in a posture perpendicular to the bottom wall of the trough, the force of the heating liquid is effectively reduced by the collision of the heating liquid with the resistance member. To. When the resistance member is installed in an inclined posture with respect to the bottom wall of the trough, it is possible to weaken the momentum of the heating liquid and change the flow direction of the heating liquid.
  • the resistance member may be installed away from the bottom wall of the trough.
  • a part of the heating liquid can flow downstream through the gap between the resistance member and the bottom wall of the trough. Since this void is separated from the liquid level of the heating liquid, the liquid level does not rise significantly due to the flow of the heating liquid passing through the void. Since the heating liquid can flow through the voids to the second end wall, there is no excessive decrease in the outflow amount of the heating liquid near the second end wall.
  • the resistance member may be composed of a plurality of resistors arranged apart from each other.
  • the resistance member is composed of a plurality of resistors arranged apart from each other, it is possible to set a plurality of regions in the trough where the heating liquid collides with the resistance member. ..
  • the smaller the spacing between these resistors the greater the resistance to the heating liquid.
  • the greater the spacing between these resistors the smaller the resistance to the heating liquid. Therefore, by adjusting the spacing between these resistors, the resistance to the heating liquid can be set to an appropriate value.
  • the resistance member may be formed with a through hole penetrating the resistance member in the alignment direction.
  • the through holes penetrating the resistance member are formed in the alignment direction of the plurality of heat transfer tubes, a part of the heating liquid flowing in from the inflow port formed in the first end wall is formed. It can flow from the upstream region to the downstream region of the resistance member through the through hole of the resistance member. As the heating liquid passes through the through hole, a large resistance is applied to the heating liquid, so that the pressure of the heating liquid from the first end wall to the second end wall decreases. As a result, the uplift of the liquid level near the second end wall is suppressed.
  • the vaporizer may further include a closing member arranged in the trough so as to partially close the inflow port.
  • the closing member may be removable from the trough.
  • the closing member since the closing member partially closes the inflow port, it is possible to give resistance to the heating liquid at the inflow port of the trough and adjust the inflow amount of the heating liquid into the trough. Since the closing member is removable from the trough, the resistance to the heating liquid passing through the inflow port can be reduced by removing the closing member from the trough.
  • the vaporizer has a plurality of heat transfer tubes, another heat transfer panel arranged apart from the heat transfer panel, and the plurality of heat transfer tubes of the other heat transfer panel.
  • the other trough configured to supply the heating liquid to the outer surface, and the trough and the other trough to supply the heating liquid from the manifold to the trough and the other trough, respectively. It may further include a plurality of connected supply pipes.
  • One of the heat transfer panel and the other heat transfer panel may be configured to exchange heat between the heating liquid and the liquefied gas at a flow rate smaller than that of the other heat transfer panel.
  • the flow path cross-sectional area of the supply pipe connected to the trough corresponding to the one heat transfer panel may be smaller than the flow path cross-sectional area of the supply pipe connected to the trough corresponding to the other heat transfer panel. ..
  • the trough receives the heating liquid through a plurality of supply pipes connected to the manifold, so that the amount of the heating liquid supplied to the trough depends on the flow path cross-sectional area of these supply pipes. change. Since the flow path cross-sectional area of the supply pipe connected to the trough that supplies the heating liquid to the heat transfer panel, which requires a relatively small flow rate of the heating liquid for heat exchange between the heating liquid and the liquefied gas, is relatively small. , Unnecessarily much heating liquid is not supplied to the trough.
  • the vaporizer comprises at least two heat transfer panels including the heat transfer panel and spaced apart from each other, three troughs including the trough, and the heating liquid in the three troughs.
  • a plurality of supply pipes connected to the three troughs so as to be supplied from the manifold may be further provided.
  • Two of the three troughs are respectively located outside the row of the at least two heat transfer panels so that they are adjacent to only one of the at least two heat transfer panels, while the remaining troughs. May be located between adjacent heat transfer panels.
  • the flow path cross-sectional area of the pair of supply pipes connected to the two troughs may be smaller than the flow path cross-sectional area of the supply pipes connected to the remaining troughs.
  • one heat transfer panel is adjacent to the two outer troughs, while two heat transfer panels are adjacent to the remaining troughs. Therefore, from the two outer troughs, the heating liquid flows down to one heat transfer panel, while from the remaining troughs, the heating liquid flows down to the two heat transfer panels.
  • the heating liquid is supplied to the two outer troughs. The amount is relatively small.
  • the trough receives the heating liquid through a plurality of supply pipes connected to the manifold, the amount of the heating liquid supplied to the trough varies depending on the flow path cross-sectional area of these supply pipes. Therefore, a flow rate corresponding to the number of heat transfer panels to which the heating liquid is supplied can be obtained. Therefore, it is not necessary to attach a fluid device (for example, a valve body) for reducing the supply amount of the heating liquid to the two outer trough supply pipes.
  • a fluid device for example, a valve body
  • the vaporizer may further include another lid member arranged at a position vertically separated from the lid member.
  • At least one of the lid member and the other lid member may be entirely arranged in the trough.
  • the vaporizer may further include a vertical lid arranged in a gap between the lid member and the other lid member.
  • a part of the heating liquid that collides with the upper lid member among the lid member and other lid members flows along the gap between these lid members. Since a vertical lid is arranged between these lid members, the heating liquid flowing along the gap between these lid members receives resistance from the vertical lid, and the force of the heating liquid weakens.
  • the ridge suppressing portion may include a resistance member arranged between the first end wall and the second end wall.
  • the resistance member may be in contact with the lower surface of the lid member. Before the heating liquid flowing into the trough from the inflow port collides with the second end wall, the collision force of the heating liquid with respect to the second end wall is suppressed by colliding with the resistance member. May be done.
  • the resistance member may be formed with a through hole penetrating the resistance member in the alignment direction.
  • the resistance member since the resistance member is in contact with the lower surface of the lid member, the resistance member can be attached to the lid member. Since a through hole is formed in the resistance member, the heating liquid can flow toward the second end wall through the through hole. Therefore, there is no excessive decrease in the liquid level of the heating liquid near the second end wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present application discloses a vaporization device that vaporizes liquefied gas by the heat exchange of the liquefied gas with a heating liquid. The vaporization device comprises: a heat transfer panel configured from a plurality of heat transfer tubes that are provided standing therein to guide liquefied gas and that are aligned in a horizontal direction; a trough that is configured to supply the heating liquid to the outer surface of the plurality of the heat transfer tubes; and a manifold in which is formed an outflow port out of which the heating liquid supplied to the trough flows. The trough has: a bottom wall that extends in the direction in which the plurality of heat transfer tubes are aligned; and a first end wall and a second end wall that are provided standing at positions spaced apart from each other in the direction in which the plurality of heat transfer tubes are aligned. An inflow port into which the heating liquid flows is formed in the first end wall. The manifold is positioned at the first end wall side.

Description

気化装置Vaporizer
 本発明は、液化ガスを気化するために用いられる気化装置に関する。 The present invention relates to a vaporizer used for vaporizing liquefied gas.
 低温の液化ガスの気化に用いられる様々な気化装置が開発されている。特許文献1に開示された気化装置は、液化ガスを上方に案内するように立設された複数の伝熱管の外表面に、液化ガスよりも高温の加熱用液体を散水するトラフを有している。トラフによって散水された加熱用液体が複数の伝熱管の外表面に沿って流下している間、複数の伝熱管内を流れる液化ガスは、複数の伝熱管の外表面上の加熱用液体と熱交換する。加熱用液体との熱交換の結果、液化ガスは気化する。 Various vaporizers used for vaporizing low-temperature liquefied gas have been developed. The vaporizer disclosed in Patent Document 1 has a trough for sprinkling a heating liquid having a temperature higher than that of the liquefied gas on the outer surface of a plurality of heat transfer tubes erected so as to guide the liquefied gas upward. There is. While the heating liquid sprinkled by the trough flows down along the outer surfaces of the heat transfer tubes, the liquefied gas flowing in the heat transfer tubes is heated with the heating liquid on the outer surfaces of the heat transfer tubes. Exchange. As a result of heat exchange with the heating liquid, the liquefied gas vaporizes.
 トラフは、複数の伝熱管の整列方向に対して直交する水平方向において複数の伝熱管それぞれに隣り合う位置に配置されているとともに加熱用液体を貯留するように構成されている。トラフは、複数の伝熱管の整列方向に長い箱状である。トラフは、複数の伝熱管の整列方向に長い矩形状の底壁と、底壁の外周縁から上方に立設された外周壁とを有している。底壁及び外周壁は、加熱用液体が貯留される貯留空間を形成している。トラフの容積を超えて加熱用液体が供給されると、容積を超過した加熱用液体は、トラフの箱体から溢れる。トラフから溢れた加熱用液体は、その後、複数の伝熱管の外表面を流下する。 The trough is arranged at a position adjacent to each of the plurality of heat transfer tubes in the horizontal direction orthogonal to the alignment direction of the plurality of heat transfer tubes, and is configured to store the heating liquid. The trough is box-shaped, which is long in the alignment direction of the plurality of heat transfer tubes. The trough has a rectangular bottom wall that is long in the alignment direction of the plurality of heat transfer tubes, and an outer peripheral wall that is erected above the outer peripheral edge of the bottom wall. The bottom wall and the outer peripheral wall form a storage space in which the heating liquid is stored. When the heating liquid exceeds the volume of the trough, the heating liquid exceeding the volume overflows from the trough box. The heating liquid overflowing from the trough then flows down the outer surface of the plurality of heat transfer tubes.
 トラフへの加熱用液体の供給に関して、トラフの底壁には、加熱用液体が流入する流入口が形成されている。トラフの流入口には、マニホールドから延設された給水管が接続されている。給水管は、トラフの底壁の下方で底壁に略平行に延設され、トラフの流入口の下方位置まで加熱用液体を案内する。給水管の先端部位は、トラフの流入口の下方で上方に屈曲され、トラフの流入口に接続されている。 Regarding the supply of the heating liquid to the trough, an inflow port into which the heating liquid flows is formed on the bottom wall of the trough. A water supply pipe extending from the manifold is connected to the inflow port of the trough. The water supply pipe extends below the bottom wall of the trough substantially parallel to the bottom wall and guides the heating liquid to a position below the inflow port of the trough. The tip of the water supply pipe is bent upward below the trough inlet and is connected to the trough inlet.
 給水管は、トラフの長手方向に延設され、加熱用液体の長い流動経路を形成している。給水管が長い経路に亘って加熱用液体を案内するように形成されると、加熱用液体の流動に対して抵抗が加わるだけでなく、給水管の材料コストが増加する。 The water supply pipe extends in the longitudinal direction of the trough and forms a long flow path for the heating liquid. If the water supply pipe is formed to guide the heating liquid over a long path, not only resistance is added to the flow of the heating liquid, but also the material cost of the water supply pipe is increased.
特開2017-150784号公報Japanese Unexamined Patent Publication No. 2017-150784
 本発明は、トラフへ短い経路で加熱用液体を供給することを可能にする構造を有する気化装置を提供することを目的とする。 An object of the present invention is to provide a vaporizer having a structure capable of supplying a heating liquid to a trough by a short route.
 本発明の一の局面に係る気化装置は、液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させるように構成されている。気化装置は、前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶように構成された伝熱パネルと、前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成されているとともに、前記伝熱パネルの上縁よりも低い位置に配置されたトラフと、前記複数の伝熱管の整列方向において前記トラフの一端側に配置されているとともに、前記トラフへ前記加熱用液体を供給するように構成されたマニホールドとを備えている。前記トラフは、前記複数の伝熱管の前記整列方向に延設された底壁と、前記整列方向において前記マニホールド側に位置する前記底壁の端部に立設した第1端壁と、前記整列方向において前記第1端壁から離間する前記底壁の他のもう1つの端部に立設した第2端壁と含んでいる。前記第1端壁には、前記加熱用液体が流入する流入口が形成されている。 The vaporizer according to one aspect of the present invention is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas. The vaporizer supplies the heating liquid to the heat transfer panel configured so that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction and the outer surface of the plurality of heat transfer tubes. The truffles are arranged at a position lower than the upper edge of the heat transfer panel, and the truffles are arranged on one end side of the truffles in the alignment direction of the plurality of heat transfer tubes. It is provided with a manifold configured to supply the heating liquid to the heat pipe. The trough is aligned with a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction. It includes a second end wall erected at another end of the bottom wall that is distant from the first end wall in the direction. An inflow port into which the heating liquid flows is formed on the first end wall.
 上述の気化装置は、加熱用液体が貯留されるトラフへ短い経路で加熱用液体を供給することを可能にする。 The above-mentioned vaporizer makes it possible to supply the heating liquid to the trough in which the heating liquid is stored by a short route.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The object, features and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
第1実施形態のオープンラック式の気化装置の概略的な斜視図である。It is the schematic perspective view of the open rack type vaporization apparatus of 1st Embodiment. 気化装置の概略的な断面図である。It is a schematic cross-sectional view of a vaporizer. 気化装置の箱体の概略的な断面図である。It is a schematic sectional view of the box body of a vaporizer. 箱体内に配置される抵抗部材の概略的な斜視図である。It is a schematic perspective view of the resistance member arranged in a box body. 箱体内に配置される他のもう1つの抵抗部材の概略的な斜視図である。It is a schematic perspective view of another resistance member arranged in a box body. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 二重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a double lid member. 二重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a double lid member. 二重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a double lid member. 二重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a double lid member. 二重の蓋部材を有した箱体の他のもう1つの実施例の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member. 二重の蓋部材を有した箱体の他のもう1つの実施例の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member. 二重の蓋部材を有した箱体の他のもう1つの実施例の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of another embodiment of another box body having a double lid member. 二重の蓋部材を有した箱体の他の実施例の概略的な断面図である。It is a schematic cross-sectional view of another Example of a box body having a double lid member. 二重の蓋部材を有した箱体の他の実施例の概略的な断面図である。It is a schematic cross-sectional view of another Example of a box body having a double lid member. 二重の蓋部材を有した箱体の他の実施例の概略的な断面図である。It is a schematic cross-sectional view of another Example of a box body having a double lid member. 蓋部材に抵抗体が接触する構造を有している箱体の概略的な断面図である。It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member. 蓋部材に抵抗体が接触する構造を有している箱体の概略的な断面図である。It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member. 蓋部材に抵抗体が接触する構造を有している箱体の概略的な断面図である。It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member. 蓋部材に抵抗体が接触する構造を有している箱体の概略的な断面図である。It is a schematic cross-sectional view of a box body which has a structure in which a resistor comes into contact with a lid member. 蓋部材に縦蓋が設けられた構造を有している箱体の概略的な断面図である。It is the schematic sectional drawing of the box body which has the structure which provided the vertical lid in the lid member. 蓋部材に縦蓋が設けられた構造を有している箱体の概略的な断面図である。It is the schematic sectional drawing of the box body which has the structure which provided the vertical lid in the lid member. 蓋部材に縦蓋が設けられた構造を有している箱体の概略的な断面図である。It is the schematic sectional drawing of the box body which has the structure which provided the vertical lid in the lid member. 気化装置のマニホールドの概略的な断面図である。It is the schematic sectional drawing of the manifold of a vaporizer. 多孔板が流入口に取り付けられた箱体を有している気化装置の概略的な斜視図である。It is a schematic perspective view of the vaporizer which has a box body which a perforated plate is attached to an inflow port. 他の形式の抵抗部材の概略的な断面図である。It is the schematic sectional drawing of the resistance member of another type. 他の形式の抵抗部材の概略的な断面図である。It is the schematic sectional drawing of the resistance member of another type. 他の形式の抵抗部材の概略的な断面図である。It is the schematic sectional drawing of the resistance member of another type. 第2実施形態のオープンラック式の気化装置の概略的な斜視図である。It is the schematic perspective view of the open rack type vaporization apparatus of 2nd Embodiment. 図34の気化装置の概略的な断面図である。FIG. 3 is a schematic cross-sectional view of the vaporizer of FIG. 34.
<第1実施形態>
 図1は、第1実施形態のオープンラック式の気化装置(ORV)100の概略的な斜視図である。図2は、仮想的な鉛直平面上の気化装置100の概略的な断面図である。気化装置100が図1及び図2を参照して説明される。
<First Embodiment>
FIG. 1 is a schematic perspective view of the open rack type vaporizer (ORV) 100 of the first embodiment. FIG. 2 is a schematic cross-sectional view of the vaporizer 100 on a virtual vertical plane. The vaporizer 100 will be described with reference to FIGS. 1 and 2.
 気化装置100は、液化天然ガス(以下、「液化ガス」と称される)を液化ガスよりも高温の加熱用液体と熱交換させ、液化ガスを気化させるように構成されている。熱交換の結果得られた気相の天然ガスは、以下の説明において「気化ガス」と称される。本実施形態において、加熱用液体として海水が用いられている。代替的に、気化ガスよりも高い温度を有する液体が加熱用液体として利用されてもよい。 The vaporizer 100 is configured to vaporize the liquefied natural gas (hereinafter referred to as "liquefied gas") by exchanging heat with a heating liquid having a temperature higher than that of the liquefied gas. The gas phase natural gas obtained as a result of heat exchange is referred to as "vaporized gas" in the following description. In this embodiment, seawater is used as the heating liquid. Alternatively, a liquid having a temperature higher than that of the vaporized gas may be used as the heating liquid.
 気化装置100は、液化ガス及び気化ガスが流動するガス流動部位と、海水が流動する海水流動部位とを備えている。 The vaporizer 100 includes a gas flow portion in which the liquefied gas and the vaporized gas flow, and a seawater flow portion in which the seawater flows.
 ガス流動部位は、下マニホールド111、上マニホールド112及び複数の伝熱パネル113を含んでいる。下マニホールド111及び上マニホールド112は、水平方向に延設されている。上マニホールド112は、下マニホールド111から上方に離間した位置において下マニホールド111と略平行に延設されている。複数の伝熱パネル113は、上マニホールド112と下マニホールド111とに接続されている。複数の伝熱パネル113は、間隔を空けて水平方向に並べられている。下マニホールド111及び上マニホールド112の延設方向は、複数の伝熱パネル113の整列方向に一致している。 The gas flow portion includes a lower manifold 111, an upper manifold 112, and a plurality of heat transfer panels 113. The lower manifold 111 and the upper manifold 112 extend in the horizontal direction. The upper manifold 112 extends substantially parallel to the lower manifold 111 at a position separated upward from the lower manifold 111. The plurality of heat transfer panels 113 are connected to the upper manifold 112 and the lower manifold 111. The plurality of heat transfer panels 113 are arranged in the horizontal direction at intervals. The extending directions of the lower manifold 111 and the upper manifold 112 coincide with the alignment directions of the plurality of heat transfer panels 113.
 下マニホールド111は、複数の伝熱パネル113に液化ガスを分配するために用いられる。複数の伝熱パネル113は、液化ガスを海水流動部位から供給された海水と熱交換させるために用いられる。上マニホールド112は、液化ガスと海水との間の熱交換の結果得られた気化ガスを集約させるために用いられる。上マニホールド112には、所定の需要先(図示せず)に気化ガスを供給するように構成された供給装置(図示せず)が接続されている。 The lower manifold 111 is used to distribute the liquefied gas to the plurality of heat transfer panels 113. The plurality of heat transfer panels 113 are used to exchange heat with the seawater supplied from the seawater flow portion. The upper manifold 112 is used to aggregate the vaporized gas obtained as a result of heat exchange between the liquefied gas and seawater. A supply device (not shown) configured to supply vaporized gas to a predetermined demand destination (not shown) is connected to the upper manifold 112.
 複数の伝熱パネル113それぞれは、下ヘッダ管114、上ヘッダ管115及び複数の伝熱管116を含んでいる。下ヘッダ管114及び上ヘッダ管115は、鉛直方向に互いに離間した位置で下マニホールド111及び上マニホールド112の延設方向に対して直角の水平方向にそれぞれ延設されている。複数の伝熱管116は、下ヘッダ管114及び上ヘッダ管115の間で鉛直方向にそれぞれ延設されている。下ヘッダ管114は、下マニホールド111から延設され伝熱パネル113の下縁を形成している一方で、上ヘッダ管115は、上マニホールド112から延設され伝熱パネル113の上縁を形成している。複数の伝熱管116は、下ヘッダ管114から上方に延設され上ヘッダ管115に接続されている。複数の伝熱管116は、下ヘッダ管114及び上ヘッダ管115の延設方向において配列されている。複数の伝熱管116の整列方向は、以下の説明において「第1水平方向」と称される。第1水平方向に対して直角の水平方向(すなわち、下マニホールド111及び上マニホールド112の延設方向)は、以下の説明において「第2水平方向」と称される。 Each of the plurality of heat transfer panels 113 includes a lower header tube 114, an upper header tube 115, and a plurality of heat transfer tubes 116. The lower header pipe 114 and the upper header pipe 115 are extended in the horizontal direction perpendicular to the extending direction of the lower manifold 111 and the upper manifold 112 at positions separated from each other in the vertical direction. The plurality of heat transfer tubes 116 extend vertically between the lower header tube 114 and the upper header tube 115, respectively. The lower header tube 114 extends from the lower manifold 111 to form the lower edge of the heat transfer panel 113, while the upper header tube 115 extends from the upper manifold 112 to form the upper edge of the heat transfer panel 113. doing. The plurality of heat transfer tubes 116 extend upward from the lower header tube 114 and are connected to the upper header tube 115. The plurality of heat transfer tubes 116 are arranged in the extending direction of the lower header tube 114 and the upper header tube 115. The alignment direction of the plurality of heat transfer tubes 116 is referred to as a "first horizontal direction" in the following description. The horizontal direction perpendicular to the first horizontal direction (that is, the extension direction of the lower manifold 111 and the upper manifold 112) is referred to as a "second horizontal direction" in the following description.
 海水流動部位は、複数の伝熱パネル113それぞれの複数の伝熱管116に海水を散水するように構成されている。海水流動部位は、海水を貯留並びに散水する散水部位と、散水部位に海水を供給する供給部位とを含んでいる。これらに加えて、海水流動部位は、供給部位から散水部位への海水の流量を調整するために用いられる流量調整部と、散水部位内で形成された海水の液面の隆起を抑制するように構成された隆起抑制部とを含んでいる。 The seawater flow portion is configured to sprinkle seawater on a plurality of heat transfer tubes 116 of each of the plurality of heat transfer panels 113. The seawater flow site includes a sprinkling site for storing and sprinkling seawater and a supply site for supplying seawater to the sprinkling site. In addition to these, the seawater flow part is used to adjust the flow rate of seawater from the supply part to the sprinkling part, and to suppress the uplift of the seawater level formed in the sprinkling part. It includes a configured uplift suppression section.
 供給部位は、海水を吐出するように構成されたポンプ121と、ポンプ121から吐出された海水を第2水平方向に案内するように構成されたマニホールド122と、マニホールド122に接続された複数の供給管123とを含んでいる。マニホールド122は、複数の伝熱パネル113から第1水平方向において離れた位置において第2水平方向に延設されている。マニホールド122には、マニホールド122内に流入した海水が流出する複数の流出口125が形成されている。これらの流出口125は、第2水平方向において間隔を空けて並んでいる。これらの流出口125に、複数の供給管123が接続されている。流出口125に接続された供給管123の端部は、以下の説明において「上流端」と称される。上流端とは反対側の供給管123の端部は、以下の説明において「下流端」と称される。下流端は、散水部位に接続されている。 The supply parts include a pump 121 configured to discharge seawater, a manifold 122 configured to guide the seawater discharged from the pump 121 in the second horizontal direction, and a plurality of supplies connected to the manifold 122. Includes tube 123 and. The manifold 122 extends in the second horizontal direction at a position separated from the plurality of heat transfer panels 113 in the first horizontal direction. The manifold 122 is formed with a plurality of outlets 125 from which seawater flowing into the manifold 122 flows out. These outlets 125 are spaced apart in the second horizontal direction. A plurality of supply pipes 123 are connected to these outlets 125. The end of the supply pipe 123 connected to the outlet 125 is referred to as the "upstream end" in the following description. The end of the supply pipe 123 opposite to the upstream end is referred to as the "downstream end" in the following description. The downstream end is connected to the watering site.
 散水部位は、複数の供給管123に対応して配置された複数のトラフ130を含んでいる。複数のトラフ130は、複数の伝熱パネル113と第2水平方向において交互に並ぶように配置されている。 The watering site includes a plurality of troughs 130 arranged corresponding to the plurality of supply pipes 123. The plurality of troughs 130 are arranged so as to be alternately arranged with the plurality of heat transfer panels 113 in the second horizontal direction.
 複数のトラフ130それぞれの高さ位置に関して、トラフ130は、上ヘッダ管115よりも低い位置に配置されている。トラフ130は、伝熱パネル113の複数の伝熱管116の上部(高さ方向における複数の伝熱管116の中間位置よりも上側)に対して第2水平方向において隣り合うように配置されている。トラフ130は、流出口125が形成されたマニホールド122よりも高い位置に配置されている。 Regarding the height position of each of the plurality of troughs 130, the trough 130 is arranged at a position lower than that of the upper header pipe 115. The trough 130 is arranged so as to be adjacent to the upper part of the plurality of heat transfer tubes 116 of the heat transfer panel 113 (above the intermediate position of the plurality of heat transfer tubes 116 in the height direction) in the second horizontal direction. The trough 130 is located higher than the manifold 122 on which the outlet 125 is formed.
 複数のトラフ130それぞれは、対応する供給管123を通じて流入した海水を貯留するように構成された箱体131と、箱体131から溢れ出した海水を対応する伝熱パネル113の複数の伝熱管の外表面に案内するように構成された案内部139とを含んでいる。 Each of the plurality of troughs 130 has a box body 131 configured to store seawater flowing in through the corresponding supply pipe 123, and a plurality of heat transfer tubes of the heat transfer panel 113 corresponding to the seawater overflowing from the box body 131. It includes a guide portion 139 configured to guide to the outer surface.
 箱体131は、第1水平方向において長く第2水平方向において短い矩形箱である。箱体131は上方に開口している。箱体131は、第1水平方向において細長い略矩形状の底壁132と、底壁132の外周縁から上方に立設された周壁133とを含んでいる。 The box body 131 is a rectangular box that is long in the first horizontal direction and short in the second horizontal direction. The box body 131 is open upward. The box body 131 includes an elongated substantially rectangular bottom wall 132 in the first horizontal direction, and a peripheral wall 133 erected above the outer peripheral edge of the bottom wall 132.
 周壁133は、底壁132の一対の長手方向に延びる縁から上方に立設された一対の側壁134,135と、底壁132の一対の短手方向に延びる縁から上方に立設された第1端壁136及び第2端壁137とを含んでいる。側壁134,135は、第2水平方向において互いに離間した位置で立設されている一方で、第1端壁136及び第2端壁137は、第1水平方向において互いに離間した位置で立設されている。 The peripheral wall 133 has a pair of side walls 134 and 135 erected upward from a pair of longitudinally extending edges of the bottom wall 132 and a first erected upward from a pair of laterally extending edges of the bottom wall 132. It includes one end wall 136 and a second end wall 137. The side walls 134 and 135 are erected at positions separated from each other in the second horizontal direction, while the first end wall 136 and the second end wall 137 are erected at positions separated from each other in the first horizontal direction. ing.
 側壁134,135及び底壁132の第1水平方向における長さは、第1水平方向に並べられた複数の伝熱管116の管列の長さよりも大きな値に設定されている。側壁134,135が複数の伝熱管116の管列全体と第2水平方向において重なるように箱体131が配置されている。 The lengths of the side walls 134 and 135 and the bottom wall 132 in the first horizontal direction are set to a value larger than the length of the pipe rows of the plurality of heat transfer tubes 116 arranged in the first horizontal direction. The box 131 is arranged so that the side walls 134 and 135 overlap the entire row of the plurality of heat transfer tubes 116 in the second horizontal direction.
 第1端壁136は、第2端壁137よりもマニホールド122の流出口125の近くに配置されている。第1端壁136には、供給管123の下流端が接続された流入口138が形成されている(図1を参照)。流入口138の中心は、第1端壁の中心よりも下方に位置している。第2水平方向における第1端壁136の流入口138の位置は、第2水平方向におけるマニホールド122の流出口125の位置と略一致している。トラフ130は、マニホールド122よりも高い位置に配置されているので、トラフ130の第1端壁136に形成された流入口138も、マニホールド122の流出口125よりも高い位置にある。 The first end wall 136 is arranged closer to the outlet 125 of the manifold 122 than the second end wall 137. The first end wall 136 is formed with an inflow port 138 to which the downstream end of the supply pipe 123 is connected (see FIG. 1). The center of the inflow port 138 is located below the center of the first end wall. The position of the inflow port 138 of the first end wall 136 in the second horizontal direction substantially coincides with the position of the outflow port 125 of the manifold 122 in the second horizontal direction. Since the trough 130 is located higher than the manifold 122, the inflow port 138 formed on the first end wall 136 of the trough 130 is also located higher than the outlet 125 of the manifold 122.
 第2水平方向に間隔を空けて整列された4つのトラフ130のうち最外の2つのトラフ130以外のトラフ130に関して、第1端壁136及び第2端壁137の高さ寸法は、側壁134,135の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136及び第2端壁137の上縁は、側壁134,135の上縁よりも高い位置で延設されている。 With respect to troughs 130 other than the outermost two troughs 130 among the four troughs 130 arranged at intervals in the second horizontal direction, the height dimensions of the first end wall 136 and the second end wall 137 are the side wall 134. , 135 is set to a value larger than the height dimension. That is, the upper edges of the first end wall 136 and the second end wall 137 extend at positions higher than the upper edges of the side walls 134 and 135.
 最外の2つのトラフ130のうち右側のトラフ130に関して、第1端壁136、第2端壁137及び右側の側壁135の高さ寸法は、左側の側壁134(すなわち、伝熱パネル113側に向いた側壁134)の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136、第2端壁137及び側壁135の上縁は、側壁134の上縁よりも高い位置で延設されている。つまり、伝熱パネル113側の側壁よりも、当該側壁とは反対側の側壁の方が大きな高さを有している。 With respect to the right trough 130 of the two outermost troughs 130, the height dimensions of the first end wall 136, the second end wall 137 and the right side wall 135 are such that the left side wall 134 (ie, the heat transfer panel 113 side). The value is set to be larger than the height dimension of the facing side wall 134). That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 135 extend at a position higher than the upper edge of the side wall 134. That is, the side wall on the side opposite to the side wall has a larger height than the side wall on the heat transfer panel 113 side.
 最外の2つのトラフ130のうち左側のトラフ130に関して、第1端壁136、第2端壁137及び左側の側壁134の高さ寸法は、右側の側壁135(すなわち、伝熱パネル113側に向いた側壁135)の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136、第2端壁137及び側壁134の上縁は、側壁135の上縁よりも高い位置で延設されている。 With respect to the left trough 130 of the two outermost troughs 130, the height dimensions of the first end wall 136, the second end wall 137 and the left side wall 134 are such that the right side wall 135 (ie, the heat transfer panel 113 side). The value is set to be larger than the height dimension of the facing side wall 135). That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 134 extend at a position higher than the upper edge of the side wall 135.
 案内部139は、側壁134,135のうち少なくとも一方の上縁から海水の供給先の伝熱パネル113に向けて下方に傾斜した傾斜面を形成している。傾斜面は、箱体131の容積を超えてトラフ130に供給され箱体131の側壁134,135の上縁を越えて溢れ出した海水を、対応する伝熱パネル113の複数の伝熱管116へ案内するために用いられる。 The guide portion 139 forms an inclined surface inclined downward from the upper edge of at least one of the side walls 134 and 135 toward the heat transfer panel 113 to which the seawater is supplied. The inclined surface allows seawater that is supplied to the trough 130 beyond the volume of the box body 131 and overflows beyond the upper edges of the side walls 134 and 135 of the box body 131 to a plurality of heat transfer tubes 116 of the corresponding heat transfer panel 113. Used to guide.
 最外の2つのトラフ130のうち左側のトラフ130に関して、案内部139は、伝熱パネル113側の側壁135の上縁から右方に突出するように設けられている。案内部139は、反対側の側壁134には設けられていない。最外の2つのトラフ130のうち右側のトラフ130に関して、案内部139は、左側の側壁134の上縁から左方に突出するように設けられている。残りのトラフに関して、案内部139は、側壁134,135の上縁から外方に突出するように設けられている。 Regarding the trough 130 on the left side of the two outermost troughs 130, the guide portion 139 is provided so as to project to the right from the upper edge of the side wall 135 on the heat transfer panel 113 side. The guide portion 139 is not provided on the side wall 134 on the opposite side. With respect to the trough 130 on the right side of the two outermost troughs 130, the guide portion 139 is provided so as to project to the left from the upper edge of the side wall 134 on the left side. For the remaining troughs, the guide 139 is provided so as to project outward from the upper edges of the side walls 134, 135.
 流量調整部及び隆起抑制部は、箱体131内に配置されている。流量調整部位及び抑制部位が、図1及び図3を参照して説明される。図3は、箱体131の概略的な縦断面図である。 The flow rate adjusting part and the uplift suppressing part are arranged in the box 131. The flow rate adjusting portion and the suppressing portion will be described with reference to FIGS. 1 and 3. FIG. 3 is a schematic vertical sectional view of the box body 131.
 流量調整部は、流入口138を部分的に閉じるように箱体131の内面に取り付けられた閉塞部材140を含んでいる。閉塞部材140は、複数のトラフ130間で海水の流入量を略均一にするために用いられる。 The flow rate adjusting unit includes a closing member 140 attached to the inner surface of the box 131 so as to partially close the inflow port 138. The closing member 140 is used to make the inflow of seawater substantially uniform among the plurality of troughs 130.
 閉塞部材140として、第1水平方向に穿設された開口141が形成されたオリフィスが好適に利用可能である。開口141は、流入口138よりも小さな面積を有している。閉塞部材140は、第1端壁136及び/又は側壁134,135の内面に取り付けられている。加えて、閉塞部材140は、第1端壁136及び/又は側壁134,135から取り外し可能である。たとえば、側壁134,135の内面に形成された鉛直溝部に閉塞部材140の側縁が差し込まれてもよい。 As the closing member 140, an orifice having an opening 141 formed in the first horizontal direction can be preferably used. The opening 141 has a smaller area than the inflow port 138. The closing member 140 is attached to the inner surface of the first end wall 136 and / or the side walls 134, 135. In addition, the closing member 140 is removable from the first end wall 136 and / or the side walls 134, 135. For example, the side edge of the closing member 140 may be inserted into the vertical groove portion formed on the inner surface of the side walls 134 and 135.
 複数のトラフ130のうち1つのトラフ130に取り付けられたオリフィスが開口面積において小さな他のもう1つのオリフィスに交換されると、オリフィスの交換がなされたトラフ130への海水の流入量が減る一方で他のトラフ130への海水の流入量が増える。逆に開口面積において大きなオリフィスが新たに取り付けられると、オリフィスの交換がなされたトラフ130への海水の流入量が増える一方で他のトラフ130への海水の流入量が減る。複数のトラフ130間において海水の略均一な分配が得られるように、適切な開口面積を有するオリフィスが、複数のトラフ130それぞれについて閉塞部材140として選択されることが好ましい。 When an orifice attached to one trough 130 out of a plurality of troughs 130 is replaced with another orifice having a smaller opening area, the inflow of seawater into the trough 130 in which the orifice is replaced is reduced. The inflow of seawater into other troughs 130 increases. On the contrary, when a large orifice is newly installed in the opening area, the amount of seawater flowing into the trough 130 in which the orifice has been replaced increases, while the amount of seawater flowing into the other trough 130 decreases. It is preferred that an orifice having an appropriate opening area be selected as the closing member 140 for each of the troughs 130 so that a substantially uniform distribution of seawater is obtained among the troughs 130.
 隆起抑制部は、第1端壁136と第2端壁137との間に配置された抵抗部材を含んでいる。流入口138から流入した海水が、第2端壁137に衝突する前に抵抗部材に衝突するように、抵抗部材が配置されている。抵抗部材は、底壁132から上方に立設された邪魔板(抵抗体)151を含んでいる。3つの邪魔板151が、図3に示されている。 The ridge suppressing portion includes a resistance member arranged between the first end wall 136 and the second end wall 137. The resistance member is arranged so that the seawater flowing in from the inflow port 138 collides with the resistance member before colliding with the second end wall 137. The resistance member includes a baffle plate (resistor) 151 erected above the bottom wall 132. Three baffle plates 151 are shown in FIG.
 複数の邪魔板151は、第1端壁136及び第2端壁137の間で第1水平方向において間隔を空けて配列されている。複数の邪魔板151は、底壁132及び/又は側壁134,135に取り付けられている。複数の邪魔板151は、底壁132及び/又は側壁134,135から取り外し可能であってもよい。 The plurality of baffle plates 151 are arranged at intervals in the first horizontal direction between the first end wall 136 and the second end wall 137. The plurality of baffle plates 151 are attached to the bottom wall 132 and / or the side walls 134 and 135. The plurality of baffle plates 151 may be removable from the bottom wall 132 and / or the side walls 134, 135.
 邪魔板151の高さ寸法は、周壁133の高さ寸法よりも小さい。したがって、邪魔板151の上方には、海水が第1水平方向に流れるための空間が形成されている。 The height dimension of the baffle plate 151 is smaller than the height dimension of the peripheral wall 133. Therefore, a space for seawater to flow in the first horizontal direction is formed above the baffle plate 151.
 気化装置100内における液化ガス及び海水の流れが以下に説明される。 The flow of liquefied gas and seawater in the vaporizer 100 will be described below.
 ガス流動部位内における液化ガスの流れに関して、液化ガスは、ポンプ(図示せず)によって下マニホールド111に供給される。液化ガスは、下マニホールド111に流入した後、複数の伝熱パネル113それぞれの下ヘッダ管114に流入する。液化ガスは、下ヘッダ管114に流入した後、下ヘッダ管114から上方に延設された複数の伝熱管116に沿って上方に流れる。この間、液化ガスは、海水流動部位から供給された海水と熱交換し気化ガスになる。気化ガスは、上方に流れ上ヘッダ管115に流入する。その後、気化ガスは、上ヘッダ管115を流れ上マニホールド112内に集約される。 Regarding the flow of liquefied gas in the gas flow portion, the liquefied gas is supplied to the lower manifold 111 by a pump (not shown). After flowing into the lower manifold 111, the liquefied gas flows into the lower header pipe 114 of each of the plurality of heat transfer panels 113. After flowing into the lower header pipe 114, the liquefied gas flows upward along a plurality of heat transfer tubes 116 extending upward from the lower header pipe 114. During this time, the liquefied gas exchanges heat with the seawater supplied from the seawater flow site and becomes a vaporized gas. The vaporized gas flows upward and flows into the header pipe 115. After that, the vaporized gas flows through the upper header pipe 115 and is collected in the upper manifold 112.
 海水流動部位内における海水の流れに関して、海水は、ポンプ121によってマニホールド122に供給される。海水は、マニホールド122によって第2水平方向に案内され、マニホールド122に取り付けられた複数の供給管123に分配される。供給管123を流れた海水は、対応するトラフ130内に流入する。トラフ130内に流入した海水は、底壁132及び周壁133によって囲まれた空間内で液層を形成する。トラフ130への海水の流入量が箱体131の容積を超えると、海水は、側壁134,135の上縁を越えて溢れ出す。海水は、その後、案内部139の傾斜面に沿って流下する。この結果、海水は、箱体131の側方に位置する複数の伝熱管116の上部に散水される。 Regarding the flow of seawater in the seawater flow part, the seawater is supplied to the manifold 122 by the pump 121. The seawater is guided in the second horizontal direction by the manifold 122 and distributed to a plurality of supply pipes 123 attached to the manifold 122. The seawater that has flowed through the supply pipe 123 flows into the corresponding trough 130. The seawater flowing into the trough 130 forms a liquid layer in the space surrounded by the bottom wall 132 and the peripheral wall 133. When the inflow of seawater into the trough 130 exceeds the volume of the box 131, the seawater overflows beyond the upper edges of the side walls 134 and 135. The seawater then flows down along the slope of the guide 139. As a result, the seawater is sprinkled on the upper portions of the plurality of heat transfer tubes 116 located on the side of the box 131.
 散水された海水は、複数の伝熱管116の外表面上で液膜を形成しながら流下する。複数の伝熱管116の内部では、液化ガスが上方に流れているので、海水は、液化ガスと熱交換することができる。すなわち、液化ガスは、気化される。気化ガスは、上述の如く複数の上ヘッダ管115を通じて上マニホールド112に集約される。 The sprinkled seawater flows down while forming a liquid film on the outer surface of the plurality of heat transfer tubes 116. Since the liquefied gas flows upward inside the plurality of heat transfer tubes 116, the seawater can exchange heat with the liquefied gas. That is, the liquefied gas is vaporized. The vaporized gas is collected in the upper manifold 112 through the plurality of upper header pipes 115 as described above.
 マニホールド122から複数のトラフ130への海水の流動経路が従来の気化装置の構造と以下に対比される。 The flow path of seawater from the manifold 122 to the plurality of troughs 130 is compared with the structure of the conventional vaporizer as follows.
 従来の構造に関して、海水の流動経路は、海水がトラフの底面から流入するように構成されているので、海水の流動経路は、マニホールドから第1端壁を越えて延設され、トラフの底面に形成された流入口に接続される。従来の構造とは異なり、供給管123は、第1端壁136を越えてマニホールド122から延設されないので、供給管123の材料費が節約されるだけでなく供給管123内を流れる海水に対する流動抵抗が低くなる。 With respect to the conventional structure, the seawater flow path is configured so that the seawater flows in from the bottom surface of the trough, so that the seawater flow path extends from the manifold beyond the first end wall to the bottom surface of the trough. It is connected to the formed inlet. Unlike the conventional structure, the supply pipe 123 does not extend from the manifold 122 beyond the first end wall 136, which not only saves the material cost of the supply pipe 123 but also flows into the seawater flowing in the supply pipe 123. The resistance is low.
 従来の構造に関して、マニホールドから複数のトラフとの間で延設された流動経路にバタフライ弁やオリフィスといった流体部品が一般的に配置されている。これらの流体部品は、複数のトラフ間へ流入する海水量のばらつきを抑制するために用いられている。本実施形態に関して、複数のトラフ間での海水量のばらつきを抑制するために、閉塞部材140が用いられている。閉塞部材140が、従来の流体部品と以下に対比される。 Regarding the conventional structure, fluid parts such as butterfly valves and orifices are generally arranged in the flow path extending from the manifold to multiple troughs. These fluid components are used to suppress variations in the amount of seawater flowing into a plurality of troughs. In this embodiment, the closing member 140 is used in order to suppress the variation in the amount of seawater among the plurality of troughs. The closing member 140 is compared to a conventional fluid component as follows.
 閉塞部材140の交換に関して、交換作業を行う作業者は、箱体131の上向きの開口部を通じて閉塞部材140に容易にアクセスすることができる。作業者は、既存の閉塞部材140を箱体131から抜き出し、新たな閉塞部材を箱体131内に取り付けることができる。供給管123にバタフライ弁やオリフィスが取り付けられた構造とは異なり、閉塞部材140の交換は、供給管123の分解を必要としない。加えて、短い供給管123によって与えられた狭い空間ではなく、トラフ130の上方の広い空間が交換作業に利用される。したがって、閉塞部材140の交換は、比較的容易である。 Regarding the replacement of the closing member 140, the operator performing the replacement work can easily access the closing member 140 through the upward opening of the box body 131. The operator can pull out the existing closing member 140 from the box body 131 and install a new closing member in the box body 131. Unlike the structure in which the butterfly valve and the orifice are attached to the supply pipe 123, the replacement of the closing member 140 does not require disassembly of the supply pipe 123. In addition, the large space above the trough 130 is utilized for replacement work rather than the narrow space provided by the short supply pipe 123. Therefore, the replacement of the closing member 140 is relatively easy.
 閉塞部材140を通過した海水は、複数の邪魔板151に衝突する。これらの邪魔板151が箱体131内で流れる海水に与える影響が以下に説明される。 Seawater that has passed through the blocking member 140 collides with a plurality of baffle plates 151. The effect of these baffle plates 151 on the seawater flowing in the box 131 will be described below.
 複数の邪魔板151の上方に第1水平方向に延設された直線(実線)及び点線で描かれた曲線が図3に示されている。実線は、複数の邪魔板151の存在下で想定される海水の液面を概略的に表している。点線は、複数の邪魔板151の不存在下で想定される海水の液面を概略的に表している。 FIG. 3 shows a straight line (solid line) extending in the first horizontal direction and a curved line drawn by a dotted line above the plurality of obstacle plates 151. The solid line schematically represents the liquid level of seawater assumed in the presence of a plurality of obstacle plates 151. The dotted line schematically represents the liquid level of seawater assumed in the absence of the plurality of obstacle plates 151.
 複数の邪魔板151の不存在下では、流入口138及び閉塞部材140(オリフィス)の開口141を順次通過した海水は、第2端壁137の内面に勢いよく衝突する。第2端壁137に衝突した海水の一部は、第2端壁137の内面に沿って上方に勢いよく流れる。この結果、点線で示されるように、箱体131内の海水の液面は、第2端壁137の内面の近くで上方に隆起する。 In the absence of the plurality of baffle plates 151, the seawater that has sequentially passed through the inflow port 138 and the opening 141 of the closing member 140 (orifice) collides vigorously with the inner surface of the second end wall 137. A part of the seawater that collides with the second end wall 137 flows vigorously upward along the inner surface of the second end wall 137. As a result, as shown by the dotted line, the liquid level of the seawater in the box 131 rises upward near the inner surface of the second end wall 137.
 一方、複数の邪魔板151の存在下では、流入口138及び閉塞部材140(オリフィス)の開口141を順次通過した海水の一部は、最も上流に配置された邪魔板151(すなわち第1端壁136に最も近い位置に配置された邪魔板151)に衝突する。この邪魔板151に衝突した海水の一部は向きを変え、第1水平方向以外の方向に流れる一方で、他の海水は、邪魔板151を乗り越え、第2端壁137に向けて流れる。最も上流の邪魔板151を乗り越えた海水は、次の邪魔板151に衝突する。複数の邪魔板151に海水が順次衝突する結果、第2端壁137に向けて勢いよく流れる海水成分は徐々に少なくなる。海水と第2端壁137との間で生ずる衝突力は、複数の邪魔板151の存在下では複数の邪魔板151の不存在下よりも小さくなるので、第2端壁137に対する海水の衝突に起因して生じた上向きの海水流の勢いも弱くなる。この結果、第2端壁137の内面近くでの液面の隆起高さが低くなる。 On the other hand, in the presence of the plurality of baffle plates 151, a part of the seawater that has sequentially passed through the inflow port 138 and the opening 141 of the closing member 140 (orifice) is the baffle plate 151 (that is, the first end wall) arranged at the most upstream. It collides with the baffle plate 151) arranged at the position closest to 136. A part of the seawater that collides with the obstacle plate 151 turns and flows in a direction other than the first horizontal direction, while the other seawater passes over the obstacle plate 151 and flows toward the second end wall 137. The seawater that has passed over the most upstream obstacle plate 151 collides with the next obstacle plate 151. As a result of the seawater colliding with the plurality of baffle plates 151 in sequence, the seawater component that flows vigorously toward the second end wall 137 gradually decreases. Since the collision force generated between the seawater and the second end wall 137 is smaller in the presence of the plurality of obstruction plates 151 than in the absence of the plurality of obstruction plates 151, the collision force of the seawater with respect to the second end wall 137 occurs. The momentum of the upward seawater flow caused by this also weakens. As a result, the height of the liquid level uplift near the inner surface of the second end wall 137 becomes low.
 いくつの邪魔板151が配置されるかは、トラフ130に流入する海水の流速やトラフ130内での海水の流動態様に基づいてトラフ130内での海水の液面が略平坦になるように決定されることが好ましい。したがって、抵抗部材は、1若しくは2つの邪魔板151であってもよいし、3を越える邪魔板151であってもよい。 The number of baffle plates 151 to be arranged is determined so that the liquid level of seawater in the trough 130 is substantially flat based on the flow velocity of the seawater flowing into the trough 130 and the flow mode of the seawater in the trough 130. It is preferable to be done. Therefore, the resistance member may be one or two baffle plates 151, or may be a baffle plate 151 exceeding three.
 抵抗部材として、邪魔板151に代えて、流入口138から流入した海水に衝突するように構成された他の抵抗部材が用いられてもよい。抵抗部材として利用可能な代替的な部材が、図4及び図5を参照して説明される。図4及び図5は、代替的な部材の概略的な斜視図である。 As the resistance member, instead of the baffle plate 151, another resistance member configured to collide with the seawater flowing in from the inflow port 138 may be used. Alternative members that can be used as resistance members are described with reference to FIGS. 4 and 5. 4 and 5 are schematic perspective views of the alternative member.
 貫通孔が形成されていない邪魔板151に代えて、第1水平方向に穿設された多数の貫通孔が形成された多孔板152が抵抗部材として用いられてもよい(図4を参照)。海水は多孔板152の貫通孔を通過することができるので、多孔板152は、周壁133と略同じ高さ寸法を有してもよい。 Instead of the baffle plate 151 having no through holes formed, a perforated plate 152 having a large number of through holes formed in the first horizontal direction may be used as a resistance member (see FIG. 4). Since seawater can pass through the through hole of the perforated plate 152, the perforated plate 152 may have substantially the same height dimension as the peripheral wall 133.
 第1水平方向に薄い邪魔板151に代えて、第1水平方向、第2水平方向及び鉛直方向における寸法差が邪魔板151よりも小さなブロック体153が抵抗部材として用いられてもよい(図5を参照)。隆起抑制部として用いられる部材の形状や大きさは、箱体131内の海水の液面が略平坦になるように決定されることが好ましい。 Instead of the baffle plate 151 which is thin in the first horizontal direction, a block body 153 whose dimensional difference in the first horizontal direction, the second horizontal direction, and the vertical direction is smaller than that of the baffle plate 151 may be used as the resistance member (FIG. 5). See). It is preferable that the shape and size of the member used as the uplift suppressing portion are determined so that the liquid level of the seawater in the box 131 is substantially flat.
 隆起抑制部として例示された邪魔板151、多孔板152及びブロック体153は、海水が第2端壁137に衝突する前に、第2端壁137へ向かう海水の勢いを緩め、液面の隆起を抑制する。しかしながら、隆起抑制部は、箱体131内で生じた加熱用液体の上向きの流れに衝突するように配置された部材であってもよい。加熱用液体の上向きの流れに衝突するように配置された隆起抑制部が、図1、図6乃至図25を参照して説明される。図6乃至図25は、箱体131の概略的な断面図である。 The obstruction plate 151, the perforated plate 152, and the block body 153 exemplified as the uplift suppressing portion relax the momentum of the seawater toward the second end wall 137 before the seawater collides with the second end wall 137, and the liquid level rises. Suppress. However, the ridge suppressing portion may be a member arranged so as to collide with the upward flow of the heating liquid generated in the box body 131. The ridge suppressor arranged to collide with the upward flow of the heating liquid will be described with reference to FIGS. 1, 6 to 25. 6 to 25 are schematic cross-sectional views of the box 131.
 隆起抑制部は、第2端壁137の近くにおいて、箱体131内に配置された板状の蓋部材154であってもよい。蓋部材154には、多数の貫通孔が形成されている。したがって、蓋部材154として、多孔板(板部材)が好適に利用可能である。蓋部材154は、単独で隆起抑制部として用いられてもよいし(図6を参照)、抵抗部材(たとえば、邪魔板151)とともに隆起抑制部として用いられてもよい。 The ridge suppressing portion may be a plate-shaped lid member 154 arranged in the box body 131 near the second end wall 137. A large number of through holes are formed in the lid member 154. Therefore, as the lid member 154, a perforated plate (plate member) can be preferably used. The lid member 154 may be used alone as a ridge suppressing portion (see FIG. 6), or may be used as a ridge suppressing portion together with a resistance member (for example, a baffle plate 151).
 蓋部材154は、第2端壁137の近傍から第1水平方向に延設され、略水平に横たわるように配置されている。蓋部材154は、箱体131の内部空間の一部を第2端壁137の近くにおいて上下に仕切っている。蓋部材154の一対の側縁は、側壁134,135の内面に取り付けられてもよい。蓋部材154の下流端縁は、第2端壁137の内面に取り付けられ、第2端壁137の内面に当接していてもよい(図6を参照)。代替的に、蓋部材154の下流端縁が第2端壁137の内面から僅かに離間するように、蓋部材154の第1水平方向の位置が定められてもよい(図7を参照)。蓋部材154の下流端縁が第2端壁137の内面に近接しているのに対して、蓋部材154の上流端縁は、上流の第1端壁136の内面から大きく離れている。蓋部材154は、箱体131から取り外し可能であることが好ましい。 The lid member 154 extends in the first horizontal direction from the vicinity of the second end wall 137 and is arranged so as to lie substantially horizontally. The lid member 154 partitions a part of the internal space of the box body 131 up and down near the second end wall 137. The pair of side edges of the lid member 154 may be attached to the inner surfaces of the side walls 134, 135. The downstream edge of the lid member 154 may be attached to the inner surface of the second end wall 137 and abut on the inner surface of the second end wall 137 (see FIG. 6). Alternatively, the first horizontal position of the lid member 154 may be determined such that the downstream edge of the lid member 154 is slightly spaced from the inner surface of the second end wall 137 (see FIG. 7). The downstream edge of the lid member 154 is close to the inner surface of the second end wall 137, whereas the upstream edge of the lid member 154 is significantly distant from the inner surface of the upstream first end wall 136. It is preferable that the lid member 154 is removable from the box body 131.
 蓋部材154は、流入口138よりも高い位置に配置されている。したがって、流入口138から閉塞部材140(オリフィス)の開口を通じて箱体131内に流入した海水の多くは、蓋部材154の下方で第2端壁137の内面に衝突する。 The lid member 154 is arranged at a position higher than the inflow port 138. Therefore, most of the seawater that has flowed into the box 131 from the inflow port 138 through the opening of the closing member 140 (orifice) collides with the inner surface of the second end wall 137 below the lid member 154.
 蓋部材154の下方での衝突の結果生じた上向きの海水の流れは、蓋部材154の下面に衝突する。この結果、蓋部材154に衝突した海水の多くは、蓋部材154の下面に沿って上流の第1端壁136に向けて流れる。したがって、下流の第2端壁137の近くでの液面の隆起は、効果的に抑制される。 The upward seawater flow generated as a result of the collision below the lid member 154 collides with the lower surface of the lid member 154. As a result, most of the seawater that collides with the lid member 154 flows toward the first end wall 136 upstream along the lower surface of the lid member 154. Therefore, the uplift of the liquid level near the second end wall 137 downstream is effectively suppressed.
 蓋部材154に衝突した海水の一部は、蓋部材154を鉛直方向に貫く貫通孔を通じて蓋部材154の上方の空間に流入する。したがって、蓋部材154は、蓋部材154の上方での海水の液層の形成を過度に妨げない。すなわち、蓋部材154は、海水がトラフ130の下流端から溢れ出すことを過度に抑制しない。 A part of the seawater that collides with the lid member 154 flows into the space above the lid member 154 through a through hole that penetrates the lid member 154 in the vertical direction. Therefore, the lid member 154 does not excessively hinder the formation of a liquid layer of seawater above the lid member 154. That is, the lid member 154 does not excessively prevent seawater from overflowing from the downstream end of the trough 130.
 トラフ130全体に亘って液面の局所的な隆起の抑制効果が得られるならば、蓋部材には、貫通孔が形成されていなくてもよい。この場合、海水は、蓋部材の上流端縁と上流の第1端壁136との間の空間を通じて蓋部材の上方の空間に流入することができる。 The lid member may not have a through hole as long as the effect of suppressing the local uplift of the liquid level can be obtained over the entire trough 130. In this case, seawater can flow into the space above the lid member through the space between the upstream edge of the lid member and the first upstream wall 136.
 図6及び図7の蓋部材154は、第1端壁136よりも第2端壁137の近くに配置されている。しかしながら、蓋部材154は、第2端壁137よりも第1端壁136の近くに配置されていてもよい(図8を参照)。この場合、流入口138が形成された第1端壁136の近くで生じた加熱用液体の上向きの流れが蓋部材154に衝突する。この結果、第1端壁136の近くでの加熱用液体の上向きの流れの勢いが弱められ、第1端壁136の近くでの加熱用液体の液面の隆起が抑制される。 The lid member 154 of FIGS. 6 and 7 is arranged closer to the second end wall 137 than to the first end wall 136. However, the lid member 154 may be located closer to the first end wall 136 than to the second end wall 137 (see FIG. 8). In this case, the upward flow of the heating liquid generated near the first end wall 136 on which the inflow port 138 is formed collides with the lid member 154. As a result, the upward flow of the heating liquid near the first end wall 136 is weakened, and the uplift of the liquid level of the heating liquid near the first end wall 136 is suppressed.
 図6乃至図9の蓋部材154は、第1端壁136又は第2端壁137の近くに配置されている。しかしながら、蓋部材154は、第1端壁136と第2端壁137とから略等距離の位置(すなわち、箱体131の長手方向(第1水平方向)における略中間位置)に配置されていてもよい(図9を参照)。この場合、箱体131の長手方向における略中間位置での加熱用液体の液面の隆起が抑制される。 The lid member 154 of FIGS. 6 to 9 is arranged near the first end wall 136 or the second end wall 137. However, the lid member 154 is arranged at a position substantially equidistant from the first end wall 136 and the second end wall 137 (that is, a substantially intermediate position in the longitudinal direction (first horizontal direction) of the box body 131). It may be (see FIG. 9). In this case, the uplift of the liquid level of the heating liquid is suppressed at a substantially intermediate position in the longitudinal direction of the box body 131.
 図6乃至図8は、蓋部材154として単数の多孔板を示している。しかしながら、複数の多孔板(板部材)155が、蓋部材154として箱体131内に配置されていてもよい(図10を参照)。これらの多孔板155は、第1水平方向において間隔を空けて配置されている。加えて、これらの多孔板155は、略一定の高さ位置(流入口より高く箱体131の上縁よりも低い位置)に配置されている。最も下流の多孔板155は、図6乃至図8を参照して説明された蓋部材154に相当している。すなわち、最も下流の多孔板155は、第2端壁137の近くにおける液面の隆起の抑制に寄与する。他の多孔板155は、流入口138からの海水に起因して生ずる液面の波打ちを抑制することに寄与する。液面の波打ちは、流入口138が第1端壁136の下部領域に形成されることによってある程度抑制されるけれども、これらの多孔板155によっても効果的に抑制される。 6 to 8 show a single perforated plate as the lid member 154. However, a plurality of perforated plates (plate members) 155 may be arranged in the box 131 as lid members 154 (see FIG. 10). These perforated plates 155 are arranged at intervals in the first horizontal direction. In addition, these perforated plates 155 are arranged at a substantially constant height position (higher than the inflow port and lower than the upper edge of the box 131). The most downstream perforated plate 155 corresponds to the lid member 154 described with reference to FIGS. 6-8. That is, the most downstream perforated plate 155 contributes to the suppression of the uplift of the liquid level near the second end wall 137. The other perforated plate 155 contributes to suppressing the waviness of the liquid level caused by the seawater from the inflow port 138. The waviness of the liquid surface is suppressed to some extent by forming the inflow port 138 in the lower region of the first end wall 136, but it is also effectively suppressed by these perforated plates 155.
 複数の多孔板155に代えて、貫通孔が形成されていない薄板がこれらの多孔板155の配置位置に取り付けられてもよい。この場合、隣り合う薄板の間の空隙を通じて海水がこれらの薄板の配置高さよりも上の領域に流入することができる。複数の薄板によっても液面の波打ち及び隆起に対する抑制効果が得られる。 Instead of the plurality of perforated plates 155, thin plates having no through holes may be attached at the arrangement positions of these perforated plates 155. In this case, seawater can flow into the region above the placement height of these thin plates through the voids between the adjacent thin plates. Even with a plurality of thin plates, an effect of suppressing the waviness and uplift of the liquid surface can be obtained.
 液面の波打ち及び隆起に対する抑制効果を得るために、第1水平方向に長い1つの多孔板156が蓋部材154として用いられてもよい(図11を参照)。図11に示される多孔板156は、第1端壁136の内面と第2端壁137の内面との間の区間に亘って箱体131の内部空間を上下に仕切っている。多孔板156の高さ位置は、図10の多孔板155の高さ位置と等しい。海水は、多孔板156の貫通孔を通じて多孔板156の上側の空間に流入することができる。 In order to obtain the effect of suppressing the waviness and swelling of the liquid surface, one perforated plate 156 long in the first horizontal direction may be used as the lid member 154 (see FIG. 11). The perforated plate 156 shown in FIG. 11 vertically partitions the internal space of the box body 131 over a section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137. The height position of the perforated plate 156 is equal to the height position of the perforated plate 155 of FIG. Seawater can flow into the space above the perforated plate 156 through the through hole of the perforated plate 156.
 図6乃至図11の箱体131内には、単層の蓋部材154が配置されている。しかしながら、箱体131内には、複数層の蓋部材154が配置されていてもよい(図12乃至図15を参照)。つまり、蓋部材154の上側において、蓋部材154から離間した位置に他の蓋部材154が設けられている。図12乃至図21は、鉛直方向に間隔を空けて配置された2層の蓋部材154を示している。これらの蓋部材154はともに、流入口138の上側且つ箱体131内の加熱用液体の液面の下側に設けられている。 A single-layer lid member 154 is arranged in the box body 131 of FIGS. 6 to 11. However, a plurality of layers of lid members 154 may be arranged in the box 131 (see FIGS. 12 to 15). That is, on the upper side of the lid member 154, another lid member 154 is provided at a position separated from the lid member 154. 12 to 21 show two-layer lid members 154 arranged at intervals in the vertical direction. Both of these lid members 154 are provided above the inflow port 138 and below the liquid level of the heating liquid in the box 131.
 図12の2層の蓋部材154はともに、第1端壁136の内面と第2端壁137の内面との間の区間全体に亘って箱体131の内部空間を上下に仕切っている。これらの蓋部材154は、図11を参照して説明された多孔板156を用いて構成されてもよい。 Both of the two-layer lid member 154 of FIG. 12 partition the internal space of the box body 131 up and down over the entire section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137. These lid members 154 may be configured by using the perforated plate 156 described with reference to FIG.
 下側の蓋部材154の下方で上向きの加熱用液体の流れが生ずると、上向きの加熱用液体は、下側の蓋部材154及び上側の蓋部材154に順次衝突する。この結果、上向きの加熱用液体の勢いは、図11の単層の蓋部材154よりも図12の2層の蓋部材154の方によってより効果的に弱められる。したがって、加熱用液体の液面の隆起は、効果的に抑制される。図12の蓋部材154はともに、箱体131の全長に亘って設けられているので、液面の波打ち及び隆起は、箱体131の全長に亘って抑制される。 When an upward flow of the heating liquid occurs below the lower lid member 154, the upward heating liquid collides with the lower lid member 154 and the upper lid member 154 in sequence. As a result, the momentum of the upward heating liquid is more effectively weakened by the two-layer lid member 154 of FIG. 12 than by the single-layer lid member 154 of FIG. Therefore, the uplift of the liquid level of the heating liquid is effectively suppressed. Since the lid member 154 of FIG. 12 is provided over the entire length of the box body 131, waviness and ridge of the liquid surface are suppressed over the entire length of the box body 131.
 加熱用液体の上向きの流れが強い領域が既知であれば、当該領域にのみ2層の蓋部材154の構造が設けられてもよい(図13乃至図15を参照)。図13乃至図15の下側の蓋部材154は、図12の下側の蓋部材154と同一である一方で、図13乃至図15の上側の蓋部材154は、下側の蓋部材154よりも箱体131の長手方向において短い。 If a region where the upward flow of the heating liquid is strong is known, the structure of the two-layer lid member 154 may be provided only in that region (see FIGS. 13 to 15). The lower lid member 154 of FIGS. 13 to 15 is the same as the lower lid member 154 of FIG. 12, while the upper lid member 154 of FIGS. 13 to 15 is from the lower lid member 154. Is also short in the longitudinal direction of the box 131.
 第1端壁136の近くにおいて上向きの強い流れが生ずることが分かっていれば、上側の蓋部材154は、第1端壁136の近くに配置される(図13を参照)。箱体131の長手方向における中間位置で上向きの強い流れが生ずることが分かっていれば、上側の箱体131の蓋部材154は、箱体131の中間位置に配置される(図14を参照)。第2端壁137の近くにおいて上向きの強い流れが生ずることが分かっていれば、上側の蓋部材154は、第2端壁137の近くに配置される(図15を参照)。 If it is known that a strong upward flow occurs near the first end wall 136, the upper lid member 154 is arranged near the first end wall 136 (see FIG. 13). If it is known that a strong upward flow occurs at an intermediate position in the longitudinal direction of the box 131, the lid member 154 of the upper box 131 is arranged at an intermediate position of the box 131 (see FIG. 14). .. If it is known that a strong upward flow occurs near the second end wall 137, the upper lid member 154 is placed near the second end wall 137 (see FIG. 15).
 図13乃至図15の短い蓋部材154は、長い蓋部材154の上側に配置されている。しかしながら、短い蓋部材154は、長い蓋部材154の下側に配置されていてもよい(図16乃至図18を参照)。図16の短い蓋部材154は、第1端壁136の近くに配置されている。図17の短い蓋部材154は、箱体131の中間位置に配置されている。図18の短い蓋部材154は、第2端壁137の近くに配置されている。 The short lid member 154 of FIGS. 13 to 15 is arranged above the long lid member 154. However, the short lid member 154 may be located below the long lid member 154 (see FIGS. 16-18). The short lid member 154 of FIG. 16 is located near the first end wall 136. The short lid member 154 of FIG. 17 is arranged at an intermediate position of the box body 131. The short lid member 154 of FIG. 18 is located near the second end wall 137.
 短い蓋部材154が長い蓋部材154の上側に配置される場合(図13乃至図15)には、短い蓋部材154が存在する領域と短い蓋部材154が存在していない領域とが加熱用液体の液面の近くに形成される。この場合、短い蓋部材154の有無が加熱用液体の流れに与える影響が、液面の形状に現れやすくなる。一方、図16乃至図18に示されるように、短い蓋部材154が長い蓋部材154の下側に配置されると、短い蓋部材154の有無が加熱用液体の流れに与えた影響は、上側の長い蓋部材154によって液面に現れにくくなる。 When the short lid member 154 is arranged above the long lid member 154 (FIGS. 13 to 15), the region where the short lid member 154 is present and the region where the short lid member 154 is not present are the heating liquids. Formed near the liquid level of. In this case, the influence of the presence or absence of the short lid member 154 on the flow of the heating liquid tends to appear in the shape of the liquid surface. On the other hand, as shown in FIGS. 16 to 18, when the short lid member 154 is arranged below the long lid member 154, the influence of the presence or absence of the short lid member 154 on the flow of the heating liquid is on the upper side. The long lid member 154 makes it difficult to appear on the liquid surface.
 加熱用液体の上向きの流れが箱体131内の特定の位置において強くなることが分かっていれば、長い蓋部材154は必ずしも必要とされない(図19乃至図21を参照)。第1端壁136の近くにおいて、単層の蓋部材154では液面の隆起を十分に抑制できないほどの強い上向きの流れが生ずることが既知であれば、第1端壁136の近くで2つの短い蓋部材154が鉛直方向に間隔を空けて重ねられていてもよい(図19を参照)。箱体131の中間位置において強い上向きの流れが生ずることが既知であれば、箱体131の中間位置において2つの短い蓋部材154が鉛直方向に間隔を空けて重ねられていてもよい(図20を参照)。第2端壁137の近くにおいて強い上向きの流れが生ずることが既知であれば、第2端壁137の近くで2つの短い蓋部材154が鉛直方向に間隔を空けて重ねられていてもよい(図21を参照)。 If it is known that the upward flow of the heating liquid becomes stronger at a specific position in the box 131, the long lid member 154 is not always required (see FIGS. 19 to 21). If it is known that the single-layer lid member 154 produces a strong upward flow near the first end wall 136 that cannot sufficiently suppress the uplift of the liquid level, two near the first end wall 136. Short lid members 154 may be stacked vertically spaced apart (see FIG. 19). If it is known that a strong upward flow occurs at the intermediate position of the box 131, two short lid members 154 may be vertically spaced apart at the intermediate position of the box 131 (FIG. 20). See). Two short lid members 154 may be vertically spaced apart near the second end wall 137, provided that a strong upward flow is known to occur near the second end wall 137. See FIG. 21).
 図12乃至図21において、2つの蓋部材154が示されている。しかしながら、箱体131の中には、2を越える蓋部材154が鉛直方向に整列されていてもよい。 In FIGS. 12 to 21, two lid members 154 are shown. However, in the box 131, more than two lid members 154 may be aligned in the vertical direction.
 蓋部材154が箱体131内に配置されているとき、蓋部材154は、邪魔板151の固定に利用されてもよい(図22乃至図24を参照)。図22乃至図24に示されている蓋部材154の構造は、図13の蓋部材154の構造と同一である。 When the lid member 154 is arranged in the box body 131, the lid member 154 may be used for fixing the baffle plate 151 (see FIGS. 22 to 24). The structure of the lid member 154 shown in FIGS. 22 to 24 is the same as the structure of the lid member 154 of FIG.
 図22乃至図24の邪魔板151は、略垂直の姿勢で下側の長い蓋部材154に固定されている。邪魔板151の上縁は、下側の長い蓋部材154の下面に接続されている。邪魔板151の下縁は、箱体131の底壁132から上方に離間している。邪魔板151の下縁と底壁132との間の空間は、第2端壁137に向かう加熱用液体の通過を許容するために形成されている。 The baffle plate 151 of FIGS. 22 to 24 is fixed to the lower long lid member 154 in a substantially vertical posture. The upper edge of the baffle plate 151 is connected to the lower surface of the lower long lid member 154. The lower edge of the baffle plate 151 is separated upward from the bottom wall 132 of the box body 131. The space between the lower edge of the baffle plate 151 and the bottom wall 132 is formed to allow the passage of the heating liquid toward the second end wall 137.
 図22の邪魔板151は、第2端壁137よりも第1端壁136の近くで下側の長い蓋部材154に固定されている。図23の邪魔板151は、箱体131の中間位置の近くで下側の長い蓋部材154に固定されている。図24の邪魔板151は、第1端壁136よりも第2端壁137の近くで下側の長い蓋部材154に固定されている。 The baffle plate 151 of FIG. 22 is fixed to a long lid member 154 on the lower side closer to the first end wall 136 than the second end wall 137. The baffle plate 151 of FIG. 23 is fixed to the lower long lid member 154 near the intermediate position of the box body 131. The baffle plate 151 of FIG. 24 is fixed to a long lid member 154 on the lower side closer to the second end wall 137 than the first end wall 136.
 図22乃至図24の邪魔板151には、貫通孔が形成されていない。したがって、第2端壁137へ向かう加熱用液体の通過は、邪魔板151の下縁と底壁132との間の空間において許容される。当該空間は、液面から離れているので、当該空間の通過に伴う加熱用液体の流れ方向の変化は、液面に現れにくくなる。 No through hole is formed in the baffle plate 151 of FIGS. 22 to 24. Therefore, the passage of the heating liquid toward the second end wall 137 is allowed in the space between the lower edge of the baffle plate 151 and the bottom wall 132. Since the space is separated from the liquid surface, changes in the flow direction of the heating liquid due to the passage of the space are less likely to appear on the liquid surface.
 第2端壁137に向かう加熱用液体の通過を許容する領域を増やすために、邪魔板151に代えて、貫通孔が形成された邪魔板151aが用いられてもよい(図25を参照)。図25の邪魔板151aは、図22の邪魔板151と同じ位置で下側の長い蓋部材154の下面に固定されている。 In order to increase the area that allows the passage of the heating liquid toward the second end wall 137, a baffle plate 151a having a through hole may be used instead of the baffle plate 151 (see FIG. 25). The baffle plate 151a of FIG. 25 is fixed to the lower surface of the lower long lid member 154 at the same position as the baffle plate 151 of FIG. 22.
 邪魔板151aが用いられる場合には、邪魔板151aは、底壁132に接続されていてもよい。 When the baffle plate 151a is used, the baffle plate 151a may be connected to the bottom wall 132.
 鉛直方向に間隔を空けて整列された複数の蓋部材154のうち少なくとも1つが箱体131の全長よりも短いとき、これらの蓋部材154の間の空間を水平方向に流れる加熱用液体の流れが加熱用液体の液面を隆起させることがある。この水平方向の流れが、蓋部材154が重なった領域を通り抜けると、加熱用液体は、上下に拡がりながら流れる。これらの蓋部材154は、液面の近くに配置されているので、上下方向に拡がる加熱用液体は、液面の隆起を引き起こしやすい。 When at least one of the plurality of lid members 154 arranged at vertical intervals is shorter than the total length of the box body 131, the flow of the heating liquid flowing horizontally through the space between these lid members 154 flows. The liquid level of the heating liquid may be raised. When this horizontal flow passes through the region where the lid members 154 overlap, the heating liquid flows while spreading up and down. Since these lid members 154 are arranged near the liquid level, the heating liquid that spreads in the vertical direction tends to cause the liquid level to rise.
 上下方向に拡がる加熱用液体の発生を防止又は抑制するために、縦蓋157(図26乃至図28を参照)が設けられてもよい。図26の蓋部材154は、図13の蓋部材と同一の構造である。図26の縦蓋157は、第2端壁137側において、上側の短い蓋部材154の端縁(第2端壁137側の端縁)と下側の長い蓋部材154の上面とに固定され、これらの蓋部材154の間の空隙を閉じている。図27の蓋部材154は、図20の蓋部材154と同一の構造である。図27の縦蓋157は、これらの蓋部材154の両端縁(第1端壁136側の端縁及び第2端壁137側の端縁)に固定され、これらの蓋部材154の間の空隙を閉じている。図28の蓋部材154は、図21の蓋部材154と同一の構造である。図28の縦蓋157は、これらの蓋部材154の端縁(第1端壁136側の端縁)に固定され、これらの蓋部材154の間の空隙を閉じている。 A vertical lid 157 (see FIGS. 26 to 28) may be provided in order to prevent or suppress the generation of the heating liquid that spreads in the vertical direction. The lid member 154 of FIG. 26 has the same structure as the lid member of FIG. The vertical lid 157 of FIG. 26 is fixed to the end edge of the upper short lid member 154 (the end edge on the second end wall 137 side) and the upper surface of the lower long lid member 154 on the second end wall 137 side. , The gap between these lid members 154 is closed. The lid member 154 of FIG. 27 has the same structure as the lid member 154 of FIG. The vertical lid 157 of FIG. 27 is fixed to both end edges of these lid members 154 (the end edge on the first end wall 136 side and the end edge on the second end wall 137 side), and the gap between these lid members 154. Is closed. The lid member 154 of FIG. 28 has the same structure as the lid member 154 of FIG. The vertical lid 157 of FIG. 28 is fixed to the edge of these lid members 154 (the edge on the side of the first end wall 136) and closes the gap between the lid members 154.
 縦蓋157は、蓋部材154間の空隙(水平方向に開口した空隙)を完全に閉じていてもよいし、部分的に閉じていてもよい。縦蓋157が蓋部材154間の空隙を部分的に閉じるには、両蓋部材154に接続された縦蓋157に貫通孔が形成された構成としてもよいし、貫通孔が形成された又は貫通孔が形成されていない縦蓋157の上縁又は下縁が上下の蓋部材154の下面又は上面から離れていてもよい。縦蓋157が蓋部材154間の空隙を部分的に閉じている場合においても、縦蓋157は、蓋部材154の空隙を流れる水平方向の勢いを弱めることができる。この結果、これらの蓋部材154間の空隙を通過した後に上下に拡散する流れが弱められ、液面の隆起が抑制される。 The vertical lid 157 may completely close the gap (the gap opened in the horizontal direction) between the lid members 154, or may partially close the gap. In order for the vertical lid 157 to partially close the gap between the lid members 154, a through hole may be formed in the vertical lid 157 connected to both lid members 154, or a through hole may be formed or penetrated. The upper or lower edge of the vertical lid 157 in which the hole is not formed may be separated from the lower surface or the upper surface of the upper and lower lid members 154. Even when the vertical lid 157 partially closes the gap between the lid members 154, the vertical lid 157 can weaken the horizontal force flowing through the gap of the lid member 154. As a result, the flow that diffuses up and down after passing through the gaps between these lid members 154 is weakened, and the uplift of the liquid surface is suppressed.
 上述の実施形態に関連して説明された構造は例示的であり、制限的に解釈されるべきではない。上述の実施形態に関連して説明された構造に対して様々な変更や改良が加えられてもよい。 The structures described in connection with the embodiments described above are exemplary and should not be construed in a restrictive manner. Various changes and improvements may be made to the structures described in connection with the embodiments described above.
 上述の実施形態に関して、液化ガスとして液化天然ガスが例示されている。しかしながら液化ガスは、液化石油ガスであってもよいし、液体窒素であってもよい。 Regarding the above-described embodiment, liquefied natural gas is exemplified as the liquefied gas. However, the liquefied gas may be liquefied petroleum gas or liquid nitrogen.
 上述の実施形態に関して、加熱用液体として海水が例示されている。しかしながら、加熱用液体として液化ガスより高温の他の液体が用いられてもよい。 Regarding the above-described embodiment, seawater is exemplified as a heating liquid. However, another liquid having a temperature higher than that of the liquefied gas may be used as the heating liquid.
 マニホールド122の高さ位置に関して様々なレイアウトが採用可能である。マニホールド122の他のレイアウトが、図1及び図29を参照して説明される。図29は、マニホールド122の概略的な断面図である。 Various layouts can be adopted for the height position of the manifold 122. Other layouts of the manifold 122 are described with reference to FIGS. 1 and 29. FIG. 29 is a schematic cross-sectional view of the manifold 122.
 図1に示されるレイアウトに関して、第1端壁136の流入口138は、マニホールド122の流出口125とは異なる高さ位置に配置されている。しかしながら、第1端壁136の流入口138は、マニホールド122の流出口125と略同軸になるようにマニホールド122と複数のトラフ130との間の相対的な位置関係が定められてもよい(図29を参照)。すなわち、マニホールド122の高さ位置が複数のトラフ130の高さ位置に略等しくなるように、マニホールド122が図1に示される位置よりも高い位置に配置されてもよい。この場合これらに接続される供給管として直管型の供給管123が好適に利用可能であり、湾曲した流動経路よりも短い流動経路が形成される。 Regarding the layout shown in FIG. 1, the inflow port 138 of the first end wall 136 is arranged at a different height position from the outflow port 125 of the manifold 122. However, the inflow port 138 of the first end wall 136 may have a relative positional relationship between the manifold 122 and the plurality of troughs 130 so as to be substantially coaxial with the outflow port 125 of the manifold 122 (FIG. FIG. 29). That is, the manifold 122 may be arranged at a position higher than the position shown in FIG. 1 so that the height position of the manifold 122 is substantially equal to the height position of the plurality of troughs 130. In this case, a straight pipe type supply pipe 123 can be preferably used as the supply pipe connected to these, and a flow path shorter than the curved flow path is formed.
 上述の実施形態に関して、閉塞部材140を用いて複数のトラフ130間の海水の流入量が均一化されている。複数のトラフ130それぞれへの海水の流入量の調整幅を増大させるために弁体やオリフィスといった流量調整部品が複数の供給管123に取り付けられていてもよい。 Regarding the above-described embodiment, the inflow amount of seawater between the plurality of troughs 130 is made uniform by using the closing member 140. Flow rate adjusting components such as a valve body and an orifice may be attached to the plurality of supply pipes 123 in order to increase the adjustment range of the amount of seawater flowing into each of the plurality of troughs 130.
 上述の実施形態に関して、閉塞部材140は、オリフィスを用いて形成されている。しかしながら、図30に示されるように、閉塞部材140は、多孔板142を用いて形成されていてもよい。 Regarding the above-described embodiment, the closing member 140 is formed by using an orifice. However, as shown in FIG. 30, the closing member 140 may be formed by using the perforated plate 142.
 上述の実施形態に関して、複数の邪魔板151が隆起抑制部として用いられている。しかしながら、単一の邪魔板が隆起抑制部として用いられてもよい。いくつの邪魔板が隆起抑制部として用いられるかは、トラフ130へ流入する海水の流量や流入口138の大きさに基づいて決定されてもよい。これらの設計条件に基づき複数の邪魔板151の配置間隔や複数の邪魔板151の高さが決定されてもよい。 Regarding the above-described embodiment, a plurality of baffle plates 151 are used as the ridge suppressing portion. However, a single baffle plate may be used as the ridge suppressor. How many baffles are used as the uplift suppressor may be determined based on the flow rate of seawater flowing into the trough 130 and the size of the inflow port 138. Based on these design conditions, the arrangement interval of the plurality of baffle plates 151 and the heights of the plurality of baffle plates 151 may be determined.
 上述の実施形態に関して、邪魔板151は、略垂直の姿勢で箱体131内において固定されている。しかしながら、気化装置100は、傾斜した姿勢で箱体131内において固定された邪魔板151’を有していてもよい(図31及び図32を参照)。図31及び図32に示されている邪魔板151’は、底壁132に固定されている。図31の邪魔板151’は、底壁132から邪魔板151’の上縁に向けて第2端壁137側へ傾斜している。一方、図32の邪魔板151’は、底壁132から邪魔板151’の上縁に向けて第1端壁136側へ傾斜している。なお、邪魔板151’は、底壁132から離間されていてもよい。この場合には、邪魔板151’は、側壁134,135に固定される。 Regarding the above-described embodiment, the baffle plate 151 is fixed in the box body 131 in a substantially vertical posture. However, the vaporizer 100 may have a baffle plate 151'fixed in the box 131 in an inclined position (see FIGS. 31 and 32). The baffle plate 151'shown in FIGS. 31 and 32 is fixed to the bottom wall 132. The baffle plate 151'in FIG. 31 is inclined from the bottom wall 132 toward the upper edge of the baffle plate 151' toward the second end wall 137. On the other hand, the baffle plate 151'in FIG. 32 is inclined from the bottom wall 132 toward the upper edge of the baffle plate 151' toward the first end wall 136 side. The baffle plate 151'may be separated from the bottom wall 132. In this case, the baffle plate 151'is fixed to the side walls 134 and 135.
 邪魔板151’が第2端壁137側へ傾斜している場合(図31)には、邪魔板151’に衝突した加熱用液体は、斜め上方に流れやすい。したがって、邪魔板151’の周囲において、箱体131から溢れ出す加熱用液体の量を増やすことができる。 When the baffle plate 151'is inclined toward the second end wall 137 (FIG. 31), the heating liquid that collides with the baffle plate 151' tends to flow diagonally upward. Therefore, the amount of the heating liquid that overflows from the box 131 can be increased around the baffle plate 151'.
 邪魔板151’が第1端壁136側へ傾斜している場合(図32)には、邪魔板151’に衝突した加熱用液体は、斜め下方に流れやすい。この場合、箱体131の底壁132の近くにおける加熱用液体の流速が増えやすい。この結果、箱体131の深さ方向における加熱用液体の速度分布の偏りが緩和される。この場合、加熱用液体の液面の波打ちが抑制される。 When the baffle plate 151'is inclined toward the first end wall 136 (FIG. 32), the heating liquid that collides with the baffle plate 151' tends to flow diagonally downward. In this case, the flow velocity of the heating liquid near the bottom wall 132 of the box body 131 tends to increase. As a result, the bias of the velocity distribution of the heating liquid in the depth direction of the box 131 is alleviated. In this case, the waviness of the liquid surface of the heating liquid is suppressed.
 抵抗部材は、互いに間隔を空けて並べられた複数の邪魔板151’’(抵抗体)を有してもよい(図33を参照)。図33の複数の邪魔板151’’は、第1水平方向において3箇所に設置されている。これらの設置箇所それぞれにおいて、2つの邪魔板151’’は、鉛直方向において間隔を空けて並べられている。邪魔板151’’に衝突した加熱用液体の一部は、これらの邪魔板151’’の間の空間を通過し、下流に流れることができる。空隙の大きさは、鉛直方向に並んだ2つの邪魔板151’’の間隔によって調整されるので、これらの間隔を調整することによって邪魔板151’’が加熱用液体に与える影響及び邪魔板151’’を越えて流れる加熱用液体の量を適切な値に設定することができる。 The resistance member may have a plurality of baffle plates 151 ″ (resistors) arranged at intervals from each other (see FIG. 33). The plurality of baffle plates 151 ″ of FIG. 33 are installed at three locations in the first horizontal direction. At each of these installation locations, the two baffle plates 151 ″ are arranged at intervals in the vertical direction. A part of the heating liquid that collides with the baffle plates 151 ″ can pass through the space between these baffle plates 151 ″ and flow downstream. The size of the void is adjusted by the distance between the two baffle plates 151'' arranged in the vertical direction. By adjusting these distances, the influence of the baffle plate 151'' on the heating liquid and the baffle plate 151'' The amount of heating liquid flowing beyond'' can be set to an appropriate value.
<第2実施形態>
 図34は、第2実施形態のオープンラック式の気化装置100’の概略的な斜視図である。図35は、気化装置100’の概略的な断面図である。気化装置100’が図34及び図35を参照して説明される。
<Second Embodiment>
FIG. 34 is a schematic perspective view of the open rack type vaporizer 100'of the second embodiment. FIG. 35 is a schematic cross-sectional view of the vaporizer 100'. The vaporizer 100'is described with reference to FIGS. 34 and 35.
 第2実施形態の気化装置100’は、マニホールド122から4つのトラフ130に加熱用液体を供給する供給経路に対して、流路断面積において相違する2つの供給管123,123’を用いる点において、第1実施形態の気化装置100とは相違している。供給管123は、第2水平方向において間隔を空けて整列された4つのトラフ130のうち最外の2つのトラフ130に接続されている。残りのトラフ130に加熱用液体を供給するために用いられる供給管123’の流路断面積は、供給管123の流路断面積よりも大きい。 The vaporizer 100'of the second embodiment uses two supply pipes 123, 123'that differ in the cross-sectional area of the flow path with respect to the supply paths for supplying the heating liquid from the manifold 122 to the four troughs 130. , It is different from the vaporizer 100 of the first embodiment. The supply pipe 123 is connected to the outermost two troughs 130 out of the four troughs 130 spaced apart from each other in the second horizontal direction. The flow path cross-sectional area of the supply pipe 123'used to supply the heating liquid to the remaining trough 130 is larger than the flow path cross-sectional area of the supply pipe 123.
 最外の2つのトラフ130それぞれは、1つの伝熱パネル113に隣り合っている。一方、残りの2つのトラフ130それぞれは、2つの伝熱パネル113に隣り合っている。したがって、最外の2つのトラフ130それぞれは、1つの伝熱パネル113へ加熱用液体を供給すればよいのに対して、残りの2つのトラフ130それぞれは、2つの伝熱パネル113へ加熱用液体を供給する必要がある。したがって、最外の2つのトラフ130からの加熱用液体の流出量より多くの加熱用液体が残りの2つのトラフ130から流出する必要がある。よって、最外の2つのトラフ130への加熱用液体の供給量より多くの加熱用液体が残りの2つのトラフ130へ供給される必要がある。 Each of the two outermost troughs 130 is adjacent to one heat transfer panel 113. On the other hand, each of the remaining two troughs 130 is adjacent to the two heat transfer panels 113. Therefore, each of the two outermost troughs 130 need only supply the heating liquid to one heat transfer panel 113, whereas each of the remaining two troughs 130 is for heating to the two heat transfer panels 113. It is necessary to supply the liquid. Therefore, it is necessary that more heating liquid flows out from the remaining two troughs 130 than the amount of the heating liquid flowing out from the outermost two troughs 130. Therefore, it is necessary to supply more heating liquid to the remaining two troughs 130 than the amount of the heating liquid supplied to the outermost two troughs 130.
 本実施形態に関して、供給管123’の流路断面積は、供給管123の流路断面積より大きいので、最外の2つのトラフ130への加熱用液体の供給量より多くの加熱用液体を残りの2つのトラフ130へ供給することが可能になる。このような流量の大小関係を得るために、供給管123,123’に流量を調整するための流体機器(たとえば、流量調整弁やオリフィス)を取り付ける必要はない。 In the present embodiment, since the flow path cross-sectional area of the supply pipe 123'is larger than the flow path cross-sectional area of the supply pipe 123, more heating liquid is supplied than the supply amount of the heating liquid to the outermost two troughs 130. It becomes possible to supply to the remaining two troughs 130. In order to obtain such a magnitude relationship of the flow rate, it is not necessary to attach a fluid device (for example, a flow rate adjusting valve or an orifice) for adjusting the flow rate to the supply pipes 123, 123'.
 上述の様々な実施形態に関連して説明された気化装置は、以下の特徴を主に備えている。 The vaporizer described in connection with the various embodiments described above mainly has the following features.
 上述の実施形態の一の局面に係る気化装置は、液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させるように構成されている。気化装置は、前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶように構成された伝熱パネルと、前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成されているとともに、前記伝熱パネルの上縁よりも低い位置に配置されたトラフと、前記複数の伝熱管の整列方向において前記トラフの一端側に配置されているとともに、前記トラフへ前記加熱用液体を供給するように構成されたマニホールドとを備えている。前記トラフは、前記複数の伝熱管の前記整列方向に延設された底壁と、前記整列方向において前記マニホールド側に位置する前記底壁の端部に立設した第1端壁と、前記整列方向において前記第1端壁から離間する前記底壁の他のもう1つの端部に立設した第2端壁と含んでいる。前記第1端壁には、前記加熱用液体が流入する流入口が形成されている。 The vaporizer according to one aspect of the above-described embodiment is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas. The vaporizer supplies the heating liquid to the heat transfer panel configured so that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction and the outer surface of the plurality of heat transfer tubes. The truffles are arranged at a position lower than the upper edge of the heat transfer panel, and the truffles are arranged on one end side of the truffles in the alignment direction of the plurality of heat transfer tubes. It is provided with a manifold configured to supply the heating liquid to the heat pipe. The trough is aligned with a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction. It includes a second end wall erected at another end of the bottom wall that is distant from the first end wall in the direction. An inflow port into which the heating liquid flows is formed on the first end wall.
 上記の構成によれば、加熱用液体をトラフへ供給するように構成されたマニホールドがトラフの第1端壁側に配置されているとともに第1端壁には流入口が形成されているので、マニホールドからトラフへの加熱用液体の流動経路は短くなる。言い換えると、マニホールドからトラフへの加熱用液体の流動経路は、マニホールドから底壁に流入口が形成されたトラフに加熱用液体を流入させる構造とは異なり、第1端壁を越えて底壁の流入口まで延設される必要はない。 According to the above configuration, the manifold configured to supply the heating liquid to the trough is arranged on the first end wall side of the trough, and the inflow port is formed on the first end wall. The flow path of the heating liquid from the manifold to the trough is shortened. In other words, the flow path of the heating liquid from the manifold to the trough is different from the structure in which the heating liquid flows into the trough having an inflow port formed in the bottom wall from the manifold, and the flow path of the heating liquid is over the first end wall of the bottom wall. It does not have to extend to the inlet.
 上記の構成に関して、気化装置は、前記トラフ内に流入した前記加熱用液体が前記第2端壁に衝突することに起因して生ずる前記加熱用液体の液面の隆起を抑制するように構成された隆起抑制部を更に備えていてもよい。 With respect to the above configuration, the vaporizer is configured to suppress the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid flowing into the trough with the second end wall. It may further include a raised restraint portion.
 上記の構成によれば、流入口を通じてトラフ内に流入した加熱用液体は、第2端壁に向けて流れ第2端壁に衝突する。第2端壁に衝突した加熱用液体の一部は、第2端壁の近くで上向きに流れ、加熱用液体の液面を上方に隆起させようとする。このとき、隆起抑制部は、液面の隆起を抑制するので、第2端壁の近くの伝熱管の外表面への加熱用液体の過多な供給が防止される。したがって、複数の伝熱管間での熱交換量のばらつきが抑制される。 According to the above configuration, the heating liquid that has flowed into the trough through the inflow port flows toward the second end wall and collides with the second end wall. A part of the heating liquid that collides with the second end wall flows upward near the second end wall and tries to raise the liquid level of the heating liquid upward. At this time, since the uplift suppressing portion suppresses the uplift of the liquid surface, excessive supply of the heating liquid to the outer surface of the heat transfer tube near the second end wall is prevented. Therefore, the variation in the amount of heat exchange between the plurality of heat transfer tubes is suppressed.
 上記の構成に関して、前記隆起抑制部は、前記トラフ内において前記流入口よりも高い位置で前記第1端壁と前記第2端壁との間において前記整列方向に延設された蓋部材を含んでいてもよい。 With respect to the above configuration, the ridge restraining portion includes a lid member extending in the alignment direction between the first end wall and the second end wall at a position higher than the inflow port in the trough. You may be.
 上記の構成によれば、流入口からトラフ内に流入した加熱用液体の多くは、流入口よりも高い位置に配置された蓋部材の下方の領域を流れる。加熱用液体が、その後第2端壁に衝突すると、加熱用液体の上向きの流れが生ずる。加熱用液体の上向きの流れが蓋部材に衝突することによって、加熱用液体の液面の隆起は抑制される。 According to the above configuration, most of the heating liquid flowing into the trough from the inflow port flows in the region below the lid member arranged at a position higher than the inflow port. When the heating liquid subsequently collides with the second end wall, an upward flow of the heating liquid occurs. The uplift of the liquid level of the heating liquid is suppressed by the upward flow of the heating liquid colliding with the lid member.
 上記の構成に関して、前記蓋部材は、前記第1端壁側、前記第2端壁側、又は、前記第1端壁と前記第2端壁との間の中間位置に配置されていてもよい。 With respect to the above configuration, the lid member may be arranged on the first end wall side, the second end wall side, or at an intermediate position between the first end wall and the second end wall. ..
 上記の構成によれば、蓋部材が第1端壁側に配置されているとき、流入口の近くにおいて加熱用液体の隆起が抑制される。蓋部材が第2端壁側に配置されているとき、第2端壁への加熱用液体の衝突によって生じた加熱用液体の液面の隆起が抑制される。蓋部材が、第1端壁と第2端壁との間の中間位置に配置されているとき、中間位置における加熱用液体の液面の隆起が抑制される。 According to the above configuration, when the lid member is arranged on the first end wall side, the uplift of the heating liquid is suppressed near the inflow port. When the lid member is arranged on the second end wall side, the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid with the second end wall is suppressed. When the lid member is arranged at an intermediate position between the first end wall and the second end wall, the uplift of the liquid level of the heating liquid at the intermediate position is suppressed.
 上記の構成に関して、前記蓋部材は、前記第1端壁から前記第2端壁において前記整列方向に全面配置された板部材、あるいは、前記第1端壁から前記第2端壁までの区間において前記整列方向に間隔を空けて配置された複数の板部材によって構成されていてもよい。 With respect to the above configuration, the lid member is a plate member that is entirely arranged in the alignment direction from the first end wall to the second end wall, or in a section from the first end wall to the second end wall. It may be composed of a plurality of plate members arranged at intervals in the alignment direction.
 上記の構成によれば、蓋部材が第1端壁から第2端壁において整列方向に全面配置された板部材によって構成されているとき、加熱用液体の液面の波打ちや隆起は、トラフの全長に亘って抑制される。蓋部材が、第1端壁から第2端壁までの区間において整列方向に間隔を空けて配置された複数の板部材によって構成されているとき、加熱用液体の液面の隆起は、トラフの重量を過度に増やすことなく、トラフの長手方向において広い範囲に亘って抑制される。 According to the above configuration, when the lid member is composed of plate members arranged entirely in the alignment direction from the first end wall to the second end wall, the waviness or ridge of the liquid level of the heating liquid is caused by the trough. It is suppressed over the entire length. When the lid member is composed of a plurality of plate members arranged at intervals in the alignment direction in the section from the first end wall to the second end wall, the uplift of the liquid level of the heating liquid is a trough. It is suppressed over a wide range in the longitudinal direction of the trough without excessive weight gain.
 上記の構成に関して、前記蓋部材には、鉛直方向において前記蓋部材を貫通する貫通孔が形成されていてもよい。 Regarding the above configuration, the lid member may be formed with a through hole that penetrates the lid member in the vertical direction.
 上記の構成によれば、上向きに流れる加熱用液体の一部は、蓋部材の貫通孔を通じて蓋部材の上側の空間に流入することができる。加熱用液体が貫通孔を通過するときに抵抗が加熱用液体に加わるので、第2端壁の近くでの液面の隆起が抑制される。 According to the above configuration, a part of the heating liquid flowing upward can flow into the space above the lid member through the through hole of the lid member. As the heating liquid passes through the through hole, resistance is applied to the heating liquid, so that the uplift of the liquid level near the second end wall is suppressed.
 上記の構成に関して、前記隆起抑制部は、前記第1端壁と前記第2端壁との間に配置された抵抗部材を含んでもよい。前記流入口から前記トラフ内に流入した前記加熱用液体が前記第2端壁に衝突する前に前記抵抗部材と衝突することによって、前記第2端壁に対する前記加熱用液体の衝突力が抑制されてもよい。 With respect to the above configuration, the ridge suppressing portion may include a resistance member arranged between the first end wall and the second end wall. By colliding with the resistance member before the heating liquid flowing into the trough from the inflow port collides with the second end wall, the collision force of the heating liquid with respect to the second end wall is suppressed. You may.
 上記の構成によれば、流入口から流入した加熱用液体は、第2端壁に衝突する前に抵抗部材に衝突するので、第2端壁との衝突前に抵抗部材によって減速されている。このため、加熱用液体が第2端壁に衝突しても、大きな衝突力は生じず、上方に大きな速度成分を有する加熱用液体の流れが生じにくくなる。すなわち、第2端壁の近くでの液面の隆起は抑制される。 According to the above configuration, the heating liquid flowing in from the inflow port collides with the resistance member before colliding with the second end wall, and is therefore decelerated by the resistance member before colliding with the second end wall. Therefore, even if the heating liquid collides with the second end wall, a large collision force is not generated, and the flow of the heating liquid having a large velocity component is less likely to occur upward. That is, the uplift of the liquid level near the second end wall is suppressed.
 上記の構成に関して、前記抵抗部材は、前記トラフの底壁に対して垂直の姿勢又は傾斜した姿勢で設置されていてもよい。 Regarding the above configuration, the resistance member may be installed in a posture perpendicular to or inclined with respect to the bottom wall of the trough.
 上記の構成によれば、抵抗部材がトラフの底壁に対して垂直の姿勢で設置されているとき、加熱用液体が抵抗部材に衝突することにより、加熱用液体の勢いが効果的に低減される。抵抗部材がトラフの底壁に対して傾斜した姿勢で設置されているとき、加熱用液体の勢いを弱めるとともに、加熱用液体の流れ方向を変更することが可能になる。 According to the above configuration, when the resistance member is installed in a posture perpendicular to the bottom wall of the trough, the force of the heating liquid is effectively reduced by the collision of the heating liquid with the resistance member. To. When the resistance member is installed in an inclined posture with respect to the bottom wall of the trough, it is possible to weaken the momentum of the heating liquid and change the flow direction of the heating liquid.
 上記の構成に関して、前記抵抗部材は、前記トラフの底壁から離間して設置されていてもよい。 Regarding the above configuration, the resistance member may be installed away from the bottom wall of the trough.
 上記の構成では、加熱用液体の一部は、抵抗部材とトラフの底壁との間の空隙を通じて下流に流れることができる。この空隙は、加熱用液体の液面から離れているので、当該空隙を通過する加熱用液体の流れによって液面が大きく隆起することはない。加熱用液体は、空隙を通過して第2端壁へ流れることができるので、第2端壁の近くにおける加熱用液体の流出量の過度の低下は生じない。 In the above configuration, a part of the heating liquid can flow downstream through the gap between the resistance member and the bottom wall of the trough. Since this void is separated from the liquid level of the heating liquid, the liquid level does not rise significantly due to the flow of the heating liquid passing through the void. Since the heating liquid can flow through the voids to the second end wall, there is no excessive decrease in the outflow amount of the heating liquid near the second end wall.
 上記の構成に関して、前記抵抗部材は、互いに離間して配置された複数の抵抗体によって構成されていてもよい。 Regarding the above configuration, the resistance member may be composed of a plurality of resistors arranged apart from each other.
 上記の構成によれば、抵抗部材は、互いに離間して配置された複数の抵抗体によって構成されているので、トラフ内において、加熱用液体が抵抗部材に衝突する領域を複数設定することができる。これらの抵抗体の間の間隔が小さくなれば、加熱用液体に対する抵抗は大きくなる。一方、これらの抵抗体の間の間隔が大きくなれば、加熱用液体に対する抵抗は小さくなる。したがって、これらの抵抗体の間の間隔を調整することによって、加熱用液体に対する抵抗を適切な値に設定することができる。 According to the above configuration, since the resistance member is composed of a plurality of resistors arranged apart from each other, it is possible to set a plurality of regions in the trough where the heating liquid collides with the resistance member. .. The smaller the spacing between these resistors, the greater the resistance to the heating liquid. On the other hand, the greater the spacing between these resistors, the smaller the resistance to the heating liquid. Therefore, by adjusting the spacing between these resistors, the resistance to the heating liquid can be set to an appropriate value.
 上記の構成に関して、前記抵抗部材には、前記整列方向に前記抵抗部材を貫通する貫通孔が形成されていてもよい。 Regarding the above configuration, the resistance member may be formed with a through hole penetrating the resistance member in the alignment direction.
 上記の構成によれば、複数の伝熱管の整列方向において抵抗部材を貫通する貫通孔が形成されているので、第1端壁に形成された流入口から流入した加熱用液体の一部は、抵抗部材の貫通孔を通じて抵抗部材の上流領域から下流領域へ流れることができる。加熱用液体が貫通孔を通過するときに大きな抵抗が加熱用液体に加わるので、第1端壁から第2端壁へ向かう加熱用液体の圧力は低下する。この結果、第2端壁の近くでの液面の隆起が抑制される。 According to the above configuration, since the through holes penetrating the resistance member are formed in the alignment direction of the plurality of heat transfer tubes, a part of the heating liquid flowing in from the inflow port formed in the first end wall is formed. It can flow from the upstream region to the downstream region of the resistance member through the through hole of the resistance member. As the heating liquid passes through the through hole, a large resistance is applied to the heating liquid, so that the pressure of the heating liquid from the first end wall to the second end wall decreases. As a result, the uplift of the liquid level near the second end wall is suppressed.
 上記の構成に関して、気化装置は、前記流入口を部分的に閉じるように前記トラフ内に配置された閉塞部材を更に備えていてもよい。前記閉塞部材は、前記トラフから取り外し可能であってもよい。 With respect to the above configuration, the vaporizer may further include a closing member arranged in the trough so as to partially close the inflow port. The closing member may be removable from the trough.
 上記の構成によれば、閉塞部材は、流入口を部分的に閉じるので、トラフの流入口において加熱用液体に抵抗を与え、トラフへの加熱用液体の流入量を調整することができる。閉塞部材は、トラフから取り外し可能であるので、閉塞部材をトラフから取り外すことによって、流入口を通過する加熱用液体に対する抵抗を低減することができる。 According to the above configuration, since the closing member partially closes the inflow port, it is possible to give resistance to the heating liquid at the inflow port of the trough and adjust the inflow amount of the heating liquid into the trough. Since the closing member is removable from the trough, the resistance to the heating liquid passing through the inflow port can be reduced by removing the closing member from the trough.
 上記の構成に関して、気化装置は、複数の伝熱管を有しているとともに前記伝熱パネルから離間して配置された他の伝熱パネルと、前記他の伝熱パネルの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された他のトラフと、前記トラフ及び前記他のトラフに前記加熱用液体を前記マニホールドから供給するように、前記トラフ及び前記他のトラフにそれぞれ接続された複数の供給管と、を更に備えていてもよい。前記伝熱パネル及び前記他の伝熱パネルのうち一方は、他方の伝熱パネルよりも少ない流量の前記加熱用液体と前記液化ガスとを熱交換させるように構成されていてもよい。前記一方の伝熱パネルに対応するトラフに接続された供給管の流路断面積は、前記他方の伝熱パネルに対応するトラフに接続された供給管の流路断面積よりも小さくてもよい。 With respect to the above configuration, the vaporizer has a plurality of heat transfer tubes, another heat transfer panel arranged apart from the heat transfer panel, and the plurality of heat transfer tubes of the other heat transfer panel. The other trough configured to supply the heating liquid to the outer surface, and the trough and the other trough to supply the heating liquid from the manifold to the trough and the other trough, respectively. It may further include a plurality of connected supply pipes. One of the heat transfer panel and the other heat transfer panel may be configured to exchange heat between the heating liquid and the liquefied gas at a flow rate smaller than that of the other heat transfer panel. The flow path cross-sectional area of the supply pipe connected to the trough corresponding to the one heat transfer panel may be smaller than the flow path cross-sectional area of the supply pipe connected to the trough corresponding to the other heat transfer panel. ..
 上記の構成によれば、トラフは、マニホールドに接続された複数の供給管を通じて加熱用液体を受け取るので、トラフへの加熱用液体の供給量は、これらの供給管の流路断面積に応じて変わる。加熱用液体と液化ガスとの熱交換に比較的少ない流量の加熱用液体を必要としている伝熱パネルに加熱用液体を供給するトラフに接続された供給管の流路断面積は比較的小さいので、不必要に多くの加熱用液体は当該トラフに供給されない。 According to the above configuration, the trough receives the heating liquid through a plurality of supply pipes connected to the manifold, so that the amount of the heating liquid supplied to the trough depends on the flow path cross-sectional area of these supply pipes. change. Since the flow path cross-sectional area of the supply pipe connected to the trough that supplies the heating liquid to the heat transfer panel, which requires a relatively small flow rate of the heating liquid for heat exchange between the heating liquid and the liquefied gas, is relatively small. , Unnecessarily much heating liquid is not supplied to the trough.
 上記の構成に関して、気化装置は、前記伝熱パネルを含むとともに間隔を空けて配置された少なくとも2つの伝熱パネルと、前記トラフを含む3つのトラフと、前記3つのトラフに前記加熱用液体を前記マニホールドから供給するように前記3つのトラフにそれぞれ接続された複数の供給管と、を更に備えていてもよい。前記3つのトラフのうち2つは、前記少なくとも2つの伝熱パネルのうち1つにのみ隣り合うように前記少なくとも2つの伝熱パネルの列の外側にそれぞれ配置されている一方で、残りのトラフは、隣り合う伝熱パネルの間に配置されていてもよい。前記2つのトラフにそれぞれ接続された一対の供給管の流路断面積は、前記残りのトラフに接続された供給管の流路断面積よりも小さくてもよい。 With respect to the above configuration, the vaporizer comprises at least two heat transfer panels including the heat transfer panel and spaced apart from each other, three troughs including the trough, and the heating liquid in the three troughs. A plurality of supply pipes connected to the three troughs so as to be supplied from the manifold may be further provided. Two of the three troughs are respectively located outside the row of the at least two heat transfer panels so that they are adjacent to only one of the at least two heat transfer panels, while the remaining troughs. May be located between adjacent heat transfer panels. The flow path cross-sectional area of the pair of supply pipes connected to the two troughs may be smaller than the flow path cross-sectional area of the supply pipes connected to the remaining troughs.
 上記の構成によれば、外側の2つのトラフには1つの伝熱パネルが隣り合っている一方で、残りのトラフには2つの伝熱パネルが隣り合っている。したがって、外側の2つのトラフからは、1つの伝熱パネルに加熱用液体が流下され、その一方で、残りのトラフからは、2つの伝熱パネルに加熱用液体が流下される。一方で、外側の2つのトラフに接続された供給管の流路断面積は、残りのトラフ用の供給管の流路断面積よりも小さいので、外側の2つのトラフへの加熱用液体の供給量は比較的小さくなる。トラフは、マニホールドに接続された複数の供給管を通じて加熱用液体を受け取るので、トラフへの加熱用液体の供給量は、これらの供給管の流路断面積に応じて変わる。したがって、加熱用液体が供給される伝熱パネルの数に応じた流量が得られる。よって、外側の2つのトラフ用の供給管に加熱用液体の供給量を低減するための流体機器(たとえば、弁体)を取り付ける必要はない。 According to the above configuration, one heat transfer panel is adjacent to the two outer troughs, while two heat transfer panels are adjacent to the remaining troughs. Therefore, from the two outer troughs, the heating liquid flows down to one heat transfer panel, while from the remaining troughs, the heating liquid flows down to the two heat transfer panels. On the other hand, since the flow path cross-sectional area of the supply pipe connected to the two outer troughs is smaller than the flow path cross-sectional area of the supply pipes for the remaining troughs, the heating liquid is supplied to the two outer troughs. The amount is relatively small. Since the trough receives the heating liquid through a plurality of supply pipes connected to the manifold, the amount of the heating liquid supplied to the trough varies depending on the flow path cross-sectional area of these supply pipes. Therefore, a flow rate corresponding to the number of heat transfer panels to which the heating liquid is supplied can be obtained. Therefore, it is not necessary to attach a fluid device (for example, a valve body) for reducing the supply amount of the heating liquid to the two outer trough supply pipes.
 上記の構成に関して、気化装置は、前記蓋部材から鉛直方向に離間した位置に配置された他の蓋部材を更に備えていてもよい。 Regarding the above configuration, the vaporizer may further include another lid member arranged at a position vertically separated from the lid member.
 上記の構成によれば、加熱用液体の上向きの流れが強くても、上向きの加熱用液体が蓋部材及び他の蓋部材に順次衝突することにより、上向きの流れの勢いが弱められる。したがって、加熱用液体の液面の隆起が抑制される。 According to the above configuration, even if the upward flow of the heating liquid is strong, the upward flow force is weakened by the upward collision of the heating liquid with the lid member and other lid members in sequence. Therefore, the uplift of the liquid level of the heating liquid is suppressed.
 上記の構成に関して、前記蓋部材及び前記他の蓋部材のうち少なくとも1つは、前記トラフ内に全面配置されていてもよい。 Regarding the above configuration, at least one of the lid member and the other lid member may be entirely arranged in the trough.
 上記の構成によれば、加熱用液体の液面の波打ちや隆起がトラフの全長に亘って抑制される。 According to the above configuration, waviness and uplift of the liquid level of the heating liquid are suppressed over the entire length of the trough.
 上記の構成に関して、気化装置は、前記蓋部材及び前記他の蓋部材の間の空隙に配置された縦蓋を更に備えていてもよい。 With respect to the above configuration, the vaporizer may further include a vertical lid arranged in a gap between the lid member and the other lid member.
 上記の構成によれば、蓋部材及び他の蓋部材のうち上側の蓋部材に衝突した加熱用液体の一部は、これらの蓋部材の間の空隙に沿って流れる。これらの蓋部材の間には、縦蓋が配置されているので、これらの蓋部材の間の空隙に沿って流れる加熱用液体は、縦蓋から抵抗を受け、加熱用液体の勢いが弱まる。 According to the above configuration, a part of the heating liquid that collides with the upper lid member among the lid member and other lid members flows along the gap between these lid members. Since a vertical lid is arranged between these lid members, the heating liquid flowing along the gap between these lid members receives resistance from the vertical lid, and the force of the heating liquid weakens.
 上記の構成に関して、前記隆起抑制部は、前記第1端壁と前記第2端壁との間に配置された抵抗部材を含んでいてもよい。前記抵抗部材は、前記蓋部材の下面に接触していてもよい。前記流入口から前記トラフ内に流入した前記加熱用液体が前記第2端壁に衝突する前に、前記抵抗部材と衝突することによって、前記第2端壁に対する前記加熱用液体の衝突力が抑制されてもよい。前記抵抗部材には、前記整列方向に前記抵抗部材を貫通する貫通孔が形成されていてもよい。 With respect to the above configuration, the ridge suppressing portion may include a resistance member arranged between the first end wall and the second end wall. The resistance member may be in contact with the lower surface of the lid member. Before the heating liquid flowing into the trough from the inflow port collides with the second end wall, the collision force of the heating liquid with respect to the second end wall is suppressed by colliding with the resistance member. May be done. The resistance member may be formed with a through hole penetrating the resistance member in the alignment direction.
 上記の構成によれば、抵抗部材は、蓋部材の下面に接触しているので、抵抗部材を蓋部材に取り付けることが可能になる。抵抗部材には、貫通孔が形成されているので、加熱用液体は、貫通孔を通じて第2端壁に向けて流れることができる。したがって、第2端壁の近くにおける加熱用液体の液位の過度の低下は生じない。 According to the above configuration, since the resistance member is in contact with the lower surface of the lid member, the resistance member can be attached to the lid member. Since a through hole is formed in the resistance member, the heating liquid can flow toward the second end wall through the through hole. Therefore, there is no excessive decrease in the liquid level of the heating liquid near the second end wall.
 上述の実施形態に関連して説明された技術は、液化ガスから気化ガスへの相変化が必要とされる様々な技術分野に好適に利用される。 The techniques described in connection with the above embodiments are suitably used in various technical fields where a phase change from a liquefied gas to a vaporized gas is required.

Claims (18)

  1.  液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させる気化装置であって、
     前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶように構成された伝熱パネルと、
     前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成されているとともに前記伝熱パネルの上縁よりも低い位置に配置されたトラフと、
     前記複数の伝熱管の整列方向において前記トラフの一端側に配置されているとともに前記トラフへ前記加熱用液体を供給するように構成されたマニホールドと、を備え、
     前記トラフは前記複数の伝熱管の前記整列方向に延設された底壁と、前記整列方向において前記マニホールド側に位置する前記底壁の端部に立設した第1端壁と、前記整列方向において前記第1端壁から離間する前記底壁の他のもう1つの端部に立設した第2端壁と含み、
     前記第1端壁には前記加熱用液体が流入する流入口が形成されている
     気化装置。
    A vaporizer that vaporizes the liquefied gas under heat exchange between the liquefied gas and a heating liquid having a temperature higher than that of the liquefied gas.
    A heat transfer panel configured so that a plurality of heat transfer tubes erected to guide the liquefied gas are lined up in the horizontal direction.
    A trough configured to supply the heating liquid to the outer surfaces of the plurality of heat transfer tubes and arranged at a position lower than the upper edge of the heat transfer panel.
    A manifold that is arranged on one end side of the trough in the alignment direction of the plurality of heat transfer tubes and is configured to supply the heating liquid to the trough is provided.
    The trough includes a bottom wall extending in the alignment direction of the plurality of heat transfer tubes, a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction, and the alignment direction. Including a second end wall erected at another end of the bottom wall that is separated from the first end wall.
    A vaporizer in which an inflow port into which the heating liquid flows is formed on the first end wall.
  2.  前記トラフ内に流入した前記加熱用液体が前記第2端壁に衝突することに起因して生ずる前記加熱用液体の液面の隆起を抑制するように構成された隆起抑制部を更に備えている
     請求項1に記載の気化装置。
    Further, a ridge suppressing portion configured to suppress the bulge of the liquid surface of the heating liquid caused by the collision of the heating liquid flowing into the trough with the second end wall is provided. The vaporizer according to claim 1.
  3.  前記隆起抑制部は、前記トラフ内において前記流入口よりも高い位置で前記第1端壁と前記第2端壁との間において前記整列方向に延設された蓋部材を含んでいる
     請求項2に記載の気化装置。
    2. The ridge suppressing portion includes a lid member extending in the alignment direction between the first end wall and the second end wall at a position higher than the inflow port in the trough. The vaporizer described in.
  4.  前記蓋部材は、前記第1端壁側、前記第2端壁側、又は、前記第1端壁と前記第2端壁との間の中間位置に配置されている
     請求項3に記載の気化装置。
    The vaporization according to claim 3, wherein the lid member is arranged on the first end wall side, the second end wall side, or an intermediate position between the first end wall and the second end wall. apparatus.
  5.  前記蓋部材は、前記第1端壁から前記第2端壁において前記整列方向に全面配置された板部材、あるいは、前記第1端壁から前記第2端壁までの区間において前記整列方向に間隔を空けて配置された複数の板部材によって構成されている
     請求項3に記載の気化装置。
    The lid member is a plate member that is entirely arranged in the alignment direction from the first end wall to the second end wall, or is spaced in the alignment direction in a section from the first end wall to the second end wall. The vaporizer according to claim 3, which is composed of a plurality of plate members arranged apart from each other.
  6.  前記蓋部材には、鉛直方向において前記蓋部材を貫通する貫通孔が形成されている
     請求項3乃至5のいずれか1項に記載の気化装置。
    The vaporizer according to any one of claims 3 to 5, wherein the lid member is formed with a through hole penetrating the lid member in the vertical direction.
  7.  前記隆起抑制部は、前記第1端壁と前記第2端壁との間に配置された抵抗部材を含み、
     前記流入口から前記トラフ内に流入した前記加熱用液体が前記第2端壁に衝突する前に、前記抵抗部材と衝突することによって、前記第2端壁に対する前記加熱用液体の衝突力が抑制される
     請求項2に記載の気化装置。
    The ridge suppressing portion includes a resistance member arranged between the first end wall and the second end wall.
    By colliding with the resistance member before the heating liquid flowing into the trough from the inflow port collides with the second end wall, the collision force of the heating liquid with respect to the second end wall is suppressed. The vaporizer according to claim 2.
  8.  前記抵抗部材は、前記トラフの底壁に対して垂直の姿勢又は傾斜した姿勢で設置されている
     請求項7に記載の気化装置。
    The vaporizer according to claim 7, wherein the resistance member is installed in a posture perpendicular to or inclined with respect to the bottom wall of the trough.
  9.  前記抵抗部材は、前記トラフの底壁から離間して設置されている
     請求項7に記載の気化装置。
    The vaporizer according to claim 7, wherein the resistance member is installed apart from the bottom wall of the trough.
  10.  前記抵抗部材は、互いに離間して配置された複数の抵抗体によって構成されている
     請求項7に記載の気化装置。
    The vaporizer according to claim 7, wherein the resistance member is composed of a plurality of resistors arranged apart from each other.
  11.  前記抵抗部材には、前記整列方向に前記抵抗部材を貫通する貫通孔が形成されている
     請求項7乃至10のいずれか1項に記載の気化装置。
    The vaporizer according to any one of claims 7 to 10, wherein the resistance member is formed with a through hole penetrating the resistance member in the alignment direction.
  12.  前記流入口を部分的に閉じるように前記トラフ内に配置された閉塞部材を更に備え、
     前記閉塞部材は前記トラフから取り外し可能である
     請求項1乃至5、7乃至10のいずれか1項に記載の気化装置。
    Further provided with a closing member arranged in the trough so as to partially close the inflow port.
    The vaporizer according to any one of claims 1 to 5, 7 to 10, wherein the closing member is removable from the trough.
  13.  複数の伝熱管を有しているとともに前記伝熱パネルから離間して配置された他の伝熱パネルと、
     前記他の伝熱パネルの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された他のトラフと、
     前記トラフ及び前記他のトラフに前記加熱用液体を前記マニホールドから供給するように、前記トラフ及び前記他のトラフにそれぞれ接続された複数の供給管と、を更に備え、
     前記伝熱パネル及び前記他の伝熱パネルのうち一方は、他方の伝熱パネルよりも少ない流量の前記加熱用液体と前記液化ガスとを熱交換させるように構成され、
     前記一方の伝熱パネルに対応するトラフに接続された供給管の流路断面積は、前記他方の伝熱パネルに対応するトラフに接続された供給管の流路断面積よりも小さい
     請求項1乃至5、7乃至10のいずれか1項に記載の気化装置。
    With other heat transfer panels that have a plurality of heat transfer tubes and are arranged apart from the heat transfer panel.
    With other troughs configured to supply the heating liquid to the outer surfaces of the plurality of heat transfer tubes of the other heat transfer panel.
    A plurality of supply pipes connected to the trough and the other troughs are further provided so as to supply the heating liquid to the trough and the other troughs from the manifold.
    One of the heat transfer panel and the other heat transfer panel is configured to exchange heat between the heating liquid and the liquefied gas at a flow rate smaller than that of the other heat transfer panel.
    The flow path cross-sectional area of the supply pipe connected to the trough corresponding to the one heat transfer panel is smaller than the flow path cross-sectional area of the supply pipe connected to the trough corresponding to the other heat transfer panel. 5. The vaporizer according to any one of 5, 7 to 10.
  14.  前記伝熱パネルを含むとともに間隔を空けて配置された少なくとも2つの伝熱パネルと、
     前記トラフを含む3つのトラフと、
     前記3つのトラフに前記加熱用液体を前記マニホールドから供給するように前記3つのトラフにそれぞれ接続された複数の供給管と、を更に備え、
     前記3つのトラフのうち2つは、前記少なくとも2つの伝熱パネルのうち1つにのみ隣り合うように前記少なくとも2つの伝熱パネルの列の外側にそれぞれ配置されている一方で、残りのトラフは、隣り合う伝熱パネルの間に配置され、
     前記2つのトラフにそれぞれ接続された一対の供給管の流路断面積は、前記残りのトラフに接続された供給管の流路断面積よりも小さい
     請求項1乃至5、7乃至10のいずれか1項に記載の気化装置。
    At least two heat transfer panels including the heat transfer panel and spaced apart from each other.
    Three troughs including the trough and
    The three troughs are further provided with a plurality of supply pipes connected to the three troughs so as to supply the heating liquid from the manifold.
    Two of the three troughs are respectively located outside the row of the at least two heat transfer panels so that they are adjacent to only one of the at least two heat transfer panels, while the remaining troughs. Is placed between adjacent heat transfer panels,
    Any one of claims 1 to 5, 7 to 10, wherein the flow path cross-sectional area of the pair of supply pipes connected to the two troughs is smaller than the flow path cross-sectional area of the supply pipes connected to the remaining troughs. The vaporizer according to item 1.
  15.  前記蓋部材から鉛直方向に離間した位置に配置された他の蓋部材を更に備えている
     請求項3乃至5のいずれか1項に記載の気化装置。
    The vaporizer according to any one of claims 3 to 5, further comprising another lid member arranged at a position vertically separated from the lid member.
  16.  前記蓋部材及び前記他の蓋部材のうち少なくとも1つは、前記トラフ内に全面配置されている
     請求項15に記載の気化装置。
    The vaporizer according to claim 15, wherein at least one of the lid member and the other lid member is entirely arranged in the trough.
  17.  前記蓋部材及び前記他の蓋部材の間の空隙に配置された縦蓋を更に備えている
     請求項15に記載の気化装置。
    The vaporizer according to claim 15, further comprising a vertical lid arranged in a gap between the lid member and the other lid member.
  18.  前記隆起抑制部は、前記第1端壁と前記第2端壁との間に配置された抵抗部材を含み、
     前記抵抗部材は、前記蓋部材の下面に接触し、
     前記流入口から前記トラフ内に流入した前記加熱用液体が、前記第2端壁に衝突する前に前記抵抗部材と衝突することによって、前記第2端壁に対する前記加熱用液体の衝突力が抑制され、
     前記抵抗部材には、前記整列方向に前記抵抗部材を貫通する貫通孔が形成されている
     請求項15に記載の気化装置。
    The ridge suppressing portion includes a resistance member arranged between the first end wall and the second end wall.
    The resistance member comes into contact with the lower surface of the lid member and
    The heating liquid that has flowed into the trough from the inflow port collides with the resistance member before colliding with the second end wall, so that the collision force of the heating liquid with respect to the second end wall is suppressed. Being done
    The vaporizer according to claim 15, wherein the resistance member is formed with a through hole penetrating the resistance member in the alignment direction.
PCT/JP2019/037842 2019-03-11 2019-09-26 Vaporization device WO2020183764A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217031896A KR102545419B1 (en) 2019-03-11 2019-09-26 vaporizer
EP19918978.8A EP3922938B1 (en) 2019-03-11 2019-09-26 Vaporization device
ES19918978T ES2973144T3 (en) 2019-03-11 2019-09-26 Vaporization device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-043442 2019-03-11
JP2019043442 2019-03-11
JP2019163410A JP7209605B2 (en) 2019-03-11 2019-09-06 Vaporizer
JP2019-163410 2019-09-06

Publications (1)

Publication Number Publication Date
WO2020183764A1 true WO2020183764A1 (en) 2020-09-17

Family

ID=72426631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037842 WO2020183764A1 (en) 2019-03-11 2019-09-26 Vaporization device

Country Status (3)

Country Link
EP (1) EP3922938B1 (en)
ES (1) ES2973144T3 (en)
WO (1) WO2020183764A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124700U (en) * 1980-02-22 1981-09-22
JPS5757998A (en) * 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPH0775087A (en) * 1992-12-22 1995-03-17 Tokyo Gas Co Ltd Method for monitoring carburetor panel
JP2014202320A (en) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 Vaporizer of cold temperature liquid gas
JP2015178880A (en) * 2014-03-19 2015-10-08 住友精密工業株式会社 Spray mechanism for open rack vaporizer
JP2017150784A (en) 2016-02-26 2017-08-31 株式会社神戸製鋼所 Sprinkler system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789386B2 (en) * 2011-03-10 2015-10-07 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP6118534B2 (en) * 2012-10-30 2017-04-19 住友精密工業株式会社 Open rack type vaporizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124700U (en) * 1980-02-22 1981-09-22
JPS5757998A (en) * 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPH0775087A (en) * 1992-12-22 1995-03-17 Tokyo Gas Co Ltd Method for monitoring carburetor panel
JP2014202320A (en) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 Vaporizer of cold temperature liquid gas
JP2015178880A (en) * 2014-03-19 2015-10-08 住友精密工業株式会社 Spray mechanism for open rack vaporizer
JP2017150784A (en) 2016-02-26 2017-08-31 株式会社神戸製鋼所 Sprinkler system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922938A4

Also Published As

Publication number Publication date
EP3922938A4 (en) 2022-03-16
EP3922938A1 (en) 2021-12-15
EP3922938B1 (en) 2024-02-28
ES2973144T3 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
JP7209605B2 (en) Vaporizer
CN103958996B (en) Refrigerant processes in HVAC system
JP2016014495A (en) Falling film evaporator
JP2017150784A (en) Sprinkler system
WO2014167779A1 (en) Vaporization device for low-temperature liquefied gas
WO2020183764A1 (en) Vaporization device
JP5339360B2 (en) Sprinkling mechanism of open rack type vaporizer
WO2014079357A1 (en) Heat exchanger
JP2014088918A (en) Open rack type vaporization device
WO2020183765A1 (en) Vaporization device
KR102084549B1 (en) Gas vaporizer
WO2018047786A1 (en) Heat exchanger
JP7404118B2 (en) Open rack vaporizer
CN103644688A (en) Convection type refrigerant distribution device and heat exchanger adopting same
JP2012052730A (en) Sprinkler system in open rack type vaporizer
JP7098680B2 (en) Evaporator
JP2022108278A (en) Device for storing low-temperature fluid
JP4341483B2 (en) Heat exchanger
JP2017020547A (en) Vaporizer
KR20080086073A (en) Heat exchanger
JPH0654195B2 (en) Heat storage tank
JPH07180980A (en) Plate fin type open rack gasification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19918978.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019918978

Country of ref document: EP

Effective date: 20210907

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031896

Country of ref document: KR

Kind code of ref document: A