[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020180022A1 - Nouveau composé et dispositif électroluminescent organique l'utilisant - Google Patents

Nouveau composé et dispositif électroluminescent organique l'utilisant Download PDF

Info

Publication number
WO2020180022A1
WO2020180022A1 PCT/KR2020/002260 KR2020002260W WO2020180022A1 WO 2020180022 A1 WO2020180022 A1 WO 2020180022A1 KR 2020002260 W KR2020002260 W KR 2020002260W WO 2020180022 A1 WO2020180022 A1 WO 2020180022A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
layer
substituted
Prior art date
Application number
PCT/KR2020/002260
Other languages
English (en)
Korean (ko)
Inventor
차용범
조우진
이재탁
홍성길
문현진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080007248.4A priority Critical patent/CN113227065B/zh
Publication of WO2020180022A1 publication Critical patent/WO2020180022A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device using the same.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • Patent Document 0001 Korean Patent Publication No. 10-2013-073537
  • the present invention relates to an organic light-emitting device comprising the novel compound.
  • the present invention provides a compound represented by the following formula 1:
  • R 1 is each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to adjacent substituents to form a ring,
  • R 2 and R 3 are each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to adjacent substituents to form a ring,
  • R 4 and R 5 are each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to each other to form a ring,
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 5-60 including at least one hetero atom selected from the group consisting of N, O and S Heteroaryl, provided that at least one of Ar 1 and Ar 2 is substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothiophenyl, or substituted or unsubstituted carbazolyl,
  • n is an integer from 0 to 9
  • n and o are each independently an integer of 0 to 3.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises the compound of the present invention.
  • the compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer (9). And an example of an organic light-emitting device including the cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means a substituted or unsubstituted substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S atoms, or linked
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, and a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhex
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Car
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the description of the aforementioned heterocyclic group may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that two substituents are bonded to each other.
  • the present invention provides a compound represented by the following formula 1:
  • R 1 is each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to adjacent substituents to form a ring,
  • R 2 and R 3 are each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to adjacent substituents to form a ring,
  • R 4 and R 5 are each independently hydrogen, substituted or unsubstituted C 1-60 alkyl, or substituted or unsubstituted C 6-60 aryl, which may be bonded to each other to form a ring,
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 5-60 including at least one hetero atom selected from the group consisting of N, O and S Heteroaryl, provided that at least one of Ar 1 and Ar 2 is substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothiophenyl, or substituted or unsubstituted carbazolyl,
  • n is an integer from 0 to 9
  • n and o are each independently an integer of 0 to 3.
  • the compound represented by Formula 1 may be any one selected from compounds represented by the following Formulas 2 to 10:
  • R 1 , R 2 , R 3 , R 4 , R 5 , Ar 1 , Ar 2 , m, n and o are as defined above.
  • each R 1 may be independently hydrogen.
  • R 2 and R 3 may each independently be hydrogen.
  • R 4 and R 5 may each independently be methyl or phenyl.
  • Ar 1 and Ar 2 are each independently, any one selected from the group consisting of, provided that at least one of Ar 1 and Ar 2 is dibenzofuranyl, dibenzothiophenyl, carbazolyl or 9 It may be -phenyl-9H-carbazolyl.
  • a may be an integer of 0 to 5.
  • m may be an integer of 0 to 4, more preferably 0 or 1.
  • n and o may each independently be 0 or 1.
  • the compound represented by Formula 1 may be any one selected from the group consisting of:
  • the compound represented by Formula 1 can be prepared through the following Reaction Scheme a-1 and Reaction Scheme a-2.
  • Scheme a-1 is a Suzuki coupling reaction, in which a palladium catalyst and a base are reacted to synthesize an intermediate compound.
  • Reaction Scheme a-2 is an amine substitution reaction, wherein the reaction is performed in the presence of a palladium catalyst and a base to prepare a compound represented by Formula 1 herein.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • the present invention provides an organic light-emitting device including the compound represented by Chemical Formula 1.
  • the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. Including the indicated compound.
  • the organic material layer may include an electron suppressing layer, and the electron suppressing layer includes the compound represented by Formula 1 above.
  • the organic material layer may include an emission layer, and the emission layer includes the compound represented by Chemical Formula 1.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection
  • the electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection is represented by the formula It includes the compound represented by 1.
  • the organic material layer includes a hole injection layer, a hole transport layer, an electron suppression layer, and an emission layer, and at least one selected from the group consisting of the hole injection layer, the hole transport layer, and the electron suppression layer is a compound represented by Formula 1 It may include.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the emission layer.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron suppression layer, the light-emitting layer, the electron transport layer, and the electron injection layer.
  • the organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO:Al or SNO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer that injects holes from an electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for a light emitting layer or a light emitting material.
  • a compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the electron-suppression layer is a layer between the hole-transport layer and the light-emitting layer in order to prevent electrons injected from the cathode from passing over to the hole-transport layer without being recombined in the light-emitting layer, and is also called an electron-blocking layer.
  • the electron-suppressing layer is preferably a material having less electron affinity than the electron transport layer.
  • the light-emitting material a material capable of emitting light in a visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency against fluorescence or phosphorescence is preferable.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer.
  • an electron transport material a material capable of injecting electrons from the cathode and transferring them to the emission layer, and a material having high mobility for electrons is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metals Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • intermediate compound A-1 In the synthesis of the intermediate compound A-1, intermediate compound A-2 was synthesized in the same manner, except that the compound b-2 was used instead of the compound b-1.
  • the intermediate compound A-3 was synthesized in the same manner, except that the compound a-2 was used instead of the compound a-1.
  • the intermediate compound A-4 was synthesized in the same manner, except that the compound a-2 was used instead of the compound a-1 and the compound b-2 was used instead of the compound b-1.
  • intermediate compound A-5 was synthesized in the same manner, except that the compound b-3 was used instead of the compound b-1.
  • the intermediate compound A-6 was synthesized in the same manner, except that the compound a-2 was used instead of the compound a-1 and the compound b-3 was used instead of the compound b-1.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product made by Fischer Co. was used as a detergent
  • distilled water secondarily filtered with a filter made by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a hole injection layer was formed by thermally vacuum depositing a compound of the following compound HI1 and the following compound HI2 to a ratio of 98:2 (molar ratio) to a thickness of 100 ⁇ on the prepared anode ITO transparent electrode.
  • a hole transport layer was formed by vacuum depositing a compound (1150 ⁇ ) represented by the following formula HT1 on the hole injection layer.
  • the compound of Example 1 was vacuum-deposited on the hole transport layer with a film thickness of 50 ⁇ to form an electron suppressing layer.
  • a compound represented by the following formula BH and a compound represented by the following formula BD with a film thickness of 200 ⁇ were vacuum-deposited at a weight ratio of 25:1 to form a light emitting layer.
  • a hole blocking layer was formed by vacuum depositing a compound represented by the following Chemical Formula HB1 with a film thickness of 50 ⁇ on the emission layer. Subsequently, a compound represented by the following formula ET1 and a compound represented by the following formula LiQ were vacuum-deposited at a weight ratio of 1:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 310 ⁇ . Lithium fluoride (LiF) at a thickness of 12 ⁇ and aluminum at a thickness of 1,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • LiF lithium fluoride
  • Experimental Example 1 an organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 1 was used instead of the compound of Example 1.
  • the compounds of EB2 and EB3 used in Table 1 are as follows.
  • the organic light-emitting device using the compound of the present invention as an electron suppressing layer exhibited excellent characteristics in terms of efficiency, driving voltage, and stability of the organic light-emitting device.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un nouveau composé et un dispositif électroluminescent organique l'utilisant.
PCT/KR2020/002260 2019-03-05 2020-02-17 Nouveau composé et dispositif électroluminescent organique l'utilisant WO2020180022A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080007248.4A CN113227065B (zh) 2019-03-05 2020-02-17 化合物及利用其的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0025296 2019-03-05
KR1020190025296A KR102444279B1 (ko) 2019-03-05 2019-03-05 신규한 화합물 및 이를 이용한 유기발광 소자

Publications (1)

Publication Number Publication Date
WO2020180022A1 true WO2020180022A1 (fr) 2020-09-10

Family

ID=72338732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002260 WO2020180022A1 (fr) 2019-03-05 2020-02-17 Nouveau composé et dispositif électroluminescent organique l'utilisant

Country Status (3)

Country Link
KR (1) KR102444279B1 (fr)
CN (1) CN113227065B (fr)
WO (1) WO2020180022A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272803A (ja) * 2004-02-24 2005-10-06 Sony Corp 有機材料および有機電界発光素子
JP2007314509A (ja) * 2006-04-24 2007-12-06 Hitachi Chem Co Ltd アミン誘導体及びこれを用いた有機エレクトロルミネッセンス素子
JP2008037755A (ja) * 2006-08-01 2008-02-21 Canon Inc アミン化合物および有機発光素子
KR20180013339A (ko) * 2016-07-29 2018-02-07 성균관대학교산학협력단 유기 발광 화합물, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 소자
WO2018083053A1 (fr) * 2016-11-02 2018-05-11 Merck Patent Gmbh Matériaux pour dispositifs électroniques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497133B1 (ko) 2011-12-23 2015-02-27 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR101738607B1 (ko) * 2014-02-28 2017-05-22 머티어리얼사이언스 주식회사 유기전계발광소자
KR20150102734A (ko) * 2014-02-28 2015-09-07 머티어리얼사이언스 주식회사 유기전계발광소자용 유기화합물 및 상기 유기화합물을 포함하는 유기전계발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272803A (ja) * 2004-02-24 2005-10-06 Sony Corp 有機材料および有機電界発光素子
JP2007314509A (ja) * 2006-04-24 2007-12-06 Hitachi Chem Co Ltd アミン誘導体及びこれを用いた有機エレクトロルミネッセンス素子
JP2008037755A (ja) * 2006-08-01 2008-02-21 Canon Inc アミン化合物および有機発光素子
KR20180013339A (ko) * 2016-07-29 2018-02-07 성균관대학교산학협력단 유기 발광 화합물, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 소자
WO2018083053A1 (fr) * 2016-11-02 2018-05-11 Merck Patent Gmbh Matériaux pour dispositifs électroniques

Also Published As

Publication number Publication date
CN113227065B (zh) 2024-05-17
CN113227065A (zh) 2021-08-06
KR20200106722A (ko) 2020-09-15
KR102444279B1 (ko) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2019160315A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2020262861A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2019194594A1 (fr) Composé et dispositif électronique organique le comprenant
WO2015178740A2 (fr) Composé hétérocyclique et dispositif électroluminescent organique contenant ce composé
WO2021080254A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2021080253A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2021066351A1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2021040467A1 (fr) Nouveau composé hétérocyclique et dispositif électroluminescent organique l'utilisant
WO2020231242A1 (fr) Élément électroluminescent organique
WO2020185038A1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2021045347A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2024053991A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2022060047A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2022031013A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2021149954A1 (fr) Dispositif électroluminescent organique
WO2022031016A1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2022031020A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2022059923A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2021210774A1 (fr) Nouveau composé et élément électroluminescent organique le comprenant
WO2021066350A1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2020185054A9 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2021029715A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant
WO2020246835A1 (fr) Nouveau composé et dispositif électroluminescent organique faisant appel à celui-ci
WO2021034156A1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
WO2020246837A1 (fr) Nouveau composé et dispositif électroluminescent organique le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765762

Country of ref document: EP

Kind code of ref document: A1