[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020179390A1 - Netting for building material use and manufacturing method for same - Google Patents

Netting for building material use and manufacturing method for same Download PDF

Info

Publication number
WO2020179390A1
WO2020179390A1 PCT/JP2020/005460 JP2020005460W WO2020179390A1 WO 2020179390 A1 WO2020179390 A1 WO 2020179390A1 JP 2020005460 W JP2020005460 W JP 2020005460W WO 2020179390 A1 WO2020179390 A1 WO 2020179390A1
Authority
WO
WIPO (PCT)
Prior art keywords
net
base material
mesh
weft
nanofibers
Prior art date
Application number
PCT/JP2020/005460
Other languages
French (fr)
Japanese (ja)
Inventor
圭 渡邊
道 大澤
淳子 川久保
晃造 松本
山田 司
幸久 高山
Original Assignee
株式会社ナフィアス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナフィアス filed Critical 株式会社ナフィアス
Priority to CN202080002851.3A priority Critical patent/CN112154252A/en
Publication of WO2020179390A1 publication Critical patent/WO2020179390A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/52Devices affording protection against insects, e.g. fly screens; Mesh windows for other purposes

Definitions

  • the present invention relates to a net for building materials and a method for manufacturing the same.
  • Hay fever is now a national disease, and the pollinosis rate in the Tokyo metropolitan area is 47%. Pollinosis causes a decrease in QOL (Quality Of Life), such as hindering study, work, and housework.
  • QOL Quality Of Life
  • Measures against hay fever "wear a mask”, “gargle / wash hands”, “wash face and eyes”, “remove pollen from clothes”, “do not dry outside”, “do not open windows”, Measures such as “taking prescription and over-the-counter medicines”, “taking ingredients that are effective against hay fever”, “taking health foods / supplements”, and “using pollen block spray / cream” can be mentioned. Of these, 23% of all people take measures to prevent the opening of windows.
  • the screen door described in Non-Patent Document 1 has a stitch size smaller than that of the conventional screen door (about 80 ⁇ m, about 1/160 of the conventional screen door), and pollen invasion is 80% or more. It is said that it can be stopped.
  • the screen door described in Non-Patent Document 2 has a special filter interposed between the inner net and the outer net, and is said to be able to collect 98% or more of particles of 30 ⁇ m to 40 ⁇ m corresponding to pollen. There is.
  • the screen door described in Non-Patent Document 1 described above has a problem that the total area ratio of the stitch openings is small, so that the air permeability is low and the viewability is extremely low.
  • the screen door described in Non-Patent Document 2 described above has a problem that the air permeability and the viewability are extremely low because the special filter uses a non-woven fabric.
  • an object of the present invention is to provide a net for building materials and a method for producing the same, which are excellent in pollen collecting property and also in better breathability and viewability than conventional screen doors.
  • the net for building materials of the present invention is composed of warp threads (warp threads) and weft threads (weft threads), and the net base material in which the intersections of the warp threads and the weft threads are welded together with the net base without using an adhesive.
  • the fiber diameter of the warp and the fiber diameter of the weft are both in the range of 0.10 mm to 0.30 mm, and the nanofiber layer has an average fiber diameter of 300 nm to 3000 nm. in the range of, and basis weight is characterized in that in the range of 0.05g / m 2 ⁇ 0.5g / m 2.
  • the basis weight of the nanofiber layer was in the range of 0.05g / m 2 ⁇ 0.5g / m 2 , the basis weight of the nanofiber layer than 0.05 g / m 2 If it is too small, the nanofiber layer may be too coarse to obtain a sufficiently high pollen collection rate. If the basis weight of the nanofiber layer is greater than 0.5 g/m 2 , the This is because the fiber layer may be too fine to obtain sufficient breathability and viewability. From these viewpoints, the basis weight of the nanofiber layer is preferably greater than 0.08 g/m 2, and more preferably greater than 0.10 g/m 2 . The basis weight of the nanofiber layer is preferably smaller than 0.4 g/m 2, and more preferably smaller than 0.3 g/m 2 .
  • the fiber diameter of the warp and the fiber diameter of the warp that the fiber diameter of the warp and the fiber diameter of the weft are both in the range of 0.10 mm to 0.30 mm. This is because if either of the weft fiber diameters is smaller than 0.10 mm, either the warp or the weft may be too thin to obtain sufficient mechanical strength, and the warp fibers may not be obtained. This is because if either the diameter or the fiber diameter of the weft is thicker than 0.30 mm, either the warp or the weft may be too thick to obtain sufficient air permeability and viewability. ..
  • the net base material is a net base material having a mesh number having a roughness so that the nanofibers do not strike through when the nanofibers are attached to the net base material.
  • the mesh base material is a mesh base material having a mesh number of roughness such that the nanofibers strike through when the nanofibers are attached to the mesh base material, the nanofibers for the mesh base material This is because the adhesion density and adhesion strength of the material may not be sufficiently high, and a net for building materials having a stable mechanical structure may not be realized.
  • the net base material is a net base material in which the intersections of the warp and the weft are welded, because the net base material is not welded at the intersections of the warp and the weft.
  • the net base material is not welded at the intersections of the warp and the weft.
  • sufficient mechanical strength may not be obtained, and dust may easily collect at intersections when using a building material net.
  • the warp and weft become easy to move when assembling or using the net for building materials, and the nanofibers may be broken due to this.
  • the nanofiber layer is formed as a nanofiber layer that is attached to the net base material without using an adhesive, because the nanofiber layer is used as a net base material via an adhesive. This is because, in the case of the nanofiber layer adhering to the above, the adhesive may obstruct the passage of air and light, and sufficient air permeability and viewability may not be obtained.
  • the average fiber diameter of nanofibers is set in the range of 300 nm to 3000 nm because when the average fiber diameter of nanofibers is smaller than 300 nm, the machine is sufficient as a nanofiber layer. This is because the target strength may not be obtained, and sufficient adhesive force between the net base material and the nanofiber layer may not be obtained. On the other hand, if the average fiber diameter of the nanofibers is thicker than 3000 nm, the nanofibers may be too thick to obtain sufficient air permeability and viewability.
  • the building material net of the present invention is a building material net that has excellent pollen trapping properties, and is more breathable and has a better view than conventional screen doors.
  • a screen door itself having a structure in which a nanofiber layer is attached to a net base material is known (see, for example, Patent Document 1).
  • a nanofiber layer is attached to a net base material via an adhesive. Therefore, in the screen door described in Patent Document 1, the adhesive may obstruct the passage of air and light, and sufficient air permeability and viewability may not be obtained.
  • the number of meshes means the number of meshes existing in 1 inch of mesh.
  • the number of meshes in the warp direction refers to the number of meshes existing per inch of warp threads
  • the number of meshes in the weft direction refers to the number of meshes existing per inch of weft threads.
  • the mesh base material preferably has a mesh number within a range of 24 mesh to 44 mesh in both the warp direction and the weft direction.
  • the number of meshes of the net base material is within the range of 24 meshes to 44 meshes in both the warp direction and the weft direction, because the number of meshes of the net base material is larger than 24 meshes. If it is small, the mesh of the mesh substrate may be too coarse and insects may easily pass through the mesh, and if the number of meshes of the mesh substrate is larger than 44 mesh, the mesh of the mesh substrate is too fine. In some cases, sufficient breathability and viewability may not be obtained. From these viewpoints, the mesh number of the mesh base material is preferably larger than 26 mesh in both the warp direction and the weft direction, and more preferably larger than 28 mesh. Further, the number of meshes of the net base material is preferably smaller than 42 meshes in both the warp direction and the weft direction, and even more preferably smaller than 40 meshes.
  • the mesh base material preferably has a mesh number of 28 mesh or more in at least one of the warp direction and the weft direction.
  • the number of meshes of the net base material is 28 meshes or more in at least one of the warp direction and the weft direction because the number of meshes is 28 meshes in both the warp direction and the weft direction. If it is too small, the space between the mesh threads along at least one of the warp threads may become too wide and the nanofiber layer may strike through, making it impossible to realize a net for building materials with a stable mechanical structure. Because there is. From this point of view, the number of meshes of the net base material is preferably larger than 30 meshes in at least one of the warp direction and the weft direction, and even more preferably larger than 33 meshes.
  • the nanofibers are made of a hardly hydrolyzable resin.
  • the building material net of the present invention is a building material net having excellent weather resistance because the nanofibers are made of a poorly hydrolyzable resin.
  • the nanofibers are preferably made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin.
  • the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin
  • the nanofibers are made of a hardly hydrolyzable resin
  • the net for building materials has excellent weather resistance. ..
  • the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin in this way, the nanofibers are made of a stretchable and flexible resin, which can be used when assembling or using a net for building materials. It will be a strong net for building materials, in which nanofibers are not easily broken.
  • the nanofibers are made of the polycarbonate-based polyurethane resin or the polyether-based polyurethane resin, the adhesive force between the net base material and the nanofibers becomes strong, which also makes it possible to assemble the net for building materials and It is a durable net for building materials in which nanofibers are not easily broken during use.
  • the nanofibers are black nanofibers.
  • the building material net of the present invention is a building material net with excellent visibility because the nanofibers are black, because the nanofibers are inconspicuous.
  • both the warp and the weft have a second resin having a melting point lower than that of the first resin around a core member made of the first resin having a predetermined melting point. It is preferable that it has a core-sheath structure in which a fat-made sheath member is covered.
  • the building material net of the present invention has the core-sheath structure as described above, it is a building material net that can easily manufacture a building material net having a structure in which the intersections of the warp threads and the weft threads are welded.
  • a mesh yarn having a core-sheath structure in which the first resin is a normal high melting point polypropylene and the second resin is a low melting point copolymer polypropylene can be preferably used as the warp and the weft.
  • both the warp and the weft have a core-sheath structure in which a resin-made sheath member is coated around a glass fiber core member.
  • the building material net of the present invention has the core-sheath structure as described above, it is easy to obtain a building material net having a structure in which the intersections of the warp and the weft are welded, as in the case of [7] above. It will be a manufacturable net for building materials.
  • the method for producing a net for building materials of the present invention is a net base material composed of warp threads (warp threads) and weft threads (weft threads), and the intersections of the warp threads and the weft threads are welded to each other, and the fibers of the warp threads. Diameter and the diameter of the weft yarn are both within the range of 0.10 mm to 0.30 mm.
  • the average fiber diameter is from nanofibers in the range of 300 nm ⁇ 3000 nm, basis weight nanofiber layer formed for forming a nanofiber layer in the range of 0.05g / m 2 ⁇ 0.5g / m 2
  • a mesh base material having a mesh number of roughness such that the nanofibers do not strike through when the nanofibers are attached to the mesh base material is prepared in the mesh base material preparing step. It is characterized by
  • an adhesive is used because the nanofibers shrink and firmly bond with the net thread in the process of volatilizing after the solvent component adheres to the surface of the net thread during electrospinning.
  • the nanofiber layer can be attached to the net base material without any problem, which is a method for producing a net for building materials suitable for producing the net for building materials of the present invention.
  • the method for producing a net for building materials of the present invention preferably further includes a heat treatment step for increasing the adhesive force between the net base material and the nanofiber layer after the nanofiber layer forming step.
  • the surface of the net yarn and the surface of the nanofiber are once melted or softened, and the adhesive force between the net base material and the nanofiber layer can be increased. It is possible to manufacture a net for building materials whose layers are not easily peeled off.
  • the method for producing a net for building material according to the present invention is a net base material comprising warps (warps) and wefts (wefts), wherein the intersections of the warps and the wefts are not welded, and fibers of the warps.
  • One surface of the net base material is prepared by using a net base material preparation step of preparing a net base material having a diameter and a fiber diameter of the weft in the range of 0.10 mm to 0.30 mm and an electrospinning method.
  • the average fiber diameter is from nanofibers in the range of 300 nm ⁇ 3000 nm, basis weight nanofiber layer formed for forming a nanofiber layer in the range of 0.05g / m 2 ⁇ 0.5g / m 2
  • a heat treatment step for increasing the adhesion between the mesh base material and the nanofiber layer while welding the intersections of the warp and the weft, and in the mesh base material preparation step It is characterized in that a net base material having a number of meshes having a roughness that does not allow the nanofibers to strike through when the nanofibers are attached to the net base material is prepared.
  • an adhesive is used because the nanofibers shrink and firmly bond with the net thread in the process of volatilizing after the solvent component adheres to the surface of the net thread during electrospinning.
  • the nanofiber layer can be attached to the net base material without any problem, which is a method for producing a net for building materials suitable for producing the net for building materials of the present invention.
  • the intersection of the warp and the weft can be welded and the adhesive force between the net base material and the nanofiber layer can be increased in one heat treatment step, it is possible to manufacture a net for building materials at a low manufacturing cost. Become.
  • FIG. 3 is a process drawing of the method for manufacturing a building material net according to the first embodiment. It is a figure which shows for demonstrating the net base material preparation process. It is a figure which shows for demonstrating the process of forming a nanofiber layer.
  • FIG. 7 is a process drawing of the method for manufacturing a building material net according to the second embodiment. It is a figure shown in order to demonstrate a nanofiber layer formation process.
  • FIG. 7 is a process drawing of the method for manufacturing a building material net according to the third embodiment. It is a figure which shows for demonstrating the net base material preparation process. It is a figure which shows for demonstrating the process of forming a nanofiber layer.
  • FIG. 3 is a chart showing the specifications of each sample (Samples 1 to 12) used in the examples.
  • FIG. 3 is an enlarged plan view of a main part of Samples 1 to 4 and 9. It is a figure shown in order to demonstrate a pollen collection property test. It is a chart which shows the test result for each sample.
  • FIG. 1 is an enlarged plan view of a main part of the building material net according to the first embodiment.
  • the building material net 1 according to the first embodiment is composed of warp threads 3 (warp threads) and weft threads 4 (weft threads), and a net base material 2 in which the intersection 5 of the warp threads 3 and the weft threads 4 is welded.
  • the nanofiber layer 6 in which the nanofibers 7 are attached to the net base material 2 randomly or in a spider web shape without an adhesive.
  • the mesh base material 2 has a number of meshes having a roughness that prevents the nanofibers from strike-through when the nanofibers are attached to the net base material, and has a warp fiber diameter and a weft fiber diameter. Both are in the range of 0.10 mm to 0.30 mm.
  • the mesh base material 2 has a mesh number of 24 meshes to 44 meshes in both the warp direction and the weft direction, and has a mesh number of 28 meshes or more in at least one of the warp direction and the weft direction. Some can be preferably used.
  • Both the warp threads 3 and the weft threads 4 have a core-sheath structure in which a sheath member made of a second resin having a melting point lower than that of the first resin is coated around a core member made of a first resin having a predetermined melting point. It is a thing.
  • the first resin for example, high melting point polypropylene can be preferably used
  • the second resin for example, low melting point copolymerized polypropylene can be preferably used.
  • Nanofiber layer 6 is in the range the average fiber diameter of 300 nm ⁇ 3000 nm of the nanofiber 7, and a basis weight is in the range of 0.05g / m 2 ⁇ 0.5g / m 2.
  • the nanofiber 7 is made of a poorly hydrolyzable resin.
  • the nanofibers 7 are made of, for example, a polycarbonate polyurethane resin or a polyether polyurethane resin.
  • FIG. 2 is a process diagram in the method for manufacturing the net for building material according to the first embodiment.
  • FIG. 3 is a figure shown in order to demonstrate a net base material preparation process.
  • 3A is a plan view of the net base material 2
  • FIG. 3B is a perspective view of the net base material 2 in a state of being wound into a roll.
  • FIG. 4 is a diagram for explaining the nanofiber layer forming step.
  • the method for manufacturing a building material net includes a net base material preparing step S11 and a nanofiber layer forming step S12.
  • the net base material preparation step S11 is a net base material composed of warp threads (warp threads) and weft threads (weft threads) in which the intersections of the warp threads and the weft threads are welded, and when the nanofibers are attached to the net base material.
  • This is a step of preparing a material (see FIG. 3).
  • the number of meshes is in the range of 24 meshes to 44 meshes in both the warp direction and the weft direction, and the number of meshes is in at least one of the warp direction and the weft direction. 28 mesh or more can be preferably used.
  • the nanofiber layer forming step S12 is composed of nanofibers having an average fiber diameter in the range of 300 nm to 3000 nm on one surface of the net base material 2 by using an electrospinning method, and has a grain size of 0.05 g / m. This is a step of forming a nanofiber layer in the range of 2 to 0.5 g/m 2 (see FIG. 4).
  • the nanofiber layer is formed, for example, randomly (or in a spider web shape).
  • reference numeral 10 represents an electrospinning apparatus
  • reference numeral 11 represents a tank
  • reference numeral 12 represents a polymer solution
  • reference numeral 13 represents a valve
  • reference numeral 14 represents an electrospinning nozzle
  • reference numeral 15 represents a metal.
  • Reference numeral 16 denotes a collector
  • reference numeral 16 denotes a pulling roll
  • reference numeral 17 denotes a winding roll.
  • the building material net 1 according to the first embodiment has the above-described configuration, the building material has excellent pollen collecting property and is more breathable and viewable than the conventional screen door. It becomes a net for.
  • the building material net 1 according to the first embodiment is a building material net having excellent weather resistance because the nanofibers are made of a hardly hydrolyzable resin.
  • the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin, the nanofibers are made of a poorly hydrolyzable resin and have excellent weather resistance. It becomes a net for building materials.
  • the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin in this way, the nanofibers are made of a stretchable/flexible resin, which can be used when assembling or using a net for building materials.
  • nanofibers are not easily broken. Further, as described above, since the nanofibers are made of the polycarbonate-based polyurethane resin or the polyether-based polyurethane resin, the adhesive force between the net base material and the nanofibers becomes strong. It is a durable net for building materials in which nanofibers are not easily broken during use.
  • the building material net 1 according to the first embodiment has the core-sheath structure as described above, it is for a building material that can easily manufacture a building material net having a structure in which the intersections of the warp and the weft are welded. It becomes the net.
  • an adhesive is used because the nanofibers shrink and firmly bond with the net yarn in the process of volatilizing after the solvent component adheres to the surface of the net yarn during electrospinning.
  • the nanofiber layer can be attached to the net base material without any need, which is a method for producing a building material net suitable for producing the building material net of the present invention.
  • FIG. 5 is a process drawing of the method for manufacturing a building material net according to the second embodiment.
  • FIG. 6 is a diagram for explaining the nanofiber layer forming step.
  • the method for manufacturing the building material net according to the second embodiment basically includes the same steps as the method for manufacturing the building material net according to the first embodiment, but as shown in FIG. 5, the nanofiber layer forming step S12 After that, a heat treatment step S13 for increasing the adhesive force between the net base material and the nanofiber layer is further included.
  • the net base material on which the nanofiber layer is formed is formed from the upper and lower surfaces before being wound on a roll. It may be carried out simply by heating (see FIG. 6), or by pressurizing and heating by passing a net base material on which a nanofiber layer is formed through a pair of upper and lower heating rollers (thermal calendar processing). May be.
  • the surface of the net thread and the surface of the nanofibers are once melted or softened, and the adhesive force between the net base material and the nanofiber layer is increased. Therefore, it is possible to manufacture a net for building material in which the nanofiber layer is not easily peeled off.
  • FIG. 8 is a figure shown in order to demonstrate a net base material preparation process.
  • FIG. 9 is a figure shown in order to demonstrate a nanofiber layer formation process.
  • the method for manufacturing the building material net according to the third embodiment basically includes the same steps as the method for manufacturing the building material net according to the second embodiment, but in the net base material preparation step S21.
  • a net base material to be prepared as shown in FIG. 8, a net base material 2a in which the intersection 5 of the warp 3 and the weft 4 is not welded is prepared.
  • the heat treatment step S23 carried out after the nanofiber layer forming step S22 not only increases the adhesive force between the net base material 2a and the nanofiber layer 6, but also welds the intersection 5 of the warp 3 and the weft 4.
  • an adhesive is used because the nanofibers shrink and firmly bond with the net yarn in the process of volatilizing after the solvent component adheres to the surface of the net yarn during electrospinning.
  • the nanofiber layer can be attached to the net base material without any need, which is a method for producing a building material net suitable for producing the building material net of the present invention.
  • the intersection of the warp and the weft can be welded and the adhesive force between the net base material and the nanofiber layer can be increased in one heat treatment step, it is possible to manufacture a net for building materials at a low manufacturing cost. Become.
  • FIG. 10 is a chart showing the specifications of each sample (Samples 1 to 12) used in the examples.
  • FIG. 11 is an enlarged plan view of essential parts of Samples 1 to 4 and 9.
  • FIG. 12 is a figure shown in order to demonstrate a pollen collection property test.
  • FIG. 13 is a chart showing the test results for each sample.
  • sample 1 A net having a 24 ⁇ 36 mesh warp and a weft intersecting at a fusion point made of a thread having a black polypropylene (PP)/copolymerized PP (core-sheath structure) having a fiber diameter of 0.15 mm is used as a net base material.
  • a building material net was produced by directly spinning a polycarbonate-based polyurethane nanofiber (nanofiber) having a fiber diameter of 800 nm at a basis weight of 0.05 g/m 2 onto a net base material by an electrospinning method.
  • a yarn having polypropylene (PP)/copolymerized PP (core-sheath structure) was produced by a melt spinning method.
  • a net was prepared by a loom so as to have a size of 24 ⁇ 36 mesh, and the intersections of the warp and the weft were fused by heat treatment.
  • the mesh base material having the fused intersections was taped to the metal collector of the electrospinning apparatus and spun.
  • the polymer solution used for electrospinning was prepared by dissolving a polycarbonate-based polyurethane resin in dimethylacetamide (DMAc) to a concentration of 15 wt% (see FIG. 11A).
  • Sample 1 is an example (Example 1).
  • Sample 2 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.10 g/m 2 (see FIG. 11( b )). Sample 2 is an example (Example 2).
  • Sample 3 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.15 g/m 2 (see FIG. 11( c )). Sample 3 is an example (Example 3).
  • Sample 4 Sample 4 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.20 g/m 2 (see FIG. 11( d )). Sample 4 is an example (Example 4).
  • Sample 5 was prepared in the same manner as in Sample 4, except that the net base material having a mesh number of 24 ⁇ 33 mesh was used. Sample 5 is an example (Example 5).
  • Sample 6 Sample 6 was prepared in the same manner as Sample 4 except that the nanofiber layer was formed by the electrospinning method and then heat treatment was performed by thermal calendering at 140°C. Sample 6 is an example (Example 6).
  • Sample 7 was prepared in the same manner as in Sample 6 except that the mesh base material in which the intersections of the warp and the weft were not welded was used as the mesh base material. Sample 7 is an example (Example 7).
  • Sample 8 was prepared in the same manner as in Sample 4, except that the mesh base material used had a mesh number of 24 ⁇ 24 mesh. Sample 8 is a comparative example (Comparative Example 1).
  • Sample 9 was one in which the nanofiber layer was not attached to the net base material having a mesh number of 24 ⁇ 36 mesh (see FIG. 11E). Sample 9 is a comparative example (Comparative Example 2).
  • Sample 10 A mesh base material (black net, no nanofiber layer is attached) used for a commercially available screen door was used as Sample 10 as it was. Sample 10 is a comparative example (Comparative Example 3).
  • Sample 11 A net base material (a cross-cabin manufactured by Sumie Textile Co., Ltd., the cross-cabin is a registered trademark of Teijin Frontier Co., Ltd.) used for a commercially available screen door was used as Sample 11.
  • Sample 11 is a comparative example (Comparative Example 4).
  • Sample 12 was a polypropylene non-woven fabric (having a pollen collection efficiency of 99%) produced by the melt blow method. Sample 12 is a comparative example (Comparative Example 5).
  • ⁇ Test method> With the test system sucked at a constant air flow rate, the test powder (pollen substitute particles) that has been sized by the sizing device is caused to flow from the upstream side of the filter section at a constant speed. The mass of particles captured by the filter part and the mass of particles passing through the filter part are measured, and the collection (filtration) efficiency of pollen particles is calculated from the following formula (1).
  • the collection efficiency of the pollen particles is 80% or more, " ⁇ : pollen collection property is very high", and when 50% or more and less than 80%, “ ⁇ : pollen collection property is high", 50. When it is less than %, it is evaluated as “ ⁇ : Poor pollen collecting property”.
  • Pollen particle collection efficiency B/A ⁇ Equation (1)
  • A is “mass of particles captured by the filter unit (mg)+mass of particles that have passed through the filter unit (mg)”
  • B is “mass of particles captured by the filter unit (mg)”. is there.
  • test conditions are as follows. ⁇ Test powder (pollen particles): Ishimatsu (APPIE standard powder) ⁇ Test flow rate: 28.3 L/min ⁇ Test powder amount: 75 ⁇ 5mg ⁇ Test powder speed: 20 ⁇ 5mg/min ⁇ Temperature and humidity of test room: 20 ⁇ 5°C, 50 ⁇ 10%RH [General Incorporated Association of Japan Sanitary Materials Industry Association, National Mask Industry Association, prescribed test method]
  • the test procedure is as follows. 1. Five test pieces of about 200 mm ⁇ 200 mm are adjusted and attached to a Frazier type tester. 2. When the pressure difference is 12 Pa, the amount of air passing through (cm3/cm2 ⁇ s) is calculated. 3. Then, when this air amount is 50% or more of the air amount obtained for the sample 10, " ⁇ : very high air permeability", and when 30% or more and less than 50%, “ ⁇ : high air permeability", 30 When it is less than %, it is evaluated as "x: low air permeability".
  • ⁇ Test method> A test piece cut into a 15 cm square was taped to the window glass, and the viewability of the test piece area when the outdoor was viewed in the daytime in fine weather from a room 2 m away from the window was evaluated on a 4-point scale.
  • the test to confirm the presence or absence of the strike-through phenomenon of the nanofiber layer is specifically, affixing the mesh base material to the metal collector with a tape and spraying the nanofibers on the mesh base material by the electrospinning method, When the mesh base material was removed from the metal collector, it was confirmed whether the nanofibers passed through the mesh of the mesh base material and adhered to the metal collector. As a result, when the nanofibers were not attached to the metal collector, a rating of “no strike-through was given” was given, and when the nanofibers were attached to the metal collector, “no strike-through was given x”. Gave a rating.
  • ⁇ Test method> The “adhesion test of nanofibers on the mesh substrate” was performed by suction with a vacuum cleaner.
  • the vacuum cleaner used was IC-C100-W Cyclone Cleaner Compact, made by Iris Ohyama.
  • the test piece was cut into a 15 cm square.
  • the test piece was fixed to a metal plate, the floor head of the vacuum cleaner was removed, and suction was performed with a pipe.
  • the suction port of the pipe was fixed 10 mm away from the test piece. It was confirmed whether the nanofiber layer was peeled from the mesh base material.
  • Samples 1 to 7 (building material nets falling within the scope of claim 1 and Examples 1 to 7) have pollen trapping properties, air permeability, viewability, and strikethrough. It was found that it is a net for building materials, which is excellent in all of the performance and the adhesiveness.
  • a normal nanofiber layer that is not particularly colored is used as the nanofiber layer, but the present invention is not limited to this.
  • black nanofibers can be used as the nanofibers.
  • the nanofiber layer becomes inconspicuous, and the net becomes a building material net having even better visibility.
  • a method for producing black nanofibers a method of adding a black pigment to a nanofiber pigment-containing solution for producing nanofibers, a method of dyeing nanofibers with a black solution, and a monomer constituting the nanofibers.
  • a method of introducing a black color-forming group can be preferably used.
  • a sheath member made of a second resin having a melting point lower than that of the first resin is coated around a core member made of the first resin having a predetermined melting point.
  • the present invention is not limited to this.
  • those having a core-sheath structure in which a resin-made sheath member is coated around a glass fiber core member can also be used.
  • net base materials 24 mesh ⁇ 36 mesh, 24 mesh ⁇ 33 mesh having different mesh numbers in the warp direction and the weft direction were used.
  • the purpose of this is to ensure the adhesion of nanofibers to the mesh substrate on the side with a large number of meshes (fine mesh) and to ensure breathability and viewability on the side with a small number of meshes (coarse mesh).
  • the present invention is not limited to this.
  • a mesh base material having the same number of meshes in the warp and weft directions for example, 30 mesh ⁇ 30 mesh, 33 mesh ⁇ 33 mesh, 36 mesh ⁇ 36 mesh, etc.
  • You can also This also makes it possible to secure the adhesiveness, air permeability and viewability of the nanofibers to the net base material.
  • the building material net of the present invention has been described as being excellent in pollen trapping ability, but the building material net of the present invention is also excellent in volcanic ash trapping ability.
  • the building material net of the present invention is also excellent in volcanic ash trapping ability.
  • by increasing the basis weight of the nanofiber layer it is possible to make a net for building materials having a high ability to collect dust and dirt or environmental pollutants such as PM2.5.
  • the building material net of the present invention has been described using the building material net used for the screen of the screen door, but the present invention is not limited to this.
  • the net for building material of the present invention can be used as a vent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Abstract

Provided is netting for building material use with excellent pollen capturing properties and with air permeability and view properties superior to conventional screens. The netting for building material use 1 comprises a screen substrate 2 that is made from warp threads 3 and weft threads 4 and for which the intersection point 5 of the warp threads 3 and weft threads 4 are bonded, and a nano fiber layer 6 in which nano fibers 7 adhere to the netting substrate 2 without an adhesive. The screen substrate 2 has a coarse mesh count that does not allow the nano fibers 7 to penetrate when depositing the nano fibers 7 on the screen substrate 2, and the fiber diameter of the warp threads 3 and the fiber diameter of the weft threads 4 are both within the range of 0.10 mm to 0.30 mm. The nano fibers 7 in the nano fiber layer 6 have an average fiber diameter within the range of 300 nm to 3000 nm and a basis weight in the range of 0.05 g/m2 to 0.5 g/m2.

Description

建材用ネット及びその製造方法Building material net and its manufacturing method
 本発明は、建材用ネット及びその製造方法に関する。 The present invention relates to a net for building materials and a method for manufacturing the same.
 花粉症は今や国民病であり、首都圏の花粉症率は47%に上る。花粉症になると、勉強・仕事・家事へ支障をきたす等、QOL(Quality Of Life)の低下をもたらす。花粉症対策としては、「マスクを着用する」、「うがい・手洗いをする」、「顔や眼を洗う」、「衣服の花粉を落とす」、「外干ししない」、「窓を開けない」、「処方薬・市販薬を服用する」、「花粉症に有効な食材を摂取する」、「健康食品/サプリメントを摂取する」、「花粉ブロックスプレー/クリームを利用する」などの対策があげられる。このうち、「窓を開けない」という対策は全体の23%の人が実行している。 Hay fever is now a national disease, and the pollinosis rate in the Tokyo metropolitan area is 47%. Pollinosis causes a decrease in QOL (Quality Of Life), such as hindering study, work, and housework. As measures against hay fever, "wear a mask", "gargle / wash hands", "wash face and eyes", "remove pollen from clothes", "do not dry outside", "do not open windows", Measures such as "taking prescription and over-the-counter medicines", "taking ingredients that are effective against hay fever", "taking health foods / supplements", and "using pollen block spray / cream" can be mentioned. Of these, 23% of all people take measures to prevent the opening of windows.
 しかしながら、「窓を開けない」すなわち「換気を行わない」という対策を採ると空気が汚れる。住宅の高気密化などが進み、化学物質による空気汚染が起こりやすくなっているほか、湿度が高いと細菌、カビ、ダニが繁殖しやすくなるうえ、一般的な石油ストーブやガスストーブからも一酸化炭素、二酸化炭素、窒素酸化物などの汚染物質が放出されるから、なおさらである。花粉症発症者の95%が2~5月に発症しており、この時期は風邪、インフルエンザの流行と重なるため、換気の重要性が高い時期でもあり、「花粉症のために換気を行わない」のは問題である。そこで、室内への花粉の侵入を防ぎながら換気が可能な窓(網戸)が提案され販売されている(例えば、非特許文献1及び2参照。)。 However, if you take a measure that "do not open the window", that is, "do not ventilate", the air will become dirty. As the airtightness of houses increases, air pollution by chemical substances is more likely to occur, and when the humidity is high, bacteria, molds and mites are more likely to grow, and carbon monoxide is also emitted from general oil stoves and gas stoves. This is all the more so as pollutants such as carbon, carbon dioxide and nitrogen oxides are released. 95% of people with hay fever develop from February to May. This time overlaps with the epidemic of colds and influenza, so ventilation is also very important. Is a problem. Therefore, a window (screen door) capable of ventilation while preventing the invasion of pollen into the room has been proposed and sold (for example, see Non-Patent Documents 1 and 2).
 このうち、非特許文献1に記載の網戸は、編目の大きさを従来の網戸よりも小さくしたものであり(約80μm、従来の網戸の約160分の1)、花粉の侵入を80%以上阻止できるとされている。また、非特許文献2に記載の網戸は、インナーネットとアウターネットとの間に特殊フィルターを介装したものであり、花粉に相当する30μm~40μmの粒子を98%以上捕集できるとされている。 Of these, the screen door described in Non-Patent Document 1 has a stitch size smaller than that of the conventional screen door (about 80 μm, about 1/160 of the conventional screen door), and pollen invasion is 80% or more. It is said that it can be stopped. Further, the screen door described in Non-Patent Document 2 has a special filter interposed between the inner net and the outer net, and is said to be able to collect 98% or more of particles of 30 μm to 40 μm corresponding to pollen. There is.
特開2014-47474号公報JP, 2014-47474, A
 しかしながら、上記した非特許文献1に記載の網戸は、編目開口部の総面積割合が小さいため、通気性が低く、また、眺望性が極めて低いという問題がある。一方、上記した非特許文献2に記載の網戸は、特殊フィルターが不織布を用いたものであるため、通気性及び眺望性が極めて低いという問題がある。 However, the screen door described in Non-Patent Document 1 described above has a problem that the total area ratio of the stitch openings is small, so that the air permeability is low and the viewability is extremely low. On the other hand, the screen door described in Non-Patent Document 2 described above has a problem that the air permeability and the viewability are extremely low because the special filter uses a non-woven fabric.
 そこで、本発明は、花粉捕集性に優れ、かつ、従来の網戸よりも通気性及び眺望性に優れた建材用ネット及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a net for building materials and a method for producing the same, which are excellent in pollen collecting property and also in better breathability and viewability than conventional screen doors.
[1]本発明の建材用ネットは、経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着している網基材と、接着剤を介さずに前記網基材にナノ繊維が付着しているナノ繊維層とを備え、前記網基材は、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有し、かつ、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にあり、前記ナノ繊維層は、前記ナノ繊維の平均繊維径が300nm~3000nmの範囲内にあり、かつ、目付量が0.05g/m~0.5g/mの範囲内にあることを特徴とする。 [1] The net for building materials of the present invention is composed of warp threads (warp threads) and weft threads (weft threads), and the net base material in which the intersections of the warp threads and the weft threads are welded together with the net base without using an adhesive. A nanofiber layer in which nanofibers are attached to a material, and the mesh base material has a mesh number of roughness such that the nanofibers do not strike through when the nanofibers are adhered to the mesh base material. The fiber diameter of the warp and the fiber diameter of the weft are both in the range of 0.10 mm to 0.30 mm, and the nanofiber layer has an average fiber diameter of 300 nm to 3000 nm. in the range of, and basis weight is characterized in that in the range of 0.05g / m 2 ~ 0.5g / m 2.
 本発明の建材用ネットにおいて、ナノ繊維層の目付量を0.05g/m~0.5g/mの範囲内としたのは、ナノ繊維層の目付量が0.05g/mよりも小さい場合には、ナノ繊維層の目が粗すぎて十分高い花粉捕集率が得られなくなる場合があり、ナノ繊維層の目付量が0.5g/mよりも大きい場合には、ナノ繊維層の目が細かすぎて十分な通気性及び眺望性が得られない場合があるからである。これらの観点から言えば、ナノ繊維層の目付量は、0.08g/mよりも大きいことが好ましく、0.10g/mよりも大きいことがより一層好ましい。また、ナノ繊維層の目付量は、0.4g/mよりも小さいことが好ましく、0.3g/mよりも小さいことがより一層好ましい。 In building materials net of the present invention, the the basis weight of the nanofiber layer was in the range of 0.05g / m 2 ~ 0.5g / m 2 , the basis weight of the nanofiber layer than 0.05 g / m 2 If it is too small, the nanofiber layer may be too coarse to obtain a sufficiently high pollen collection rate. If the basis weight of the nanofiber layer is greater than 0.5 g/m 2 , the This is because the fiber layer may be too fine to obtain sufficient breathability and viewability. From these viewpoints, the basis weight of the nanofiber layer is preferably greater than 0.08 g/m 2, and more preferably greater than 0.10 g/m 2 . The basis weight of the nanofiber layer is preferably smaller than 0.4 g/m 2, and more preferably smaller than 0.3 g/m 2 .
 また、本発明の建材用ネットにおいて、網基材を、経糸の繊維径及び緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にあるものとしたのは、経糸の繊維径及び緯糸の繊維径のいずれかが0.10mmよりも細いものである場合には、経糸及び緯糸のいずれかが細すぎて十分な機械的強度が得られない場合があるからであり、経糸の繊維径及び緯糸の繊維径のいずれかが0.30mmよりも太いものである場合には、経糸及び緯糸のいずれかが太すぎて十分な通気性及び眺望性が得られない場合があるからである。 Further, in the net for building materials of the present invention, it is the fiber diameter of the warp and the fiber diameter of the warp that the fiber diameter of the warp and the fiber diameter of the weft are both in the range of 0.10 mm to 0.30 mm. This is because if either of the weft fiber diameters is smaller than 0.10 mm, either the warp or the weft may be too thin to obtain sufficient mechanical strength, and the warp fibers may not be obtained. This is because if either the diameter or the fiber diameter of the weft is thicker than 0.30 mm, either the warp or the weft may be too thick to obtain sufficient air permeability and viewability. ..
 また、本発明の建材用ネットにおいて、網基材を、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有する網基材としたのは、網基材を、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けする粗さのメッシュ数を有する網基材とした場合には、網基材に対するナノ繊維の付着密度及び付着強度が十分に高くならず、安定した機械的構造をもった建材用ネットを実現できない場合があるからである。 Further, in the net for building materials of the present invention, the net base material is a net base material having a mesh number having a roughness so that the nanofibers do not strike through when the nanofibers are attached to the net base material. When the mesh base material is a mesh base material having a mesh number of roughness such that the nanofibers strike through when the nanofibers are attached to the mesh base material, the nanofibers for the mesh base material This is because the adhesion density and adhesion strength of the material may not be sufficiently high, and a net for building materials having a stable mechanical structure may not be realized.
 また、本発明の建材用ネットにおいて、網基材を、経糸と緯糸との交点が溶着している網基材としたのは、網基材が、経糸と緯糸との交点が溶着していない網基材である場合には、十分な機械的強度が得られない場合があるからであり、また、建材用ネットの使用時に交点のところにほこりがたまり易くなる場合があるからであり、また、建材用ネットの組み立て時や使用時に経糸と緯糸が動きやすくなり、これに起因してナノ繊維が破断されてしまう場合があるからである。 Further, in the building material net of the present invention, the net base material is a net base material in which the intersections of the warp and the weft are welded, because the net base material is not welded at the intersections of the warp and the weft. This is because in the case of a net base material, sufficient mechanical strength may not be obtained, and dust may easily collect at intersections when using a building material net. This is because the warp and weft become easy to move when assembling or using the net for building materials, and the nanofibers may be broken due to this.
 また、本発明の建材用ネットにおいて、ナノ繊維層を、接着剤を介さずに網基材に付着しているナノ繊維層としたのは、ナノ繊維層を、接着剤を介して網基材に付着しているナノ繊維層とした場合には、接着剤が空気や光の通過を妨げてしまい十分な通気性及び眺望性が得られない場合があるからである。 Further, in the net for building materials of the present invention, the nanofiber layer is formed as a nanofiber layer that is attached to the net base material without using an adhesive, because the nanofiber layer is used as a net base material via an adhesive. This is because, in the case of the nanofiber layer adhering to the above, the adhesive may obstruct the passage of air and light, and sufficient air permeability and viewability may not be obtained.
 また、本発明の建材用ネットにおいて、ナノ繊維の平均繊維径を300nm~3000nmの範囲内としたのは、ナノ繊維の平均繊維径が300nmよりも細い場合には、ナノ繊維層として十分な機械的強度が得られない場合があり、また、網基材とナノ繊維層との間の十分な付着力が得られない場合があるからである。一方、ナノ繊維の平均繊維径が3000nmよりも太い場合には、ナノ繊維が太すぎて十分な通気性及び眺望性が得られない場合があるからである。 Further, in the net for building materials of the present invention, the average fiber diameter of nanofibers is set in the range of 300 nm to 3000 nm because when the average fiber diameter of nanofibers is smaller than 300 nm, the machine is sufficient as a nanofiber layer. This is because the target strength may not be obtained, and sufficient adhesive force between the net base material and the nanofiber layer may not be obtained. On the other hand, if the average fiber diameter of the nanofibers is thicker than 3000 nm, the nanofibers may be too thick to obtain sufficient air permeability and viewability.
 その結果、本発明の建材用ネットは、花粉捕集性に優れ、かつ、従来の網戸よりも通気性及び眺望性に優れた建材用ネットとなる。 As a result, the building material net of the present invention is a building material net that has excellent pollen trapping properties, and is more breathable and has a better view than conventional screen doors.
 なお、網基材にナノ繊維層を付着させた構造を有する網戸自体は知られている(例えば、特許文献1参照。)。しかしながら、特許文献1に記載の網戸においては、網基材に接着剤を介してナノ繊維層を付着させたものである。このため、特許文献1に記載の網戸においては、接着剤が空気や光の通過を妨げてしまい十分な通気性及び眺望性が得られない場合がある。 It should be noted that a screen door itself having a structure in which a nanofiber layer is attached to a net base material is known (see, for example, Patent Document 1). However, in the screen door described in Patent Document 1, a nanofiber layer is attached to a net base material via an adhesive. Therefore, in the screen door described in Patent Document 1, the adhesive may obstruct the passage of air and light, and sufficient air permeability and viewability may not be obtained.
 本発明において、メッシュ数とは、網糸1インチ当たりに存在する網目の数をいうものとする。このうち、経方向のメッシュ数とは、経糸1インチ当たりに存在する網目の数をいうものとし、緯方向のメッシュ数とは、緯糸1インチ当たりに存在する網目の数をいうものとする。 In the present invention, the number of meshes means the number of meshes existing in 1 inch of mesh. Of these, the number of meshes in the warp direction refers to the number of meshes existing per inch of warp threads, and the number of meshes in the weft direction refers to the number of meshes existing per inch of weft threads.
[2]本発明の建材用ネットにおいては、前記網基材は、経方向及び緯方向のうちいずれについてもメッシュ数が24メッシュ~44メッシュの範囲内にあることが好ましい。 [2] In the net for building material according to the present invention, the mesh base material preferably has a mesh number within a range of 24 mesh to 44 mesh in both the warp direction and the weft direction.
 本発明の建材用ネットにおいて、網基材のメッシュ数を、経方向及び緯方向のうちいずれについても24メッシュ~44メッシュの範囲内としたのは、網基材のメッシュ数が24メッシュよりも小さい場合には、網基材の目が粗すぎて網目を虫が通過し易くなる場合があり、網基材のメッシュ数が44メッシュよりも大きい場合には、網基材の目が細かすぎて十分な通気性及び眺望性が得られない場合があるからである。これらの観点から言えば、網基材のメッシュ数は、経方向及び緯方向のうちいずれについても26メッシュよりも大きいことが好ましく、28メッシュよりも大きいことがより一層好ましい。また、網基材のメッシュ数は、経方向及び緯方向のうちいずれについても42メッシュよりも小さいことが好ましく、40メッシュよりも小さいことがより一層好ましい。 In the net for building materials of the present invention, the number of meshes of the net base material is within the range of 24 meshes to 44 meshes in both the warp direction and the weft direction, because the number of meshes of the net base material is larger than 24 meshes. If it is small, the mesh of the mesh substrate may be too coarse and insects may easily pass through the mesh, and if the number of meshes of the mesh substrate is larger than 44 mesh, the mesh of the mesh substrate is too fine. In some cases, sufficient breathability and viewability may not be obtained. From these viewpoints, the mesh number of the mesh base material is preferably larger than 26 mesh in both the warp direction and the weft direction, and more preferably larger than 28 mesh. Further, the number of meshes of the net base material is preferably smaller than 42 meshes in both the warp direction and the weft direction, and even more preferably smaller than 40 meshes.
[3]本発明の建材用ネットにおいては、前記網基材は、経方向及び緯方向のうち少なくとも一方についてはメッシュ数が28メッシュ以上であることが好ましい。 [3] In the net for building material according to the present invention, the mesh base material preferably has a mesh number of 28 mesh or more in at least one of the warp direction and the weft direction.
 本発明の建材用ネットにおいて、網基材のメッシュ数を、経方向及び緯方向のうち少なくとも一方については28メッシュ以上としたのは、メッシュ数が経方向及び緯方向のいずれについても28メッシュよりも小さい場合には、経緯のうち少なくとも一方に沿った網糸間の間隔が広くなりすぎてナノ繊維層が裏抜けしてしまい、安定した機械的構造をもった建材用ネットを実現できない場合があるからである。この観点から言えば、網基材のメッシュ数は、経方向及び緯方向のうち少なくとも一方については30メッシュよりも大きいことが好ましく、33メッシュよりも大きいことがより一層好ましい。 In the building material net of the present invention, the number of meshes of the net base material is 28 meshes or more in at least one of the warp direction and the weft direction because the number of meshes is 28 meshes in both the warp direction and the weft direction. If it is too small, the space between the mesh threads along at least one of the warp threads may become too wide and the nanofiber layer may strike through, making it impossible to realize a net for building materials with a stable mechanical structure. Because there is. From this point of view, the number of meshes of the net base material is preferably larger than 30 meshes in at least one of the warp direction and the weft direction, and even more preferably larger than 33 meshes.
[4]本発明の建材用ネットにおいては、前記ナノ繊維は、難加水分解性樹脂からなることが好ましい。 [4] In the net for building material according to the present invention, it is preferable that the nanofibers are made of a hardly hydrolyzable resin.
 本発明の建材用ネットは、ナノ繊維が難加水分解性樹脂からなることから、耐候性に優れた建材用ネットとなる。 The building material net of the present invention is a building material net having excellent weather resistance because the nanofibers are made of a poorly hydrolyzable resin.
[5]本発明の建材用ネットにおいては、前記ナノ繊維は、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることが好ましい。 [5] In the net for building materials of the present invention, the nanofibers are preferably made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin.
 本発明の建材用ネットは、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、ナノ繊維が難加水分解性樹脂からなるものとなり、耐候性に優れた建材用ネットとなる。また、このように、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、ナノ繊維が伸縮性・柔軟性のある樹脂からなるものとなり、建材用ネットの組み立て時や使用時にナノ繊維が破断されにくい丈夫な建材用ネットとなる。また、このように、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、網基材とナノ繊維との付着力が強くなり、これによっても、建材用ネットの組み立て時や使用時にナノ繊維が破断されにくい丈夫な建材用ネットとなる。 The net for building materials of the present invention, in which the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin, the nanofibers are made of a hardly hydrolyzable resin, and the net for building materials has excellent weather resistance. .. In addition, since the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin in this way, the nanofibers are made of a stretchable and flexible resin, which can be used when assembling or using a net for building materials. It will be a strong net for building materials, in which nanofibers are not easily broken. Further, as described above, since the nanofibers are made of the polycarbonate-based polyurethane resin or the polyether-based polyurethane resin, the adhesive force between the net base material and the nanofibers becomes strong, which also makes it possible to assemble the net for building materials and It is a durable net for building materials in which nanofibers are not easily broken during use.
[6]本発明の建材用ネットにおいては、前記ナノ繊維は、黒色のナノ繊維であることが好ましい。 [6] In the net for building material according to the present invention, it is preferable that the nanofibers are black nanofibers.
 本発明の建材用ネットは、ナノ繊維が、黒色のナノ繊維であることから、ナノ繊維層が目立たなくなり、眺望性に優れた建材用ネットとなる。 The building material net of the present invention is a building material net with excellent visibility because the nanofibers are black, because the nanofibers are inconspicuous.
[7]本発明の建材用ネットにおいては、前記経糸及び前記緯糸はいずれも、所定の融点を有する第1樹脂製の芯部材の周囲に、前記第1樹脂よりも低い融点を有する第2樹脂脂製の鞘部材が被覆された芯鞘構造を有するものであることが好ましい。 [7] In the net for building materials of the present invention, both the warp and the weft have a second resin having a melting point lower than that of the first resin around a core member made of the first resin having a predetermined melting point. It is preferable that it has a core-sheath structure in which a fat-made sheath member is covered.
 本発明の建材用ネットは、上記のような芯鞘構造を有するものであるから、経糸と緯糸との交点が溶着した構造を有する建材用ネットを容易に製造可能な建材用ネットとなる。この場合、経糸及び緯糸として、第1樹脂を通常の高融点ポリプロピレンとし、第2樹脂を低融点共重合ポリプロピレンとした芯鞘構造を有する網糸を好適に用いることができる。 Since the building material net of the present invention has the core-sheath structure as described above, it is a building material net that can easily manufacture a building material net having a structure in which the intersections of the warp threads and the weft threads are welded. In this case, a mesh yarn having a core-sheath structure in which the first resin is a normal high melting point polypropylene and the second resin is a low melting point copolymer polypropylene can be preferably used as the warp and the weft.
[8]本発明の建材用ネットにおいては、前記経糸及び前記緯糸はいずれも、ガラス繊維製の芯部材の周囲に樹脂製の鞘部材が被覆された芯鞘構造を有することが好ましい。 [8] In the building material net of the present invention, it is preferable that both the warp and the weft have a core-sheath structure in which a resin-made sheath member is coated around a glass fiber core member.
 本発明の建材用ネットは、上記のような芯鞘構造を有するものであるから、上記[7]の場合と同様に、経糸と緯糸との交点が溶着した構造を有する建材用ネットを容易に製造可能な建材用ネットとなる。 Since the building material net of the present invention has the core-sheath structure as described above, it is easy to obtain a building material net having a structure in which the intersections of the warp and the weft are welded, as in the case of [7] above. It will be a manufacturable net for building materials.
 なお、上記した、本発明の建材用ネットに関する好ましい特徴は、下記の建材用ネットの製造方法にも同様に適用できるものである。 The above-mentioned preferable features of the building material net of the present invention can be similarly applied to the following method for manufacturing a building material net.
[9]本発明の建材用ネットの製造方法は、 経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着している網基材であって、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある網基材を準備する網基材準備工程と、エレクトロスピニング法を用いて、前記網基材の一方の面に、平均繊維径が300nm~3000nmの範囲内にあるナノ繊維からなり、目付量が0.05g/m~0.5g/mの範囲内にあるナノ繊維層を形成するナノ繊維層形成工程とを含み、前記網基材準備工程においては、前記網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有する網基材を準備することを特徴とする。 [9] The method for producing a net for building materials of the present invention is a net base material composed of warp threads (warp threads) and weft threads (weft threads), and the intersections of the warp threads and the weft threads are welded to each other, and the fibers of the warp threads. Diameter and the diameter of the weft yarn are both within the range of 0.10 mm to 0.30 mm. A net base material preparing step of preparing a net base material, and one surface of the net base material using an electrospinning method. the average fiber diameter is from nanofibers in the range of 300 nm ~ 3000 nm, basis weight nanofiber layer formed for forming a nanofiber layer in the range of 0.05g / m 2 ~ 0.5g / m 2 In the mesh base material preparing step, a mesh base material having a mesh number of roughness such that the nanofibers do not strike through when the nanofibers are attached to the mesh base material is prepared in the mesh base material preparing step. It is characterized by
 本発明の建材用ネットの製造方法によれば、エレクトロスピニング時に溶媒成分が網糸の表面に付着した後に揮発する過程でナノ繊維が収縮して網糸としっかり結合するため、接着剤を用いることなく網基材にナノ繊維層を付着させることができ、本発明の建材用ネットを製造するのに好適な建材用ネットの製造方法となる。 According to the method for producing a net for building materials of the present invention, an adhesive is used because the nanofibers shrink and firmly bond with the net thread in the process of volatilizing after the solvent component adheres to the surface of the net thread during electrospinning. The nanofiber layer can be attached to the net base material without any problem, which is a method for producing a net for building materials suitable for producing the net for building materials of the present invention.
[10]本発明の建材用ネットの製造方法は、前記ナノ繊維層形成工程の後に、前記網基材と前記ナノ繊維層との付着力を高くするための熱処理工程をさらに含むことが好ましい。 [10] The method for producing a net for building materials of the present invention preferably further includes a heat treatment step for increasing the adhesive force between the net base material and the nanofiber layer after the nanofiber layer forming step.
 このような方法とすることにより、網糸の表面とナノ繊維の表面とが一旦溶融又は軟化されることになり、網基材とナノ繊維層との付着力を高くすることができ、ナノ繊維層が剥がれにくい建材用ネットを製造できる。 By adopting such a method, the surface of the net yarn and the surface of the nanofiber are once melted or softened, and the adhesive force between the net base material and the nanofiber layer can be increased. It is possible to manufacture a net for building materials whose layers are not easily peeled off.
[11]本発明の建材用ネットの製造方法は、経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着していない網基材であって、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある網基材を準備する網基材準備工程と、エレクトロスピニング法を用いて、前記網基材の一方の面に、平均繊維径が300nm~3000nmの範囲内にあるナノ繊維からなり、目付量が0.05g/m~0.5g/mの範囲内にあるナノ繊維層を形成するナノ繊維層形成工程と、前記経糸と前記緯糸との前記交点を溶着するとともに前記網基材と前記ナノ繊維層との付着力を高くするための熱処理工程とを含み、前記網基材準備工程においては、前記網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有する網基材を準備することを特徴とする。 [11] The method for producing a net for building material according to the present invention is a net base material comprising warps (warps) and wefts (wefts), wherein the intersections of the warps and the wefts are not welded, and fibers of the warps. One surface of the net base material is prepared by using a net base material preparation step of preparing a net base material having a diameter and a fiber diameter of the weft in the range of 0.10 mm to 0.30 mm and an electrospinning method. the average fiber diameter is from nanofibers in the range of 300 nm ~ 3000 nm, basis weight nanofiber layer formed for forming a nanofiber layer in the range of 0.05g / m 2 ~ 0.5g / m 2 And a heat treatment step for increasing the adhesion between the mesh base material and the nanofiber layer while welding the intersections of the warp and the weft, and in the mesh base material preparation step, It is characterized in that a net base material having a number of meshes having a roughness that does not allow the nanofibers to strike through when the nanofibers are attached to the net base material is prepared.
 本発明の建材用ネットの製造方法によれば、エレクトロスピニング時に溶媒成分が網糸の表面に付着した後に揮発する過程でナノ繊維が収縮して網糸としっかり結合するため、接着剤を用いることなく網基材にナノ繊維層を付着させることができ、本発明の建材用ネットを製造するのに好適な建材用ネットの製造方法となる。また、1回の熱処理工程で、経糸と緯糸との交点を溶着するとともに網基材とナノ繊維層との付着力を高くすることができるため、製造コストの安価な建材用ネットの製造方法となる。 According to the method for producing a net for building materials of the present invention, an adhesive is used because the nanofibers shrink and firmly bond with the net thread in the process of volatilizing after the solvent component adheres to the surface of the net thread during electrospinning. The nanofiber layer can be attached to the net base material without any problem, which is a method for producing a net for building materials suitable for producing the net for building materials of the present invention. In addition, since the intersection of the warp and the weft can be welded and the adhesive force between the net base material and the nanofiber layer can be increased in one heat treatment step, it is possible to manufacture a net for building materials at a low manufacturing cost. Become.
実施形態1に係る建材用ネットの要部拡大平面図である。It is a principal part enlarged plan view of the net for building materials which concerns on Embodiment 1. 実施形態1に係る建材用ネットの製造方法における工程図である。FIG. 3 is a process drawing of the method for manufacturing a building material net according to the first embodiment. 網基材準備工程を説明するために示す図である。It is a figure which shows for demonstrating the net base material preparation process. ナノ繊維層形成工程を説明するために示す図である。It is a figure which shows for demonstrating the process of forming a nanofiber layer. 実施形態2に係る建材用ネットの製造方法における工程図である。FIG. 7 is a process drawing of the method for manufacturing a building material net according to the second embodiment. ナノ繊維層形成工程を説明するために示す図である。It is a figure shown in order to demonstrate a nanofiber layer formation process. 実施形態3に係る建材用ネットの製造方法における工程図である。FIG. 7 is a process drawing of the method for manufacturing a building material net according to the third embodiment. 網基材準備工程を説明するために示す図である。It is a figure which shows for demonstrating the net base material preparation process. ナノ繊維層形成工程を説明するために示す図である。It is a figure which shows for demonstrating the process of forming a nanofiber layer. 実施例で用いる各試料(試料1~12)の諸元を示す図表である。3 is a chart showing the specifications of each sample (Samples 1 to 12) used in the examples. 試料1~4及び9の要部拡大平面図である。FIG. 3 is an enlarged plan view of a main part of Samples 1 to 4 and 9. 花粉捕集性試験を説明するために示す図である。It is a figure shown in order to demonstrate a pollen collection property test. 各試料についての試験結果を示す図表である。It is a chart which shows the test result for each sample.
 以下、本発明の建材用ネット及びその製造方法を図に示す各実施形態を用いて詳細に説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではない。また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。各実施形態においては、基本的な構成および特徴が同じ構成要素については、各実施形態をまたぎ同じ符号を使用し、説明を省略する場合がある。発明の構成要素を表示する図は模式図であり、実際の寸法や比率を必ずしも正確に表現したものではない。 The building material net of the present invention and a method for manufacturing the same will be described below in detail with reference to the embodiments shown in the drawings. Each embodiment described below does not limit the invention according to the claims. Moreover, not all of the elements and combinations thereof described in each embodiment are indispensable for the means for solving the present invention. In each embodiment, for components having the same basic configuration and features, the same reference numerals may be used across the respective embodiments, and the description may be omitted. The diagrams showing the constituent elements of the invention are schematic diagrams, and do not necessarily represent the actual dimensions and ratios accurately.
[実施形態1]
1.建材用ネット
 図1は、実施形態1に係る建材用ネットの要部拡大平面図である。
 実施形態1に係る建材用ネット1は、図1に示すように、経糸3(縦糸)と緯糸4(横糸)からなり、経糸3と緯糸4との交点5が溶着している網基材2と、接着剤を介さずに網基材2にナノ繊維7がランダム状に又はクモの巣状に付着しているナノ繊維層6とを備える。
[Embodiment 1]
1. Building Material Net FIG. 1 is an enlarged plan view of a main part of the building material net according to the first embodiment.
As shown in FIG. 1, the building material net 1 according to the first embodiment is composed of warp threads 3 (warp threads) and weft threads 4 (weft threads), and a net base material 2 in which the intersection 5 of the warp threads 3 and the weft threads 4 is welded. And the nanofiber layer 6 in which the nanofibers 7 are attached to the net base material 2 randomly or in a spider web shape without an adhesive.
 網基材2は、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有し、かつ、経糸の繊維径及び緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある。 The mesh base material 2 has a number of meshes having a roughness that prevents the nanofibers from strike-through when the nanofibers are attached to the net base material, and has a warp fiber diameter and a weft fiber diameter. Both are in the range of 0.10 mm to 0.30 mm.
 網基材2は、経方向及び緯方向のうちいずれについてもメッシュ数が24メッシュ~44メッシュの範囲内にあり、かつ、経方向及び緯方向のうち少なくとも一方についてはメッシュ数が28メッシュ以上であるものを好適に用いることができる。 The mesh base material 2 has a mesh number of 24 meshes to 44 meshes in both the warp direction and the weft direction, and has a mesh number of 28 meshes or more in at least one of the warp direction and the weft direction. Some can be preferably used.
 経糸3及び緯糸4はいずれも、所定の融点を有する第1樹脂製の芯部材の周囲に、第1樹脂よりも低い融点を有する第2樹脂製の鞘部材が被覆された芯鞘構造を有するものである。第1樹脂としては例えば高融点ポリプロピレンを好適に用いることができ、第2樹脂としては例えば低融点共重合ポリプロピレンを好適に用いることができる。 Both the warp threads 3 and the weft threads 4 have a core-sheath structure in which a sheath member made of a second resin having a melting point lower than that of the first resin is coated around a core member made of a first resin having a predetermined melting point. It is a thing. As the first resin, for example, high melting point polypropylene can be preferably used, and as the second resin, for example, low melting point copolymerized polypropylene can be preferably used.
 ナノ繊維層6は、ナノ繊維7の平均繊維径が300nm~3000nmの範囲内にあり、かつ、目付量が0.05g/m~0.5g/mの範囲内にある。 Nanofiber layer 6 is in the range the average fiber diameter of 300 nm ~ 3000 nm of the nanofiber 7, and a basis weight is in the range of 0.05g / m 2 ~ 0.5g / m 2.
 ナノ繊維7は、難加水分解性樹脂からなる。ナノ繊維7は、例えば、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなる。 The nanofiber 7 is made of a poorly hydrolyzable resin. The nanofibers 7 are made of, for example, a polycarbonate polyurethane resin or a polyether polyurethane resin.
2.建材用ネットの製造方法
 図2は、実施形態1に係る建材用ネットの製造方法における工程図である。図3は、網基材準備工程を説明するために示す図である。図3(a)は網基材2の平面図であり、図3(b)はロール状に巻回した状態の網基材2の斜視図である。図4は、ナノ繊維層形成工程を説明するために示す図である。
2. Method for Manufacturing Net for Building Material FIG. 2 is a process diagram in the method for manufacturing the net for building material according to the first embodiment. FIG. 3 is a figure shown in order to demonstrate a net base material preparation process. 3A is a plan view of the net base material 2, and FIG. 3B is a perspective view of the net base material 2 in a state of being wound into a roll. FIG. 4 is a diagram for explaining the nanofiber layer forming step.
 実施形態1に係る建材用ネットの製造方法は、図2に示すように、網基材準備工程S11と、ナノ繊維層形成工程S12とを含む。 As shown in FIG. 2, the method for manufacturing a building material net according to the first embodiment includes a net base material preparing step S11 and a nanofiber layer forming step S12.
 網基材準備工程S11は、経糸(縦糸)と緯糸(横糸)からなり、経糸と緯糸との交点が溶着している網基材であって、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有し、かつ、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある網基材(図3参照。)を準備する工程である。実施形態1においては、網基材として、経方向及び緯方向のうちいずれについてもメッシュ数が24メッシュ~44メッシュの範囲内にあり、かつ、経方向及び緯方向のうち少なくとも一方についてはメッシュ数が28メッシュ以上であるものを好適に用いることができる。 The net base material preparation step S11 is a net base material composed of warp threads (warp threads) and weft threads (weft threads) in which the intersections of the warp threads and the weft threads are welded, and when the nanofibers are attached to the net base material. A net group having a mesh number having a roughness that does not allow the nanofibers to strike through, and the fiber diameters of the warp threads and the weft threads are both in the range of 0.10 mm to 0.30 mm. This is a step of preparing a material (see FIG. 3). In the first embodiment, as the net base material, the number of meshes is in the range of 24 meshes to 44 meshes in both the warp direction and the weft direction, and the number of meshes is in at least one of the warp direction and the weft direction. 28 mesh or more can be preferably used.
 ナノ繊維層形成工程S12は、エレクトロスピニング法を用いて、網基材2の一方の面に、平均繊維径が300nm~3000nmの範囲内にあるナノ繊維からなり、目付量が0.05g/m~0.5g/mの範囲内にあるナノ繊維層を形成する工程である(図4参照。)。ナノ繊維層の形成は例えばランダム状に(又はクモの巣状)に行う。なお、図4において、符号10はエレクトロスピニング装置を示し、符号11はタンクを示し、符号12はポリマー溶液を示し、符号13はバルブを示し、符号14は電界紡糸ノズルを示し、符号15が金属コレクタを示し、符号16は引き出しロールを示し、符号17は巻き取りロールを示す。 The nanofiber layer forming step S12 is composed of nanofibers having an average fiber diameter in the range of 300 nm to 3000 nm on one surface of the net base material 2 by using an electrospinning method, and has a grain size of 0.05 g / m. This is a step of forming a nanofiber layer in the range of 2 to 0.5 g/m 2 (see FIG. 4). The nanofiber layer is formed, for example, randomly (or in a spider web shape). In FIG. 4, reference numeral 10 represents an electrospinning apparatus, reference numeral 11 represents a tank, reference numeral 12 represents a polymer solution, reference numeral 13 represents a valve, reference numeral 14 represents an electrospinning nozzle, and reference numeral 15 represents a metal. Reference numeral 16 denotes a collector, reference numeral 16 denotes a pulling roll, and reference numeral 17 denotes a winding roll.
3.実施形態1の効果
 実施形態1に係る建材用ネット1は、上記した構成を有していることから、花粉捕集性に優れ、かつ、従来の網戸よりも通気性及び眺望性に優れた建材用ネットとなる。
3. Effect of the first embodiment Since the building material net 1 according to the first embodiment has the above-described configuration, the building material has excellent pollen collecting property and is more breathable and viewable than the conventional screen door. It becomes a net for.
 また、実施形態1に係る建材用ネット1は、ナノ繊維が難加水分解性樹脂からなることから、耐候性に優れた建材用ネットとなる。
 また、実施形態1に係る建材用ネット1は、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、ナノ繊維が難加水分解性樹脂からなるものとなり、耐候性に優れた建材用ネットとなる。また、このように、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、ナノ繊維が伸縮性・柔軟性のある樹脂からなるものとなり、建材用ネットの組み立て時や使用時にナノ繊維が破断されにくい丈夫な建材用ネットとなる。また、このように、ナノ繊維が、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることから、網基材とナノ繊維との付着力が強くなり、これによっても、建材用ネットの組み立て時や使用時にナノ繊維が破断されにくい丈夫な建材用ネットとなる。
Further, the building material net 1 according to the first embodiment is a building material net having excellent weather resistance because the nanofibers are made of a hardly hydrolyzable resin.
Further, in the building material net 1 according to the first embodiment, since the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin, the nanofibers are made of a poorly hydrolyzable resin and have excellent weather resistance. It becomes a net for building materials. In addition, since the nanofibers are made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin in this way, the nanofibers are made of a stretchable/flexible resin, which can be used when assembling or using a net for building materials. It is a durable net for building materials, in which nanofibers are not easily broken. Further, as described above, since the nanofibers are made of the polycarbonate-based polyurethane resin or the polyether-based polyurethane resin, the adhesive force between the net base material and the nanofibers becomes strong. It is a durable net for building materials in which nanofibers are not easily broken during use.
 また、実施形態1に係る建材用ネット1は、上記のような芯鞘構造を有するものであるから、経糸と緯糸との交点が溶着した構造を有する建材用ネットを容易に製造可能な建材用ネットとなる。 Further, since the building material net 1 according to the first embodiment has the core-sheath structure as described above, it is for a building material that can easily manufacture a building material net having a structure in which the intersections of the warp and the weft are welded. It becomes the net.
 実施形態1に係る建材用ネットの製造方法によれば、エレクトロスピニング時に溶媒成分が網糸の表面に付着した後に揮発する過程でナノ繊維が収縮し網糸としっかり結合するため、接着剤を用いることなく網基材にナノ繊維層を付着させることができ、本発明の建材用ネットを製造するのに好適な建材用ネットの製造方法となる。 According to the method for manufacturing a net for building materials according to the first embodiment, an adhesive is used because the nanofibers shrink and firmly bond with the net yarn in the process of volatilizing after the solvent component adheres to the surface of the net yarn during electrospinning. The nanofiber layer can be attached to the net base material without any need, which is a method for producing a building material net suitable for producing the building material net of the present invention.
[実施形態2]
 図5は、実施形態2に係る建材用ネットの製造方法における工程図である。図6は、ナノ繊維層形成工程を説明するために示す図である。
[Embodiment 2]
FIG. 5 is a process drawing of the method for manufacturing a building material net according to the second embodiment. FIG. 6 is a diagram for explaining the nanofiber layer forming step.
 実施形態2に係る建材用ネットの製造方法は、基本的には実施形態1に係る建材用ネットの製造方法と同様の工程を含むが、図5に示すように、ナノ繊維層形成工程S12の後に、網基材とナノ繊維層との付着力を高くするための熱処理工程S13をさらに含む。 The method for manufacturing the building material net according to the second embodiment basically includes the same steps as the method for manufacturing the building material net according to the first embodiment, but as shown in FIG. 5, the nanofiber layer forming step S12 After that, a heat treatment step S13 for increasing the adhesive force between the net base material and the nanofiber layer is further included.
 熱処理工程S13は、エレクトロスピニング法を用いて、網基材2の一方の面にナノ繊維層を形成した後、ロールに巻き取る前に、ナノ繊維層が形成された網基材を上下面から単に加熱することにより行ってもよいし(図6参照。)、ナノ繊維層が形成された網基材を上下一対の加熱ローラに通すことにより加圧・加熱すること(熱カレンダー加工)により行ってもよい。 In the heat treatment step S13, after the nanofiber layer is formed on one surface of the net base material 2 by the electrospinning method, the net base material on which the nanofiber layer is formed is formed from the upper and lower surfaces before being wound on a roll. It may be carried out simply by heating (see FIG. 6), or by pressurizing and heating by passing a net base material on which a nanofiber layer is formed through a pair of upper and lower heating rollers (thermal calendar processing). May be.
 実施形態2に係る建材用ネットの製造方法によれば、網糸の表面とナノ繊維の表面とが一旦溶融又は軟化されることになり、網基材とナノ繊維層との付着力を高くすることができ、ナノ繊維層の剥がれにくい建材用ネットを製造できる。 According to the method for manufacturing a net for building materials according to the second embodiment, the surface of the net thread and the surface of the nanofibers are once melted or softened, and the adhesive force between the net base material and the nanofiber layer is increased. Therefore, it is possible to manufacture a net for building material in which the nanofiber layer is not easily peeled off.
[実施形態3]
 図7は、実施形態3に係る建材用ネットの製造方法における工程図である。図8は、網基材準備工程を説明するために示す図である。図9は、ナノ繊維層形成工程を説明するために示す図である。
[Third Embodiment]
7A to 7C are process diagrams in the method for manufacturing a building material net according to the third embodiment. FIG. 8: is a figure shown in order to demonstrate a net base material preparation process. FIG. 9: is a figure shown in order to demonstrate a nanofiber layer formation process.
 実施形態3に係る建材用ネットの製造方法は、図7に示すように、基本的には実施形態2に係る建材用ネットの製造方法と同様の工程を含むが、網基材準備工程S21で準備する網基材として、図8に示すように、経糸3と緯糸4との交点5が溶着していない網基材2aを準備する。そして、ナノ繊維層形成工程S22の後に実施する熱処理工程S23が、網基材2aとナノ繊維層6との付着力を高くするのみならず経糸3と緯糸4との交点5を溶着する。 As shown in FIG. 7, the method for manufacturing the building material net according to the third embodiment basically includes the same steps as the method for manufacturing the building material net according to the second embodiment, but in the net base material preparation step S21. As a net base material to be prepared, as shown in FIG. 8, a net base material 2a in which the intersection 5 of the warp 3 and the weft 4 is not welded is prepared. Then, the heat treatment step S23 carried out after the nanofiber layer forming step S22 not only increases the adhesive force between the net base material 2a and the nanofiber layer 6, but also welds the intersection 5 of the warp 3 and the weft 4.
 実施形態3に係る建材用ネットの製造方法によれば、エレクトロスピニング時に溶媒成分が網糸の表面に付着した後に揮発する過程でナノ繊維が収縮し網糸としっかり結合するため、接着剤を用いることなく網基材にナノ繊維層を付着させることができ、本発明の建材用ネットを製造するのに好適な建材用ネットの製造方法となる。また、1回の熱処理工程で、経糸と緯糸との交点を溶着するとともに網基材とナノ繊維層との付着力を高くすることができるため、製造コストの安価な建材用ネットの製造方法となる。 According to the method for manufacturing a net for building materials according to the third embodiment, an adhesive is used because the nanofibers shrink and firmly bond with the net yarn in the process of volatilizing after the solvent component adheres to the surface of the net yarn during electrospinning. The nanofiber layer can be attached to the net base material without any need, which is a method for producing a building material net suitable for producing the building material net of the present invention. In addition, since the intersection of the warp and the weft can be welded and the adhesive force between the net base material and the nanofiber layer can be increased in one heat treatment step, it is possible to manufacture a net for building materials at a low manufacturing cost. Become.
[実施例]
 図10は、実施例で用いる各試料(試料1~12)の諸元を示す図表である。図11は、試料1~4及び9の要部拡大平面図である。 図12は、花粉捕集性試験を説明するために示す図である。図13は、各試料についての試験結果を示す図表である。
[Example]
FIG. 10 is a chart showing the specifications of each sample (Samples 1 to 12) used in the examples. FIG. 11 is an enlarged plan view of essential parts of Samples 1 to 4 and 9. FIG. 12: is a figure shown in order to demonstrate a pollen collection property test. FIG. 13 is a chart showing the test results for each sample.
(1)試料の調製
(1-1)試料1
 繊維径が0.15mmの黒色のポリプロピレン(PP)/共重合PP(芯鞘構造)を有する糸からなる24×36メッシュの経糸と緯糸の交点が融着している網を網基材として、エレクトロスピニング法により繊維径800nmのポリカーボネート系ポリウレタンナノファイバー(ナノ繊維)を目付量0.05g/mで網基材へ直接紡糸を行うことにより建材用ネットを作製した。ポリプロピレン(PP)/共重合PP(芯鞘構造)を有する糸は溶融紡糸法により作製した。24×36メッシュになるよう織機にて網を作製後、熱処理により経糸と緯糸の交点を融着した。交点を融着した網基材をエレクトロスピニング装置の金属コレクタにテープで貼りつけ紡糸を行った。エレクトロスピニングに用いるポリマー溶液は、ポリカーボネート系ポリウレタン樹脂をジメチルアセトアミド(DMAc)に15wt%の濃度になるように溶解して作製した(図11(a)参照。)。試料1は実施例(実施例1)である。
(1) Preparation of sample (1-1) Sample 1
A net having a 24×36 mesh warp and a weft intersecting at a fusion point made of a thread having a black polypropylene (PP)/copolymerized PP (core-sheath structure) having a fiber diameter of 0.15 mm is used as a net base material. A building material net was produced by directly spinning a polycarbonate-based polyurethane nanofiber (nanofiber) having a fiber diameter of 800 nm at a basis weight of 0.05 g/m 2 onto a net base material by an electrospinning method. A yarn having polypropylene (PP)/copolymerized PP (core-sheath structure) was produced by a melt spinning method. A net was prepared by a loom so as to have a size of 24×36 mesh, and the intersections of the warp and the weft were fused by heat treatment. The mesh base material having the fused intersections was taped to the metal collector of the electrospinning apparatus and spun. The polymer solution used for electrospinning was prepared by dissolving a polycarbonate-based polyurethane resin in dimethylacetamide (DMAc) to a concentration of 15 wt% (see FIG. 11A). Sample 1 is an example (Example 1).
(1-2)試料2
 目付量0.10g/mで網基材へ直接紡糸を行ったこと以外は試料1の場合と同様にして試料2を作製した(図11(b)参照。)。試料2は実施例(実施例2)である。
(1-2) Sample 2
Sample 2 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.10 g/m 2 (see FIG. 11( b )). Sample 2 is an example (Example 2).
(1-3)試料3
 目付量0.15g/mで網基材へ直接紡糸を行ったこと以外は試料1の場合と同様にして試料3を作製した(図11(c)参照。)。試料3は実施例(実施例3)である。
(1-3) Sample 3
Sample 3 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.15 g/m 2 (see FIG. 11( c )). Sample 3 is an example (Example 3).
(1-4)試料4
 目付量0.20g/mで網基材へ直接紡糸を行ったこと以外は試料1の場合と同様にして試料4を作製した(図11(d)参照。)。試料4は実施例(実施例4)である。
(1-4) Sample 4
Sample 4 was prepared in the same manner as in sample 1 except that the net weight was directly spun at a basis weight of 0.20 g/m 2 (see FIG. 11( d )). Sample 4 is an example (Example 4).
(1-5)試料5
 メッシュ数が24×33メッシュの網基材を用いたこと以外は試料4の場合と同様にして試料5を作製した。試料5は実施例(実施例5)である。
(1-5) Sample 5
Sample 5 was prepared in the same manner as in Sample 4, except that the net base material having a mesh number of 24×33 mesh was used. Sample 5 is an example (Example 5).
(1-6)試料6
 エレクトロスピニング法によりナノ繊維層を形成した後140℃の熱カレンダ加工による熱処理を行ったこと以外は試料4の場合と同様にして試料6を作製した。試料6は実施例(実施例6)である。
(1-6) Sample 6
Sample 6 was prepared in the same manner as Sample 4 except that the nanofiber layer was formed by the electrospinning method and then heat treatment was performed by thermal calendering at 140°C. Sample 6 is an example (Example 6).
(1-7)試料7
 網基材として、経糸と緯糸との交点が溶着していない網基材を用いたこと以外は試料6の場合と同様にして試料7を作製した。試料7は実施例(実施例7)である。
(1-7) Sample 7
Sample 7 was prepared in the same manner as in Sample 6 except that the mesh base material in which the intersections of the warp and the weft were not welded was used as the mesh base material. Sample 7 is an example (Example 7).
(1-8)試料8
 網基材として、メッシュ数が24×24メッシュのものを用いたこと以外は試料4の場合と同様にして試料8を作製した。試料8は比較例(比較例1)である。
(1-8) Sample 8
Sample 8 was prepared in the same manner as in Sample 4, except that the mesh base material used had a mesh number of 24×24 mesh. Sample 8 is a comparative example (Comparative Example 1).
(1-9)試料9
 メッシュ数が24×36メッシュの網基材にナノ繊維層を付着させないものを試料9とした(図11(e)参照。)。試料9は比較例(比較例2)である。
(1-9) Sample 9
Sample 9 was one in which the nanofiber layer was not attached to the net base material having a mesh number of 24×36 mesh (see FIG. 11E). Sample 9 is a comparative example (Comparative Example 2).
(1-10)試料10
 市販の網戸に用いられている網基材(ブラックネット、ナノ繊維層は付着していない。)をそのまま試料10とした。試料10は比較例(比較例3)である。
(1-10) Sample 10
A mesh base material (black net, no nanofiber layer is attached) used for a commercially available screen door was used as Sample 10 as it was. Sample 10 is a comparative example (Comparative Example 3).
(1-11)試料11
 市販の網戸に用いられている網基材(住江織物株式会社のクロスキャビン、クロスキャビンは帝人フロンティア株式会社の登録商標。)をそのまま試料11とした。試料11は比較例(比較例4)である。
(1-11) Sample 11
A net base material (a cross-cabin manufactured by Sumie Textile Co., Ltd., the cross-cabin is a registered trademark of Teijin Frontier Co., Ltd.) used for a commercially available screen door was used as Sample 11. Sample 11 is a comparative example (Comparative Example 4).
(1-12)試料12
 メルトブロー法により作製されたポリプロピレン不織布(花粉捕集効率99%のもの)を試料12とした。試料12は比較例(比較例5)である。
(1-12) Sample 12
Sample 12 was a polypropylene non-woven fabric (having a pollen collection efficiency of 99%) produced by the melt blow method. Sample 12 is a comparative example (Comparative Example 5).
(2)性能試験及びその結果
 上記の各試料を以下の性能試験に供した。
(2) Performance test and its results Each of the above samples was subjected to the following performance test.
(2-1)花粉捕集性試験
 試料1~4及び9に対して以下の試験方法により花粉捕集性試験を行った(図12参照。)。
(2-1) Pollen Collecting Test A pollen collecting test was performed on Samples 1 to 4 and 9 by the following test method (see FIG. 12).
<試験方法>
 試験系を一定の空気流量で吸引した状態で、整粒装置により整粒された試験粉体(花粉代替粒子)をフィルタ部の上流側から一定の速度で流す。フィルタ部に捕捉された粒子質量とフィルタ部を通過した粒子質量を測定し、下記式(1)から花粉粒子の捕集(ろ過)効率を算出する。そして、この花粉粒子の捕集効率が、80%以上の場合に「◎:花粉捕集性がとても高い」、50%以上80%未満の場合に「○:花粉捕集性が高い」、50%未満の場合に「×:花粉捕集性が低い」と評価する。

 花粉粒子の捕集効率=B/A ・・ 式(1)
 
 但し、Aは「フィルタ部に捕捉された粒子の質量(mg)+フィルタ部を通過した粒子の質量(mg)」であり、Bは「フィルタ部に捕捉された粒子の質量(mg)」である。
<Test method>
With the test system sucked at a constant air flow rate, the test powder (pollen substitute particles) that has been sized by the sizing device is caused to flow from the upstream side of the filter section at a constant speed. The mass of particles captured by the filter part and the mass of particles passing through the filter part are measured, and the collection (filtration) efficiency of pollen particles is calculated from the following formula (1). When the collection efficiency of the pollen particles is 80% or more, "◎: pollen collection property is very high", and when 50% or more and less than 80%, "○: pollen collection property is high", 50. When it is less than %, it is evaluated as “×: Poor pollen collecting property”.

Pollen particle collection efficiency = B/A ··· Equation (1)

However, A is “mass of particles captured by the filter unit (mg)+mass of particles that have passed through the filter unit (mg)”, and B is “mass of particles captured by the filter unit (mg)”. is there.
 試験条件は、以下の通り。
・試験粉体(花粉粒子):石松子(APPIE標準粉体)
・試験流量:28.3L/min
・試験粉体量:75±5mg
・試験粉体速度:20±5mg/min
・試験室の温湿度:20±5℃、50±10%RH
[一般社団法人 日本衛生材料工業連合会 全国マスク工業会 規定試験方法 準用]
The test conditions are as follows.
・Test powder (pollen particles): Ishimatsu (APPIE standard powder)
・Test flow rate: 28.3 L/min
・Test powder amount: 75±5mg
・Test powder speed: 20±5mg/min
・Temperature and humidity of test room: 20±5℃, 50±10%RH
[General Incorporated Association of Japan Sanitary Materials Industry Association, National Mask Industry Association, prescribed test method]
<試験結果>
 上記の花粉捕集性試験の結果、花粉粒子の捕集効率は、試料1については59.7%(評価結果○)であり、試料2については82.0%(評価結果◎)であり、試料3については91.0%(評価結果◎)であり、試料4については95.2%(評価結果◎)であり、試料9については25.4%(評価結果×)であった。なお、試料10については、元来花粉捕集性能が低いことが分かっていたため、試験は行っていないが、評価結果を「×」とした。また、試料11及び試料12については、元来花粉捕集性能が高いことが分かっていたため、試験は行っていないが評価結果を「◎」とした。この結果を図13に示す。
<Test results>
As a result of the pollen collecting test, the pollen particle collecting efficiency was 59.7% (evaluation result ○) for Sample 1 and 82.0% (evaluation result ◎) for Sample 2, Sample 3 was 91.0% (evaluation result ⊚), sample 4 was 95.2% (evaluation result ⊚), and sample 9 was 25.4% (evaluation result ×). The sample 10 was not tested because the pollen collection performance was originally known to be low, but the evaluation result was “x”. Moreover, since it was originally known that the sample 11 and the sample 12 had high pollen collection performance, the test was not conducted, but the evaluation result was set to “⊚”. The result is shown in FIG.
(2-2)通気性試験
 試料1~4、9及び10に対して、以下の試験方法により通気性試験を行った。
(2-2) Breathability test Samples 1 to 4, 9 and 10 were subjected to a breathability test by the following test method.
<試験方法>
 JIS L 1096(一般織物生地試験)A法 フラジール形法に準拠した方法で通気性試験を行った。その際の圧力差は12Pa(小枝が動く程度の風(3.4~5.4m/s))とした。
<Test method>
JIS L 1096 (General woven fabric test) Method A A breathability test was carried out according to the Frazier method. The pressure difference at that time was 12 Pa (wind (3.4 to 5.4 m/s) enough to move the twigs).
 試験手順は、以下の通り。
1.約200mm×200mmの試験片を5枚調整してフラジール形試験機に取り付ける。
2.圧力差12Paの場合に通過する空気量(cm3/cm2・s)を求める。
3.そして、この空気量が、試料10について得られる空気量の50%以上の場合に「◎:通気性がとても高い」、30%以上50%未満の場合に「○:通気性が高い」、30%未満の場合に「×:通気性が低い」と評価する。
The test procedure is as follows.
1. Five test pieces of about 200 mm×200 mm are adjusted and attached to a Frazier type tester.
2. When the pressure difference is 12 Pa, the amount of air passing through (cm3/cm2·s) is calculated.
3. Then, when this air amount is 50% or more of the air amount obtained for the sample 10, "∘: very high air permeability", and when 30% or more and less than 50%, "○: high air permeability", 30 When it is less than %, it is evaluated as "x: low air permeability".
<試験結果>
 上記の通気性試験の結果、圧力差12Paの場合に通過する空気量は、試料1については388.2cc/cm/sec(評価結果◎)であり、試料2については277.4cc/cm/sec(評価結果◎)であり、試料3については183.4cc/cm/sec(評価結果◎)であり、試料4については153.6cc/cm/sec(評価結果○)であり、試料9については523.6cc/cm/sec(評価結果◎)であり、試料10については472.9cc/cm/sec(評価結果◎)であった。なお、試料11及び試料12については、通気性が低いことが分かっていたため、試験は行っていないが評価結果を「×」とした。この結果を図13に示す。
<Test results>
As a result of the above air permeability test, the amount of air passing through when the pressure difference is 12 Pa is 388.2 cc / cm / sec (evaluation result ◎) for sample 1 and 277.4 cc / cm / sec for sample 2. (Evaluation result ◎), 183.4 cc / cm / sec (evaluation result ◎) for sample 3, 153.6 cc / cm / sec (evaluation result ◯) for sample 4, and sample 9 523.6 cc/cm/sec (evaluation result ⊚), and sample 10 was 472.9 cc/cm/sec (evaluation result ⊚). In addition, since it was known that the sample 11 and the sample 12 had low air permeability, the test was not conducted, but the evaluation result was set to "x". The result is shown in FIG.
(2-3)眺望性試験
 試料1~4及び9~11に対して、以下の試験方法により眺望性試験を行った。
(2-3) Viewability test Samples 1 to 4 and 9 to 11 were subjected to a viewability test by the following test method.
<試験方法>
 15cm角に切り出した試験片を窓ガラスに対してテープで貼りつけて、窓から2m離れた室内から晴天時の昼間に室外を眺めた際の試験片エリアの眺望性を4段階で評価した。
 ×:室外の様子がわかりにくい
 △:室外の様子がぼやけている
 ○:室外の様子がわかる
 ◎:室外の様子がよくわかる
<Test method>
A test piece cut into a 15 cm square was taped to the window glass, and the viewability of the test piece area when the outdoor was viewed in the daytime in fine weather from a room 2 m away from the window was evaluated on a 4-point scale.
×: It is difficult to understand the outdoor situation △: The outdoor situation is blurred ○: The outdoor situation is visible ◎: The outdoor situation is well understood
<試験結果>
 上記の眺望性試験の結果、眺望性は、試料1については「◎」であり、試料2については「◎」であり、試料3については「◎」であり、試料4については「○)であり、試料9については「◎」であり、試料10については「◎」であり、試料11については「△」であり、試料12については「×」であった。この結果を図13に示す。
<Test results>
As a result of the above-mentioned viewability test, the viewability is “◎” for sample 1, “◎” for sample 2, “◎” for sample 3, and “○” for sample 4. Yes, Sample 9 was “A”, Sample 10 was “A”, Sample 11 was “A”, and Sample 12 was “X”. The result is shown in FIG.
(2-4)ナノ繊維層の裏抜け現象の有無確認試験
 試料4、7及び8に対して、以下の試験方法により、「ナノ繊維層の裏抜け現象の有無確認試験」を行った。
(2-4) Test for Confirming Presence or Absence of Strikethrough in Nanofiber Layer “ Samples 4, 7 and 8 were subjected to “test for confirming presence or absence of strikethrough in nanofiber layer” by the following test method.
<試験方法>
 ナノ繊維層の裏抜け現象の有無確認試験」は、具体的には、網基材を金属コレクタに対してテープで貼りつけ、エレクトロスピニング法により網基材に対してナノ繊維を吹き付けた後、金属コレクタから網基材を取り外した際に、ナノ繊維が網基材のメッシュを抜けて金属コレクタへ付着しているか否かを確認することにより行った。その結果、ナノ繊維が金属コレクタに付着していない場合に「裏抜けしていないとして○」の評価を与え、ナノ繊維が金属コレクタに付着している場合に「裏抜けしているとして×」の評価を与えた。
<Test method>
The test to confirm the presence or absence of the strike-through phenomenon of the nanofiber layer is specifically, affixing the mesh base material to the metal collector with a tape and spraying the nanofibers on the mesh base material by the electrospinning method, When the mesh base material was removed from the metal collector, it was confirmed whether the nanofibers passed through the mesh of the mesh base material and adhered to the metal collector. As a result, when the nanofibers were not attached to the metal collector, a rating of “no strike-through was given” was given, and when the nanofibers were attached to the metal collector, “no strike-through was given x”. Gave a rating.
<試験結果>
 上記の試験の結果、試料4及び7については「○」であり、試料8については「×」であった。この結果を図13に示す。
<Test results>
As a result of the above test, the samples 4 and 7 were “◯”, and the sample 8 was “x”. The result is shown in FIG.
(2-5)網基材に対するナノ繊維層の付着性試験
 試料4、7及び8に対して、以下の試験方法により、「網基材に対するナノ繊維の付着性試験」を行った。
(2-5) Adhesion Test of Nanofiber Layer to Net Base Material Samples 4, 7 and 8 were subjected to “adhesion test of nanofiber to net base material” by the following test method.
<試験方法>
 網基材に対するナノ繊維の付着性試験」は、掃除機による吸引により行った。掃除機はIC-C100-W サイクロンクリーナー コンパクト、アイリスオーヤマ製を用いた。試験片は15cm角にカットした。金属板へ試験片を固定し、掃除機のフロアヘッドを外して、パイプにて吸引した。パイプの吸引口は試験片から10mm離して固定した。網基材からナノ繊維層が剥離しているか否かを確認した。網基材からナノ繊維層が剥離していない場合に「付着性が高いとして○」の評価を与え、網基材からナノ繊維層が剥離している場合に「付着性が低いとして×」の評価を与えた。
<Test method>
The “adhesion test of nanofibers on the mesh substrate” was performed by suction with a vacuum cleaner. The vacuum cleaner used was IC-C100-W Cyclone Cleaner Compact, made by Iris Ohyama. The test piece was cut into a 15 cm square. The test piece was fixed to a metal plate, the floor head of the vacuum cleaner was removed, and suction was performed with a pipe. The suction port of the pipe was fixed 10 mm away from the test piece. It was confirmed whether the nanofiber layer was peeled from the mesh base material. When the nanofiber layer is not peeled from the net base material, a rating of “Excellent adhesiveness is given” is given, and when the nanofiber layer is peeled from the net base material, “As low adhesiveness is x” is given. Gave a rating.
<試験結果>
 上記の試験の結果、試料4及び7については「○」であり、試料8については「×」であった。この結果を図13に示す。
<Test results>
As a result of the above test, the samples 4 and 7 were “◯”, and the sample 8 was “x”. The result is shown in FIG.
(3)総合評価
 この結果、各試料のうち試料1~7(請求項1の範囲に入る建材用ネット、実施例1~7)は、花粉捕集性、通気性、眺望性、裏抜けしない性能及び付着性のうちすべての性能に優れた建材用ネットであることが分かった。
(3) Comprehensive evaluation As a result, among the samples, Samples 1 to 7 (building material nets falling within the scope of claim 1 and Examples 1 to 7) have pollen trapping properties, air permeability, viewability, and strikethrough. It was found that it is a net for building materials, which is excellent in all of the performance and the adhesiveness.
 なお、試料8においては、ナノ繊維の裏抜け現象が認められ、網基材に対するナノ繊維の付着性が低いことが認められたが、試料8と同じ網基材を用いた場合であっても、ナノ繊維層を試料8のものよりも繊維径の太いナノ繊維(例えば3000μm)からなるナノ繊維層とすることによって、ナノ繊維の裏抜け現象が無く、かつ、網基材に対するナノ繊維の付着性が高い建材用ネットを製造可能であることが確認されている。 In Sample 8, the strike-through phenomenon of nanofibers was observed, and it was confirmed that the adhesion of nanofibers to the net base material was low, but even when the same net base material as Sample 8 was used. By forming the nanofiber layer into a nanofiber layer made of nanofibers (for example, 3000 μm) having a fiber diameter larger than that of sample 8, there is no strike-through phenomenon of the nanofibers, and the nanofibers adhere to the net substrate. It has been confirmed that it is possible to manufacture a net for building materials with high properties.
 以上、本発明の建材用ネット及びその製造方法を上記の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲において実施することが可能であり、例えば、以下のような変形も可能である。 The net for building materials of the present invention and the method for producing the same have been described above based on the above-described embodiment, but the present invention is not limited to this, and can be carried out without departing from the gist thereof. For example, the following modifications are also possible.
(1)上記各実施形態において示した各要素の寸法、形状、材料は例示であり、本発明はこれに限定されるものではない。本発明の趣旨を逸脱しない範囲に於いて任意に決定することができる。 (1) The dimensions, shapes, and materials of each element shown in each of the above embodiments are examples, and the present invention is not limited thereto. It can be arbitrarily determined without departing from the spirit of the present invention.
(2)上記各実施形態においては、ナノ繊維層として、特に着色することのない通常のナノ繊維層を用いたが、本発明はこれに限定されるものではない。例えば、ナノ繊維として、黒色のナノ繊維を用いることができる。そして、ナノ繊維として、黒色のナノ繊維を用いた場合には、ナノ繊維層が目立たなくなり、より一層眺望性に優れた建材用ネットとなる。この場合、黒色のナノ繊維を作製する方法としては、ナノ繊維を作製するためのナノ繊維顔料含有溶液に黒色顔料を添加する方法、ナノ繊維を黒色溶液で染色する方法、ナノ繊維を構成するモノマーに黒色発色基を導入する方法などを好適に用いることができる。 (2) In each of the above embodiments, a normal nanofiber layer that is not particularly colored is used as the nanofiber layer, but the present invention is not limited to this. For example, black nanofibers can be used as the nanofibers. When black nanofibers are used as the nanofibers, the nanofiber layer becomes inconspicuous, and the net becomes a building material net having even better visibility. In this case, as a method for producing black nanofibers, a method of adding a black pigment to a nanofiber pigment-containing solution for producing nanofibers, a method of dyeing nanofibers with a black solution, and a monomer constituting the nanofibers. A method of introducing a black color-forming group can be preferably used.
(3)上記各実施形態においては、経糸及び緯糸として、所定の融点を有する第1樹脂製の芯部材の周囲に、第1樹脂よりも低い融点を有する第2樹脂製の鞘部材が被覆された芯鞘構造を有するものを用いたが、本発明はこれに限定されるものではない。例えば、経糸及び緯糸として、ガラス繊維製の芯部材の周囲に樹脂製の鞘部材が被覆された芯鞘構造を有するものを用いることもできる。 (3) In each of the above embodiments, as the warp and weft, a sheath member made of a second resin having a melting point lower than that of the first resin is coated around a core member made of the first resin having a predetermined melting point. However, the present invention is not limited to this. For example, as the warp and weft, those having a core-sheath structure in which a resin-made sheath member is coated around a glass fiber core member can also be used.
(4)上記実施例においては、網基材として、経方向及び緯方向のメッシュ数が異なる網基材(24メッシュ×36メッシュ、24メッシュ×33メッシュ)を用いた。これは、メッシュ数の大きい(メッシュが細かい)側にて網基材に対するナノ繊維の付着性を確保しつつ、メッシュ数の小さい(メッシュが粗い)側にて通気性及び眺望性を確保する趣旨である。しかしながら、本発明はこれに限定されるものではない。例えば、網基材として、経方向及び緯方向のメッシュ数が同じ網基材(例えば、30メッシュ×30メッシュのもの、33メッシュ×33メッシュのもの、36メッシュ×36メッシュのものなど)を用いることもできる。このようにすることによっても、網基材に対するナノ繊維の付着性、通気性及び眺望性を確保することができる。 (4) In the above examples, as the net base material, net base materials (24 mesh×36 mesh, 24 mesh×33 mesh) having different mesh numbers in the warp direction and the weft direction were used. The purpose of this is to ensure the adhesion of nanofibers to the mesh substrate on the side with a large number of meshes (fine mesh) and to ensure breathability and viewability on the side with a small number of meshes (coarse mesh). Is. However, the present invention is not limited to this. For example, a mesh base material having the same number of meshes in the warp and weft directions (for example, 30 mesh×30 mesh, 33 mesh×33 mesh, 36 mesh×36 mesh, etc.) is used. You can also This also makes it possible to secure the adhesiveness, air permeability and viewability of the nanofibers to the net base material.
(5)本発明においては、経方向及び緯方向のメッシュ数のうちどちらを大きく(メッシュの目を粗く)してもよい。 (5) In the present invention, whichever of the number of meshes in the warp direction and the weft direction may be larger (mesh mesh is coarser).
(6)上記実施形態においては、本発明の建材用ネットが花粉捕集性に優れることを説明したが、本発明の建材用ネットは、火山灰捕集性にも優れるものである。また、ナノ繊維層の目付量を増加させることなどにより、塵や埃、または、PM2.5等の環境汚染物質に対する捕集性の高い建材用ネットとすることもできる。 (6) In the above embodiment, the building material net of the present invention has been described as being excellent in pollen trapping ability, but the building material net of the present invention is also excellent in volcanic ash trapping ability. In addition, by increasing the basis weight of the nanofiber layer, it is possible to make a net for building materials having a high ability to collect dust and dirt or environmental pollutants such as PM2.5.
(7)上記各実施形態においては、網戸の網に用いる建材用ネットを用いて本発明の建材用ネットを説明したが、本発明はこれに限定されるものではない。例えば、本発明の建材用ネットは、通気口に用いることもできる。 (7) In each of the above embodiments, the building material net of the present invention has been described using the building material net used for the screen of the screen door, but the present invention is not limited to this. For example, the net for building material of the present invention can be used as a vent.
1…建材用ネット、2…網基材、3…経糸、4…緯糸、5…交点、6…ナノ繊維層、7…ナノ繊維、10,10a,10b…エレクトロスピニング装置、11…タンク、12ポリマー溶液、13…バルブ、14…電界紡糸ノズル、15…金属コレクタ、16…引き出しロール、17…巻き取りロール、18,19…加熱装置 1 ... Building material net, 2 ... Net base material, 3 ... Warp, 4 ... Weft, 5 ... Intersection, 6 ... Nanofiber layer, 7 ... Nanofiber, 10,10a, 10b ... Electrospinning device, 11 ... Tank, 12 Polymer solution, 13 ... valve, 14 ... electrospinning nozzle, 15 ... metal collector, 16 ... drawer roll, 17 ... take-up roll, 18, 19 ... heating device

Claims (11)

  1.  経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着している網基材と、
     接着剤を介さずに前記網基材にナノ繊維が付着しているナノ繊維層とを備え、
     前記網基材は、当該網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有し、かつ、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にあり、
     前記ナノ繊維層は、前記ナノ繊維の平均繊維径が300nm~3000nmの範囲内にあり、かつ、目付量が0.05g/m~0.5g/mの範囲内にあることを特徴とする建材用ネット。
    A net base material composed of a warp (warp) and a weft (weft), in which an intersection of the warp and the weft is welded;
    A nanofiber layer in which nanofibers are attached to the net base material without an adhesive,
    The mesh base material has a mesh number of roughness such that the nano fiber does not strike through when the nano fiber is attached to the mesh base material, and the fiber diameter of the warp and the fiber of the weft. All the diameters are in the range of 0.10 mm to 0.30 mm,
    The nanofiber layer has a feature that the average fiber diameter of the nanofibers in the range of 300 nm ~ 3000 nm, and a basis weight is in the range of 0.05g / m 2 ~ 0.5g / m 2 Net for building materials.
  2.  前記網基材は、経方向及び緯方向のうちいずれについてもメッシュ数が24メッシュ~44メッシュの範囲内にあることを特徴とする請求項1に記載の建材用ネット。 The construction material net according to claim 1, wherein the mesh base material has a mesh number within a range of 24 mesh to 44 mesh in both the warp direction and the weft direction.
  3.  前記網基材は、方向及び緯方向のうち少なくとも一方についてはメッシュ数が28メッシュ以上であることを特徴とする請求項1又は2に記載の建材用ネット。 The construction material net according to claim 1 or 2, wherein the mesh base material has a mesh number of 28 mesh or more in at least one of a direction and a weft direction.
  4.  前記ナノ繊維は、難加水分解性樹脂からなることを特徴とする請求項1~3のいずれかに記載の建材用ネット。 The net for building materials according to any one of claims 1 to 3, wherein the nanofiber is made of a poorly hydrolyzable resin.
  5.  前記ナノ繊維は、ポリカーボネート系ポリウレタン樹脂又はポリエーテル系ポリウレタン樹脂からなることを特徴とする請求項1~3のいずれかに記載の建材用ネット。 The net for building materials according to any one of claims 1 to 3, wherein the nanofiber is made of a polycarbonate-based polyurethane resin or a polyether-based polyurethane resin.
  6.  前記ナノ繊維は、黒色のナノ繊維であることを特徴とする請求項1~5のいずれかに記載の建材用ネット。 The net for building materials according to any one of claims 1 to 5, wherein the nanofibers are black nanofibers.
  7.  前記経糸及び前記緯糸はいずれも、所定の融点を有する第1樹脂製の芯部材の周囲に、前記第1樹脂よりも低い融点を有する第2樹脂脂製の鞘部材が被覆された芯鞘構造を有するものであることを特徴とする請求項1~6のいずれかに記載の建材用ネット。 Both the warp and the weft have a core-sheath structure in which a core member made of a first resin having a predetermined melting point is coated with a sheath member made of a second resin fat having a melting point lower than that of the first resin. The building material net according to any one of claims 1 to 6, characterized in that
  8.  前記経糸及び前記緯糸はいずれも、ガラス繊維製の芯部材の周囲に樹脂製の鞘部材が被覆された芯鞘構造を有するものであることを特徴とする請求項1~6のいずれかに記載の建材用ネット。 The invention according to any one of claims 1 to 6, wherein both the warp and the weft have a core-sheath structure in which a resin-made sheath member is coated around a glass fiber core member. Net for building materials.
  9.  経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着している網基材であって、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある網基材を準備する網基材準備工程と、
     エレクトロスピニング法を用いて、前記網基材の一方の面に、平均繊維径が300nm~3000nmの範囲内にあるナノ繊維からなり、目付量が0.05g/m~0.5g/mの範囲内にあるナノ繊維層を形成するナノ繊維層形成工程とを含み、
     前記網基材準備工程においては、前記網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有する網基材を準備することを特徴とする建材用ネットの製造方法。
    A net base material composed of warp threads (warp threads) and weft threads (weft threads) in which the intersections of the warp threads and the weft threads are welded, and the fiber diameters of the warp threads and the weft threads are both 0.10 mm or more. A net base material preparing step of preparing a net base material within a range of 0.30 mm,
    Using electrospinning method, on one surface of the network substrate, the average fiber diameter is from nanofibers in the range of 300 nm ~ 3000 nm, weight per unit area 0.05g / m 2 ~ 0.5g / m 2 A nanofiber layer forming step of forming a nanofiber layer within the range of
    In the mesh base material preparing step, when the nanofibers are attached to the mesh base material, a mesh base material having a mesh number of roughness such that the nanofibers do not strike through is prepared. Manufacturing method of net for building materials.
  10.  前記ナノ繊維層形成工程の後に、前記網基材と前記ナノ繊維層との付着力を高くするための熱処理工程をさらに含むことを特徴とする請求項8に記載の建材用ネットの製造方法。 The method for producing a net for building materials according to claim 8, further comprising a heat treatment step for increasing the adhesive force between the net base material and the nanofiber layer after the nanofiber layer forming step.
  11.  経糸(縦糸)と緯糸(横糸)からなり、前記経糸と前記緯糸との交点が溶着していない網基材であって、前記経糸の繊維径及び前記緯糸の繊維径がいずれも0.10mm~0.30mmの範囲内にある網基材を準備する網基材準備工程と、
     エレクトロスピニング法を用いて、前記網基材の一方の面に、平均繊維径が300nm~3000nmの範囲内にあるナノ繊維からなり、目付量が0.05g/m~0.5g/mの範囲内にあるナノ繊維層を形成するナノ繊維層形成工程と、
     前記経糸と前記緯糸との前記交点を溶着するとともに前記網基材と前記ナノ繊維層との付着力を高くするための熱処理工程とを含み、
     前記網基材準備工程においては、前記網基材に前記ナノ繊維を付着させる際に前記ナノ繊維が裏抜けすることのない粗さのメッシュ数を有する網基材を準備することを特徴とする建材用ネットの製造方法。
    A net base material composed of warp threads (warp threads) and weft threads (weft threads) in which the intersections of the warp threads and the weft threads are not welded, and the fiber diameters of the warp threads and the weft threads are both 0.10 mm or more. A net base material preparing step of preparing a net base material within a range of 0.30 mm,
    Using electrospinning method, on one surface of the network substrate, the average fiber diameter is from nanofibers in the range of 300 nm ~ 3000 nm, weight per unit area 0.05g / m 2 ~ 0.5g / m 2 A nanofiber layer forming step of forming a nanofiber layer within the range of
    A heat treatment step for increasing the adhesive force between the mesh base material and the nanofiber layer while welding the intersection points of the warp threads and the weft threads,
    In the mesh base material preparing step, when the nanofibers are attached to the mesh base material, a mesh base material having a mesh number of roughness such that the nanofibers do not strike through is prepared. Manufacturing method of net for building materials.
PCT/JP2020/005460 2019-03-01 2020-02-13 Netting for building material use and manufacturing method for same WO2020179390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080002851.3A CN112154252A (en) 2019-03-01 2020-02-13 Net for building material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037329A JP7228187B2 (en) 2019-03-01 2019-03-01 Building material net and its manufacturing method
JP2019-037329 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179390A1 true WO2020179390A1 (en) 2020-09-10

Family

ID=72280074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005460 WO2020179390A1 (en) 2019-03-01 2020-02-13 Netting for building material use and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP7228187B2 (en)
CN (1) CN112154252A (en)
WO (1) WO2020179390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717702B (en) * 2022-03-30 2023-05-09 南通纺织丝绸产业技术研究院 Composite yarn and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509056A (en) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート Particle filter system incorporating nanofibers
JP2012132288A (en) * 2010-12-24 2012-07-12 Ykk Ap株式会社 Net, roll window screen, and fitting
JP2014047474A (en) * 2012-08-29 2014-03-17 Tamaru Seisakusho:Kk Nanofiber laminated thin film shield member for building material, and manufacturing apparatus for the same
JP2018501090A (en) * 2014-12-12 2018-01-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Air filter for high efficiency PM2.5 capture
CN109224695A (en) * 2018-10-18 2019-01-18 青岛诺康环保科技有限公司 A kind of anti-haze method of used in room with dust-proof function based on Buddha's warrior attendant grenadine window

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509056A (en) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート Particle filter system incorporating nanofibers
JP2012132288A (en) * 2010-12-24 2012-07-12 Ykk Ap株式会社 Net, roll window screen, and fitting
JP2014047474A (en) * 2012-08-29 2014-03-17 Tamaru Seisakusho:Kk Nanofiber laminated thin film shield member for building material, and manufacturing apparatus for the same
JP2018501090A (en) * 2014-12-12 2018-01-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Air filter for high efficiency PM2.5 capture
CN109224695A (en) * 2018-10-18 2019-01-18 青岛诺康环保科技有限公司 A kind of anti-haze method of used in room with dust-proof function based on Buddha's warrior attendant grenadine window

Also Published As

Publication number Publication date
CN112154252A (en) 2020-12-29
JP7228187B2 (en) 2023-02-24
JP2020139360A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
KR102313590B1 (en) Dustproof net for fine dust filtering
JP4783707B2 (en) Mask filter
RU2465806C2 (en) Filter bag for vacuum cleaner
US9186608B2 (en) Process for forming a high efficiency nanofiber filter
JP6172924B2 (en) Manufacturing method of nonwoven fabric substrate for air filter or mask
US20210178304A1 (en) Electret-containing filter media
KR101747322B1 (en) Membrane of Natural Ventilation Type and System Window Using the Same
US20220054961A1 (en) Electret-containing filter media
JP2016535180A (en) Melt spinning process, melt spun nonwoven fiber web, and related filter media
TWI668032B (en) Sanitary mask
JP7077575B2 (en) Mixed non-woven fabrics, laminates, filter media for filters, and methods for manufacturing these
CN102630182A (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
JP6068874B2 (en) Thin film shielding member for building material laminated with nanofiber, and manufacturing method thereof
CN101854818B (en) Contamination control garments
JP6099997B2 (en) Thin film deodorization shielding member for building materials laminated with nanofiber, and manufacturing apparatus thereof
JP2018172806A (en) Face mask
US20220176283A1 (en) Composite structure, method of manufacturing the same, and filter medium containing the composite structure
JP2015183327A (en) Melt-blown nonwoven fabric and composite filter medium
WO2020179390A1 (en) Netting for building material use and manufacturing method for same
JPH08120552A (en) Conjugated fiber nonwoven fabric
JP2017113670A (en) Filter medium for air filter and air filter
JP2014151299A (en) Filter material for filter and air filter
CN109109422B (en) Durable anti-haze gauze, production device and production method thereof
KR20170068423A (en) Membrane of Natural Ventilation Type and System Window Using the Same
JP4737039B2 (en) Filter nonwoven fabric for air intake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765691

Country of ref document: EP

Kind code of ref document: A1