[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020179136A1 - Light reflex measurement device, light reflex measurement method, and light reflex measurement program - Google Patents

Light reflex measurement device, light reflex measurement method, and light reflex measurement program Download PDF

Info

Publication number
WO2020179136A1
WO2020179136A1 PCT/JP2019/044656 JP2019044656W WO2020179136A1 WO 2020179136 A1 WO2020179136 A1 WO 2020179136A1 JP 2019044656 W JP2019044656 W JP 2019044656W WO 2020179136 A1 WO2020179136 A1 WO 2020179136A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
subject
pupil
light source
line
Prior art date
Application number
PCT/JP2019/044656
Other languages
French (fr)
Japanese (ja)
Inventor
林 孝浩
美玖 小村田
齋藤 敦
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2020179136A1 publication Critical patent/WO2020179136A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils

Definitions

  • the present disclosure relates to a light reflex measuring device, a light reflex measuring method, and a light reflex measuring program.
  • the light reflex measuring device described in Patent Document 1 is in the form of irradiating the pupil with light from different directions so that the light intensity is substantially uniform.
  • the subject's line of sight was constantly moving, and the pupil diameter could not be detected accurately.
  • the present disclosure has been made in view of the above, and an object thereof is to provide a light reflection measurement device, a light reflection measurement method, and a light reflection measurement program capable of accurately detecting a pupil diameter in light reflection. To do.
  • the light reflection measurement device includes a light source that emits light when a predetermined condition is satisfied, a pupil image acquisition device that acquires an image of the pupil of the subject, and a line-of-sight detection that detects the line of sight of the subject.
  • the visual line detection unit emits light from the light source when it is detected that the visual line of the subject is directed to the effective area, and the subject based on the image acquired by the pupil image acquisition device.
  • a control unit for measuring the pupil diameter is a control unit for measuring the pupil diameter.
  • the light reflection measurement method includes detecting a line of sight of a subject, emitting light from a light source when it is detected that the line of sight of the subject is directed to an effective area, and Acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
  • the light reflection measurement program is a process of detecting the line of sight of the subject, a process of emitting light from a light source when it is detected that the line of sight of the subject is directed to the effective area, and the subject A computer is made to perform the process of acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
  • the pupil diameter in light reflection can be accurately detected.
  • FIG. 1 is a diagram schematically showing an example of the light reflection measurement device according to the present embodiment.
  • FIG. 2 is a functional block diagram showing an example of the light reflection measurement device.
  • FIG. 3 is a diagram showing an example of a light emitting region of a light source.
  • FIG. 4 is a flowchart showing an example of the light reflection measurement method according to the present embodiment.
  • the direction parallel to the first axis of the predetermined surface is the X-axis direction
  • the direction parallel to the second axis of the predetermined surface orthogonal to the first axis is the Y-axis direction, and is orthogonal to each of the first axis and the second axis.
  • the direction parallel to the third axis is the Z-axis direction.
  • the predetermined plane includes an XY plane.
  • FIG. 1 is a diagram schematically showing an example of the light reflex measuring device 100 according to the present embodiment.
  • the light reflex measuring device 100 measures the light reflex in the pupil of the subject.
  • the light reflection measurement device 100 includes a pupil measurement device 10, an eyeball image acquisition device 20, a computer system (control unit) 30, an output device 40, an input device 50, and an input/output interface. And a device 60.
  • the pupil measurement device 10, the eyeball image acquisition device 20, the computer system 30, the output device 40, and the input device 50 perform data communication via the input/output interface device 60.
  • the pupil measuring device 10 and the eyeball image acquiring device 20 each have a drive circuit (not shown).
  • the pupil measurement device 10 includes a light source 11, a pupil image acquisition device 12, and an ambient light sensor 13.
  • the pupil measuring device 10 causes light reflection in the pupil of the subject and measures the pupil diameter of the subject.
  • the light source 11 emits light for causing light reflex in the pupil of the subject.
  • various light emitting devices such as an LED light can be used.
  • the light source 11 can emit pulsed light.
  • the pupil image acquisition device 12 photographs the pupil of the subject and acquires an image of the pupil.
  • various imaging devices such as a visible light camera and an infrared camera are used.
  • the ambient light sensor 13 detects the brightness around the light source 11. Examples of the ambient light sensor 13 include an illuminance sensor formed by using a semiconductor element and the like.
  • the eyeball image acquisition device 20 acquires image data of the left and right eyeballs EB of the subject, and transmits the acquired image data to the computer system 30.
  • the eyeball image acquisition device 20 includes a photographing device 21.
  • the imaging device 21 acquires image data by photographing the left and right eyeballs EB of the subject.
  • the imaging device 21 has various cameras according to the method of detecting the line of sight of the subject. For example, in the case of the method of detecting the line of sight based on the position of the subject's pupil and the position of the corneal reflection image, the imaging device 21 has an infrared camera and can transmit near-infrared light having a wavelength of 850 [nm], for example. It has an optical system and an image sensor capable of receiving near infrared light.
  • the photographing device 21 has a visible light camera.
  • the imaging device 21 outputs a frame synchronization signal.
  • the period of the frame synchronization signal can be, for example, 20 [msec], but is not limited to this.
  • the photographing device 21 can be configured as a stereo camera having, for example, a first camera 21A and a second camera 21B, but is not limited thereto.
  • the eyeball image acquisition device 20 has an illumination device 22 that illuminates the subject's eyeball EB.
  • the illumination device 22 includes an LED (light emitting diode) light source and can emit near infrared light having a wavelength of 850 [nm], for example.
  • the lighting device 22 may not be provided.
  • the lighting device 22 emits detection light so as to synchronize with the frame synchronization signal of the photographing device 21.
  • the lighting device 22 can be configured to include, for example, a first light source 22A and a second light source 22B, but is not limited to this.
  • the pupil image acquisition device 12 and the eyeball image acquisition device 20 may have a configuration in which one of them has the function of the other. In this case, the other configuration of the pupil image acquisition device 12 and the eyeball image acquisition device 20 can be omitted.
  • the computer system 30 comprehensively controls the operation of the light reflection measurement device 100.
  • the computer system 30 is the control unit in this embodiment. That is, the computer system 30 emits light from the light source 11 when the visual line detection unit 31 described later detects that the visual line of the subject is directed to the effective area, and an image acquired by the pupil image acquisition device 20 is displayed. It is a control unit that measures the pupil diameter of the subject based on the above.
  • the computer system 30 includes an arithmetic processing unit 30A and a storage device 30B.
  • the arithmetic processing device 30A includes a microprocessor such as a CPU (central processing unit).
  • the storage device 30B includes memory or storage such as ROM (read only memory) and RAM (random access memory).
  • the arithmetic processing unit 30A performs arithmetic processing according to the computer program 30C stored in the storage device 30B.
  • the output device 40 includes a display device such as a flat panel display.
  • the output device 40 may include a printing device.
  • the input device 50 is operated to generate input data.
  • the input device 50 includes a keyboard or mouse for a computer system.
  • the input device 50 may include a touch sensor provided on the display unit of the output device 40, which is a display device.
  • FIG. 2 is a functional block diagram showing an example of the light reflection measurement device 100.
  • the computer system 30 includes a line-of-sight detection unit 31, a region setting unit 32, a determination unit 33, a light source control unit 34, a measurement processing unit 35, and a storage unit 36.
  • the functions of the computer system 30 are exhibited by the arithmetic processing unit 30A and the storage device 30B (see FIG. 1).
  • the computer system 30 may be provided with some functions outside the light reflex measuring device 100.
  • the line-of-sight detection unit 31 detects the line of sight of the subject.
  • the line-of-sight detection unit 31 detects the line-of-sight vector of the subject defined by the three-dimensional global coordinate system based on the image data of the left and right eyeballs EB of the subject acquired by the eyeball image acquisition device 20.
  • the line-of-sight detection unit 31 detects the line-of-sight vector of the subject at a predetermined sampling cycle. This sampling cycle can be set to, for example, the cycle (for example, every 20 [msec]) of the frame synchronization signal output from the imaging device 21.
  • the area setting unit 32 sets an effective area in the area corresponding to the light emitting area of the light source 11.
  • the area setting unit 32 can set an effective area inside the light emitting area of the light source 11, for example.
  • the effective area is set as a surface in a three-dimensional global coordinate system, for example.
  • the effective area can be set, for example, in a circular plane shape centered on the reference position, but the shape is not limited to this shape, and may be a shape different from the circle or a shape different from the plane. Good.
  • the area setting unit 32 may set the effective area outside the light emitting area of the light source 11. In this case, the area setting unit 32 can set an effective area near the light source 11, for example.
  • the effective area may be near the light source.
  • the determination unit 33 determines whether or not the line-of-sight vector is directed to the effective area, and outputs the determination data. That is, the determination unit 33 determines whether or not the line-of-sight vector intersects the plane defined as the effective area. The determination unit 33 determines whether or not the line-of-sight vector is directed to the effective area at each prescribed determination cycle.
  • the determination cycle can be, for example, the same as the cycle of the frame synchronization signal output from the photographing apparatus 21 (for example, every 20 [msec]). In this case, the determination cycle of the determination unit 33 is the same as the sampling cycle of the line-of-sight detection unit 31.
  • the light source control unit 34 controls the light emitting operation of the light source 11.
  • the light source control unit 34 controls the light emission start timing in the light source 11 based on the determination data of the determination unit 33.
  • the light source control unit 34 starts the light emitting operation of the light source 11.
  • the light source control unit 34 controls at least one of the amount of light emitted from the light source 11 and the light emission time in the light emission operation.
  • the control of the amount of light for example, there are a method of controlling the power of the light source and a method of controlling the light emission timing with a pulse. In this case, the light source control unit 34 can control the light amount based on the detection result of the ambient light sensor 13.
  • the measurement processing unit 35 calculates the pupil diameter of the subject based on the acquisition result of the pupil image acquisition device 12 of the pupil measurement device 10. Further, the measurement processing unit 35 performs calibration. Calibration is a process of acquiring calibration information for the purpose of calculating the pupil diameter.
  • the calibration information is past measurement information of the light reflex, and includes at least one appropriate value of the amount of light and the light emission time when emitting light from the light source 11. In the present embodiment, the calibration information includes at least one of the light amount and the light emission time when a valid result is measured in the subject's past light reflex measurement.
  • the storage unit 36 stores, as measurement information, data relating to the amount of light and the light emission time when light is emitted from the light source 11.
  • the light amount and light emission time data include initial setting values, maximum values, and values as calibration information.
  • the initial setting value and the maximum value are values set by the operator.
  • the storage unit 36 detects from the light source a light for causing the subject's line of sight to be detected and light for causing light reflection in the pupil of the subject when it is detected that the subject's line of sight is directed to the effective area.
  • a light reflection measurement program is stored that causes a computer to execute the process of emitting the image and the image of the subject's pupil and measuring the subject's pupil diameter based on the obtained image.
  • the light reflex measurement method according to the present embodiment will be described.
  • the light reflection function of the subject is measured by using the light reflection measurement device 100 described above.
  • FIG. 3 is a diagram showing an example of the light emitting area 11 a of the light source 11.
  • the light emitting region 11a emits light for causing the subject to undergo light reflection.
  • the light emitting region 11a has, for example, a circular shape, but is not limited to this, and may have another shape such as a rectangle or a triangle. Further, the light emitting region 11a is, for example, flat, but is not limited to this, and may be a curved surface, or at least one of a concave portion and a convex portion may be formed.
  • the effective area X0 is set by the area setting unit 32 in the light emitting area 11a.
  • the effective area X0 is set inside the light emitting area 11a of the light source 11, for example.
  • the effective area X0 is set as a surface in the three-dimensional global coordinate system.
  • the effective area X0 is, for example, a circular planar area centered on the reference position.
  • the area setting unit 32 can set the effective area X0 so that the reference position of the effective area X0 coincides with the center of the light emitting area 11a.
  • the effective area X0 may be a surface including a recess or a protrusion.
  • the area setting unit 32 can set the effective area X0 based on the input result, for example, when the operator inputs the coordinates of the reference position and the diameter of the effective area using the input device 50 or the like.
  • the area setting unit 32 may set the effective area X0 outside the light emitting area of the light source 11. In this case, the area setting unit 32 can set the effective area X0 in the vicinity of the light source 11, for example.
  • the line-of-sight detection unit 31 detects the line-of-sight vector E of the subject at regular sampling intervals (for example, 20 [msec]).
  • the determination unit 33 determines whether or not there is an intersection X between the line-of-sight vector E and the effective area X0, and outputs the determination data. Therefore, the determination unit 33 outputs the determination data for each determination period that is the same as the above sampling period.
  • the light source control unit 34 causes the light source 11 to emit light when the determination unit 33 determines that the intersection X exists. In this case, it can be estimated that the subject is looking at the light emitting region 11a of the light source 11. Therefore, by emitting light from the light source 11 in this state, it is possible to efficiently stimulate the pupil of the subject.
  • the measurement processing unit 35 calculates the pupil diameter of the subject based on the acquisition result of the pupil image acquisition device 12. Further, the measurement processing unit 35 performs calibration. Calibration is a process of acquiring calibration information for the purpose of calculating the pupil diameter.
  • the calibration information includes an appropriate value of at least one of a light amount and a light emission time when light is emitted from the light source 11.
  • the calibration information includes at least one of the light amount and the light emission time and the detection result of the ambient light sensor 13 when a valid result is measured in the past light reflection measurement of the subject.
  • FIG. 4 is a flowchart showing an example of the light reflection measurement method according to the present embodiment.
  • the effective area X0 is set (step S101), and the light emission time and the light amount of the light source 11 are initialized (Y0, L0) and the maximum value. (Ymax, Lmax) are set respectively (steps S102, S103, S104).
  • the effective pupil reduction ratio R0 in light reflection is set (step S105).
  • the effective pupil reduction ratio R0 is a threshold value of the ratio (miosis ratio) at which the pupil changes due to light reflection.
  • the measurement processing unit 35 determines whether or not there is a calibration request (step S106). For example, when a calibration request is input by the input device 50 or when there is no past measurement information or calibration information about the subject in the storage unit 36, the measurement processing unit 35 determines that there is a request. When there is no calibration request (No in step S106), each value (Y1, L1) of the light emission time and the light amount is set based on the past measurement information stored in the storage unit 36 (step S107). After that, the processes after step S112, which will be described later, are performed.
  • step S106 If there is a request for calibration in step S106 (Yes in step S106), the measurement processing unit 35 performs calibration.
  • the measurement processing unit 35 determines whether or not the calibration is the first time (step S108).
  • the measurement processing unit 35 determines that it is the first time when there is no past calibration information about the subject in the storage unit 36. Further, the measurement processing unit 35 determines that it is not the first time when the storage unit 36 has the past measurement information or calibration information about the subject.
  • step S108 When it is determined that it is the first time in step S108 (Yes in step S108), the light source control unit 34 sets the initial value (Y0) of the light emission time and the light amount set in steps S102 and S103 as the light emission time and the light amount of the light source 11. , L0) are set (step S109). After that, the processes of step S112 and later, which will be described later, are performed.
  • step S108 When it is determined in step S108 that it is not the first time (No in step S108), the light source control unit 34 acquires the calibration information of the immediately previous time stored in the storage unit 36 (step S110), and uses it as the calibration information. Based on this, each value (Y2, L2) of the light emission time and the amount of light is set (step S111). After that, the processes of step S112 and later, which will be described later, are performed.
  • the measurement processing unit 35 After the light emission time and the light amount in the light source 11 are set, the measurement processing unit 35 starts the acquisition of the pupil image in the pupil image acquisition device 12 (step S112). Further, the measurement processing unit 35 acquires the ambient light A which is the detection result of the ambient light sensor 13 (step S113), and adjusts the light amount of the light source 11 to the light amount L3 based on the detection result of the ambient light sensor 13 (step S113). S114). In step S114, the measurement processing unit 35 calculates an adjustment value by, for example, the following calculation formula based on the acquired value of the ambient light A and the value of the ambient light A0 stored in the calibration result.
  • L is the light amount calculated using the value of L1 when the process of S107 is performed, L0 when the process of S109 is performed, and the value of L2 when the process of S111 is performed.
  • L3 K1, L, log (K2, (A / A0)) + K3 (However, K1, K2, and K3 are arbitrary coefficients)
  • the measurement processing unit 35 sets the value of the light amount L3.
  • the line-of-sight detection unit 31 starts acquisition of an eyeball image in the eyeball image acquisition device 20 and detects the line of sight of the subject based on the eyeball image (step S115).
  • the determination unit 33 determines whether or not the detected line of sight is directed (exists) to the effective area X0 (step S116). When it is determined that the line of sight is not directed to the effective area X0 (does not exist) (No in step S116), the operations after step S113 are repeated.
  • the light source control unit 34 directs the light from the light source 11 to the adjusted light amount (L3). It is ejected (step S117).
  • the light source control unit 34 measures the elapsed time Y from the time when the light is emitted (step S118), and determines whether the elapsed time Y reaches the light emission time (Y0 or Y2) set above. Yes (step S119).
  • the light emission from the light source 11 is stopped (step S120).
  • the light source control unit 34 repeats the operation from step S118.
  • the measurement processing unit 35 stops the operations of the pupil image acquisition device 12 and the eyeball image acquisition device 20 (step S121).
  • the operation of the eyeball image acquisition device 20 may be stopped after step S117 is performed.
  • the measurement processing unit 35 calculates the pupil diameter of the subject based on the image of the pupil obtained by the pupil image acquisition device 12 (step S122).
  • the measurement processing unit 35 determines whether or not the processing up to step S122 is a processing in calibration (step S123).
  • the miosis ratio Rc is calculated from the obtained pupil diameter (step S124).
  • the measurement processing unit 35 determines whether or not the calculated miosis rate Rc is larger than the effective miosis rate R0 (step S125). When the pupil reduction ratio Rc is larger than the effective pupil reduction ratio R0 (Yes in step 125), the light amount and light emission time of the light from the light source 11 at the time of light reflection measurement and the detection result of the ambient light sensor 13 are calibrated. The information is stored in the storage unit 36 (step S126). After step S126, or when it is determined in step S123 that the process is not a calibration process (No in step S123), the measurement processing unit 35 causes the storage unit 36 to store the calculated values of the miosis ratio Rc. (Step S127), the process ends.
  • the measurement processing unit 35 maximizes the light amount and the light emission time of the light from the light source 11 during the light reflection measurement. It is determined whether the values are Ymax and Lmax (step S128). When the light amount and the light emission time are the maximum values Ymax and Lmax (Yes in step S128), the measurement processing unit 35 outputs an alert indicating that the light amount and the light emission time have reached the maximum value via the output device 40 or the like. (Step S129), the process ends. When the light amount and the light emission time are not the maximum values Ymax and Lmax (No in step S128), the operations after step S110 are repeated.
  • the light reflection measurement device 100 includes the light source 11 that emits light when a predetermined condition is satisfied, the pupil image acquisition device 12 that acquires an image of the pupil of the subject, and the subject.
  • the line-of-sight detection unit 31 that detects the line-of-sight of the subject, and the line-of-sight detection unit 31 emits light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, and is acquired by the pupil image acquisition device 12.
  • a control unit that measures the pupil diameter of the subject based on the image.
  • the light reflection measurement method detects a line of sight of a subject, emits light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, Acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
  • the light reflection measurement program includes a process of detecting the line of sight of the subject, a process of emitting light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, and the subject. And acquiring the image of the pupil of the subject and measuring the pupil diameter of the subject based on the obtained image.
  • light can be emitted from the light source 11 at the timing when the subject's line of sight is directed to the light source 11, so that light can be emitted to the pupil of the subject at the optimum timing.
  • the light reflex can be detected with high accuracy.
  • the effective area X0 is set to a region corresponding to the light emitting region 11a of the light source 11.
  • the effective area X0 is set to a region corresponding to the light emitting region 11a of the light source 11.
  • the light reflection measurement apparatus 100 includes a storage unit 36 that stores the light amount and the light emission time of light emitted from the light source 11 as measurement information, and the light source control unit 34 is stored in the storage unit 36. At least one of the light intensity and the light emission time is set based on the past measurement information (calibration information). With this, the pupil of the subject can be irradiated with light under more appropriate conditions.
  • the past measurement information is at least one of the light amount and the light emission time when an effective result is measured in the past light reflection measurement of the subject. Including. As a result, light can be irradiated under appropriate conditions peculiar to the subject, so that highly accurate measurement results can be obtained.
  • the light reflection measurement apparatus 100 further includes an ambient light sensor 13 that detects ambient light of the light source 11, and the light source control unit 34 includes measurement information (calibration information) of past light reflection and ambient light. At least one of the light amount and the light emission time is set based on the detection result of the optical sensor 13. With this, the pupil of the subject can be irradiated with the light under the condition in which the influence of the ambient light is taken into consideration, so that a highly accurate measurement result can be obtained.
  • a display or the like for guiding the line of sight of the subject may be provided in the light emitting region 11a of the light source 11.
  • the light reflex measurement device, the light reflex measurement method, and the light reflex measurement program of the present disclosure can be used, for example, in a line-of-sight detection device.
  • Line-of-sight detection unit 32... Region setting unit, 33 ... determination unit, 34... light source control unit, 35... measurement processing unit, 36... storage unit, 40... output device, 50... input device, 60... input/output interface device, 100... light reflection measurement device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

This light reflex measurement device comprises: a light source emitting a light when a predetermined condition has been met; a pupil image acquisition device acquiring an image of the pupil of a test subject; a gaze detection unit detecting the gaze of the test subject; and a control unit causing the light to be emitted from the light source and measuring the pupil diameter of the test subject on the basis of the image acquired by the pupil image acquisition device, if the gaze of the test subject has been detected by the gaze detection unit as being turned toward a valid area.

Description

対光反射計測装置、対光反射計測方法、及び対光反射計測プログラムLight reflection measurement device, light reflection measurement method, and light reflection measurement program
 本開示は、対光反射計測装置、対光反射計測方法、及び対光反射計測プログラムに関する。 The present disclosure relates to a light reflex measuring device, a light reflex measuring method, and a light reflex measuring program.
 被験者の瞳孔に光を照射して対光反射を生じさせ、瞳孔径を計測する対光反射計測装置が知られている(例えば、特許文献1参照)。 There is known a light reflex measuring device that measures the pupil diameter by irradiating the pupil of a subject with light to generate light reflex (see, for example, Patent Document 1).
特開2002-238851号公報JP-A-2002-238851
 特許文献1に記載の対光反射計測装置では、瞳孔に対して光強度を略均一となるように異なる方向から光を照射する形態である。しかしながら、被験者の視線は常に動いており、瞳孔径を精度よく検出することができなかった。 The light reflex measuring device described in Patent Document 1 is in the form of irradiating the pupil with light from different directions so that the light intensity is substantially uniform. However, the subject's line of sight was constantly moving, and the pupil diameter could not be detected accurately.
 本開示は、上記に鑑みてなされたものであり、対光反射における瞳孔径を精度よく検出できる対光反射計測装置、対光反射計測方法、及び対光反射計測プログラムを提供することを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to provide a light reflection measurement device, a light reflection measurement method, and a light reflection measurement program capable of accurately detecting a pupil diameter in light reflection. To do.
 本開示に係る対光反射計測装置は、所定の条件を満たした際に光を射出する光源と、前記被験者の瞳孔の画像を取得する瞳孔画像取得装置と、前記被験者の視線を検出する視線検出部と、前記視線検出部において前記被験者の視線が有効エリアに向けられたことが検出された場合に前記光源から光を射出させ、前記瞳孔画像取得装置で取得される前記画像に基づいて前記被験者の瞳孔径を計測する制御部とを備える。 The light reflection measurement device according to the present disclosure includes a light source that emits light when a predetermined condition is satisfied, a pupil image acquisition device that acquires an image of the pupil of the subject, and a line-of-sight detection that detects the line of sight of the subject. Section, the visual line detection unit emits light from the light source when it is detected that the visual line of the subject is directed to the effective area, and the subject based on the image acquired by the pupil image acquisition device. And a control unit for measuring the pupil diameter.
 本開示に係る対光反射計測方法は、被験者の視線を検出することと、前記被験者の視線が有効エリアに向けられたことが検出された場合に光源から光を射出することと、前記被験者の瞳孔の画像を取得し、取得した前記画像に基づいて前記被験者の瞳孔径を計測することとを含む。 The light reflection measurement method according to the present disclosure includes detecting a line of sight of a subject, emitting light from a light source when it is detected that the line of sight of the subject is directed to an effective area, and Acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
 本開示に係る対光反射計測プログラムは、被験者の視線を検出する処理と、前記被験者の視線が有効エリアに向けられたことが検出された場合に光源から光を射出させる処理と、前記被験者の瞳孔の画像を取得し、取得した前記画像に基づいて前記被験者の瞳孔径を計測する処理とをコンピュータに実行させる。 The light reflection measurement program according to the present disclosure is a process of detecting the line of sight of the subject, a process of emitting light from a light source when it is detected that the line of sight of the subject is directed to the effective area, and the subject A computer is made to perform the process of acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
 本開示によれば、対光反射における瞳孔径を精度よく検出できる。 According to the present disclosure, the pupil diameter in light reflection can be accurately detected.
図1は、本実施形態に係る対光反射計測装置の一例を模式的に示す図である。FIG. 1 is a diagram schematically showing an example of the light reflection measurement device according to the present embodiment. 図2は、対光反射計測装置の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing an example of the light reflection measurement device. 図3は、光源の発光領域の一例を示す図である。FIG. 3 is a diagram showing an example of a light emitting region of a light source. 図4は、本実施形態に係る対光反射計測方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the light reflection measurement method according to the present embodiment.
 以下、本開示に係る対光反射計測装置及び対光反射計測方法の実施形態を図面に基づいて説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, an embodiment of a light reflection measuring device and a light reflection measuring method according to the present disclosure will be described with reference to the drawings. The present invention is not limited to this embodiment. In addition, constituent elements in the following embodiments include elements that can be easily replaced by those skilled in the art, or substantially the same elements.
 以下の説明においては、三次元グローバル座標系を設定して各部の位置関係について説明する。所定面の第1軸と平行な方向をX軸方向とし、第1軸と直交する所定面の第2軸と平行な方向をY軸方向とし、第1軸及び第2軸のそれぞれと直交する第3軸と平行な方向をZ軸方向とする。所定面はXY平面を含む。 In the following explanation, the three-dimensional global coordinate system is set and the positional relationship of each part is explained. The direction parallel to the first axis of the predetermined surface is the X-axis direction, and the direction parallel to the second axis of the predetermined surface orthogonal to the first axis is the Y-axis direction, and is orthogonal to each of the first axis and the second axis. The direction parallel to the third axis is the Z-axis direction. The predetermined plane includes an XY plane.
 [対光反射計測装置]
 図1は、本実施形態に係る対光反射計測装置100の一例を模式的に示す図である。本実施形態に係る対光反射計測装置100は、被験者の瞳孔における対光反射を計測する。図1に示すように、対光反射計測装置100は、瞳孔計測装置10と、眼球画像取得装置20と、コンピュータシステム(制御部)30と、出力装置40と、入力装置50と、入出力インターフェース装置60とを備える。瞳孔計測装置10、眼球画像取得装置20、コンピュータシステム30、出力装置40及び入力装置50は、入出力インターフェース装置60を介してデータ通信を行う。瞳孔計測装置10及び眼球画像取得装置20は、それぞれ不図示の駆動回路を有する。
[Light reflection measurement device]
FIG. 1 is a diagram schematically showing an example of the light reflex measuring device 100 according to the present embodiment. The light reflex measuring device 100 according to the present embodiment measures the light reflex in the pupil of the subject. As shown in FIG. 1, the light reflection measurement device 100 includes a pupil measurement device 10, an eyeball image acquisition device 20, a computer system (control unit) 30, an output device 40, an input device 50, and an input/output interface. And a device 60. The pupil measurement device 10, the eyeball image acquisition device 20, the computer system 30, the output device 40, and the input device 50 perform data communication via the input/output interface device 60. The pupil measuring device 10 and the eyeball image acquiring device 20 each have a drive circuit (not shown).
 瞳孔計測装置10は、光源11と、瞳孔画像取得装置12と、周囲光センサ13とを有する。瞳孔計測装置10は、被験者の瞳孔に対光反射を生じさせ、被験者の瞳孔径を計測する。光源11は、被験者の瞳孔に対光反射を生じさせるための光を射出する。光源11としては、例えばLEDライト等の各種の発光装置を用いることができる。光源11は、パルス状の光を射出することが可能である。瞳孔画像取得装置12は、被験者の瞳孔を撮影し、当該瞳孔の画像を取得する。瞳孔画像取得装置12としては、例えば可視光カメラ、赤外線カメラ等の各種の撮影装置が用いられる。周囲光センサ13は、光源11の周囲の明るさを検出する。周囲光センサ13としては、例えば半導体素子を用いて形成された照度センサ等が挙げられる。 The pupil measurement device 10 includes a light source 11, a pupil image acquisition device 12, and an ambient light sensor 13. The pupil measuring device 10 causes light reflection in the pupil of the subject and measures the pupil diameter of the subject. The light source 11 emits light for causing light reflex in the pupil of the subject. As the light source 11, various light emitting devices such as an LED light can be used. The light source 11 can emit pulsed light. The pupil image acquisition device 12 photographs the pupil of the subject and acquires an image of the pupil. As the pupil image acquisition device 12, various imaging devices such as a visible light camera and an infrared camera are used. The ambient light sensor 13 detects the brightness around the light source 11. Examples of the ambient light sensor 13 include an illuminance sensor formed by using a semiconductor element and the like.
 眼球画像取得装置20は、被験者の左右の眼球EBの画像データを取得し、取得した画像データをコンピュータシステム30に送信する。眼球画像取得装置20は、撮影装置21を有する。撮影装置21は、被験者の左右の眼球EBを撮影することで画像データを取得する。撮影装置21は、被験者の視線を検出する方法に応じた各種カメラを有する。例えば被験者の瞳孔の位置と角膜反射像の位置とに基づいて視線を検出する方式の場合、撮影装置21は、赤外線カメラを有し、例えば波長850[nm]の近赤外光を透過可能な光学系と、その近赤外光を受光可能な撮像素子とを有する。また、例えば被験者の目頭の位置と虹彩の位置とに基づいて視線を検出する方式の場合、撮影装置21は、可視光カメラを有する。撮影装置21は、フレーム同期信号を出力する。フレーム同期信号の周期は、例えば20[msec]とすることができるが、これに限定されない。撮影装置21は、例えば第1カメラ21A及び第2カメラ21Bを有するステレオカメラの構成とすることができるが、これに限定されない。 The eyeball image acquisition device 20 acquires image data of the left and right eyeballs EB of the subject, and transmits the acquired image data to the computer system 30. The eyeball image acquisition device 20 includes a photographing device 21. The imaging device 21 acquires image data by photographing the left and right eyeballs EB of the subject. The imaging device 21 has various cameras according to the method of detecting the line of sight of the subject. For example, in the case of the method of detecting the line of sight based on the position of the subject's pupil and the position of the corneal reflection image, the imaging device 21 has an infrared camera and can transmit near-infrared light having a wavelength of 850 [nm], for example. It has an optical system and an image sensor capable of receiving near infrared light. Further, for example, in the case of a method of detecting the line of sight based on the position of the inner corner of the eye of the subject and the position of the iris, the photographing device 21 has a visible light camera. The imaging device 21 outputs a frame synchronization signal. The period of the frame synchronization signal can be, for example, 20 [msec], but is not limited to this. The photographing device 21 can be configured as a stereo camera having, for example, a first camera 21A and a second camera 21B, but is not limited thereto.
 また、例えば被験者の瞳孔の位置と角膜反射像の位置とに基づいて視線を検出する方式の場合、眼球画像取得装置20は、被験者の眼球EBを照明する照明装置22を有する。照明装置22は、LED(light emitting diode)光源を含み、例えば波長850[nm]の近赤外光を射出可能である。なお、例えば被験者の目頭の位置と虹彩の位置とに基づいて視線を検出する方式の場合、照明装置22は設けられなくてもよい。照明装置22は、撮影装置21のフレーム同期信号に同期するように検出光を射出する。照明装置22は、例えば第1光源22A及び第2光源22Bを有する構成とすることができるが、これに限定されない。 Further, for example, in the case of a method of detecting the line of sight based on the position of the subject's pupil and the position of the corneal reflection image, the eyeball image acquisition device 20 has an illumination device 22 that illuminates the subject's eyeball EB. The illumination device 22 includes an LED (light emitting diode) light source and can emit near infrared light having a wavelength of 850 [nm], for example. In the case of a method of detecting the line of sight based on, for example, the position of the inner corner of the eye of the subject and the position of the iris, the lighting device 22 may not be provided. The lighting device 22 emits detection light so as to synchronize with the frame synchronization signal of the photographing device 21. The lighting device 22 can be configured to include, for example, a first light source 22A and a second light source 22B, but is not limited to this.
 なお、上記の瞳孔画像取得装置12及び眼球画像取得装置20は、いずれか一方が他方の機能を兼ね備えた構成であってもよい。この場合、瞳孔画像取得装置12及び眼球画像取得装置20の他方の構成を省略することができる。 Note that the pupil image acquisition device 12 and the eyeball image acquisition device 20 may have a configuration in which one of them has the function of the other. In this case, the other configuration of the pupil image acquisition device 12 and the eyeball image acquisition device 20 can be omitted.
 コンピュータシステム30は、対光反射計測装置100の動作を統括的に制御する。コンピュータシステム30は、本実施形態における制御部である。つまり、コンピュータシステム30は、後述する視線検出部31において被験者の視線が有効エリアに向けられたことが検出された場合に光源11から光を射出させ、瞳孔画像取得装置20で取得される画像に基づいて被験者の瞳孔径を計測する制御部である。コンピュータシステム30は、演算処理装置30A及び記憶装置30Bを含む。演算処理装置30Aは、CPU(central processing unit)のようなマイクロプロセッサを含む。記憶装置30Bは、ROM(read only memory)及びRAM(random access memory)のようなメモリ又はストレージを含む。演算処理装置30Aは、記憶装置30Bに記憶されているコンピュータプログラム30Cに従って演算処理を実施する。 The computer system 30 comprehensively controls the operation of the light reflection measurement device 100. The computer system 30 is the control unit in this embodiment. That is, the computer system 30 emits light from the light source 11 when the visual line detection unit 31 described later detects that the visual line of the subject is directed to the effective area, and an image acquired by the pupil image acquisition device 20 is displayed. It is a control unit that measures the pupil diameter of the subject based on the above. The computer system 30 includes an arithmetic processing unit 30A and a storage device 30B. The arithmetic processing device 30A includes a microprocessor such as a CPU (central processing unit). The storage device 30B includes memory or storage such as ROM (read only memory) and RAM (random access memory). The arithmetic processing unit 30A performs arithmetic processing according to the computer program 30C stored in the storage device 30B.
 出力装置40は、フラットパネルディスプレイのような表示装置を含む。なお、出力装置40は、印刷装置を含んでもよい。入力装置50は、操作されることにより入力データを生成する。入力装置50は、コンピュータシステム用のキーボード又はマウスを含む。なお、入力装置50が表示装置である出力装置40の表示部に設けられたタッチセンサを含んでもよい。 The output device 40 includes a display device such as a flat panel display. The output device 40 may include a printing device. The input device 50 is operated to generate input data. The input device 50 includes a keyboard or mouse for a computer system. The input device 50 may include a touch sensor provided on the display unit of the output device 40, which is a display device.
 図2は、対光反射計測装置100の一例を示す機能ブロック図である。図2に示すように、コンピュータシステム30は、視線検出部31と、領域設定部32と、判定部33と、光源制御部34と、計測処理部35と、記憶部36とを有する。コンピュータシステム30の機能は、演算処理装置30A及び記憶装置30B(図1参照)によって発揮される。なお、コンピュータシステム30は、一部の機能が対光反射計測装置100の外部に設けられてもよい。 FIG. 2 is a functional block diagram showing an example of the light reflection measurement device 100. As shown in FIG. 2, the computer system 30 includes a line-of-sight detection unit 31, a region setting unit 32, a determination unit 33, a light source control unit 34, a measurement processing unit 35, and a storage unit 36. The functions of the computer system 30 are exhibited by the arithmetic processing unit 30A and the storage device 30B (see FIG. 1). The computer system 30 may be provided with some functions outside the light reflex measuring device 100.
 視線検出部31は、被験者の視線を検出する。本実施形態において、視線検出部31は、眼球画像取得装置20によって取得される被験者の左右の眼球EBの画像データに基づいて、三次元グローバル座標系で規定される被験者の視線ベクトルを検出する。視線検出部31は、規定のサンプリング周期毎に被験者の視線ベクトルを検出する。このサンプリング周期は、例えば撮影装置21から出力されるフレーム同期信号の周期(例えば20[msec]毎)とすることができる。 The line-of-sight detection unit 31 detects the line of sight of the subject. In the present embodiment, the line-of-sight detection unit 31 detects the line-of-sight vector of the subject defined by the three-dimensional global coordinate system based on the image data of the left and right eyeballs EB of the subject acquired by the eyeball image acquisition device 20. The line-of-sight detection unit 31 detects the line-of-sight vector of the subject at a predetermined sampling cycle. This sampling cycle can be set to, for example, the cycle (for example, every 20 [msec]) of the frame synchronization signal output from the imaging device 21.
 領域設定部32は、光源11の発光領域に対応した領域に有効エリアを設定する。領域設定部32は、例えば光源11の発光領域の内側に有効エリアを設定することができる。有効エリアは、例えば三次元グローバル座標系における面として設定される。有効エリアは、例えば基準位置を中心とした円形の平面状に設定可能であるが、この形状に限定されず、円形とは異なる形状であってもよいし、平面とは異なる形状であってもよい。領域設定部32は、光源11の発光領域の外側に有効エリアを設定してもよい。この場合、領域設定部32は、例えば光源11の近傍に有効エリアを設定することができる。有効エリアは、光源の近傍にあってもよい。 The area setting unit 32 sets an effective area in the area corresponding to the light emitting area of the light source 11. The area setting unit 32 can set an effective area inside the light emitting area of the light source 11, for example. The effective area is set as a surface in a three-dimensional global coordinate system, for example. The effective area can be set, for example, in a circular plane shape centered on the reference position, but the shape is not limited to this shape, and may be a shape different from the circle or a shape different from the plane. Good. The area setting unit 32 may set the effective area outside the light emitting area of the light source 11. In this case, the area setting unit 32 can set an effective area near the light source 11, for example. The effective area may be near the light source.
 判定部33は、領域設定部32によって有効エリアが設定される場合に、視線ベクトルが有効エリアに向けられているか否かを判定し、判定データを出力する。つまり、判定部33は、視線ベクトルが有効エリアとして規定される平面と交わるか否かを判定する。判定部33は、規定の判定周期毎に視線ベクトルが有効エリアに向けられているか否かを判定する。判定周期としては、例えば撮影装置21から出力されるフレーム同期信号の周期(例えば20[msec]毎)と同一の周期とすることができる。この場合、判定部33の判定周期は、視線検出部31のサンプリング周期と同一である。 When the effective area is set by the area setting unit 32, the determination unit 33 determines whether or not the line-of-sight vector is directed to the effective area, and outputs the determination data. That is, the determination unit 33 determines whether or not the line-of-sight vector intersects the plane defined as the effective area. The determination unit 33 determines whether or not the line-of-sight vector is directed to the effective area at each prescribed determination cycle. The determination cycle can be, for example, the same as the cycle of the frame synchronization signal output from the photographing apparatus 21 (for example, every 20 [msec]). In this case, the determination cycle of the determination unit 33 is the same as the sampling cycle of the line-of-sight detection unit 31.
 光源制御部34は、光源11における発光動作を制御する。光源制御部34は、判定部33の判定データに基づいて、光源11における発光開始のタイミングを制御する。光源制御部34は、判定部33において視線ベクトルが有効エリアに向けられていると判定された場合、光源11における発光動作を開始する。光源制御部34は、発光動作において、光源11から発する光の光量及び発光時間の少なくとも一方を制御する。光量の制御では、例えば光源のパワーを制御する方法や、発光タイミングをパルスで制御する方法などがある。この場合、光源制御部34は、周囲光センサ13の検出結果に基づいて、光量を制御可能である。 The light source control unit 34 controls the light emitting operation of the light source 11. The light source control unit 34 controls the light emission start timing in the light source 11 based on the determination data of the determination unit 33. When the determining unit 33 determines that the line-of-sight vector is directed to the effective area, the light source control unit 34 starts the light emitting operation of the light source 11. The light source control unit 34 controls at least one of the amount of light emitted from the light source 11 and the light emission time in the light emission operation. In the control of the amount of light, for example, there are a method of controlling the power of the light source and a method of controlling the light emission timing with a pulse. In this case, the light source control unit 34 can control the light amount based on the detection result of the ambient light sensor 13.
 計測処理部35は、瞳孔計測装置10の瞳孔画像取得装置12の取得結果に基づいて、被験者の瞳孔径を算出する。また、計測処理部35は、キャリブレーションを行う。キャリブレーションは、瞳孔径の算出のため、キャリブレーション情報を取得する処理である。キャリブレーション情報は、過去の対光反射の計測情報であり、光源11から光を射出する際の光量及び発光時間の少なくとも一方の適正値を含む。本実施形態において、キャリブレーション情報は、被験者の過去の対光反射計測において有効な結果が計測された場合の光量及び発光時間の少なくとも一方を含む。 The measurement processing unit 35 calculates the pupil diameter of the subject based on the acquisition result of the pupil image acquisition device 12 of the pupil measurement device 10. Further, the measurement processing unit 35 performs calibration. Calibration is a process of acquiring calibration information for the purpose of calculating the pupil diameter. The calibration information is past measurement information of the light reflex, and includes at least one appropriate value of the amount of light and the light emission time when emitting light from the light source 11. In the present embodiment, the calibration information includes at least one of the light amount and the light emission time when a valid result is measured in the subject's past light reflex measurement.
 記憶部36は、光源11から光を射出する際の光量及び発光時間に関するデータを計測情報として記憶する。この光量及び発光時間のデータは、初期設定値、最大値、及びキャリブレーション情報としての値を含む。初期設定値及び最大値は、オペレータによって設定される値である。 The storage unit 36 stores, as measurement information, data relating to the amount of light and the light emission time when light is emitted from the light source 11. The light amount and light emission time data include initial setting values, maximum values, and values as calibration information. The initial setting value and the maximum value are values set by the operator.
 また、記憶部36は、被験者の視線を検出する処理と、被験者の視線が有効エリアに向けられたことが検出された場合に、被験者の瞳孔に対光反射を生じさせるための光を光源から射出させる処理と、被験者の瞳孔の画像を取得し、取得した画像に基づいて被験者の瞳孔径を計測する処理とをコンピュータに実行させる対光反射計測プログラムを記憶する。 In addition, the storage unit 36 detects from the light source a light for causing the subject's line of sight to be detected and light for causing light reflection in the pupil of the subject when it is detected that the subject's line of sight is directed to the effective area. A light reflection measurement program is stored that causes a computer to execute the process of emitting the image and the image of the subject's pupil and measuring the subject's pupil diameter based on the obtained image.
 [対光反射計測方法]
 次に、本実施形態に係る対光反射計測方法について説明する。本実施形態に係る対光反射計測方法では、上記の対光反射計測装置100を用いることにより、被験者の対光反射機能を計測する。
[Pupillary light reflex measurement method]
Next, the light reflex measurement method according to the present embodiment will be described. In the light reflection measurement method according to the present embodiment, the light reflection function of the subject is measured by using the light reflection measurement device 100 described above.
 図3は、光源11の発光領域11aの一例を示す図である。発光領域11aは、被験者に対光反射を生じさせるための光を射出する。発光領域11aは、例えば円形状であるが、これに限定されず、矩形、三角形等、他の形状であってもよい。また、発光領域11aは、例えば平面状であるが、これに限定されず、曲面であってもよいし、凹部及び凸部の少なくとも一方が形成されてもよい。 FIG. 3 is a diagram showing an example of the light emitting area 11 a of the light source 11. The light emitting region 11a emits light for causing the subject to undergo light reflection. The light emitting region 11a has, for example, a circular shape, but is not limited to this, and may have another shape such as a rectangle or a triangle. Further, the light emitting region 11a is, for example, flat, but is not limited to this, and may be a curved surface, or at least one of a concave portion and a convex portion may be formed.
 発光領域11aには、領域設定部32により有効エリアX0が設定される。有効エリアX0は、例えば光源11の発光領域11aの内側に設定される。有効エリアX0は、三次元グローバル座標系における面として設定される。有効エリアX0は、例えば基準位置を中心とする円形の平面状の領域である。領域設定部32は、有効エリアX0の基準位置が発光領域11aの中心に一致するように有効エリアX0を設定することができる。発光領域11aに凹部又は凸部が形成される場合、有効エリアX0は、凹部又は凸部を含む形状の面であってもよい。領域設定部32は、例えばオペレータが入力装置50等により基準位置の座標と有効エリアの径とを入力することにより、入力結果に基づいて有効エリアX0を設定することができる。領域設定部32は、光源11の発光領域の外側に有効エリアX0を設定してもよい。この場合、領域設定部32は、例えば光源11の近傍に有効エリアX0を設定することができる。 The effective area X0 is set by the area setting unit 32 in the light emitting area 11a. The effective area X0 is set inside the light emitting area 11a of the light source 11, for example. The effective area X0 is set as a surface in the three-dimensional global coordinate system. The effective area X0 is, for example, a circular planar area centered on the reference position. The area setting unit 32 can set the effective area X0 so that the reference position of the effective area X0 coincides with the center of the light emitting area 11a. When a recess or a protrusion is formed in the light emitting region 11a, the effective area X0 may be a surface including a recess or a protrusion. The area setting unit 32 can set the effective area X0 based on the input result, for example, when the operator inputs the coordinates of the reference position and the diameter of the effective area using the input device 50 or the like. The area setting unit 32 may set the effective area X0 outside the light emitting area of the light source 11. In this case, the area setting unit 32 can set the effective area X0 in the vicinity of the light source 11, for example.
 視線検出部31は、規定のサンプリング周期(例えば20[msec])毎に、被験者の視線ベクトルEを検出する。判定部33は、被験者の視線ベクトルEが検出された場合、視線ベクトルEと有効エリアX0との交点Xが存在するかを判定し、判定データを出力する。したがって、判定部33は、上記のサンプリング周期と同一の判定周期毎に判定データを出力する。 The line-of-sight detection unit 31 detects the line-of-sight vector E of the subject at regular sampling intervals (for example, 20 [msec]). When the subject's line-of-sight vector E is detected, the determination unit 33 determines whether or not there is an intersection X between the line-of-sight vector E and the effective area X0, and outputs the determination data. Therefore, the determination unit 33 outputs the determination data for each determination period that is the same as the above sampling period.
 光源制御部34は、判定部33において交点Xが存在すると判定された場合、光源11から光を射出させる。この場合、被験者が光源11の発光領域11aを見た状態であると推定できる。したがって、この状態で光源11から光を射出することにより、被験者の瞳孔に対して効率的に刺激を与えることができる。 The light source control unit 34 causes the light source 11 to emit light when the determination unit 33 determines that the intersection X exists. In this case, it can be estimated that the subject is looking at the light emitting region 11a of the light source 11. Therefore, by emitting light from the light source 11 in this state, it is possible to efficiently stimulate the pupil of the subject.
 計測処理部35は、瞳孔画像取得装置12の取得結果に基づいて、被験者の瞳孔径を算出する。また、計測処理部35は、キャリブレーションを行う。キャリブレーションは、瞳孔径の算出のため、キャリブレーション情報を取得する処理である。キャリブレーション情報は、光源11から光を射出する際の光量及び発光時間の少なくとも一方の適正値を含む。本実施形態において、キャリブレーション情報は、被験者の過去の対光反射計測において有効な結果が計測された場合の光量及び発光時間の少なくとも一方と周囲光センサ13の検出結果とを含む。 The measurement processing unit 35 calculates the pupil diameter of the subject based on the acquisition result of the pupil image acquisition device 12. Further, the measurement processing unit 35 performs calibration. Calibration is a process of acquiring calibration information for the purpose of calculating the pupil diameter. The calibration information includes an appropriate value of at least one of a light amount and a light emission time when light is emitted from the light source 11. In the present embodiment, the calibration information includes at least one of the light amount and the light emission time and the detection result of the ambient light sensor 13 when a valid result is measured in the past light reflection measurement of the subject.
 図4は、本実施形態に係る対光反射計測方法の一例を示すフローチャートである。図4に示すように、本実施形態に係る対光反射計測方法では、まず、有効エリアX0を設定し(ステップS101)、光源11における発光時間及び光量の初期値(Y0、L0)及び最大値(Ymax、Lmax)をそれぞれ設定する(ステップS102、S103、S104)。また、対光反射における有効縮瞳率R0を設定する(ステップS105)。有効縮瞳率R0は、対光反射により瞳孔が変化する割合(縮瞳率)の閾値である。 FIG. 4 is a flowchart showing an example of the light reflection measurement method according to the present embodiment. As shown in FIG. 4, in the light reflection measurement method according to the present embodiment, first, the effective area X0 is set (step S101), and the light emission time and the light amount of the light source 11 are initialized (Y0, L0) and the maximum value. (Ymax, Lmax) are set respectively (steps S102, S103, S104). Further, the effective pupil reduction ratio R0 in light reflection is set (step S105). The effective pupil reduction ratio R0 is a threshold value of the ratio (miosis ratio) at which the pupil changes due to light reflection.
 次に、計測処理部35は、キャリブレーションの要求の有無を判定する(ステップS106)。例えば、入力装置50によりキャリブレーションの要求が入力される場合や、記憶部36に当該被験者についての過去の測定情報又はキャリブレーション情報が存在しない場合、計測処理部35は、要求有りと判定する。キャリブレーションの要求が無い場合(ステップS106のNo)、記憶部36に記憶された過去の測定情報に基づいて、発光時間及び光量の各値(Y1、L1)を設定する(ステップS107)。その後、後述するステップS112以降の処理を行う。 Next, the measurement processing unit 35 determines whether or not there is a calibration request (step S106). For example, when a calibration request is input by the input device 50 or when there is no past measurement information or calibration information about the subject in the storage unit 36, the measurement processing unit 35 determines that there is a request. When there is no calibration request (No in step S106), each value (Y1, L1) of the light emission time and the light amount is set based on the past measurement information stored in the storage unit 36 (step S107). After that, the processes after step S112, which will be described later, are performed.
 ステップS106においてキャリブレーションの要求がある場合(ステップS106のYes)、計測処理部35は、キャリブレーションを行う。計測処理部35は、当該キャリブレーションが初回か否かを判定する(ステップS108)。計測処理部35は、記憶部36に当該被験者についての過去のキャリブレーション情報が存在しない場合、初回であると判定する。また、計測処理部35は、記憶部36に当該被験者についての過去の測定情報又はキャリブレーション情報が存在する場合、初回ではないと判定する。 If there is a request for calibration in step S106 (Yes in step S106), the measurement processing unit 35 performs calibration. The measurement processing unit 35 determines whether or not the calibration is the first time (step S108). The measurement processing unit 35 determines that it is the first time when there is no past calibration information about the subject in the storage unit 36. Further, the measurement processing unit 35 determines that it is not the first time when the storage unit 36 has the past measurement information or calibration information about the subject.
 ステップS108において初回であると判定された場合(ステップS108のYes)、光源制御部34は、光源11の発光時間及び光量として、ステップS102、S103にて設定した発光時間及び光量の初期値(Y0、L0)を設定する(ステップS109)。その後、後述するステップS112以降の処理を行う。 When it is determined that it is the first time in step S108 (Yes in step S108), the light source control unit 34 sets the initial value (Y0) of the light emission time and the light amount set in steps S102 and S103 as the light emission time and the light amount of the light source 11. , L0) are set (step S109). After that, the processes of step S112 and later, which will be described later, are performed.
 ステップS108において初回ではないと判定された場合(ステップS108のNo)、光源制御部34は、記憶部36に記憶された直前回のキャリブレーション情報を取得して(ステップS110)、キャリブレーション情報に基づいて発光時間及び光量の各値(Y2、L2)を設定する(ステップS111)。その後、後述するステップS112以降の処理を行う。 When it is determined in step S108 that it is not the first time (No in step S108), the light source control unit 34 acquires the calibration information of the immediately previous time stored in the storage unit 36 (step S110), and uses it as the calibration information. Based on this, each value (Y2, L2) of the light emission time and the amount of light is set (step S111). After that, the processes of step S112 and later, which will be described later, are performed.
 光源11における発光時間及び光量が設定された後、計測処理部35は、瞳孔画像取得装置12における瞳孔画像の取得を開始する(ステップS112)。また、計測処理部35は、周囲光センサ13の検出結果である周囲光Aを取得し(ステップS113)、周囲光センサ13の検出結果に基づいて光源11の光量を光量L3に調整する(ステップS114)。ステップS114において、計測処理部35は、取得した周囲光Aの値と、キャリブレーション結果に保存されている周囲光A0の値とをもとに、例えば以下の計算式により調整値を算出する。ここでのLは、前の処理に基づいて、S107の処理を行った場合はL1、S109の処理を行った場合はL0、S111の処理を行った場合はL2の値を用いて光量を算出する。
 L3=K1・L・log(K2・(A/A0))+K3
 (ただし、K1、K2、K3は、任意の係数)
 そして、計測処理部35は、光量L3の値を設定する。
After the light emission time and the light amount in the light source 11 are set, the measurement processing unit 35 starts the acquisition of the pupil image in the pupil image acquisition device 12 (step S112). Further, the measurement processing unit 35 acquires the ambient light A which is the detection result of the ambient light sensor 13 (step S113), and adjusts the light amount of the light source 11 to the light amount L3 based on the detection result of the ambient light sensor 13 (step S113). S114). In step S114, the measurement processing unit 35 calculates an adjustment value by, for example, the following calculation formula based on the acquired value of the ambient light A and the value of the ambient light A0 stored in the calibration result. Based on the previous process, L is the light amount calculated using the value of L1 when the process of S107 is performed, L0 when the process of S109 is performed, and the value of L2 when the process of S111 is performed. To do.
L3 = K1, L, log (K2, (A / A0)) + K3
(However, K1, K2, and K3 are arbitrary coefficients)
Then, the measurement processing unit 35 sets the value of the light amount L3.
 視線検出部31は、眼球画像取得装置20における眼球画像の取得を開始し、眼球画像に基づいて、被験者の視線を検出する(ステップS115)。判定部33は、検出した視線が有効エリアX0に向けられているか(存在するか)否かを判定する(ステップS116)。視線が有効エリアX0に向けられていない(存在しない)と判定された場合(ステップS116のNo)、ステップS113以降の動作を繰り返し行わせる。視線が有効エリアX0に向けられている(存在する)と判定された場合(ステップS116のYes)、光源制御部34は、上記において調整された光量(L3)となるように光源11から光を射出させる(ステップS117)。また、光源制御部34は、光を射出した時点からの経過時間Yを測定し(ステップS118)、経過時間Yが上記において設定された発光時間(Y0又はY2)に到達したか否かを判定する(ステップS119)。ステップS119において経過時間Yが発光時間の設定値(Y0又はY2)に到達した場合(ステップS119のYes)、光源11からの発光を停止させる(ステップS120)。ステップS119において経過時間Yが発光時間の設定値(Y0又はY2)に到達しない場合(ステップS119のNo)、光源制御部34は、ステップS118以降の動作を繰り返し行わせる。光源11からの発光を停止させた後、計測処理部35は、瞳孔画像取得装置12及び眼球画像取得装置20の動作を停止させる(ステップS121)。なお、瞳孔画像取得装置12と眼球画像取得装置20とが別個に設けられる場合、眼球画像取得装置20の動作については、ステップS117が行われた後に停止させてもよい。 The line-of-sight detection unit 31 starts acquisition of an eyeball image in the eyeball image acquisition device 20 and detects the line of sight of the subject based on the eyeball image (step S115). The determination unit 33 determines whether or not the detected line of sight is directed (exists) to the effective area X0 (step S116). When it is determined that the line of sight is not directed to the effective area X0 (does not exist) (No in step S116), the operations after step S113 are repeated. When it is determined that the line of sight is directed (exists) to the effective area X0 (Yes in step S116), the light source control unit 34 directs the light from the light source 11 to the adjusted light amount (L3). It is ejected (step S117). Further, the light source control unit 34 measures the elapsed time Y from the time when the light is emitted (step S118), and determines whether the elapsed time Y reaches the light emission time (Y0 or Y2) set above. Yes (step S119). When the elapsed time Y reaches the set value (Y0 or Y2) of the light emission time in step S119 (Yes in step S119), the light emission from the light source 11 is stopped (step S120). When the elapsed time Y does not reach the set value (Y0 or Y2) of the light emission time in step S119 (No in step S119), the light source control unit 34 repeats the operation from step S118. After stopping the light emission from the light source 11, the measurement processing unit 35 stops the operations of the pupil image acquisition device 12 and the eyeball image acquisition device 20 (step S121). When the pupil image acquisition device 12 and the eyeball image acquisition device 20 are provided separately, the operation of the eyeball image acquisition device 20 may be stopped after step S117 is performed.
 その後、計測処理部35は、瞳孔画像取得装置12によって得られた瞳孔の画像に基づいて、被験者の瞳孔径を算出する(ステップS122)。計測処理部35は、ステップS122までの処理がキャリブレーションにおける処理であるか否かを判定する(ステップS123)。キャリブレーションにおける処理であると判定された場合(ステップS123のYes)、求めた瞳孔径から縮瞳率Rcを算出する(ステップS124)。縮瞳率は、光源11から光の射出が開始される直前の瞳孔径を最大値Rmaxとし、発光が行われた後に最も小さくなった瞳孔径を最小値Rminとした場合、
 Rc=(Rmax-Rmin)/Rmax
 で表すことができる。
After that, the measurement processing unit 35 calculates the pupil diameter of the subject based on the image of the pupil obtained by the pupil image acquisition device 12 (step S122). The measurement processing unit 35 determines whether or not the processing up to step S122 is a processing in calibration (step S123). When it is determined that the process is performed in the calibration (Yes in step S123), the miosis ratio Rc is calculated from the obtained pupil diameter (step S124). As for the miosis ratio, when the pupil diameter immediately before the light emission from the light source 11 is started is set to the maximum value Rmax and the pupil diameter that becomes the smallest after the light emission is set to the minimum value Rmin,
Rc=(Rmax-Rmin)/Rmax
Can be expressed as
 計測処理部35は、算出した縮瞳率Rcが有効縮瞳率R0よりも大きいか否かを判定する(ステップS125)。縮瞳率Rcが有効縮瞳率R0よりも大きい場合(ステップ125のYes)、対光反射計測時の光源11からの光の光量及び発光時間と、周囲光センサ13の検出結果とをキャリブレーション情報として記憶部36に記憶させる(ステップS126)。ステップS126の後、又は、ステップS123においてキャリブレーションにおける処理ではないと判定された場合(ステップS123のNo)、計測処理部35は、それぞれ算出した縮瞳率Rcの値を記憶部36に記憶させ(ステップS127)、処理を終了する。 The measurement processing unit 35 determines whether or not the calculated miosis rate Rc is larger than the effective miosis rate R0 (step S125). When the pupil reduction ratio Rc is larger than the effective pupil reduction ratio R0 (Yes in step 125), the light amount and light emission time of the light from the light source 11 at the time of light reflection measurement and the detection result of the ambient light sensor 13 are calibrated. The information is stored in the storage unit 36 (step S126). After step S126, or when it is determined in step S123 that the process is not a calibration process (No in step S123), the measurement processing unit 35 causes the storage unit 36 to store the calculated values of the miosis ratio Rc. (Step S127), the process ends.
 また、ステップS125において縮瞳率Rcが有効縮瞳率R0よりも小さい場合(ステップS125のNo)、計測処理部35は、対光反射計測時の光源11からの光の光量及び発光時間が最大値Ymax、Lmaxであるか否かを判定する(ステップS128)。光量及び発光時間が最大値Ymax、Lmaxである場合(ステップS128のYes)、計測処理部35は、出力装置40等を介して光量及び発光時間が最大値に到達したことを示すアラートを出力して(ステップS129)、処理を終了する。光量及び発光時間が最大値Ymax、Lmaxではない場合(ステップS128のNo)、ステップS110以降の動作を繰り返し行わせる。 Further, when the miosis ratio Rc is smaller than the effective miosis ratio R0 in step S125 (No in step S125), the measurement processing unit 35 maximizes the light amount and the light emission time of the light from the light source 11 during the light reflection measurement. It is determined whether the values are Ymax and Lmax (step S128). When the light amount and the light emission time are the maximum values Ymax and Lmax (Yes in step S128), the measurement processing unit 35 outputs an alert indicating that the light amount and the light emission time have reached the maximum value via the output device 40 or the like. (Step S129), the process ends. When the light amount and the light emission time are not the maximum values Ymax and Lmax (No in step S128), the operations after step S110 are repeated.
 以上のように、本実施形態に係る対光反射計測装置100は、所定の条件を満たした際に光を射出する光源11と、被験者の瞳孔の画像を取得する瞳孔画像取得装置12と、被験者の視線を検出する視線検出部31と、視線検出部31において被験者の視線が有効エリアX0に向けられたことが検出された場合に光源11から光を射出させ、瞳孔画像取得装置12で取得される画像に基づいて被験者の瞳孔径を計測する制御部とを備える。 As described above, the light reflection measurement device 100 according to the present embodiment includes the light source 11 that emits light when a predetermined condition is satisfied, the pupil image acquisition device 12 that acquires an image of the pupil of the subject, and the subject. The line-of-sight detection unit 31 that detects the line-of-sight of the subject, and the line-of-sight detection unit 31 emits light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, and is acquired by the pupil image acquisition device 12. And a control unit that measures the pupil diameter of the subject based on the image.
 本実施形態に係る対光反射計測方法は、被験者の視線を検出することと、被験者の視線が有効エリアX0に向けられたことが検出された場合に光源11から光を射出すること、被験者の瞳孔の画像を取得し、取得した画像に基づいて被験者の瞳孔径を計測することとを含む。 The light reflection measurement method according to the present embodiment detects a line of sight of a subject, emits light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, Acquiring an image of the pupil and measuring the pupil diameter of the subject based on the acquired image.
 本実施形態に係る対光反射計測プログラムは、被験者の視線を検出する処理と、被験者の視線が有効エリアX0に向けられたことが検出された場合に光源11から光を射出させる処理と、被験者の瞳孔の画像を取得し、取得した画像に基づいて被験者の瞳孔径を計測する処理とをコンピュータに実行させる。 The light reflection measurement program according to the present embodiment includes a process of detecting the line of sight of the subject, a process of emitting light from the light source 11 when it is detected that the line of sight of the subject is directed to the effective area X0, and the subject. And acquiring the image of the pupil of the subject and measuring the pupil diameter of the subject based on the obtained image.
 本実施形態によれば、被験者の視線が光源11に向けられているタイミングで光源11から光を射出することができるため、被験者の瞳孔に対して最適なタイミングで光を射出可能となる。これにより、対光反射を精度よく検出できる。 According to the present embodiment, light can be emitted from the light source 11 at the timing when the subject's line of sight is directed to the light source 11, so that light can be emitted to the pupil of the subject at the optimum timing. As a result, the light reflex can be detected with high accuracy.
 本実施形態に係る対光反射計測装置100において、有効エリアX0は、光源11の発光領域11aに対応した領域に設定される。これにより、被験者の視線が発光領域11aに対応した領域に向けられるタイミングで発光領域11aから光が射出されるため、被験者の瞳孔に対して光をより適切なタイミングで照射することができる。 In the light reflex measuring device 100 according to the present embodiment, the effective area X0 is set to a region corresponding to the light emitting region 11a of the light source 11. As a result, light is emitted from the light emitting area 11a at the timing when the line of sight of the subject is directed to the area corresponding to the light emitting area 11a, and thus the pupil of the subject can be irradiated with light at more appropriate timing.
 本実施形態に係る対光反射計測装置100は、光源11から射出された光の光量及び発光時間を計測情報として記憶する記憶部36を備え、光源制御部34は、記憶部36に記憶された過去の計測情報(キャリブレーション情報)に基づいて、光量及び発光時間の少なくとも一方を設定する。これにより、被験者の瞳孔に対してより適切な条件で光を照射することができる。 The light reflection measurement apparatus 100 according to the present embodiment includes a storage unit 36 that stores the light amount and the light emission time of light emitted from the light source 11 as measurement information, and the light source control unit 34 is stored in the storage unit 36. At least one of the light intensity and the light emission time is set based on the past measurement information (calibration information). With this, the pupil of the subject can be irradiated with light under more appropriate conditions.
 本実施形態に係る対光反射計測装置100において、過去の計測情報(キャリブレーション情報)は、被験者の過去の対光反射計測において有効な結果が計測された場合の光量及び発光時間の少なくとも一方を含む。これにより、被験者固有の適切な条件で光を照射できるため、精度の高い計測結果を得ることができる。 In the light reflection measurement apparatus 100 according to the present embodiment, the past measurement information (calibration information) is at least one of the light amount and the light emission time when an effective result is measured in the past light reflection measurement of the subject. Including. As a result, light can be irradiated under appropriate conditions peculiar to the subject, so that highly accurate measurement results can be obtained.
 本実施形態に係る対光反射計測装置100において、光源11の周囲光を検出する周囲光センサ13を更に備え、光源制御部34は、過去の対光反射の計測情報(キャリブレーション情報)及び周囲光センサ13の検出結果に基づいて、光量及び発光時間の少なくとも一方を設定する。これにより、周囲光の影響を踏まえた条件で被験者の瞳孔に光を照射することができるため、精度の高い計測結果を得ることができる。 The light reflection measurement apparatus 100 according to the present embodiment further includes an ambient light sensor 13 that detects ambient light of the light source 11, and the light source control unit 34 includes measurement information (calibration information) of past light reflection and ambient light. At least one of the light amount and the light emission time is set based on the detection result of the optical sensor 13. With this, the pupil of the subject can be irradiated with the light under the condition in which the influence of the ambient light is taken into consideration, so that a highly accurate measurement result can be obtained.
 本開示の技術範囲は上記実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で適宜変更を加えることができる。例えば、光源11の発光領域11aに被験者の視線を誘導するためのディスプレイ等が設けられてもよい。 The technical scope of the present disclosure is not limited to the above embodiment, and appropriate modifications can be made without departing from the spirit of the present disclosure. For example, a display or the like for guiding the line of sight of the subject may be provided in the light emitting region 11a of the light source 11.
 本開示の対光反射計測装置、対光反射計測方法、及び対光反射計測プログラムは、例えば視線検出装置に利用することができる。 The light reflex measurement device, the light reflex measurement method, and the light reflex measurement program of the present disclosure can be used, for example, in a line-of-sight detection device.
 E…視線ベクトル、L1~L3…光量、EB…眼球、R0…有効縮瞳率、X0…有効エリア、X…交点,視線、Y…経過時間、Rc…縮瞳率、10…瞳孔計測装置、11…光源、11a…発光領域、12…瞳孔画像取得装置、13…周囲光センサ、20…眼球画像取得装置、21…撮影装置、21A…第1カメラ、21B…第2カメラ、22…照明装置、22A…第1光源、22B…第2光源、30…コンピュータシステム,制御部、30A…演算処理装置、30B…記憶装置、30C…コンピュータプログラム、31…視線検出部、32…領域設定部、33…判定部、34…光源制御部、35…計測処理部、36…記憶部、40…出力装置、50…入力装置、60…入出力インターフェース装置、100…対光反射計測装置 E... Line-of-sight vector, L1-L3... Light intensity, EB... Eyeball, R0... Effective miosis ratio, X0... Effective area, X... Intersection, Line of sight, Y... Elapsed time, Rc... Miosis ratio, 10... Pupil measuring device, 11... Light source, 11a... Emitting area, 12... Pupil image acquisition device, 13... Ambient light sensor, 20... Eyeball image acquisition device, 21... Imaging device, 21A... First camera, 21B... Second camera, 22... Illumination device , 22A... First light source, 22B... Second light source, 30... Computer system, control unit, 30A... Arithmetic processing device, 30B... Storage device, 30C... Computer program, 31... Line-of-sight detection unit, 32... Region setting unit, 33 ... determination unit, 34... light source control unit, 35... measurement processing unit, 36... storage unit, 40... output device, 50... input device, 60... input/output interface device, 100... light reflection measurement device

Claims (6)

  1.  所定の条件を満たした際に光を射出する光源と、
     前記被験者の瞳孔の画像を取得する瞳孔画像取得装置と、
     前記被験者の視線を検出する視線検出部と、
     前記視線検出部において前記被験者の視線が有効エリアに向けられたことが検出された場合に前記光源から光を射出させ、前記瞳孔画像取得装置で取得される前記画像に基づいて前記被験者の瞳孔径を計測する制御部と
     を備える対光反射計測装置。
    A light source that emits light when certain conditions are met,
    A pupil image acquisition device that acquires an image of the subject's pupil,
    A line-of-sight detection unit that detects the line of sight of the subject,
    A pupil diameter of the subject is emitted based on the image captured by the pupil image capturing device when light is emitted from the light source when it is detected that the subject's line of sight is directed to the effective area in the line-of-sight detection unit. A light reflex measuring device equipped with a control unit for measuring.
  2.  前記有効エリアは、前記光源の発光領域に対応した領域に設定される
     請求項1に記載の対光反射計測装置。
    The light reflection measurement device according to claim 1, wherein the effective area is set in a region corresponding to a light emitting region of the light source.
  3.  前記光源から射出された光の光量及び発光時間を計測情報として記憶する記憶部を備え、
     前記制御部は、記憶部に記憶された過去の計測情報に基づいて、光量及び発光時間の少なくとも一方を設定する
     請求項1又は請求項2に記載の対光反射計測装置。
    A storage unit for storing the amount of light emitted from the light source and the light emission time as measurement information is provided.
    The light reflection measurement device according to claim 1, wherein the control unit sets at least one of a light amount and a light emission time based on past measurement information stored in the storage unit.
  4.  前記光源の周囲光を検出する周囲光センサを更に備え、
     前記制御部は、前記過去の計測情報及び前記周囲光センサの検出結果に基づいて、前記光量及び前記発光時間の少なくとも一方を設定する
     請求項3に記載の対光反射計測装置。
    Further comprising an ambient light sensor for detecting ambient light of the light source,
    The light reflection measurement device according to claim 3, wherein the control unit sets at least one of the light amount and the light emission time based on the past measurement information and a detection result of the ambient light sensor.
  5.  被験者の視線を検出することと、
     前記被験者の視線が有効エリアに向けられたことが検出された場合に光源から光を射出することと、
     前記被験者の瞳孔の画像を取得し、取得した前記画像に基づいて前記被験者の瞳孔径を計測することと
     を含む対光反射計測方法。
    Detecting the gaze of the subject,
    When it is detected that the subject's line of sight is directed to the effective area, light is emitted from the light source, and
    Acquiring an image of the pupil of the subject, and measuring the pupil diameter of the subject based on the acquired image.
  6.  被験者の視線を検出する処理と、
     前記被験者の視線が有効エリアに向けられたことが検出された場合に光源から光を射出させる処理と、
     前記被験者の瞳孔の画像を取得し、取得した前記画像に基づいて前記被験者の瞳孔径を計測する処理と
     をコンピュータに実行させる対光反射計測プログラム。
    The process of detecting the subject's line of sight and
    A process of emitting light from a light source when it is detected that the subject's line of sight is directed to an effective area,
    A light reflex measurement program that acquires an image of the pupil of the subject and causes a computer to perform a process of measuring the pupil diameter of the subject based on the acquired image.
PCT/JP2019/044656 2019-03-07 2019-11-14 Light reflex measurement device, light reflex measurement method, and light reflex measurement program WO2020179136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041844 2019-03-07
JP2019041844A JP2020141906A (en) 2019-03-07 2019-03-07 Pupillary light reflex measurement device, pupillary light reflex measurement method, and pupillary light reflex measurement program

Publications (1)

Publication Number Publication Date
WO2020179136A1 true WO2020179136A1 (en) 2020-09-10

Family

ID=72337873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044656 WO2020179136A1 (en) 2019-03-07 2019-11-14 Light reflex measurement device, light reflex measurement method, and light reflex measurement program

Country Status (2)

Country Link
JP (1) JP2020141906A (en)
WO (1) WO2020179136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024189727A1 (en) * 2023-03-13 2024-09-19 日本電気株式会社 Image processing device, image processing method, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216118A (en) * 2002-12-24 2004-08-05 Matsushita Electric Works Ltd Perimeter
JP2015502238A (en) * 2011-12-20 2015-01-22 アイチェック ヘルス コネクション, インコーポレイテッド Video game for monitoring visual field defects in glaucoma
JP2016022150A (en) * 2014-07-18 2016-02-08 株式会社トプコン Visual function examination device and visual function examination system
JP2016532517A (en) * 2013-09-02 2016-10-20 オキュスペクト オサケ ユキチュア Threshold inspection and determination
CN106037626A (en) * 2016-07-12 2016-10-26 吴越 Head-mounted visual field inspector
WO2017077676A1 (en) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 Camera system, feeding system, imaging method, and imaging device
JP2017213062A (en) * 2016-05-30 2017-12-07 株式会社トプコン Ophthalmologic imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216118A (en) * 2002-12-24 2004-08-05 Matsushita Electric Works Ltd Perimeter
JP2015502238A (en) * 2011-12-20 2015-01-22 アイチェック ヘルス コネクション, インコーポレイテッド Video game for monitoring visual field defects in glaucoma
JP2016532517A (en) * 2013-09-02 2016-10-20 オキュスペクト オサケ ユキチュア Threshold inspection and determination
JP2016022150A (en) * 2014-07-18 2016-02-08 株式会社トプコン Visual function examination device and visual function examination system
WO2017077676A1 (en) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 Camera system, feeding system, imaging method, and imaging device
JP2017213062A (en) * 2016-05-30 2017-12-07 株式会社トプコン Ophthalmologic imaging apparatus
CN106037626A (en) * 2016-07-12 2016-10-26 吴越 Head-mounted visual field inspector

Also Published As

Publication number Publication date
JP2020141906A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US7695138B2 (en) Safe eye detection
US20160345818A1 (en) Eyeblink measurement method, eyeblink measurement apparatus, and non-transitory computer-readable medium
US10722112B2 (en) Measuring device and measuring method
US20230098675A1 (en) Eye-gaze detecting device, eye-gaze detecting method, and computer-readable storage medium
US11266307B2 (en) Evaluation device, evaluation method, and non-transitory storage medium
US11890057B2 (en) Gaze detection apparatus, gaze detection method, and gaze detection program
JP6221247B2 (en) Ophthalmic equipment
WO2020179136A1 (en) Light reflex measurement device, light reflex measurement method, and light reflex measurement program
EP3884873B1 (en) Evaluation device, evaluation method, and evaluation program
JP5930660B2 (en) Ophthalmic equipment
WO2022038815A1 (en) Distance calculation device, distance calculation method, and distance calculation program
WO2020256148A1 (en) Evaluation device, evaluation method, and evaluation program
WO2022038814A1 (en) Corneal curvature radius calculation device, line-of-sight detection device, corneal curvature radius calculation method, and corneal curvature radius calculation program
US20210244270A1 (en) Visual performance examination device, visual performance examination method, and computer program
JP7027958B2 (en) Evaluation device, evaluation method, and evaluation program
US10996747B2 (en) Line-of-sight detection device, line-of-sight detection method, and medium
JP6586599B2 (en) Eye refractive power measuring device
JP7263959B2 (en) Eyeball detection device, sight line detection device, eyeball detection method, and eyeball detection program
KR101628543B1 (en) Gaze tracking apparatus and method for measuring tracking accuracy of the same
JP2024090620A (en) Subject specification device, visual line detection device, subject specification method and subject specification program
JP2019024571A (en) Visual line detection device and visual line detection method
WO2021059746A1 (en) Line-of-sight data processing device, evaluation device, line-of-sight data processing method, evaluation method, line-of-sight data processing program, and evaluation program
WO2022044395A1 (en) Sight line detection device, sight line detection method, and sight line detection program
WO2024134972A1 (en) Line-of-sight detection device, line-of-sight detection method, and line-of-sight detection program
JP2016154910A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918085

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918085

Country of ref document: EP

Kind code of ref document: A1