WO2020179026A1 - Display device and method for manufacturing same - Google Patents
Display device and method for manufacturing same Download PDFInfo
- Publication number
- WO2020179026A1 WO2020179026A1 PCT/JP2019/008924 JP2019008924W WO2020179026A1 WO 2020179026 A1 WO2020179026 A1 WO 2020179026A1 JP 2019008924 W JP2019008924 W JP 2019008924W WO 2020179026 A1 WO2020179026 A1 WO 2020179026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating film
- interlayer insulating
- display device
- gate
- opening
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 36
- 239000010410 layer Substances 0.000 claims abstract description 296
- 239000011229 interlayer Substances 0.000 claims abstract description 188
- 229910052751 metal Inorganic materials 0.000 claims abstract description 107
- 239000002184 metal Substances 0.000 claims abstract description 107
- 239000010408 film Substances 0.000 claims description 397
- 239000004065 semiconductor Substances 0.000 claims description 74
- 239000000758 substrate Substances 0.000 claims description 61
- 239000010409 thin film Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 31
- 239000004020 conductor Substances 0.000 claims description 28
- 239000003990 capacitor Substances 0.000 claims description 27
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 238000000059 patterning Methods 0.000 claims description 9
- 230000000149 penetrating effect Effects 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 5
- 238000005401 electroluminescence Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 229920002120 photoresistant polymer Polymers 0.000 claims description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 230000036211 photosensitivity Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 description 28
- 229920005989 resin Polymers 0.000 description 28
- 238000007789 sealing Methods 0.000 description 20
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000011777 magnesium Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000002585 base Substances 0.000 description 10
- 239000011575 calcium Substances 0.000 description 10
- 239000011800 void material Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000005525 hole transport Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- -1 polysiloxane Polymers 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 229910052789 astatine Inorganic materials 0.000 description 4
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 150000008376 fluorenones Chemical class 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 150000007978 oxazole derivatives Chemical class 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052705 radium Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 2
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000007857 hydrazones Chemical class 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 150000004986 phenylenediamines Chemical class 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 150000003219 pyrazolines Chemical class 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 1
- YZVWKHVRBDQPMQ-UHFFFAOYSA-N 1-aminopyrene Chemical class C1=C2C(N)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 YZVWKHVRBDQPMQ-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical class C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N 4-penten-2-one Chemical class CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- CFNMUZCFSDMZPQ-GHXNOFRVSA-N 7-[(z)-3-methyl-4-(4-methyl-5-oxo-2h-furan-2-yl)but-2-enoxy]chromen-2-one Chemical compound C=1C=C2C=CC(=O)OC2=CC=1OC/C=C(/C)CC1OC(=O)C(C)=C1 CFNMUZCFSDMZPQ-GHXNOFRVSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 150000001788 chalcone derivatives Chemical class 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- UFQXGXDIJMBKTC-UHFFFAOYSA-N oxostrontium Chemical compound [Sr]=O UFQXGXDIJMBKTC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- FIZIRKROSLGMPL-UHFFFAOYSA-N phenoxazin-1-one Chemical compound C1=CC=C2N=C3C(=O)C=CC=C3OC2=C1 FIZIRKROSLGMPL-UHFFFAOYSA-N 0.000 description 1
- UOMHBFAJZRZNQD-UHFFFAOYSA-N phenoxazone Natural products C1=CC=C2OC3=CC(=O)C=CC3=NC2=C1 UOMHBFAJZRZNQD-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 1
- 229910001637 strontium fluoride Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
Definitions
- the present invention relates to a display device and a manufacturing method thereof.
- a self-luminous organic EL display device using an organic electroluminescence (hereinafter also referred to as EL) element has been attracting attention.
- EL organic electroluminescence
- the active matrix driving type organic EL display device for example, a thin film transistor (hereinafter, also referred to as a TFT) is provided for each sub-pixel which is a minimum unit of an image.
- a top gate type TFT having a channel layer made of low temperature polysilicon is provided in a peripheral region, and a top gate type TFT having a channel layer made of an oxide semiconductor is provided in a display region.
- An organic EL display device is disclosed.
- a top-gate TFT is, for example, provided on a base substrate via a base coat film, a semiconductor layer including an intrinsic region and a pair of conductor regions, and a gate insulating film provided so as to cover the semiconductor layer, A gate electrode provided on the gate insulating film so as to overlap with the intrinsic region of the semiconductor layer, an interlayer insulating film provided so as to cover the gate electrode, and a pair of conductor regions of the semiconductor layer provided on the interlayer insulating film. And a source electrode and a drain electrode that are electrically connected to each other.
- the interlayer insulating film is formed of, for example, an inorganic insulating film formed by a CVD (Chemical Vapor Deposition) method, and if foreign matter is present on the film formation surface, the foreign matter is used as a nucleus to form the CVD film. Due to abnormal growth, a cavity called a void may be formed in the interlayer insulating film. Then, for example, the gate electrode and the source electrode and the drain electrode are likely to be short-circuited, so that a point defect, a line defect, or the like is likely to occur in the display region where an image is displayed.
- CVD Chemical Vapor Deposition
- the present invention has been made in view of the above points, and an object thereof is to suppress the occurrence of short-circuit defects due to voids formed in the interlayer insulating film.
- a display device includes a base substrate, a semiconductor layer, a gate insulating film, a gate metal layer, a first interlayer insulating film, an intermediate metal layer, and A two-layer insulating film, an organic insulating film, and a source metal layer are laminated in this order, a thin film layer in which a thin film and a capacitor are arranged for each sub pixel, and a light emitting element provided on the thin film layer and a light emitting element is arranged for each sub pixel.
- the thin film is a first thin film having a first semiconductor layer provided as the semiconductor layer, a gate insulating film, and a first gate electrode provided as the gate metal layer.
- the capacitor includes the first gate electrode, the first interlayer insulating film, and the capacitor electrode provided as the intermediate metal layer and arranged to overlap the first gate electrode in plan view.
- the capacitive electrode is provided with a first opening so as to overlap the first gate electrode in a plan view and penetrate the capacitive electrode, and the first interlayer insulating film and the second interlayer insulating film are provided.
- the organic insulating film is arranged inside the peripheral edge of the first opening in a plan view, and a second opening is provided so as to penetrate the first interlayer insulating film and the second interlayer insulating film.
- the first contact hole is provided inside the peripheral edge of the second opening in a plan view, and the first contact hole is provided so as to penetrate the organic insulating film, and the first gate electrode is passed through the first contact hole. Is electrically connected to a connection wiring provided as the source metal layer, and the organic insulating film is provided so as to cover a side surface of the second opening.
- the method for manufacturing a display device includes a thin film transistor layer forming step of forming a thin film transistor layer and a thin film transistor layer on each of which a sub pixel is disposed on a base substrate;
- a light emitting element layer forming step of forming a light emitting element layer in which a light emitting element is arranged is provided for each, and the thin film has a first thin film, and the first thin film includes a first semiconductor layer and a first semiconductor layer.
- the gate insulating film provided above and the first gate electrode provided on the gate insulating film are provided, and the capacitor is the first gate electrode and the first gate electrode provided on the first gate electrode.
- An interlayer insulating film and a capacitive electrode provided on the first interlayer insulating film and arranged so as to overlap the first gate electrode in a plan view are provided, and the thin film layer forming step is performed on the base substrate.
- the intermediate metal film is formed.
- the second interlayer insulating film forming step of forming the second interlayer insulating film and the first interlayer insulating film and the second interlayer insulating film were penetrated so as to be arranged inside the peripheral edge of the first opening in a plan view.
- the organic insulating film is patterned and viewed in a plan view.
- the organic insulating film is patterned so as to cover the side surface of the second opening.
- the organic insulating film laminated between the second interlayer insulating film and the source metal layer covers the side surface of the second opening formed in the first interlayer insulating film and the second interlayer insulating film. Therefore, it is possible to suppress the occurrence of short-circuit defects due to voids formed in the interlayer insulating film.
- FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
- FIG. 2 is a plan view showing a schematic configuration of a display region of the organic EL display device according to the first embodiment of the present invention.
- FIG. 3 is a plan view of a TFT layer forming the organic EL display device according to the first embodiment of the present invention.
- FIG. 4 is an equivalent circuit diagram of a TFT layer that constitutes the organic EL display device according to the first embodiment of the present invention.
- FIG. 5 is a cross-sectional view of the organic EL display device taken along the line VV in FIG.
- FIG. 6 is a cross-sectional view of the TFT layer constituting the organic EL display device taken along the line VI-VI in FIG.
- FIG. 7 is a cross-sectional view showing an organic EL layer forming the organic EL display device according to the first embodiment of the present invention.
- FIG. 8 is a cross-sectional view schematically showing a laminated form of thin films formed on the base substrate when manufacturing the organic EL display device according to the first embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing a step of forming a resist pattern in the opening forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and corresponds to FIG. 5.
- FIG. 5 is a cross-sectional view showing an organic EL layer forming the organic EL display device according to the first embodiment of the present invention.
- FIG. 10 is a cross-sectional view showing a step of forming a resist pattern in the opening forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a diagram corresponding to FIG. 6.
- FIG. 11 is a cross-sectional view showing a step of forming a second opening in the opening forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a view corresponding to FIG. ..
- FIG. 12 is a cross-sectional view showing a step of forming a third opening in the opening forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a view corresponding to FIG. 6. .. FIG.
- FIG. 13 is a cross-sectional view showing a step of applying an organic insulating film in the contact hole forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a view corresponding to FIG. 5.
- FIG. 14 is a cross-sectional view showing a step of applying an organic insulating film in the contact hole forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a diagram corresponding to FIG. 6.
- FIG. 15 is a cross-sectional view showing a step of patterning the organic insulating film in the contact hole forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, which corresponds to FIG. 5.
- FIG. 5 is a cross-sectional view showing a step of applying an organic insulating film in the contact hole forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, which corresponds to FIG. 5.
- FIG. 16 is a cross-sectional view showing a step of patterning the organic insulating film in the contact hole forming step of the method for manufacturing an organic EL display device according to the first embodiment of the present invention, and is a diagram corresponding to FIG. 6.
- FIG. 17 is a cross-sectional view showing a source metal layer forming step of the method for manufacturing the organic EL display device according to the first embodiment of the present invention, which is a view corresponding to FIG. 5.
- FIG. 18 is a cross-sectional view showing a source metal layer forming step of the method for manufacturing the organic EL display device according to the first embodiment of the present invention, and is a view corresponding to FIG. 6.
- FIG. 19 is a cross-sectional view of the organic EL display device according to the second embodiment of the present invention and is a view corresponding to FIG. 20 is a cross-sectional view of the organic EL display device according to the second embodiment of the present invention, which is a view corresponding to FIG. 6.
- FIG. 21 is a cross-sectional view showing a step of forming a resist pattern in the opening forming step of the method for manufacturing an organic EL display device according to the second embodiment of the present invention, which corresponds to FIG. 22 is a cross-sectional view showing a step of forming a resist pattern in the opening forming step of the method for manufacturing an organic EL display device according to the second embodiment of the present invention, and is a diagram corresponding to FIG. FIG.
- FIG. 23 is a cross-sectional view showing a step of forming the second opening in the opening forming step of the method for manufacturing an organic EL display device according to the second embodiment of the present invention, and is a view corresponding to FIG. 19. ..
- FIG. 24 is a cross-sectional view showing a step of forming a third opening in the opening forming step of the method for manufacturing an organic EL display device according to the second embodiment of the present invention, and is a view corresponding to FIG. 20. ..
- FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of the present embodiment.
- 2 is a plan view showing a schematic configuration of the display area D of the organic EL display device 50a.
- FIG. 3 is a plan view of the TFT layer 30a that constitutes the organic EL display device 50a.
- FIG. 4 is an equivalent circuit diagram of the TFT layer 30a. 5 and 6 are cross-sectional views of the organic EL display device 50a taken along line VV and line VI-VI in FIG.
- the organic EL display device 50a includes, for example, a rectangular display area D for displaying an image and a frame area F provided around the display area D.
- the rectangular display area D is illustrated, but the rectangular shape may have, for example, a shape in which the sides are arcuate, a shape in which the corners are arcuate, or a part of the sides.
- a substantially rectangular shape such as a shape with a cutout is also included.
- a plurality of sub-pixels P are arranged in a matrix in the display area D. Further, in the display area D, as shown in FIG. 2, for example, a sub-pixel P having a red light-emitting area Er for displaying a red color, a sub-pixel P having a green light-emitting area Eg for performing a green color display, And sub-pixels P having a blue light emitting region Eb for displaying blue are provided adjacent to each other. In the display area D, for example, one pixel is configured by three adjacent sub-pixels P having the red light emitting area Er, the green light emitting area Eg, and the blue light emitting area Eb.
- a terminal portion T is provided at the right end of the frame area F in FIG. Further, in the frame region F, as shown in FIG. 1, between the display region D and the terminal portion T, a bent portion B which can be bent at 180° (in a U shape) with the longitudinal direction in the drawing as a bending axis. Are provided so as to extend in one direction (vertical direction in the figure).
- the organic EL display device 50a includes a resin substrate layer 10 provided as a base substrate, a TFT layer 30a provided on the resin substrate layer 10, and a light emitting element on the TFT layer 30a.
- the organic EL element layer 40 provided as a layer and the sealing film 45 provided on the organic EL element layer 40 are provided.
- the resin substrate layer 10 is made of, for example, a polyimide resin or the like.
- the TFT layer 30a includes a base coat film 11, a semiconductor layer (for example, a first semiconductor layer 12a), a gate insulating film 13, a gate metal layer (for example, a gate line 14g), a first interlayer, which are sequentially provided on the resin substrate layer 10.
- the insulating film 15, the intermediate metal layer (for example, the capacitor electrode 16c), the second interlayer insulating film 17, the organic insulating film 18, the source metal layer (for example, the source line 19f), and the planarization film 20 are provided.
- the TFT layer 30a includes a base coat film 11 provided on the resin substrate layer 10 and a first initialization provided on the base coat film 11 for each sub-pixel P.
- TFT 9a threshold voltage compensation TFT 9b, write control TFT 9c, drive TFT 9d, power supply TFT 9e, light emission control TFT 9f, second initialization TFT 9g and capacitor 9h, and flattening film 20 provided on each TFT 9a to 9g and capacitor 9h. Equipped with.
- the TFT layer 30a is provided with a plurality of gate lines 14g so as to extend parallel to each other in the lateral direction in the drawings.
- the TFT layer 30a is provided with a plurality of light emission control lines 14e as gate metal layers so as to extend in the lateral direction in FIG.
- FIGS. 1 the TFT layer 30a
- the TFT layer 30a is provided with a plurality of initialization power supply lines 16i extending in parallel to each other in the lateral direction in the drawings.
- Each light emission control line 14e is provided adjacent to each gate line 14g and each initialization power supply line 16i, as shown in FIGS.
- the TFT layer 30a is provided with a plurality of source lines 19f so as to extend parallel to each other in the vertical direction in the drawings.
- the TFT layer 30a is provided with a plurality of power supply lines 19g so as to extend in parallel to each other in the vertical direction in the drawings.
- Each power supply line 19g is provided adjacent to each source line 19f, as shown in FIGS. 2 and 3.
- the first initialization TFT 9a to the second initialization TFT 9g include a first terminal (see Na in FIG. 4) and a second terminal (see Nb in FIG. 4) which are arranged so as to be separated from each other. And a control terminal for controlling conduction between the first terminal and the second terminal.
- the first terminal and the second terminal of each of the TFTs 9a to 9g are conductor regions of the first semiconductor layer 12a and the second semiconductor layer 12b that are integrally provided with each other.
- the first initialization TFT 9a has its control terminal electrically connected to the corresponding gate line 14g, and its first terminal is the first gate electrode of the capacitor 9h described later. 14a, and its second terminal is electrically connected to the corresponding initialization power supply line 16i.
- the control terminal of the first initialization TFT 9a is, as shown in FIG. 3, two portions of the gate line 14g that overlap the first semiconductor layer 12a.
- the first terminal of the first initialization TFT 9a has a first gate electrode of the capacitor 9h via a third contact hole Hc, a first connection wiring 19e described later, and a first contact hole Ha, as shown in FIG. It is electrically connected to 14a.
- the second terminal of the first initialization TFT 9a is electrically connected to the initialization power supply line 16i through the fourth contact hole Hd, the second connection wiring 19h and the fifth contact hole He, as shown in FIG. It is connected.
- the first initialization TFT 9a is configured to initialize the voltage applied to the control terminal of the drive TFT 9d by applying the voltage of the initialization power line 16i to the capacitor 9h.
- the first initializing TFT 9a scans before the gate line 14g electrically connected to the control terminals of the threshold voltage compensating TFT 9b, the write control TFT 9c, and the second initializing TFT 9g, which will be described later. It is electrically connected to the gate line 14g.
- the first initialization TFT 9a to the emission control TFT 9f correspond to the pixel circuit in the nth row
- the second initialization TFT 9g corresponds to the pixel circuit in the n-1th row. is there.
- the threshold voltage compensation TFT 9b has its control terminal electrically connected to the corresponding gate line 14g, and its first terminal electrically connected to the second terminal of the drive TFT 9d.
- the second terminal is electrically connected to the control terminal of the driving TFT 9d.
- the control terminal of the threshold voltage compensation TFT 9b is, as shown in FIG. 3, two portions of the gate line 14g that overlap the first semiconductor layer 12a.
- the first terminal of the threshold voltage compensation TFT 9b is integrally formed with the second terminal of the driving TFT 9d as shown in FIG. 3, and is electrically connected to the second terminal of the driving TFT 9d.
- the second terminal of the threshold voltage compensating TFT 9b is, as shown in FIG.
- the threshold voltage compensating TFT 9b is configured to compensate the threshold voltage of the driving TFT 9d by setting the driving TFT 9d in a diode connection state according to the selection of the gate line 14g.
- the write control TFT 9c has its control terminal electrically connected to the corresponding gate line 14g and its first terminal electrically connected to the corresponding source line 19f in each sub-pixel P.
- the second terminal is electrically connected to the first terminal of the driving TFT 9d.
- the control terminal of the write control TFT 9c is a portion that overlaps the first semiconductor layer 12a of the gate line 14g, as shown in FIG.
- the first terminal of the write control TFT 9c is electrically connected to the source line 19f through the sixth contact hole Hf, as shown in FIG.
- the second terminal of the write control TFT 9c is formed integrally with the first terminal of the drive TFT 9d and is electrically connected to the first terminal of the drive TFT 9d.
- the write control TFT 9c is configured to apply the voltage of the source line 19f to the first terminal of the drive TFT 9d according to the selection of the gate line 14g.
- the drive TFT 9d has its control terminal electrically connected to the first terminal of the first initialization TFT 9a and the second terminal of the threshold voltage compensation TFT 9b in each sub-pixel P, and its first terminal. Are electrically connected to the respective second terminals of the write control TFT 9c and the power supply TFT 9e, and the second terminals thereof are electrically connected to the respective first terminals of the threshold voltage compensation TFT 9b and the light emission control TFT 9f.
- the drive TFT 9d is provided as a first TFT, and a drive current according to a voltage applied between its control terminal and its first terminal is applied to the first terminal of the light emission control TFT 9f to apply the organic EL element. It is configured to control the current amount of 35.
- the driving TFT 9d includes a first semiconductor layer 12a, a gate insulating film 13, a first gate electrode (control terminal) 14a, a first semiconductor layer 12a, a first gate electrode 14a, a first gate electrode (control terminal) 14a and a first semiconductor layer 12a, which are sequentially provided on the base coat film 11.
- An interlayer insulating film 15 and a second interlayer insulating film 17 are provided.
- the first semiconductor layer 12a is provided on the base coat film 11 in a bent shape.
- FIG. 1 the driving TFT 9d includes a first semiconductor layer 12a, a gate insulating film 13, a first gate electrode (control terminal) 14a, a first semiconductor layer 12a, a first gate electrode 14a, a first gate electrode (control terminal) 14a and a first semiconductor layer 12a, which are sequentially provided on the base coat film 11.
- An interlayer insulating film 15 and a second interlayer insulating film 17 are provided.
- the first semiconductor layer 12a is provided on the base coat film
- the first semiconductor layer 12a includes an intrinsic region 12ac provided so as to overlap the first gate electrode 14a in a plan view, and a first conductor region provided so as to sandwich the intrinsic region 12ac. (Not shown) and the second conductor region 12ab.
- the intrinsic region 12ac has an intermediate portion provided in a substantially V shape in a plan view.
- one conductor region of the first semiconductor layer 12a is provided as a first terminal, and as shown in FIG. 3, is integrally formed with each second terminal of the write control TFT 9c and the power supply TFT 9e to write data. It is electrically connected to each second terminal of the control TFT 9c and the power supply TFT 9e.
- the other conductor region of the first semiconductor layer 12a is provided as a second terminal, and as shown in FIG. 3, it is integrally formed with each first terminal of the threshold voltage compensating TFT 9b and the emission control TFT 9f to obtain a threshold voltage.
- the compensation TFT 9b and the emission control TFT 9f are electrically connected to the respective first terminals.
- the gate insulating film 13 is provided so as to cover the first semiconductor layer 12a, as shown in FIG.
- the first gate electrode 14a is provided on the gate insulating film 13 as a gate metal layer in a rectangular island shape in plan view so as to overlap with the channel region 12ac of the semiconductor layer 12a. ing.
- the first interlayer insulating film 15 is provided so as to cover the first gate electrode 14a, as shown in FIG. Further, as shown in FIG. 5, the second interlayer insulating film 17 is provided on the first interlayer insulating film 15 via a capacitance electrode 16c described later.
- the power supply TFT 9e has its control terminal electrically connected to the corresponding light emission control line 14e and its first terminal electrically connected to the corresponding power supply line 19g.
- the second terminal is electrically connected to the first terminal of the driving TFT 9d.
- the power supply TFT 9e is provided as a second TFT, and is configured to apply the voltage of the power supply line 19g to the first terminal of the drive TFT 9d according to the selection of the light emission control line 14e.
- the power supply TFT 9e includes a second semiconductor layer 12b, a gate insulating film 13, and a light emission control line (second gate electrode, control terminal) provided in this order on the base coat film 11. ) 14e, a first interlayer insulating film 15 and a second interlayer insulating film 17.
- the second semiconductor layer 12b is provided in a bent shape on the base coat film 11.
- the second semiconductor layer 12b includes an intrinsic region 12bc provided so as to overlap the emission control line 14e in a plan view and a first conductor region 12ba provided so as to sandwich the intrinsic region 12bc. And a second conductor region 12bb.
- the first conductor region 12ba is provided as a second terminal, is formed integrally with the first terminal of the drive TFT 9d, and is electrically connected to the first terminal of the drive TFT 9d, as shown in FIG. ..
- the second conductor region 12bb is provided as a first terminal, and as shown in FIGS. 3 and 6, electricity is supplied to the power supply line 19g via the second contact hole Hb formed in the organic insulating film 18 described later. Is connected.
- the gate insulating film 13 is provided so as to cover the second semiconductor layer 12b, as shown in FIG.
- the second gate electrode (control terminal) is provided as a gate metal layer and is a portion that overlaps the second semiconductor layer 12b of the emission control line 14e.
- the first interlayer insulating film 15 is provided so as to cover the light emission control line 14e, as shown in FIG. Further, the second interlayer insulating film 17 is provided on the first interlayer insulating film 15, as shown in FIG. Further, as shown in FIGS. 3 and 6, the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 have the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17.
- a third opening Mc is provided so as to penetrate 17 and reach the second conductor region 12bb. Further, as shown in FIGS.
- the organic insulating film 18 is provided with a second contact hole Hb so as to overlap the third opening Mc in a plan view and to penetrate the organic insulating film 18. ..
- the second contact hole Hb is provided so as to be adjacent to the light emission control line 14e, as shown in FIGS. Further, as shown in FIG. 3, the peripheral edge of the third opening Mc is provided outside the peripheral edge of the second contact hole Hb in plan view. Further, the side surface of the second contact hole Hb is inclined in a forward taper shape toward the resin substrate layer 10 side.
- the second semiconductor layer 12b is shown separated from the first semiconductor layer 12a by a two-dot chain line in FIG. 3 for convenience, it is provided integrally with the first semiconductor layer 12a as described above.
- each light emitting control TFT 9f its control terminal is electrically connected to the corresponding light emission control line 14e, and its first terminal is electrically connected to the second terminal of the drive TFT 9d.
- the second terminal is electrically connected to the first electrode 31 of the organic EL element 35 described later.
- the control terminal of the light emission control TFT 9f is a portion that overlaps with the first semiconductor layer 12a of the light emission control line 14e, as shown in FIG.
- the first terminal of the light emission control TFT 9f is formed integrally with the second terminal of the driving TFT 9d and is electrically connected to the second terminal of the driving TFT 9d.
- the second terminal of the emission control TFT 9f is electrically connected to the first electrode 31 of the organic EL element 35 via the seventh contact hole Hg and the third connection wiring 19i, as shown in FIG. ..
- the light emission control TFT 9f is configured to apply the drive current to the organic EL element 35 according to the selection of the light emission control line 14e.
- the control terminal of the second initialization TFT 9g is electrically connected to the corresponding gate line 14g, and the first terminal thereof is connected to the first terminal 31 of the organic EL element 35. It is electrically connected, and its second terminal is electrically connected to the corresponding initialization power supply line 16i.
- the control terminal of the second initialization TFT 9g is a portion that overlaps the first semiconductor layer 12a of the gate line 14g, as shown in FIG.
- the first terminal of the second initialization TFT 9g is integrally formed with the second terminal of the emission control TFT 9f and electrically connected to the first electrode 31 of the organic EL element 35. There is.
- the second terminal of the second initialization TFT 9g is electrically connected to the initialization power supply line 16i via the fourth contact hole Hd, the second connection wiring 19h and the fifth contact hole He, as shown in FIG. It is connected.
- the second initialization TFT 9g is configured to reset the charge accumulated in the first electrode 31 of the organic EL element 35 in accordance with the selection of the gate line 14g.
- the capacitor 9h includes a first gate electrode 14a, a first interlayer insulating film 15 provided on the gate electrode 14a, and a plane on the gate electrode 14a on the first interlayer insulating film 15.
- the capacitor electrode 16c is provided so as to overlap with the eyes.
- the first gate electrode 14a of each sub-pixel P is formed integrally with the first gate electrode 14a of the driving TFT 9d, and the first gate electrode of the driving TFT 9d is formed.
- the electrode 14a is electrically connected to the first terminal of the first initialization TFT 9a and the second terminal of the threshold voltage compensation TFT 9b, and the capacitance electrode 16c is electrically connected to the corresponding power supply line 19g through the eighth contact hole Hh. It is connected.
- the capacitor 9h stores the voltage at the corresponding source line 19f when the corresponding gate line 14g is in the selected state, and holds the stored voltage so that the corresponding gate line 14g is in the non-selected state. It is configured to maintain the voltage applied to the first gate electrode 14a of the drive TFT 9d.
- the capacitance electrode 16c is provided to the outside of the peripheral edge of the gate electrode 14a over the entire peripheral edge of the first gate electrode 14a.
- the capacitance electrode 16c is provided with a first opening Ma that overlaps the first gate electrode 14a in plan view and penetrates the capacitance electrode 16c.
- a second interlayer insulating film 17 is provided on the capacitance electrode 16c so as to cover the capacitance electrode 16c.
- the first interlayer insulating film 15 and the second interlayer insulating film 17 are arranged inside the peripheral edge of the first opening Ma in plan view, and the first interlayer insulating film is formed.
- a second opening Mb is provided so as to penetrate 15 and the second interlayer insulating film 17. Further, on the second interlayer insulating film 17, as shown in FIG.
- an organic insulating film 18 formed of a coating type insulating material is provided. Further, as shown in FIGS. 3 and 5, the organic insulating film 18 is arranged inside the peripheral edge of the second opening Mb in plan view, and the first contact hole Ha is formed so as to penetrate the organic insulating film 18. Is provided. Further, as shown in FIGS. 3 and 5, the first gate electrode 14a is electrically connected to the first connection wiring 19e provided as the source metal layer via the first contact hole Ha. The organic insulating film 18 is provided so as to cover the side surface of the second opening Mb, as shown in FIG. Further, as shown in FIG. 3, the peripheral edge of the second opening Mb is provided outside the peripheral edge of the first contact hole Ha in plan view. Further, the side surface of the first contact hole Ha is inclined in a forward taper shape toward the resin substrate layer 10 as shown in FIG.
- the flattening film 20 is made of, for example, an organic resin material such as polyimide resin.
- the first to fifth contact holes Ha to He provided in the TFT layer 30a will be described below.
- the first contact hole Ha is for electrically connecting the gate metal layer and the source metal layer.
- the second to fourth contact holes Hb to Hd are for electrically connecting the conductor region of the semiconductor layer and the source metal layer.
- the fifth contact hole He is for electrically connecting the intermediate metal layer and the source metal layer.
- the first contact hole Ha and the second contact hole Hb are provided in the organic insulating film 18 filling the corresponding openings of the first interlayer insulating film 15 and the second interlayer insulating film 17, as shown in FIGS. Has been. This is because the capacitance electrode 16c is provided near the first contact hole Ha and the emission control line 14e is provided near the second contact hole Hb, so that the source metal layer, the capacitance electrode 16c and the emission control line 14e are provided. This is because it is easy to short circuit.
- the third contact hole Hc is provided in the interlayer insulating film (first interlayer insulating film 15 and second interlayer insulating film 17) as shown in FIG. This is because there is no metal layer near the third contact hole Hc above the semiconductor layer, as shown in FIG. 5, as compared with the first contact hole Ha and the second contact hole Hc.
- the structure of the first contact hole Ha to the third contact hole Hc described above is an example, and if the distance between the contact hole and the metal layer is long, the contact hole is provided in the interlayer insulating film and the contact hole is separated from the metal layer. If the distance is short, the contact hole may be provided in the organic insulating film inside the interlayer insulating film.
- the organic EL element layer 40 includes a plurality of organic EL elements 35 provided as a plurality of light emitting elements so as to be arranged in a matrix on the flattening film 19, and each organic EL element. 35 and a sealing film 45 provided so as to cover 35.
- the organic EL element 35 has an island-shaped first electrode 31 on the flattening film 20 and an edge provided so as to cover the peripheral end of the first electrode 31.
- a cover 32, an organic EL layer 33 (not shown) provided on the first electrode 31, and a second electrode 34 provided on the organic EL layer 33 so as to be common to the entire display region D are provided.
- the first electrode 31 is electrically connected to the second terminal of the light emission control TFT 9f of each sub-pixel P via a contact hole formed in the flattening film 20.
- the first electrode 31 has a function of injecting holes into the organic EL layer 33.
- the first electrode 31 is more preferably formed of a material having a large work function in order to improve the efficiency of injecting holes into the organic EL layer 33.
- a material forming the first electrode 31 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au).
- the material forming the first electrode 31 may be an alloy such as astatine (At)/oxidized astatine (AtO 2 ). Further, the material forming the first electrode 31 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). It may be. Further, the first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Examples of the compound material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
- the edge cover 32 is provided in a grid shape so as to be common to the entire display area D.
- examples of the material forming the edge cover 32 include a polyimide resin, an acrylic resin, a polysiloxane resin, and a novolac resin.
- the organic EL layer 33 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer 5, which are sequentially provided on the first electrode 31. ing.
- the hole injection layer 1 is also called an anode buffer layer and has a function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 close to each other and improving the hole injection efficiency from the first electrode 31 to the organic EL layer 33.
- a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative examples thereof include hydrazone derivatives and stilbene derivatives.
- the hole transport layer 2 has a function of improving the efficiency of transporting holes from the first electrode 31 to the organic EL layer 33.
- examples of the material forming the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivatives, and oxadiazole.
- Derivatives imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples thereof include hydride amorphous silicon carbide, zinc sulfide, and zinc selenium.
- the light emitting layer 3 when the voltage is applied by the first electrode 31 and the second electrode 34, holes and electrons are injected from the first electrode 31 and the second electrode 34, respectively, and the holes and electrons are recombined. Area.
- the light emitting layer 3 is formed of a material having high luminous efficiency. Examples of the material forming the light emitting layer 3 include metal oxinoid compound [8-hydroxyquinoline metal complex], naphthalene derivative, anthracene derivative, diphenylethylene derivative, vinylacetone derivative, triphenylamine derivative, butadiene derivative, coumarin derivative.
- the electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3.
- examples of the material forming the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
- the electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 close to each other and improving the efficiency of injecting electrons from the second electrode 34 to the organic EL layer 33. With this function, The drive voltage of the organic EL element 35 can be lowered.
- the electron injection layer 5 is also called a cathode buffer layer.
- a material forming the electron injection layer 5 for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride.
- Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO) and the like can be mentioned.
- the second electrode 34 is provided so as to cover the organic EL layer 33 of each sub-pixel P and the edge cover 32 common to all the sub-pixels P. Further, the second electrode 34 has a function of injecting electrons into the organic EL layer 33. Further, the second electrode 34 is more preferably made of a material having a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 33.
- a material forming the second electrode 34 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au).
- the second electrode 34 is, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/oxidized astatine (AtO 2 ).
- the second electrode 34 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO). ..
- the second electrode 34 may be formed by stacking a plurality of layers made of the above materials.
- Examples of the material having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), and sodium.
- (Na)/potassium (K) lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al) Etc.
- the sealing film 45 is provided on the first sealing inorganic insulating film 41 provided so as to cover the second electrode 34 and the first sealing inorganic insulating film 41.
- the sealing organic film 42 and the second sealing inorganic insulating film 43 provided so as to cover the sealing organic film 42 are provided, and have a function of protecting the organic EL layer 33 from moisture, oxygen and the like.
- the first sealing inorganic insulating film 41 and the second sealing inorganic insulating film 43 are, for example, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and trisilicon tetroxide (Si 3 N 4 ).
- the sealing organic film 42 is made of, for example, an organic material such as acrylic resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
- the organic EL display device 50a having the above configuration, when the corresponding light emission control line 14e is first selected in each sub-pixel P and put into an inactive state, the organic EL element 35 is put into a non-light emitting state.
- the corresponding gate line 14g (electrically connected to the first initializing TFT 9a and the second initializing TFT 9g) is selected, and the gate signal is transmitted via the gate line 14g to the first initializing TFT 9a. Is input to the first initialization TFT 9a and the second initialization TFT 9g, the corresponding initialization power supply line 16i voltage is applied to the capacitor 9h, and the drive TFT 9d is turned on.
- the charge of the capacitor 9h is discharged, and the voltage applied to the control terminal (first gate electrode) 14a of the drive TFT 9d is initialized.
- the corresponding gate line 14g (electrically connected to the threshold voltage compensation TFT 9b and the write control TFT 9c) is selected and activated to turn on the threshold voltage compensation TFT 9b and the write control TFT 9c.
- a predetermined voltage corresponding to the source signal transmitted via the corresponding source line 19f is written in the capacitor 9h via the driving TFT 9d in the diode connection state, and initialized via the corresponding initialization power supply line 16i.
- the signal is applied to the first electrode 31 of the organic EL element 35, and the charge accumulated in the first electrode 31 is reset.
- the corresponding light emission control line 14e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and the drive current corresponding to the voltage applied to the control terminal (gate electrode) 16a of the drive TFT 9d is supplied from the corresponding power line 19g. It is supplied to the organic EL element 35. In this way, in the organic EL display device 50a, in each sub-pixel P, the organic EL element 35 emits light with the brightness corresponding to the drive current, and image display is performed.
- the method for manufacturing the organic EL display device 50a according to the present embodiment includes a TFT layer forming step including an opening forming step, a contact hole forming step, and a source metal layer forming step, an organic EL element layer forming step, and a sealing film. And a forming step.
- FIG. 8 is a cross-sectional view schematically showing a laminated form of thin films formed on the resin substrate layer 10 when the organic EL display device 50a is manufactured.
- 9 and 10 are cross-sectional views showing a step of forming the resist pattern Ra in the opening forming step of the method for manufacturing the organic EL display device 50a, which corresponds to FIGS. 5 and 6.
- FIGS. 11 and 12 are cross-sectional views showing a step of forming the second opening Mb and the third opening Mc in the opening forming step of the method for manufacturing the organic EL display device 50a
- FIGS. It is a figure equivalent to. 13 and 14 are cross-sectional views showing a step of applying an organic insulating film in the contact hole forming step of the manufacturing method of the organic EL display device 50a, and are views corresponding to FIGS. 5 and 6.
- 15 and 16 are cross-sectional views showing a step of patterning the organic insulating film in the contact hole forming step of the manufacturing method of the organic EL display device 50a, and are views corresponding to FIGS. 5 and 6.
- 17 and 18 are cross-sectional views showing the source metal layer forming step of the method for manufacturing the organic EL display device 50a, which corresponds to FIGS. 5 and 6.
- the base coat film 11 is formed by forming an inorganic insulating film (thickness of about 1000 nm) such as a silicon oxide film on the resin substrate layer 10 formed on the glass substrate by, for example, a plasma CVD method. To do.
- an amorphous silicon film (with a thickness of about 50 nm) is formed on the entire substrate on which the base coat film 11 is formed by a plasma CVD method, and the amorphous silicon film is crystallized by laser annealing or the like to form a polysilicon film.
- the semiconductor film 12 is patterned to form the first semiconductor layer (12a) and the like (semiconductor layer forming step).
- an inorganic insulating film (about 100 nm) such as a silicon oxide film is formed on the entire substrate on which the first semiconductor layer (12a) and the like are formed by, for example, a plasma CVD method to form the first semiconductor layer 12a and the like.
- the gate insulating film 13 is formed so as to cover (gate insulating film forming step).
- an aluminum film having a thickness of about 350 nm
- a molybdenum nitride film having a thickness of about 50 nm
- the gate metal film 14 is patterned to form a gate metal layer such as the first gate electrode 14a (gate metal layer forming step).
- impurity ions are doped using the gate metal layer such as the first gate electrode 14a as a mask to form the first semiconductor layer 12a having the intrinsic region 12ac and the pair of conductor regions (doping step).
- an inorganic insulating film (having a thickness of about 100 nm) such as a silicon oxide film is formed on the entire substrate on which the first semiconductor layer 12a and the like are formed by, for example, a plasma CVD method, and thus the first interlayer insulating film 15 is formed. Are formed (first interlayer insulating film forming step).
- an aluminum film about 350 nm in thickness
- a molybdenum nitride film about 50 nm in thickness
- an intermediate film is formed.
- the intermediate metal film 16 is patterned to form an intermediate metal layer such as the capacitor electrode 16c having the first opening Ma (intermediate metal layer forming step).
- an inorganic insulating film such as a silicon oxide film is formed on the entire substrate on which the intermediate metal layer such as the capacitance electrode 16c is formed, for example, by the plasma CVD method, so that the second interlayer insulating film is formed.
- the film 17 is formed (second interlayer insulating film forming step).
- a positive resist material R (see FIG. 8) is applied on the second interlayer insulating film 17, and the resist material R is exposed, developed, and baked, so that a second resist material R is formed as shown in FIGS.
- a resist pattern Ra having a through hole Hr is formed corresponding to the opening Mb, the third opening Mc, and the third contact hole Hc.
- the first interlayer insulating film 15 and the second interlayer insulating film 17 have a flat surface.
- the penetrating second opening Mb is formed so as to be arranged inside the peripheral edge of the first opening Ma as viewed.
- the gate insulating film 13 and the first interlayer insulating film 13 are formed.
- a third opening Mc is formed through the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17, and reaches the second conductor region 12bb. (Opening formation step).
- the gate insulating film 13 and the first interlayer insulating film 13 are etched.
- the third contact hole Hc is formed in the insulating film 15 and the second interlayer insulating film 17 so as to penetrate the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 and reach the second conductor region 12ab.
- the lower part is formed.
- the whole substrate on which the second interlayer insulating film 17 having the second opening Mb and the third opening Mc is formed is shown in FIGS. 13 and 15 by, for example, a spin coating method or a slit coating method.
- the organic insulating film 18 formed of a photosensitive insulating material for example, SOG (spin-on-glass) material
- the organic insulating film 18 is patterned.
- the hole Hb and the upper part of the third contact hole Hc penetrating so as to overlap the lower part of the third contact hole Hc in plan view are formed (contact hole forming step).
- the organic insulating film 18 is patterned so as to cover the side surfaces of the second opening Mb and the third opening Mc, and the resin substrate layer 10 is then formed.
- the first contact hole Ha and the second contact hole Hb are formed so that the side surfaces incline toward the side in a forward tapered shape.
- a titanium film (thickness of about 30 nm), an aluminum film (thickness of about 300 nm), a titanium film (thickness of about 50 nm), etc. are formed on the entire substrate in which the first contact holes Ha and the like are formed by, for example, a sputtering method.
- the source metal film 19 is patterned to form a source metal layer such as the first connection wiring 19e and the power supply line 19g (source metal layer forming step).
- the flattening film 20 is formed by performing pre-baking, exposure, development, and post-baking on the coating film.
- the TFT layer 30a can be formed as described above.
- ⁇ Organic EL element layer forming step> The first electrode 31, the edge cover 32, and the organic EL layer 33 (hole injection layer 1, hole transport) are used on the flattening film 20 of the TFT layer 30a formed in the TFT layer forming step by a well-known method.
- the layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5) and the second electrode 34 are formed to form the organic EL element layer 40.
- a sealing film 45 (first sealing inorganic insulating film 41, sealing organic film 42, second sealing) is formed on the organic EL element layer 40 formed in the organic EL element layer forming step by a known method.
- a protective sheet (not shown) is attached to the surface of the substrate on which the sealing film 45 is formed, and then the glass substrate is irradiated from the glass substrate side of the resin substrate layer 10 to irradiate the glass substrate from the lower surface of the resin substrate layer 10.
- a protective sheet (not shown) is attached to the lower surface of the resin substrate layer 10 from which the glass substrate has been peeled off.
- the organic EL display device 50a of this embodiment can be manufactured as described above.
- the first interlayer insulating film 15 and the second interlayer insulating film 17 are first.
- the second opening Mb is formed so as to penetrate the interlayer insulating film 15 and the second interlayer insulating film 17, and the gate insulating film 13 is formed on the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17.
- the third opening Mc is formed so as to penetrate the first interlayer insulating film 15 and the second interlayer insulating film 17.
- the foreign material X is temporarily present on the surfaces of the gate insulating film 13 and the first interlayer insulating film 15, and the first interlayer insulating film 15 and the second interlayer insulating film are formed in the first interlayer insulating film forming step and the second interlayer insulating film forming step. Even if a void Y is formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 when the film 17 is formed, the second opening Mb and the third opening Mb are formed in the subsequent contact hole forming step.
- the organic insulating film 18 is patterned so as to cover the side surface of Mc, the organic insulating film 18 is filled in the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17. This causes a short circuit between the first connection wiring 19e formed in the source metal layer forming step and the capacitor electrode 16c formed in the intermediate metal layer forming step, and a power supply line 19g and a gate metal formed in the source metal layer forming step. Since a short circuit with the light emission control line 14e formed in the layer forming step can be suppressed, occurrence of a short circuit defect due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 can be suppressed. can do.
- FIG. 19 to 24 show a second embodiment of the display device and the manufacturing method thereof according to the present invention.
- FIG. 19 and FIG. 20 are cross-sectional views of the organic EL display device 50b of the present embodiment, and are views corresponding to FIG. 5 and FIG. 6 described in the first embodiment.
- the same parts as those in FIGS. 1 to 18 are designated by the same reference numerals, and detailed description thereof will be omitted.
- the organic EL display device 50a in which the side surfaces of the openings of the first interlayer insulating film 15 and the second interlayer insulating film 17 are substantially upright is exemplified, but in the present embodiment, the first interlayer insulating film is formed.
- 15 illustrates an organic EL display device 50b in which the side surfaces of the openings of 15 and the second interlayer insulating film 17 are inclined in a reverse taper shape.
- the organic EL display device 50b includes a display area D and a frame area F provided around the display area D, similarly to the organic EL display device 50a of the first embodiment.
- the organic EL display device 50b includes a resin substrate layer 10, a TFT layer 30b provided on the resin substrate layer 10, and an organic EL element layer 40 provided on the TFT layer 30b. , And a sealing film 45 provided on the organic EL element layer 40.
- the TFT layer 30b is provided on the base coat film 11 provided on the resin substrate layer 10 and on the base coat film 11 for each sub-pixel P.
- the first initialization TFT 9a, the threshold voltage compensation TFT 9b, the write control TFT 9c, the drive TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, the second initialization TFT 9g and the capacitor 9h, and the respective TFTs 9a to 9g and the capacitor 9h are provided.
- a flattening film 20 is provided.
- the side surfaces of the second opening Mb and the third opening Mc formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 have the resin substrate layer 10 on the side surfaces.
- a fourth opening Md is formed in the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 so as to incline in a reverse taper shape toward the side and overlap the third contact hole Hc in a plan view.
- the side surface of the fourth opening Md is inclined in the reverse taper shape toward the resin substrate layer 10 side.
- the TFT layer 30b has the same structure as the TFT layer 30a of the organic EL display device 50a according to the first embodiment except for the structures of the second opening Mb, the third opening Mc, and the fourth opening Md described above. It is virtually the same.
- the organic EL display device 50b having the above configuration has flexibility as in the organic EL display device 50a of the first embodiment, and in each sub-pixel P, the first initialization TFT 9a, the threshold voltage compensation TFT 9b, An image is displayed by appropriately causing the light emitting layer 3 of the organic EL layer 33 to emit light via the write control TFT 9c, the drive TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, and the second initialization TFT 9g. ..
- the organic EL display device 50b of the present embodiment can be manufactured by changing the opening forming step in the method of manufacturing the organic EL display device 50a of the first embodiment.
- FIGS. 21 and 22 are cross-sectional views showing a step of forming a resist pattern in the opening forming step of the method for manufacturing the organic EL display device 50b, and are views corresponding to FIGS. 19 and 20.
- 23 and 24 are cross-sectional views showing a step of forming the second opening Mb, the fourth opening Md, and the third opening Mc in the opening forming step of the method for manufacturing the organic EL display device 50b.
- FIG. 21 is a view corresponding to FIGS. 19 and 20.
- the negative resist material R is applied on the second interlayer insulating film 17. Then, by exposing, developing and baking the resist material R, as shown in FIGS. 21 and 22, through holes Hr corresponding to the second opening Mb, the third opening Mc and the fourth opening Md are formed. A resist pattern Rb provided with is formed.
- the side surface of the through hole Hr formed in the resist pattern Rb is inclined in an inverse taper shape toward the resin substrate layer 10 side.
- the first interlayer insulating film 15 and the second interlayer insulating film 17 are planarized as shown in FIG.
- the penetrating second opening Mb is formed so as to be arranged inside the peripheral edge of the first opening Ma as viewed.
- the gate insulating film 13 and the first interlayer insulating film 13 are formed.
- a third opening Mc is formed through the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17, and reaches the second conductor region 12bb. (Opening formation step). Further, at this time, by etching the second interlayer insulating film 17, the first interlayer insulating film 15 and the gate insulating film 13 exposed from the resist pattern Rb, the gate insulating film 13 and the first interlayer insulating film 13 are etched as shown in FIG.
- the fourth opening Md is formed in the insulating film 15 and the second interlayer insulating film 17 so as to penetrate the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 and reach the second conductor region 12ab. It is formed.
- the second opening formed by etching using the resist pattern Rb as a mask As shown in FIGS. 23 and 24, the side surfaces of Mb, the third opening Mc, and the fourth opening Md are inclined in a reverse taper shape toward the resin substrate layer 10 side.
- the flattening film 20 is formed to form the TFT layer 30b.
- the organic EL display device 50b of the present embodiment is manufactured by performing the organic EL element layer forming step and the sealing film forming step of the manufacturing method of the organic EL display device 50a of the first embodiment. can do.
- the first interlayer insulating film 15 and the second interlayer insulating film 17 have the first interlayer insulating film 15 and the first interlayer insulating film 17 in the opening forming step of the TFT layer forming step.
- the second opening Mb is formed so as to penetrate the interlayer insulating film 15 and the second interlayer insulating film 17, and the gate insulating film 13 is formed on the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17.
- the third opening Mc is formed so as to penetrate the first interlayer insulating film 15 and the second interlayer insulating film 17.
- the foreign material X is temporarily present on the surfaces of the gate insulating film 13 and the first interlayer insulating film 15, and the first interlayer insulating film 15 and the second interlayer insulating film are formed in the first interlayer insulating film forming step and the second interlayer insulating film forming step. Even if a void Y is formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 when the film 17 is formed, the second opening Mb and the third opening Mb are formed in the subsequent contact hole forming step.
- the organic insulating film 18 is patterned so as to cover the side surface of Mc, the organic insulating film 18 is filled in the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17. This causes a short circuit between the first connection wiring 19e formed in the source metal layer forming step and the capacitor electrode 16c formed in the intermediate metal layer forming step, and a power supply line 19g and a gate metal formed in the source metal layer forming step. Since a short circuit with the light emission control line 14e formed in the layer forming step can be suppressed, occurrence of a short circuit defect due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 can be suppressed. can do.
- the side surfaces of the second opening Mb and the third opening Mc are inclined in a reverse taper shape toward the resin substrate layer 10 side.
- the organic insulating film 18 is formed thicker on the side surfaces of the second opening Mb and the third opening Mc than the organic EL display device 50a of the first embodiment. Therefore, in the organic EL display device 50b of the present embodiment, it is possible to further suppress the occurrence of short-circuit defects due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17.
- the organic EL layer having a five-layer laminated structure of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is exemplified. It may have a three-layer laminated structure of a layer/hole transport layer, a light emitting layer, and an electron transport layer/electron injection layer.
- the organic EL display device in which the first electrode is the anode and the second electrode is the cathode has been illustrated, but the present invention reverses the laminated structure of the organic EL layer and the first electrode is the cathode. And can be applied to an organic EL display device using the second electrode as an anode.
- the organic EL display device in which the electrode of the TFT connected to the first electrode is used as the drain electrode is illustrated, but the present invention uses the electrode of the TFT connected to the first electrode as the source electrode. It can also be applied to a so-called organic EL display device.
- an organic EL display device has been described as an example of a display device, but the present invention can be applied to a display device including a plurality of light emitting elements driven by current.
- a display device including a QLED (Quantum-dot light emitting diode) which is a light emitting element using a quantum dot containing layer.
- the present invention is useful for flexible display devices.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
A second opening (Mb) is provided in a first interlayer insulating film (15) and a second interlayer insulating film (17) so as to penetrate the first interlayer insulating film (15) and the second interlayer insulating film (17), and a first contact hole (Ha) is provided in an organic insulating film (18) by being arranged on the inside of circumferential edge of the second opening (Mb) in a plan view and in such a way as to penetrate the organic insulating film (18). A first gate electrode (14a) is electrically connected to a connection wiring (19e) which is provided via the first contact hole (Ha) as a source metal layer, and the organic insulating film (18) is provided so as to cover the side face of the second opening (Mb).
Description
本発明は、表示装置及びその製造方法に関するものである。
The present invention relates to a display device and a manufacturing method thereof.
近年、液晶表示装置に代わる表示装置として、有機エレクトロルミネッセンス(electroluminescence、以下、ELとも称する)素子を用いた自発光型の有機EL表示装置が注目されている。ここで、アクティブマトリクス駆動方式の有機EL表示装置では、例えば、画像の最小単位であるサブ画素毎に薄膜トランジスタ(thin film transistor、以下、TFTとも称する)が設けられている。
Recently, as a display device that replaces the liquid crystal display device, a self-luminous organic EL display device using an organic electroluminescence (hereinafter also referred to as EL) element has been attracting attention. Here, in the active matrix driving type organic EL display device, for example, a thin film transistor (hereinafter, also referred to as a TFT) is provided for each sub-pixel which is a minimum unit of an image.
例えば、特許文献1には、周辺領域に低温ポリシリコンからなるチャネル層を有するトップゲート型のTFTが設けられ、表示領域に酸化物半導体からなるチャネル層を有するトップゲート型のTFTが設けられた有機EL表示装置が開示されている。
For example, in Patent Document 1, a top gate type TFT having a channel layer made of low temperature polysilicon is provided in a peripheral region, and a top gate type TFT having a channel layer made of an oxide semiconductor is provided in a display region. An organic EL display device is disclosed.
ところで、トップゲート型のTFTは、例えば、ベース基板上にベースコート膜を介して設けられ、真性領域及び一対の導体領域を含む半導体層と、半導体層を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上に半導体層の真性領域と重なるように設けられたゲート電極と、ゲート電極を覆うように設けられた層間絶縁膜と、層間絶縁膜上に設けられ、半導体層の一対の導体領域にそれぞれ電気的に接続されたソース電極及びドレイン電極とを備えている。ここで、層間絶縁膜は、例えば、CVD(Chemical Vapor Deposition)法により成膜された無機絶縁膜により形成され、仮に、被成膜面に異物が存在すると、その異物を核として、CVD膜が異常成長することにより、層間絶縁膜内に鬆と呼ばれる空洞が形成されるおそれがある。そうなると、例えば、ゲート電極とソース電極及びドレイン電極とが短絡し易くなるので、画像表示を行う表示領域に点欠陥や線欠陥等が発生し易くなってしまう。
By the way, a top-gate TFT is, for example, provided on a base substrate via a base coat film, a semiconductor layer including an intrinsic region and a pair of conductor regions, and a gate insulating film provided so as to cover the semiconductor layer, A gate electrode provided on the gate insulating film so as to overlap with the intrinsic region of the semiconductor layer, an interlayer insulating film provided so as to cover the gate electrode, and a pair of conductor regions of the semiconductor layer provided on the interlayer insulating film. And a source electrode and a drain electrode that are electrically connected to each other. Here, the interlayer insulating film is formed of, for example, an inorganic insulating film formed by a CVD (Chemical Vapor Deposition) method, and if foreign matter is present on the film formation surface, the foreign matter is used as a nucleus to form the CVD film. Due to abnormal growth, a cavity called a void may be formed in the interlayer insulating film. Then, for example, the gate electrode and the source electrode and the drain electrode are likely to be short-circuited, so that a point defect, a line defect, or the like is likely to occur in the display region where an image is displayed.
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、層間絶縁膜に形成された鬆に起因する短絡欠陥の発生を抑制することにある。
The present invention has been made in view of the above points, and an object thereof is to suppress the occurrence of short-circuit defects due to voids formed in the interlayer insulating film.
上記目的を達成するために、本発明に係る表示装置は、ベース基板と、上記ベース基板上に設けられ、半導体層、ゲート絶縁膜、ゲート金属層、第1層間絶縁膜、中間金属層、第2層間絶縁膜、有機絶縁膜及びソース金属層が順に積層され、サブ画素毎に薄膜トランジスタ及びキャパシタが配置された薄膜トランジスタ層と、上記薄膜トランジスタ層上に設けられ、上記サブ画素毎に発光素子が配置された発光素子層とを備え、上記薄膜トランジスタは、上記半導体層として設けられた第1半導体層と、上記ゲート絶縁膜と、上記ゲート金属層として設けられた第1ゲート電極とを備えた第1薄膜トランジスタを有し、上記キャパシタは、上記第1ゲート電極と、上記第1層間絶縁膜と、上記中間金属層として設けられ、平面視で該第1ゲート電極に重なるように配置された容量電極とを備え、上記容量電極には、平面視で上記第1ゲート電極と重なると共に該容量電極を貫通するように第1開口部が設けられ、上記第1層間絶縁膜及び上記第2層間絶縁膜には、平面視で上記第1開口部の周縁の内側に配置すると共に、該第1層間絶縁膜及び該第2層間絶縁膜を貫通するように第2開口部が設けられ、上記有機絶縁膜には、平面視で上記第2開口部の周縁の内側に配置すると共に、該有機絶縁膜を貫通するように第1コンタクトホールが設けられ、上記第1ゲート電極は、上記第1コンタクトホールを介して、上記ソース金属層として設けられた接続配線に電気的に接続され、上記有機絶縁膜は、上記第2開口部の側面を覆うように設けられていることを特徴とする。
To achieve the above object, a display device according to the present invention includes a base substrate, a semiconductor layer, a gate insulating film, a gate metal layer, a first interlayer insulating film, an intermediate metal layer, and A two-layer insulating film, an organic insulating film, and a source metal layer are laminated in this order, a thin film layer in which a thin film and a capacitor are arranged for each sub pixel, and a light emitting element provided on the thin film layer and a light emitting element is arranged for each sub pixel. The thin film is a first thin film having a first semiconductor layer provided as the semiconductor layer, a gate insulating film, and a first gate electrode provided as the gate metal layer. And the capacitor includes the first gate electrode, the first interlayer insulating film, and the capacitor electrode provided as the intermediate metal layer and arranged to overlap the first gate electrode in plan view. The capacitive electrode is provided with a first opening so as to overlap the first gate electrode in a plan view and penetrate the capacitive electrode, and the first interlayer insulating film and the second interlayer insulating film are provided. The organic insulating film is arranged inside the peripheral edge of the first opening in a plan view, and a second opening is provided so as to penetrate the first interlayer insulating film and the second interlayer insulating film. The first contact hole is provided inside the peripheral edge of the second opening in a plan view, and the first contact hole is provided so as to penetrate the organic insulating film, and the first gate electrode is passed through the first contact hole. Is electrically connected to a connection wiring provided as the source metal layer, and the organic insulating film is provided so as to cover a side surface of the second opening.
また、本発明に係る表示装置の製造方法は、ベース基板上にサブ画素毎に薄膜トランジスタ及びキャパシタが配置された薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程と、上記薄膜トランジスタ層上に設けられ、上記サブ画素毎に発光素子が配置された発光素子層を形成する発光素子層形成工程とを備え、上記薄膜トランジスタは、第1薄膜トランジスタを有し、該第1薄膜トランジスタは、第1半導体層と、第1半導体層上に設けられたゲート絶縁膜と、上記ゲート絶縁膜上に設けられた第1ゲート電極とを備え、上記キャパシタは、上記第1ゲート電極と、上記第1ゲート電極上に設けられた第1層間絶縁膜と、上記第1層間絶縁膜上に設けられ、平面視で該第1ゲート電極に重なるように配置された容量電極とを備えており、上記薄膜トランジスタ層形成工程は、上記ベース基板上に半導体膜を成膜した後に、該半導体膜をパターニングして上記第1半導体層を含む半導体層を形成する半導体層形成工程と、上記半導体層上に上記ゲート絶縁膜を形成するゲート絶縁膜形成工程と、上記ゲート絶縁膜上にゲート金属膜を成膜した後に、該ゲート金属膜をパターニングして上記第1ゲート電極を含むゲート金属層を形成するゲート金属層形成工程と、上記ゲート金属層上に上記第1層間絶縁膜を形成する第1層間絶縁膜形成工程と、上記ゲート金属層上に形成された上記第1層間絶縁膜上に中間金属膜を成膜した後に、該中間金属膜をパターニングして平面視で上記第1ゲート電極に重なるように貫通した第1開口部が設けられた上記容量電極を含む中間金属層を形成する中間金属層形成工程と、上記中間金属層上に第2層間絶縁膜を形成する第2層間絶縁膜形成工程と、上記第1層間絶縁膜及び上記第2層間絶縁膜に平面視で上記第1開口部の周縁の内側に配置するように貫通した第2開口部を形成する開口部形成工程と、上記第2開口部が形成された上記第2層間絶縁膜上に有機絶縁膜を塗布した後に、該有機絶縁膜をパターニングして、平面視で上記第2開口部の周縁の内側に配置するように貫通した第1コンタクトホールを形成するコンタクトホール形成工程と、上記有機絶縁膜上にソース金属膜を成膜した後に、該ソース金属膜をパターニングして上記第1コンタクトホールを介して上記第1ゲート電極に電気的に接続された接続配線を含むソース金属層を形成するソース金属層形成工程とを備え、上記コンタクトホール形成工程では、上記第2開口部の側面を覆うように上記有機絶縁膜をパターニングすることを特徴とする。
Further, the method for manufacturing a display device according to the present invention includes a thin film transistor layer forming step of forming a thin film transistor layer and a thin film transistor layer on each of which a sub pixel is disposed on a base substrate; A light emitting element layer forming step of forming a light emitting element layer in which a light emitting element is arranged is provided for each, and the thin film has a first thin film, and the first thin film includes a first semiconductor layer and a first semiconductor layer. The gate insulating film provided above and the first gate electrode provided on the gate insulating film are provided, and the capacitor is the first gate electrode and the first gate electrode provided on the first gate electrode. An interlayer insulating film and a capacitive electrode provided on the first interlayer insulating film and arranged so as to overlap the first gate electrode in a plan view are provided, and the thin film layer forming step is performed on the base substrate. A semiconductor layer forming step of forming a semiconductor layer including the first semiconductor layer by patterning the semiconductor film after forming a semiconductor film in the same manner, and forming a gate insulating film for forming the gate insulating film on the semiconductor layer. A gate metal layer forming step of forming a gate metal film on the gate insulating film and then patterning the gate metal film to form a gate metal layer including the first gate electrode, and a gate metal layer. After the first interlayer insulating film forming step of forming the first interlayer insulating film on the intermediate metal film and the intermediate metal film being formed on the first interlayer insulating film formed on the gate metal layer, the intermediate metal film is formed. An intermediate metal layer forming step of forming an intermediate metal layer including the capacitive electrode provided with a first opening penetrating so as to overlap the first gate electrode in a plan view, and an intermediate metal layer forming step on the intermediate metal layer. The second interlayer insulating film forming step of forming the second interlayer insulating film and the first interlayer insulating film and the second interlayer insulating film were penetrated so as to be arranged inside the peripheral edge of the first opening in a plan view. After the opening forming step of forming the second opening and the organic insulating film being applied on the second interlayer insulating film in which the second opening is formed, the organic insulating film is patterned and viewed in a plan view. A contact hole forming step of forming a first contact hole penetrating so as to be arranged inside the peripheral edge of the second opening, and a patterning of the source metal film after forming a source metal film on the organic insulating film. And a source metal layer forming step of forming a source metal layer including a connection wiring electrically connected to the first gate electrode through the first contact hole. In the step of forming the contact hole, the organic insulating film is patterned so as to cover the side surface of the second opening.
本発明によれば、第2層間絶縁膜及びソース金属層の間に積層された有機絶縁膜が、第1層間絶縁膜及び第2層間絶縁膜に形成された第2開口部の側面を覆うように設けられているので、層間絶縁膜に形成された鬆に起因する短絡欠陥の発生を抑制することができる。
According to the present invention, the organic insulating film laminated between the second interlayer insulating film and the source metal layer covers the side surface of the second opening formed in the first interlayer insulating film and the second interlayer insulating film. Therefore, it is possible to suppress the occurrence of short-circuit defects due to voids formed in the interlayer insulating film.
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
《第1の実施形態》
図1~図18は、本発明に係る表示装置及びその製造方法の第1の実施形態を示している。なお、以下の各実施形態では、発光素子を備えた表示装置として、有機EL素子を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2は、有機EL表示装置50aの表示領域Dの概略構成を示す平面図である。また、図3は、有機EL表示装置50aを構成するTFT層30a平面図である。また、図4は、TFT層30aの等価回路図である。また、図5及び図6は、図3中のV-V線及びVI-VI線に沿った有機EL表示装置50aの断面図である。 <<First Embodiment>>
1 to 18 show a first embodiment of a display device and a manufacturing method thereof according to the present invention. In each of the following embodiments, an organic EL display device including an organic EL element is illustrated as a display device including a light emitting element. Here, FIG. 1 is a plan view showing a schematic configuration of the organicEL display device 50a of the present embodiment. 2 is a plan view showing a schematic configuration of the display area D of the organic EL display device 50a. Further, FIG. 3 is a plan view of the TFT layer 30a that constitutes the organic EL display device 50a. Further, FIG. 4 is an equivalent circuit diagram of the TFT layer 30a. 5 and 6 are cross-sectional views of the organic EL display device 50a taken along line VV and line VI-VI in FIG.
図1~図18は、本発明に係る表示装置及びその製造方法の第1の実施形態を示している。なお、以下の各実施形態では、発光素子を備えた表示装置として、有機EL素子を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2は、有機EL表示装置50aの表示領域Dの概略構成を示す平面図である。また、図3は、有機EL表示装置50aを構成するTFT層30a平面図である。また、図4は、TFT層30aの等価回路図である。また、図5及び図6は、図3中のV-V線及びVI-VI線に沿った有機EL表示装置50aの断面図である。 <<First Embodiment>>
1 to 18 show a first embodiment of a display device and a manufacturing method thereof according to the present invention. In each of the following embodiments, an organic EL display device including an organic EL element is illustrated as a display device including a light emitting element. Here, FIG. 1 is a plan view showing a schematic configuration of the organic
有機EL表示装置50aは、図1に示すように、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。なお、本実施形態では、矩形状の表示領域Dを例示したが、この矩形状には、例えば、辺が円弧状になった形状、角部が円弧状になった形状、辺の一部に切り欠きがある形状等の略矩形状も含まれる。
As shown in FIG. 1, the organic EL display device 50a includes, for example, a rectangular display area D for displaying an image and a frame area F provided around the display area D. In the present embodiment, the rectangular display area D is illustrated, but the rectangular shape may have, for example, a shape in which the sides are arcuate, a shape in which the corners are arcuate, or a part of the sides. A substantially rectangular shape such as a shape with a cutout is also included.
表示領域Dには、図2に示すように、複数のサブ画素Pがマトリクス状に配列されている。また、表示領域Dでは、図2に示すように、例えば、赤色の表示を行うための赤色発光領域Erを有するサブ画素P、緑色の表示を行うための緑色発光領域Egを有するサブ画素P、及び青色の表示を行うための青色発光領域Ebを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、例えば、赤色発光領域Er、緑色発光領域Eg及び青色発光領域Ebを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。
As shown in FIG. 2, a plurality of sub-pixels P are arranged in a matrix in the display area D. Further, in the display area D, as shown in FIG. 2, for example, a sub-pixel P having a red light-emitting area Er for displaying a red color, a sub-pixel P having a green light-emitting area Eg for performing a green color display, And sub-pixels P having a blue light emitting region Eb for displaying blue are provided adjacent to each other. In the display area D, for example, one pixel is configured by three adjacent sub-pixels P having the red light emitting area Er, the green light emitting area Eg, and the blue light emitting area Eb.
額縁領域Fの図1中右端部には、端子部Tが設けられている。また、額縁領域Fにおいて、図1に示すように、表示領域D及び端子部Tの間には、図中縦方向を折り曲げの軸として180°に(U字状に)折り曲げ可能な折り曲げ部Bが一方向(図中縦方向)に延びるように設けられている。
A terminal portion T is provided at the right end of the frame area F in FIG. Further, in the frame region F, as shown in FIG. 1, between the display region D and the terminal portion T, a bent portion B which can be bent at 180° (in a U shape) with the longitudinal direction in the drawing as a bending axis. Are provided so as to extend in one direction (vertical direction in the figure).
有機EL表示装置50aは、図5及び図6に示すように、ベース基板として設けられた樹脂基板層10と、樹脂基板層10上に設けられたTFT層30aと、TFT層30a上に発光素子層として設けられた有機EL素子層40、有機EL素子層40上に設けられた封止膜45とを備えている。
As shown in FIGS. 5 and 6, the organic EL display device 50a includes a resin substrate layer 10 provided as a base substrate, a TFT layer 30a provided on the resin substrate layer 10, and a light emitting element on the TFT layer 30a. The organic EL element layer 40 provided as a layer and the sealing film 45 provided on the organic EL element layer 40 are provided.
樹脂基板層10は、例えば、ポリイミド樹脂等により構成されている。
The resin substrate layer 10 is made of, for example, a polyimide resin or the like.
TFT層30aは、樹脂基板層10上に順に設けられたベースコート膜11、半導体層(例えば、第1半導体層12a)、ゲート絶縁膜13、ゲート金属層(例えば、ゲート線14g)、第1層間絶縁膜15、中間金属層(例えば、容量電極16c)、第2層間絶縁膜17、有機絶縁膜18、ソース金属層(例えば、ソース線19f)及び平坦化膜20を備えている。具体的に、TFT層30aは、図3~図6に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11上にサブ画素P毎に設けられた第1初期化TFT9a、閾値電圧補償TFT9b、書込制御TFT9c、駆動TFT9d、電源供給TFT9e、発光制御TFT9f、第2初期化TFT9g及びキャパシタ9hと、各TFT9a~9g及びキャパシタ9h上に設けられた平坦化膜20とを備えている。ここで、TFT層30aには、図2及び図3に示すように、図中横方向に互いに平行に延びるように複数のゲート線14gが設けられている。また、TFT層30aには、図2及び図3に示すように、図中横方向に互いに平行に延びるように複数の発光制御線14eがゲート金属層として設けられている。また、TFT層30aには、図2及び図3に示すように、図中横方向に互いに平行に延びるように複数の初期化電源線16iが設けられている。なお、各発光制御線14eは、図2及び図3に示すように、各ゲート線14g及び各初期化電源線16iと隣り合うように設けられている。また、TFT層30aには、図2及び図3に示すように、図中縦方向に互いに平行に延びるように複数のソース線19fが設けられている。また、TFT層30aには、図2及び図3に示すように、図中縦方向に互いに平行に延びるように複数の電源線19gが設けられている。なお、各電源線19gは、図2及び図3に示すように、各ソース線19fと隣り合うように設けられている。
The TFT layer 30a includes a base coat film 11, a semiconductor layer (for example, a first semiconductor layer 12a), a gate insulating film 13, a gate metal layer (for example, a gate line 14g), a first interlayer, which are sequentially provided on the resin substrate layer 10. The insulating film 15, the intermediate metal layer (for example, the capacitor electrode 16c), the second interlayer insulating film 17, the organic insulating film 18, the source metal layer (for example, the source line 19f), and the planarization film 20 are provided. Specifically, as shown in FIGS. 3 to 6, the TFT layer 30a includes a base coat film 11 provided on the resin substrate layer 10 and a first initialization provided on the base coat film 11 for each sub-pixel P. TFT 9a, threshold voltage compensation TFT 9b, write control TFT 9c, drive TFT 9d, power supply TFT 9e, light emission control TFT 9f, second initialization TFT 9g and capacitor 9h, and flattening film 20 provided on each TFT 9a to 9g and capacitor 9h. Equipped with. Here, as shown in FIGS. 2 and 3, the TFT layer 30a is provided with a plurality of gate lines 14g so as to extend parallel to each other in the lateral direction in the drawings. Further, as shown in FIGS. 2 and 3, the TFT layer 30a is provided with a plurality of light emission control lines 14e as gate metal layers so as to extend in the lateral direction in FIG. Further, as shown in FIGS. 2 and 3, the TFT layer 30a is provided with a plurality of initialization power supply lines 16i extending in parallel to each other in the lateral direction in the drawings. Each light emission control line 14e is provided adjacent to each gate line 14g and each initialization power supply line 16i, as shown in FIGS. Further, as shown in FIGS. 2 and 3, the TFT layer 30a is provided with a plurality of source lines 19f so as to extend parallel to each other in the vertical direction in the drawings. Further, as shown in FIGS. 2 and 3, the TFT layer 30a is provided with a plurality of power supply lines 19g so as to extend in parallel to each other in the vertical direction in the drawings. Each power supply line 19g is provided adjacent to each source line 19f, as shown in FIGS. 2 and 3.
ここで、第1初期化TFT9a~第2初期化TFT9gは、互いに離間するように配置された第1端子(図4中のNa参照)及び第2端子(図4中のNb参照)と、第1端子及び第2端子の間の導通を制御するための制御端子とをそれぞれ備えている。なお、各TFT9a~9gの第1端子及び第2端子は、互いに一体に設けられた第1半導体層12a及び第2半導体層12bの導体領域である。
Here, the first initialization TFT 9a to the second initialization TFT 9g include a first terminal (see Na in FIG. 4) and a second terminal (see Nb in FIG. 4) which are arranged so as to be separated from each other. And a control terminal for controlling conduction between the first terminal and the second terminal. The first terminal and the second terminal of each of the TFTs 9a to 9g are conductor regions of the first semiconductor layer 12a and the second semiconductor layer 12b that are integrally provided with each other.
第1初期化TFT9aは、図4に示すように、各サブ画素Pにおいて、その制御端子が対応するゲート線14gに電気的に接続され、その第1端子が後述するキャパシタ9hの第1ゲート電極14aに電気的に接続され、その第2端子が対応する初期化電源線16iに電気的に接続されている。なお、第1初期化TFT9aの制御端子は、図3に示すように、ゲート線14gの第1半導体層12aと重なる2つの部分である。また、第1初期化TFT9aの第1端子は、図3に示すように、第3コンタクトホールHc、後述する第1接続配線19e及び第1コンタクトホールHaを介して、キャパシタ9hの第1ゲート電極14aに電気的に接続されている。また、第1初期化TFT9aの第2端子は、図3に示すように、第4コンタクトホールHd、第2接続配線19h及び第5コンタクトホールHeを介して、初期化電源線16iに電気的に接続されている。ここで、第1初期化TFT9aは、初期化電源線16iの電圧をキャパシタ9hに印加することにより、駆動TFT9dの制御端子にかかる電圧を初期化するように構成されている。なお、第1初期化TFT9aは、後述する閾値電圧補償TFT9b、書込制御TFT9c及び第2初期化TFT9gの制御端子の各制御端子に電気的に接続されたゲート線14gよりも1つ前に走査されるゲート線14gに電気的に接続されている。また、図3において、第1初期化TFT9a~発光制御TFT9fは、n行目の画素回路に対応するものであり、第2初期化TFT9gは、n-1行目の画素回路に対応するものである。
As shown in FIG. 4, in each sub-pixel P, the first initialization TFT 9a has its control terminal electrically connected to the corresponding gate line 14g, and its first terminal is the first gate electrode of the capacitor 9h described later. 14a, and its second terminal is electrically connected to the corresponding initialization power supply line 16i. The control terminal of the first initialization TFT 9a is, as shown in FIG. 3, two portions of the gate line 14g that overlap the first semiconductor layer 12a. Further, the first terminal of the first initialization TFT 9a has a first gate electrode of the capacitor 9h via a third contact hole Hc, a first connection wiring 19e described later, and a first contact hole Ha, as shown in FIG. It is electrically connected to 14a. Further, the second terminal of the first initialization TFT 9a is electrically connected to the initialization power supply line 16i through the fourth contact hole Hd, the second connection wiring 19h and the fifth contact hole He, as shown in FIG. It is connected. Here, the first initialization TFT 9a is configured to initialize the voltage applied to the control terminal of the drive TFT 9d by applying the voltage of the initialization power line 16i to the capacitor 9h. The first initializing TFT 9a scans before the gate line 14g electrically connected to the control terminals of the threshold voltage compensating TFT 9b, the write control TFT 9c, and the second initializing TFT 9g, which will be described later. It is electrically connected to the gate line 14g. Further, in FIG. 3, the first initialization TFT 9a to the emission control TFT 9f correspond to the pixel circuit in the nth row, and the second initialization TFT 9g corresponds to the pixel circuit in the n-1th row. is there.
閾値電圧補償TFT9bは、図4に示すように、各サブ画素Pにおいて、その制御端子が対応するゲート線14gに電気的に接続され、その第1端子が駆動TFT9dの第2端子に電気的に接続され、その第2端子が駆動TFT9dの制御端子に電気的に接続されている。なお、閾値電圧補償TFT9bの制御端子は、図3に示すように、ゲート線14gの第1半導体層12aと重なる2つの部分である。また、閾値電圧補償TFT9bの第1端子は、図3に示すように、駆動TFT9dの第2端子と一体に形成されて、駆動TFT9dの第2端子に電気的に接続されている。また、閾値電圧補償TFT9bの第2端子は、図3に示すように、第3コンタクトホールHc、後述する第1接続配線19e及び第1コンタクトホールHaを介して、駆動TFT9dの第1ゲート電極14aに電気的に接続されている。ここで、閾値電圧補償TFT9bは、ゲート線14gの選択に応じて駆動TFT9dをダイオード接続状態にして、駆動TFT9dの閾値電圧を補償するように構成されている。
As shown in FIG. 4, in each sub-pixel P, the threshold voltage compensation TFT 9b has its control terminal electrically connected to the corresponding gate line 14g, and its first terminal electrically connected to the second terminal of the drive TFT 9d. The second terminal is electrically connected to the control terminal of the driving TFT 9d. The control terminal of the threshold voltage compensation TFT 9b is, as shown in FIG. 3, two portions of the gate line 14g that overlap the first semiconductor layer 12a. The first terminal of the threshold voltage compensation TFT 9b is integrally formed with the second terminal of the driving TFT 9d as shown in FIG. 3, and is electrically connected to the second terminal of the driving TFT 9d. The second terminal of the threshold voltage compensating TFT 9b is, as shown in FIG. 3, connected to the first gate electrode 14a of the driving TFT 9d via the third contact hole Hc, the first connection wiring 19e and the first contact hole Ha described later. Is electrically connected to. Here, the threshold voltage compensating TFT 9b is configured to compensate the threshold voltage of the driving TFT 9d by setting the driving TFT 9d in a diode connection state according to the selection of the gate line 14g.
書込制御TFT9cは、図4に示すように、各サブ画素Pにおいて、その制御端子が対応するゲート線14gに電気的に接続され、その第1端子が対応するソース線19fに電気的に接続され、その第2端子が駆動TFT9dの第1端子に電気的に接続されている。なお、書込制御TFT9cの制御端子は、図3に示すように、ゲート線14gの第1半導体層12aと重なる部分である。また、書込制御TFT9cの第1端子は、図3に示すように、第6コンタクトホールHfを介して、ソース線19fに電気的に接続されている。また、書込制御TFT9cの第2端子は、図3に示すように、駆動TFT9dの第1端子と一体に形成されて、駆動TFT9dの第1端子に電気的に接続されている。ここで、書込制御TFT9cは、ゲート線14gの選択に応じてソース線19fの電圧を駆動TFT9dの第1端子に印加するように構成されている。
As shown in FIG. 4, the write control TFT 9c has its control terminal electrically connected to the corresponding gate line 14g and its first terminal electrically connected to the corresponding source line 19f in each sub-pixel P. The second terminal is electrically connected to the first terminal of the driving TFT 9d. The control terminal of the write control TFT 9c is a portion that overlaps the first semiconductor layer 12a of the gate line 14g, as shown in FIG. The first terminal of the write control TFT 9c is electrically connected to the source line 19f through the sixth contact hole Hf, as shown in FIG. Further, as shown in FIG. 3, the second terminal of the write control TFT 9c is formed integrally with the first terminal of the drive TFT 9d and is electrically connected to the first terminal of the drive TFT 9d. Here, the write control TFT 9c is configured to apply the voltage of the source line 19f to the first terminal of the drive TFT 9d according to the selection of the gate line 14g.
駆動TFT9dは、図4に示すように、各サブ画素Pにおいて、その制御端子が第1初期化TFT9aの第1端子及び閾値電圧補償TFT9bの第2端子に電気的に接続され、その第1端子が書込制御TFT9c及び電源供給TFT9eの各第2端子に電気的に接続され、その第2端子が閾値電圧補償TFT9b及び発光制御TFT9fの各第1端子に電気的に接続されている。ここで、駆動TFT9dは、第1TFTとして設けられ、その制御端子とその第1端子との間に印加される電圧に応じた駆動電流を発光制御TFT9fの第1端子に印加して、有機EL素子35の電流量を制御するように構成されている。
As shown in FIG. 4, the drive TFT 9d has its control terminal electrically connected to the first terminal of the first initialization TFT 9a and the second terminal of the threshold voltage compensation TFT 9b in each sub-pixel P, and its first terminal. Are electrically connected to the respective second terminals of the write control TFT 9c and the power supply TFT 9e, and the second terminals thereof are electrically connected to the respective first terminals of the threshold voltage compensation TFT 9b and the light emission control TFT 9f. Here, the drive TFT 9d is provided as a first TFT, and a drive current according to a voltage applied between its control terminal and its first terminal is applied to the first terminal of the light emission control TFT 9f to apply the organic EL element. It is configured to control the current amount of 35.
具体的に、駆動TFT9dは、図3及び図5に示すように、ベースコート膜11上に順に設けられた第1半導体層12a、ゲート絶縁膜13、第1ゲート電極(制御端子)14a、第1層間絶縁膜15及び第2層間絶縁膜17を備えている。ここで、第1半導体層12aは、図3及び図5に示すように、ベースコート膜11上に屈曲した形状に設けられている。また、第1半導体層12aは、図5に示すように、第1ゲート電極14aに平面視で重なるように設けられた真性領域12acと、真性領域12acを挟むように設けられた第1導体領域(不図示)及び第2導体領域12abとを備えている。なお、真性領域12acは、図3及び図5に示すように、その中間部分が平面視で略V字形状に設けられている。また、第1半導体層12aの一方の導体領域は、第1端子として設けられ、図3に示すように、書込制御TFT9c及び電源供給TFT9eの各第2端子と一体に形成されて、書込制御TFT9c及び電源供給TFT9eの各第2端子に電気的に接続されている。また、第1半導体層12aの他方の導体領域は、第2端子として設けられ、図3に示すように、閾値電圧補償TFT9b及び発光制御TFT9fの各第1端子と一体に形成されて、閾値電圧補償TFT9b及び発光制御TFT9fの各第1端子に電気的に接続されている。また、ゲート絶縁膜13は、図5に示すように、第1半導体層12aを覆うように設けられている。また、第1ゲート電極14aは、図3及び図5に示すように、ゲート絶縁膜13上に半導体層12aのチャネル領域12acと重なるように平面視で矩形の島状にゲート金属層として設けられている。また、第1層間絶縁膜15は、図5に示すように、第1ゲート電極14aを覆うように設けられている。また、第2層間絶縁膜17は、図5に示すように、後述する容量電極16cを介して、第1層間絶縁膜15上に設けられている。
Specifically, as shown in FIGS. 3 and 5, the driving TFT 9d includes a first semiconductor layer 12a, a gate insulating film 13, a first gate electrode (control terminal) 14a, a first semiconductor layer 12a, a first gate electrode 14a, a first gate electrode (control terminal) 14a and a first semiconductor layer 12a, which are sequentially provided on the base coat film 11. An interlayer insulating film 15 and a second interlayer insulating film 17 are provided. Here, as shown in FIGS. 3 and 5, the first semiconductor layer 12a is provided on the base coat film 11 in a bent shape. In addition, as shown in FIG. 5, the first semiconductor layer 12a includes an intrinsic region 12ac provided so as to overlap the first gate electrode 14a in a plan view, and a first conductor region provided so as to sandwich the intrinsic region 12ac. (Not shown) and the second conductor region 12ab. In addition, as shown in FIGS. 3 and 5, the intrinsic region 12ac has an intermediate portion provided in a substantially V shape in a plan view. In addition, one conductor region of the first semiconductor layer 12a is provided as a first terminal, and as shown in FIG. 3, is integrally formed with each second terminal of the write control TFT 9c and the power supply TFT 9e to write data. It is electrically connected to each second terminal of the control TFT 9c and the power supply TFT 9e. Further, the other conductor region of the first semiconductor layer 12a is provided as a second terminal, and as shown in FIG. 3, it is integrally formed with each first terminal of the threshold voltage compensating TFT 9b and the emission control TFT 9f to obtain a threshold voltage. The compensation TFT 9b and the emission control TFT 9f are electrically connected to the respective first terminals. Further, the gate insulating film 13 is provided so as to cover the first semiconductor layer 12a, as shown in FIG. As shown in FIGS. 3 and 5, the first gate electrode 14a is provided on the gate insulating film 13 as a gate metal layer in a rectangular island shape in plan view so as to overlap with the channel region 12ac of the semiconductor layer 12a. ing. The first interlayer insulating film 15 is provided so as to cover the first gate electrode 14a, as shown in FIG. Further, as shown in FIG. 5, the second interlayer insulating film 17 is provided on the first interlayer insulating film 15 via a capacitance electrode 16c described later.
電源供給TFT9eは、図4に示すように、各サブ画素Pにおいて、その制御端子が対応する発光制御線14eに電気的に接続され、その第1端子が対応する電源線19gに電気的に接続され、その第2端子が駆動TFT9dの第1端子に電気的に接続されている。ここで、電源供給TFT9eは、第2TFTとして設けられ、発光制御線14eの選択に応じて電源線19gの電圧を駆動TFT9dの第1端子に印加するように構成されている。
As shown in FIG. 4, in each sub-pixel P, the power supply TFT 9e has its control terminal electrically connected to the corresponding light emission control line 14e and its first terminal electrically connected to the corresponding power supply line 19g. The second terminal is electrically connected to the first terminal of the driving TFT 9d. Here, the power supply TFT 9e is provided as a second TFT, and is configured to apply the voltage of the power supply line 19g to the first terminal of the drive TFT 9d according to the selection of the light emission control line 14e.
具体的に、電源供給TFT9eは、図3及び図6に示すように、ベースコート膜11上に順に設けられた第2半導体層12b、ゲート絶縁膜13、発光制御線(第2ゲート電極、制御端子)14e、第1層間絶縁膜15及び第2層間絶縁膜17を備えている。ここで、第2半導体層12bは、図3及び図6に示すように、ベースコート膜11上に屈曲した形状に設けられている。また、第2半導体層12bは、図6に示すように、発光制御線14eに平面視で重なるように設けられた真性領域12bcと、真性領域12bcを挟むように設けられた第1導体領域12ba及び第2導体領域12bbとを備えている。なお、第1導体領域12baは、第2端子として設けられ、図3に示すように、駆動TFT9dの第1端子と一体に形成されて、駆動TFT9dの第1端子に電気的に接続されている。また、第2導体領域12bbは、第1端子として設けられ、図3及び図6に示すように、後述する有機絶縁膜18に形成された第2コンタクトホールHbを介して、電源線19gに電気的に接続されている。また、ゲート絶縁膜13は、図6に示すように、第2半導体層12bを覆うように設けられている。また、第2ゲート電極(制御端子)は、ゲート金属層として設けられ、発光制御線14eの第2半導体層12bと重なる部分である。また、第1層間絶縁膜15は、図6に示すように、発光制御線14eを覆うように設けられている。また、第2層間絶縁膜17は、図6に示すように、第1層間絶縁膜15上に設けられている。また、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17には、図3及び図6に示すように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通して、第2導体領域12bbに到達するように第3開口部Mcが設けられている。また、有機絶縁膜18には、図3及び図6に示すように、平面視で第3開口部Mcと重なると共に、有機絶縁膜18を貫通するように第2コンタクトホールHbが設けられている。また、第2コンタクトホールHbは、図3及び図6に示すように、発光制御線14eと隣り合うように設けられている。また、第3開口部Mcの周縁は、図3に示すように、平面視で第2コンタクトホールHbの周縁よりも外側に設けられている。また、第2コンタクトホールHbの側面は、樹脂基板層10側に向けて順テーパ状に傾斜している。なお、第2半導体層12bは、図3において、便宜上、2点鎖線により第1半導体層12aと区切って示しているが、上述したように、第1半導体層12aと一体に設けられている。
Specifically, as shown in FIGS. 3 and 6, the power supply TFT 9e includes a second semiconductor layer 12b, a gate insulating film 13, and a light emission control line (second gate electrode, control terminal) provided in this order on the base coat film 11. ) 14e, a first interlayer insulating film 15 and a second interlayer insulating film 17. Here, as shown in FIGS. 3 and 6, the second semiconductor layer 12b is provided in a bent shape on the base coat film 11. In addition, as shown in FIG. 6, the second semiconductor layer 12b includes an intrinsic region 12bc provided so as to overlap the emission control line 14e in a plan view and a first conductor region 12ba provided so as to sandwich the intrinsic region 12bc. And a second conductor region 12bb. The first conductor region 12ba is provided as a second terminal, is formed integrally with the first terminal of the drive TFT 9d, and is electrically connected to the first terminal of the drive TFT 9d, as shown in FIG. .. Further, the second conductor region 12bb is provided as a first terminal, and as shown in FIGS. 3 and 6, electricity is supplied to the power supply line 19g via the second contact hole Hb formed in the organic insulating film 18 described later. Is connected. Further, the gate insulating film 13 is provided so as to cover the second semiconductor layer 12b, as shown in FIG. The second gate electrode (control terminal) is provided as a gate metal layer and is a portion that overlaps the second semiconductor layer 12b of the emission control line 14e. The first interlayer insulating film 15 is provided so as to cover the light emission control line 14e, as shown in FIG. Further, the second interlayer insulating film 17 is provided on the first interlayer insulating film 15, as shown in FIG. Further, as shown in FIGS. 3 and 6, the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 have the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17. A third opening Mc is provided so as to penetrate 17 and reach the second conductor region 12bb. Further, as shown in FIGS. 3 and 6, the organic insulating film 18 is provided with a second contact hole Hb so as to overlap the third opening Mc in a plan view and to penetrate the organic insulating film 18. .. The second contact hole Hb is provided so as to be adjacent to the light emission control line 14e, as shown in FIGS. Further, as shown in FIG. 3, the peripheral edge of the third opening Mc is provided outside the peripheral edge of the second contact hole Hb in plan view. Further, the side surface of the second contact hole Hb is inclined in a forward taper shape toward the resin substrate layer 10 side. Although the second semiconductor layer 12b is shown separated from the first semiconductor layer 12a by a two-dot chain line in FIG. 3 for convenience, it is provided integrally with the first semiconductor layer 12a as described above.
発光制御TFT9fは、図4に示すように、各サブ画素Pにおいて、その制御端子が対応する発光制御線14eに電気的に接続され、その第1端子が駆動TFT9dの第2端子に電気的に接続され、その第2端子が後述する有機EL素子35の第1電極31に電気的に接続されている。なお、発光制御TFT9fの制御端子は、図3に示すように、発光制御線14eの第1半導体層12aと重なる部分である。また、発光制御TFT9fの第1端子は、図3に示すように、駆動TFT9dの第2端子と一体に形成されて、駆動TFT9dの第2端子に電気的に接続されている。また、発光制御TFT9fの第2端子は、図3に示すように、第7コンタクトホールHg及び第3接続配線19iを介して、有機EL素子35の第1電極31に電気的に接続されている。ここで、発光制御TFT9fは、発光制御線14eの選択に応じて上記駆動電流を有機EL素子35に印加するように構成されている。
As shown in FIG. 4, in each light emitting control TFT 9f, its control terminal is electrically connected to the corresponding light emission control line 14e, and its first terminal is electrically connected to the second terminal of the drive TFT 9d. The second terminal is electrically connected to the first electrode 31 of the organic EL element 35 described later. The control terminal of the light emission control TFT 9f is a portion that overlaps with the first semiconductor layer 12a of the light emission control line 14e, as shown in FIG. Further, as shown in FIG. 3, the first terminal of the light emission control TFT 9f is formed integrally with the second terminal of the driving TFT 9d and is electrically connected to the second terminal of the driving TFT 9d. The second terminal of the emission control TFT 9f is electrically connected to the first electrode 31 of the organic EL element 35 via the seventh contact hole Hg and the third connection wiring 19i, as shown in FIG. .. Here, the light emission control TFT 9f is configured to apply the drive current to the organic EL element 35 according to the selection of the light emission control line 14e.
第2初期化TFT9gは、図4に示すように、各画素Pにおいて、その制御端子が対応するゲート線14gに電気的に接続され、その第1端子が有機EL素子35の第1端子31に電気的に接続され、その第2端子が対応する初期化電源線16iに電気的に接続されている。なお、第2初期化TFT9gの制御端子は、図3に示すように、ゲート線14gの第1半導体層12aと重なる部分である。また、第2初期化TFT9gの第1端子は、図3に示すように、発光制御TFT9fの第2端子と一体に形成されて、有機EL素子35の第1電極31に電気的に接続されている。また、第2初期化TFT9gの第2端子は、図3に示すように、第4コンタクトホールHd、第2接続配線19h及び第5コンタクトホールHeを介して、初期化電源線16iに電気的に接続されている。ここで、第2初期化TFT9gは、ゲート線14gの選択に応じて有機EL素子35の第1電極31に蓄積した電荷をリセットするように構成されている。
As shown in FIG. 4, in each pixel P, the control terminal of the second initialization TFT 9g is electrically connected to the corresponding gate line 14g, and the first terminal thereof is connected to the first terminal 31 of the organic EL element 35. It is electrically connected, and its second terminal is electrically connected to the corresponding initialization power supply line 16i. The control terminal of the second initialization TFT 9g is a portion that overlaps the first semiconductor layer 12a of the gate line 14g, as shown in FIG. Further, as shown in FIG. 3, the first terminal of the second initialization TFT 9g is integrally formed with the second terminal of the emission control TFT 9f and electrically connected to the first electrode 31 of the organic EL element 35. There is. The second terminal of the second initialization TFT 9g is electrically connected to the initialization power supply line 16i via the fourth contact hole Hd, the second connection wiring 19h and the fifth contact hole He, as shown in FIG. It is connected. Here, the second initialization TFT 9g is configured to reset the charge accumulated in the first electrode 31 of the organic EL element 35 in accordance with the selection of the gate line 14g.
キャパシタ9hは、図3及び図5に示すように、第1ゲート電極14aと、ゲート電極14a上に設けられた第1層間絶縁膜15と、第1層間絶縁膜15上にゲート電極14aに平面視で重なるように設けられた容量電極16cとを備えている。また、キャパシタ9hは、図3及び図4に示すように、各サブ画素Pにおいて、その第1ゲート電極14aが駆動TFT9dの第1ゲート電極14aと一体に形成されて、駆動TFT9dの第1ゲート電極14a、第1初期化TFT9aの第1端子及び閾値電圧補償TFT9bの第2端子に電気的に接続され、その容量電極16cが第8コンタクトホールHhを介して対応する電源線19gに電気的に接続されている。ここで、キャパシタ9hは、対応するゲート線14gが選択状態のときに対応するソース線19fの電圧で蓄電し、蓄電した電圧を保持することにより、対応するゲート線14gが非選択状態のときに駆動TFT9dの第1ゲート電極14aにかかる電圧を維持するように構成されている。また、容量電極16cは、図3に示すように、第1ゲート電極14aの周端の全周にわたりゲート電極14aの周端の外側まで設けられている。また、容量電極16cには、図3及び図5に示すように、平面視で第1ゲート電極14aと重なると共に容量電極16cを貫通するように第1開口部Maが設けられている。また、容量電極16c上には、図5に示すように、容量電極16cを覆うように第2層間絶縁膜17が設けられている。また、第1層間絶縁膜15及び第2層間絶縁膜17には、図3及び図5に示すように、平面視で第1開口部Maの周縁の内側に配置すると共に、第1層間絶縁膜15及び第2層間絶縁膜17を貫通するように第2開口部Mbが設けられている。また、第2層間絶縁膜17上には、図5に示すように、塗布型の絶縁材料により形成された有機絶縁膜18が設けられている。また、有機絶縁膜18には、図3及び図5に示すように、平面視で第2開口部Mbの周縁の内側に配置すると共に、有機絶縁膜18を貫通するように第1コンタクトホールHaが設けられている。また、第1ゲート電極14aは、図3及び図5に示すように、第1コンタクトホールHaを介して、ソース金属層として設けられた第1接続配線19eに電気的に接続されている。なお、有機絶縁膜18は、図5に示すように、第2開口部Mbの側面を覆うように設けられている。また、第2開口部Mbの周縁は、図3に示すように、平面視で第1コンタクトホールHaの周縁よりも外側に設けられている。また、第1コンタクトホールHaの側面は、図5に示すように、樹脂基板層10に向けて順テーパ状に傾斜している。
As shown in FIGS. 3 and 5, the capacitor 9h includes a first gate electrode 14a, a first interlayer insulating film 15 provided on the gate electrode 14a, and a plane on the gate electrode 14a on the first interlayer insulating film 15. The capacitor electrode 16c is provided so as to overlap with the eyes. As shown in FIGS. 3 and 4, in the capacitor 9h, the first gate electrode 14a of each sub-pixel P is formed integrally with the first gate electrode 14a of the driving TFT 9d, and the first gate electrode of the driving TFT 9d is formed. The electrode 14a is electrically connected to the first terminal of the first initialization TFT 9a and the second terminal of the threshold voltage compensation TFT 9b, and the capacitance electrode 16c is electrically connected to the corresponding power supply line 19g through the eighth contact hole Hh. It is connected. Here, the capacitor 9h stores the voltage at the corresponding source line 19f when the corresponding gate line 14g is in the selected state, and holds the stored voltage so that the corresponding gate line 14g is in the non-selected state. It is configured to maintain the voltage applied to the first gate electrode 14a of the drive TFT 9d. Further, as shown in FIG. 3, the capacitance electrode 16c is provided to the outside of the peripheral edge of the gate electrode 14a over the entire peripheral edge of the first gate electrode 14a. As shown in FIGS. 3 and 5, the capacitance electrode 16c is provided with a first opening Ma that overlaps the first gate electrode 14a in plan view and penetrates the capacitance electrode 16c. Further, as shown in FIG. 5, a second interlayer insulating film 17 is provided on the capacitance electrode 16c so as to cover the capacitance electrode 16c. In addition, as shown in FIGS. 3 and 5, the first interlayer insulating film 15 and the second interlayer insulating film 17 are arranged inside the peripheral edge of the first opening Ma in plan view, and the first interlayer insulating film is formed. A second opening Mb is provided so as to penetrate 15 and the second interlayer insulating film 17. Further, on the second interlayer insulating film 17, as shown in FIG. 5, an organic insulating film 18 formed of a coating type insulating material is provided. Further, as shown in FIGS. 3 and 5, the organic insulating film 18 is arranged inside the peripheral edge of the second opening Mb in plan view, and the first contact hole Ha is formed so as to penetrate the organic insulating film 18. Is provided. Further, as shown in FIGS. 3 and 5, the first gate electrode 14a is electrically connected to the first connection wiring 19e provided as the source metal layer via the first contact hole Ha. The organic insulating film 18 is provided so as to cover the side surface of the second opening Mb, as shown in FIG. Further, as shown in FIG. 3, the peripheral edge of the second opening Mb is provided outside the peripheral edge of the first contact hole Ha in plan view. Further, the side surface of the first contact hole Ha is inclined in a forward taper shape toward the resin substrate layer 10 as shown in FIG.
平坦化膜20は、例えば、ポリイミド樹脂等の有機樹脂材料により構成されている。
The flattening film 20 is made of, for example, an organic resin material such as polyimide resin.
以下に、TFT層30aに設けられた第1コンタクトホールHa~第5コンタクトホールHeについて説明する。
The first to fifth contact holes Ha to He provided in the TFT layer 30a will be described below.
第1コンタクトホールHaは、ゲート金属層とソース金属層とを電気的に接続するためのものである。また、第2コンタクトホールHb~第4コンタクトホールHdは、半導体層の導体領域とソース金属層とを電気的に接続するためのものである。また、第5コンタクトホールHeは、中間金属層とソース金属層とを電気的に接続するためのものである。
The first contact hole Ha is for electrically connecting the gate metal layer and the source metal layer. The second to fourth contact holes Hb to Hd are for electrically connecting the conductor region of the semiconductor layer and the source metal layer. The fifth contact hole He is for electrically connecting the intermediate metal layer and the source metal layer.
第1コンタクトホールHa及び第2コンタクトホールHbは、図5及び図6に示すように、第1層間絶縁膜15及び第2層間絶縁膜17の対応する開口部を充填する有機絶縁膜18に設けられている。これは、第1コンタクトホールHaの近くに容量電極16cが設けられ、第2コンタクトホールHbの近くに発光制御線14eが設けられているので、ソース金属層と、容量電極16c及び発光制御線14eと短絡し易いためである。
The first contact hole Ha and the second contact hole Hb are provided in the organic insulating film 18 filling the corresponding openings of the first interlayer insulating film 15 and the second interlayer insulating film 17, as shown in FIGS. Has been. This is because the capacitance electrode 16c is provided near the first contact hole Ha and the emission control line 14e is provided near the second contact hole Hb, so that the source metal layer, the capacitance electrode 16c and the emission control line 14e are provided. This is because it is easy to short circuit.
また、第3コンタクトホールHcは、図5に示すように、層間絶縁膜(第1層間絶縁膜15及び第2層間絶縁膜17)に設けられている。これは、第3コンタクトホールHcの近くには、図5に示すように、第1コンタクトホールHa及び第2コンタクトホールHcと比べ、半導体層よりも上層に金属層が存在しないためである。
Further, the third contact hole Hc is provided in the interlayer insulating film (first interlayer insulating film 15 and second interlayer insulating film 17) as shown in FIG. This is because there is no metal layer near the third contact hole Hc above the semiconductor layer, as shown in FIG. 5, as compared with the first contact hole Ha and the second contact hole Hc.
また、第4コンタクトホールHd及び第5コンタクトホールHeにおいて、第1層間絶縁膜15及び第2層間絶縁膜17にコンタクトホールを設けるか、又は有機絶縁膜18にコンタクトホールを設けるかは、そのコンタクトホールと金属層との距離によって選択する。
In addition, in the fourth contact hole Hd and the fifth contact hole He, whether the contact hole is provided in the first interlayer insulating film 15 and the second interlayer insulating film 17 or the contact hole is provided in the organic insulating film 18 It is selected according to the distance between the hole and the metal layer.
上述した第1コンタクトホールHa~第3コンタクトホールHcの構造は、一例であって、コンタクトホールと金属層との距離が遠ければ、コンタクトホールを層間絶縁膜に設け、コンタクトホールと金属層との距離が近ければ、コンタクトホールを層間絶縁膜の内部の有機絶縁膜に設けるようにするとよい。
The structure of the first contact hole Ha to the third contact hole Hc described above is an example, and if the distance between the contact hole and the metal layer is long, the contact hole is provided in the interlayer insulating film and the contact hole is separated from the metal layer. If the distance is short, the contact hole may be provided in the organic insulating film inside the interlayer insulating film.
有機EL素子層40は、図5及び図6に示すように、平坦化膜19上にマトリクス状に配列するように複数の発光素子として設けられた複数の有機EL素子35と、各有機EL素子35を覆うように設けられた封止膜45とを備えている。
As shown in FIGS. 5 and 6, the organic EL element layer 40 includes a plurality of organic EL elements 35 provided as a plurality of light emitting elements so as to be arranged in a matrix on the flattening film 19, and each organic EL element. 35 and a sealing film 45 provided so as to cover 35.
有機EL素子35は、図5及び図6に示すように、平坦化膜20上に島状に設けられた第1電極31と、第1電極31の周端部を覆うように設けられたエッジカバー32と、第1電極31上に設けられた有機EL層33(不図示)、表示領域D全体で共通するように有機EL層33上に設けられた第2電極34とを備えている。
As shown in FIGS. 5 and 6, the organic EL element 35 has an island-shaped first electrode 31 on the flattening film 20 and an edge provided so as to cover the peripheral end of the first electrode 31. A cover 32, an organic EL layer 33 (not shown) provided on the first electrode 31, and a second electrode 34 provided on the organic EL layer 33 so as to be common to the entire display region D are provided.
第1電極31は、図3に示すように、平坦化膜20に形成されたコンタクトホールを介して、各サブ画素Pの発光制御TFT9fの第2端子に電気的に接続されている。また、第1電極31は、有機EL層33にホール(正孔)を注入する機能を有している。また、第1電極31は、有機EL層33への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極31を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第1電極31を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO2)等の合金であっても構わない。さらに、第1電極31を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極31は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
As shown in FIG. 3, the first electrode 31 is electrically connected to the second terminal of the light emission control TFT 9f of each sub-pixel P via a contact hole formed in the flattening film 20. In addition, the first electrode 31 has a function of injecting holes into the organic EL layer 33. Further, the first electrode 31 is more preferably formed of a material having a large work function in order to improve the efficiency of injecting holes into the organic EL layer 33. Here, as a material forming the first electrode 31, for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au). , Titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium ( Metal materials such as Ir) and tin (Sn) can be cited. The material forming the first electrode 31 may be an alloy such as astatine (At)/oxidized astatine (AtO 2 ). Further, the material forming the first electrode 31 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). It may be. Further, the first electrode 31 may be formed by stacking a plurality of layers made of the above materials. Examples of the compound material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
エッジカバー32は、表示領域D全体で共通するように格子状に設けられている。ここで、エッジカバー32を構成する材料としては、例えば、ポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂等が挙げられる。
The edge cover 32 is provided in a grid shape so as to be common to the entire display area D. Here, examples of the material forming the edge cover 32 include a polyimide resin, an acrylic resin, a polysiloxane resin, and a novolac resin.
有機EL層33は、図7に示すように、第1電極31上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。
As shown in FIG. 7, the organic EL layer 33 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer 5, which are sequentially provided on the first electrode 31. ing.
正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極31と有機EL層33とのエネルギーレベルを近づけ、第1電極31から有機EL層33への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。
The hole injection layer 1 is also called an anode buffer layer and has a function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 close to each other and improving the hole injection efficiency from the first electrode 31 to the organic EL layer 33. Have Here, as the material constituting the hole injection layer 1, for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples thereof include hydrazone derivatives and stilbene derivatives.
正孔輸送層2は、第1電極31から有機EL層33への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。
The hole transport layer 2 has a function of improving the efficiency of transporting holes from the first electrode 31 to the organic EL layer 33. Here, examples of the material forming the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivatives, and oxadiazole. Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples thereof include hydride amorphous silicon carbide, zinc sulfide, and zinc selenium.
発光層3は、第1電極31及び第2電極34による電圧印加の際に、第1電極31及び第2電極34から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。
In the light emitting layer 3, when the voltage is applied by the first electrode 31 and the second electrode 34, holes and electrons are injected from the first electrode 31 and the second electrode 34, respectively, and the holes and electrons are recombined. Area. Here, the light emitting layer 3 is formed of a material having high luminous efficiency. Examples of the material forming the light emitting layer 3 include metal oxinoid compound [8-hydroxyquinoline metal complex], naphthalene derivative, anthracene derivative, diphenylethylene derivative, vinylacetone derivative, triphenylamine derivative, butadiene derivative, coumarin derivative. , Benzoxazole derivative, oxadiazole derivative, oxazole derivative, benzimidazole derivative, thiadiazole derivative, benzthiazole derivative, styryl derivative, styrylamine derivative, bisstyrylbenzene derivative, trisstyrylbenzene derivative, perylene derivative, perinone derivative, aminopyrene derivative, Pyridine derivatives, rhodamine derivatives, aquidin derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylene vinylene, polysilane and the like can be mentioned.
電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。
The electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3. Here, examples of the material forming the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
電子注入層5は、第2電極34と有機EL層33とのエネルギーレベルを近づけ、第2電極34から有機EL層33へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子35の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化カルシウム(CaF2)、フッ化ストロンチウム(SrF2)、フッ化バリウム(BaF2)のような無機アルカリ化合物、酸化アルミニウム(Al2O3)、酸化ストロンチウム(SrO)等が挙げられる。
The electron injection layer 5 has a function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 close to each other and improving the efficiency of injecting electrons from the second electrode 34 to the organic EL layer 33. With this function, The drive voltage of the organic EL element 35 can be lowered. The electron injection layer 5 is also called a cathode buffer layer. Here, as a material forming the electron injection layer 5, for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride. Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO) and the like can be mentioned.
第2電極34は、図5及び図6に示すように、各サブ画素Pの有機EL層33、及び全サブ画素Pに共通するエッジカバー32を覆うように設けられている。また、第2電極34は、有機EL層33に電子を注入する機能を有している。また、第2電極34は、有機EL層33への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極34を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極34は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO2)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極34は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極34は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。
As shown in FIGS. 5 and 6, the second electrode 34 is provided so as to cover the organic EL layer 33 of each sub-pixel P and the edge cover 32 common to all the sub-pixels P. Further, the second electrode 34 has a function of injecting electrons into the organic EL layer 33. Further, the second electrode 34 is more preferably made of a material having a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 33. Here, as a material forming the second electrode 34, for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au). , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb). , Lithium fluoride (LiF), and the like. The second electrode 34 is, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/oxidized astatine (AtO 2 ). ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al), and the like. May be. The second electrode 34 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO). .. The second electrode 34 may be formed by stacking a plurality of layers made of the above materials. Examples of the material having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), and sodium. (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al) Etc.
封止膜45は、図5及び図6に示すように、第2電極34を覆うように設けられた第1封止無機絶縁膜41と、第1封止無機絶縁膜41上に設けられた封止有機膜42と、封止有機膜42を覆うように設けられた第2封止無機絶縁膜43とを備え、有機EL層33を水分や酸素等から保護する機能を有している。ここで、第1封止無機絶縁膜41及び第2封止無機絶縁膜43は、例えば、酸化シリコン(SiO2)や酸化アルミニウム(Al2O3)、四窒化三ケイ素(Si3N4)のような窒化シリコン(SiNx(xは正数))、炭窒化ケイ素(SiCN)等の無機材料により構成されている。また、封止有機膜42は、例えば、アクリル樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の有機材料により構成されている。
As shown in FIGS. 5 and 6, the sealing film 45 is provided on the first sealing inorganic insulating film 41 provided so as to cover the second electrode 34 and the first sealing inorganic insulating film 41. The sealing organic film 42 and the second sealing inorganic insulating film 43 provided so as to cover the sealing organic film 42 are provided, and have a function of protecting the organic EL layer 33 from moisture, oxygen and the like. Here, the first sealing inorganic insulating film 41 and the second sealing inorganic insulating film 43 are, for example, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and trisilicon tetroxide (Si 3 N 4 ). And an inorganic material such as silicon nitride (SiNx (x is a positive number)), silicon carbonitride (SiCN), or the like. The sealing organic film 42 is made of, for example, an organic material such as acrylic resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
上記構成の有機EL表示装置50aでは、各サブ画素Pにおいて、まず、対応する発光制御線14eが選択されて非活性状態とされると、有機EL素子35が非発光状態となる。その非発光状態で、(第1初期化TFT9a及び第2初期化TFT9gに電気的に接続された)対応するゲート線14gが選択され、そのゲート線14gを介してゲート信号が第1初期化TFT9aに入力されることにより、第1初期化TFT9a及び第2初期化TFT9gがオン状態となり、対応する初期化電源線16iの電圧がキャパシタ9hに印加されると共に、駆動TFT9dがオン状態となる。これにより、キャパシタ9hの電荷が放電されて、駆動TFT9dの制御端子(第1ゲート電極)14aにかかる電圧が初期化される。次に、(閾値電圧補償TFT9b及び書込制御TFT9cに電気的に接続された)対応するゲート線14gが選択されて活性状態とされることにより、閾値電圧補償TFT9b及び書込制御TFT9cがオン状態となり、対応するソース線19fを介して伝達されるソース信号に対応する所定の電圧がダイオード接続状態の駆動TFT9dを介してキャパシタ9hに書き込まれると共に、対応する初期化電源線16iを介して初期化信号が有機EL素子35の第1電極31に印加されて第1電極31に蓄積した電荷がリセットされる。その後、対応する発光制御線14eが選択されて、電源供給TFT9e及び発光制御TFT9fがオン状態となり、駆動TFT9dの制御端子(ゲート電極)16aにかかる電圧に応じた駆動電流が対応する電源線19gから有機EL素子35に供給される。このようにして、有機EL表示装置50aでは、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。
In the organic EL display device 50a having the above configuration, when the corresponding light emission control line 14e is first selected in each sub-pixel P and put into an inactive state, the organic EL element 35 is put into a non-light emitting state. In the non-light emitting state, the corresponding gate line 14g (electrically connected to the first initializing TFT 9a and the second initializing TFT 9g) is selected, and the gate signal is transmitted via the gate line 14g to the first initializing TFT 9a. Is input to the first initialization TFT 9a and the second initialization TFT 9g, the corresponding initialization power supply line 16i voltage is applied to the capacitor 9h, and the drive TFT 9d is turned on. As a result, the charge of the capacitor 9h is discharged, and the voltage applied to the control terminal (first gate electrode) 14a of the drive TFT 9d is initialized. Next, the corresponding gate line 14g (electrically connected to the threshold voltage compensation TFT 9b and the write control TFT 9c) is selected and activated to turn on the threshold voltage compensation TFT 9b and the write control TFT 9c. Then, a predetermined voltage corresponding to the source signal transmitted via the corresponding source line 19f is written in the capacitor 9h via the driving TFT 9d in the diode connection state, and initialized via the corresponding initialization power supply line 16i. The signal is applied to the first electrode 31 of the organic EL element 35, and the charge accumulated in the first electrode 31 is reset. After that, the corresponding light emission control line 14e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and the drive current corresponding to the voltage applied to the control terminal (gate electrode) 16a of the drive TFT 9d is supplied from the corresponding power line 19g. It is supplied to the organic EL element 35. In this way, in the organic EL display device 50a, in each sub-pixel P, the organic EL element 35 emits light with the brightness corresponding to the drive current, and image display is performed.
次に、本実施形態の有機EL表示装置50aの製造方法について説明する。なお、本実施形態の有機EL表示装置50aの製造方法は、開口部形成工程、コンタクトホール形成工程及びソース金属層形成工程を含むTFT層形成工程と、有機EL素子層形成工程と、封止膜形成工程とを備える。ここで、図8は、有機EL表示装置50aを製造する際に樹脂基板層10上に形成する薄膜の積層形態を模式的に示す断面図である。また、図9及び図10は、有機EL表示装置50aの製造方法の開口部形成工程におけるレジストパターンRaを形成する工程を示す断面図であり、図5及び図6に相当する図である。また、図11及び図12は、有機EL表示装置50aの製造方法の開口部形成工程における第2開口部Mb及び第3開口部Mcを形成する工程を示す断面図であり、図5及び図6に相当する図である。また、図13及び図14は、有機EL表示装置50aの製造方法のコンタクトホール形成工程における有機絶縁膜を塗布する工程を示す断面図であり、図5及び図6に相当する図である。また、図15及び図16は、有機EL表示装置50aの製造方法のコンタクトホール形成工程における有機絶縁膜をパターニングする工程を示す断面図であり、図5及び図6に相当する図である。また、図17及び図18は、有機EL表示装置50aの製造方法のソース金属層形成工程を示す断面図であり、図5及び図6に相当する図である。
Next, a method of manufacturing the organic EL display device 50a of this embodiment will be described. The method for manufacturing the organic EL display device 50a according to the present embodiment includes a TFT layer forming step including an opening forming step, a contact hole forming step, and a source metal layer forming step, an organic EL element layer forming step, and a sealing film. And a forming step. Here, FIG. 8 is a cross-sectional view schematically showing a laminated form of thin films formed on the resin substrate layer 10 when the organic EL display device 50a is manufactured. 9 and 10 are cross-sectional views showing a step of forming the resist pattern Ra in the opening forming step of the method for manufacturing the organic EL display device 50a, which corresponds to FIGS. 5 and 6. 11 and 12 are cross-sectional views showing a step of forming the second opening Mb and the third opening Mc in the opening forming step of the method for manufacturing the organic EL display device 50a, and FIGS. It is a figure equivalent to. 13 and 14 are cross-sectional views showing a step of applying an organic insulating film in the contact hole forming step of the manufacturing method of the organic EL display device 50a, and are views corresponding to FIGS. 5 and 6. 15 and 16 are cross-sectional views showing a step of patterning the organic insulating film in the contact hole forming step of the manufacturing method of the organic EL display device 50a, and are views corresponding to FIGS. 5 and 6. 17 and 18 are cross-sectional views showing the source metal layer forming step of the method for manufacturing the organic EL display device 50a, which corresponds to FIGS. 5 and 6.
<TFT層形成工程>
まず、例えば、ガラス基板上に形成した樹脂基板層10上に、例えば、プラズマCVD法により、酸化シリコン膜等の無機絶縁膜(厚さ1000nm程度)を成膜することにより、ベースコート膜11を形成する。 <TFT layer forming step>
First, for example, thebase coat film 11 is formed by forming an inorganic insulating film (thickness of about 1000 nm) such as a silicon oxide film on the resin substrate layer 10 formed on the glass substrate by, for example, a plasma CVD method. To do.
まず、例えば、ガラス基板上に形成した樹脂基板層10上に、例えば、プラズマCVD法により、酸化シリコン膜等の無機絶縁膜(厚さ1000nm程度)を成膜することにより、ベースコート膜11を形成する。 <TFT layer forming step>
First, for example, the
続いて、ベースコート膜11が形成された基板全体に、プラズマCVD法により、例えば、アモルファスシリコン膜(厚さ50nm程度)を成膜し、そのアモルファスシリコン膜をレーザーアニール等により結晶化してポリシリコン膜の半導体膜12(図8参照)を形成した後に、その半導体膜12をパターニングして、第1半導体層(12a)等を形成する(半導体層形成工程)。
Subsequently, for example, an amorphous silicon film (with a thickness of about 50 nm) is formed on the entire substrate on which the base coat film 11 is formed by a plasma CVD method, and the amorphous silicon film is crystallized by laser annealing or the like to form a polysilicon film. After forming the semiconductor film 12 (see FIG. 8), the semiconductor film 12 is patterned to form the first semiconductor layer (12a) and the like (semiconductor layer forming step).
その後、第1半導体層(12a)等が形成された基板全体に、例えば、プラズマCVD法により、酸化シリコン膜等の無機絶縁膜(100nm程度)を成膜して、第1半導体層12a等を覆うようにゲート絶縁膜13を形成する(ゲート絶縁膜形成工程)。
After that, an inorganic insulating film (about 100 nm) such as a silicon oxide film is formed on the entire substrate on which the first semiconductor layer (12a) and the like are formed by, for example, a plasma CVD method to form the first semiconductor layer 12a and the like. The gate insulating film 13 is formed so as to cover (gate insulating film forming step).
さらに、ゲート絶縁膜13が形成された基板全体に、例えば、スパッタリング法により、アルミニウム膜(厚さ350nm程度)及び窒化モリブデン膜(厚さ50nm程度)等を順に成膜して、ゲート金属膜14(図8参照)を成膜した後に、ゲート金属膜14をパターニングして、第1ゲート電極14a等のゲート金属層を形成する(ゲート金属層形成工程)。
Further, an aluminum film (having a thickness of about 350 nm), a molybdenum nitride film (having a thickness of about 50 nm), and the like are sequentially formed on the entire substrate on which the gate insulating film 13 is formed by, for example, a sputtering method to form the gate metal film 14. (See FIG. 8) After the film is formed, the gate metal film 14 is patterned to form a gate metal layer such as the first gate electrode 14a (gate metal layer forming step).
続いて、第1ゲート電極14a等のゲート金属層をマスクとして、不純物イオンをドーピングすることにより、真性領域12ac及び一対の導体領域を有する第1半導体層12a等を形成する(ドーピング工程)。
Subsequently, impurity ions are doped using the gate metal layer such as the first gate electrode 14a as a mask to form the first semiconductor layer 12a having the intrinsic region 12ac and the pair of conductor regions (doping step).
その後、第1半導体層12a等が形成された基板全体に、例えば、プラズマCVD法により、酸化シリコン膜等の無機絶縁膜(厚さ100nm程度)を成膜することにより、第1層間絶縁膜15を形成する(第1層間絶縁膜形成工程)。
After that, an inorganic insulating film (having a thickness of about 100 nm) such as a silicon oxide film is formed on the entire substrate on which the first semiconductor layer 12a and the like are formed by, for example, a plasma CVD method, and thus the first interlayer insulating film 15 is formed. Are formed (first interlayer insulating film forming step).
続いて、第1層間絶縁膜15が形成された基板全体に、例えば、スパッタリング法により、アルミニウム膜(厚さ350nm程度)及び窒化モリブデン膜(厚さ50nm程度)等を順に成膜して、中間金属膜16(図8参照)を成膜した後に、中間金属膜16をパターニングして、第1開口部Maを有する容量電極16c等の中間金属層を形成する(中間金属層形成工程)。
Then, an aluminum film (about 350 nm in thickness), a molybdenum nitride film (about 50 nm in thickness), etc. are sequentially formed on the entire substrate on which the first interlayer insulating film 15 is formed, for example, by a sputtering method, and an intermediate film is formed. After forming the metal film 16 (see FIG. 8), the intermediate metal film 16 is patterned to form an intermediate metal layer such as the capacitor electrode 16c having the first opening Ma (intermediate metal layer forming step).
さらに、容量電極16c等の中間金属層が形成された基板全体に、例えば、プラズマCVD法により、酸化シリコン膜等の無機絶縁膜(厚さ500nm程度)を成膜することにより、第2層間絶縁膜17を形成する(第2層間絶縁膜形成工程)。
Further, an inorganic insulating film (thickness of about 500 nm) such as a silicon oxide film is formed on the entire substrate on which the intermediate metal layer such as the capacitance electrode 16c is formed, for example, by the plasma CVD method, so that the second interlayer insulating film is formed. The film 17 is formed (second interlayer insulating film forming step).
その後、第2層間絶縁膜17上にポジ型のレジスト材料R(図8参照)を塗布し、レジスト材料Rを露光、現像及び焼成することにより、図9及び図10に示すように、第2開口部Mb、第3開口部Mc及び第3コンタクトホールHcに対応して、貫通孔Hrが設けられたレジストパターンRaを形成する。そして、レジストパターンRaから露出する第2層間絶縁膜17及び第1層間絶縁膜15をエッチングすることにより、図11に示すように、第1層間絶縁膜15及び第2層間絶縁膜17に、平面視で第1開口部Maの周縁の内側に配置するように貫通した第2開口部Mbを形成する。このとき、レジストパターンRaから露出する第2層間絶縁膜17、第1層間絶縁膜15及びゲート絶縁膜13をエッチングすることにより、図12に示すように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通して、第2導体領域12bbに到達するように第3開口部Mcを形成する(開口部形成工程)。さらに、このとき、レジストパターンRaから露出する第2層間絶縁膜17、第1層間絶縁膜15及びゲート絶縁膜13をエッチングすることにより、図11に示すように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通して、第2導体領域12abに到達するように第3コンタクトホールHcの下部が形成される。
After that, a positive resist material R (see FIG. 8) is applied on the second interlayer insulating film 17, and the resist material R is exposed, developed, and baked, so that a second resist material R is formed as shown in FIGS. A resist pattern Ra having a through hole Hr is formed corresponding to the opening Mb, the third opening Mc, and the third contact hole Hc. Then, by etching the second interlayer insulating film 17 and the first interlayer insulating film 15 exposed from the resist pattern Ra, as shown in FIG. 11, the first interlayer insulating film 15 and the second interlayer insulating film 17 have a flat surface. The penetrating second opening Mb is formed so as to be arranged inside the peripheral edge of the first opening Ma as viewed. At this time, by etching the second interlayer insulating film 17, the first interlayer insulating film 15 and the gate insulating film 13 exposed from the resist pattern Ra, as shown in FIG. 12, the gate insulating film 13 and the first interlayer insulating film 13 are formed. A third opening Mc is formed through the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17, and reaches the second conductor region 12bb. (Opening formation step). Further, at this time, by etching the second interlayer insulating film 17, the first interlayer insulating film 15, and the gate insulating film 13 exposed from the resist pattern Ra, as shown in FIG. 11, the gate insulating film 13 and the first interlayer insulating film 13 are etched. The third contact hole Hc is formed in the insulating film 15 and the second interlayer insulating film 17 so as to penetrate the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 and reach the second conductor region 12ab. The lower part is formed.
続いて、第2開口部Mb及び第3開口部Mcが形成された第2層間絶縁膜17が形成された基板全体に、例えば、スピンコート法やスリットコート法により、図13及び図15に示すように、感光性を有する絶縁材料(例えば、SOG(spin on glass)材料等)により形成された有機絶縁膜18を塗布した後に、有機絶縁膜18をパターニングして、図15及び図16に示すように、有機絶縁膜18に平面視で第2開口部Mbの周縁の内側に配置するように貫通した第1コンタクトホールHa、平面視で第3開口部Mcと重なるように貫通した第2コンタクトホールHb、及び平面視で第3コンタクトホールHcの下部と重なるように貫通した第3コンタクトホールHcの上部を形成する(コンタクトホール形成工程)。ここで、コンタクトホール形成工程では、図15及び図16に示すように、第2開口部Mb及び第3開口部Mcの側面を覆うように、有機絶縁膜18をパターニングして、樹脂基板層10側に向けて側面が順テーパ状に傾斜するように第1コンタクトホールHa及び第2コンタクトホールHbを形成する。
Subsequently, the whole substrate on which the second interlayer insulating film 17 having the second opening Mb and the third opening Mc is formed is shown in FIGS. 13 and 15 by, for example, a spin coating method or a slit coating method. As shown in FIGS. 15 and 16, after applying the organic insulating film 18 formed of a photosensitive insulating material (for example, SOG (spin-on-glass) material), the organic insulating film 18 is patterned. Thus, the first contact hole Ha penetrating the organic insulating film 18 so as to be disposed inside the peripheral edge of the second opening Mb in a plan view, and the second contact penetrating so as to overlap the third opening Mc in a plan view. The hole Hb and the upper part of the third contact hole Hc penetrating so as to overlap the lower part of the third contact hole Hc in plan view are formed (contact hole forming step). Here, in the contact hole forming step, as shown in FIGS. 15 and 16, the organic insulating film 18 is patterned so as to cover the side surfaces of the second opening Mb and the third opening Mc, and the resin substrate layer 10 is then formed. The first contact hole Ha and the second contact hole Hb are formed so that the side surfaces incline toward the side in a forward tapered shape.
その後、第1コンタクトホールHa等が形成された基板全体に、例えば、スパッタリング法により、チタン膜(厚さ30nm程度)、アルミニウム膜(厚さ300nm程度)及びチタン膜(厚さ50nm程度)等を順に成膜してソース金属膜19を形成した後に、ソース金属膜19をパターニングして、第1接続配線19e、電源線19g等のソース金属層を形成する(ソース金属層形成工程)。
After that, a titanium film (thickness of about 30 nm), an aluminum film (thickness of about 300 nm), a titanium film (thickness of about 50 nm), etc. are formed on the entire substrate in which the first contact holes Ha and the like are formed by, for example, a sputtering method. After sequentially forming the source metal film 19 to form the source metal film 19, the source metal film 19 is patterned to form a source metal layer such as the first connection wiring 19e and the power supply line 19g (source metal layer forming step).
最後に、第1接続配線18e等のソース金属層が形成された基板全体に、例えば、スピンコート法やスリットコート法により、ポリイミド系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、平坦化膜20を形成する。
Finally, after applying a polyimide-based photosensitive resin film (thickness of about 2 μm) to the entire substrate on which the source metal layer such as the first connection wiring 18e is formed, for example, by a spin coating method or a slit coating method, The flattening film 20 is formed by performing pre-baking, exposure, development, and post-baking on the coating film.
以上のようにして、TFT層30aを形成することができる。
The TFT layer 30a can be formed as described above.
<有機EL素子層形成工程>
上記TFT層形成工程で形成されたTFT層30aの平坦化膜20上に、周知の方法を用いて、第1電極31、エッジカバー32、有機EL層33(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第2電極34を形成して、有機EL素子層40を形成する。 <Organic EL element layer forming step>
The first electrode 31, theedge cover 32, and the organic EL layer 33 (hole injection layer 1, hole transport) are used on the flattening film 20 of the TFT layer 30a formed in the TFT layer forming step by a well-known method. The layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5) and the second electrode 34 are formed to form the organic EL element layer 40.
上記TFT層形成工程で形成されたTFT層30aの平坦化膜20上に、周知の方法を用いて、第1電極31、エッジカバー32、有機EL層33(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第2電極34を形成して、有機EL素子層40を形成する。 <Organic EL element layer forming step>
The first electrode 31, the
<封止膜形成工程>
上記有機EL素子層形成工程で形成された有機EL素子層40上に、周知の方法を用いて、封止膜45(第1封止無機絶縁膜41、封止有機膜42、第2封止無機絶縁膜43)を形成する。その後、封止膜45が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板層10のガラス基板側からレーザー光を照射することにより、樹脂基板層10の下面からガラス基板を剥離させ、さらに、ガラス基板を剥離させた樹脂基板層10の下面に保護シート(不図示)を貼付する。 <Sealing film forming step>
A sealing film 45 (first sealing inorganic insulatingfilm 41, sealing organic film 42, second sealing) is formed on the organic EL element layer 40 formed in the organic EL element layer forming step by a known method. An inorganic insulating film 43) is formed. After that, a protective sheet (not shown) is attached to the surface of the substrate on which the sealing film 45 is formed, and then the glass substrate is irradiated from the glass substrate side of the resin substrate layer 10 to irradiate the glass substrate from the lower surface of the resin substrate layer 10. Then, a protective sheet (not shown) is attached to the lower surface of the resin substrate layer 10 from which the glass substrate has been peeled off.
上記有機EL素子層形成工程で形成された有機EL素子層40上に、周知の方法を用いて、封止膜45(第1封止無機絶縁膜41、封止有機膜42、第2封止無機絶縁膜43)を形成する。その後、封止膜45が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板層10のガラス基板側からレーザー光を照射することにより、樹脂基板層10の下面からガラス基板を剥離させ、さらに、ガラス基板を剥離させた樹脂基板層10の下面に保護シート(不図示)を貼付する。 <Sealing film forming step>
A sealing film 45 (first sealing inorganic insulating
以上のようにして、本実施形態の有機EL表示装置50aを製造することができる。
The organic EL display device 50a of this embodiment can be manufactured as described above.
以上説明したように、本実施形態の有機EL表示装置50a及びその製造方法によれば、TFT層形成工程の開口部形成工程において、第1層間絶縁膜15及び第2層間絶縁膜17に第1層間絶縁膜15及び第2層間絶縁膜17を貫通するように第2開口部Mbが形成されると共に、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通するように第3開口部Mcが形成される。ここで、ゲート絶縁膜13及び第1層間絶縁膜15の表面に異物Xが仮に存在し、第1層間絶縁膜形成工程及び第2層間絶縁膜形成工程で第1層間絶縁膜15第2層間絶縁膜17を形成する際に第1層間絶縁膜15及び第2層間絶縁膜17に空洞の鬆Yが形成されたとしても、後のコンタクトホール形成工程において、第2開口部Mb及び第3開口部Mcの側面を覆うように、有機絶縁膜18をパターニングするので、第1層間絶縁膜15及び第2層間絶縁膜17に形成された鬆Yの内部に有機絶縁膜18が充填される。これにより、ソース金属層形成工程で形成される第1接続配線19eと中間金属層形成工程で形成された容量電極16cとの短絡、及びソース金属層形成工程で形成される電源線19gとゲート金属層形成工程で形成された発光制御線14eとの短絡を抑制することができるので、第1層間絶縁膜15及び第2層間絶縁膜17に形成された鬆Yに起因する短絡欠陥の発生を抑制することができる。
As described above, according to the organic EL display device 50a of the present embodiment and the manufacturing method thereof, in the opening forming step of the TFT layer forming step, the first interlayer insulating film 15 and the second interlayer insulating film 17 are first. The second opening Mb is formed so as to penetrate the interlayer insulating film 15 and the second interlayer insulating film 17, and the gate insulating film 13 is formed on the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17. The third opening Mc is formed so as to penetrate the first interlayer insulating film 15 and the second interlayer insulating film 17. Here, the foreign material X is temporarily present on the surfaces of the gate insulating film 13 and the first interlayer insulating film 15, and the first interlayer insulating film 15 and the second interlayer insulating film are formed in the first interlayer insulating film forming step and the second interlayer insulating film forming step. Even if a void Y is formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 when the film 17 is formed, the second opening Mb and the third opening Mb are formed in the subsequent contact hole forming step. Since the organic insulating film 18 is patterned so as to cover the side surface of Mc, the organic insulating film 18 is filled in the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17. This causes a short circuit between the first connection wiring 19e formed in the source metal layer forming step and the capacitor electrode 16c formed in the intermediate metal layer forming step, and a power supply line 19g and a gate metal formed in the source metal layer forming step. Since a short circuit with the light emission control line 14e formed in the layer forming step can be suppressed, occurrence of a short circuit defect due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 can be suppressed. can do.
《第2の実施形態》
図19~図24は、本発明に係る表示装置及びその製造方法の第2の実施形態を示している。ここで、図19及び図20は、本実施形態の有機EL表示装置50bの断面図であり、上記第1の実施形態で説明した図5及び図6に相当する図である。なお、以下の各実施形態において、図1~図18と同じ部分については同じ符号を付して、その詳細な説明を省略する。 <<Second Embodiment>>
19 to 24 show a second embodiment of the display device and the manufacturing method thereof according to the present invention. Here, FIG. 19 and FIG. 20 are cross-sectional views of the organicEL display device 50b of the present embodiment, and are views corresponding to FIG. 5 and FIG. 6 described in the first embodiment. In each of the following embodiments, the same parts as those in FIGS. 1 to 18 are designated by the same reference numerals, and detailed description thereof will be omitted.
図19~図24は、本発明に係る表示装置及びその製造方法の第2の実施形態を示している。ここで、図19及び図20は、本実施形態の有機EL表示装置50bの断面図であり、上記第1の実施形態で説明した図5及び図6に相当する図である。なお、以下の各実施形態において、図1~図18と同じ部分については同じ符号を付して、その詳細な説明を省略する。 <<Second Embodiment>>
19 to 24 show a second embodiment of the display device and the manufacturing method thereof according to the present invention. Here, FIG. 19 and FIG. 20 are cross-sectional views of the organic
上記第1の実施形態では、第1層間絶縁膜15及び第2層間絶縁膜17の開口部の側面が略直立した有機EL表示装置50aを例示したが、本実施形態では、第1層間絶縁膜15及び第2層間絶縁膜17の開口部の側面が逆テーパ状に傾斜した有機EL表示装置50bを例示する。
In the first embodiment described above, the organic EL display device 50a in which the side surfaces of the openings of the first interlayer insulating film 15 and the second interlayer insulating film 17 are substantially upright is exemplified, but in the present embodiment, the first interlayer insulating film is formed. 15 illustrates an organic EL display device 50b in which the side surfaces of the openings of 15 and the second interlayer insulating film 17 are inclined in a reverse taper shape.
有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aと同様に、表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。
The organic EL display device 50b includes a display area D and a frame area F provided around the display area D, similarly to the organic EL display device 50a of the first embodiment.
有機EL表示装置50bは、図19及び図20に示すように、樹脂基板層10と、樹脂基板層10上に設けられたTFT層30bと、TFT層30b上に設けられた有機EL素子層40、有機EL素子層40上に設けられた封止膜45とを備えている。
As shown in FIGS. 19 and 20, the organic EL display device 50b includes a resin substrate layer 10, a TFT layer 30b provided on the resin substrate layer 10, and an organic EL element layer 40 provided on the TFT layer 30b. , And a sealing film 45 provided on the organic EL element layer 40.
TFT層30bは、上記第1の実施形態の有機EL表示装置50aのTFT層30aと同様に、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11上にサブ画素P毎に設けられた第1初期化TFT9a、閾値電圧補償TFT9b、書込制御TFT9c、駆動TFT9d、電源供給TFT9e、発光制御TFT9f、第2初期化TFT9g及びキャパシタ9hと、各TFT9a~9g及びキャパシタ9h上に設けられた平坦化膜20とを備えている。
Similar to the TFT layer 30a of the organic EL display device 50a of the first embodiment, the TFT layer 30b is provided on the base coat film 11 provided on the resin substrate layer 10 and on the base coat film 11 for each sub-pixel P. The first initialization TFT 9a, the threshold voltage compensation TFT 9b, the write control TFT 9c, the drive TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, the second initialization TFT 9g and the capacitor 9h, and the respective TFTs 9a to 9g and the capacitor 9h are provided. And a flattening film 20.
TFT層30bでは、図19及び図20に示すように、第1層間絶縁膜15及び第2層間絶縁膜17に形成された第2開口部Mb及び第3開口部Mcの側面が樹脂基板層10側に向けて逆テーパ状に傾斜し、平面視で第3コンタクトホールHcに重なるように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17に第4開口部Mdが形成され、第4開口部Mdの側面が樹脂基板層10側に向けて逆テーパ状に傾斜している。なお、TFT層30bにおいて、上述した第2開口部Mb、第3開口部Mc及び第4開口部Mdの構成以外は、上記第1の実施形態の有機EL表示装置50aのTFT層30aの構成と実質的に同じになっている。
In the TFT layer 30b, as shown in FIGS. 19 and 20, the side surfaces of the second opening Mb and the third opening Mc formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 have the resin substrate layer 10 on the side surfaces. A fourth opening Md is formed in the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17 so as to incline in a reverse taper shape toward the side and overlap the third contact hole Hc in a plan view. Thus, the side surface of the fourth opening Md is inclined in the reverse taper shape toward the resin substrate layer 10 side. The TFT layer 30b has the same structure as the TFT layer 30a of the organic EL display device 50a according to the first embodiment except for the structures of the second opening Mb, the third opening Mc, and the fourth opening Md described above. It is virtually the same.
上記構成の有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aと同様に、可撓性を有し、各サブ画素Pにおいて、第1初期化TFT9a、閾値電圧補償TFT9b、書込制御TFT9c、駆動TFT9d、電源供給TFT9e、発光制御TFT9f及び第2初期化TFT9gを介して、有機EL層33の発光層3を適宜発光させることにより、画像表示を行うように構成されている。
The organic EL display device 50b having the above configuration has flexibility as in the organic EL display device 50a of the first embodiment, and in each sub-pixel P, the first initialization TFT 9a, the threshold voltage compensation TFT 9b, An image is displayed by appropriately causing the light emitting layer 3 of the organic EL layer 33 to emit light via the write control TFT 9c, the drive TFT 9d, the power supply TFT 9e, the light emission control TFT 9f, and the second initialization TFT 9g. ..
本実施形態の有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aの製造方法における開口部形成工程を変更することにより、製造することができる。ここで、図21及び図22は、有機EL表示装置50bの製造方法の開口部形成工程におけるレジストパターンを形成する工程を示す断面図であり、図19及び図20に相当する図である。また、図23及び図24は、有機EL表示装置50bの製造方法の開口部形成工程における第2開口部Mb、第4開口部Md及び第3開口部Mcを形成する工程を示す断面図であり、図19及び図20に相当する図である。
The organic EL display device 50b of the present embodiment can be manufactured by changing the opening forming step in the method of manufacturing the organic EL display device 50a of the first embodiment. Here, FIGS. 21 and 22 are cross-sectional views showing a step of forming a resist pattern in the opening forming step of the method for manufacturing the organic EL display device 50b, and are views corresponding to FIGS. 19 and 20. 23 and 24 are cross-sectional views showing a step of forming the second opening Mb, the fourth opening Md, and the third opening Mc in the opening forming step of the method for manufacturing the organic EL display device 50b. FIG. 21 is a view corresponding to FIGS. 19 and 20.
具体的には、上記第1の実施形態の有機EL表示装置50aの製造方法の第2層間絶縁膜形成工程までを行った後に、第2層間絶縁膜17上にネガ型のレジスト材料Rを塗布し、レジスト材料Rを露光、現像及び焼成することにより、図21及び図22に示すように、第2開口部Mb、第3開口部Mc及び第4開口部Mdに対応して、貫通孔Hrが設けられたレジストパターンRbを形成する。ここで、レジストパターンRbに形成された貫通孔Hrの側面は、図21及び図22に示すように、樹脂基板層10側に向けて側面が逆テーパ状に傾斜している。
Specifically, after the steps up to the second interlayer insulating film forming step of the method for manufacturing the organic EL display device 50a of the first embodiment are performed, the negative resist material R is applied on the second interlayer insulating film 17. Then, by exposing, developing and baking the resist material R, as shown in FIGS. 21 and 22, through holes Hr corresponding to the second opening Mb, the third opening Mc and the fourth opening Md are formed. A resist pattern Rb provided with is formed. Here, as shown in FIGS. 21 and 22, the side surface of the through hole Hr formed in the resist pattern Rb is inclined in an inverse taper shape toward the resin substrate layer 10 side.
その後、レジストパターンRbから露出する第2層間絶縁膜17及び第1層間絶縁膜15をエッチングすることにより、図23に示すように、第1層間絶縁膜15及び第2層間絶縁膜17に、平面視で第1開口部Maの周縁の内側に配置するように貫通した第2開口部Mbを形成する。このとき、レジストパターンRbから露出する第2層間絶縁膜17、第1層間絶縁膜15及びゲート絶縁膜13をエッチングすることにより、図24に示すように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通して、第2導体領域12bbに到達するように第3開口部Mcを形成する(開口部形成工程)。さらに、このとき、レジストパターンRbから露出する第2層間絶縁膜17、第1層間絶縁膜15及びゲート絶縁膜13をエッチングすることにより、図23に示すように、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通して、第2導体領域12abに到達するように第4開口部Mdが形成される。なお、レジストパターンRbに形成された貫通孔Hrの側面が樹脂基板層10側に向けて側面が逆テーパ状に傾斜されているので、レジストパターンRbをマスクとしてエッチングにより形成された第2開口部Mb、第3開口部Mc及び第4開口部Mdの側面は、図23及び図24に示すように、樹脂基板層10側に向けて側面が逆テーパ状に傾斜される。
Then, by etching the second interlayer insulating film 17 and the first interlayer insulating film 15 exposed from the resist pattern Rb, the first interlayer insulating film 15 and the second interlayer insulating film 17 are planarized as shown in FIG. The penetrating second opening Mb is formed so as to be arranged inside the peripheral edge of the first opening Ma as viewed. At this time, by etching the second interlayer insulating film 17, the first interlayer insulating film 15 and the gate insulating film 13 exposed from the resist pattern Rb, as shown in FIG. 24, the gate insulating film 13 and the first interlayer insulating film 13 are formed. A third opening Mc is formed through the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17, and reaches the second conductor region 12bb. (Opening formation step). Further, at this time, by etching the second interlayer insulating film 17, the first interlayer insulating film 15 and the gate insulating film 13 exposed from the resist pattern Rb, the gate insulating film 13 and the first interlayer insulating film 13 are etched as shown in FIG. The fourth opening Md is formed in the insulating film 15 and the second interlayer insulating film 17 so as to penetrate the gate insulating film 13, the first interlayer insulating film 15 and the second interlayer insulating film 17 and reach the second conductor region 12ab. It is formed. Since the side surface of the through hole Hr formed in the resist pattern Rb is inclined in the reverse taper shape toward the resin substrate layer 10 side, the second opening formed by etching using the resist pattern Rb as a mask. As shown in FIGS. 23 and 24, the side surfaces of Mb, the third opening Mc, and the fourth opening Md are inclined in a reverse taper shape toward the resin substrate layer 10 side.
引き続いて、上記第1の実施形態の有機EL表示装置50aの製造方法のコンタクトホール形成工程、ソース金属層形成工程を行った後に、平坦化膜20を形成することにより、TFT層30bを形成することができ、さらに、上記第1の実施形態の有機EL表示装置50aの製造方法の有機EL素子層形成工程及び封止膜形成工程を行うことにより、本実施形態の有機EL表示装置50bを製造することができる。
Subsequently, after performing the contact hole forming step and the source metal layer forming step of the manufacturing method of the organic EL display device 50a of the first embodiment, the flattening film 20 is formed to form the TFT layer 30b. Further, the organic EL display device 50b of the present embodiment is manufactured by performing the organic EL element layer forming step and the sealing film forming step of the manufacturing method of the organic EL display device 50a of the first embodiment. can do.
以上説明したように、本実施形態の有機EL表示装置50b及びその製造方法によれば、TFT層形成工程の開口部形成工程において、第1層間絶縁膜15及び第2層間絶縁膜17に第1層間絶縁膜15及び第2層間絶縁膜17を貫通するように第2開口部Mbが形成されると共に、ゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17にゲート絶縁膜13、第1層間絶縁膜15及び第2層間絶縁膜17を貫通するように第3開口部Mcが形成される。ここで、ゲート絶縁膜13及び第1層間絶縁膜15の表面に異物Xが仮に存在し、第1層間絶縁膜形成工程及び第2層間絶縁膜形成工程で第1層間絶縁膜15第2層間絶縁膜17を形成する際に第1層間絶縁膜15及び第2層間絶縁膜17に空洞の鬆Yが形成されたとしても、後のコンタクトホール形成工程において、第2開口部Mb及び第3開口部Mcの側面を覆うように、有機絶縁膜18をパターニングするので、第1層間絶縁膜15及び第2層間絶縁膜17に形成された鬆Yの内部に有機絶縁膜18が充填される。これにより、ソース金属層形成工程で形成される第1接続配線19eと中間金属層形成工程で形成された容量電極16cとの短絡、及びソース金属層形成工程で形成される電源線19gとゲート金属層形成工程で形成された発光制御線14eとの短絡を抑制することができるので、第1層間絶縁膜15及び第2層間絶縁膜17に形成された鬆Yに起因する短絡欠陥の発生を抑制することができる。
As described above, according to the organic EL display device 50b and the manufacturing method thereof of the present embodiment, the first interlayer insulating film 15 and the second interlayer insulating film 17 have the first interlayer insulating film 15 and the first interlayer insulating film 17 in the opening forming step of the TFT layer forming step. The second opening Mb is formed so as to penetrate the interlayer insulating film 15 and the second interlayer insulating film 17, and the gate insulating film 13 is formed on the gate insulating film 13, the first interlayer insulating film 15, and the second interlayer insulating film 17. The third opening Mc is formed so as to penetrate the first interlayer insulating film 15 and the second interlayer insulating film 17. Here, the foreign material X is temporarily present on the surfaces of the gate insulating film 13 and the first interlayer insulating film 15, and the first interlayer insulating film 15 and the second interlayer insulating film are formed in the first interlayer insulating film forming step and the second interlayer insulating film forming step. Even if a void Y is formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 when the film 17 is formed, the second opening Mb and the third opening Mb are formed in the subsequent contact hole forming step. Since the organic insulating film 18 is patterned so as to cover the side surface of Mc, the organic insulating film 18 is filled in the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17. This causes a short circuit between the first connection wiring 19e formed in the source metal layer forming step and the capacitor electrode 16c formed in the intermediate metal layer forming step, and a power supply line 19g and a gate metal formed in the source metal layer forming step. Since a short circuit with the light emission control line 14e formed in the layer forming step can be suppressed, occurrence of a short circuit defect due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17 can be suppressed. can do.
また、本実施形態の有機EL表示装置50b及びその製造方法によれば、第2開口部Mb及び第3開口部Mcの側面が樹脂基板層10側に向けて逆テーパ状に傾斜しているので、第2開口部Mb及び第3開口部Mcの側面に有機絶縁膜18が上記第1の実施形態の有機EL表示装置50aよりも厚く形成される。そのため、本実施形態の有機EL表示装置50bでは、第1層間絶縁膜15及び第2層間絶縁膜17に形成された鬆Yに起因する短絡欠陥の発生をいっそう抑制することができる。
Further, according to the organic EL display device 50b and the method of manufacturing the same of the present embodiment, the side surfaces of the second opening Mb and the third opening Mc are inclined in a reverse taper shape toward the resin substrate layer 10 side. The organic insulating film 18 is formed thicker on the side surfaces of the second opening Mb and the third opening Mc than the organic EL display device 50a of the first embodiment. Therefore, in the organic EL display device 50b of the present embodiment, it is possible to further suppress the occurrence of short-circuit defects due to the void Y formed in the first interlayer insulating film 15 and the second interlayer insulating film 17.
《その他の実施形態》
上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。 <<Other Embodiments>>
In each of the above-described embodiments, the organic EL layer having a five-layer laminated structure of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is exemplified. It may have a three-layer laminated structure of a layer/hole transport layer, a light emitting layer, and an electron transport layer/electron injection layer.
上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。 <<Other Embodiments>>
In each of the above-described embodiments, the organic EL layer having a five-layer laminated structure of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer is exemplified. It may have a three-layer laminated structure of a layer/hole transport layer, a light emitting layer, and an electron transport layer/electron injection layer.
また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。
Further, in each of the above-described embodiments, the organic EL display device in which the first electrode is the anode and the second electrode is the cathode has been illustrated, but the present invention reverses the laminated structure of the organic EL layer and the first electrode is the cathode. And can be applied to an organic EL display device using the second electrode as an anode.
また、上記各実施形態では、第1電極に接続されたTFTの電極をドレイン電極とした有機EL表示装置を例示したが、本発明は、第1電極に接続されたTFTの電極をソース電極と呼ぶ有機EL表示装置にも適用することができる。
Further, in each of the above-described embodiments, the organic EL display device in which the electrode of the TFT connected to the first electrode is used as the drain electrode is illustrated, but the present invention uses the electrode of the TFT connected to the first electrode as the source electrode. It can also be applied to a so-called organic EL display device.
また、上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置に適用することができる。例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置に適用することができる。
Further, in each of the above-described embodiments, an organic EL display device has been described as an example of a display device, but the present invention can be applied to a display device including a plurality of light emitting elements driven by current. For example, it can be applied to a display device including a QLED (Quantum-dot light emitting diode) which is a light emitting element using a quantum dot containing layer.
以上説明したように、本発明は、フレキシブルな表示装置について有用である。
As described above, the present invention is useful for flexible display devices.
Ha 第1コンタクトホール
Hb 第2コンタクトホール
Hc 第3コンタクトホール
Hr 貫通孔
Ma 第1開口部
Mb 第2開口部
Mc 第3開口部
P サブ画素
R レジスト材料
Rb レジストパターン
9d 駆動TFT(第1薄膜トランジスタ)
9e 電源供給TFT(第2薄膜トランジスタ)
9h キャパシタ
10 樹脂基板層(ベース基板)
12 半導体膜
12a 第1半導体層
12ab 第2導体領域
12b 第2半導体層
12ba 第1導体領域
12bb 第2導体領域
12bc 真性領域
13 ゲート絶縁膜
14 ゲート金属膜
14a 第1ゲート電極(ゲート金属層)
14e 発光制御線(第2ゲート電極、ゲート金属層)
15 第1層間絶縁膜
16 中間金属膜
16c 容量電極(中間金属層)
17 第2層間絶縁膜
18 有機絶縁膜
19 ソース金属膜
19e 第1接続配線(ソース金属層)
19g 電源線
30a,30b TFT層(薄膜トランジスタ層)
35 有機EL素子(有機エレクトロルミネッセンス素子、発光素子)
40 有機EL素子層(発光素子層)
50a,50b 有機EL表示装置 Ha First contact hole Hb Second contact hole Hc Third contact hole Hr Through hole Ma First opening Mb Second opening Mc Third opening P Sub-pixel R Resist material Rb Resistpattern 9d Driving TFT (first thin film transistor)
9e Power supply TFT (second thin film transistor)
9h Capacitor 10 Resin substrate layer (base substrate)
12semiconductor film 12a first semiconductor layer 12ab second conductor region 12b second semiconductor layer 12ba first conductor region 12bb second conductor region 12bc intrinsic region 13 gate insulating film 14 gate metal film 14a first gate electrode (gate metal layer)
14e Light emission control line (second gate electrode, gate metal layer)
15 FirstInterlayer Insulating Film 16 Intermediate Metal Film 16c Capacitance Electrode (Intermediate Metal Layer)
17 SecondInterlayer Insulation Film 18 Organic Insulation Film 19 Source Metal Film 19e First Connection Wiring (Source Metal Layer)
19g Power line 30a, 30b TFT layer (thin film transistor layer)
35 Organic EL element (organic electroluminescence element, light emitting element)
40 Organic EL element layer (light emitting element layer)
50a, 50b Organic EL display device
Hb 第2コンタクトホール
Hc 第3コンタクトホール
Hr 貫通孔
Ma 第1開口部
Mb 第2開口部
Mc 第3開口部
P サブ画素
R レジスト材料
Rb レジストパターン
9d 駆動TFT(第1薄膜トランジスタ)
9e 電源供給TFT(第2薄膜トランジスタ)
9h キャパシタ
10 樹脂基板層(ベース基板)
12 半導体膜
12a 第1半導体層
12ab 第2導体領域
12b 第2半導体層
12ba 第1導体領域
12bb 第2導体領域
12bc 真性領域
13 ゲート絶縁膜
14 ゲート金属膜
14a 第1ゲート電極(ゲート金属層)
14e 発光制御線(第2ゲート電極、ゲート金属層)
15 第1層間絶縁膜
16 中間金属膜
16c 容量電極(中間金属層)
17 第2層間絶縁膜
18 有機絶縁膜
19 ソース金属膜
19e 第1接続配線(ソース金属層)
19g 電源線
30a,30b TFT層(薄膜トランジスタ層)
35 有機EL素子(有機エレクトロルミネッセンス素子、発光素子)
40 有機EL素子層(発光素子層)
50a,50b 有機EL表示装置 Ha First contact hole Hb Second contact hole Hc Third contact hole Hr Through hole Ma First opening Mb Second opening Mc Third opening P Sub-pixel R Resist material Rb Resist
9e Power supply TFT (second thin film transistor)
12
14e Light emission control line (second gate electrode, gate metal layer)
15 First
17 Second
35 Organic EL element (organic electroluminescence element, light emitting element)
40 Organic EL element layer (light emitting element layer)
50a, 50b Organic EL display device
Claims (19)
- ベース基板と、
上記ベース基板上に設けられ、半導体層、ゲート絶縁膜、ゲート金属層、第1層間絶縁膜、中間金属層、第2層間絶縁膜、有機絶縁膜及びソース金属層が順に積層され、サブ画素毎に薄膜トランジスタ及びキャパシタが配置された薄膜トランジスタ層と、
上記薄膜トランジスタ層上に設けられ、上記サブ画素毎に発光素子が配置された発光素子層とを備え、
上記薄膜トランジスタは、上記半導体層として設けられた第1半導体層と、上記ゲート絶縁膜と、上記ゲート金属層として設けられた第1ゲート電極とを備えた第1薄膜トランジスタを有し、
上記キャパシタは、上記第1ゲート電極と、上記第1層間絶縁膜と、上記中間金属層として設けられ、平面視で該第1ゲート電極に重なるように配置された容量電極とを備え、
上記容量電極には、平面視で上記第1ゲート電極と重なると共に該容量電極を貫通するように第1開口部が設けられ、
上記第1層間絶縁膜及び上記第2層間絶縁膜には、平面視で上記第1開口部の周縁の内側に配置すると共に、該第1層間絶縁膜及び該第2層間絶縁膜を貫通するように第2開口部が設けられ、
上記有機絶縁膜には、平面視で上記第2開口部の周縁の内側に配置すると共に、該有機絶縁膜を貫通するように第1コンタクトホールが設けられ、
上記第1ゲート電極は、上記第1コンタクトホールを介して、上記ソース金属層として設けられた接続配線に電気的に接続され、
上記有機絶縁膜は、上記第2開口部の側面を覆うように設けられていることを特徴とする表示装置。 A base substrate,
Provided on the base substrate, a semiconductor layer, a gate insulating film, a gate metal layer, a first interlayer insulating film, an intermediate metal layer, a second interlayer insulating film, an organic insulating film and a source metal layer are laminated in this order for each subpixel. A thin film transistor layer in which a thin film transistor and a capacitor are arranged,
The light emitting element layer is provided on the thin film transistor layer, and the light emitting element is arranged for each of the sub-pixels,
The thin film transistor includes a first thin film transistor including a first semiconductor layer provided as the semiconductor layer, the gate insulating film, and a first gate electrode provided as the gate metal layer,
The capacitor includes the first gate electrode, the first interlayer insulating film, and a capacitive electrode provided as the intermediate metal layer and arranged so as to overlap the first gate electrode in a plan view.
The capacitance electrode is provided with a first opening so as to overlap with the first gate electrode in a plan view and penetrate the capacitance electrode.
The first interlayer insulating film and the second interlayer insulating film are arranged inside the peripheral edge of the first opening in a plan view, and penetrate the first interlayer insulating film and the second interlayer insulating film. Is provided with a second opening,
The organic insulating film is provided inside the peripheral edge of the second opening in plan view, and a first contact hole is provided so as to penetrate the organic insulating film.
The first gate electrode is electrically connected to the connection wiring provided as the source metal layer through the first contact hole,
The display device, wherein the organic insulating film is provided so as to cover a side surface of the second opening. - 請求項1に記載された表示装置において、
上記第2開口部の側面は、上記ベース基板側に向けて逆テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 1,
The display device is characterized in that a side surface of the second opening is inclined in a reverse taper shape toward the base substrate side. - 請求項2に記載された表示装置において、
上記第1コンタクトホールの側面は、上記ベース基板側に向けて順テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 2,
A display device, wherein a side surface of the first contact hole is inclined in a forward taper shape toward the base substrate side. - 請求項1に記載された表示装置において、
上記第1コンタクトホールの側面は、上記ベース基板側に向けて順テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 1,
A display device, wherein a side surface of the first contact hole is inclined in a forward taper shape toward the base substrate side. - 請求項1に記載された表示装置において、
上記薄膜トランジスタは、上記半導体層として設けられた第2半導体層と、上記ゲート絶縁膜と、上記ゲート金属層として設けられた第2ゲート電極とを備えた第2薄膜トランジスタを有し、
上記第2半導体層は、平面視で上記第2ゲート電極に重なるように設けられた真性領域と、該真性領域を挟むように設けられた一対の導体領域とを備え、
上記ゲート絶縁膜、上記第1層間絶縁膜及び上記第2層間絶縁膜には、該ゲート絶縁膜、該第1層間絶縁膜及び該第2層間絶縁膜を貫通して、上記一対の導体領域の一方に到達するように第3開口部が設けられ、
上記有機絶縁膜には、平面視で上記第3開口部の内側に配置すると共に、該有機絶縁膜を貫通するように第2コンタクトホールが設けられ、
上記一対の導体領域の一方は、上記第2コンタクトホールを介して、上記ソース金属層として設けられた電源線に電気的に接続され、
上記第2コンタクトホールは、上記ゲート金属層として設けられた発光制御線と隣り合うように設けられていることを特徴とする表示装置。 The display device according to claim 1,
The thin film transistor includes a second thin film transistor including a second semiconductor layer provided as the semiconductor layer, the gate insulating film, and a second gate electrode provided as the gate metal layer,
The second semiconductor layer includes an intrinsic region provided so as to overlap the second gate electrode in a plan view, and a pair of conductor regions provided so as to sandwich the intrinsic region.
The gate insulating film, the first interlayer insulating film, and the second interlayer insulating film penetrate the gate insulating film, the first interlayer insulating film, and the second interlayer insulating film, and form the pair of conductor regions. The third opening is provided to reach one side,
The organic insulating film is provided inside the third opening in a plan view, and a second contact hole is provided so as to penetrate the organic insulating film.
One of the pair of conductor regions is electrically connected to the power supply line provided as the source metal layer through the second contact hole,
The display device, wherein the second contact hole is provided adjacent to the light emission control line provided as the gate metal layer. - 請求項5に記載された表示装置において、
上記第3開口部の側面は、上記ベース基板側に向けて逆テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 5,
A display device, wherein a side surface of the third opening is inclined in an inverse taper shape toward the base substrate side. - 請求項6に記載された表示装置において、
上記第2コンタクトホールの側面は、上記ベース基板側に向けて順テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 6,
The display device is characterized in that a side surface of the second contact hole is inclined in a forward taper shape toward the base substrate side. - 請求項5に記載された表示装置において、
上記第2コンタクトホールの側面は、上記ベース基板側に向けて順テーパ状に傾斜していることを特徴とする表示装置。 The display device according to claim 5,
A display device, wherein a side surface of the second contact hole is inclined in a forward taper shape toward the base substrate side. - 請求項1~8の何れか1つに記載された表示装置において、
上記ゲート絶縁膜、上記第1層間絶縁膜、上記第2層間絶縁膜及び上記有機絶縁膜には、該ゲート絶縁膜、該第1層間絶縁膜、該第2層間絶縁膜及び該有機絶縁膜を貫通するように第3コンタクトホールが設けられ、
上記接続配線は、上記第3コンタクトホールを介して、上記第1半導体層の導体領域に電気的に接続されていることを特徴とする表示装置。 The display device according to any one of claims 1 to 8,
The gate insulating film, the first interlayer insulating film, the second interlayer insulating film, and the organic insulating film include the gate insulating film, the first interlayer insulating film, the second interlayer insulating film, and the organic insulating film. A third contact hole is provided so as to penetrate therethrough,
The display device, wherein the connection wiring is electrically connected to the conductor region of the first semiconductor layer through the third contact hole. - 請求項1~9の何れか1つに記載された表示装置において、
上記有機絶縁膜は、塗布型の絶縁材料により形成されていることを特徴とする表示装置。 The display device according to any one of claims 1 to 9,
The display device, wherein the organic insulating film is formed of a coating type insulating material. - 請求項10に記載された表示装置において、
上記有機絶縁膜は、感光性を有していることを特徴とする表示装置。 The display device according to claim 10,
The organic insulating film is a display device characterized by having photosensitivity. - 請求項1~11の何れか1つに記載された表示装置において、
上記発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置。 In the display device according to any one of claims 1 to 11.
The display device, wherein the light emitting element is an organic electroluminescence element. - ベース基板上にサブ画素毎に薄膜トランジスタ及びキャパシタが配置された薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程と、
上記薄膜トランジスタ層上に設けられ、上記サブ画素毎に発光素子が配置された発光素子層を形成する発光素子層形成工程とを備え、
上記薄膜トランジスタは、第1薄膜トランジスタを有し、該第1薄膜トランジスタは、第1半導体層と、第1半導体層上に設けられたゲート絶縁膜と、上記ゲート絶縁膜上に設けられた第1ゲート電極とを備え、
上記キャパシタは、上記第1ゲート電極と、上記第1ゲート電極上に設けられた第1層間絶縁膜と、上記第1層間絶縁膜上に設けられ、平面視で該第1ゲート電極に重なるように配置された容量電極とを備えており、
上記薄膜トランジスタ層形成工程は、
上記ベース基板上に半導体膜を成膜した後に、該半導体膜をパターニングして上記第1半導体層を含む半導体層を形成する半導体層形成工程と、
上記半導体層上に上記ゲート絶縁膜を形成するゲート絶縁膜形成工程と、
上記ゲート絶縁膜上にゲート金属膜を成膜した後に、該ゲート金属膜をパターニングして上記第1ゲート電極を含むゲート金属層を形成するゲート金属層形成工程と、
上記ゲート金属層上に上記第1層間絶縁膜を形成する第1層間絶縁膜形成工程と、
上記ゲート金属層上に形成された上記第1層間絶縁膜上に中間金属膜を成膜した後に、該中間金属膜をパターニングして平面視で上記第1ゲート電極に重なるように貫通した第1開口部が設けられた上記容量電極を含む中間金属層を形成する中間金属層形成工程と、
上記中間金属層上に第2層間絶縁膜を形成する第2層間絶縁膜形成工程と、
上記第1層間絶縁膜及び上記第2層間絶縁膜に平面視で上記第1開口部の周縁の内側に配置するように貫通した第2開口部を形成する開口部形成工程と、
上記第2開口部が形成された上記第2層間絶縁膜上に有機絶縁膜を塗布した後に、該有機絶縁膜をパターニングして、平面視で上記第2開口部の周縁の内側に配置するように貫通した第1コンタクトホールを形成するコンタクトホール形成工程と、
上記有機絶縁膜上にソース金属膜を成膜した後に、該ソース金属膜をパターニングして上記第1コンタクトホールを介して上記第1ゲート電極に電気的に接続された接続配線を含むソース金属層を形成するソース金属層形成工程とを備え、
上記コンタクトホール形成工程では、上記第2開口部の側面を覆うように上記有機絶縁膜をパターニングすることを特徴とする表示装置の製造方法。 A thin film transistor layer forming step of forming a thin film transistor layer in which a thin film transistor and a capacitor are arranged for each sub-pixel on a base substrate;
A light emitting element layer forming step of forming a light emitting element layer provided on the thin film transistor layer and having a light emitting element arranged for each of the sub-pixels,
The thin film transistor has a first thin film transistor, and the first thin film transistor includes a first semiconductor layer, a gate insulating film provided on the first semiconductor layer, and a first gate electrode provided on the gate insulating film. With and
The capacitor is provided on the first gate electrode, the first interlayer insulating film provided on the first gate electrode, and the first interlayer insulating film so as to overlap the first gate electrode in a plan view. And a capacitive electrode arranged in
The thin film transistor layer forming step,
A semiconductor layer forming step of forming a semiconductor film on the base substrate and then patterning the semiconductor film to form a semiconductor layer including the first semiconductor layer;
A gate insulating film forming step of forming the gate insulating film on the semiconductor layer,
A gate metal layer forming step of forming a gate metal film on the gate insulating film and then patterning the gate metal film to form a gate metal layer including the first gate electrode;
A first interlayer insulating film forming step of forming the first interlayer insulating film on the gate metal layer;
After forming an intermediate metal film on the first interlayer insulating film formed on the gate metal layer, the intermediate metal film is patterned and penetrated so as to overlap the first gate electrode in a plan view. An intermediate metal layer forming step of forming an intermediate metal layer including the capacitance electrode provided with an opening,
A second interlayer insulating film forming step of forming a second interlayer insulating film on the intermediate metal layer;
An opening forming step of forming a second opening penetrating the first interlayer insulating film and the second interlayer insulating film so as to be arranged inside the peripheral edge of the first opening in a plan view;
After applying the organic insulating film on the second interlayer insulating film on which the second opening is formed, the organic insulating film is patterned and arranged inside the peripheral edge of the second opening in a plan view. A contact hole forming step of forming a first contact hole penetrating to
A source metal layer including a connection wiring electrically connected to the first gate electrode through the first contact hole by forming a source metal film on the organic insulating film and then patterning the source metal film. With a source metal layer forming step to form
In the contact hole forming step, the organic insulating film is patterned so as to cover a side surface of the second opening, a manufacturing method of a display device. - 請求項13に記載された表示装置の製造方法において、
上記開口部形成工程は、
上記第2層間絶縁膜上にネガ型のレジスト材料を塗布する工程と、
上記レジスト材料を露光、現像及び焼成することにより、上記第2開口部に対応して、上記ベース基板側に向けて側面が逆テーパ状に傾斜した貫通孔が設けられたレジストパターンを形成する工程と、
上記レジストパターンから露出する上記第2層間絶縁膜及び上記第1層間絶縁膜をエッチングして、上記ベース基板側に向けて側面が逆テーパ状に傾斜した上記第2開口部を形成する工程とを備えることを特徴とする表示装置の製造方法。 The method for manufacturing a display device according to claim 13,
The opening forming step,
A step of applying a negative resist material on the second interlayer insulating film,
A step of exposing, developing, and firing the resist material to form a resist pattern having through holes whose side surfaces are inclined in a reverse taper shape toward the base substrate side in response to the second opening. When,
A step of etching the second interlayer insulating film and the first interlayer insulating film exposed from the resist pattern to form the second opening whose side surface is inclined in a reverse taper shape toward the base substrate side. A method for manufacturing a display device, comprising: - 請求項13又は14に記載された表示装置の製造方法において、
上記コンタクトホール形成工程では、上記ベース基板側に向けて側面が順テーパ状に傾斜するように上記第1コンタクトホールを形成することを特徴とする表示装置の製造方法。 In the method for manufacturing a display device according to claim 13 or 14.
In the contact hole forming step, the method of manufacturing a display device, wherein the first contact hole is formed so that a side surface thereof is inclined in a forward tapered shape toward the base substrate side. - 請求項13に記載された表示装置の製造方法において、
上記薄膜トランジスタは、第2薄膜トランジスタを有し、該第2薄膜トランジスタは、上記半導体層として設けられた第2半導体層と、第2半導体層上に設けられた上記ゲート絶縁膜と、上記ゲート絶縁膜上に上記ゲート金属層として設けられた第2ゲート電極とを備え、
上記第2半導体層は、平面視で上記第2ゲート電極に重なるように設けられた真性領域と、該真性領域を挟むように設けられた一対の導体領域とを備えており、
上記開口部形成工程では、上記ゲート絶縁膜、上記第1層間絶縁膜及び上記第2層間絶縁膜に該ゲート絶縁膜、該第1層間絶縁膜及び該第2層間絶縁膜を貫通して、上記一対の導体領域の一方に到達するように第3開口部を形成し、
上記コンタクトホール形成工程では、上記有機絶縁膜に平面視で上記第3開口部と重なると共に、該有機絶縁膜を貫通するように第2コンタクトホールを形成し、
上記ソース金属層形成工程では、上記ソース金属膜をパターニングして上記第2コンタクトホールを介して上記一対の導体領域の一方に電気的に接続された電源線を形成することを特徴とする表示装置の製造方法。 The method for manufacturing a display device according to claim 13,
The thin film transistor has a second thin film transistor, and the second thin film transistor has a second semiconductor layer provided as the semiconductor layer, the gate insulating film provided on the second semiconductor layer, and the gate insulating film. A second gate electrode provided as the gate metal layer,
The second semiconductor layer includes an intrinsic region provided so as to overlap the second gate electrode in a plan view, and a pair of conductor regions provided so as to sandwich the intrinsic region.
In the opening forming step, the gate insulating film, the first interlayer insulating film, and the second interlayer insulating film are penetrated through the gate insulating film, the first interlayer insulating film, and the second interlayer insulating film. Forming a third opening so as to reach one of the pair of conductor regions,
In the contact hole forming step, a second contact hole is formed in the organic insulating film so as to overlap the third opening in plan view and penetrate the organic insulating film.
In the source metal layer forming step, the source metal film is patterned to form a power supply line electrically connected to one of the pair of conductor regions through the second contact hole. Manufacturing method. - 請求項16に記載された表示装置の製造方法において、
上記コンタクトホール形成工程では、上記ベース基板側に向けて側面が順テーパ状に傾斜するように上記第2コンタクトホールを形成することを特徴とする表示装置の製造方法。 In the method for manufacturing a display device according to claim 16,
In the contact hole forming step, the second contact hole is formed so that a side surface thereof is inclined in a forward taper shape toward the base substrate side. - 請求項16又は17に記載された表示装置の製造方法において、
上記開口部形成工程は、
上記第2層間絶縁膜上にネガ型のレジスト材料を塗布する工程と、
上記レジスト材料を露光、現像及び焼成することにより、上記第2開口部に対応して、上記ベース基板側に向けて側面が逆テーパ状に傾斜した貫通孔が設けられたレジストパターンを形成する工程と、
上記レジストパターンから露出する上記第2層間絶縁膜、上記第1層間絶縁膜及び上記ゲート絶縁膜をエッチングして、上記ベース基板側に向けて側面が逆テーパ状に傾斜した上記第3開口部を形成する工程とを備えることを特徴とする表示装置の製造方法。 In the method for manufacturing a display device according to claim 16 or 17.
The opening forming step,
A step of applying a negative resist material on the second interlayer insulating film,
A step of forming a resist pattern in which a through hole whose side surface is inclined in an inverse taper shape toward the base substrate side is provided corresponding to the second opening by exposing, developing, and baking the resist material. When,
The second interlayer insulating film exposed from the resist pattern, the first interlayer insulating film, and the gate insulating film are etched to form the third opening whose side surface is inclined in a reverse taper shape toward the base substrate side. And a step of forming the display device. - 請求項13~18の何れか1つに記載された表示装置の製造方法において、
上記発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置の製造方法。 In the method for manufacturing a display device according to any one of claims 13 to 18.
The method for manufacturing a display device, wherein the light emitting element is an organic electroluminescence element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/008924 WO2020179026A1 (en) | 2019-03-06 | 2019-03-06 | Display device and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/008924 WO2020179026A1 (en) | 2019-03-06 | 2019-03-06 | Display device and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179026A1 true WO2020179026A1 (en) | 2020-09-10 |
Family
ID=72337766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008924 WO2020179026A1 (en) | 2019-03-06 | 2019-03-06 | Display device and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020179026A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09146118A (en) * | 1995-11-27 | 1997-06-06 | Sanyo Electric Co Ltd | Semiconductor device and liquid crystal display device |
JP2006332661A (en) * | 2005-05-24 | 2006-12-07 | Samsung Sdi Co Ltd | ORGANIC THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE HAVING ORGANIC THIN FILM TRANSISTOR |
JP2012255825A (en) * | 2011-06-07 | 2012-12-27 | Dainippon Printing Co Ltd | Switching element substrate |
US20130146900A1 (en) * | 2011-12-12 | 2013-06-13 | Samsung Display Co., Ltd. | Display substrate and method of manufacturing the same |
US20140299843A1 (en) * | 2013-04-04 | 2014-10-09 | Samsung Display Co., Ltd. | Capacitor device, organic light emitting display apparatus including the capacitor device, and method of manufacturing the organic light emitting display apparatus |
EP3154090A1 (en) * | 2015-10-08 | 2017-04-12 | Samsung Display Co., Ltd. | Organic light-emitting diode display |
US20170330927A1 (en) * | 2016-05-11 | 2017-11-16 | Samsung Display Co., Ltd. | Display device |
JP2018073829A (en) * | 2016-10-31 | 2018-05-10 | エルジー ディスプレイ カンパニー リミテッド | Display device including light emitting area |
-
2019
- 2019-03-06 WO PCT/JP2019/008924 patent/WO2020179026A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09146118A (en) * | 1995-11-27 | 1997-06-06 | Sanyo Electric Co Ltd | Semiconductor device and liquid crystal display device |
JP2006332661A (en) * | 2005-05-24 | 2006-12-07 | Samsung Sdi Co Ltd | ORGANIC THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE HAVING ORGANIC THIN FILM TRANSISTOR |
JP2012255825A (en) * | 2011-06-07 | 2012-12-27 | Dainippon Printing Co Ltd | Switching element substrate |
US20130146900A1 (en) * | 2011-12-12 | 2013-06-13 | Samsung Display Co., Ltd. | Display substrate and method of manufacturing the same |
US20140299843A1 (en) * | 2013-04-04 | 2014-10-09 | Samsung Display Co., Ltd. | Capacitor device, organic light emitting display apparatus including the capacitor device, and method of manufacturing the organic light emitting display apparatus |
EP3154090A1 (en) * | 2015-10-08 | 2017-04-12 | Samsung Display Co., Ltd. | Organic light-emitting diode display |
US20170330927A1 (en) * | 2016-05-11 | 2017-11-16 | Samsung Display Co., Ltd. | Display device |
JP2018073829A (en) * | 2016-10-31 | 2018-05-10 | エルジー ディスプレイ カンパニー リミテッド | Display device including light emitting area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11957015B2 (en) | Display device | |
CN115176299B (en) | display device | |
WO2021161465A1 (en) | Display device | |
WO2022113333A1 (en) | Display device | |
WO2019186819A1 (en) | Display device and method for manufacturing display device | |
WO2019224917A1 (en) | Display device | |
WO2019186702A1 (en) | Display device | |
WO2019187121A1 (en) | Display device | |
WO2022201487A1 (en) | Display device | |
WO2020115906A1 (en) | Display device and method for manufacturing same | |
WO2022201461A1 (en) | Display device and production method for same | |
WO2023007549A1 (en) | Method for manufacturing display device | |
WO2019186812A1 (en) | Display device and method for manufacturing same | |
WO2020179026A1 (en) | Display device and method for manufacturing same | |
WO2020174605A1 (en) | Display device and method for manufacturing same | |
US20240357887A1 (en) | Display device | |
WO2024154202A1 (en) | Display device | |
US20250228073A1 (en) | Display device | |
WO2024105749A1 (en) | Display device | |
US20250063920A1 (en) | Display device | |
US20250127015A1 (en) | Display device | |
WO2023013039A1 (en) | Display device and method for manufacturing same | |
US20230329038A1 (en) | Display device and method for manufacturing same | |
WO2023218637A1 (en) | Display device | |
WO2023062695A1 (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19917660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19917660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |