[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020175639A1 - 粉体燃料燃焼装置及び燃焼方法 - Google Patents

粉体燃料燃焼装置及び燃焼方法 Download PDF

Info

Publication number
WO2020175639A1
WO2020175639A1 PCT/JP2020/008123 JP2020008123W WO2020175639A1 WO 2020175639 A1 WO2020175639 A1 WO 2020175639A1 JP 2020008123 W JP2020008123 W JP 2020008123W WO 2020175639 A1 WO2020175639 A1 WO 2020175639A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
air
combustion
air supply
combustion chamber
Prior art date
Application number
PCT/JP2020/008123
Other languages
English (en)
French (fr)
Inventor
敬通 松下
幹雄 柏
信嗣 丹野
Original Assignee
株式会社環境経営総合研究所
日台マシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社環境経営総合研究所, 日台マシナリー株式会社 filed Critical 株式会社環境経営総合研究所
Priority to US17/310,835 priority Critical patent/US20220120441A1/en
Priority to BR112021017044A priority patent/BR112021017044A2/pt
Priority to EP20762202.8A priority patent/EP3933264B1/en
Priority to KR1020217030946A priority patent/KR102540051B1/ko
Priority to CN202080015239.XA priority patent/CN113544433B/zh
Priority to CA3130559A priority patent/CA3130559C/en
Publication of WO2020175639A1 publication Critical patent/WO2020175639A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/042Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/06Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/31019Mixing tubes and burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/06Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air into the fire bed

Definitions

  • the present invention relates to a combustion device for burning powder fuel, and a combustion method in the combustion device.
  • Patent Document 1 Conventionally, there is known a boiler that burns pulverized coal as fuel and recovers combustion heat to supply superheated steam to a power generation plant or the like (see Patent Document 1).
  • the boiler described in Patent Document 1 is a hollow furnace that is installed along the vertical direction, and is vertically arranged to inject a pulverized coal mixture that is a mixture of solid fuel and combustion air into the furnace. It has three combustion planners.
  • a furnace bottom air nozzle that injects combustion air into the furnace vertically below the combustion planner, and a combustion air injection direction by the furnace bottom air nozzle can be adjusted horizontally. And a horizontal adjusting device.
  • combustion of fuel in the furnace is promoted and generation of unburned components is suppressed.
  • the boiler described in Patent Document 1 mainly uses pulverized coal obtained by pulverizing coal as a fuel as a pulverized fuel (solid fuel). Body fuel).
  • the inventors of the present application have mainly used synthetic resin and the like recovered for reuse by using the carbonized fuel manufacturing apparatus and the carbonized fuel manufacturing method disclosed in Patent Document 2 as raw materials. We are engaged in producing high quality carbonized fuel.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 1 7-1 4 5 9 7 6
  • Patent Document 2 International Publication Gazette No. 2 0 0 8/0 7 4 1 8 9
  • Patent Document 1 The boiler in Patent Document 1 is a vertically long furnace, in which three combustion burners are installed in the vertical direction so that pulverized coal is burned in the furnace. Deposit on the bottom of the.
  • combustion air is introduced from the furnace bottom air nozzle into the pulverized coal deposited at the bottom of the furnace to incinerate unburned materials in the furnace bottom.
  • a hopper for storing ash and unburned components is provided at the bottom of the furnace.
  • the ash and unburned components stored in this hopper are analyzed by an unburned component amount measuring device and an unburned component analyzer installed at the bottom of the hopper, and air from the furnace bottom air nozzle is analyzed.
  • the injection direction is adjusted to control the amount of unburned fuel to decrease.
  • the unburned amount measuring device, the unburned amount analyzer, or the configuration in which the injection direction of the air nozzle is variable is technically or costly in the case of a large plant. Correspondence is possible. However, in a small device, the structure of the device becomes complicated and the installation cost increases. In addition, these measuring devices and variable mechanisms for nozzles require daily maintenance, which results in an increase in running costs.
  • the present invention is capable of performing combustion without providing an unburned amount measuring device or an unburned amount analyzing device and without changing the injection direction of air into the combustion chamber.
  • Combustion device capable of efficiently ashing burned material in a room, and ⁇ 2020/175639 3 ⁇ (:171? 2020 /008123
  • the purpose is to provide a combustion method.
  • a powder fuel combustion apparatus of the present invention is a combustion apparatus for burning powder fuel, and a primary combustion chamber for internally burning the powder fuel,
  • the secondary combustion chamber that burns the combustion gas discharged from the primary combustion chamber is provided, and the primary combustion chamber includes a fuel supply device that supplies the powdered fuel to the inside and a primary air that supplies air to the inside.
  • a supply port and an ignition burner for igniting the powdered fuel inside are provided, and the bottom portion of the primary combustion chamber has a sloped portion that slopes downward and narrows, and a bottom portion that supplies air to the inside.
  • An air supply port an ash outlet provided at a position below the inclined portion, and a tubular shape that is vertically oriented and has openings at upper and lower ends, and the lower end is disposed toward the ash outlet and is inside.
  • a bottom air injection nozzle to which air is supplied is provided.
  • the secondary combustion chamber has a secondary parner that heats the interior and ignites the combustion gas discharged from the primary combustion chamber described above, and an internal combustion nozzle for combustion.
  • a secondary air supply port for supplying the air of the above is provided, a primary air supply device for supplying air to the primary air supply port and the above-mentioned bottom air supply port, and an injection for supplying air to the bottom air injection nozzle
  • the control device causes the fuel supply device to deposit a predetermined amount of the powder fuel in the primary combustion chamber, ignites the deposited powder fuel by the ignition burner, and When the secondary burner is operated to heat the secondary combustion chamber to perform gasification and combustion of the deposited powder fuel, the primary air supply device and the injection air supply device are operated to operate the primary air supply device and the injection air supply device. An air amount less than the air amount required for complete combustion of the accumulated powder fuel is supplied from the primary air supply port, the bottom air supply port, and the bottom air injection nozzle to supply the primary combustion chamber. When a combustible gas is generated by the direct combustion of the deposited powder fuel, the primary air supply device and the injection air supply device are operated to operate the primary fuel. ⁇ 2020/175639 ⁇ (:171?2020/008123
  • the amount of air required for the direct combustion of the powdered fuel is supplied from the primary air supply port, the bottom air supply port, and the bottom air injection nozzle into the firing chamber, and the fuel supply device is operated to operate the fuel.
  • the fuel supply device is operated as a planer to perform gasification combustion of the deposited powder fuel, and the deposited powder.
  • the secondary air supply device is activated, and the secondary combustion air is supplied from the secondary air supply port in an amount necessary for complete combustion of the combustible gas. It is characterized by burning combustible gas.
  • the primary air supply port fixed to the primary combustion chamber, the bottom air supply port, and the bottom air are provided when the deposited powder fuel is gasified and combusted. Air is supplied from the injection nozzle to generate combustible gas in the primary combustion chamber, and air is injected not only from the primary air supply port and the bottom air supply port, but also from the bottom air injection nozzle. According to the present invention, since the powder fuel can be completely burned with such a configuration, it is not necessary to analyze the unburned component and change the angle of the primary air supply nozzle.
  • the powder fuel combustion apparatus of the present invention when performing the igniting combustion and ashing of the powder fuel in the primary combustion chamber, while stopping the fuel supply by the fuel supply apparatus, The supply of air from the bottom air injection nozzle may be stopped.
  • the air supply from the bottom air injection nozzle should be stopped.
  • the control device performs direct combustion of the deposited powder fuel when performing gasification combustion of the deposited powder fuel.
  • the injection air supply device may be controlled to inject the air into the bottom air injection nozzle regularly or irregularly with an injection amount capable of stirring the powder fuel.
  • the powder fuel is agitated by the regular or indefinite period of air injected from the bottom air injection nozzle, so that the powder fuel is prevented from sticking to the wall surface of the furnace bottom.
  • the powder fuel can be burned efficiently.
  • the fuel supply apparatus includes a fuel hopper into which the powder fuel is charged, and a fuel hopper that is disposed in the fuel hopper in a vertical direction and is at least downward.
  • a hopper injection nozzle that injects air
  • a hopper air supply device that supplies air to the hopper injection nozzle
  • a fuel delivery that is provided below the hopper injection nozzle and that delivers the powdered fuel downward.
  • An apparatus, a mixing tube in which the powder fuel and air are mixed, and a fuel blower that supplies air to the mixing tube, and the controller includes the powder combustion chamber in the primary combustion chamber.
  • the fuel blower When the fuel is supplied, the fuel blower is operated and the fuel delivery device is operated to mix the powder fuel and the air supplied from the fuel blower inside the mixing pipe.
  • the powder fuel may be supplied from the mixing pipe to the primary combustion chamber, and the hopper air supply device may be operated at a predetermined timing to inject air from the hopper injection nozzle.
  • the powder in the fuel hopper can be smoothly delivered to the fuel delivery device by the air supply device for the hopper, and the powder can be stably fed from the mixing pipe into the primary combustion chamber. Fuel can be supplied.
  • the powder fuel combustion method of the present invention is a combustion method in which powder fuel is burned by a powder fuel combustion device, and includes a fuel injection step, an ignition step, a gasification combustion step, a direct combustion step, and It consists of bonfire and ashing process, and the powder fuel combustion device ⁇ 2020/175639 6 ⁇ (:171? 2020 /008123
  • the primary combustion chamber that burns the powdered fuel inside, and a secondary combustion chamber that burns the gas discharged from the primary combustion chamber.
  • the primary combustion chamber stores the powdered fuel.
  • a fuel supply device that supplies air to the interior, a primary air supply port that supplies air to the interior, and an ignition planer that ignites the powder fuel inside are provided.
  • the bottom of the primary combustion chamber faces downward.
  • the sloping part that inclines so that it narrows, the bottom air supply port that supplies air to the inside, the ash outlet that is provided below the sloping part, and the cylindrical upper and lower ends that are arranged vertically.
  • a bottom air injection nozzle which has an opening and whose lower end is arranged toward the ash outlet and is supplied with air inside, is provided.In the secondary combustion chamber, the inside is heated and discharged from the primary combustion chamber.
  • a secondary parner that ignites the generated combustion gas and a secondary air supply port that supplies combustion air inside are provided, and a primary air supply port that supplies air to the primary air supply port and the bottom air supply port.
  • An air supply device, an injection air supply device for supplying air to the bottom air injection nozzle, a secondary air supply device for supplying air to the secondary air supply port, the fuel supply device, the ignition planer, and The secondary air conditioner, the primary air supply device, the injection air supply device, and the secondary air supply device for controlling the operation of the secondary air supply device are provided.
  • the control device causes the fuel supply device to deposit a predetermined amount of the powdered fuel in the primary combustion chamber, and in the ignition process, the secondary combustion is performed by the secondary burner. After heating the inside of the chamber to reach a predetermined temperature in the secondary combustion chamber, the deposited fuel powder is ignited by the ignition burner, and the deposited powder fuel is burned in the gasification combustion process.
  • a combustible gas is generated in the primary combustion chamber by supplying an amount of air smaller than that required for complete combustion of fuel from the primary air supply port, the bottom air supply port, and the bottom air injection nozzle.
  • the combustible gas is introduced into the secondary combustion chamber, secondary combustion air is supplied from the secondary air supply port to completely combust the combustible gas, and in the direct combustion process,
  • the primary air supply device and the injection air supply device By operating the primary air supply device and the injection air supply device, the primary air supply port, the bottom air supply port, and the primary air supply device are provided with an air amount necessary for direct combustion of the powdered fuel in the primary combustion chamber. From the bottom air injection nozzle ⁇ 2020/175639 7 ⁇ (:171? 2020/008123
  • the fuel supply device In addition to supplying the fuel gas, the fuel supply device is operated to supply the powdered fuel into the primary combustion chamber for combustion, and the fuel supply device is operated as a planer to generate combustion gas discharged from the primary combustion chamber. Introduced into the secondary combustion chamber, the secondary combustion air is supplied from the secondary air supply port to completely burn the combustion gas, and in the sinter/ash process, the fuel supplied by the fuel supply device is used. The supply is stopped, and the powder fuel remaining in the primary combustion chamber is ignited and burned to ash.
  • the powder fuel combustion method of the present invention comprises a fuel injection process, an ignition process, a gasification combustion process, a direct combustion process, and a sinter/ash process.
  • air is supplied from the primary air supply port, the bottom air supply port, and the bottom air injection nozzle to generate combustible gas in the primary combustion chamber. Air is jetted not only from the air supply port but also from the bottom air jet nozzle. Therefore, since the air is injected to the powder fuel accumulated inside the bottom portion that slopes downward, the powder fuel must be burned more reliably than in the conventional incineration method. You can
  • the supply of air from the bottom air injection nozzle may be stopped in the bonfire/ashing process.
  • this treatment it is possible to prevent the generation of white smoke when burning ash and ash of the powder fuel.
  • the powder fuel is regularly or irregularly applied to the bottom air injection nozzle in the gasification combustion process and the direct combustion process by the control device.
  • the jet air supply device may be controlled so as to jet the air at a jetting amount capable of stirring.
  • the powdered fuel deposited on the bottom of the primary combustion chamber can be agitated, so that the powdered fuel can be burned more reliably as compared with the conventional incineration method.
  • the fuel supply device includes a fuel hopper into which the powder fuel is charged, and a fuel hopper that is arranged in the fuel hopper in a vertical direction and is at least downward.
  • a fuel delivery device provided below the injection nozzle for delivering the powder fuel downward; a mixing pipe for mixing the powder fuel and air; and a fuel blower for supplying air to the mixing pipe.
  • the control device operates the fuel blower and the fuel delivery device, and the powder fuel and the fuel inside the mixing pipe.
  • the air supplied from the blower for air is mixed, the powder fuel is supplied from the mixing pipe to the primary combustion chamber, and the air supply device for the hopper is operated at a predetermined timing to inject the air for the hopper. Air may be jetted from the nozzle.
  • the powder fuel in the fuel hopper can be smoothly delivered to the fuel delivery device by the air supply device for the hopper in the fuel injection process and the direct combustion process, and the fuel is stably delivered.
  • Powder fuel can be supplied from the mixing tube into the primary combustion chamber.
  • a combustion device and a combustion method capable of satisfactorily burning even a powdered fuel such as a carbonized fuel using recovered synthetic resin or waste plastic as a raw material. Can be provided.
  • FIG. 1 An explanatory view showing a power generation system including a powder fuel combustion apparatus of the present embodiment.
  • FIG. 2 An explanatory view showing a fuel supply device in the powder fuel combustion apparatus of the present embodiment.
  • FIG. 3 Explanatory diagram showing the configuration of the bottom of the primary combustion chamber of the powder fuel combustion apparatus of the present embodiment
  • FIG. 1 is an explanatory diagram showing a power generation system including the powder fuel combustion device of the present embodiment.
  • FIG. 2 is an explanatory diagram showing a fuel supply device in the powder fuel combustion device of the present embodiment.
  • FIG. 3 is an explanatory diagram showing the configuration of the bottom portion of the primary combustion chamber of the powder fuel combustion apparatus of this embodiment.
  • the powder fuel is the carbonized fuel production described in Patent Document 2. ⁇ 02020/175639 9 boxes (: 17 2020/008123
  • the powder fuel combustion apparatus 1 of the present embodiment is a combustion apparatus used in a power generation system 2 using powder fuel, as shown in FIG.
  • the power generation system 2 includes, in addition to the powder fuel combustion device 1, a boiler 3, a dust collector 4, a power generator 5, a chimney 6 and a control device 7 for controlling these.
  • the powder fuel combustion device 1 includes a fuel supply device 10, a primary combustion chamber 20, a secondary combustion chamber 50, an air supply ashing device 3 2 , Equipped with a cyclone dust collector 60.
  • the outlet of the cyclone dust collector 60 is connected to the boiler 3.
  • the primary combustion chamber 20 has a cylindrical shape as a whole in the present embodiment, and a ceiling portion 21 located above the primary combustion chamber 20 and a body portion 22 located below the ceiling portion 2 1 It is composed of a bottom portion 23 located below the body portion 22.
  • the ceiling 21 is provided with a primary exhaust port 24 for discharging the combustible gas or combustion gas generated in the primary combustion chamber 20. Further, the primary exhaust port 24 is provided with a first temperature sensor 25 for detecting the temperature of the combustion gas generated in the primary combustion chamber 20.
  • the primary exhaust port 24 may be formed on the top plate of the ceiling portion 21 as shown in FIG. 1 or may be formed on the side surface.
  • a fuel supply device 10 is connected to the body 22.
  • This fuel supply device 10 includes a fuel hopper 11 into which powder fuel is charged, a mixing tube 12 that mixes powder fuel and combustion air, and powder injected into the fuel hopper 11.
  • a fuel delivery device 13 that supplies body fuel to the mixing pipe 12 at an arbitrary supply amount, a fuel blower 14 that supplies combustion air to the mixing pipe 12 and a par at the tip of the mixing pipe 12 It is equipped with Nalo 15 and 15.
  • the fuel hopper 11 is provided at its center with a cylindrical hopper ejection nozzle 16 extending in the vertical direction.
  • the hopper injection nozzle 16 is a cylindrical member, has upper and lower ends opened, and has a plurality of injection ports 16 3 for injecting air on its side surface.
  • the lower end of the hopper injection nozzle 16 is the fuel hopper.
  • the hopper air supply device 18 including an air compressor 70, a fuel solenoid valve 17 and a fuel air supply pipe 16 is connected to the injection nozzle 16 for the hopper.
  • Fuel delivery device 1 3 of the fuel supply system 1 performs the delivery of the pulverized fuel cylindrical case 1 3 3 inside the mouth over Tally valve 1 3 spoon is rotated.
  • the amount of fuel delivered per hour is controlled by controlling the motor (not shown) with an inverter and adjusting the number of revolutions of the mouth valve 13.
  • the fuel blower 14 of the fuel supply device 10 can also control the air flow rate by controlling the motor (not shown) with an inverter.
  • the air-fuel ratio of the fuel blown from the panaro 15 can be changed by adjusting the amount of powder fuel delivered by the fuel delivery device 13 and the amount of air blown by the fuel blower 14.
  • the fuel supply device 10 is operated in a state where combustion is performed in the primary combustion chamber 20.
  • a plurality of primary air supply ports 26 for supplying air for primary combustion into the primary combustion chamber 20 are provided on the peripheral wall of the body 22. Air is supplied to the primary air supply port 26 from a primary air blower 27, which is a primary air supply device provided outside the body portion 22.
  • the body 22 is provided with an auxiliary combustion burner 30 for assisting combustion in the primary combustion chamber 20 and an auxiliary combustion solenoid valve 30 3 for supplying air to the auxiliary combustion burner 30.
  • auxiliary combustion burner 30 for assisting combustion in the primary combustion chamber 20
  • auxiliary combustion solenoid valve 30 3 for supplying air to the auxiliary combustion burner 30.
  • the auxiliary combustion burner 30 uses, as a fuel, vent oil or the like collected during fuel production by the fuel production apparatus disclosed in Patent Document 2.
  • the [0044] primary combustion chamber 2 0 bottom 2 3 are formed inclined portions 2 3 3 inclined from the wall surface of the body portion 2 2 As narrowed downward, below the inclined part 2 3 3
  • the ash outlet 23 is formed.
  • the inclined portion 2 3 3 is provided with a plurality of bottom air supply ports 3 1 into which combustion air is introduced. This bottom air supply port 31 is
  • Air is supplied from the primary air blower 27.
  • the bottom part 23 is provided with an air supply ashing device 32 inside the inclined part 233, and an ignition burner 33 for igniting the powdered fuel injected into the bottom part 23. ing.
  • the fuel used in this ignition burner 33 is kerosene or heavy oil.
  • the air supply ash discharging device 32 includes a bottom air injection nozzle 34 and an ash discharging device 35.
  • the bottom air injection nozzle 34 is a tubular member that extends in the vertical direction, and is provided substantially at the center of the inclined portion 2 33.
  • Bottom air injection nozzle 3 4 is open upper end and a lower end, the injection port 3 4 3 which air is injected is provided with a plurality on the side surface.
  • the lower end of the bottom air injection nozzle 34 is provided toward the ash outlet 23.
  • An air conditioner press 70, a bottom solenoid valve 37, and a bottom air supply pipe 38 are connected to the bottom air injection nozzle 34 as an injection air supply device 36.
  • the blast air supply device 36 supplies the blast air to the bottom air blast nozzle 34.
  • the ash delivery device 35 delivers the ash by rotating the mouth tally valve 35 in the cylindrical case 353. Further, the ash delivery device 3-5, watering nozzle 3 9 for injecting water is disposed in the interior of the lower portion of the case 3 5 3. When water is sprayed from this water spray nozzle 39, the ash in the case 353 is cooled, and the ash is collected by the water and drops downward without scattering to the surroundings.
  • An ash receiver 40 is arranged below the ash outlet 23, and can store ash discharged from the ash outlet 23.
  • This ash receiver 40 is a fork ⁇ 2020/175639 12 boxes (:171? 2020 /008123
  • the powder fuel combustion apparatus 1 is additionally provided with a vent oil tank 71 for supplying vent oil as fuel to the auxiliary combustion burner 30 and a water tank 72 for supplying water to the water spray nozzle 39. Has been.
  • the secondary combustion chamber 50 is a cylindrical combustion chamber, and is connected to the primary exhaust port 24 into which the combustion gas of the primary combustion chamber 20 is introduced.
  • a secondary burner 51 that ignites the combustion gas is provided near the connection of the primary exhaust port 24. Also,
  • a plurality of secondary air supply ports 52 for supplying secondary combustion air for performing secondary combustion are provided on the peripheral wall of the secondary combustion chamber 50. Air is supplied to the secondary air supply port 5 2 from a secondary air blower 5 3 which is a secondary air supply device.
  • a secondary exhaust port 54 is provided on the downstream side of the secondary combustion chamber 50, and is connected to the cyclone dust collector 60.
  • the secondary exhaust port 54 is provided with a second temperature sensor 55 for detecting the temperature of the combustion gas in the secondary combustion chamber 50.
  • a cyclone recovery device 61 is provided below the cyclone dust collector 60.
  • the cyclone recovery device 61 is composed of a mouth tally valve 62 and a screen conveyor 63.
  • the dust collected by the cyclone dust collector 60 is returned to the primary combustion chamber 20 again by this cyclone collecting device 61 and burned.
  • the boiler 3 in the power generation system 2 of the present embodiment is a device that generates superheated steam or saturated steam by the heat of the exhaust gas subjected to the dust collection processing by the cyclone dust collector 60.
  • the boiler 3 performs the heat recovery yield of about 6 0 0 ° ⁇ exhaust gas, which lowers the outlet temperature of the exhaust gas to about 2 0 0 ° ⁇ .
  • the power generation device 5 is a device that rotates an evening bin (not shown) with steam generated by the boiler 3 to generate power.
  • This generator 5 is the one that is currently in general use.
  • the steam generated by the boiler 3 can be used not only for the power generator 5 as described above but also for auxiliary equipment such as heating equipment. ⁇ 2020/175639 13 ⁇ (:171? 2020/008123
  • a dust collector 4 is provided on the downstream side of the boiler 3.
  • a generally widely used bag filter or the like can be used. If necessary, a device for lowering the temperature of the gas will be installed in front of the bag filter.
  • another dust collector such as a centrifugal dust collector, an electric dust collector, or a gravity dust collector can be used.
  • the dust collector 4 itself may be omitted depending on the scale of the power generation system 2 and the type of fuel to be burned.
  • the chimney 6 is provided with a suction fan (not shown), and the powder fuel combustion device
  • the exhaust gas generated from 1 is sucked up to the chimney 6 and discharged to the outside.
  • This suction fan is also driven by the inverter control, and the number of rotations is controlled by the signal from the controller 7.
  • the control device 7 is a so-called control panel, and has various operation switches, an indicator showing the operating state of each device, and a computer for controlling each device (each not shown). ).
  • the computer of the control device 7 includes a memory device, a communication device, etc. (not shown), and the memory device executes the operation of the power generation system 2 including the powder fuel combustion device 1 of the present embodiment.
  • the program to be stored is stored.
  • the combustion method of the present embodiment includes a fuel injection process, an ignition process, a gasification combustion process, a direct combustion process, and a smoldering/ashing process. Each of these steps is executed by a program stored in the controller 7.
  • a fuel injection process is performed.
  • the fuel supply unit 10 is used to deposit a certain amount of powder fuel in the primary combustion chamber 20.
  • the amount of powdered fuel is set to fill about 1/3 of the primary combustion chamber 20.
  • the predetermined amount is preferably about 1/4 to 1/2 of the primary combustion chamber 20, but it may be appropriately changed depending on the properties of the powder fuel. it can.
  • the fuel hopper 1 of the fuel supply device 10 is ⁇ 2020/175639 14 ⁇ (:171? 2020 /008123
  • the injection of the powdered fuel into the fuel hopper 11 may be controlled by the control device 7 using a conveyor or the like, or may be manually operated.
  • the timing at which the hopper air supply device 18 is activated can be changed as appropriate according to the state of the powdered fuel. For example, the hopper air supply device 18 is activated every 1 to 10 minutes. Alternatively, it may be activated each time the powdered fuel is added to the fuel hopper 11.
  • the powdered fuel discharged from the fuel supply device 10 is stored in the primary combustion chamber 20. Deposit on the bottom 23.
  • the operation of the fuel supply device 10 is continued until the volume of about 1/3 of the primary combustion chamber 20 is filled, and after the powder fuel is supplied to a predetermined amount, the operation of the fuel supply device 10 is stopped. ..
  • an ignition stroke is performed.
  • the combustion of the secondary burner 51 of the secondary combustion chamber 50 is started to raise the temperature in the secondary combustion chamber 50.
  • the ignition burner 33 is activated to ignite the powder fuel accumulated in the primary combustion chamber 20. ..
  • a predetermined temperature 800°°, etc.
  • the gasification combustion process in the primary combustion chamber 20, the _ part of the powdered fuel injected in the fuel injection process burns to generate combustible gas.
  • the primary combustion chamber 20 is supplied with air for primary combustion from a blower 27 for primary air, a primary air supply port 26, and a bottom air supply port 3 1.
  • the air for primary combustion introduced into the primary combustion chamber 20 is supplied with an amount of air smaller than that required for complete combustion of the powder fuel. Therefore, in the primary combustion chamber 20, part of the powdered fuel burns, gradually increasing the combustion range while heating the surrounding powdered fuel, so that flammable gas is generated from the powdered fuel. To do.
  • air is intermittently supplied into the primary combustion chamber 20 from the bottom air injection nozzle 34 of the air supply ash outlet 32.
  • air is injected from upper and lower ends and an injection port 3 4 3.
  • control is performed by injecting a small amount of air for a predetermined time and increasing the injection amount regularly or irregularly. Specifically, for 5 minutes, the amount of air that does not move the powder fuel around the bottom air injection nozzle 34 due to wind pressure is injected, and every 5 minutes the powder fuel around the bottom air injection nozzle 34 is injected. Injects air with a strength that allows stirring.
  • the temperature in the primary combustion chamber 20 becomes equal to or lower than a predetermined temperature
  • not only the periodic injection such as every 5 minutes, but also the air injection with a weak wind pressure is usually performed.
  • the air may be injected with such strength that the powder fuel is agitated. Due to the intermittent injection of air from the upper and lower openings of the bottom air injection nozzle 34 and the injection port 3 43 provided on the side surface, the powder accumulated on the bottom 23 of the primary combustion chamber 20 is accumulated.
  • the body fuel is agitated for good combustion.
  • the combustion temperature in the secondary combustion chamber 50 is preferably 800°C or more, ⁇ 2020/175639 16 ⁇ (:171? 2020/008123
  • the secondary burner 51 stops its operation when the temperature detected by the second temperature sensor reaches or exceeds the predetermined temperature, but after that, in the secondary combustion chamber 50, the primary combustion chamber 2 Combustion continues with flammable gas from zero.
  • control device 7 controls the combustion temperature in the secondary combustion chamber 50 to be substantially constant.
  • the control of the combustion temperature in the secondary combustion chamber 50 is performed with the blower for primary air blower 5 3 supplying a fixed amount of secondary air required for complete combustion of combustible gas. It is performed by adjusting the amount of primary air according to 7.
  • the exhaust gas after being completely combusted in the secondary combustion chamber 50 is discharged from the secondary exhaust port 54 and introduced into the boiler 3 via the cyclone dust collector 60.
  • the dust in the exhaust gas is separated and dropped to the bottom of the cyclone dust collector 60.
  • the dust that has fallen to the bottom is returned to the primary combustion chamber 20 by the mouth-tally valve 62 of the cyclone recovery device 61 and the screeconveyor 63 and burned.
  • the exhaust gas from which the dust has been removed in this way has a high temperature at the secondary exhaust port 54, but is heat-exchanged by the boiler 3 to lower the temperature, and passes through the dust collector 4 and the chimney 6. It is released into the atmosphere.
  • the powdered fuel uses a tire made of the recovered plastic manufactured by the carbonized fuel manufacturing apparatus described in Patent Document 2 as a raw material.
  • the recovered plastic is the raw material for the powder fuel, which is the fuel, and the recovered plastic is used.
  • the powdered fuel accumulated in the primary combustion chamber 20 is gradually switched from the gasification combustion to the direct combustion.
  • the switching of the combustion state is determined by the temperature inside the primary combustion chamber 20 and the temperature condition inside the secondary combustion chamber 50.
  • the direct combustion from the gasification combustion is started at the timing when the temperature in the secondary combustion chamber 50 begins to decrease. It is detected that it gradually switches to.
  • the primary air blower 27 adjusts the amount of primary air in order to keep the combustion temperature in the secondary combustion chamber 50 constant.
  • the controller 7 controls the blower for primary air to increase the combustible gas. Control to increase the number of rotations of 2 7. As this state progresses, the amount of powdered fuel decreased in the primary combustion chamber 20 and the increased amount of primary air approach the proper air-fuel ratio, approaching complete combustion, so the secondary combustion The amount of combustible gas sent to the chamber 50 decreases, and the temperature in the secondary combustion chamber 50 begins to drop. When such a temperature decrease in the secondary combustion chamber 50 is detected, the control device 7 determines that the combustion state has been switched.
  • the direct combustion process is started.
  • the powdered fuel deposited on the bottom portion 23 of the primary combustion chamber 20 continues to burn by direct combustion.
  • the air is supplied from the bottom air supply port 31 and the air is intermittently injected from the bottom air injection nozzle 34.
  • the powder fuel is supplied from the fuel supply device 10.
  • the ignition temperature of the powder fuel injected from the PANARO 15 is ignited because the temperature inside the primary combustion chamber 20 exceeds the ignition temperature of the powder fuel. Then, it will continue to burn continuously.
  • the fuel supply device 10 ⁇ 2020/175639 18 ⁇ (:171? 2020 /008123
  • the combusted components supplied to the primary combustion chamber 20 are discharged as combustion gas to the secondary combustion chamber 50, and the part that cannot be completely burned is deposited in the primary combustion chamber 20 while burning. Further, the powdered fuel supplied into the primary combustion chamber 20 is continuously combusted by the combustion air supplied from the primary air supply port 26 and the bottom air injection nozzle 34, and is gradually ashed. It
  • the powder fuel is transferred to the bonfire combustion, whereby the remaining powder fuel is gradually ashed and finally becomes almost ash.
  • the incineration of the powdered fuel in the primary combustion chamber 20 can be detected by the first temperature sensor 25, which is the temperature in the primary combustion chamber 20.
  • the ash of the ashed powder fuel is delivered to the outside of the primary combustion chamber 20 by the ash delivery device 35 of the air supply ash outlet device 32.
  • the mouth-tally valve 35 is rotated to discharge the ash in the bottom 23 of the primary combustion chamber 20 to the outside through the ash outlet 23 13.
  • the air is strongly jetted intermittently from the bottom air jet nozzle 34, and the ash accumulated on the bottom portion 23 is smoothly discharged to the outside.
  • the ash discharged from the ash outlet 23 water is jetted from the water spray nozzle 39 in the lower part of the case 353, so the temperature of the ash in the case 353 decreases. At the same time, the ash is collected by the water and falls downward without scattering to the surroundings.
  • An ash receiver 40 is arranged below the ash outlet 23, and the ash discharged from the ash outlet 23 is stored and transported to the ash collection place by a forklift, etc., if necessary. ..
  • the power generation system 2 including the powder fuel combustion apparatus 1 of the present invention can generate the powder by supplying the primary air from the fixed bottom air injection nozzle 34 and the bottom air supply port 3 1. Complete combustion of body fuel. Therefore, unlike Patent Document 1, it is not necessary to analyze unburned matter, and it is not necessary to change the angle when the primary air is supplied.
  • the powder fuel in the bottom portion 2 3 of the primary combustion chamber 20 is intermittently supplied by the bottom air injection nozzle 34 of the air supply ashing device 3 2. Since the air is injected into the furnace, the powder fuel is securely burnt and ashed without being deposited on the furnace bottom, and is discharged to the outside of the primary combustion chamber 20. Therefore, the powder fuel combustion apparatus 1 of the present invention can burn the powder fuel reliably, and the energy recovery by the power generation device 5 and the like can be efficiently performed.
  • Injection nozzle 3 4 3 injection port, 3 5 ash delivery device, 3 5 8 ⁇ case, 3 5 13 port tally valve, 3 6 injection air supply device, 3 7 bottom solenoid valve, 3 8 bottom air supply pipe, 3 9 Sprinkling nozzle, 40 ash receiver, 50 secondary combustion chamber, 5 1 secondary parner, 5 2 secondary air supply port, 5 3 secondary air blower, 5 4 secondary exhaust port, 5 5 second temperature Sensor, 60 cyclone dust collector, 6 1 recovery device for cyclone, 6 2-port tally valve, 6 3 screen conveyor, 7 0 air compressor, 7 1 vent oil tank, 7 2 water tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

【課題】未燃分量計測装置等の装置を設けることなく、燃焼室内への空気の噴射方向を可変とすることなく、燃焼室内の被燃焼物を効率よく灰化できる燃焼装置及び燃焼方法を提供する。 【解決手段】粉体燃料燃焼装置1は、燃料供給装置10と、1次燃焼室20と、2次燃焼室50と、空気供給灰出装置32と、サイクロン集塵機60とを備える。1次燃焼室20の底部23には傾斜部23aが形成され、傾斜部23aは底部空気供給口31と空気供給灰出装置32を有する。空気供給灰出装置32は、底部空気噴射ノズル34と、灰送出装置35とを備える。底部空気噴射ノズル34は、上端及び下端が開口しており、側面には空気が噴射される噴射口34aが複数設けられる。粉体燃料Fの燃焼中にこの底部空気噴射ノズル34から定期的又は不定期に強い風圧の空気を噴射し、粉体燃料Fを攪拌させて良好な燃焼状態を得る。

Description

\¥02020/175639 1 卩(:17 2020/008123 明 細 書
発明の名称 : 粉体燃料燃焼装置及び燃焼方法
技術分野
[0001 ] 本発明は、 粉体燃料を燃焼させる燃焼装置、 及びその燃焼装置における燃 焼方法に関する。
背景技術
[0002] 従来、 微粉炭を燃料として燃焼を行い、 燃焼熱を回収して発電プラント等 に過熱蒸気を供給するボイラが知られている (特許文献 1参照) 。 特許文献 1 に記載のボイラは、 中空形状で鉛直方向に沿って設置される火炉と、 固体 燃料と燃焼用空気とを混合した微粉炭混合気を火炉内に噴射するために鉛直 方向に配置された三台の燃焼パーナを備えている。
[0003] また、 当該ボイラは、 燃焼パーナより鉛直方向の下方で燃焼用空気を火炉 内に噴射する炉底空気ノズルと、 炉底空気ノズルによる燃焼用空気の噴射方 向を水平方向に調整可能な水平方向調整装置とを有している。 特許文献 1の ボイラでは、 このような構成とすることで、 火炉内での燃料の燃焼を促進し て未燃分の発生を抑制している。
[0004] 特許文献 1 に記載されたボイラは、 公報の段落 0 0 2 7や 0 0 5 1等に記 載されているように、 燃料として主に石炭を粉砕した微粉炭を微粉燃料 (固 体燃料) として用いている。
[0005] _方で、 本願発明者等は、 特許文献 2に開示された炭化燃料製造装置及び 炭化燃料製造方法を用いて、 主に再利用のために回収された合成樹脂等を原 料として質の高い炭化燃料を製造することを行っている。
[0006] 特許文献 2に開示された炭化燃料製造装置及び炭化燃料製造方法によれば 、 回収された合成樹脂の質が悪く、 再生に向いていない合成樹脂であっても 、 石炭に近いカロリーを有する炭化燃料とすることができる。 このため、 回 収されたが再利用が難しいような合成樹脂や、 埋め立て処分しかできないよ うな合成樹脂についても、 質の高い燃料として再生することができるので、 〇 2020/175639 2 卩(:171? 2020 /008123
合成樹脂の再資源化と埋め立て処分場の負担軽減等の優れた効果を得ること ができる。
先行技術文献
特許文献
[0007] 特許文献 1 :特開 2 0 1 7 - 1 4 5 9 7 6号公報
特許文献 2 :国際公開公報 〇 2 0 0 8 / 0 7 4 1 8 9号
発明の概要
発明が解決しようとする課題
[0008] 特許文献 1 におけるボイラは、 縦長の火炉において、 縦方向に 3箇所の燃 焼パーナを設置し、 微粉炭が火炉内で燃焼されるように構成しているが、 未 燃物は火炉の底部に堆積する。 特許文献 1 においては、 この火炉の底部に堆 積した微粉炭に対して、 炉底空気ノズルから燃焼用の空気を導入し、 炉底内 の未燃物の焼却を行っている。
[0009] また、 特許文献 1 におけるボイラでは、 当該公報の図 9に表示されている ように、 炉底に灰や未燃分を貯留するホッパが設けられている。 特許文献 1 のボイラでは、 このホッパに貯留された灰や未燃分をホッパ底部に設置した 未燃分量計測装置と未燃分分析装置にて分析して、 炉底空気ノズルからの空 気の噴射方向を調節し、 未燃分量が減少するように制御している。
[0010] 特許文献 1のように、 未燃分量計測装置や未燃分分析装置、 或いは空気ノ ズルの噴射方向を可変とする構成は、 大型のプラントであれば、 技術的又は コストの面で対応が可能である。 しかしながら、 小型の装置においては、 装 置の構造が複雑となり、 設置コストが嵩む。 また、 これらの計測装置やノズ ルの可変機構については、 日々のメンテナンスも必要となり、 ランニングコ ストも上昇するという不都合がある。
[001 1 ] 本発明は、 上記不都合を解消するため、 未燃分量計測装置や未燃分分析装 置を設けることなく、 また、 燃焼室内への空気の噴射方向を可変とすること なく、 燃焼室内の被燃焼物を効率よく灰化させることができる燃焼装置及び 〇 2020/175639 3 卩(:171? 2020 /008123
燃焼方法を提供することを目的とする。
課題を解決するための手段
[0012] 上記目的を達成するために、 本発明の粉体燃料燃焼装置は、 粉体燃料を燃 焼させる燃焼装置であって、 前記粉体燃料を内部で燃焼させる 1次燃焼室と 、 前記 1次燃焼室から排出された燃焼ガスを燃焼させる 2次燃焼室を備え、 前記 1次燃焼室は、 前記粉体燃料を内部に供給する燃料供給装置と、 内部に 空気を供給する 1次空気供給口と、 内部の前記粉体燃料に着火する着火バー ナが設けられ、 前記 1次燃焼室の底部には、 下方に向けて狭まるように傾斜 する傾斜部と、 内部に空気を供給する底部空気供給口と、 前記傾斜部の下方 位置に設けられた灰出口と、 筒状で上下方向に向けて配置され上端及び下端 に開口を有し前記下端が前記灰出口に向けて配置され内部に空気が供給され る底部空気噴射ノズルが設けられ、 前記 2次燃焼室には、 内部を加熱して前 記 1次燃焼室から排出された燃焼ガスに着火する 2次パーナと、 内部に燃焼 用の空気を供給する 2次空気供給口が設けられ、 前記 1次空気供給口及び前 記底部空気供給口に空気を供給する 1次空気供給装置と、 前記底部空気噴射 ノズルに空気を供給する噴射空気供給装置と、 前記 2次空気供給口に空気を 供給する 2次空気供給装置と、 前記燃料供給装置、 前記着火パーナ、 前記 2 次パーナ、 前記 1次空気供給装置、 前記噴射空気供給装置、 及び前記 2次空 気供給装置の作動を制御する制御装置を備えている。
[0013] 前記制御装置は、 前記燃料供給装置により前記 1次燃焼室内に前記粉体燃 料を所定量堆積させ、 堆積された前記粉体燃料に前記着火バーナによって着 火を行うと共に、 前記 2次パーナを作動させて前記 2次燃焼室内を加熱し、 前記堆積された前記粉体燃料のガス化燃焼を行う際に、 前記 1次空気供給装 置及び前記噴射空気供給装置を作動させて前記堆積された前記粉体燃料の完 全燃焼に必要な空気量よりも少ない空気量を前記 1次空気供給口、 前記底部 空気供給口、 及び前記底部空気噴射ノズルから供給して前記 1次燃焼室内で 可燃性ガスを発生させ、 前記堆積された前記粉体燃料の直接燃焼を行う際に 、 前記 1次空気供給装置及び前記噴射空気供給装置を作動させて前記 1次燃 〇 2020/175639 卩(:171? 2020 /008123
焼室内に前記粉体燃料の直接燃焼に必要な空気量を前記 1次空気供給口、 前 記底部空気供給口、 及び前記底部空気噴射ノズルから供給すると共に、 前記 燃料供給装置を作動させて前記 1次燃焼室内に前記粉体燃料を供給して燃焼 させ前記燃料供給装置をパーナとして作動させ、 前記堆積された前記粉体燃 料のガス化燃焼を行う際、 及び前記堆積された前記粉体燃料の直接燃焼を行 う際に、 前記 2次空気供給装置を作動させ、 前記 2次空気供給口から前記可 燃性ガスの完全燃焼に必要な量の 2次燃焼用空気を供給して前記可燃性ガス を燃焼させることを特徴とする。
[0014] 本発明の粉体燃料燃焼装置では、 堆積された粉体燃料のガス化燃焼を行う 際に、 1次燃焼室に固定された 1次空気供給口、 底部空気供給口、 及び底部 空気噴射ノズルから空気を供給して 1次燃焼室内で可燃性ガスを発生させて おり、 1次空気供給口、 底部空気供給口のみならず、 底部空気噴射ノズルか らも空気を噴射している。 本発明では、 このような構成で粉体燃料の完全燃 焼を行うことができるので、 未燃性分の分析や 1次空気供給ノズルの角度等 の変更が不要となる。
[0015] また、 本発明の粉体燃料燃焼装置では、 前記 1次燃焼室内の前記粉体燃料 の燠火燃焼及び灰化を行う際に、 前記燃料供給装置による燃料の供給を停止 させると共に、 前記底部空気噴射ノズルからの空気の供給を停止させてもよ い。
[0016] 本発明の粉体燃料燃焼装置において、 粉体燃料の成分によっては、 1次燃 焼室内の粉体燃料の燠火燃焼及び灰化を行う際、 1次燃焼室及び 2次燃焼室 内で白煙が発生し、 2次燃焼室よりも下流に設置されるサイクロン集塵機及 びバグフィルタ等の装置に負荷がかかる場合があった。
[0017] 本願発明者等が鋭意検討を重ねた結果、 燠火燃焼及び灰化を行う際に白煙 が発生した場合、 助燃バーナや 2次パーナを用いて 1次燃焼室及び 2次燃焼 室内を加熱するという方法を用いることなく、 底部空気噴射ノズルからの空 気の供給を停止させることにより、 この白煙の発生を防止することができる ことを知見した。 従って、 1次燃焼室内の粉体燃料の燠火燃焼及び灰化を行 〇 2020/175639 5 卩(:171? 2020 /008123
う際、 1次燃焼室及び 2次燃焼室内で白煙が発生する場合には、 底部空気噴 射ノズルからの空気の供給を停止させればよい。
[0018] また、 本発明の粉体燃料燃焼装置において、 前記制御装置は、 前記堆積さ れた前記粉体燃料のガス化燃焼を行う際、 及び前記堆積された前記粉体燃料 の直接燃焼を行う際に、 前記底部空気噴射ノズルに定期的又は不定期で前記 粉体燃料を攪拌可能な噴射量で空気を噴射するよう前記噴射空気供給装置を 制御してもよい。
[0019] 当該制御により、 前記底部空気噴射ノズルから噴射される定期的又は不定 期の空気により粉体燃料が攪拌されるので、 粉体燃料が炉底の壁面に固着す るのを防止することができ、 粉体燃料を効率よく燃焼させることができる。
[0020] また、 本発明の粉体燃料燃焼装置において、 前記燃料供給装置は、 前記粉 体燃料が投入される燃料用ホッパと、 前記燃料用ホッパ内に上下方向に向け て配置され少なくとも下方に空気を噴射するホッパ用噴射ノズルと、 前記ホ ッパ用噴射ノズルに空気を供給するホッパ用空気供給装置と、 前記ホッパ用 噴射ノズルの下方に設けられ前記粉体燃料を下方に送出する燃料送出装置と 、 前記粉体燃料と空気とが混合される混合管と、 前記混合管に空気を供給す る燃料用ブロワとを有し、 前記制御装置は、 前記 1次燃焼室内に前記粉体燃 料を供給する際に、 前記燃料用ブロワを作動させると共に、 前記燃料送出装 置を作動させ、 前記混合管の内部で前記粉体燃料と前記燃料用ブロワから供 給される空気を混合させて前記混合管から前記 1次燃焼室に前記粉体燃料を 供給し、 所定のタイミングで前記ホッパ用空気供給装置を作動させて前記ホ ッパ用噴射ノズルから空気を噴射するものとしてもよい。
[0021 ] 当該構成によれば、 ホッパ用空気供給装置により、 燃料用ホッパ内の粉体 燃料を燃料送出装置に円滑に送出することができ、 安定して混合管から 1次 燃焼室内に粉体燃料を供給することができる。
[0022] また、 本発明の粉体燃料燃焼方法は、 粉体燃料燃焼装置によって粉体燃料 を燃焼させる燃焼方法であって、 燃料投入行程、 着火行程、 ガス化燃焼行程 、 直接燃焼行程、 及び燠火 ·灰化行程より構成され、 前記粉体燃料燃焼装置 〇 2020/175639 6 卩(:171? 2020 /008123
は、 前記粉体燃料を内部で燃焼させる 1次燃焼室と、 前記 1次燃焼室から排 出されたガスを燃焼させる 2次燃焼室を備え、 前記 1次燃焼室は、 前記粉体 燃料を内部に供給する燃料供給装置と、 内部に空気を供給する 1次空気供給 口と、 内部の前記粉体燃料に着火する着火パーナが設けられ、 前記 1次燃焼 室の底部には、 下方に向けて狭まるように傾斜する傾斜部と、 内部に空気を 供給する底部空気供給口と、 前記傾斜部の下方位置に設けられた灰出口と、 筒状で上下方向に向けて配置され上端及び下端に開口を有し前記下端が前記 灰出口に向けて配置され内部に空気が供給される底部空気噴射ノズルが設け られ、 前記 2次燃焼室には、 内部を加熱して前記 1次燃焼室から排出された 燃焼ガスに着火する 2次パーナと、 内部に燃焼用の空気を供給する 2次空気 供給口が設けられ、 前記 1次空気供給口及び前記底部空気供給口に空気を供 給する 1次空気供給装置と、 前記底部空気噴射ノズルに空気を供給する噴射 空気供給装置と、 前記 2次空気供給口に空気を供給する 2次空気供給装置と 、 前記燃料供給装置、 前記着火パーナ、 前記 2次パーナ、 前記 1次空気供給 装置、 前記噴射空気供給装置、 及び前記 2次空気供給装置の作動を制御する 芾 I」御装置を備えている。
[0023] 前記制御装置により、 前記燃料投入行程では、 前記燃料供給装置により前 記 1次燃焼室内に前記粉体燃料を所定量堆積させ、 前記着火行程では、 前記 2次バーナによって前記 2次燃焼室内を加熱し、 前記 2次燃焼室内が所定温 度に達した後、 前記堆積された前記粉体燃料に前記着火バーナによって着火 を行い、 前記ガス化燃焼行程では、 前記堆積された前記粉体燃料の完全燃焼 に必要な空気量よりも少ない空気量を前記 1次空気供給口、 前記底部空気供 給口、 及び前記底部空気噴射ノズルから供給して前記 1次燃焼室内で可燃性 ガスを発生させ、 前記可燃性ガスを前記 2次燃焼室内に導入し、 前記 2次空 気供給口から 2次燃焼用空気を供給して前記可燃性ガスを完全燃焼させ、 前 記直接燃焼行程では、 前記 1次空気供給装置及び前記噴射空気供給装置を作 動させて前記 1次燃焼室内に前記粉体燃料の直接燃焼に必要な空気量を前記 1次空気供給口、 前記底部空気供給口、 及び前記底部空気噴射ノズルから供 〇 2020/175639 7 卩(:171? 2020 /008123
給すると共に、 前記燃料供給装置を作動させて前記 1次燃焼室内に前記粉体 燃料を供給して燃焼させ前記燃料供給装置をパーナとして作動させ、 前記 1 次燃焼室から排出される燃焼ガスを前記 2次燃焼室内に導入し、 前記 2次空 気供給口から 2次燃焼用空気を供給して前記燃焼ガスを完全燃焼させ、 前記 燠火 ·灰化行程では、 前記燃料供給装置による燃料の供給を停止させ、 前記 1次燃焼室内に残存する前記粉体燃料を燠火燃焼させて灰化させることを特 徴とする。
[0024] 本発明の粉体燃料燃焼方法は、 燃料投入行程、 着火行程、 ガス化燃焼行程 、 直接燃焼行程、 及び燠火 ·灰化行程より構成されている。 そのガス化燃焼 行程において、 1次空気供給口、 底部空気供給口、 及び底部空気噴射ノズル から空気を供給して 1次燃焼室内で可燃性ガスを発生させており、 1次空気 供給口、 底部空気供給口のみならず、 底部空気噴射ノズルからも空気を噴射 している。 従って、 下方に向けて狭まるように傾斜する底部の内部に堆積さ れた粉体燃料に対して、 空気が噴射されるので、 従来の焼却方法に比べて、 粉体燃料を確実に燃焼させることができる。
[0025] 本発明の粉体燃料燃焼方法では、 前記燠火 ·灰化行程において、 前記底部 空気噴射ノズルからの空気の供給を停止させてもよい。 当該処理により、 粉 体燃料の燠火 ·灰化の際の白煙の発生を防止することができる。
[0026] また、 本発明の粉体燃料燃焼方法において、 前記制御装置により、 前記ガ ス化燃焼行程、 及び前記直接燃焼行程において、 前記底部空気噴射ノズルに 定期的又は不定期で前記粉体燃料を攪拌可能な噴射量で空気を噴射するよう 前記噴射空気供給装置を制御してもよい。 当該制御により、 1次燃焼室の底 部に堆積された粉体燃料を攪拌させることができるので、 従来の焼却方法に 比べて、 粉体燃料を確実に燃焼させることができる。
[0027] また、 本発明の粉体燃料燃焼方法において、 前記燃料供給装置は、 前記粉 体燃料が投入される燃料用ホッパと、 前記燃料用ホッパ内に上下方向に向け て配置され少なくとも下方に空気を噴射するホッパ用噴射ノズルと、 前記ホ ッパ用噴射ノズルに空気を供給するホッパ用空気供給装置と、 前記ホッパ用 〇 2020/175639 8 卩(:171? 2020 /008123
噴射ノズルの下方に設けられ前記粉体燃料を下方に送出する燃料送出装置と 、 前記粉体燃料と空気とが混合される混合管と、 前記混合管に空気を供給す る燃料用ブロワとを有し、 前記燃料投入行程及び前記直接燃焼行程において 、 前記制御装置により、 前記燃料用ブロワを作動させると共に、 前記燃料送 出装置を作動させ、 前記混合管の内部で前記粉体燃料と前記燃料用ブロワか ら供給される空気を混合させて前記混合管から前記 1次燃焼室に前記粉体燃 料を供給し、 所定のタイミングで前記ホッパ用空気供給装置を作動させて前 記ホッパ用噴射ノズルから空気を噴射するようにしてもよい。
[0028] 当該制御によれば、 燃料投入行程及び直接燃焼行程において、 ホッパ用空 気供給装置により、 燃料用ホッパ内の粉体燃料を燃料送出装置に円滑に送出 することができ、 安定して混合管から 1次燃焼室内に粉体燃料を供給するこ とができる。
発明の効果
[0029] 本発明によれば、 回収された合成樹脂や廃プラスチック等を原料とする炭 化燃料のような粉体燃料であっても、 良好に燃焼させることができる燃焼装 置及び燃焼方法を提供することができる。
図面の簡単な説明
[0030] [図 1]本実施形態の粉体燃料燃焼装置を含む発電システムを示す説明図。
[図 2]本実施形態の粉体燃料燃焼装置における燃料供給装置を示す説明図。
[図 3]本実施形態の粉体燃料燃焼装置の 1次燃焼室の底部の構成を示す説明図
発明を実施するための形態
[0031] 次に、 本発明の実施形態の一例である粉体燃料燃焼装置及び粉体燃料燃焼 方法について、 図 1〜図 3を参照して説明する。 図 1は、 本実施形態の粉体 燃料燃焼装置を含む発電システムを示す説明図である。 図 2は、 本実施形態 の粉体燃料燃焼装置における燃料供給装置を示す説明図である。 図 3は、 本 実施形態の粉体燃料燃焼装置の 1次燃焼室の底部の構成を示す説明図である 。 本実施形態においては、 粉体燃料は特許文献 2に記載された炭化燃料製造 \¥02020/175639 9 卩(:17 2020/008123
装置により製造された廃プラスチックを原料とする粉末状のチヤを用いてい る。
[0032] 本実施形態の粉体燃料燃焼装置 1は、 図 1 に示すように、 粉体燃料 によ る発電システム 2に用いられる燃焼装置である。 発電システム 2は、 粉体燃 料燃焼装置 1 に加えて、 ボイラ 3、 集塵装置 4、 発電装置 5、 煙突 6及びこ れらを制御する制御装置 7を備えている。
[0033] 粉体燃料燃焼装置 1は、 図 1 に示すように、 燃料供給装置 1 0と、 1次燃 焼室 2 0と、 2次燃焼室 5 0と、 空気供給灰出装置 3 2と、 サイクロン集塵 機 6 0とを備えている。 サイクロン集塵機 6 0の出口はボイラ 3に接続され ている。
[0034] 1次燃焼室 2 0は、 本実施形態では全体的に円筒形であり、 その上方に位 置する天井部 2 1 と、 天井部 2 1の下方に位置する胴部 2 2と、 胴部 2 2の 下方に位置する底部 2 3から構成されている。
[0035] 天井部 2 1 には、 1次燃焼室 2 0内で発生した可燃性ガス或いは燃焼ガス が排出される 1次排気口 2 4が設けられている。 また、 1次排気口 2 4には 、 1次燃焼室 2 0内で発生した燃焼ガスの温度を検出する第 1温度センサ 2 5が設けられている。 なお、 1次排気口 2 4は、 図 1のように、 天井部 2 1 の天板に形成されていてもよく、 側面に形成されていてもよい。
[0036] 胴部 2 2には、 燃料供給装置 1 0が接続されている。 この燃料供給装置 1 〇は、 粉体燃料 が投入される燃料用ホッパ 1 1 と、 粉体燃料 と燃焼用空 気とを混合させる混合管 1 2と、 燃料用ホッパ 1 1 に投入された粉体燃料 を任意の供給量で混合管 1 2に供給する燃料送出装置 1 3と、 燃焼用空気を 混合管 1 2に供給する燃料用ブロワ 1 4と、 混合管 1 2の先端部にあるパー ナロ 1 5とを備えている。
[0037] 燃料用ホッパ 1 1 には、 その中央に、 上下方向に延びる筒状のホッパ用噴 射ノズル 1 6が設けられている。 ホッパ用噴射ノズル 1 6は、 円筒状の部材 であり、 上下端部が開口しており、 側面には空気が噴射される噴射口 1 6 3 が複数設けられている。 ホッパ用噴射ノズル 1 6の下端部は、 燃料用ホッパ 〇 2020/175639 10 卩(:171? 2020 /008123
1 1の開口部 1 1 3に向けて設けられている。 また、 ホツバ用噴射ノズル 1 6には、 エアコンプレッサ 7 0、 燃料用電磁弁 1 7及び燃料用空気供給管 1 6匕からなるホッパ用空気供給装置 1 8が接続されている。
[0038] 燃料供給装置 1 0の燃料送出装置 1 3は、 円筒状のケース 1 3 3の内部で 口ータリーバルブ 1 3匕が回転して粉体燃料 の送出を行う。 燃料の時間当 たりの送出量は、 図示しないモータをインバータ制御して、 口ータリーバル ブ 1 3匕の回転数を調整することにより行われる。
[0039] 燃料供給装置 1 0の燃料用ブロワ 1 4も図示しないモータをインバータ制 御することにより送風量を調節することができる。 燃料送出装置 1 3の粉体 燃料 の送出量と、 燃料用ブロワ 1 4の送風量を調節することにより、 パー ナロ 1 5から吹き出される燃料の空燃比を変更することができる。
[0040] 燃料供給装置 1 0は、 1次燃焼室 2 0内で燃焼が行われている状態で、 バ
—ナロ 1 5から粉体燃料 と燃焼用空気が 1次燃焼室 2 0内に供給されると 、 パーナロ 1 5の近傍で粉体燃料 が着火し、 その後はバーナとして燃焼が 行われる。
[0041 ] また、 胴部 2 2の周壁には、 1次燃焼室 2 0内に 1次燃焼用の空気を供給 する 1次空気供給口 2 6が複数設けられている。 この 1次空気供給口 2 6に は、 胴部 2 2の外側に設けられた 1次空気供給装置である 1次空気用ブロワ 2 7から空気が供給される。
[0042] また、 胴部 2 2の上方位置には、 水蒸気導入口 2 8及びベントガス導入口
2 9が設けられている。 これらの導入口からは、 必要に応じて 1次燃焼室 2 〇内に水蒸気及びベントガスを導入することができる。 水蒸気としては、 特 許文献 2に開示された燃料製造装置による燃料製造の際に回収された臭い成 分を含有する水蒸気等を導入可能である。 ベントガスとしては、 特許文献 2 に開示された燃料製造装置による燃料製造の際に回収されたガスを使用する ことができる。
[0043] また、 胴部 2 2には、 1次燃焼室 2 0内の燃焼を補助する助燃バーナ 3 0 と、 この助燃バーナ 3 0に空気を供給する助燃用電磁弁 3 0 3が設けられて 〇 2020/175639 1 1 卩(:171? 2020 /008123
いる。 この助燃バーナ 3 0には、 燃料として特許文献 2に開示された燃料製 造装置による燃料製造の際に回収されたベントオイル等が用いられる。
[0044] 1次燃焼室 2 0の底部 2 3には、 胴部 2 2の壁面から下方に向けて狭まる ように傾斜する傾斜部 2 3 3が形成され、 傾斜部 2 3 3の下方には灰出口 2 3匕が形成されている。 傾斜部 2 3 3には、 内部に燃焼用の空気を導入する 底部空気供給口 3 1が複数設けられている。 この底部空気供給口 3 1 には、
1次空気用ブロワ 2 7から空気が供給される。
[0045] また、 底部 2 3には、 傾斜部 2 3 3の内部に空気供給灰出装置 3 2と、 底 部 2 3内に投入された粉体燃料 に着火する着火バーナ 3 3が設けられてい る。 この着火バーナ 3 3で使用される燃料は、 灯油或いは重油等が用いられ る。
[0046] 空気供給灰出装置 3 2は、 底部空気噴射ノズル 3 4と、 灰送出装置 3 5と を備えている。 底部空気噴射ノズル 3 4は、 上下方向に延びる筒状の部材で あり、 傾斜部 2 3 3のほぼ中央に設けられている。 底部空気噴射ノズル 3 4 は、 上端及び下端が開口しており、 側面には空気が噴射される噴射口 3 4 3 が複数設けられている。 底部空気噴射ノズル 3 4の下端部は、 灰出口 2 3匕 に向けて設けられている。
[0047] 底部空気噴射ノズル 3 4には、 噴射空気供給装置 3 6として、 エアコンプ レッサ 7 0及び底部用電磁弁 3 7、 及び底部空気供給管 3 8が接続されてい る。 この噴射空気供給装置 3 6から底部空気噴射ノズル 3 4に噴射用空気が 供給される。
[0048] 灰送出装置 3 5は、 円筒状のケース 3 5 3の内部で口ータリーバルブ 3 5 匕が回転して灰の送出を行う。 また、 灰送出装置 3 5には、 ケース 3 5 3の 下方部分の内部に水を噴射する散水ノズル 3 9が設けられている。 この散水 ノズル 3 9から水が噴射されると、 ケース 3 5 3内の灰が冷却されると共に 、 灰が水によって集結し、 周囲に飛散することなく下方に落下する。
[0049] 灰出口 2 3匕の下方には、 灰受け器 4 0が配置されており、 灰出口 2 3匕 から排出される灰を貯留することができる。 この灰受け器 4 0は、 フォーク 〇 2020/175639 12 卩(:171? 2020 /008123
リフト等の移動手段により、 灰出口 2 3匕の下方位置から灰の回収場所まで 移動可能となっている。
[0050] 粉体燃料燃焼装置 1 には、 その他に、 助燃バーナ 3 0に燃料であるベント オイルを供給するベントオイルタンク 7 1、 散水ノズル 3 9に水を供給する ウォータータンク 7 2等が設けられている。
[0051 ] 2次燃焼室 5 0は、 円筒状の燃焼室であり、 1次燃焼室 2 0の燃焼ガスが 導入される 1次排気口 2 4が接続されている。 この 1次排気口 2 4の接続部 近傍には、 燃焼ガスに着火を行う 2次バーナ 5 1が設けられている。 また、
2次燃焼室 5 0の周壁には、 2次燃焼を行わせるための 2次燃焼用空気を供 給する 2次空気供給口 5 2が複数設けられている。 この 2次空気供給口 5 2 には、 2次空気供給装置である 2次空気用ブロワ 5 3から空気が供給される
[0052] 2次燃焼室 5 0の下流側には 2次排気口 5 4が設けられ、 サイクロン集塵 機 6 0に接続されている。 この 2次排気口 5 4には、 2次燃焼室 5 0の燃焼 ガスの温度を検出する第 2温度センサ 5 5が設けられている。 また、 サイク ロン集塵機 6 0の下方には、 サイクロン用回収装置 6 1が設けられている。
[0053] サイクロン用回収装置 6 1は、 口ータリーバルブ 6 2と、 スクリユーコン べヤ 6 3によって構成されている。 このサイクロン用回収装置 6 1 によって 、 サイクロン集塵機 6 0で回収された粉塵は、 再度 1次燃焼室 2 0内に戻さ れて燃焼が行われる。
[0054] 本実施形態の発電システム 2におけるボイラ 3は、 サイクロン集塵機 6 0 によって集塵処理が行われた排気ガスの熱で過熱蒸気や飽和蒸気を発生させ る装置である。 本実施形態では、 ボイラ 3は約 6 0 0 °〇の排気ガスから熱回 収を行い、 排気ガスの出口温度を約 2 0 0 °〇まで下降させている。
[0055] 発電装置 5は、 ボイラ 3によって発生した蒸気で図示しない夕ービンを回 転させて発電する装置である。 この発電装置 5は、 現在一般に使用さている ものを採用している。 ボイラ 3によって発生した蒸気は、 このように発電装 置 5に用いられる他、 暖房設備等の付帯設備にも用いることもできる。 〇 2020/175639 13 卩(:171? 2020 /008123
[0056] ボイラ 3の下流側には集塵装置 4が設けられている。 この集塵装置 4は、 一般に広く用いられているバグフィルタ等を用いることができる。 また、 バ グフィルタの前にガスの温度を降下させる装置等も必要に応じて設置する。 その他、 集塵装置 4としては、 遠心式集塵機、 電気式集塵機、 或いは重力式 集塵装置等の他の集塵装置を用いることもできる。 また、 発電システム 2の 規模や燃焼させる燃料の種類によっては、 この集塵装置 4自体を省略するこ とができる。
[0057] 煙突 6には、 図示しない吸引ファンが設けられており、 粉体燃料燃焼装置
1から発生する排気ガスを煙突 6まで吸引して外部に放出する。 この吸引フ ァンもインバータ制御によって駆動され、 制御装置 7からの信号によって回 転数が制御される。
[0058] 制御装置 7は、 いわゆる制御盤と呼ばれるものであり、 各種操作スイッチ と、 各装置の運転状態を示すインジケータと、 各装置の制御を行うコンピュ —夕を内蔵している (それぞれ図示省略) 。 制御装置 7のコンピュータは、 〇 11、 記憶装置、 通信装置等を備えており (それぞれ図示省略) 、 記憶装 置には本実施形態の粉体燃料燃焼装置 1 を含む発電システム 2の運転を実行 するプログラムが記憶されている。
[0059] 次に、 本実施形態の粉体燃料燃焼装置 1の燃焼方法について説明する。 本 実施形態の燃焼方法は、 燃料投入行程、 着火行程、 ガス化燃焼行程、 直接燃 焼行程、 及び燠火 ·灰化行程より構成される。 これらの各行程は、 制御装置 7に記憶されたプログラムによって実行される。
[0060] 本実施形態の燃焼方法では、 まず燃料投入行程が行われる。 燃料投入行程 においては、 燃料供給装置 1 〇を用いて 1次燃焼室 2 0内に粉体燃料 を所 定量堆積させる。 粉体燃料 の量は、 1次燃焼室 2 0の約 1 / 3の容積が埋 まる程度としている。 この所定量としては、 粉体燃料燃焼装置 1の運転効率 を考慮すると、 1次燃焼室 2 0の約 1 / 4〜 1 / 2程度が好ましいが、 粉体 燃料 の性質によって適宜変更することができる。
[0061 ] この燃料投入行程においては、 まず、 燃料供給装置 1 0の燃料用ホッパ 1 〇 2020/175639 14 卩(:171? 2020 /008123
1 に粉体燃料 を投入した状態で燃料供給装置 1 0を始動させる。 この粉体 燃料 の燃料用ホツパ 1 1 への投入は、 コンべヤ等を用いて制御装置 7によ り制御してもよく、 コンべヤ等を手動で操作して行ってもよい。
[0062] 燃料供給装置 1 0が制御装置 7により始動されると、 口ータリーバルブ 1
3匕が回転し、 燃料用ホツパ 1 1内の粉体燃料 が口ータリーバルブ 1 3匕 によってケース 1 3 3の下方に搬送される。 このとき、 燃料用ホツパ 1 1で は、 所定のタイミングでホツパ用空気供給装置 1 8からホツパ用噴射ノズル 1 6に噴射用の空気が送られる。 これにより、 燃料用ホツパ 1 1内の粉体燃 料 がプリツジ等を起こすことなく口ータリーバルブ 1 3匕によってケース 1 3 3の下方に搬送される。
[0063] ホツパ用空気供給装置 1 8を作動させるタイミングは、 粉体燃料 の状態 に応じて適宜変更することができ、 例えば 1〜 1 〇分毎にホツパ用空気供給 装置 1 8を作動させてもよく、 燃料用ホツパ 1 1 に粉体燃料 を追加する毎 に作動させてもよい。
[0064] 一方で、 燃料用ブロワ 1 4の運転も開始され、 混合管 1 2に空気が供給され る。 これにより、 混合管 1 2の内部で粉体燃料 と供給された空気が混合さ れ、 バーナロ 1 5から前方に放出される。
[0065] このとき、 1次燃焼室 2 0内では着火バーナ 3 3や助燃バーナ 3 0は作動 していないため、 燃料供給装置 1 0から放出された粉体燃料 は 1次燃焼室 2 0の底部 2 3に堆積する。 この燃料供給装置 1 0の運転を 1次燃焼室 2 0 の約 1 / 3の容積が埋まるまで続け、 所定の量まで粉体燃料 が供給された 後、 燃料供給装置 1 〇の運転を停止させる。
[0066] 本実施形態の燃焼方法においては、 次に着火行程が行われる。 着火行程に おいては、 まず 2次燃焼室 5 0の 2次バーナ 5 1の燃焼を開始し、 2次燃焼 室 5 0内の温度を上昇させる。 2次燃焼室 5 0の温度が所定温度 (8 0 0 °〇 等) となった後、 着火バーナ 3 3を作動させて 1次燃焼室 2 0内に堆積して いる粉体燃料 に着火する。 このとき、 第 1温度センサ 2 5により 1次燃焼 室 2 0内における堆積した粉体燃料 への着火が確認されたときは、 着火バ 〇 2020/175639 15 卩(:171? 2020 /008123
—ナ 3 3を停止させる。
[0067] 次に、 ガス化燃焼行程について説明する。 ガス化燃焼行程では、 1次燃焼 室 2 0内で、 燃料投入行程で投入された粉体燃料 の_部が燃焼して可燃性 ガスを発生させる。 1次燃焼室 2 0には、 1次空気用ブロワ 2 7、 1次空気 供給口 2 6及び底部空気供給口 3 1から 1次燃焼用の空気が供給されている
[0068] ガス化燃焼行程において、 1次燃焼室 2 0内に導入される 1次燃焼用の空 気は、 粉体燃料 の完全燃焼に必要な空気量よりも少ない空気量が供給され る。 従って、 1次燃焼室 2 0内では、 粉体燃料 の一部が燃焼し、 周囲の粉 体燃料 を加熱しながら少しずつ燃焼範囲を広げていくため、 粉体燃料 か ら可燃性ガスが発生する。
[0069] このとき、 空気供給灰出装置 3 2の底部空気噴射ノズル 3 4からは断続的 に空気が 1次燃焼室 2 0内に供給される。 底部空気噴射ノズル 3 4からは、 上下端部及び噴射口 3 4 3から空気が噴射される。 このとき、 例えば、 所定 時間微小の空気量の噴射を行い、 定期的又は不定期に噴射量を増加させる制 御を行う。 具体的には、 5分間は底部空気噴射ノズル 3 4の周囲の粉体燃料 が風圧により移動しないような量の空気を噴射し、 5分毎に底部空気噴射 ノズル 3 4の周囲の粉体燃料 が攪拌可能な強さで空気の噴射を行う。
[0070] 或いは、 5分毎のような定期的な噴射のみならず、 通常は弱い風圧での空 気の噴射を行い、 1次燃焼室 2 0内の温度が所定温度以下になった際に粉体 燃料 が攪拌されるような強さで空気の噴射を行ってもよい。 この断続的な 底部空気噴射ノズル 3 4の上下の開口部分、 及び側面に設けられた噴射口 3 4 3からの空気の噴射により、 1次燃焼室 2 0の底部 2 3に堆積している粉 体燃料 が攪拌されて良好な燃焼が行われる。
[0071 ] ガス化燃焼行程において、 加熱された 2次燃焼室 5 0内に 1次燃焼室 2 0 からの可燃性ガスが排出されると、 2次バーナ 5 1 によって可燃性ガスが着 火し、 2次燃焼室 5 0内で完全燃焼が行われる。
[0072] 本実施形態では、 2次燃焼室 5 0内の燃焼温度が 8 0 0 °〇以上、 好ましく 〇 2020/175639 16 卩(:171? 2020 /008123
は 9 0 0 °〇以上となるように制御を行っている。 なお、 2次バーナ 5 1は、 第 2温度センサで検出される温度が所定の温度以上になったときは作動を停 止するが、 その後も 2次燃焼室 5 0内では 1次燃焼室 2 0からの可燃性ガス によって燃焼が継続する。
[0073] このガス化燃焼行程においては、 制御装置 7によって、 2次燃焼室 5 0内 の燃焼温度がほぼ一定となるように制御される。 2次燃焼室 5 0内の燃焼温 度の制御は、 2次空気用ブロワ 5 3により可燃性ガスの完全燃焼に必要な一 定量の 2次空気を供給した状態で、 1次空気用ブロワ 2 7による 1次空気の 量の調節により行われる。
[0074] また、 このとき、 助燃/ ーナ 3 0による燃焼を制御して 2次燃焼室 5 0内 の燃焼温度を制御することもできる。 一方で、 水蒸気導入口 2 8からの水蒸 気の供給、 及びベントガス導入口 2 9からのベントガスの導入があった場合 でも、 1次空気用ブロワ 2 7による 1次空気の量の調節で 2次燃焼室 5 0内 の燃焼温度を制御することができる
[0075] 2次燃焼室 5 0内で完全燃焼された後の排気ガスは、 2次排気口 5 4から 排出されてサイクロン集塵機 6 0を経てボイラ 3に導入される。 サイクロン 集塵機 6 0では、 排気ガス中の粉塵を分離してサイクロン集塵機 6 0の底部 に落下させる。 この底部に落下した粉塵は、 サイクロン用回収装置 6 1の口 —タリーバルブ 6 2及びスクリユーコンべヤ 6 3によって、 1次燃焼室 2 0 内に戻されて燃焼が行われる。
[0076] このように粉塵が除去された排気ガスは、 2次排気口 5 4においては高温 であるが、 ボイラ 3によって熱交換されて温度が下がり、 集塵装置 4及び煙 突 6を介して外気に放出される。
[0077] ボイラ 3では、 燃焼後の排気ガスの熱によって蒸気が生成され、 この蒸気 を用いて発電装置 5で発電が行われる。 本実施形態では、 粉体燃料 は特許 文献 2に記載された炭化燃料製造装置により製造された回収プラスチックを 原料とするチヤを用いている。 このように、 発電装置 5では、 燃料である粉 体燃料 は回収プラスチックが原料であり、 その回収プラスチックを用いて 〇 2020/175639 17 卩(:171? 2020 /008123
発電を行っているため、 極めて環境負荷の小さい発電を行うことができる。
[0078] このガス化燃焼行程を所定時間継続すると、 1次燃焼室 2 0内に堆積され た粉体燃料 がガス化燃焼から直接燃焼に徐々に切り替わる。 この燃焼状態 の切り替わりは、 1次燃焼室 2 0内の温度と、 2次燃焼室 5 0内の温度条件 によって判断する。
[0079] 具体的には、 1次燃焼室 2 0内の温度が現状維持か上昇傾向にある状態に おいて、 2次燃焼室 5 0の温度が下降し始めるタイミングでガス化燃焼から 直接燃焼に徐々に切り替わることを検知する。 制御装置 7の制御により、 2 次燃焼室 5 0の燃焼温度を一定にするために 1次空気用ブロワ 2 7による 1 次空気の量の調節を行っている。
[0080] 1次燃焼室 2 0内での粉体燃料 の燃焼が進むと、 粉体燃料 が徐々に減 っていくため、 制御装置 7は、 可燃性ガスを増やすために 1次空気用ブロワ 2 7の回転数を高くするよう制御する。 この状態が進むと、 1次燃焼室 2 0 内で減少した粉体燃料 の量と、 増加した 1次空気の量が適正な空燃比に近 づき、 完全燃焼に近づいていくため、 2次燃焼室 5 0へ送り込まれる可燃性 ガスの量が減り、 2次燃焼室 5 0内の温度低下が始まる。 このような 2次燃 焼室 5 0内の温度低下が検知されると、 制御装置 7は、 燃焼状態が切り替わ ったものと判断する。
[0081 ] 本実施形態の燃焼方法においては、 ガス化燃焼行程が終了すると直接燃焼 行程に移行する。 直接燃焼行程では、 1次燃焼室 2 0の底部 2 3に堆積した 粉体燃料 が直接燃焼により燃焼を続ける。 このとき、 底部空気供給口 3 1 から空気が供給されると共に、 底部空気噴射ノズル 3 4からも断続的に空気 が噴射されている。
[0082] また、 直接燃焼行程においては、 燃料供給装置 1 0から粉体燃料 の供給 が行われる。 燃料供給装置 1 0から粉体燃料 が供給されると、 1次燃焼室 2 0内は粉体燃料 の発火温度を超えている状態であるため、 パーナロ 1 5 から噴射された粉体燃料 が着火され、 連続して燃焼を続けるようになる。 このように、 直接燃焼行程においては、 燃料供給装置 1 〇は粉体燃料用パー 〇 2020/175639 18 卩(:171? 2020 /008123
ナとして作動する。
[0083] 燃料供給装置 1 0から噴射された粉体燃料 は、 このように燃焼しながら
1次燃焼室 2 0内に供給され、 燃焼した成分は燃焼ガスとして 2次燃焼室 5 〇に排出され、 燃焼しきれなかった部分は 1次燃焼室 2 0内に燃焼しながら 堆積される。 また、 1次燃焼室 2 0内に供給された粉体燃料 は、 1次空気 供給口 2 6及び底部空気噴射ノズル 3 4から供給される燃焼用空気によって 燃焼が継続され、 徐々に灰化される。
[0084] 本実施形態の燃焼方法においては、 直接燃焼行程が終了すると燠火 ·灰化 行程に移行する。 直接燃焼行程を終了する場合、 燃料供給装置 1 0による粉 体燃料 の供給を停止させる。 これにより、 1次燃焼室 2 0内での燃焼は、
1次燃焼室 2 0の底部 2 3に堆積する粉体燃料 のみとなり、 直接燃焼から 徐々に燠火燃焼へと移行し、 燠火燃焼が継続すると粉体燃料 は徐々に灰化 する。
[0085] このとき、 底部空気噴射ノズル 3 4からの空気の噴射を停止させ、 1次空 気供給口 2 6及び底部空気供給口 3 1からの空気の供給のみを行う。 このよ うに、 底部空気噴射ノズル 3 4からの空気の噴射を停止させることにより、
2次燃焼室 5 0から排出される排気ガスの白煙の発生を防止することができ る。
[0086] 燠火 ·灰化行程において、 粉体燃料 が燠火燃焼に移行することにより、 残存する粉体燃料 が徐々に灰化され、 最終的にほぼ灰となる。 1次燃焼室 2 0内の粉体燃料 が灰化されたことは、 1次燃焼室 2 0内の温度を第 1温 度センサ 2 5で検出することができる。
[0087] 灰化された粉体燃料 の灰は、 空気供給灰出装置 3 2の灰送出装置 3 5に よって 1次燃焼室 2 0の外部に送出される。 灰送出装置 3 5においては、 口 —タリーバルブ 3 5匕を回転させて 1次燃焼室 2 0の底部 2 3にある灰を灰 出口 2 3 13から外部に排出する。 その際、 断続的に底部空気噴射ノズル 3 4 から空気が強く噴射させ、 底部 2 3に堆積する灰が円滑に外部に排出させる 〇 2020/175639 19 卩(:171? 2020 /008123
[0088] 灰出口 2 3匕から排出された灰には、 ケース 3 5 3の下方部分において散 水ノズル 3 9から水が噴射されるため、 ケース 3 5 3内の灰の温度が低下す ると共に水によって灰が集結し、 周囲に飛散することなく下方に落下する。 灰出口 2 3匕の下方には、 灰受け器 4 0が配置されており、 灰出口 2 3匕か ら排出される灰を収容し、 必要に応じてフォークリフト等で灰の回収場所へ 運搬する。
[0089] このように、 本発明の粉体燃料燃焼装置 1 を含む発電システム 2は、 固定 された底部空気噴射ノズル 3 4及び底部空気供給口 3 1からの 1次空気の供 給によって、 粉体燃料 の完全燃焼を行っている。 従って、 特許文献 1のよ うに、 未燃性分の分析を行う必要がなく、 1次空気の供給に際して角度を変 化させる必要もない。
[0090] また、 本発明の粉体燃料燃焼装置 1では、 空気供給灰出装置 3 2の底部空 気噴射ノズル 3 4によって、 1次燃焼室 2 0の底部 2 3の粉体燃料 に断続 的に空気を噴射しているため、 粉体燃料 が炉底に堆積することなく、 確実 に燃焼 ·灰化され、 1次燃焼室 2 0の外部に排出される。 従って、 本発明の 粉体燃料燃焼装置 1は、 粉体燃料 を確実に燃焼させ、 発電装置 5等による エネルギー回収を効率よく行うことができる。 符号の説明
[0091 ] 1 粉体燃料燃焼装置、 2 発電システム、 3 ボイラ、 4 集塵装置、
5 発電装置、 6 煙突、 7 制御装置、 1 0 燃料供給装置、 1 1 燃料 用ホッパ、 1 1 3 開口部、 1 2 混合管、 1 3 燃料送出装置、 1 3 3 ケース、 1 3匕 口ータリーバルブ、 1 4 燃料用ブロワ、 1 5 バーナロ 、 1 6 ホッパ用噴射ノズル、 1 6 3 噴射口、 1 7 燃料用電磁弁、 1 8 ホッパ用空気供給装置、 2 0 1次燃焼室、 2 1 天井部、 2 2 胴部、
2 3 底部、 2 3 8 傾斜部、 2 3 13 灰出口、 2 4 1次排気口、 2 5 第 1温度センサ、 2 6 1次空気供給口、 2 7 1次空気用ブロワ、 2 8 水蒸気導入口、 2 9 ベントガス導入口、 3 0 助燃パーナ、 3 1 底部空 気供給口、 3 2 空気供給灰出装置、 3 3 着火パーナ、 3 4 底部空気噴 〇 2020/175639 20 卩(:171? 2020 /008123
射ノズル、 3 4 3 噴射口、 3 5 灰送出装置、 3 5 8〜ケース、 3 5 13 口ータリーバルブ、 3 6 噴射空気供給装置、 3 7 底部用電磁弁、 3 8 底部空気供給管、 3 9 散水ノズル、 4 0 灰受け器、 5 0 2次燃焼室、 5 1 2次パーナ、 5 2 2次空気供給口、 5 3 2次空気用ブロワ、 5 4 2次排気口、 5 5 第 2温度センサ、 6 0 サイクロン集塵機、 6 1 サ イクロン用回収装置、 6 2 口ータリーバルブ、 6 3 スクリユーコンべヤ 、 7 0 エアコンプレッサ、 7 1 ベントオイルタンク、 7 2 ウォーター タンク。

Claims

\¥02020/175639 21 卩(:17 2020/008123 請求の範囲
[請求項 1 ] 粉体燃料を燃焼させる燃焼装置であって、
前記粉体燃料を内部で燃焼させる 1次燃焼室と、 前記 1次燃焼室か ら排出された燃焼ガスを燃焼させる 2次燃焼室を備え、
前記 1次燃焼室は、 前記粉体燃料を内部に供給する燃料供給装置と 、 内部に空気を供給する 1次空気供給口と、 内部の前記粉体燃料に着 火する着火パーナが設けられ、
前記 1次燃焼室の底部には、 下方に向けて狭まるように傾斜する傾 斜部と、 内部に空気を供給する底部空気供給口と、 前記傾斜部の下方 位置に設けられた灰出口と、 筒状で上下方向に向けて配置され上端及 び下端に開口を有し前記下端が前記灰出口に向けて配置され内部に空 気が供給される底部空気噴射ノズルが設けられ、
前記 2次燃焼室には、 内部を加熱して前記 1次燃焼室から排出され た燃焼ガスに着火する 2次パーナと、 内部に燃焼用の空気を供給する 2次空気供給口が設けられ、
前記 1次空気供給口及び前記底部空気供給口に空気を供給する 1次 空気供給装置と、 前記底部空気噴射ノズルに空気を供給する噴射空気 供給装置と、 前記 2次空気供給口に空気を供給する 2次空気供給装置 と、
前記燃料供給装置、 前記着火パーナ、 前記 2次パーナ、 前記 1次空 気供給装置、 前記噴射空気供給装置、 及び前記 2次空気供給装置の作 動を制御する制御装置を備え、
前記制御装置は、
前記燃料供給装置により前記 1次燃焼室内に前記粉体燃料を所定量 堆積させ、
堆積された前記粉体燃料に前記着火バーナによって着火を行うと共 に、 前記 2次パーナを作動させて前記 2次燃焼室内を加熱し、 前記堆積された前記粉体燃料のガス化燃焼を行う際に、 前記 1次空 〇 2020/175639 22 卩(:171? 2020 /008123
気供給装置及び前記噴射空気供給装置を作動させて前記堆積された前 記粉体燃料の完全燃焼に必要な空気量よりも少ない空気量を前記 1次 空気供給口、 前記底部空気供給口、 及び前記底部空気噴射ノズルから 供給して前記 1次燃焼室内で可燃性ガスを発生させ、 前記堆積された前記粉体燃料の直接燃焼を行う際に、 前記 1次空気 供給装置及び前記噴射空気供給装置を作動させて前記 1次燃焼室内に 前記粉体燃料の直接燃焼に必要な空気量を前記 1次空気供給口、 前記 底部空気供給口、 及び前記底部空気噴射ノズルから供給すると共に、 前記燃料供給装置を作動させて前記 1次燃焼室内に前記粉体燃料を供 給して燃焼させ前記燃料供給装置をパーナとして作動させ、
前記堆積された前記粉体燃料のガス化燃焼を行う際、 及び前記堆積 された前記粉体燃料の直接燃焼を行う際に、 前記 2次空気供給装置を 作動させ、 前記 2次空気供給口から前記可燃性ガスの完全燃焼に必要 な量の 2次燃焼用空気を供給して前記可燃性ガスを燃焼させることを 特徴とする粉体燃料燃焼装置。
[請求項 2] 請求項 1 に記載の粉体燃料燃焼装置であって、
前記 1次燃焼室内の前記粉体燃料の燠火燃焼及び灰化を行う際に、 前記燃料供給装置による燃料の供給を停止させると共に、 前記底部空 気噴射ノズルからの空気の供給を停止させることを特徴とする粉体燃 料燃焼装置。
[請求項 3] 請求項 1又は 2に記載の粉体燃料燃焼装置であって、
前記制御装置は、 前記堆積された前記粉体燃料のガス化燃焼を行う 際、 及び前記堆積された前記粉体燃料の直接燃焼を行う際に、 前記底 部空気噴射ノズルに定期的又は不定期で前記粉体燃料を攪拌可能な噴 射量で空気を噴射するよう前記噴射空気供給装置を制御することを特 徴とする粉体燃料燃焼装置。
[請求項 4] 請求項 1〜 3のいずれか一項に記載の粉体燃料燃焼装置であって、 前記燃料供給装置は、 前記粉体燃料が投入される燃料用ホッパと、 〇 2020/175639 23 卩(:171? 2020 /008123
前記燃料用ホッパ内に上下方向に向けて配置され少なくとも下方に空 気を噴射するホッパ用噴射ノズルと、 前記ホッパ用噴射ノズルに空気 を供給するホッパ用空気供給装置と、 前記ホッパ用噴射ノズルの下方 に設けられ前記粉体燃料を下方に送出する燃料送出装置と、 前記粉体 燃料と空気とが混合される混合管と、 前記混合管に空気を供給する燃 料用ブロワとを有し、
前記制御装置は、 前記 1次燃焼室内に前記粉体燃料を供給する際に 、 前記燃料用ブロワを作動させると共に、 前記燃料送出装置を作動さ せ、 前記混合管の内部で前記粉体燃料と前記燃料用ブロワから供給さ れる空気を混合させて前記混合管から前記 1次燃焼室に前記粉体燃料 を供給し、 所定のタイミングで前記ホッパ用空気供給装置を作動させ て前記ホッパ用噴射ノズルから空気を噴射することを特徴とする粉体 燃料燃焼装置。
[請求項 5] 粉体燃料燃焼装置によって粉体燃料を燃焼させる燃焼方法であって 燃料投入行程、 着火行程、 ガス化燃焼行程、 直接燃焼行程、 及び燠 火 ·灰化行程より構成され、
前記粉体燃料燃焼装置は、
前記粉体燃料を内部で燃焼させる 1次燃焼室と、 前記 1次燃焼室か ら排出されたガスを燃焼させる 2次燃焼室を備え、 前記 1次燃焼室は、 前記粉体燃料を内部に供給する燃料供給装置と 、 内部に空気を供給する 1次空気供給口と、 内部の前記粉体燃料に着 火する着火パーナが設けられ、
前記 1次燃焼室の底部には、 下方に向けて狭まるように傾斜する傾 斜部と、 内部に空気を供給する底部空気供給口と、 前記傾斜部の下方 位置に設けられた灰出口と、 筒状で上下方向に向けて配置され上端及 び下端に開口を有し前記下端が前記灰出口に向けて配置され内部に空 気が供給される底部空気噴射ノズルが設けられ、 24 卩(:171? 2020 /008123
前記 2次燃焼室には、 内部を加熱する 2次パーナと、 内部に燃焼用 の空気を供給する 2次空気供給口が設けられ、
前記 1次空気供給口及び前記底部空気供給口に空気を供給する 1次 空気供給装置と、 前記底部空気噴射ノズルに空気を供給する噴射空気 供給装置と、 前記 2次空気供給口に空気を供給する 2次空気供給装置 と、
前記燃料供給装置、 前記着火パーナ、 前記 2次パーナ、 前記 1次空 気供給装置、 前記噴射空気供給装置、 及び前記 2次空気供給装置の作 動を制御する制御装置を備え、
前記制御装置により、
前記燃料投入行程では、 前記燃料供給装置により前記 1次燃焼室内 に前記粉体燃料を所定量堆積させ、
前記着火行程では、 前記 2次パーナによって前記 2次燃焼室内を加 熱し、 前記 2次燃焼室内が所定温度に達した後、 前記堆積された前記 粉体燃料に前記着火バーナによって着火し、
前記ガス化燃焼行程では、 前記堆積された前記粉体燃料の完全燃焼 に必要な空気量よりも少ない空気量を前記 1次空気供給口、 前記底部 空気供給口、 及び前記底部空気噴射ノズルから供給して前記 1次燃焼 室内で可燃性ガスを発生させ、 前記可燃性ガスを前記 2次燃焼室内に 導入し、 前記 2次空気供給口から 2次燃焼用空気を供給して前記可燃 性ガスを完全燃焼させ、
前記直接燃焼行程では、 前記 1次空気供給装置及び前記噴射空気供 給装置を作動させて前記 1次燃焼室内に前記粉体燃料の直接燃焼に必 要な空気量を前記 1次空気供給口、 前記底部空気供給口、 及び前記底 部空気噴射ノズルから供給すると共に、 前記燃料供給装置を作動させ て前記 1次燃焼室内に前記粉体燃料を供給して燃焼させ前記燃料供給 装置をパーナとして作動させ、 前記 1次燃焼室から排出される燃焼ガ スを前記 2次燃焼室内に導入し、 前記 2次空気供給口から 2次燃焼用 〇 2020/175639 25 卩(:171? 2020 /008123
空気を供給して前記燃焼ガスを完全燃焼させ、
前記燠火 ·灰化行程では、 前記燃料供給装置による燃料の供給を停 止させ、 前記 1次燃焼室内に残存する前記粉体燃料を燠火燃焼させて 灰化させることを特徴とする粉体燃料燃焼方法。
[請求項 6] 請求項 5に記載の粉体燃料燃焼方法であって、
前記燠火 ·灰化行程において、 前記底部空気噴射ノズルからの空気 の供給を停止させることを特徴とする粉体燃料燃焼方法。
[請求項 7] 請求項 5又は 6に記載の粉体燃料燃焼方法であって、
前記制御装置により、 前記ガス化燃焼行程、 及び前記直接燃焼行程 において、 前記底部空気噴射ノズルに定期的又は不定期で前記粉体燃 料を攪拌可能な噴射量で空気を噴射するよう前記噴射空気供給装置を 制御することを特徴とする粉体燃料燃焼方法。
[請求項 8] 請求項 5〜 7のいずれか _項に記載の粉体燃料燃焼方法であって、 前記燃料供給装置は、 前記粉体燃料が投入される燃料用ホッパと、 前記燃料用ホッパ内に上下方向に向けて配置され少なくとも下方に空 気を噴射するホッパ用噴射ノズルと、 前記ホッパ用噴射ノズルに空気 を供給するホッパ用空気供給装置と、 前記ホッパ用噴射ノズルの下方 に設けられ前記粉体燃料を下方に送出する燃料送出装置と、 前記粉体 燃料と空気とが混合される混合管と、 前記混合管に空気を供給する燃 料用ブロワとを有し、
前記燃料投入行程及び前記直接燃焼行程において、 前記制御装置に より、 前記燃料用ブロワを作動させると共に、 前記燃料送出装置を作 動させ、 前記混合管の内部で前記粉体燃料と前記燃料用ブロワから供 給される空気を混合させて前記混合管から前記 1次燃焼室に前記粉体 燃料を供給し、 所定のタイミングで前記ホッパ用空気供給装置を作動 させて前記ホッパ用噴射ノズルから空気を噴射することを特徴とする 粉体燃料燃焼方法。
PCT/JP2020/008123 2019-02-28 2020-02-27 粉体燃料燃焼装置及び燃焼方法 WO2020175639A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/310,835 US20220120441A1 (en) 2019-02-28 2020-02-27 Powder fuel combustion apparatus and combustion method
BR112021017044A BR112021017044A2 (pt) 2019-02-28 2020-02-27 Aparelho de combustão para comburir um combustível em pó e método de combustão para comburir um combustível em pó por um aparelho de combustão de combustível em pó
EP20762202.8A EP3933264B1 (en) 2019-02-28 2020-02-27 Powder fuel combustion apparatus and combustion method
KR1020217030946A KR102540051B1 (ko) 2019-02-28 2020-02-27 분체 연료 연소 장치 및 연소 방법
CN202080015239.XA CN113544433B (zh) 2019-02-28 2020-02-27 粉体燃料燃烧装置及燃烧方法
CA3130559A CA3130559C (en) 2019-02-28 2020-02-27 Powder fuel combustion apparatus and combustion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036448 2019-02-28
JP2019036448A JP6989876B2 (ja) 2019-02-28 2019-02-28 粉体燃料燃焼装置及び燃焼方法

Publications (1)

Publication Number Publication Date
WO2020175639A1 true WO2020175639A1 (ja) 2020-09-03

Family

ID=72239626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008123 WO2020175639A1 (ja) 2019-02-28 2020-02-27 粉体燃料燃焼装置及び燃焼方法

Country Status (9)

Country Link
US (1) US20220120441A1 (ja)
EP (1) EP3933264B1 (ja)
JP (1) JP6989876B2 (ja)
KR (1) KR102540051B1 (ja)
CN (1) CN113544433B (ja)
BR (1) BR112021017044A2 (ja)
CA (1) CA3130559C (ja)
TW (1) TWI740396B (ja)
WO (1) WO2020175639A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS35592B1 (ja) * 1958-01-10 1960-01-30
JPS5380836A (en) * 1976-12-27 1978-07-17 Hokkaido Sugar Co Method of dustless combustion and combustion furnace therefor
JPS56916A (en) * 1979-06-15 1981-01-08 Hokkaido Togyo Kk Method and apparatus for generating hot blast for incineration of chaff
JPS61213406A (ja) * 1985-03-18 1986-09-22 Takuma Co Ltd 蒸気ボイラ
JPH06158062A (ja) * 1992-11-19 1994-06-07 Marukoshi Eng:Kk 高分子系廃棄物用乾留ガス化炉
JP2004347270A (ja) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd 燃焼装置及び方法
JP2005291539A (ja) * 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の前処理及び混焼方法と装置
JP2012017872A (ja) * 2010-07-06 2012-01-26 Sakae Murata 焼却装置
JP2012197952A (ja) * 2011-03-07 2012-10-18 Miike Iron Works Co Ltd 炉床構造及び燃焼炉
JP2017145976A (ja) 2016-02-15 2017-08-24 三菱日立パワーシステムズ株式会社 ボイラ
WO2018074189A1 (ja) 2016-10-17 2018-04-26 ジェイアンドジー テクノロジーズ,エルエルシー 炭化燃料製造装置及び炭化燃料製造方法
JP2018179336A (ja) * 2017-04-06 2018-11-15 株式会社Ihi環境エンジニアリング 燃焼装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092094A (en) * 1977-02-25 1978-05-30 Lingl Corporation Method and apparatus for the controlled distribution of powdered solid fuel to burning units
DE3130813A1 (de) * 1981-08-04 1983-03-24 Imai, Takeshi, São Paulo Vorrichtung zum vergasen von kohle, insbesondere vonholzkohle
JP3017661B2 (ja) * 1994-07-13 2000-03-13 株式会社キンセイ産業 廃棄物の乾留ガス化焼却処理装置
JP2957941B2 (ja) * 1996-03-01 1999-10-06 有限会社伊勢工業所 焼却装置
US6712496B2 (en) * 2001-07-26 2004-03-30 The Procter & Gamble Company Auger fed mixer apparatus and method of using
US20080264310A1 (en) * 2005-11-22 2008-10-30 Clean Combustion Technologies, Llc Combustion Method and System
JP4830140B2 (ja) * 2006-03-31 2011-12-07 Dowaエコシステム株式会社 燃焼制御方法及び焼却装置
JP2008139010A (ja) * 2006-11-09 2008-06-19 Kokubun Nojo Kk 燃焼装置
JP2008286451A (ja) * 2007-05-16 2008-11-27 Kiyomi Yoshimura バイオマス燃料の燃焼装置
JP5380836B2 (ja) 2007-12-25 2014-01-08 セイコーエプソン株式会社 記録媒体加熱装置、記録装置および記録媒体加熱方法
CN201262392Y (zh) * 2008-07-29 2009-06-24 新疆电力科学研究院 一种煤粉锅炉防结焦的二次风燃烧器
US8833276B2 (en) * 2009-02-06 2014-09-16 William Hunkyun Bang Burner system for waste plastic fuel
JP5437734B2 (ja) * 2009-08-07 2014-03-12 株式会社荏原製作所 燃焼式排ガス処理装置
CN201539876U (zh) * 2009-08-23 2010-08-04 宁波市镇海捷登应用技术研究所 一种炉子的助燃装置
JP3168444U (ja) * 2011-04-01 2011-06-09 大沼 上 薪ストーブ
KR101220200B1 (ko) * 2011-05-02 2013-01-09 류승우 고체연료 연소장치
KR101399977B1 (ko) * 2012-08-20 2014-05-28 김상권 클링커 제거장치를 구비한 연소장치
CN103267280B (zh) * 2013-05-30 2017-03-15 重庆富燃科技股份有限公司 采用富氧微油燃烧方式降低煤粉锅炉氮氧化物的方法
RU2534652C1 (ru) * 2013-08-13 2014-12-10 Закрытое акционерное общество "ЗиО-КОТЭС" Способ сжигания кавитационного водоуглеродного топлива из нефтяного кокса в топке кипящего слоя инертного материала и схема для его осуществления
CN203462010U (zh) * 2013-09-11 2014-03-05 湖南人文科技学院 冷轧废矿物油气化炉
JP6198572B2 (ja) * 2013-10-29 2017-09-20 日工株式会社 固形燃料を主燃料とする熱風発生炉
CN203668319U (zh) * 2013-12-04 2014-06-25 汪稚昊 一种生物质气化装置
JP6158062B2 (ja) 2013-12-11 2017-07-05 高圧ガス工業株式会社 発電デバイス
CN204388043U (zh) * 2014-12-10 2015-06-10 石家庄新华能源环保科技股份有限公司 一种焦粉燃烧装置
JP6526499B2 (ja) * 2015-06-29 2019-06-05 株式会社神鋼環境ソリューション バーナ
CN107543146B (zh) * 2016-06-24 2020-06-23 荏原环境工程株式会社 燃烧装置以及锅炉
JP2018087656A (ja) * 2016-11-29 2018-06-07 有限会社長岡鉄工所 焼成炭化装置
CN207196473U (zh) * 2017-09-22 2018-04-06 郑州三众耐磨技术有限公司 具有一定防磨作用的cfb锅炉

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS35592B1 (ja) * 1958-01-10 1960-01-30
JPS5380836A (en) * 1976-12-27 1978-07-17 Hokkaido Sugar Co Method of dustless combustion and combustion furnace therefor
JPS56916A (en) * 1979-06-15 1981-01-08 Hokkaido Togyo Kk Method and apparatus for generating hot blast for incineration of chaff
JPS61213406A (ja) * 1985-03-18 1986-09-22 Takuma Co Ltd 蒸気ボイラ
JPH06158062A (ja) * 1992-11-19 1994-06-07 Marukoshi Eng:Kk 高分子系廃棄物用乾留ガス化炉
JP2004347270A (ja) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd 燃焼装置及び方法
JP2005291539A (ja) * 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の前処理及び混焼方法と装置
JP2012017872A (ja) * 2010-07-06 2012-01-26 Sakae Murata 焼却装置
JP2012197952A (ja) * 2011-03-07 2012-10-18 Miike Iron Works Co Ltd 炉床構造及び燃焼炉
JP2017145976A (ja) 2016-02-15 2017-08-24 三菱日立パワーシステムズ株式会社 ボイラ
WO2018074189A1 (ja) 2016-10-17 2018-04-26 ジェイアンドジー テクノロジーズ,エルエルシー 炭化燃料製造装置及び炭化燃料製造方法
JP2018179336A (ja) * 2017-04-06 2018-11-15 株式会社Ihi環境エンジニアリング 燃焼装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933264A4

Also Published As

Publication number Publication date
TWI740396B (zh) 2021-09-21
BR112021017044A2 (pt) 2021-11-16
US20220120441A1 (en) 2022-04-21
EP3933264B1 (en) 2024-10-02
CA3130559A1 (en) 2020-09-03
KR102540051B1 (ko) 2023-06-08
JP2020139702A (ja) 2020-09-03
EP3933264A4 (en) 2022-11-30
CN113544433A (zh) 2021-10-22
TW202037847A (zh) 2020-10-16
CA3130559C (en) 2024-01-16
EP3933264A1 (en) 2022-01-05
JP6989876B2 (ja) 2022-01-12
KR20210131409A (ko) 2021-11-02
CN113544433B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
KR101547583B1 (ko) 분말연료 전환 시스템 및 방법
US3482533A (en) Incinerators
CA2443854A1 (en) Waste treatment apparatus and method
JP4548785B2 (ja) 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
KR101957785B1 (ko) 선회식 연소기
CN206919025U (zh) 一种组合式焚烧装置
CS198243B2 (en) Method of and apparatus for combusting wet waste fuel,especially of vegetal origin
WO2020175639A1 (ja) 粉体燃料燃焼装置及び燃焼方法
CN213089853U (zh) 用于焚烧装置的燃烧用送风装置
CN213300094U (zh) 一种焚烧物用的焚烧系统
CN213089822U (zh) 用于焚烧装置的燃烧用燃料供应装置
JP4387213B2 (ja) 微粉木炭燃焼装置及び微粉木炭燃焼方法
JP4682027B2 (ja) 燃料ガス発生装置
KR100514663B1 (ko) 복합폐기물 소각 및 건조장치
KR20110119924A (ko) 폐타이어 소각장치 및 이를 이용한 온수장치
KR101335621B1 (ko) 분체연료연소장치
RU2775844C1 (ru) Установка для огневой утилизации отходов
JPH09243027A (ja) 燃焼バーナ及び燃焼方法
JPH08193194A (ja) コークス炉装入車のガス着火装置
RU45177U1 (ru) Мусоросжигательная установка
CN115264516A (zh) 一种火力热电改进型燃烧系统
JP2023042597A (ja) バイオマス燃料用燃焼炉及びボイラシステム並びにバイオマス燃料の燃焼方法
JP2023181690A (ja) アスファルトプラントのドライヤ
JP2002106819A (ja) 循環流動層燃焼装置及びその燃焼方法
CN111237798A (zh) 用于焚烧装置的燃烧用送风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3130559

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021017044

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217030946

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020762202

Country of ref document: EP

Effective date: 20210928

ENP Entry into the national phase

Ref document number: 112021017044

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210827