[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020174858A1 - Carbon dioxide production method, and device for producing carbon dioxide - Google Patents

Carbon dioxide production method, and device for producing carbon dioxide Download PDF

Info

Publication number
WO2020174858A1
WO2020174858A1 PCT/JP2019/050646 JP2019050646W WO2020174858A1 WO 2020174858 A1 WO2020174858 A1 WO 2020174858A1 JP 2019050646 W JP2019050646 W JP 2019050646W WO 2020174858 A1 WO2020174858 A1 WO 2020174858A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
adsorption tower
adsorbent
gas
tower
Prior art date
Application number
PCT/JP2019/050646
Other languages
French (fr)
Japanese (ja)
Inventor
大介 萩生
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Publication of WO2020174858A1 publication Critical patent/WO2020174858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present disclosure relates to a carbon dioxide production apparatus and a carbon dioxide production method.
  • ⁇ A technology for recovering carbon dioxide from the exhaust gas emitted from combustion equipment such as boilers.
  • a chemical absorption method using an amine aqueous solution or the like is used.
  • an amine aqueous solution and a mixed gas are brought into contact with each other in an absorption tower to absorb carbon dioxide in the amine aqueous solution.
  • the aqueous amine solution that has absorbed this carbon dioxide is heated in a regeneration tower to release carbon dioxide, and carbon dioxide and the aqueous amine solution are separated. In this way, the carbon dioxide-containing gas containing carbon dioxide at a high concentration is recovered while the amine aqueous solution is circulated and used.
  • Patent Document 1 proposes that a reduction treatment device containing a reduction catalyst and an adsorption treatment device containing activated carbon are provided on the downstream side of a regeneration tower to reduce impurities in a carbon dioxide-containing gas. ..
  • the adsorbent When reducing impurities using adsorbents such as reducing catalysts and activated carbon, it is necessary to replace them regularly.
  • the adsorbent has a property of adsorbing water and the like, and therefore, in order to exhibit the original performance, it is necessary to perform the work of reducing the water content by filling the adsorption tower and then drying. During this operation, the adsorption tower cannot be used to reduce impurities and high purity carbon dioxide cannot be produced. Therefore, it is required to shorten the working time required for drying.
  • the present disclosure provides a carbon dioxide production method capable of reducing the production loss of high-purity carbon dioxide.
  • the present disclosure provides a carbon dioxide production device capable of reducing production loss of high-purity carbon dioxide.
  • a method for producing carbon dioxide according to one aspect of the present disclosure is a method for producing carbon dioxide using a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a raw material gas containing carbon dioxide, wherein at least one adsorption While continuing the production of carbon dioxide using the tower, the adsorbent filled in an adsorption tower different from the adsorption tower is dried using a part of the purified gas obtained by reducing impurities from the raw material gas. It has a drying step.
  • purified gas is used to dry the adsorbent packed in the adsorption tower. Since carbon dioxide production can be performed in parallel using at least one adsorption tower even during the drying step, it is not necessary to stop the carbon dioxide production. Therefore, the production loss of high-purity carbon dioxide can be reduced.
  • the purified gas may be heated and then supplied to an adsorption tower filled with an adsorbent.
  • the adsorbent By supplying the heated purified gas to the adsorption tower, the adsorbent can be dried quickly. Therefore, the drying process can be shortened.
  • the plurality of adsorption towers in the above manufacturing method may have a first adsorption tower and a second adsorption tower connected so that the raw material gas sequentially flows.
  • the above-mentioned manufacturing method includes a step of taking out the used adsorbent of the first adsorption tower in which the introduction of the raw material gas is stopped while continuing the production of carbon dioxide in the second adsorption tower, and an unused adsorbent A drying step of supplying a part of the carbon dioxide derived from the second adsorption tower as a part of the purified gas to the packed first adsorption tower to dry the unused adsorbent, and after drying the unused adsorbent And an operation starting step of obtaining carbon dioxide from the first adsorption tower.
  • the dew point of the purified gas under atmospheric pressure may be maintained at -20°C or lower.
  • the condensation and solidification of water and the corrosion of each device due to water and carbon dioxide can be suppressed, and the production of carbon dioxide can be further facilitated.
  • the above manufacturing method may include a dehumidifying step of reducing the water content of the raw material gas.
  • the purified gas may be passed from the lower part of the adsorption tower toward the upper part.
  • the specific gravity of steam is smaller than that of purified gas. Therefore, the stagnation of water vapor is reduced by circulating in such a direction, and the vaporized water can be smoothly discharged from the adsorption tower.
  • a carbon dioxide production apparatus is a carbon dioxide production apparatus including a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a raw material gas containing carbon dioxide, and at least one adsorption While continuing the production of carbon dioxide using the tower, a part of the purified gas obtained by reducing impurities from the raw material gas is supplied to an adsorption tower different from the adsorption tower, and the adsorption gas is filled in another adsorption tower. And a supply unit for drying the adsorbent.
  • the adsorbent is dried by supplying the purified gas obtained by reducing impurities from the raw material gas to the adsorption tower filled with the adsorbent. Since carbon dioxide production can be performed in parallel while the adsorbent is being dried, it is not necessary to stop carbon dioxide production. Therefore, the production loss of high-purity carbon dioxide can be reduced.
  • the above-mentioned supply part may have a heating part for heating the purified gas supplied to another adsorption tower.
  • a heating part for heating the purified gas supplied to another adsorption tower.
  • the above manufacturing apparatus may be provided with a dehumidifying unit that reduces the moisture content of the raw material gas. As a result, the condensation and solidification of water and the corrosion of each device due to water and carbon dioxide can be suppressed, and the production of carbon dioxide can be further facilitated.
  • the above-mentioned supply unit may be connected to the lower side of the adsorption tower than the discharge unit for discharging the purified gas used for drying the adsorbent from the adsorption tower.
  • the specific gravity of steam is smaller than that of purified gas. Therefore, by connecting the supply unit and the discharge unit in such a positional relationship, the stagnation of water vapor is reduced, and the vaporized water can be smoothly discharged from the adsorption tower.
  • FIG. 1 is a diagram for explaining some steps in an example of a carbon dioxide production method.
  • FIG. 2 is a diagram for explaining some steps in an example of the carbon dioxide production method.
  • FIG. 3 is a diagram for explaining some steps in an example of the carbon dioxide production method.
  • FIG. 4 is a diagram for explaining some steps in an example of the carbon dioxide production method.
  • FIG. 5 is a figure for demonstrating some process in an example of the manufacturing method of carbon dioxide.
  • FIG. 6 is a diagram for explaining some steps in an example of the carbon dioxide production method.
  • FIG. 7 is a schematic view showing another example of the carbon dioxide producing apparatus.
  • a method for producing carbon dioxide is a method for producing carbon dioxide that uses a plurality of adsorption towers containing an adsorbent that adsorbs impurities in a source gas containing carbon dioxide, and reduces impurities from the source gas. Then, there is a refining step for obtaining a purified gas in which carbon dioxide has a higher purity than the raw material gas. Then, at a predetermined timing, in parallel with this purification step, there is a drying step of filling at least one adsorption tower with an unused adsorbent and then drying the adsorbent using a part of the purified gas.
  • the number of adsorption towers may be two, or three or more.
  • the purification step can be continuously performed during the drying step by using an adsorption tower different from the adsorption tower performing the drying step. Therefore, carbon dioxide satisfying the product specification can be continuously produced by using the other part of the purified gas even during the drying process.
  • the “unused adsorbent” in the present disclosure refers to an adsorbent that has not been used in the purification process.
  • the raw material gas containing carbon dioxide is not particularly limited, and examples thereof include combustion gas such as boiler.
  • the raw material gas may contain impurities in addition to carbon dioxide. Examples of impurities include water, oxygen, nitrogen, sulfur oxides, nitrogen oxides, carbon monoxide, hydrogen sulfide and hydrocarbons.
  • the concentration of carbon dioxide in the raw material gas may be, for example, 95% by volume or more, and may be 98% by volume or more.
  • adsorbents include commercially available activated carbon and zeolite. In terms of cost, the adsorbent may include activated carbon.
  • the purification step and the drying step are performed in parallel. In the drying step, the adsorbent is dried using the purified gas obtained in the refining step.
  • a purified gas in which impurities are reduced is used in an adsorption tower different from the adsorption tower packed with the adsorbent to be dried.
  • the purified gas is a gas in which the concentration of impurities is lower than that of the raw material gas, and may be carbon dioxide produced in this embodiment.
  • Purified gas for drying the adsorbent may be supplied from the lower part of the adsorption tower containing the adsorbent.
  • the dry gas containing water desorbed from the adsorbent may be discharged from the upper part of the adsorption tower.
  • the purified gas flows from the lower part to the upper part of the adsorption tower. With such a flow direction, vaporized water is smoothly discharged to the outside of the adsorption tower.
  • the temperature of the purified gas used for drying may be 110°C or higher, or 120°C or higher, from the viewpoint of quickly drying the adsorbent.
  • the temperature of the purified gas used for drying may be 200° C. or lower, 160° C. or lower, or 140° C. or lower from the viewpoint of preventing ignition of activated carbon and energy efficiency.
  • the pressure of the purified gas used for drying may be, for example, atmospheric pressure to 1 MPa.
  • the space velocity of the purified gas in the drying step may be 10 to 50 h ⁇ 1 .
  • the time of the drying step may be, for example, 24-48 hours.
  • the judgment of the end of the drying step can be made, for example, on the basis of the temperature or the dew point of the dry gas derived from the adsorption tower that has dried the adsorbent.
  • the drying step may be terminated when the temperature of the drying gas reaches, for example, 100° C. or higher. In a modification, the drying process may be terminated when the temperature of the drying gas reaches 110°C or higher or 120°C or higher.
  • the adsorption tower may be subsequently subjected to a purification step of reducing impurities contained in the raw material gas to obtain a purified gas.
  • the purification step may be performed using a plurality of adsorption towers.
  • the dew point of the purified gas under atmospheric pressure may be maintained at, for example, ⁇ 20° C. or lower.
  • the dew point of the purified gas under atmospheric pressure may be maintained at -30°C or lower, or -40°C or lower.
  • the purified gas obtained by the purification process can be the carbon dioxide produced in this embodiment.
  • the purity of carbon dioxide produced in the present embodiment may be, for example, 99.5% by volume or more, and may be 99.9% by volume or more. However, the purity is not limited, and it is sufficient if the purity of carbon dioxide is higher than that of the raw material gas. Therefore, it may contain impurities.
  • the “volume %” in the present disclosure is the volume ratio in the standard state (0° C., 1 atm).
  • Liquefaction process of liquefying carbon dioxide obtained in the purification process may be performed. That is, in the production method of this embodiment, gaseous carbon dioxide or liquid carbon dioxide may be produced. By sufficiently lowering the dew point of the purified gas, it is possible to sufficiently suppress the solidification of water even if the liquefaction process is performed.
  • the unused adsorbent contained in the adsorption tower is dried using an inert gas other than carbon dioxide, such as nitrogen gas or argon gas
  • an inert gas other than carbon dioxide such as nitrogen gas or argon gas
  • the purified gas is used for drying the unused adsorbent in the drying step. Therefore, the consumption of the inert gas can be reduced.
  • An apparatus for producing carbon dioxide includes a plurality of adsorption towers containing an adsorbent that adsorbs impurities in a raw material gas containing carbon dioxide, and continues production of carbon dioxide using at least one adsorption tower.
  • the above description of the manufacturing method can be applied to the carbon dioxide manufacturing apparatus of this embodiment.
  • the supply unit may supply a part of carbon dioxide derived from the adsorption tower to the other adsorption tower as a purified gas.
  • the supply unit includes, for example, a pipe for circulating the purified gas and a heating unit for heating the purified gas. By providing the heating unit, the unused adsorbent can be dried more quickly.
  • the heating unit may be, for example, a heat exchanger using steam or hot oil as a heat source.
  • the discharge unit includes, for example, a pipe through which a dry gas obtained by drying the adsorbent is passed.
  • the supply part may be connected to the lower part of the adsorption tower, and the discharge part may be connected to the upper part of the adsorption tower. As a result, the adsorbent is dried by the purified gas (dry gas) rising in the adsorption tower, and the water content of the adsorbent can be smoothly reduced.
  • the carbon dioxide production device may be equipped with a dehumidifying unit upstream of the plurality of adsorption towers.
  • the dehumidifying section has a function of reducing the water content contained in the raw material gas. By providing the dehumidifying portion, it is possible to suppress condensation and solidification of water and corrosion of each device due to water and carbon dioxide, and to further facilitate the production of carbon dioxide.
  • the carbon dioxide production device may be equipped with a post-treatment unit for liquefying or solidifying carbon dioxide on the downstream side of the adsorption tower.
  • the post-treatment unit has a function of adjusting the temperature and pressure of carbon dioxide, and includes, for example, a compressor and a cooler.
  • FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6 are views for explaining some steps of the carbon dioxide production method.
  • a carbon dioxide producing apparatus having a first adsorption tower 11 and a second adsorption tower 12 which are connected as the plurality of adsorption towers 10 so that the raw material gas sequentially flows is used.
  • the raw material gas sequentially flows through the first adsorption tower 11 and the second adsorption tower 12, and purified gas is obtained (dotted line flow in FIG. 1).
  • Adsorbents 21 and 22 are housed in the first adsorption tower 11 and the second adsorption tower 12, respectively. Impurities other than carbon dioxide contained in the raw material gas are adsorbed by the adsorbents 21 and 22.
  • the purified gas is led out from a pipe connected to the bottom portion 12b of the second adsorption tower 12. In this way, the purification process is performed.
  • This purified gas may be carbon dioxide gas as it is, or may be cooled by a cooling unit to be liquid carbon dioxide. Further, it may be dried ice after that.
  • the obtained carbon dioxide may be introduced and stored in, for example, a tank.
  • the introduction of the raw material gas into the first adsorption tower 11 is stopped and the raw material gas is introduced into the second adsorption tower 12.
  • the use contained in the first adsorption tower 11 Remove the used adsorbent (stopping step). After taking out, the unused adsorbent is stored in the first adsorption tower 11.
  • Such exchange of activated carbon may be performed periodically or when the concentration of impurities in the purified gas discharged from the first adsorption tower 11 increases.
  • a part of the purified gas (carbon dioxide) derived from the bottom portion 12b of the second adsorption tower 12 is introduced into the heating unit 30 and heated.
  • the heat source may be steam as shown in the figure, or may be hot oil.
  • the purified gas heated to a predetermined temperature range in the heating unit 30 flows through the pipe 31 and is supplied into the first adsorption tower 11 from the bottom portion 11b of the first adsorption tower 11.
  • the heating unit 30 and the pipe 31 constitute a purified gas supply unit.
  • the purified gas supplied from the supply unit to the first adsorption tower 11 comes into contact with the unused adsorbent while rising in the first adsorption tower 11, and reduces the water content of the unused adsorbent.
  • This purified gas (dry gas) containing water flows through the pipe 41 (exhaust part) connected to the top part 11a of the first adsorption tower 11, and is exhausted into the atmosphere, for example (dotted line flow in FIG. 3).
  • the purified gas derived from the bottom portion 12b of the second adsorption tower 12 can be continuously produced as carbon dioxide (broken line flow in FIG. 3).
  • the production of purified gas is started in the first adsorption tower 11 (operation start process).
  • the end of the drying may be determined by, for example, the temperature or the dew point of the dry gas that is discharged from the top 11a of the first adsorption tower 11.
  • the temperature of the dry gas reaches 100° C. or higher
  • the supply of the heated purified gas from the bottom portion 11b of the first adsorption tower 11 may be stopped.
  • the temperature of the dry gas reaches 110° C. or higher, or 120° C. or higher, the supply of the heated purified gas from the bottom portion 11b of the first adsorption tower 11 may be stopped.
  • the purified gas derived from the bottom portion 12b of the second adsorption tower 12 is introduced from the top portion 11a of the first adsorption tower 11 (FIG. 4).
  • the unused adsorbent 21 contained in the first adsorption tower 11 starts adsorbing impurities.
  • the purified gas obtained from the bottom portion 11b of the first adsorption tower 11 can be obtained as carbon dioxide.
  • FIG. 4 shows the purification process after the operation start process of the first adsorption tower 11.
  • the raw material gas flows through the second adsorption tower 12 and the first adsorption tower 11 in this order to obtain a refined gas (dotted line in FIG. 4).
  • the timing for starting the operation starting step of the first adsorption tower 11 is not particularly limited after the drying step of the first adsorption tower 11, and the first adsorption tower 11 may be suspended for a while after the drying step.
  • the adsorption capacity of the adsorbent 22 of the second adsorption tower 12 on the upstream side gradually decreases.
  • the impurity concentration of the purified gas derived from the second adsorption tower 12 rises, the adsorbent 22 of the second adsorption tower 12 is replaced by the following procedure.
  • the introduction of the raw material gas into the second adsorption tower 12 is stopped, and the raw material gas is introduced into the first adsorption tower 11. While the introduction of the raw material gas into the first adsorption tower 11 and the derivation of the purified gas from the first adsorption tower 11 (production of carbon dioxide) are continued (broken line flow in FIG. 5), they are accommodated in the second adsorption tower 12. Remove the used adsorbent that had been used (stop process). After taking out, the unused adsorbent is stored in the second adsorption tower 12.
  • a part of the purified gas (carbon dioxide) derived from the bottom portion 11 b of the first adsorption tower 11 is introduced into the heating unit 30.
  • the purified gas heated to a predetermined temperature or higher in the heating unit 30 flows through the pipe 32 and is supplied into the second adsorption tower 12 from the bottom portion 12b of the second adsorption tower 12.
  • the heating unit 30 and the pipe 32 constitute a supply unit for the purified gas.
  • the purified gas supplied from the supply unit to the second adsorption tower 12 contacts the unused adsorbent while rising in the second adsorption tower 12, and reduces the moisture content of the unused adsorbent.
  • the purified gas containing water (dry gas) flows through the pipe 42 (exhaust part) connected to the top portion 12a of the second adsorption tower 12 and is exhausted into the atmosphere, for example (dotted line in FIG. 6). Even during this drying step, the purified gas derived from the bottom portion 11b of the first adsorption tower 11 can be continuously produced as carbon dioxide (broken line flow in FIG. 6).
  • the production of purified gas is started in the second adsorption tower 12 (operation start process).
  • the completion of the drying may be determined, for example, by the temperature or the dew point of the dry gas that is discharged from the top portion 12a of the second adsorption tower 12.
  • the supply of the heated purified gas from the bottom portion 12b of the second adsorption tower 12 is stopped.
  • the purified gas derived from the bottom 11 b of the first adsorption tower 11 is introduced from the top 12 a of the second adsorption tower 12.
  • the purified gas obtained from the bottom 12b of the second adsorption tower 12 can be used as carbon dioxide.
  • FIG. 7 is a schematic diagram showing another example of a carbon dioxide production apparatus.
  • the manufacturing apparatus in FIG. 7 is an apparatus for manufacturing carbon dioxide from exhaust gas from a boiler or the like.
  • This manufacturing apparatus includes a desulfurization tower 50, an absorption tower 60, a regeneration tower 80, a compressor 90, a dehumidifying section 95, and an adsorption tower 10.
  • the exhaust gas is introduced into the desulfurization tower 50.
  • the desulfurization tower 50 removes, for example, sulfur oxides contained in exhaust gas. For example, an alkaline aqueous solution is supplied to the desulfurization tower 50.
  • the exhaust gas and the alkaline aqueous solution are in gas-liquid contact with each other, and the sulfur oxide is absorbed in the alkaline aqueous solution.
  • the alkaline aqueous solution include calcium carbonate aqueous solution, sodium hydroxide aqueous solution, magnesium hydroxide aqueous solution, and ammonia water.
  • the exhaust gas that has passed through the desulfurization tower 50 is supplied to the absorption tower 60.
  • carbon dioxide is recovered from the exhaust gas by the chemical absorption method.
  • the absorption tower 60 makes the absorption liquid absorb the carbon dioxide contained in the exhaust gas by bringing the exhaust gas generated in the boiler and the like into contact with the absorption liquid that absorbs the carbon dioxide.
  • the absorption liquid is supplied to the absorption tower 60 from a flow path 84 connected to the upper part thereof.
  • the absorbing liquid is a liquid that absorbs carbon dioxide and is, for example, an amine aqueous solution.
  • the amine aqueous solution include aqueous solutions of MEA (monoethanolamine), EAE (ethylaminoethanol), IPAE (isopropaaminoethanol), TMDAH (tetramethyldiaminohexane), and the like.
  • the raw material gas rises as the absorbing liquid falls.
  • the absorption liquid and the source gas come into countercurrent contact, and the carbon dioxide contained in the source gas is absorbed by the absorption liquid.
  • the amount of carbon dioxide absorbed by the absorbing liquid depends on the temperature. Therefore, by controlling the temperature in the absorption tower 60, the absorption amount of carbon dioxide by the absorption liquid can be adjusted.
  • the absorbing liquid descends while making gas-liquid contact with the exhaust gas, and absorbs carbon dioxide contained in the exhaust gas (absorption process).
  • the gas from which the carbon dioxide has been reduced or removed (off-gas) is discharged from the top of the absorption tower 60 and introduced into the cleaning tower 65. Water is supplied to the cleaning tower 65 through a flow path (not shown).
  • the cleaning tower 65 the trace components contained in the gas are removed by bringing the gas and water into contact with each other.
  • the gas cleaned by the cleaning tower 65 may be released to the atmosphere, or may be used for various purposes depending on the contained components.
  • the temperature in the absorption tower 60 can be set, for example, according to the type of absorbing liquid, and is, for example, 30 to 40°C.
  • the pressure in the absorption tower 60 is, for example, 0 to 1.0 MPa.
  • the absorption liquid (rich liquid) that has absorbed carbon dioxide in the absorption tower 60 is stored in the tower bottom of the absorption tower 60, and is discharged from the absorption tower 60 at 30 to 40° C. by the flow path 62 connected to the tower bottom. It The absorption liquid discharged from the absorption tower 60 is introduced into the heat exchanger 70 via a pump. Here, heat is exchanged with the absorbing liquid (lean liquid) discharged from the regeneration tower 80 through the flow path 83 and heated to, for example, 80 to 90°C. The absorption liquid heated by the heat exchanger 70 flows through the flow path 64 and is introduced into the regeneration tower 80. The flow path 64 is connected to the upper part of the regeneration tower 80.
  • the absorbing liquid flowing down in the regeneration tower 80 stays on a tray (not shown) provided at or near the tower bottom in the regeneration tower 80.
  • a reboiler 81 that heats the absorption liquid accumulated at or near the bottom of the regeneration tower 80 is provided outside the regeneration tower 80.
  • the absorption liquid accumulated on the tray is introduced into the reboiler 81, exchanges heat with a heat medium (for example, steam), and is heated to, for example, 80 to 130° C.
  • the absorption liquid heated by the reboiler 81 returns to the inside of the regeneration tower 80.
  • a flow path 83 for discharging the absorption liquid (lean liquid) with reduced carbon dioxide from the regeneration tower 80 is connected.
  • the absorbing liquid (lean liquid) flows through the flow path 83, is introduced into the heat exchanger 70, and is cooled by heat exchange with the absorbing liquid (rich liquid) from the absorption tower 60.
  • the absorbing liquid (lean liquid) cooled in the heat exchanger 70 flows through the flow path 84 and is introduced into the cooler 82, where it is cooled to, for example, 30 to 40° C.
  • the absorption liquid (lean liquid) is supplied to the upper part of the absorption tower 60. In this way, the absorption liquid is used while circulating between the absorption tower 60 and the regeneration tower 80.
  • the gas containing carbon dioxide and impurities separated from the absorption liquid rises in the regeneration tower 80 and is discharged from the top of the regeneration tower 80 as a raw material gas for the adsorption tower 10.
  • the raw material gas is discharged from the top of the regeneration tower 80 at a temperature of 85 to 95° C., introduced into a heat exchanger, and cooled to 30 to 50° C. by heat exchange with water, for example.
  • the condensate produced by cooling is used as a reflux in the regeneration tower 80.
  • the raw material gas cooled by the heat exchanger is introduced into the compressor 90 and is pressurized to, for example, 0.8 to 1 MPa.
  • the source gas whose pressure has been increased by the compressor 90 is introduced into the dehumidifying section 95.
  • the dehumidifying section 95 has a dehumidifying material such as activated alumina or zeolite.
  • the raw material gas dehumidified in the dehumidifying section 95 is introduced into the adsorption tower 10 containing the adsorbent.
  • the adsorption tower 10 may have a configuration including two adsorption towers as shown in FIGS. 1 to 6 or may have another configuration.
  • the carbon dioxide production apparatus as shown in FIG. 7 can smoothly increase the production amount of high-purity carbon dioxide from the exhaust gas containing carbon dioxide.
  • a catalyst tower containing a reduction catalyst may be provided on the upstream side of the adsorption tower 10.
  • the raw material gas is brought into contact with the reduction catalyst in a hydrogen atmosphere, whereby impurities contained in the raw material gas are reduced, and the purity of carbon dioxide can be further improved.
  • a known deoxidizing catalyst can be used as the reducing catalyst used in the catalyst tower.
  • a catalyst in which a noble metal is supported on a carrier can be used.
  • carriers include aluminum oxide and magnesium oxide.
  • noble metals include platinum, palladium, rhodium, ruthenium and alloys thereof.
  • the above-mentioned one kind may be used alone, or two or more kinds may be combined. Since the carbon dioxide produced by the above-mentioned production apparatus or production method has a reduced odor, it can be suitably used for beverages or foods.
  • Example 1 The used activated carbon was replaced in the carbon dioxide producing apparatus in the operating state shown in FIG.
  • the exchange was performed as shown in FIG. That is, the introduction of the raw material gas into the first adsorption tower 11 was stopped, and the raw material gas was introduced into the second adsorption tower 12. While continuing the production of carbon dioxide in the second adsorption tower 12, the used activated carbon contained in the first adsorption tower 11 was taken out. After taking out, unused activated carbon was stored in the first adsorption tower 11.
  • the unused activated carbon was dried as shown in Fig. 3. That is, a part (about 20% by volume of the total amount) of carbon dioxide derived from the bottom portion 12b of the second adsorption tower 12 was introduced into the heating unit 30 as purified gas and heated. Steam was used as the heat source. The purified gas heated to 120 to 130° C. by the heating unit 30 was supplied into the first adsorption tower 11 from the bottom 11b of the first adsorption tower 11. From the time when the step (flow) shown in FIG. 3 was started, the temperature and the dew point of the lower part and the upper part of the first adsorption tower 11 were monitored.
  • Adsorption tower 11... 1st adsorption tower, 11a, 12a... Top part, 11b, 12b... Bottom part, 12... 2nd adsorption tower 21,22... Adsorbent, 30... Heating part, 31, 32, 41, 42 ... Piping, 50... Desulfurization tower, 60... Absorption tower, 62, 64, 83, 84... Flow path, 65... Washing tower, 70... Heat exchanger, 80... Regeneration tower, 81... Reboiler, 82... Cooler, 90... Compressor, 95... Dehumidifying section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided is a carbon dioxide production method that uses a plurality of adsorption towers that accommodate an adsorbent that adsorbs impurities in a feedstock gas containing carbon dioxide. Said carbon dioxide production method has a drying step in which, while carbon dioxide is continuously produced using at least one adsorption tower, a portion of a refined gas obtained by reducing the impurities from the feedstock gas is used to dry the adsorbent that has been filled into an adsorption tower differing from the at least one adsorption tower.

Description

二酸化炭素の製造方法、及び二酸化炭素の製造装置Carbon dioxide production method and carbon dioxide production apparatus
 本開示は、二酸化炭素の製造装置、及び二酸化炭素の製造方法に関する。 The present disclosure relates to a carbon dioxide production apparatus and a carbon dioxide production method.
 ボイラ等の燃焼設備から排出される排ガスから二酸化炭素を回収する技術が知られている。このような技術として、アミン水溶液等を用いた化学吸収法が利用されている。化学吸収法では、吸収塔においてアミン水溶液と混合ガスとを接触させて、アミン水溶液中に二酸化炭素を吸収させる。この二酸化炭素を吸収したアミン水溶液を、再生塔で加熱して二酸化炭素を放出させて、二酸化炭素とアミン水溶液とを分離する。このようにして、アミン水溶液を循環使用しながら、二酸化炭素を高濃度で含む二酸化炭素含有ガスが回収される。 ㆍA technology is known for recovering carbon dioxide from the exhaust gas emitted from combustion equipment such as boilers. As such a technique, a chemical absorption method using an amine aqueous solution or the like is used. In the chemical absorption method, an amine aqueous solution and a mixed gas are brought into contact with each other in an absorption tower to absorb carbon dioxide in the amine aqueous solution. The aqueous amine solution that has absorbed this carbon dioxide is heated in a regeneration tower to release carbon dioxide, and carbon dioxide and the aqueous amine solution are separated. In this way, the carbon dioxide-containing gas containing carbon dioxide at a high concentration is recovered while the amine aqueous solution is circulated and used.
 このような方法で回収される二酸化炭素含有ガスには、燃料ガスの性状に応じて二酸化炭素以外の種々の微量成分(不純物)が含まれている。特許文献1では、再生塔の下流側に還元触媒が収容された還元処理装置と、活性炭が収容された吸着処理装置とを設けて、二酸化炭素含有ガスの不純物を低減することが提案されている。 The carbon dioxide-containing gas collected by such a method contains various trace components (impurities) other than carbon dioxide depending on the properties of the fuel gas. Patent Document 1 proposes that a reduction treatment device containing a reduction catalyst and an adsorption treatment device containing activated carbon are provided on the downstream side of a regeneration tower to reduce impurities in a carbon dioxide-containing gas. ..
特開2016-188161号公報JP, 2016-188161, A
 還元触媒、及び活性炭等の吸着材を用いて、不純物を低減する場合、定期的にこれらを交換することが必要となる。このうち、吸着材は、水分等を吸着する性質があるため、本来の性能を発揮するためには、吸着塔に充填した後に乾燥して水分を低減する作業を行う必要がある。この作業中には、その吸着塔が不純物の低減に使用できず、高純度の二酸化炭素の製造ができない。このため、乾燥に要する作業時間を短縮することが求められる。 When reducing impurities using adsorbents such as reducing catalysts and activated carbon, it is necessary to replace them regularly. Among them, the adsorbent has a property of adsorbing water and the like, and therefore, in order to exhibit the original performance, it is necessary to perform the work of reducing the water content by filling the adsorption tower and then drying. During this operation, the adsorption tower cannot be used to reduce impurities and high purity carbon dioxide cannot be produced. Therefore, it is required to shorten the working time required for drying.
 そこで、本開示は、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造方法を提供する。本開示は、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造装置を提供する。 Therefore, the present disclosure provides a carbon dioxide production method capable of reducing the production loss of high-purity carbon dioxide. The present disclosure provides a carbon dioxide production device capable of reducing production loss of high-purity carbon dioxide.
 本開示の一側面に係る二酸化炭素の製造方法は、二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を用いる二酸化炭素の製造方法であって、少なくとも一つの吸着塔を用いて二酸化炭素の製造を継続しながら、当該吸着塔とは別の吸着塔に充填された吸着材を、原料ガスから不純物を低減して得られる精製ガスの一部を用いて乾燥する乾燥工程を有する。 A method for producing carbon dioxide according to one aspect of the present disclosure is a method for producing carbon dioxide using a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a raw material gas containing carbon dioxide, wherein at least one adsorption While continuing the production of carbon dioxide using the tower, the adsorbent filled in an adsorption tower different from the adsorption tower is dried using a part of the purified gas obtained by reducing impurities from the raw material gas. It has a drying step.
 この製造方法では、吸着塔に充填された吸着材の乾燥に精製ガスを用いる。乾燥工程中も少なくとも一つの吸着塔を用いて二酸化炭素の製造を並行して実施できることから、二酸化炭素の生産を停止する必要がない。したがって、高純度の二酸化炭素の生産ロスを減らすことができる。 In this manufacturing method, purified gas is used to dry the adsorbent packed in the adsorption tower. Since carbon dioxide production can be performed in parallel using at least one adsorption tower even during the drying step, it is not necessary to stop the carbon dioxide production. Therefore, the production loss of high-purity carbon dioxide can be reduced.
 上記乾燥工程では、上記精製ガスを加熱した後に当該精製ガスを吸着材が充填された吸着塔に供給してよい。加熱した精製ガスを吸着塔に供給することによって、吸着材を速やかに乾燥することができる。したがって、乾燥工程を短縮することができる。 In the drying step, the purified gas may be heated and then supplied to an adsorption tower filled with an adsorbent. By supplying the heated purified gas to the adsorption tower, the adsorbent can be dried quickly. Therefore, the drying process can be shortened.
 上記製造方法における複数の吸着塔は、原料ガスが順次流通するように接続された第1吸着塔と第2吸着塔とを有していてよい。この場合、上記製造方法は、第2吸着塔で二酸化炭素の製造を継続しながら、原料ガスの導入が停止された第1吸着塔の使用済み吸着材を取り出す停止工程と、未使用吸着材が充填された第1吸着塔に、第2吸着塔から導出される二酸化炭素の一部を精製ガスの一部として供給し未使用吸着材を乾燥する乾燥工程と、未使用吸着材を乾燥した後、第1吸着塔から二酸化炭素を得る運転開始工程と、を有してよい。 The plurality of adsorption towers in the above manufacturing method may have a first adsorption tower and a second adsorption tower connected so that the raw material gas sequentially flows. In this case, the above-mentioned manufacturing method includes a step of taking out the used adsorbent of the first adsorption tower in which the introduction of the raw material gas is stopped while continuing the production of carbon dioxide in the second adsorption tower, and an unused adsorbent A drying step of supplying a part of the carbon dioxide derived from the second adsorption tower as a part of the purified gas to the packed first adsorption tower to dry the unused adsorbent, and after drying the unused adsorbent And an operation starting step of obtaining carbon dioxide from the first adsorption tower.
 上記製造方法では、第2吸着塔で二酸化炭素の製造を継続しながら、第1吸着塔の停止工程、乾燥工程及び運転開始工程を行う。このため、吸着材の交換中も、二酸化炭素の製造を円滑に継続することができる。 In the above manufacturing method, while continuing the production of carbon dioxide in the second adsorption tower, the stopping step, the drying step and the operation starting step of the first adsorption tower are performed. Therefore, the production of carbon dioxide can be smoothly continued even during the exchange of the adsorbent.
 上記製造方法において、上記精製ガスの大気圧下における露点を-20℃以下に維持してよい。これによって、水分の凝縮及び固化、並びに水及び炭酸ガスによる各機器の腐食を抑制し、二酸化炭素の製造を一層円滑にすることができる。 In the above manufacturing method, the dew point of the purified gas under atmospheric pressure may be maintained at -20°C or lower. As a result, the condensation and solidification of water and the corrosion of each device due to water and carbon dioxide can be suppressed, and the production of carbon dioxide can be further facilitated.
 上記製造方法は、原料ガスの水分を低減する脱湿工程を有してよい。これによって、水分の凝縮及び固化、並びに水及び炭酸ガスによる各機器の腐食を抑制し、二酸化炭素の製造を一層円滑に継続することができる。 The above manufacturing method may include a dehumidifying step of reducing the water content of the raw material gas. As a result, the condensation and solidification of water and the corrosion of each device due to water and carbon dioxide can be suppressed, and the production of carbon dioxide can be continued more smoothly.
 上記乾燥工程では、精製ガスを吸着塔の下部から上部に向かって流通させてよい。精製ガスよりも水蒸気の方が比重が小さい。このため、このような方向で流通させることによって水蒸気の淀みが低減され、気化した水分を円滑に吸着塔から排出することができる。 In the above drying step, the purified gas may be passed from the lower part of the adsorption tower toward the upper part. The specific gravity of steam is smaller than that of purified gas. Therefore, the stagnation of water vapor is reduced by circulating in such a direction, and the vaporized water can be smoothly discharged from the adsorption tower.
 本開示の一側面に係る二酸化炭素の製造装置は、二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を備える二酸化炭素の製造装置であって、少なくとも一つの吸着塔を用いて二酸化炭素の製造を継続しながら、当該吸着塔とは別の吸着塔に原料ガスから不純物を低減して得られる精製ガスの一部を供給して、別の吸着塔に充填された吸着材を乾燥する供給部を備える。 A carbon dioxide production apparatus according to one aspect of the present disclosure is a carbon dioxide production apparatus including a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a raw material gas containing carbon dioxide, and at least one adsorption While continuing the production of carbon dioxide using the tower, a part of the purified gas obtained by reducing impurities from the raw material gas is supplied to an adsorption tower different from the adsorption tower, and the adsorption gas is filled in another adsorption tower. And a supply unit for drying the adsorbent.
 この製造装置では、吸着材が充填された吸着塔に原料ガスから不純物を低減して得られる精製ガスを供給して吸着材を乾燥している。吸着材を乾燥している間も二酸化炭素の製造を並行して実施できることから、二酸化炭素の生産を停止する必要がない。したがって、高純度の二酸化炭素の生産ロスを減らすことができる。 In this manufacturing equipment, the adsorbent is dried by supplying the purified gas obtained by reducing impurities from the raw material gas to the adsorption tower filled with the adsorbent. Since carbon dioxide production can be performed in parallel while the adsorbent is being dried, it is not necessary to stop carbon dioxide production. Therefore, the production loss of high-purity carbon dioxide can be reduced.
 上記供給部は、別の吸着塔に供給される精製ガスを加熱する加熱部を有してよい。加熱した精製ガスを吸着塔に供給することによって、吸着材を速やかに乾燥することができる。 The above-mentioned supply part may have a heating part for heating the purified gas supplied to another adsorption tower. By supplying the heated purified gas to the adsorption tower, the adsorbent can be dried quickly.
 上記製造装置は、原料ガスの水分を低減する脱湿部を備えてよい。これによって、水分の凝縮及び固化、並びに水及び炭酸ガスによる各機器の腐食を抑制し、二酸化炭素の製造を一層円滑にすることができる。 The above manufacturing apparatus may be provided with a dehumidifying unit that reduces the moisture content of the raw material gas. As a result, the condensation and solidification of water and the corrosion of each device due to water and carbon dioxide can be suppressed, and the production of carbon dioxide can be further facilitated.
 上記供給部は、吸着材の乾燥に用いられた精製ガスを吸着塔から排出する排出部よりも吸着塔の下部側に接続されてよい。精製ガスよりも水蒸気の方が比重が小さい。このため、供給部と排出部をこのような位置関係で接続することによって水蒸気の淀みが低減され、気化した水分を円滑に吸着塔から排出することができる。 The above-mentioned supply unit may be connected to the lower side of the adsorption tower than the discharge unit for discharging the purified gas used for drying the adsorbent from the adsorption tower. The specific gravity of steam is smaller than that of purified gas. Therefore, by connecting the supply unit and the discharge unit in such a positional relationship, the stagnation of water vapor is reduced, and the vaporized water can be smoothly discharged from the adsorption tower.
 本開示によれば、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造方法を提供することができる。また、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造装置を提供することができる。 According to the present disclosure, it is possible to provide a carbon dioxide production method capable of reducing production loss of high-purity carbon dioxide. Further, it is possible to provide a carbon dioxide production device capable of reducing the production loss of high-purity carbon dioxide.
図1は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 1 is a diagram for explaining some steps in an example of a carbon dioxide production method. 図2は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 2 is a diagram for explaining some steps in an example of the carbon dioxide production method. 図3は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 3 is a diagram for explaining some steps in an example of the carbon dioxide production method. 図4は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 4 is a diagram for explaining some steps in an example of the carbon dioxide production method. 図5は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 5: is a figure for demonstrating some process in an example of the manufacturing method of carbon dioxide. 図6は、二酸化炭素の製造方法の一例における一部の工程を説明するための図である。FIG. 6 is a diagram for explaining some steps in an example of the carbon dioxide production method. 図7は、二酸化炭素の製造装置の別の例を示す模式図である。FIG. 7 is a schematic view showing another example of the carbon dioxide producing apparatus.
 以下、場合により図面を参照して、本発明の一実施形態について説明する。ただし、以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。 An embodiment of the present invention will be described below with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description may be omitted depending on the case.
 一実施形態に係る二酸化炭素の製造方法は、二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を用いる二酸化炭素の製造方法であって、原料ガスから不純物を低減して原料ガスよりも二酸化炭素の純度が高い精製ガスを得る精製工程を有する。そして、所定のタイミングにおいて、この精製工程と並行して、少なくとも一つの吸着塔に未使用吸着材を充填した後、上記精製ガスの一部を用いて当該吸着材を乾燥する乾燥工程を有する。吸着塔は2つであってもよいし、3つ以上であってもよい。精製工程は、乾燥工程を行っている吸着塔とは別の吸着塔を用いて、乾燥工程中も継続して行うことができる。したがって、乾燥工程中も上記精製ガスの他部を用いて継続して製品規格を満足する二酸化炭素を生産することができる。本開示における「未使用吸着材」とは、精製工程に未だ用いられていない吸着材をいう。 A method for producing carbon dioxide according to one embodiment is a method for producing carbon dioxide that uses a plurality of adsorption towers containing an adsorbent that adsorbs impurities in a source gas containing carbon dioxide, and reduces impurities from the source gas. Then, there is a refining step for obtaining a purified gas in which carbon dioxide has a higher purity than the raw material gas. Then, at a predetermined timing, in parallel with this purification step, there is a drying step of filling at least one adsorption tower with an unused adsorbent and then drying the adsorbent using a part of the purified gas. The number of adsorption towers may be two, or three or more. The purification step can be continuously performed during the drying step by using an adsorption tower different from the adsorption tower performing the drying step. Therefore, carbon dioxide satisfying the product specification can be continuously produced by using the other part of the purified gas even during the drying process. The “unused adsorbent” in the present disclosure refers to an adsorbent that has not been used in the purification process.
 二酸化炭素を含む原料ガスは、特に限定されず、例えば、ボイラなどの燃焼ガス等が挙げられる。原料ガスは、二酸化炭素の他に、不純物を含んでいてよい。不純物の例としては、水、酸素、窒素、硫黄酸化物、窒素酸化物、一酸化炭素、硫化水素及び炭化水素等が挙げられる。原料ガスにおける二酸化炭素の濃度は、例えば95体積%以上であってよく、98体積%以上であってもよい。 The raw material gas containing carbon dioxide is not particularly limited, and examples thereof include combustion gas such as boiler. The raw material gas may contain impurities in addition to carbon dioxide. Examples of impurities include water, oxygen, nitrogen, sulfur oxides, nitrogen oxides, carbon monoxide, hydrogen sulfide and hydrocarbons. The concentration of carbon dioxide in the raw material gas may be, for example, 95% by volume or more, and may be 98% by volume or more.
 吸着材としては、市販の活性炭及びゼオライト等が挙げられる。コストの点で、吸着材は活性炭を含んでよい。精製工程と乾燥工程は併行して行われる。乾燥工程では、吸着材を、精製工程で得られる精製ガスを用いて乾燥する。吸着材の乾燥には、乾燥される吸着材が充填された吸着塔とは別の吸着塔において不純物が低減された精製ガスが用いられる。精製ガスは、原料ガスよりも不純物の濃度が低減されたガスであり、本実施形態で製造される二酸化炭素であってよい。 • Examples of adsorbents include commercially available activated carbon and zeolite. In terms of cost, the adsorbent may include activated carbon. The purification step and the drying step are performed in parallel. In the drying step, the adsorbent is dried using the purified gas obtained in the refining step. For drying the adsorbent, a purified gas in which impurities are reduced is used in an adsorption tower different from the adsorption tower packed with the adsorbent to be dried. The purified gas is a gas in which the concentration of impurities is lower than that of the raw material gas, and may be carbon dioxide produced in this embodiment.
 吸着材を乾燥するための精製ガスは、当該吸着材が収容されている吸着塔の下部から供給してよい。吸着材から脱離した水分を含む乾燥ガスは、吸着塔の上部から排出されてよい。これによって、精製ガスが吸着塔の下部から上部に向かって流通することとなる。このような流通方向とすることによって、気化した水分が円滑に吸着塔の外部に排出される。 Purified gas for drying the adsorbent may be supplied from the lower part of the adsorption tower containing the adsorbent. The dry gas containing water desorbed from the adsorbent may be discharged from the upper part of the adsorption tower. As a result, the purified gas flows from the lower part to the upper part of the adsorption tower. With such a flow direction, vaporized water is smoothly discharged to the outside of the adsorption tower.
 乾燥に用いられる精製ガスの温度は、吸着材を速やかに乾燥させる観点から、110℃以上であってよく、120℃以上であってもよい。活性炭の発火防止の観点及びエネルギー効率の観点から、乾燥に用いられる精製ガスの温度は、200℃以下であってよく、160℃以下であってよく、140℃以下であってもよい。 The temperature of the purified gas used for drying may be 110°C or higher, or 120°C or higher, from the viewpoint of quickly drying the adsorbent. The temperature of the purified gas used for drying may be 200° C. or lower, 160° C. or lower, or 140° C. or lower from the viewpoint of preventing ignition of activated carbon and energy efficiency.
 乾燥に用いられる精製ガスの圧力は、例えば、大気圧~1MPaであってよい。乾燥工程における精製ガスの空間速度は10~50h-1であってよい。乾燥工程の時間は、例えば24~48時間であってよい。乾燥工程の終了の判断は、例えば、吸着材を乾燥した吸着塔から導出される乾燥ガスの温度又は露点に基づいて行うことができる。これによって、乾燥工程後の精製工程において、二酸化炭素に混入する水分が低く維持されることとなり、水分の凝縮、並びに水及び炭酸ガスによる機器の腐食等を十分に抑制することができる。乾燥ガスの温度が、例えば100℃以上になったときに乾燥工程を終了してよい。変形例では乾燥ガスの温度が110℃以上又は120℃以上になったときに、乾燥工程を終了してよい。 The pressure of the purified gas used for drying may be, for example, atmospheric pressure to 1 MPa. The space velocity of the purified gas in the drying step may be 10 to 50 h −1 . The time of the drying step may be, for example, 24-48 hours. The judgment of the end of the drying step can be made, for example, on the basis of the temperature or the dew point of the dry gas derived from the adsorption tower that has dried the adsorbent. As a result, in the refining process after the drying process, the amount of water mixed in carbon dioxide is kept low, and the condensation of water and the corrosion of the equipment due to water and carbon dioxide can be sufficiently suppressed. The drying step may be terminated when the temperature of the drying gas reaches, for example, 100° C. or higher. In a modification, the drying process may be terminated when the temperature of the drying gas reaches 110°C or higher or 120°C or higher.
 吸着材の乾燥が終了した吸着塔は、続いて、原料ガスに含まれる不純物を低減して精製ガスを得る精製工程を行ってよい。精製工程は、複数の吸着塔を用いて行ってよい。精製ガスの大気圧下における露点は、例えば-20℃以下に維持されてよい。変形例では、精製ガスの大気圧下における露点は-30℃以下、又は-40℃以下に維持されてよい。これによって、二酸化炭素に混入する水分が低く維持されることとなり、水分の凝縮、並びに、水及び炭酸ガスによる機器の腐食等を十分に抑制することができる。 After the drying of the adsorbent, the adsorption tower may be subsequently subjected to a purification step of reducing impurities contained in the raw material gas to obtain a purified gas. The purification step may be performed using a plurality of adsorption towers. The dew point of the purified gas under atmospheric pressure may be maintained at, for example, −20° C. or lower. Alternatively, the dew point of the purified gas under atmospheric pressure may be maintained at -30°C or lower, or -40°C or lower. As a result, the amount of water mixed in carbon dioxide is kept low, and the condensation of water and the corrosion of the equipment due to water and carbon dioxide can be sufficiently suppressed.
 精製工程によって得られる精製ガスを、本実施形態で製造される二酸化炭素とすることができる。本実施形態で製造される二酸化炭素の純度は、例えば99.5体積%以上であってよく、99.9体積%以上であってよい。ただし、その純度に制限はなく、原料ガスよりも二酸化炭素の純度が高ければよい。したがって、不純物を含んでいてもよい。なお、本開示における「体積%」は、標準状態(0℃、1atm)における体積比率である。 The purified gas obtained by the purification process can be the carbon dioxide produced in this embodiment. The purity of carbon dioxide produced in the present embodiment may be, for example, 99.5% by volume or more, and may be 99.9% by volume or more. However, the purity is not limited, and it is sufficient if the purity of carbon dioxide is higher than that of the raw material gas. Therefore, it may contain impurities. The “volume %” in the present disclosure is the volume ratio in the standard state (0° C., 1 atm).
 精製工程で得られる二酸化炭素を液化する液化工程を行ってもよい。すなわち、本実施形態の製造方法では、ガス状の二酸化炭素を製造してもよいし、液状の二酸化炭素を製造してもよい。精製ガスの露点を十分に低くすることによって、液化工程を行っても水分の固化を十分に抑制することできる。 Liquefaction process of liquefying carbon dioxide obtained in the purification process may be performed. That is, in the production method of this embodiment, gaseous carbon dioxide or liquid carbon dioxide may be produced. By sufficiently lowering the dew point of the purified gas, it is possible to sufficiently suppress the solidification of water even if the liquefaction process is performed.
 例えば、窒素ガス又はアルゴンガス等の二酸化炭素以外の不活性ガスを用いて吸着塔に収容された未使用吸着材を乾燥する場合、未使用吸着材を乾燥した後に、吸着塔内をガス置換する必要がある。これに対し、本実施形態の製造方法では、乾燥工程における未使用吸着材の乾燥に精製ガスを用いる。このため、不活性ガスの消費を低減することができる。 For example, when the unused adsorbent contained in the adsorption tower is dried using an inert gas other than carbon dioxide, such as nitrogen gas or argon gas, after the unused adsorbent is dried, the inside of the adsorption tower is replaced with gas. There is a need. On the other hand, in the manufacturing method of this embodiment, the purified gas is used for drying the unused adsorbent in the drying step. Therefore, the consumption of the inert gas can be reduced.
 一実施形態に係る二酸化炭素の製造装置は、二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を備え、少なくとも一つの吸着塔を用いて二酸化炭素の製造を継続しながら、当該吸着塔とは別の吸着塔に、原料ガスから不純物を低減して得られる精製ガスを供給してこの別の吸着塔に充填された吸着材を乾燥する供給部と、吸着材の乾燥に用いられた精製ガス(乾燥ガス)を吸着塔から排出する排出部とを備える。このような製造装置を用いて上述の二酸化炭素の製造方法を行ってもよい。上述の製造方法の説明内容は、本実施形態の二酸化炭素の製造装置にも適用することができる。 An apparatus for producing carbon dioxide according to one embodiment includes a plurality of adsorption towers containing an adsorbent that adsorbs impurities in a raw material gas containing carbon dioxide, and continues production of carbon dioxide using at least one adsorption tower. However, a supply unit for supplying a purified gas obtained by reducing impurities from a raw material gas to an adsorption tower different from the adsorption tower to dry the adsorbent filled in the another adsorption tower, and an adsorbent And a discharge part for discharging the purified gas (dry gas) used for drying the adsorbent from the adsorption tower. You may perform the said carbon dioxide manufacturing method using such a manufacturing apparatus. The above description of the manufacturing method can be applied to the carbon dioxide manufacturing apparatus of this embodiment.
 供給部は、吸着塔から導出される二酸化炭素の一部を精製ガスとして上記別の吸着塔に供給してもよい。供給部は、例えば、精製ガスを流通させる配管、及び、精製ガスを加熱する加熱部を備える。加熱部を備えることによって、未使用吸着材を一層速やかに乾燥することができる。加熱部は、例えば熱源としてスチーム又は熱油を用いる熱交換器であってよい。排出部は、例えば、吸着材の乾燥によって得られた乾燥ガスを流通させる配管を備える。供給部は、吸着塔の下部に接続され、排出部は吸着塔の上部に接続されてよい。これによって、吸着材の乾燥が、吸着塔内を上昇する精製ガス(乾燥ガス)によって行われることとなり、吸着材の水分の低減を円滑に行うことができる。 The supply unit may supply a part of carbon dioxide derived from the adsorption tower to the other adsorption tower as a purified gas. The supply unit includes, for example, a pipe for circulating the purified gas and a heating unit for heating the purified gas. By providing the heating unit, the unused adsorbent can be dried more quickly. The heating unit may be, for example, a heat exchanger using steam or hot oil as a heat source. The discharge unit includes, for example, a pipe through which a dry gas obtained by drying the adsorbent is passed. The supply part may be connected to the lower part of the adsorption tower, and the discharge part may be connected to the upper part of the adsorption tower. As a result, the adsorbent is dried by the purified gas (dry gas) rising in the adsorption tower, and the water content of the adsorbent can be smoothly reduced.
 二酸化炭素の製造装置は、複数の吸着塔の上流側に脱湿部を備えていてよい。脱湿部は、原料ガスに含まれる水分を低減する機能を有する。脱湿部を備えることによって、水分の凝縮及び固化、並びに水及び炭酸ガスによる各機器の腐食を抑制し、二酸化炭素の製造を一層円滑にすることができる。 The carbon dioxide production device may be equipped with a dehumidifying unit upstream of the plurality of adsorption towers. The dehumidifying section has a function of reducing the water content contained in the raw material gas. By providing the dehumidifying portion, it is possible to suppress condensation and solidification of water and corrosion of each device due to water and carbon dioxide, and to further facilitate the production of carbon dioxide.
 二酸化炭素の製造装置は、吸着塔の下流側に二酸化炭素を液化又は固化する後処理部を備えていてもよい。後処理部は、二酸化炭素の温度及び圧力を調節する機能を有しており、例えば、圧縮機及び冷却機等を備える。 The carbon dioxide production device may be equipped with a post-treatment unit for liquefying or solidifying carbon dioxide on the downstream side of the adsorption tower. The post-treatment unit has a function of adjusting the temperature and pressure of carbon dioxide, and includes, for example, a compressor and a cooler.
 本実施形態に係る二酸化炭素の製造方法及び製造装置の一例として、第1吸着塔と第2吸着塔の2つの吸着塔を備える例を以下に説明する。 As an example of the carbon dioxide production method and production apparatus according to the present embodiment, an example including two adsorption towers, a first adsorption tower and a second adsorption tower, will be described below.
 図1、図2、図3、図4、図5及び図6は、二酸化炭素の製造方法の一部の工程を説明するための図である。この例では、複数の吸着塔10として原料ガスが順次流通するように接続された第1吸着塔11と第2吸着塔12とを有する二酸化炭素の製造装置を用いる。 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6 are views for explaining some steps of the carbon dioxide production method. In this example, a carbon dioxide producing apparatus having a first adsorption tower 11 and a second adsorption tower 12 which are connected as the plurality of adsorption towers 10 so that the raw material gas sequentially flows is used.
 図1では、原料ガスが第1吸着塔11と第2吸着塔12とを順次流通し、精製ガスが得られる(図1中の点線フロー)。第1吸着塔11と第2吸着塔12には吸着材21,22がそれぞれ収容されている。原料ガスに含まれる二酸化炭素以外の不純物は、吸着材21,22に吸着される。第2吸着塔12の底部12bに連結された配管より精製ガスが導出される。このようにして精製工程が行われる。この精製ガスは、そのまま二酸化炭素ガスとしてもよいし、冷却部で冷却して液体二酸化炭素としてもよい。また、その後にドライアイスとしてもよい。得られた二酸化炭素は、例えばタンク等に導入され、保管されてもよい。 In FIG. 1, the raw material gas sequentially flows through the first adsorption tower 11 and the second adsorption tower 12, and purified gas is obtained (dotted line flow in FIG. 1). Adsorbents 21 and 22 are housed in the first adsorption tower 11 and the second adsorption tower 12, respectively. Impurities other than carbon dioxide contained in the raw material gas are adsorbed by the adsorbents 21 and 22. The purified gas is led out from a pipe connected to the bottom portion 12b of the second adsorption tower 12. In this way, the purification process is performed. This purified gas may be carbon dioxide gas as it is, or may be cooled by a cooling unit to be liquid carbon dioxide. Further, it may be dried ice after that. The obtained carbon dioxide may be introduced and stored in, for example, a tank.
 図2では、第1吸着塔11への原料ガスの導入を停止し、原料ガスを第2吸着塔12に導入する。第2吸着塔12への原料ガスの導入と第2吸着塔12から精製ガス(二酸化炭素)の導出を継続しながら(図2中の破線フロー)、第1吸着塔11に収容されていた使用済み吸着材を取り出す(停止工程)。取り出し後、第1吸着塔11に未使用吸着材を収容する。このような活性炭の交換は、定期的に行ってもよいし、第1吸着塔11から導出される精製ガスの不純物濃度が上昇したときに行ってもよい。 In FIG. 2, the introduction of the raw material gas into the first adsorption tower 11 is stopped and the raw material gas is introduced into the second adsorption tower 12. While continuing the introduction of the raw material gas into the second adsorption tower 12 and the derivation of the purified gas (carbon dioxide) from the second adsorption tower 12 (broken line flow in FIG. 2), the use contained in the first adsorption tower 11 Remove the used adsorbent (stopping step). After taking out, the unused adsorbent is stored in the first adsorption tower 11. Such exchange of activated carbon may be performed periodically or when the concentration of impurities in the purified gas discharged from the first adsorption tower 11 increases.
 図3では、第2吸着塔12の底部12bから導出される精製ガス(二酸化炭素)の一部を加熱部30に導入して加熱する。熱源は、図に示すようにスチームであってもよいし、熱油であってもよい。加熱部30で所定の温度範囲に加熱された精製ガスは、配管31を流通して、第1吸着塔11の底部11bから第1吸着塔11内に供給される。ここで、加熱部30及び配管31は精製ガスの供給部を構成する。 In FIG. 3, a part of the purified gas (carbon dioxide) derived from the bottom portion 12b of the second adsorption tower 12 is introduced into the heating unit 30 and heated. The heat source may be steam as shown in the figure, or may be hot oil. The purified gas heated to a predetermined temperature range in the heating unit 30 flows through the pipe 31 and is supplied into the first adsorption tower 11 from the bottom portion 11b of the first adsorption tower 11. Here, the heating unit 30 and the pipe 31 constitute a purified gas supply unit.
 供給部から第1吸着塔11に供給された精製ガスは、第1吸着塔11内を上昇しながら未使用吸着材と接触し、未使用吸着材の水分を低減する。この水分を含む精製ガス(乾燥ガス)は、第1吸着塔11の頂部11aに接続された配管41(排出部)を流通し、例えば大気中に排出される(図3中の点線フロー)。この乾燥工程の間も、第2吸着塔12の底部12bから導出される精製ガスを二酸化炭素として継続して製造することができる(図3中の破線フロー)。 The purified gas supplied from the supply unit to the first adsorption tower 11 comes into contact with the unused adsorbent while rising in the first adsorption tower 11, and reduces the water content of the unused adsorbent. This purified gas (dry gas) containing water flows through the pipe 41 (exhaust part) connected to the top part 11a of the first adsorption tower 11, and is exhausted into the atmosphere, for example (dotted line flow in FIG. 3). During this drying step, the purified gas derived from the bottom portion 12b of the second adsorption tower 12 can be continuously produced as carbon dioxide (broken line flow in FIG. 3).
 未使用吸着材の乾燥が終了したら、第1吸着塔11において精製ガスの生産を開始する(運転開始工程)。乾燥の終了は、例えば、第1吸着塔11の頂部11aから導出される乾燥ガスの温度又は露点で判定してよい。例えば、乾燥ガスの温度が100℃以上になったら、第1吸着塔11の底部11bからの加熱された精製ガスの供給を停止してよい。変形例では、乾燥ガスの温度が110℃以上、又は120℃以上になったら、第1吸着塔11の底部11bからの加熱された精製ガスの供給を停止してよい。そして、第2吸着塔12の底部12bから導出される精製ガスを、第1吸着塔11の頂部11aから導入する(図4)。第1吸着塔11に収容された未使用吸着材21による不純物の吸着が開始される。第1吸着塔11の底部11bから得られる精製ガスを二酸化炭素として得ることができる。 After the drying of the unused adsorbent, the production of purified gas is started in the first adsorption tower 11 (operation start process). The end of the drying may be determined by, for example, the temperature or the dew point of the dry gas that is discharged from the top 11a of the first adsorption tower 11. For example, when the temperature of the dry gas reaches 100° C. or higher, the supply of the heated purified gas from the bottom portion 11b of the first adsorption tower 11 may be stopped. In a modified example, when the temperature of the dry gas reaches 110° C. or higher, or 120° C. or higher, the supply of the heated purified gas from the bottom portion 11b of the first adsorption tower 11 may be stopped. Then, the purified gas derived from the bottom portion 12b of the second adsorption tower 12 is introduced from the top portion 11a of the first adsorption tower 11 (FIG. 4). The unused adsorbent 21 contained in the first adsorption tower 11 starts adsorbing impurities. The purified gas obtained from the bottom portion 11b of the first adsorption tower 11 can be obtained as carbon dioxide.
 図4は、第1吸着塔11の運転開始工程後の精製工程を示している。この精製工程では、原料ガスが、第2吸着塔12及び第1吸着塔11をこの順に流通し、精製ガスが得られる(図4中の点線)。なお、第1吸着塔11の乾燥工程の後に、第1吸着塔11の運転開始工程を開始するタイミングに特に制限はなく、乾燥工程後、第1吸着塔11は暫く休止してもよい。図4のフローで精製工程を行うと、上流側にある第2吸着塔12の吸着材22の吸着能力が徐々に低下してくる。例えば、第2吸着塔12から導出される精製ガスの不純物濃度が上昇したら、以下の手順で第2吸着塔12の吸着材22の交換を行う。 FIG. 4 shows the purification process after the operation start process of the first adsorption tower 11. In this refining step, the raw material gas flows through the second adsorption tower 12 and the first adsorption tower 11 in this order to obtain a refined gas (dotted line in FIG. 4). The timing for starting the operation starting step of the first adsorption tower 11 is not particularly limited after the drying step of the first adsorption tower 11, and the first adsorption tower 11 may be suspended for a while after the drying step. When the refining process is performed according to the flow of FIG. 4, the adsorption capacity of the adsorbent 22 of the second adsorption tower 12 on the upstream side gradually decreases. For example, when the impurity concentration of the purified gas derived from the second adsorption tower 12 rises, the adsorbent 22 of the second adsorption tower 12 is replaced by the following procedure.
 図5に示すように、第2吸着塔12への原料ガスの導入を停止し、原料ガスを第1吸着塔11に導入する。第1吸着塔11への原料ガスの導入と第1吸着塔11からの精製ガスの導出(二酸化炭素の製造)を継続しながら(図5中の破線フロー)、第2吸着塔12に収容されていた使用済み吸着材を取り出す(停止工程)。取り出し後、第2吸着塔12に未使用吸着材を収容する。 As shown in FIG. 5, the introduction of the raw material gas into the second adsorption tower 12 is stopped, and the raw material gas is introduced into the first adsorption tower 11. While the introduction of the raw material gas into the first adsorption tower 11 and the derivation of the purified gas from the first adsorption tower 11 (production of carbon dioxide) are continued (broken line flow in FIG. 5), they are accommodated in the second adsorption tower 12. Remove the used adsorbent that had been used (stop process). After taking out, the unused adsorbent is stored in the second adsorption tower 12.
 図6に示すように、第2吸着塔12に未使用吸着材を収容した後、第1吸着塔11の底部11bから導出される精製ガス(二酸化炭素)の一部を加熱部30に導入して加熱する。加熱部30で所定温度以上に加熱された精製ガスは、配管32を流通して、第2吸着塔12の底部12bから第2吸着塔12内に供給される。ここで、加熱部30及び配管32は精製ガスの供給部を構成する。 As shown in FIG. 6, after accommodating the unused adsorbent in the second adsorption tower 12, a part of the purified gas (carbon dioxide) derived from the bottom portion 11 b of the first adsorption tower 11 is introduced into the heating unit 30. To heat. The purified gas heated to a predetermined temperature or higher in the heating unit 30 flows through the pipe 32 and is supplied into the second adsorption tower 12 from the bottom portion 12b of the second adsorption tower 12. Here, the heating unit 30 and the pipe 32 constitute a supply unit for the purified gas.
 供給部から第2吸着塔12に供給された精製ガスは、第2吸着塔12内を上昇しながら未使用吸着材と接触し、未使用吸着材の水分を低減する。この水分を含む精製ガス(乾燥ガス)は、第2吸着塔12の頂部12aに接続された配管42(排出部)を流通し、例えば大気中に排出される(図6中の点線)。この乾燥工程の間も、第1吸着塔11の底部11bから導出される精製ガスを二酸化炭素として継続して製造することができる(図6中の破線フロー)。 The purified gas supplied from the supply unit to the second adsorption tower 12 contacts the unused adsorbent while rising in the second adsorption tower 12, and reduces the moisture content of the unused adsorbent. The purified gas containing water (dry gas) flows through the pipe 42 (exhaust part) connected to the top portion 12a of the second adsorption tower 12 and is exhausted into the atmosphere, for example (dotted line in FIG. 6). Even during this drying step, the purified gas derived from the bottom portion 11b of the first adsorption tower 11 can be continuously produced as carbon dioxide (broken line flow in FIG. 6).
 第2吸着塔12に収容された未使用吸着材の乾燥が終了したら、第2吸着塔12において精製ガスの生産を開始する(運転開始工程)。乾燥の終了は、例えば、第2吸着塔12の頂部12aから導出される乾燥ガスの温度又は露点で判定してよい。乾燥が終了したら、第2吸着塔12の底部12bからの加熱された精製ガスの供給を停止する。そして、図1に示すように、第1吸着塔11の底部11bから導出される精製ガスを、第2吸着塔12の頂部12aから導入する。このようにして、第2吸着塔12に収容された未使用吸着材22による不純物の吸着が開始される。第2吸着塔12の底部12bから得られる精製ガスは二酸化炭素として利用することができる。このように図1~図6の手順を繰り返して行うことで、吸着材の交換の際における二酸化炭素のロスが低減され、純度の高い二酸化炭素の製造量を十分増やすことができる。 After the drying of the unused adsorbent contained in the second adsorption tower 12, the production of purified gas is started in the second adsorption tower 12 (operation start process). The completion of the drying may be determined, for example, by the temperature or the dew point of the dry gas that is discharged from the top portion 12a of the second adsorption tower 12. When the drying is completed, the supply of the heated purified gas from the bottom portion 12b of the second adsorption tower 12 is stopped. Then, as shown in FIG. 1, the purified gas derived from the bottom 11 b of the first adsorption tower 11 is introduced from the top 12 a of the second adsorption tower 12. In this way, the adsorption of impurities by the unused adsorbent 22 accommodated in the second adsorption tower 12 is started. The purified gas obtained from the bottom 12b of the second adsorption tower 12 can be used as carbon dioxide. By repeating the procedure of FIGS. 1 to 6 as described above, the loss of carbon dioxide when exchanging the adsorbent is reduced, and the production amount of highly pure carbon dioxide can be sufficiently increased.
 図7は、二酸化炭素の製造装置の別の例を示す模式図である。図7の製造装置は、ボイラ等の排ガスから二酸化炭素を製造する装置である。この製造装置は、脱硫塔50、吸収塔60、再生塔80、圧縮機90、脱湿部95及び吸着塔10を備える。排ガスは、脱硫塔50に導入される。脱硫塔50は、例えば、排ガスに含まれる硫黄酸化物を除去する。脱硫塔50には例えばアルカリ水溶液が供給される。脱硫塔50において排ガスとアルカリ水溶液とが気液接触してアルカリ水溶液に硫黄酸化物が吸収される。アルカリ水溶液の例としては、炭酸カルシウム水溶液、水酸化ナトリウム水溶液、水酸化マグネシウム水溶液及びアンモニア水などが挙げられる。 FIG. 7 is a schematic diagram showing another example of a carbon dioxide production apparatus. The manufacturing apparatus in FIG. 7 is an apparatus for manufacturing carbon dioxide from exhaust gas from a boiler or the like. This manufacturing apparatus includes a desulfurization tower 50, an absorption tower 60, a regeneration tower 80, a compressor 90, a dehumidifying section 95, and an adsorption tower 10. The exhaust gas is introduced into the desulfurization tower 50. The desulfurization tower 50 removes, for example, sulfur oxides contained in exhaust gas. For example, an alkaline aqueous solution is supplied to the desulfurization tower 50. In the desulfurization tower 50, the exhaust gas and the alkaline aqueous solution are in gas-liquid contact with each other, and the sulfur oxide is absorbed in the alkaline aqueous solution. Examples of the alkaline aqueous solution include calcium carbonate aqueous solution, sodium hydroxide aqueous solution, magnesium hydroxide aqueous solution, and ammonia water.
 脱硫塔50を通過した排ガスは、吸収塔60に供給される。吸収塔60及び再生塔80では、化学吸収法によって排ガスから二酸化炭素を回収する。吸収塔60は、ボイラ等で生じた排ガスと、二酸化炭素を吸収する吸収液とを接触させて、排ガスに含まれる二酸化炭素を吸収液に吸収させる。 The exhaust gas that has passed through the desulfurization tower 50 is supplied to the absorption tower 60. In the absorption tower 60 and the regeneration tower 80, carbon dioxide is recovered from the exhaust gas by the chemical absorption method. The absorption tower 60 makes the absorption liquid absorb the carbon dioxide contained in the exhaust gas by bringing the exhaust gas generated in the boiler and the like into contact with the absorption liquid that absorbs the carbon dioxide.
 吸収塔60には、その上部に接続された流路84から吸収液が供給される。吸収液は、二酸化炭素を吸収する液体であり、例えばアミン水溶液である。アミン水溶液としては、例えば、MEA(モノエタノールアミン)、EAE(エチルアミノエタノール)、IPAE(イソプロパアミノエタノール)、及びTMDAH(テトラメチルジアミノヘキサン)等の水溶液が挙げられる。 The absorption liquid is supplied to the absorption tower 60 from a flow path 84 connected to the upper part thereof. The absorbing liquid is a liquid that absorbs carbon dioxide and is, for example, an amine aqueous solution. Examples of the amine aqueous solution include aqueous solutions of MEA (monoethanolamine), EAE (ethylaminoethanol), IPAE (isopropaaminoethanol), TMDAH (tetramethyldiaminohexane), and the like.
 吸収塔60では、吸収液が降下するとともに原料ガスが上昇する。これによって、吸収液と原料ガスが向流接触して、原料ガスに含まれる二酸化炭素が吸収液に吸収される。吸収液による二酸化炭素の吸収量は温度に依存する。このため、吸収塔60内の温度を制御することによって、吸収液による二酸化炭素の吸収量を調整することができる。 In the absorption tower 60, the raw material gas rises as the absorbing liquid falls. As a result, the absorption liquid and the source gas come into countercurrent contact, and the carbon dioxide contained in the source gas is absorbed by the absorption liquid. The amount of carbon dioxide absorbed by the absorbing liquid depends on the temperature. Therefore, by controlling the temperature in the absorption tower 60, the absorption amount of carbon dioxide by the absorption liquid can be adjusted.
 吸収塔60内において、吸収液は排ガスと気液接触しながら降下して、排ガスに含まれる二酸化炭素を吸収する(吸収工程)。二酸化炭素が低減又は除去されたガス(オフガス)は、吸収塔60の塔頂部から排出され洗浄塔65に導入される。洗浄塔65には、図示しない流路によって水が供給される。洗浄塔65では、ガスと水とを接触させることによって、ガスに含まれる微量成分が除去される。洗浄塔65で洗浄されたガスは、大気に放出されてもよいし、含有成分に応じて種々の用途に用いられてもよい。 In the absorption tower 60, the absorbing liquid descends while making gas-liquid contact with the exhaust gas, and absorbs carbon dioxide contained in the exhaust gas (absorption process). The gas from which the carbon dioxide has been reduced or removed (off-gas) is discharged from the top of the absorption tower 60 and introduced into the cleaning tower 65. Water is supplied to the cleaning tower 65 through a flow path (not shown). In the cleaning tower 65, the trace components contained in the gas are removed by bringing the gas and water into contact with each other. The gas cleaned by the cleaning tower 65 may be released to the atmosphere, or may be used for various purposes depending on the contained components.
 吸収塔60内の温度は、例えば吸収液の種類に応じて設定することが可能であり、例えば30~40℃である。吸収塔60内の圧力は例えば0~1.0MPaである。 The temperature in the absorption tower 60 can be set, for example, according to the type of absorbing liquid, and is, for example, 30 to 40°C. The pressure in the absorption tower 60 is, for example, 0 to 1.0 MPa.
 吸収塔60で二酸化炭素を吸収した吸収液(リッチ液)は、吸収塔60の塔底部に溜められ、当該塔底部に接続された流路62によって、吸収塔60から30~40℃で排出される。吸収塔60から排出される吸収液は、ポンプを経由して熱交換器70に導入される。ここで、再生塔80から流路83によって排出される吸収液(リーン液)と熱交換して例えば80~90℃に加熱される。熱交換器70で加熱された吸収液は、流路64を流通して再生塔80に導入される。流路64は、再生塔80の上部に接続されている。 The absorption liquid (rich liquid) that has absorbed carbon dioxide in the absorption tower 60 is stored in the tower bottom of the absorption tower 60, and is discharged from the absorption tower 60 at 30 to 40° C. by the flow path 62 connected to the tower bottom. It The absorption liquid discharged from the absorption tower 60 is introduced into the heat exchanger 70 via a pump. Here, heat is exchanged with the absorbing liquid (lean liquid) discharged from the regeneration tower 80 through the flow path 83 and heated to, for example, 80 to 90°C. The absorption liquid heated by the heat exchanger 70 flows through the flow path 64 and is introduced into the regeneration tower 80. The flow path 64 is connected to the upper part of the regeneration tower 80.
 再生塔80に導入された二酸化炭素を吸収した吸収液(リッチ液)は、再生塔80内を流下する。その際に、吸収液(リッチ液)から二酸化炭素が分離され、吸収液が再生される。再生塔80内を流下した吸収液は、再生塔80内の塔底部又は塔底部付近に設けられたトレイ(不図示)上に滞留する。再生塔80の外部には、再生塔80の塔底部又は塔底部付近に滞留する吸収液を加熱するリボイラー81が設けられている。トレイ上に滞留した吸収液は、リボイラー81に導入され、熱媒(例えば水蒸気)と熱交換して、例えば80~130℃に加熱される。リボイラー81で加熱された吸収液は再生塔80内に戻る。 The absorption liquid (rich liquid) that has absorbed the carbon dioxide introduced into the regeneration tower 80 flows down in the regeneration tower 80. At that time, carbon dioxide is separated from the absorbing liquid (rich liquid), and the absorbing liquid is regenerated. The absorbing liquid flowing down in the regeneration tower 80 stays on a tray (not shown) provided at or near the tower bottom in the regeneration tower 80. Outside the regeneration tower 80, a reboiler 81 that heats the absorption liquid accumulated at or near the bottom of the regeneration tower 80 is provided. The absorption liquid accumulated on the tray is introduced into the reboiler 81, exchanges heat with a heat medium (for example, steam), and is heated to, for example, 80 to 130° C. The absorption liquid heated by the reboiler 81 returns to the inside of the regeneration tower 80.
 再生塔80の塔底部には、二酸化炭素が低減された吸収液(リーン液)を再生塔80から排出する流路83が接続されている。吸収液(リーン液)は、流路83を流通して熱交換器70に導入され、吸収塔60からの吸収液(リッチ液)との熱交換によって冷却される。その後、熱交換器70で冷却された吸収液(リーン液)は、流路84を流通してクーラー82に導入され、例えば30~40℃に冷却される。その後、吸収液(リーン液)は、吸収塔60の上部に供給される。このように、吸収液は吸収塔60と再生塔80との間を循環しながら使用される。 At the bottom of the regeneration tower 80, a flow path 83 for discharging the absorption liquid (lean liquid) with reduced carbon dioxide from the regeneration tower 80 is connected. The absorbing liquid (lean liquid) flows through the flow path 83, is introduced into the heat exchanger 70, and is cooled by heat exchange with the absorbing liquid (rich liquid) from the absorption tower 60. After that, the absorbing liquid (lean liquid) cooled in the heat exchanger 70 flows through the flow path 84 and is introduced into the cooler 82, where it is cooled to, for example, 30 to 40° C. Then, the absorption liquid (lean liquid) is supplied to the upper part of the absorption tower 60. In this way, the absorption liquid is used while circulating between the absorption tower 60 and the regeneration tower 80.
 再生塔80において、吸収液から分離された二酸化炭素及び不純物を含むガスは、再生塔80内を上昇し、吸着塔10の原料ガスとして、再生塔80の塔頂から導出される。原料ガスは、例えば85~95℃の温度で再生塔80の塔頂部から導出され、熱交換器に導入され、例えば水との熱交換で30~50℃に冷却される。冷却によって生じた凝縮液は、再生塔80でリフラックスとして用いられる。 In the regeneration tower 80, the gas containing carbon dioxide and impurities separated from the absorption liquid rises in the regeneration tower 80 and is discharged from the top of the regeneration tower 80 as a raw material gas for the adsorption tower 10. The raw material gas is discharged from the top of the regeneration tower 80 at a temperature of 85 to 95° C., introduced into a heat exchanger, and cooled to 30 to 50° C. by heat exchange with water, for example. The condensate produced by cooling is used as a reflux in the regeneration tower 80.
 熱交換器で冷却された原料ガスは圧縮機90に導入され、例えば0.8~1MPaに昇圧される。圧縮機90で昇圧した原料ガスは、脱湿部95に導入される。脱湿部95は、例えば活性アルミナ又はゼオライト等の脱湿材を有している。原料ガスを上述の圧力範囲で脱湿部95に導入することによって、原料ガス中の水分を効率よく低減することができる。脱湿部95において、原料ガスから水分を除去し、露点を例えば-40℃以下に調整する。これによって、下流側において、水分の凝縮及び固化を抑制することができる。また、水及び炭酸ガスによる腐食を十分に抑制することができる。 The raw material gas cooled by the heat exchanger is introduced into the compressor 90 and is pressurized to, for example, 0.8 to 1 MPa. The source gas whose pressure has been increased by the compressor 90 is introduced into the dehumidifying section 95. The dehumidifying section 95 has a dehumidifying material such as activated alumina or zeolite. By introducing the raw material gas into the dehumidifying section 95 within the above pressure range, the water content in the raw material gas can be efficiently reduced. In the dehumidifying section 95, moisture is removed from the raw material gas to adjust the dew point to, for example, -40°C or lower. As a result, the condensation and solidification of water can be suppressed on the downstream side. In addition, corrosion due to water and carbon dioxide can be sufficiently suppressed.
 脱湿部95において脱湿された原料ガスは、吸着材が収容された吸着塔10に導入される。吸着塔10は、図1~図6に示すような2つの吸着塔を備える構成であってもよいし、別の構成であってもよい。図7に示すような二酸化炭素の製造装置であれば、二酸化炭素を含む排ガスから高純度の二酸化炭素の製造量を円滑に増やすことができる。 The raw material gas dehumidified in the dehumidifying section 95 is introduced into the adsorption tower 10 containing the adsorbent. The adsorption tower 10 may have a configuration including two adsorption towers as shown in FIGS. 1 to 6 or may have another configuration. The carbon dioxide production apparatus as shown in FIG. 7 can smoothly increase the production amount of high-purity carbon dioxide from the exhaust gas containing carbon dioxide.
 以上、本発明の幾つかの実施形態を説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、吸着塔10よりも上流側に、還元触媒が収容された触媒塔を備えていてもよい。触媒塔の場合、原料ガスが、水素雰囲気下で還元触媒と接触することで、原料ガスに含まれる不純物が低減され、二酸化炭素の純度をさらに向上することができる。触媒塔で用いられる還元触媒としては、公知の脱酸素触媒を使用できる。例えば、担体に貴金属を担持させた触媒が挙げられる。担体の例としては、酸化アルミニウム及び酸化マグネシウムが挙げられる。貴金属の例としては、白金、パラジウム、ロジウム、ルテニウム及びこれらの合金が挙げられる。担体及び貴金属は、上述の一種を単独で用いてもよく、二種以上を組み合わせてもよい。上述の製造装置又は製造方法で製造される二酸化炭素は臭気が低減されていることから、例えば飲料又は食料の用途にも好適に用いることができる。 Although some embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, a catalyst tower containing a reduction catalyst may be provided on the upstream side of the adsorption tower 10. In the case of the catalyst tower, the raw material gas is brought into contact with the reduction catalyst in a hydrogen atmosphere, whereby impurities contained in the raw material gas are reduced, and the purity of carbon dioxide can be further improved. A known deoxidizing catalyst can be used as the reducing catalyst used in the catalyst tower. For example, a catalyst in which a noble metal is supported on a carrier can be used. Examples of carriers include aluminum oxide and magnesium oxide. Examples of noble metals include platinum, palladium, rhodium, ruthenium and alloys thereof. As the carrier and the noble metal, the above-mentioned one kind may be used alone, or two or more kinds may be combined. Since the carbon dioxide produced by the above-mentioned production apparatus or production method has a reduced odor, it can be suitably used for beverages or foods.
 実施例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The content of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(実施例1)
 図1に示す運転状態にある二酸化炭素の製造装置において、使用済み活性炭の交換を行った。交換は、図2のとおりに行った。すなわち、第1吸着塔11への原料ガスの導入を停止し、原料ガスを第2吸着塔12に導入した。第2吸着塔12で二酸化炭素の製造を継続しながら、第1吸着塔11に収容されていた使用済み活性炭を取り出した。取り出し後、第1吸着塔11に未使用活性炭を収容した。
(Example 1)
The used activated carbon was replaced in the carbon dioxide producing apparatus in the operating state shown in FIG. The exchange was performed as shown in FIG. That is, the introduction of the raw material gas into the first adsorption tower 11 was stopped, and the raw material gas was introduced into the second adsorption tower 12. While continuing the production of carbon dioxide in the second adsorption tower 12, the used activated carbon contained in the first adsorption tower 11 was taken out. After taking out, unused activated carbon was stored in the first adsorption tower 11.
 次に、未使用活性炭の乾燥を、図3のとおりに行った。すなわち、第2吸着塔12の底部12bから導出される二酸化炭素の一部(全量の約20体積%)を精製ガスとして加熱部30に導入して加熱した。熱源にはスチームを用いた。加熱部30で120~130℃に加熱した精製ガスを、第1吸着塔11の底部11bから第1吸着塔11内に供給した。図3に示す工程(フロー)を開始した時点から、第1吸着塔11の下部及び上部の温度と露点をモニターした。 Next, the unused activated carbon was dried as shown in Fig. 3. That is, a part (about 20% by volume of the total amount) of carbon dioxide derived from the bottom portion 12b of the second adsorption tower 12 was introduced into the heating unit 30 as purified gas and heated. Steam was used as the heat source. The purified gas heated to 120 to 130° C. by the heating unit 30 was supplied into the first adsorption tower 11 from the bottom 11b of the first adsorption tower 11. From the time when the step (flow) shown in FIG. 3 was started, the temperature and the dew point of the lower part and the upper part of the first adsorption tower 11 were monitored.
 工程開始直後は、吸着材の蒸発潜熱のため、温度に大きな変化はなかった。しかし、吸着材の乾燥の進行に伴って、まずは第1吸着塔11の下部の温度が上昇し、それに追随して上部の温度が上昇した。上部の温度が120℃近辺まで上昇し、露点が-40℃に到達した時点を、吸着材の乾燥の終了と判定した。図3に示す工程(フロー)を開始した時点から、吸着材の乾燥が終了するまでに所要した時間は、約24時間であった。また、吸着材の乾燥を行っている間も、二酸化炭素の純度は99.9体積%以上であり、且つ露点の製品規格を満足する二酸化炭素の製造を継続して行うことができた。 Immediately after the start of the process, there was no significant change in temperature due to the latent heat of vaporization of the adsorbent. However, with the progress of drying of the adsorbent, first, the temperature of the lower part of the first adsorption tower 11 increased, and following that, the temperature of the upper part increased. When the temperature of the upper part rose to around 120°C and the dew point reached -40°C, it was determined that the drying of the adsorbent was completed. The time required from the start of the step (flow) shown in FIG. 3 to the end of the drying of the adsorbent was about 24 hours. Further, even while the adsorbent was being dried, the purity of carbon dioxide was 99.9% by volume or more, and the production of carbon dioxide satisfying the dew point product standard could be continued.
(比較例1)
 実施例1と同様にして使用済み活性炭の交換を行った後、未使用活性炭の乾燥を、図3のフローではなく、図4のフローで行った場合の二酸化炭素の生産ロスをシミュレーションした。すなわち、第2吸着塔12で得られた精製ガスの全部を、第1吸着塔11に導入し、当該精製ガスを用いて未使用活性炭の乾燥を行う前提とした。乾燥開始後は、第1吸着塔11から導出される二酸化炭素の露点が高く製品規格を満足できないため、製品とすることができず、大気に放散する必要がある。露点が製品規格を満たすまで、数日から1週間を所要する。その間、二酸化炭素を製造することができない。また、二酸化炭素の放散量は、実施例1に比べて約15倍に増加し、生産ロスが増加する。
(Comparative example 1)
After exchanging the used activated carbon in the same manner as in Example 1, the unused activated carbon was dried not by the flow of FIG. 3, but by the flow of FIG. 4 to simulate the production loss of carbon dioxide. That is, it was assumed that the entire purified gas obtained in the second adsorption tower 12 was introduced into the first adsorption tower 11 and the unused activated carbon was dried using the purified gas. After the start of drying, the dew point of carbon dioxide derived from the first adsorption tower 11 is high and the product standard cannot be satisfied, so that it cannot be made into a product and must be released to the atmosphere. It takes a few days to a week for the dew point to meet product specifications. Meanwhile, carbon dioxide cannot be produced. Further, the emission amount of carbon dioxide is increased by about 15 times as compared with the first embodiment, and the production loss is increased.
 本開示によれば、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造方法を提供することができる。また、高純度の二酸化炭素の生産ロスを減らすことが可能な二酸化炭素の製造装置を提供することができる。 According to the present disclosure, it is possible to provide a carbon dioxide production method capable of reducing production loss of high-purity carbon dioxide. Further, it is possible to provide a carbon dioxide production device capable of reducing the production loss of high-purity carbon dioxide.
 10…吸着塔、11…第1吸着塔、11a,12a…頂部、11b,12b…底部、12…第2吸着塔、21,22…吸着材、30…加熱部、31,32,41,42…配管、50…脱硫塔、60…吸収塔、62,64,83,84…流路、65…洗浄塔、70…熱交換器、80…再生塔、81…リボイラー、82…クーラー、90…圧縮機、95…脱湿部。 10... Adsorption tower, 11... 1st adsorption tower, 11a, 12a... Top part, 11b, 12b... Bottom part, 12... 2nd adsorption tower 21,22... Adsorbent, 30... Heating part, 31, 32, 41, 42 ... Piping, 50... Desulfurization tower, 60... Absorption tower, 62, 64, 83, 84... Flow path, 65... Washing tower, 70... Heat exchanger, 80... Regeneration tower, 81... Reboiler, 82... Cooler, 90... Compressor, 95... Dehumidifying section.

Claims (10)

  1.  二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を用いる二酸化炭素の製造方法であって、
     少なくとも一つの吸着塔を用いて二酸化炭素の製造を継続しながら、当該吸着塔とは別の吸着塔に充填された吸着材を、前記原料ガスから前記不純物を低減して得られる精製ガスの一部を用いて乾燥する乾燥工程を有する、二酸化炭素の製造方法。
    A method for producing carbon dioxide using a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a source gas containing carbon dioxide,
    While continuing the production of carbon dioxide using at least one adsorption tower, the adsorbent filled in an adsorption tower different from the adsorption tower is a purified gas obtained by reducing the impurities from the raw material gas. A method for producing carbon dioxide, comprising a drying step of drying using carbon dioxide.
  2.  前記乾燥工程では、前記精製ガスを加熱した後に当該精製ガスを前記吸着材が充填された前記吸着塔に供給する、請求項1に記載の二酸化炭素の製造方法。 The method for producing carbon dioxide according to claim 1, wherein, in the drying step, the purified gas is heated and then the purified gas is supplied to the adsorption tower filled with the adsorbent.
  3.  前記複数の吸着塔は、前記原料ガスが順次流通するように接続された第1吸着塔と第2吸着塔とを有し、
     前記第2吸着塔で二酸化炭素の製造を継続しながら、前記原料ガスの導入が停止された前記第1吸着塔の使用済み吸着材を取り出す停止工程と、
     未使用吸着材が充填された前記第1吸着塔に、前記第2吸着塔から導出される二酸化炭素の一部を前記精製ガスの一部として供給し前記未使用吸着材を乾燥する前記乾燥工程と、
     前記未使用吸着材を乾燥した後、前記第1吸着塔から二酸化炭素を得る運転開始工程と、を有する、請求項1又は2に記載の二酸化炭素の製造方法。
    The plurality of adsorption towers have a first adsorption tower and a second adsorption tower connected so that the raw material gas sequentially flows,
    A stopping step of taking out the used adsorbent of the first adsorption tower in which the introduction of the raw material gas is stopped while continuing the production of carbon dioxide in the second adsorption tower;
    The drying step of supplying a part of carbon dioxide derived from the second adsorption tower as a part of the purified gas to the first adsorption tower filled with the unused adsorbent to dry the unused adsorbent When,
    The method for starting carbon dioxide according to claim 1 or 2, further comprising: an operation starting step of obtaining carbon dioxide from the first adsorption tower after drying the unused adsorbent.
  4.  前記精製ガスの大気圧下における露点を-20℃以下に維持する、請求項1~3のいずれか一項に記載の二酸化炭素の製造方法。 The method for producing carbon dioxide according to any one of claims 1 to 3, wherein the dew point of the purified gas under atmospheric pressure is maintained at -20°C or lower.
  5.  前記原料ガスの水分を低減する脱湿工程を有する、請求項1~4のいずれか一項に記載の二酸化炭素の製造方法。 The method for producing carbon dioxide according to any one of claims 1 to 4, which has a dehumidifying step of reducing the water content of the raw material gas.
  6.  前記乾燥工程では、前記精製ガスを前記吸着塔の下部から上部に向かって流通させる、請求項1~5のいずれか一項に記載の二酸化炭素の製造方法。 The method for producing carbon dioxide according to any one of claims 1 to 5, wherein in the drying step, the purified gas is circulated from a lower part of the adsorption tower toward an upper part thereof.
  7.  二酸化炭素を含む原料ガスの不純物を吸着する吸着材が収容された複数の吸着塔を備える二酸化炭素の製造装置であって、
     少なくとも一つの吸着塔を用いて二酸化炭素の製造を継続しながら、当該吸着塔とは別の吸着塔に前記原料ガスから前記不純物を低減して得られる精製ガスの一部を供給して、前記別の吸着塔に充填された吸着材を乾燥する供給部を備える、二酸化炭素の製造装置。
    A carbon dioxide production apparatus comprising a plurality of adsorption towers containing an adsorbent that adsorbs impurities of a raw material gas containing carbon dioxide,
    While continuing the production of carbon dioxide using at least one adsorption tower, by supplying a part of the purified gas obtained by reducing the impurities from the raw material gas to an adsorption tower different from the adsorption tower, An apparatus for producing carbon dioxide, comprising a supply unit for drying an adsorbent filled in another adsorption tower.
  8.  前記供給部は、前記別の吸着塔に供給される前記精製ガスを加熱する加熱部を有する、請求項7に記載の二酸化炭素の製造装置。 The carbon dioxide production device according to claim 7, wherein the supply unit has a heating unit that heats the purified gas supplied to the another adsorption tower.
  9.  前記原料ガスの水分を低減する脱湿部を備える、請求項7又は8に記載の二酸化炭素の製造装置。 The carbon dioxide production apparatus according to claim 7 or 8, further comprising a dehumidifying unit that reduces water content of the raw material gas.
  10.  前記別の吸着塔に接続され、前記吸着材の乾燥に用いられた前記精製ガスを前記別の吸着塔から排出する排出部を備え、
     前記供給部は、前記排出部よりも前記別の吸着塔の下部側に接続される、請求項7~9のいずれか一項に記載の二酸化炭素の製造装置。
    A discharge unit connected to the another adsorption tower and discharging the purified gas used for drying the adsorbent from the another adsorption tower,
    The carbon dioxide production device according to any one of claims 7 to 9, wherein the supply unit is connected to a lower side of the another adsorption tower than the discharge unit.
PCT/JP2019/050646 2019-02-28 2019-12-24 Carbon dioxide production method, and device for producing carbon dioxide WO2020174858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036382 2019-02-28
JP2019036382A JP6855525B2 (en) 2019-02-28 2019-02-28 How to make carbon dioxide

Publications (1)

Publication Number Publication Date
WO2020174858A1 true WO2020174858A1 (en) 2020-09-03

Family

ID=72239317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050646 WO2020174858A1 (en) 2019-02-28 2019-12-24 Carbon dioxide production method, and device for producing carbon dioxide

Country Status (2)

Country Link
JP (1) JP6855525B2 (en)
WO (1) WO2020174858A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059705A (en) * 1996-08-14 1998-03-03 Agency Of Ind Science & Technol Method for separating and recovering gaseous carbon dioxide
JP2000225183A (en) * 1999-02-09 2000-08-15 Iwatani Internatl Corp Recovery of gas for regeneration in gas refining system
CN201684526U (en) * 2009-11-27 2010-12-29 胜利油田胜利勘察设计研究院有限公司 CO2 drying device
JP2017170379A (en) * 2016-03-25 2017-09-28 株式会社Ihi Recovery method and recovery device of carbon dioxide
CN207566890U (en) * 2017-12-05 2018-07-03 天津永利食用添加剂有限公司 Ensure the food additives liquid CO 2 production line of dehydration efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059705A (en) * 1996-08-14 1998-03-03 Agency Of Ind Science & Technol Method for separating and recovering gaseous carbon dioxide
JP2000225183A (en) * 1999-02-09 2000-08-15 Iwatani Internatl Corp Recovery of gas for regeneration in gas refining system
CN201684526U (en) * 2009-11-27 2010-12-29 胜利油田胜利勘察设计研究院有限公司 CO2 drying device
JP2017170379A (en) * 2016-03-25 2017-09-28 株式会社Ihi Recovery method and recovery device of carbon dioxide
CN207566890U (en) * 2017-12-05 2018-07-03 天津永利食用添加剂有限公司 Ensure the food additives liquid CO 2 production line of dehydration efficiency

Also Published As

Publication number Publication date
JP2020138889A (en) 2020-09-03
JP6855525B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US10960343B2 (en) Methods and systems for performing chemical separations
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
RU2509720C2 (en) Method of producing hydrogen with complete entrapment of co2 and recycling of unreacted methane
JP5906074B2 (en) Hydrogen production system
JP5743215B2 (en) Helium gas purification method and purification apparatus
JP5896467B2 (en) Argon gas purification method and purification apparatus
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP5791113B2 (en) Argon gas purification method and purification apparatus
AU2010328581B2 (en) Maintaining lowered CO in a CO2 product stream in a process for treating synthesis gas
JP6576288B2 (en) Carbon dioxide gas recovery device and carbon dioxide gas manufacturing method
JP5729765B2 (en) Helium gas purification method and purification apparatus
WO2020174858A1 (en) Carbon dioxide production method, and device for producing carbon dioxide
JP5403685B2 (en) Argon gas purification method and purification apparatus
JP5745434B2 (en) Argon gas purification method and purification apparatus
JP2010209296A (en) Method for removing organic sulfur compound in raw material gas, and catalyst used in the method
US20120144860A1 (en) Process for removing harmful substances from liquid carbon dioxide and apparatus for the performance thereof
JP4382770B2 (en) Carbon dioxide purification method
JP2012106904A (en) Method and apparatus for purifying argon gas
JP6800622B2 (en) Purified gas production method and refined gas production equipment
JP2005177716A (en) Processing method of off-gas discharged from hydrogen psa purifying device
JP5761751B2 (en) Argon gas purification method and purification apparatus
JP2018515327A (en) Apparatus and method for separating carbon dioxide from a gas stream
JP2010174191A (en) Method for reducing oxygen consumption in natural gas treatment
KR20120116339A (en) Purifying method and purifying apparatus for argon gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917270

Country of ref document: EP

Kind code of ref document: A1